WO2020199289A1 - 车载式岩性与不良地质前兆特征识别系统及方法 - Google Patents
车载式岩性与不良地质前兆特征识别系统及方法 Download PDFInfo
- Publication number
- WO2020199289A1 WO2020199289A1 PCT/CN2019/084650 CN2019084650W WO2020199289A1 WO 2020199289 A1 WO2020199289 A1 WO 2020199289A1 CN 2019084650 W CN2019084650 W CN 2019084650W WO 2020199289 A1 WO2020199289 A1 WO 2020199289A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rock
- module
- mineral
- tunnel
- vehicle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
- G01N23/2005—Preparation of powder samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/2055—Analysing diffraction patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/207—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
- G01N23/2076—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
- G01N2223/056—Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
Definitions
- the present disclosure relates to the technical field of tunnel vehicle-mounted advanced geological prediction, and in particular to a vehicle-mounted lithology and poor geological precursor feature identification system and method.
- the present disclosure proposes a vehicle-mounted lithology and poor geological precursor feature identification system and method.
- the present disclosure can obtain tunnel face lithology and poor geological precursor feature information, mainly including rock feature minerals and element content
- the law of change can be used to predict the type of bad geological bodies in front of the hand.
- the present disclosure adopts the following technical solutions:
- a vehicle-mounted lithology and unfavorable geological precursor feature identification system including a vehicle.
- the vehicle is provided with a navigation and positioning module, a rock element testing module, a rock sampling module, an automatic rock sample grinding module, a rock and mineral testing module, and control and data Analysis module, where:
- the navigation and positioning module is fixed at the front end of the vehicle and is configured to control the distance and speed of the carrying vehicle, and realize automatic navigation and positioning according to different test positions in the tunnel;
- the rock element test module includes a rotatable support and an X-ray fluorescence spectrum analyzer set on the support to test the rock element and its percentage content;
- the rock sampling module includes a sampling drilling rig and a retractable rotating support frame to obtain rock samples in the adverse geologically affected area of the tunnel.
- the retractable rotating support frame can adjust the position of the rock sample and automatically send the rock sample into the grinding module;
- the automatic rock sample grinding module grinds the rock sample, and the ground rock sample enters the rock mineral testing module for mineral testing;
- the rock and mineral testing module includes an X-ray diffraction analyzer, which is used to test the law of enrichment of rock and minerals in the adverse geologically affected zone of the tunnel, and the test result is an X-ray diffraction pattern;
- the control and data analysis module receives the rock element test module and the rock mineral test module, performs fitting analysis on the X-ray diffraction pattern, obtains the mineral name and its percentage content, and combines the element name and percentage content measured by the rock element test module, Therefore, the law of enrichment of elements and minerals in the adverse geologically affected zone of the tunnel can be obtained.
- the present disclosure uses a vehicle-mounted method to walk arbitrarily in the project, and utilizes the coordination between various parts to quickly collect the rock element and mineral enrichment characteristics of the zone affected by the bad geological body of the tunnel, and perform intelligent analysis.
- the rotatable support of the rock element testing module is a telescopic structure
- an element analyzer is provided on the top of the telescopic structure, which is set on the top of the vehicle to test the law of the enrichment of rock elements in the adverse geologically affected zone of the tunnel.
- the test result is the element name and its percentage content, and the test data is transmitted to the control and data analysis module through the signal transmission line.
- the retractable rotating support is fixed on the top of the carrying vehicle and used to obtain rock samples in the adverse geologically affected area of the tunnel.
- the collected rock samples can be automatically sent to the grinding module by adjusting the position of the retractable rotating support in.
- the automatic rock sample grinding module includes a grinder and a glass funnel, controlled by the control and data analysis module, the rock sample is automatically ground to 200 meshes by the grinder, and a valve plate door is installed at the bottom of the grinder. Connect the glass funnel, open the valve plate door, and the ground rock sample enters the rock and mineral testing module through the glass funnel for mineral testing.
- the rock and mineral testing module includes an X-ray diffraction analyzer, which is used to test the law of rock and mineral enrichment changes in the adverse geologically affected zone of the tunnel.
- the test result is an X-ray diffraction pattern, and the test data is transmitted to the control and Data analysis module.
- control and data analysis module uses the Rietveld method based on the least square method to fit and analyze the X-ray diffraction pattern to obtain the mineral name and its percentage content, combined with the element name and percentage measured by the rock element test module The content of elements and minerals in the adverse geologically affected zone of the tunnel can be obtained.
- control and data analysis module stores a database of typical bad geological elements and mineral enrichment characteristics, which can realize real-time supplement and dynamic update of the database.
- the working method based on the above system includes the following steps:
- test data includes the element name and its percentage content.
- the test result will be Automatic entry into the control and data analysis module;
- the matching method includes the following three aspects:
- the present disclosure can quickly collect the rock element and mineral enrichment characteristics of the adverse geological body affected area of the tunnel, and perform intelligent analysis;
- the present disclosure can supplement and store element and mineral enrichment change law data in the adverse geological body affected area of the tunnel, and realize the dynamic update of the database.
- the present disclosure can realize the digitization and three-dimensionalization of surface borehole cataloging and the lithology, element and mineral enrichment characteristics of the adverse geological body affected area in the tunnel.
- This disclosure uses the acquisition of stratum lithology, topography, geomorphology, geological structure, bad geological phenomenon and hydrogeological conditions in the tunnel site area, and the obtained lithology, element and mineral enrichment change rules and data information of the adverse geological body affected area in the tunnel Comparison and verification can ensure the accuracy of the results, and can also modify the processing process based on the verification results.
- the present disclosure is based on the Rietveld method of the least square method.
- the theoretically calculated diffraction intensity data is fitted with a certain diffraction peak function curve and the experimental intensity data until the difference between the two reaches a minimum.
- This method can overcome the disadvantages of overlapping powder diffraction lines and less diffraction data, separate overlapping peaks in the diffraction pattern, and significantly improve the accuracy of the analysis of rock powder mineral content.
- the vehicle-mounted lithology and poor geological precursor feature identification method proposed in the present disclosure comprehensively considers the rock element and mineral content information to obtain the corresponding relationship between rock elements and minerals, lithology and poor geological precursor features, and overcome the single Elemental or mineral information is not enough to effectively distinguish the difficulty of lithology and poor geological precursor characteristics, so as to achieve high-accuracy identification of lithology and poor geology.
- Figure 1 is a schematic diagram of the structure of the vehicle-mounted advanced geological prediction system of the present disclosure
- Figure 2 is a flow chart of the disclosed advanced geological prediction method
- FIG. 3 is a schematic diagram of the testing process of the advanced geological prediction method disclosed herein.
- azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure and cannot be understood as a reference to the present Disclosure restrictions.
- the present disclosure provides a vehicle-mounted lithology and poor geological precursor feature identification system and method.
- the rock sample sampling module and the grinding module can automatically grind the samples required for the test.
- the rock element test module and the rock mineral test module can test the rock element and mineral content.
- the control and data analysis module compares the inside and outside of the tunnel
- the element and mineral enrichment law in the adverse geologically affected area is matched with the element and mineral enrichment feature database of typical unfavorable geological bodies, and the lithological changes and the occurrence characteristics of unfavorable geological bodies are forecasted.
- the invention also discloses a method of using the identification system.
- the invention can be used for tunnel advanced geological forecasting.
- the vehicle-mounted advanced geological forecasting system can quickly collect and intelligently analyze the characteristics of rock elements and mineral enrichment, and can realize surface drilling and logging and the lithology and elements of the adverse geological body affected area in the tunnel And the digitization, three-dimensional and dynamic update of mineral enrichment features.
- the vehicle-mounted lithology and poor geological precursor feature recognition system includes a carrying vehicle 1, a navigation and positioning module 2, a rock element testing module 3, a retractable rotating support 4, a rock sampling module 5, and a rock sample Automatic grinding module 6, glass funnel 7, rock and mineral testing module 8, control and data analysis module 9, valve plate door 10 and signal transmission line 11.
- the load-bearing vehicle 1 is a vehicle with a running mechanism, and an existing forecast vehicle can be used, which will not be repeated here.
- Navigation and positioning module 2 fixed at the front of the carrying vehicle, used to control the distance and speed of the carrying vehicle, and can realize automatic navigation and positioning according to different test positions in the tunnel;
- the rock element test module includes the X fluorescence spectrum analyzer 3 and the retractable rotating support 4.
- the X fluorescence spectrum analyzer is fixed on the retractable rotating support, and the retractable rotating support is fixed on the top of the carrying vehicle, which is used to test the bad geology of the tunnel.
- the change law of the enrichment of rock elements in the affected area, the test result is the element name and its percentage content, and the test data is transmitted to the control and data analysis module through the signal transmission line 11;
- the rock sampling module includes a sampling rig 5 and a retractable rotating support 4.
- the sampling rig is fixed on the retractable rotating support, and the retractable rotating support is fixed on the top of the carrying vehicle to obtain rock samples in the adverse geologically affected area of the tunnel.
- the rock sample can be automatically sent to the grinding module by adjusting the position of the retractable rotating support;
- the automatic rock sample grinding module includes a grinder 6 and a glass funnel 7, which are controlled by the control and data analysis module and can automatically grind the rock sample to 200 meshes.
- a valve plate door 10 is installed at the bottom of the rock sample grinding module and connected to the glass funnel to open the valve. Panel door, the ground rock sample can enter the rock and mineral testing module through the glass funnel for mineral testing;
- the rock and mineral testing module 8 includes an X-ray diffraction analyzer, which is used to test the law of rock and mineral enrichment changes in the adverse geologically affected area of the tunnel.
- the test result is an X-ray diffraction pattern, and the test data is transmitted to the control and data analysis module through the signal transmission line;
- the control and data analysis module 9 uses the Rietveld method based on the least square method to fit and analyze the X-ray diffraction pattern to obtain the mineral name and its percentage content, and combine the element name and percentage content measured by the rock element test module to obtain the tunnel Elements and mineral enrichment changes in adverse geologically affected areas.
- This module stores a database of typical elements and mineral enrichment characteristics of adverse geological bodies, and this module has a storage function that can realize real-time supplementation and dynamic update of the database.
- the vehicle-mounted lithology and poor geological precursor feature identification method includes the following steps:
- test vehicle is parked at a distance L behind the tunnel face of the tunnel axis, and the rock element test module is activated.
- the telescopic rotating support places the element analyzer close to the measuring point of the vault to perform rock element information.
- Test the test time is about 1min, the test data includes the element name and its percentage content, the test result will be automatically entered into the control and data analysis module;
- the test time is about 5 minutes
- the test result is the X-ray diffraction pattern of the rock sample.
- the control and data analysis module analyzes the X-ray diffraction pattern by the Rietveld method based on the least square method to obtain The name of the main mineral of the rock sample and its percentage content;
- the control and data analysis module compares and verifies the lithology, element and mineral enrichment changes in the area affected by the bad geological body in the tunnel in step (6) and step (1) the engineering geological survey results, and compares and verifies them with typical bad geology Body elements and mineral enrichment feature databases are matched;
- the matching method in step (7) includes the following three aspects:
- the content of some or all of the clay minerals in illite, chlorite, kaolinite, montmorillonite, Imonite, etc. will gradually increase, while the quartz and feldspar in the surrounding rock of the tunnel will gradually increase.
- the content of main minerals decreases correspondingly, corresponding to the gradual increase of the content of elements such as Mg, P, Fe, Mn, and the corresponding decrease of the content of elements such as Na, Si, K, etc., there may be a fault fracture zone in front of the tunnel face, which corresponds to the content of minerals or elements.
- the greater the amount of change the stronger the activity of the fault fracture zone, and the greater the range of its influence on the upper and lower walls;
- the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
- the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
- the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Claims (10)
- 一种车载式岩性与不良地质前兆特征识别系统,包括车辆,其特征是:所述车辆上设置有导航定位模块、岩石元素测试模块、岩石取样模块、岩样自动研磨模块、岩石矿物测试模块和控制与数据分析模块,其中:所述导航定位模块固定在车辆的前端,被配置为控制承载车辆行进的距离和速度,并根据隧道内测试位置的不同实现自动导航与定位;所述岩石元素测试模块包括可旋转支架,以及设置在所述支架上的X荧光光谱分析仪,以测试岩石元素及其百分比含量;所述岩石取样模块包括取样钻机、可伸缩式旋转支撑架,以获取隧道不良地质影响区岩样,可伸缩式旋转支撑架可以调整岩样的位置,将岩样自动送入研磨模块中;所述岩样自动研磨模块对岩样进行研磨,研磨后的岩石试样进入岩石矿物测试模块进行矿物测试;所述岩石矿物测试模块包括X射线衍射分析仪,用于测试隧道不良地质影响区岩石矿物富集变化规律,测试结果为X射线衍射图谱;所述控制与数据分析模块接收岩石元素测试模块和岩石矿物测试模块,对X射线衍射图谱进行拟合分析,得到矿物名称及其百分比含量,结合岩石元素测试模块测得的元素名称及百分比含量,从而得出隧道不良地质影响区元素和矿物富集变化规律。
- 如权利要求1所述的一种车载式岩性与不良地质前兆特征识别系统,其特征是:所述岩石元素测试模块的可旋转支架为可伸缩结构,可伸缩结构顶端设置有元素分析仪,设置于车辆顶端,用于测试隧道不良地质影响区岩石元素 富集变化规律,测试结果为元素名称及其百分比含量,测试数据通过信号传输线传输至控制与数据分析模块中。
- 如权利要求1所述的一种车载式岩性与不良地质前兆特征识别系统,其特征是:所述可伸缩式旋转支撑固定在承载车辆顶端,用于获取隧道不良地质影响区岩样,采集的岩样可通过可伸缩式旋转支撑调整位置将岩样自动送入研磨模块中。
- 如权利要求1所述的一种车载式岩性与不良地质前兆特征识别系统,其特征是:所述岩样自动研磨模块包括研磨机和玻璃漏斗,由控制与数据分析模块控制,利用研磨机将岩样自动研磨至200目,所述研磨机底部安装有阀板门,并连接玻璃漏斗,打开阀板门,研磨好的岩石试样通过玻璃漏斗进入岩石矿物测试模块进行矿物测试。
- 如权利要求1所述的一种车载式岩性与不良地质前兆特征识别系统,其特征是:所述岩石矿物测试模块包括X射线衍射分析仪,用于测试隧道不良地质影响区岩石矿物富集变化规律,测试结果为X射线衍射图谱,测试数据通过信号传输线传输至控制与数据分析模块中。
- 如权利要求1所述的一种车载式岩性与不良地质前兆特征识别系统,其特征是:所述控制与数据分析模块通过基于最小二乘法的Rietveld方法对X射线衍射图谱进行拟合分析,得到矿物名称及其百分比含量,结合岩石元素测试模块测得的元素名称及百分比含量,从而得出隧道不良地质影响区元素和矿物富集变化规律。
- 如权利要求1所述的一种车载式岩性与不良地质前兆特征识别系统,其 特征是:所述控制与数据分析模块存储有典型不良地质体元素和矿物富集特征数据库,能够实现数据库实时补充和动态更新。
- 基于权利要求1-7中任一项所述的系统的工作方法,其特征是:包括以下步骤:控制车辆停在隧道轴线掌子面后方距离L处,启动岩石元素测试模块,将元素分析仪紧贴拱顶测点,进行岩石元素信息测试,测试数据包括元素名称及其百分比含量,测试结果将自动录入控制与数据分析模块中;升降取样钻机,对拱顶测点进行取样,取得的岩样进入岩样自动研磨模块;将岩样研磨均匀至设定目,岩石试样粉末传送至岩样矿物测试模块进行矿物含量测试;测试岩石试样粉末的X射线衍射图谱,基于最小二乘法的Rietveld方法对X射线衍射图谱进行分析,从而得到该处岩样的主要矿物名称及其百分比含量;承载车向前行驶距离S,其中L=n*S,n为大于1的整数,重复上述步骤,直至车辆等间距行驶至隧道掌子面处,从而得到隧道洞内不良地质体影响区各元素和矿物富集变化规律,实现对掌子面前方不良地质体的超前预报。
- 如权利要求8所述的工作方法,其特征是:获取隧址区地层岩性、地形地貌、地质构造、不良地质现象和水文地质条件资料,将得到的隧洞内不良地质体影响区岩性、元素和矿物富集变化规律与资料信息进行对比、验证,并和典型不良地质体元素和矿物富集特征数据库相匹配。
- 如权利要求8所述的工作方法,其特征是:匹配方法包括以下三个方面:1)若越趋近隧道掌子面,部分或全部黏土矿物含量逐渐增加,隧道围岩中石英和长石主要矿物的含量相应减少,隧道掌子面前方可能存在断层破碎带,对应矿物或元素含量的变化量越大,断层破碎带活动性越强,其在上下盘的影响范围越大;2)若越趋近隧道掌子面,矿物的含量明显增加,对元素含量逐渐增加,则隧道掌子面前方可能存在蚀变带,对应矿物或元素含量的变化量越大,蚀变作用越强烈,且其影响范围也越大;3)在可溶岩地区,若越趋近隧道掌子面,岩石中方解石、白云石、菱铁矿或菱锰矿矿物的百分含量减少,对应元素含量也相应减少,表明该处发生较强的水岩相互作用-溶滤作用,则隧道掌子面前方可能含有岩溶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2019438696A AU2019438696B2 (en) | 2019-04-04 | 2019-04-26 | Vehicle-mounted system and method for in-situ identification of lithology and adverse geology precursor characteristic |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910272838.9A CN110031491B (zh) | 2019-04-04 | 2019-04-04 | 车载式岩性与不良地质前兆特征识别系统及方法 |
CN201910272838.9 | 2019-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020199289A1 true WO2020199289A1 (zh) | 2020-10-08 |
Family
ID=67237501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/084650 WO2020199289A1 (zh) | 2019-04-04 | 2019-04-26 | 车载式岩性与不良地质前兆特征识别系统及方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110031491B (zh) |
AU (1) | AU2019438696B2 (zh) |
WO (1) | WO2020199289A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112697105A (zh) * | 2020-12-02 | 2021-04-23 | 中铁二十三局集团第六工程有限公司 | 一种矿用隧道勘测用测量设备及测量方法 |
CN112798592A (zh) * | 2020-12-28 | 2021-05-14 | 山东大学 | 基于岩相学特征分析的岩石强度预测系统及方法 |
CN114135279A (zh) * | 2021-11-11 | 2022-03-04 | 山东大学 | 基于地化特征随钻测试的蚀变带快速识别预报系统及方法 |
CN114544219A (zh) * | 2022-01-27 | 2022-05-27 | 河北地质大学 | 一种地质勘探用岩石粉碎取样装置 |
CN114791482A (zh) * | 2021-01-25 | 2022-07-26 | 中国石油化工股份有限公司 | 一种确定岩石矿物含量系数的方法及装置、存储介质 |
CN115753632A (zh) * | 2022-10-19 | 2023-03-07 | 山东大学 | 基于图像光谱的隧道内不良地质体实时判识方法及系统 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111221024B (zh) * | 2019-09-06 | 2021-07-06 | 山东大学 | Tbm搭载式隧道前方围岩放射性预报系统及方法 |
CN111208158B (zh) * | 2019-09-06 | 2021-08-27 | 山东大学 | Tbm搭载式岩石石英含量测定系统及其方法 |
CN110989024B (zh) * | 2019-12-17 | 2021-10-08 | 山东大学 | 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法 |
CN111220567B (zh) * | 2020-01-20 | 2021-06-01 | 山东大学 | Tbm搭载式岩石蚀变特征识别及地质预报系统及其方法 |
CN111267984B (zh) | 2020-01-21 | 2021-04-13 | 山东大学 | 基于高光谱技术分析的隧道内不良地质体识别系统与方法 |
CN111751394B (zh) | 2020-04-17 | 2021-08-27 | 山东大学 | 基于图像与xrf矿物反演的岩性识别方法及系统 |
CN111537663B (zh) * | 2020-04-20 | 2022-10-04 | 中国石油天然气集团有限公司 | 一种岩性识别剂携带装置及基于其的岩性识别系统和方法 |
CN111812136B (zh) * | 2020-07-10 | 2021-07-06 | 山东大学 | Tbm搭载式矿物成分检测方法、超前地质预报方法及系统 |
CN113310916A (zh) * | 2021-05-24 | 2021-08-27 | 山东大学 | 基于元素反演矿物的隧道内地质异常识别与预报系统及方法 |
CN114135277B (zh) * | 2021-11-11 | 2024-07-19 | 山东大学 | 基于地化特征随钻感知的隧道超前地质预报方法及系统 |
CN114483025B (zh) * | 2021-12-17 | 2024-07-05 | 山东大学 | 基于地化特征随钻测试的隧道超前岩性识别系统及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101082277A (zh) * | 2007-07-05 | 2007-12-05 | 北京奥能瑞科石油技术有限公司重庆分公司 | 石油钻井地质x射线荧光岩屑录井方法 |
CN102495434A (zh) * | 2011-11-25 | 2012-06-13 | 成都畅达通地下工程科技发展有限公司 | 地下工程超前地质预报的方法 |
CN103399354A (zh) * | 2013-08-01 | 2013-11-20 | 中国建筑第四工程局有限公司 | 隧道地质的预报方法和系统 |
CN204405872U (zh) * | 2015-01-23 | 2015-06-17 | 山东大学 | 车载式隧道全空间裂隙网络检测成像与预警系统 |
CN107505344A (zh) * | 2017-07-25 | 2017-12-22 | 中国海洋石油总公司 | 利用“最小二乘积”法的岩性解释方法 |
US20190064039A1 (en) * | 2017-08-25 | 2019-02-28 | Geoservices Equipements | Method and system for analyzing at least a rock sample extracted from a geological formation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105181717B (zh) * | 2015-09-22 | 2017-12-15 | 同济大学 | 基于能量色散x射线谱的煤矸石物相分析方法 |
CN205440081U (zh) * | 2015-12-30 | 2016-08-10 | 国家地质实验测试中心 | 一种地质勘查野外现场快速分析车 |
-
2019
- 2019-04-04 CN CN201910272838.9A patent/CN110031491B/zh active Active
- 2019-04-26 AU AU2019438696A patent/AU2019438696B2/en active Active
- 2019-04-26 WO PCT/CN2019/084650 patent/WO2020199289A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101082277A (zh) * | 2007-07-05 | 2007-12-05 | 北京奥能瑞科石油技术有限公司重庆分公司 | 石油钻井地质x射线荧光岩屑录井方法 |
CN102495434A (zh) * | 2011-11-25 | 2012-06-13 | 成都畅达通地下工程科技发展有限公司 | 地下工程超前地质预报的方法 |
CN103399354A (zh) * | 2013-08-01 | 2013-11-20 | 中国建筑第四工程局有限公司 | 隧道地质的预报方法和系统 |
CN204405872U (zh) * | 2015-01-23 | 2015-06-17 | 山东大学 | 车载式隧道全空间裂隙网络检测成像与预警系统 |
CN107505344A (zh) * | 2017-07-25 | 2017-12-22 | 中国海洋石油总公司 | 利用“最小二乘积”法的岩性解释方法 |
US20190064039A1 (en) * | 2017-08-25 | 2019-02-28 | Geoservices Equipements | Method and system for analyzing at least a rock sample extracted from a geological formation |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112697105A (zh) * | 2020-12-02 | 2021-04-23 | 中铁二十三局集团第六工程有限公司 | 一种矿用隧道勘测用测量设备及测量方法 |
CN112798592A (zh) * | 2020-12-28 | 2021-05-14 | 山东大学 | 基于岩相学特征分析的岩石强度预测系统及方法 |
CN112798592B (zh) * | 2020-12-28 | 2022-03-22 | 山东大学 | 基于岩相学特征分析的岩石强度预测系统及方法 |
CN114791482A (zh) * | 2021-01-25 | 2022-07-26 | 中国石油化工股份有限公司 | 一种确定岩石矿物含量系数的方法及装置、存储介质 |
CN114791482B (zh) * | 2021-01-25 | 2024-03-08 | 中国石油化工股份有限公司 | 一种确定岩石矿物含量系数的方法及装置、存储介质 |
CN114135279A (zh) * | 2021-11-11 | 2022-03-04 | 山东大学 | 基于地化特征随钻测试的蚀变带快速识别预报系统及方法 |
CN114544219A (zh) * | 2022-01-27 | 2022-05-27 | 河北地质大学 | 一种地质勘探用岩石粉碎取样装置 |
CN115753632A (zh) * | 2022-10-19 | 2023-03-07 | 山东大学 | 基于图像光谱的隧道内不良地质体实时判识方法及系统 |
CN115753632B (zh) * | 2022-10-19 | 2024-05-31 | 山东大学 | 基于图像光谱的隧道内不良地质体实时判识方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110031491B (zh) | 2020-05-26 |
AU2019438696B2 (en) | 2021-06-03 |
AU2019438696A1 (en) | 2021-01-07 |
CN110031491A (zh) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020199289A1 (zh) | 车载式岩性与不良地质前兆特征识别系统及方法 | |
CN108518182B (zh) | 顶板多含水层枝状定向钻孔超前区域水体探放方法及装置 | |
CN101603423B (zh) | 一种在煤矿巷道内顺层超前探测含水构造的直流电法方法 | |
WO2021146949A1 (zh) | Tbm搭载式岩石蚀变特征识别及地质预报系统及其方法 | |
CN111997585B (zh) | 一种基于穿层孔测井的煤矿透明工作面构建方法 | |
CN103837908A (zh) | 一种适用于隐伏砂岩型铀矿快速找矿定位方法 | |
CN108930539A (zh) | 一种基于bim隧道超欠挖控制的方法 | |
CN206016797U (zh) | 测量模块及具有所述测量模块的矿井随钻测斜勘探系统 | |
CN112684515B (zh) | 一种铀钼矿床靶区圈定方法 | |
CN105221142A (zh) | 一种识别页岩地层矿物质量含量的方法 | |
CN107748399A (zh) | 利用重力界面反演识别山前带深部构造层方法 | |
CN107045145A (zh) | 地震层序控制下的叠前振幅随偏移距变化检测缝洞方法 | |
CN112485823A (zh) | 高效综合超前地质预报方法 | |
CN114814982B (zh) | 预测花岗岩体铀矿有利成矿部位的方法 | |
Kgarume et al. | The use of 3D ground penetrating radar to mitigate the risk associated with falls of ground in Bushveld Complex platinum mines | |
CN110632669A (zh) | 一种复杂构造岩浆活动区脉状铅锌银矿找矿方法 | |
CN111624665B (zh) | 一种石墨矿床勘探方法 | |
CN107644383A (zh) | 碳酸盐岩的定性方法 | |
CN110728074A (zh) | 混积细粒岩岩性连续解释的方法及其模型的建模方法 | |
CN221856626U (zh) | 一种用于煤矿工作面定向钻探测建立的透明地质模型 | |
CN114483025B (zh) | 基于地化特征随钻测试的隧道超前岩性识别系统及方法 | |
CN114139328B (zh) | 一种层间氧化带砂岩型铀矿有利成矿带的预测方法 | |
Jayawardana et al. | Sedimentary geochemistry of alluvial overburden in the primary gem deposit of Pelmadulla, Sri Lanka | |
Liu et al. | Research progress and prospect of adverse geology forward-prospecting and intelligent decision-making of TBM tunneling | |
Kurniawan | Coal Geometry Modeling and Resources Estimation in Darmo and Surrounding Area, Muara Enim, South Sumatra |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19923662 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019438696 Country of ref document: AU Date of ref document: 20190426 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19923662 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19923662 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2022) |