WO2020199201A1 - 一种基于模块化设计的燃料电池堆及其制作方法 - Google Patents

一种基于模块化设计的燃料电池堆及其制作方法 Download PDF

Info

Publication number
WO2020199201A1
WO2020199201A1 PCT/CN2019/081537 CN2019081537W WO2020199201A1 WO 2020199201 A1 WO2020199201 A1 WO 2020199201A1 CN 2019081537 W CN2019081537 W CN 2019081537W WO 2020199201 A1 WO2020199201 A1 WO 2020199201A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
cathode
anode
stack
Prior art date
Application number
PCT/CN2019/081537
Other languages
English (en)
French (fr)
Inventor
张华农
熊云
党岱
赵立康
胡清辉
陈兴威
王豪端
Original Assignee
武汉雄韬氢雄燃料电池科技有限公司
深圳市雄韬电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉雄韬氢雄燃料电池科技有限公司, 深圳市雄韬电源科技股份有限公司 filed Critical 武汉雄韬氢雄燃料电池科技有限公司
Priority to PCT/CN2019/081537 priority Critical patent/WO2020199201A1/zh
Publication of WO2020199201A1 publication Critical patent/WO2020199201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fuel cells, and in particular relates to a fuel cell stack based on modular design and a manufacturing method thereof.
  • Proton exchange membrane fuel cell is the fifth generation developed after alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) Fuel cells, because they use solid electrolyte polymer membranes as electrolytes, have the advantages of high energy conversion rate, low temperature startup, and no electrolyte leakage. They are recognized as the most promising power source for aerospace, military, electric vehicles and regional power stations. .
  • the core component of the proton exchange membrane fuel cell is a membrane electrode unit (MEA, membrane electrode assembly), which is a composite body composed of a proton-conducting membrane and electrodes arranged on both sides of the membrane.
  • MEA membrane electrode unit
  • the gas diffusion layer (GDL) on both sides of the membrane electrode unit may be arranged on the side of the electrode facing away from the membrane.
  • a bipolar plate is also arranged between the membrane electrode units, and the bipolar plate ensures the supply of working medium to a single battery.
  • a proton exchange membrane fuel cell is formed by a plurality of single cells arranged in a stack.
  • the single cells are connected in series to form a fixed power product for overall activation.
  • the quality of single cells is unknown before the stack is assembled, and the voltage consistency and performance of the entire stack are difficult to control. If a single cell has a problem, the entire stack needs to be disassembled and reassembled and replaced, which will seriously affect large-scale power generation The stack is put into production.
  • the present invention provides a fuel cell stack based on modular design and a manufacturing method thereof.
  • a fuel cell modular assembly the fuel cell modular assembly includes a cathode battery plate, an anode battery plate, a membrane electrode assembly and a seal between the cathode battery plate and the anode battery plate ;
  • the membrane electrode assembly includes an anode gas diffusion layer, a proton exchange membrane coated with a catalyst on both sides, and a cathode gas diffusion layer arranged in sequence.
  • the component of the catalyst is a platinum-carbon catalyst, and the platinum loading in the platinum-carbon catalyst is 20-50 wt.%.
  • anode gas diffusion layer and the cathode gas diffusion layer are one or more of carbon fiber paper, carbon woven cloth, carbon black paper or metal mesh.
  • a sealing groove is provided on the cathode battery plate and the anode battery plate, and the sealing member is a sealant located in the sealing groove.
  • the sealant is composed of at least one of polyurethane sealant, polysulfide sealant, anaerobic sealant, epoxy sealant, butyl sealant, neoprene sealant, and olefin sealant.
  • the cathode electrode plate and the anode electrode plate are one or more of high-strength graphite plates, molded graphite plates, flexible graphite plates, composite graphite plates or metal plates.
  • the present invention also provides a fuel cell stack based on a modular design.
  • the fuel cell stack includes an anode tail plate, an anode insulating plate, a plurality of fuel cell modular components as described above, and a cathode tail in sequence. Plate, cathode insulation plate and fastening strap.
  • the fuel cell stack further includes a sealing material for sealing the plurality of fuel cell modular components, and the sealing material is at least one of a rubber pad, a soft plastic, an insulating glue, a rubber ring, and a ring plastic film.
  • a sealing material for sealing the plurality of fuel cell modular components, and the sealing material is at least one of a rubber pad, a soft plastic, an insulating glue, a rubber ring, and a ring plastic film.
  • the present invention also provides a manufacturing method of the fuel cell stack as described above, including the following steps:
  • a rated power test is performed to screen out fuel cell modular assemblies with the same or similar voltage, internal resistance, and power consistency; the consistency is the same or similar
  • the voltage deviation of the fuel cell modular components of the company is within 5mV;
  • the obtained fuel cell modular assembly is sealed by using a conductive sealing material, the end plates and unipolar plates between the modules are assembled to form a leak-free cooling channel, and then a fastening strap is used to fasten the fuel cell stack.
  • the present invention also provides a fuel cell including the fuel cell stack described above.
  • the present invention also provides a method for using the fuel cell stack described above, and the method includes the following steps:
  • fuel cell modular components with performance that meets the performance requirements of automotive power batteries will continue to be used to prepare new fuel cell stacks for automotive power batteries, and fuel cell modular components whose performance cannot meet the performance requirements of automotive power batteries Components are used to prepare batteries in communication base stations, UPS (Uninterruptible Power System), IDC (Data Center), forklifts or special vehicles.
  • UPS Uninterruptible Power System
  • IDC Data Center
  • the present invention has the beneficial effects that: the fuel cell modular assembly provided by the present invention can be mass-produced in an automated scale, which is conducive to better quality control and cost reduction; the entire vehicle battery stack is modularized by fuel cells The components are stacked, and the new product development cycle is short and the cost is low; the battery pack failure maintenance and replacement of the stack module unit are convenient and quick, which conforms to the national new energy cascade utilization industrial policy, and has a broad commercial application prospect.
  • Fig. 1 is an exploded view of a fuel cell stack (fixed by glue application, unipolar plates used for the end plates of the module unit group) in an embodiment of the present invention
  • Figure 2 is an exploded view of a modular design fuel cell stack (fixed with a cable tie) in an embodiment of the present invention
  • Figure 3 is a front view and a side view of a fuel cell stack (fixed with a cable tie) in an embodiment of the present invention
  • Figure 4 is an exploded view of the stack module unit (fixed with tie) in the fuel cell stack in an embodiment of the present invention
  • Figure 5 is a front view and side view of the entire stack of module units (fixed with tie) in the embodiment of the present invention View
  • Figure 6 is an exploded view of the modular design fuel cell stack (fixed with glue) in an embodiment of the present invention
  • Figure 7 is a front view and a side view of the fuel cell stack (fixed with glue) in an embodiment of the present invention
  • Figure 8 is an exploded view of the stack module unit (fixed with glue) in the fuel cell stack in an embodiment of the present invention
  • Figure 9 is a front view and side view of the entire stack of module units (fixed with glue) in an embodiment of the present invention View
  • the reference elements are marked as follows: 1-15 membrane electrode stack unit group; 2—sealing material; 3—cathode insulating plate; 4—cathode tail plate; 5—anode insulating plate; 6—anode tail plate; 7—banding; 8—bipolar plate assembly; 9—membrane electrode assembly; 10-15 single-group steel belts; 11—gluing; 12—unipolar plate.
  • the embodiment of the present invention provides a fuel cell modular assembly, the fuel cell modular assembly includes a cathode battery plate, an anode battery plate, a membrane electrode assembly and a seal between the cathode battery plate and the anode battery plate;
  • the membrane electrode assembly includes an anode gas diffusion layer, a proton exchange membrane coated with a catalyst on both sides, and a cathode gas diffusion layer arranged in sequence.
  • the fuel cell modular components provided by the embodiments of the present invention can be mass-produced in an automated scale, which is conducive to better quality control and cost reduction; the entire vehicle battery stack is stacked by fuel cell modular components, and the development cycle of new products is short and the cost Low; battery pack failure maintenance is convenient and quick to replace the stack module unit, which conforms to the national new energy cascade utilization industrial policy, and has broad commercial application prospects.
  • the composition of the catalyst includes a commercial platinum-carbon catalyst, wherein the precious metal platinum loading is 20-50wt.%.
  • the platinum loading of the proton exchange membrane anode catalyst is 0.05-0.2mg/cm2, and the platinum loading of the cathode catalyst is 0.2-0.5mg/cm2.
  • the anode gas diffusion layer and the cathode gas diffusion layer are one or more of carbon fiber paper, carbon woven cloth, carbon black paper, or metal mesh.
  • the cathode battery plate and the anode battery plate are provided with a sealing groove, and the sealing member is a sealant located in the sealing groove.
  • the component of the sealant is at least one of polyurethane sealant, polysulfide sealant, anaerobic sealant, epoxy sealant, butyl sealant, neoprene sealant, and olefin sealant.
  • the power of the fuel cell modular assembly is 0.1kW-20kW.
  • the cathode electrode plate and the anode electrode plate are one or more of high-strength graphite plates, molded graphite plates, flexible graphite plates, composite graphite plates, or metal plates.
  • the embodiment of the present invention also provides a fuel cell stack, which includes an anode tail plate, an anode insulating plate, a plurality of the fuel cell modular components described above, a cathode tail plate, and a cathode insulating plate in sequence. Board and fastening straps.
  • the fuel cell stack provided by the embodiment of the present invention transforms the entire design of the traditional fuel cell stack into each modularized stack unit group, which is beneficial to increase the flexibility of the entire system.
  • the fuel cell stack further includes a sealing material for sealing the plurality of fuel cell modular components, the sealing material is conductive, and the material is conductive rubber pad, soft plastic, insulating glue, rubber At least one of ring and ring edge plastic film.
  • a conductive sealing material can reduce the current conduction resistance between the fuel cell modular components, thereby improving the performance of the fuel cell stack.
  • the fastening strap is a stainless steel strap or a nylon strap.
  • the possible solutions for the stacking and fastening of the fuel cell stack may be to use cable ties to fasten or to use glue to coat all four sides of the unit group and close it.
  • the use of glue for sealing is beneficial to reduce the volume of the fuel cell stack, to optimize the structure of the fuel cell stack, to reduce the assembly cost of the fuel cell stack, and to improve the sealing performance of the fuel cell stack.
  • the cost of the fastening strap is low, and the tightness of the fastening strap is easy to adjust.
  • the time required for assembling the battery module can be reduced, and the assembly and disassembly are convenient, and the production efficiency of the fuel cell stack is improved.
  • the stack module unit has a sealed outer shell, a positive electrode, and a negative electrode, and can be used independently as a commodity.
  • the after-sales service of the fuel cell stack can easily replace standard modules, facilitate maintenance, and reduce costs; it avoids the destructive disassembly of the stack due to the echelon utilization of fuel cells, and the product safety and reliability are guaranteed.
  • the fuel cell stack provided by the embodiment of the present invention can be used in cascades, and the raw material is a stack module unit group that cannot meet the usage requirements or has a failure.
  • the stack module unit group is designed to not only meet the technical requirements of automotive power batteries, but also meet the technical requirements of cascade utilization products for battery standard modules, so that fuel cell stacks can be cascaded to maximize their use value.
  • the embodiment of the present invention provides a method for manufacturing the fuel cell stack described above, which includes the following steps:
  • the rated power test is performed to screen out the same voltage, internal resistance, and power consistency or fuel cell modular groups, where the consistency is the same or similar Fuel cell modular components require voltage deviation within 5mV.
  • the obtained fuel cell modular assembly is sealed with a conductive sealing material, and then fastened with a fastening tie to form a fuel cell stack.
  • the manufacturing method of the fuel cell stack provided by the embodiment of the present invention utilizes the technical characteristics of the stack after the activation treatment, which is beneficial to efficiently screen and classify the stack module unit groups with the same or similar voltage consistency, and the consistency or The stacking of similar module unit groups is beneficial to improve the consistency and power generation performance of the fuel cell stack, and prolong its service life.
  • An embodiment of the present invention also provides a fuel cell, which includes the fuel cell stack described above.
  • the embodiment of the present invention also provides a method of using the fuel cell stack described above, and the method of using includes the following steps:
  • fuel cell modular components with performance that meets the performance requirements of automotive power batteries will continue to be used to prepare new fuel cell stacks for automotive power batteries, and fuel cell modular components whose performance cannot meet the performance requirements of automotive power batteries Components are used to prepare batteries in communication base stations, UPS (Uninterruptible Power System), IDC (Data Center), forklifts or special vehicles.
  • UPS Uninterruptible Power System
  • IDC Data Center
  • the stack cascade utilization method is adopted, and the failure is eliminated by replacing the battery standard module.
  • the disassembled stack module units can be stacked separately or re-stacked and can be directly used in communication base stations, UPS, IDC, forklifts, special vehicles, etc.
  • the cascade utilization enables the fuel cell stack to maximize its utilization value.
  • Fig. 1 is an exploded view of a fuel cell stack (fixed with glue and a unipolar plate used for the end plate of the module unit group) according to an embodiment of the present invention.
  • the fuel cell stack includes: 15 membrane electrode stack module unit group 1; sealing material (rubber ring) 2; cathode insulating plate 3; cathode tail plate 4; anode insulating plate 5; anode tail plate 6; strap 7; Unipolar plate 12.
  • the cathode unipolar plate, the membrane electrode assembly and the anode unipolar plate are stacked and sealed in order to form a fuel cell unit.
  • 15 membrane electrodes and a corresponding number of bipolar plates monopolar plates are used for the end plates
  • the fuel cell cells are activated with hydrogen and oxygen, and the stack module units with the same or similar voltage, internal resistance, and power consistency are screened for stacking (which can be understood as the end plate unipolar plate assembly between the modules
  • conductive rubber rings are used for sealing and fastening between the module unit groups.
  • anode tail plate anode insulating plate, rubber pad, stack module unit group, rubber pad, stack module unit group (several, according to the actual required power requirements), rubber ring, cathode insulating board, cathode tail plate
  • the stacks are stacked in sequence and fastened with straps to obtain a fuel cell stack.
  • Fig. 2 is an exploded view of the entire fuel cell stack (fastened by cable tie) based on a modular design in an embodiment of the present invention.
  • the fuel cell stack includes: 15 membrane electrode stack module unit group 1; sealing material (rubber ring) 2; cathode insulating plate 3; cathode tail plate 4; anode insulating plate 5; anode tail plate 6;
  • Fig. 4 is an exploded view of the stack module unit (fastened by the cable tie) in the fuel cell stack in the embodiment of the present invention.
  • the stack module unit group in the fuel cell stack includes: a bipolar plate assembly 8; a membrane electrode assembly 9; and 15 single-group steel strips 10.
  • the cathode unipolar plate, the membrane electrode assembly and the anode unipolar plate are stacked and sealed in order to form a fuel cell unit.
  • 15 membrane electrodes and a corresponding number of bipolar plates are used to stack the stack module unit group, and the steel belt is used for fastening.
  • the fuel cell unit is activated with hydrogen and oxygen, and the battery module unit groups with the same or similar voltage, internal resistance, and power consistency are selected for stacking, and the conductive rubber ring is used between the module unit groups. Seal and tighten.
  • anode tail plate anode insulating plate, rubber pad, stack module unit group, rubber pad, stack module unit group (several, according to the actual required power requirements), rubber pad, cathode insulating board, cathode tail plate
  • the stacks are stacked in sequence and fastened with straps to obtain a fuel cell stack.
  • Fig. 6 is an exploded view of the entire fuel cell stack (gluing and fastening) based on modular design in an embodiment of the present invention.
  • the fuel cell stack includes: 15 membrane electrode stack module unit groups 1; sealing material (rubber pad) 2; cathode insulating plate 3; cathode tail plate 4; anode insulating plate 5; anode tail plate 6;
  • Fig. 8 is an exploded view of the stack module unit (gluing and fastening) in the fuel cell stack in the embodiment of the present invention.
  • the stack module unit group in the fuel cell stack includes: a bipolar plate assembly 8; a membrane electrode assembly 9;
  • the cathode unipolar plate, the membrane electrode assembly and the anode unipolar plate are stacked and sealed in order to form a fuel cell unit.
  • 15 membrane electrodes and a corresponding number of bipolar plates are used to stack the stack module unit group, and the four sides are sealed with glue.
  • the fuel cell cells are activated with hydrogen and oxygen, and the stack module units with the same or similar voltage, internal resistance, and power consistency are selected for stacking, and conductive rubber pads are used between the module unit groups. Seal and tighten.
  • anode tail plate anode insulating plate, rubber pad, stack module unit group, rubber pad, stack module unit group (several, according to the actual required power requirements), rubber pad, cathode insulating board, cathode tail plate
  • the stacks are stacked in sequence and fastened with straps to obtain a fuel cell stack.
  • the present invention introduces three embodiments. Among them, the end plates of the stack module unit group in the embodiment 1 use unipolar plates, and the modules are sealed with rubber rings and still retain good conductivity, and no additional lead wires are required. It plays the role of series connection; in embodiment 2 and embodiment 3, the end plates of the stack module unit group in the fuel cell stack use insulating materials, and the modules need to be connected in series with another lead wire.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于燃料电池技术领域,尤其涉及一种基于模块化设计的燃料电池堆及其制作方法。一种燃料电池模块化组件,所述燃料电池模块化组件包括阴极电池板、阳极电池板、位于所述阴极电池板与阳极电池板之间的膜电极组件及密封件;所述膜电极组件包括依次排列的阳极气体扩散层、两面涂覆催化剂的质子交换膜及阴极气体扩散层。本发明提供的燃料电池模块化组件,可批量自动化规模制造,有利于更好地控制质量和降低成本。

Description

一种基于模块化设计的燃料电池堆及其制作方法 技术领域
本发明属于燃料电池技术领域,尤其涉及一种基于模块化设计的燃料电池堆及其制作方法。
背景技术
质子交换膜燃料电池(PEMFC)是继碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC)之后发展起来的第五代燃料电池,由于其采用固态电解质高分子膜作为电解质,因此具有能量转换率高、低温启动、无电解质泄露等优点,被公认为最有希望成为航天、军事、电动汽车和区域性电站的首选电源。质子交换膜燃料电池的核心部件为膜电极单元(MEA,membrane electrode assembly),膜电极单元是由传导质子的膜和分别布置在该膜两侧上的电极构成的复合体。此外,在膜电极单元两侧的气体扩散层(GDL)可以布置在电极的背离膜的侧面上。同时,在膜电极单元之间还布置有双极板,双极板保证了给单个电池供应工作介质。
通常,质子交换膜燃料电池通过多个布置成堆的单个电池形成,在目前开发燃料电池堆的技术中,多采用将单电池串联组成固定功率产品进行整体活化。而在这个过程中,单电池质量在装堆前未知,整堆的电压一致性和性能较难控制,若某一单电池出现问题需要整堆进行拆卸和重新组装替换,严重影响大批量规模电堆的投产。
因此,现有技术急需改进。
发明内容
为解决上述技术问题,本发明提供了一种基于模块化设计的燃料电池堆及其制作方法。
本发明是这样实现的,一种燃料电池模块化组件,所述燃料电池模块化组件包括阴极电池板、阳极电池板、位于所述阴极电池板与阳极电池板之间的膜电极组件及密封件;
所述膜电极组件包括依次排列的阳极气体扩散层、两面涂覆催化剂的质子交换膜及阴极气体扩散层。
进一步地,所述催化剂的成分为铂碳催化剂,所述铂碳催化剂中铂的载量为20~50wt.%。
进一步地,所述阳极气体扩散层和所述阴极气体扩散层为碳纤维纸、碳编织布、炭黑纸或金属网的一种或多种。
进一步地,所述阴极电池板和所述阳极电池板上设置有密封槽,所述密封件为位于所述密封槽中的密封胶。
进一步地,所述密封胶的成分聚氨酯密封胶,聚硫密封胶,厌氧密封胶,环氧密封胶,丁基密封胶,氯丁密封胶,烯烃类密封胶中的至少一种。
进一步地,所述阴极电极板和所述阳极电极板为高强石墨板、模压石墨板、柔性石墨板、复合石墨板或金属板的一种或多种。
本发明还提供了一种基于模块化设计的燃料电池堆,所述燃料电池堆依次包括按次序排列的阳极尾板、阳极绝缘板、多个如上述所述的燃料电池模块化组件、阴极尾板、阴极绝缘板及紧固扎带。
进一步地,所述燃料电池堆还包括对所述多个燃料电池模块化组件进行密封的密封材料,所述密封材料为橡胶垫、软塑料、绝缘胶水、橡胶圈、环边塑 料贴膜中的至少一种。
本发明还提供了一种如上所述的燃料电池堆的制作方法,包括以下步骤:
按照阴极单极板、膜电极组件和阳极单极板的顺序依次叠放,然后用密封件进行密封后组成燃料电池模块化组件;
用氢气或氧气对所述燃料电池模块化组件进行活化处理后,进行额定功率测试,筛选出得到电压、内阻、功率一致性相同或近似的燃料电池模块化组件;所述一致性相同或近似的燃料电池模块化组件的电压偏差在5mV以内;
使用具有导电性的密封材料将得到的燃料电池模块化组件进行密封,模块间的端板单极板组装后形成无泄漏的冷却通道,再用紧固扎带紧固形成燃料电池堆。
本发明还提供一种燃料电池,所述燃料电池包括上述所述的燃料电池堆。
本发明还提供了一种上述所述的燃料电池堆的使用方法,所述使用方法包括以下步骤:
将所述燃料电池堆用于制备汽车动力电池;
在所述汽车动力电池中的燃料电池堆因故障无法满足汽车动力要求后,将所述故障燃料电池堆拆卸下来并更换;
将拆卸下来的所述故障燃料电池堆进行拆解,获得其中的燃料电池模块化组件;
将获得的燃料电池模块化组件中,性能满足汽车动力电池性能要求的燃料电池模块化组件继续用于制备新的汽车动力电池用燃料电池堆,性能无法满足汽车动力电池性能要求的燃料电池模块化组件用于制备通信基站、UPS(不断 电系统)、IDC(数据中心)、叉车或特种车辆中的电池。
本发明与现有技术相比,有益效果在于:本发明提供的燃料电池模块化组件,可批量自动化规模制造,有利于更好地控制质量和降低成本;整车电池电堆由燃料电池模块化组件堆垛而成,新品开发周期短成本低;电池包故障维修更换电堆模块单元方便快捷,契合国家新能源梯次利用产业政策,商业应用前景广阔。
附图说明
图1是本发明实施例中燃料电池堆(涂胶固定、模块单元组端板使用单极板)的爆炸图;
图2是本发明实施例中模块化设计燃料电池堆(扎带固定)的爆炸图;
图3是本发明实施例中燃料电池堆(扎带固定)的正视图和侧面图;
图4是本发明实施例中燃料电池堆中电堆模块单元组(扎带固定)的爆炸图;图5是本发明实施例中电堆模块单元组整体(扎带固定)的正视图和侧视图;图6是本发明实施例中模块化设计燃料电池堆(涂胶固定)的爆炸图;
图7是本发明实施例中燃料电池堆(涂胶固定)的正视图和侧面图;
图8是本发明实施例中燃料电池堆中电堆模块单元组(涂胶固定)的爆炸图;图9是本发明实施例中电堆模块单元组整体(涂胶固定)的正视图和侧视图;其中,附图元件标记如下:1—15片膜电极电堆单元组;2—密封材料;3—阴极绝缘板;4—阴极尾板;5—阳极绝缘板;6—阳极尾板;7—绑带;8—双极板总成;9—膜电极总成;10—15片单组钢带;11—涂胶;12—单极板。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种燃料电池模块化组件,所述燃料电池模块化组件包括阴极电池板、阳极电池板、位于所述阴极电池板与阳极电池板之间的膜电极组件及密封件;
所述膜电极组件包括依次排列的阳极气体扩散层、两面涂覆催化剂的质子交换膜及阴极气体扩散层。
本发明实施例提供的燃料电池模块化组件,可批量自动化规模制造,有利于更好地控制质量和降低成本;整车电池电堆由燃料电池模块化组件堆垛而成,新品开发周期短成本低;电池包故障维修更换电堆模块单元方便快捷,契合国家新能源梯次利用产业政策,商业应用前景广阔。
具体地,所述催化剂的成分包括商业铂碳催化剂,其中贵金属铂的载量为20~50wt.%。质子交换膜阳极催化剂铂载量为0.05~0.2mg/cm2,阴极催化剂铂载量为0.2~0.5mg/cm2。
具体地,所述阳极气体扩散层和所述阴极气体扩散层为碳纤维纸、碳编织布、炭黑纸或金属网的一种或多种。
具体地,所述阴极电池板和所述阳极电池板上设置有密封槽,所述密封件为位于所述密封槽中的密封胶。
具体地,所述密封胶的成分聚氨酯密封胶,聚硫密封胶,厌氧密封胶,环氧密封胶,丁基密封胶,氯丁密封胶,烯烃类密封胶中的至少一种。所述燃料电池模块化组件的功率为0.1kW~20kW。
具体地,所述阴极电极板和所述阳极电极板为高强石墨板、模压石墨板、柔性石墨板、复合石墨板或金属板的一种或多种。
本发明实施例还提供了一种燃料电池堆,所述燃料电池堆依次包括按次序排列的阳极尾板、阳极绝缘板、多个上述所述的燃料电池模块化组件、阴极尾 板、阴极绝缘板及紧固扎带。
本发明实施例提供的燃料电池堆,把传统燃料电池堆整堆设计改造成各个模块化电堆单元组,有利于增加整个系统的灵活性。
具体地,所述燃料电池堆还包括对所述多个燃料电池模块化组件进行密封的密封材料,所述密封材料具有导电性,材质为具有导电性的橡胶垫、软塑料、绝缘胶水、橡胶圈、环边塑料贴膜中的至少一种。使用具有导电性的密封材料,能够降低燃料电池模块化组件之间的电流传导阻力,进而提高所述燃料电池堆性能。
具体地,所述紧固扎带为不锈钢带或尼龙带。所述燃料电池堆堆叠紧固可采取的方案可为使用扎带紧固或使用涂胶把单元组四边涂满封闭。使用涂胶封闭有利于减少燃料电池堆的体积,有利于燃料电池堆的结构优化,降低燃料电池堆装配成本,提高燃料电池堆密封性。
本发明实施例提供的燃料电池堆,所用的紧固扎带成本低,而且紧固扎带的松紧易于调节。通过使用扎带进行模块单元组以及整堆的紧固,能够减少组装电池模块所需时间,易于装配和拆卸维修方便,进而提高燃料电池堆的生产效率。所述电堆模块单元有密封外壳体、正极、负极,可独立作为商品使用。所述燃料电池电堆的售后服务由于可以便捷更换标准模块,维修便利、降低成本;避免了燃料电池梯次利用对电堆的破坏性拆解,产品安全性和可靠性得到保障。
本发明实施例提供的燃料电池堆可梯次利用,原料为满足不了使用要求或发生故障的电堆模块单元组。将电堆模块单元组设计成为既满足汽车动力电池的技术要求,同时也满足梯次利用产品对电池标准模组的技术要求,使燃料电池电堆能够梯次利用,最大限度发挥其使用价值。
本发明实施例提供了一种上述所述的燃料电池堆的制作方法,包括以下步骤:
按照阴极单极板、膜电极组件和阳极单极板的顺序依次叠放,然后用密封件进行密封后组成燃料电池模块化组件;
用氢气、氧气或空气对所述燃料电池模块化组件进行活化处理后,进行额定功率测试,筛选出得到电压、内阻、功率一致性相同或燃料电池模块化组,其中一致性相同或近似的燃料电池模块化组件要求电压偏差在5mV以内。
使用具有导电性的密封材料将得到的燃料电池模块化组件进行密封,再用紧固扎带紧固形成燃料电池堆。
本发明实施例提供的燃料电池堆的制作方法,利用先活化处理后组堆的技术特点,这有利于高效筛选电压一致性相同或类似的电堆模块单元组并进行分级,将一致性相同或类似的模块单元组进行装堆有利于提高燃料电池堆的一致性和发电性能,延长其使用寿命。
本发明实施例还提供了一种燃料电池,所述燃料电池包括上述所述的燃料电池堆。
本发明实施例还提供一种上述所述的燃料电池堆的使用方法,所述使用方法包括以下步骤:
将所述燃料电池堆用于制备汽车动力电池;
在所述汽车动力电池中的燃料电池堆因故障无法满足汽车动力要求后,将所述故障燃料电池堆拆卸下来并更换;
将拆卸下来的所述故障燃料电池堆进行拆解,获得其中的燃料电池模块化组件;
将获得的燃料电池模块化组件中,性能满足汽车动力电池性能要求的燃料电池模块化组件继续用于制备新的汽车动力电池用燃料电池堆,性能无法满足汽车动力电池性能要求的燃料电池模块化组件用于制备通信基站、UPS(不断 电系统)、IDC(数据中心)、叉车或特种车辆中的电池。
本发明实施例提供的燃料电池电堆若出现故障,采用电堆梯次利用方法,采取更换电池标准模组的方式消除故障。当车用燃料电池电堆退役后,拆解下来的电堆模块单元可单独或再次组堆可直接应用于通信基站、UPS、IDC、叉车、特种车辆等。梯次利用使燃料电池堆最大限度发挥其利用价值。
以下结合具体实施例对本发明的技术方案做进一步说明。
实施例1
图1是本发明实施例燃料电池堆(涂胶固定、模块单元组端板使用单极板)的爆炸图。所述燃料电池堆包括:15片膜电极电堆模块单元组1;密封材料(橡胶圈)2;阴极绝缘板3;阴极尾板4;阳极绝缘板5;阳极尾板6;绑带7;单极板12。
首先按照阴极单极板,膜电极组件和阳极单极板顺序依次叠放密封组成燃料电池单体。然后按照此步骤分别使用15片膜电极和相应数量的双极板(其中端板使用单极板)堆叠成电堆模块单元组,使用涂胶封闭四边。然后,对燃料电池单体用氢气、氧气进行活化处理,筛选电压、内阻、功率一致性相同或相似的电堆模块单元组进行组堆(可理解为,模块间的端板单极板组装后成为一个燃料电池堆的一片双极板),模块单元组之间使用具有导电性的橡胶圈进行密封紧固。最后,按照阳极尾板、阳极绝缘板、胶垫、电堆模块单元组、胶垫、电堆模块单元组(若干个,根据实际所需功率要求)、橡胶圈、阴极绝缘板、阴极尾板依次按顺序装堆,使用绑带进行紧固,得到燃料电池堆。
实施例2
图2是本发明实施例基于模块化设计的燃料电池堆整堆(扎带紧固)的爆炸图。所述燃料电池堆包括:15片膜电极电堆模块单元组1;密封材料(橡胶圈)2;阴极绝缘板3;阴极尾板4;阳极绝缘板5;阳极尾板6;绑带7。图4是本发明实施例中燃料电池堆中电堆模块单元组(扎带紧固)的爆炸图。所述 燃料电池堆中电堆模块单元组包括:双极板总成8;膜电极总成9;15片单组钢带10。
首先按照阴极单极板,膜电极组件和阳极单极板顺序依次叠放密封组成燃料电池单体。然后按照此步骤分别使用15片膜电极和相应数量的双极板堆叠成电堆模块单元组,使用钢带紧固。然后,对燃料电池单体用氢气、氧气进行活化处理,筛选电压、内阻、功率一致性相同或相似的电堆模块单元组进行组堆,模块单元组之间使用具有导电性的橡胶圈进行密封紧固。最后,按照阳极尾板、阳极绝缘板、胶垫、电堆模块单元组、胶垫、电堆模块单元组(若干个,根据实际所需功率要求)、胶垫、阴极绝缘板、阴极尾板依次按顺序装堆,使用绑带进行紧固,得到燃料电池堆。
实施例3
图6是本发明实施例基于模块化设计燃料电池堆整堆(涂胶紧固)的爆炸图。所述燃料电池堆包括:15片膜电极电堆模块单元组1;密封材料(橡胶垫)2;阴极绝缘板3;阴极尾板4;阳极绝缘板5;阳极尾板6;绑带7。图8是本发明实施例中燃料电池堆中电堆模块单元组(涂胶紧固)的爆炸图。所述燃料电池堆中电堆模块单元组包括:双极板总成8;膜电极总成9;涂胶11。
首先按照阴极单极板,膜电极组件和阳极单极板顺序依次叠放密封组成燃料电池单体。然后按照此步骤分别使用15片膜电极和相应数量的双极板堆叠成电堆模块单元组,使用涂胶封边四边。然后,对燃料电池单体用氢气、氧气进行活化处理,筛选电压、内阻、功率一致性相同或相似的电堆模块单元组进行组堆,模块单元组之间使用具有导电性的橡胶垫进行密封紧固。最后,按照阳极尾板、阳极绝缘板、胶垫、电堆模块单元组、胶垫、电堆模块单元组(若干个,根据实际所需功率要求)、胶垫、阴极绝缘板、阴极尾板依次按顺序装堆,使用绑带进行紧固,得到燃料电池堆。
本发明介绍的三个实施例,其中,实施例1中电堆模块单元组的端板使用 单极板,且模块间使用橡胶圈密封紧固后仍保留良好的导电性,无需再另引导线便起到串联的作用;实施例2和实施例3,燃料电池堆中的电堆模块单元组端板使用绝缘材料,模块间需另引导线进行串联连接。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种燃料电池模块化组件,其特征在于,所述燃料电池模块化组件包括阴极电池板、阳极电池板、位于所述阴极电池板与阳极电池板之间的膜电极组件及密封件;
    所述膜电极组件包括依次排列的阳极气体扩散层、两面涂覆催化剂的质子交换膜及阴极气体扩散层。
  2. 如权利要求1所述的燃料电池模块化组件,其特征在于,所述催化剂的成分为铂碳催化剂,所述铂碳催化剂中铂的载量为20~50wt.%。
  3. 如权利要求1所述的燃料电池模块化组件,其特征在于,所述阳极气体扩散层和所述阴极气体扩散层为碳纤维纸、碳编织布、炭黑纸或金属网的一种或多种。
  4. 如权利要求1所述的燃料电池模块化组件,其特征在于,所述阴极电池板和所述阳极电池板上设置有密封槽,所述密封件为位于所述密封槽中的密封胶。
  5. 如权利要求4所述的燃料电池模块化组件,其特征在于,所述密封胶的成分为聚氨酯密封胶,聚硫密封胶,厌氧密封胶,环氧密封胶,丁基密封胶,氯丁密封胶,烯烃类密封胶中的至少一种。
  6. 如权利要求1所述的燃料电池模块化组件,其特征在于,所述阴极电极板和所述阳极电极板为高强石墨板、模压石墨板、柔性石墨板、复合石墨板或金属板的一种或多种。
  7. 一种基于模块化设计的燃料电池堆,其特征在于,所述燃料电池堆依次包括按次序排列的阳极尾板、阳极绝缘板、多个如权利要求1至6任意一项 所述的燃料电池模块化组件、阴极尾板、阴极绝缘板及紧固扎带。
  8. 如权利要求7所述的燃料电池堆,其特征在于,所述燃料电池堆还包括对所述多个燃料电池模块化组件进行密封的密封材料,所述密封材料为橡胶垫、软塑料、绝缘胶水、橡胶圈、环边塑料贴膜中的至少一种。
  9. 一种如权利要求7或8所述的燃料电池堆的制作方法,其特征在于,包括以下步骤:
    按照阴极单极板、膜电极组件和阳极单极板的顺序依次叠放,然后用密封件进行密封后组成燃料电池模块化组件;
    用氢气或氧气对所述燃料电池模块化组件进行活化处理后,进行额定功率测试,筛选出得到电压、内阻、功率一致性相同或近似的燃料电池模块化组件;所述一致性相同或近似的燃料电池模块化组件的电压偏差在5mV以内;
    使用具有导电性的密封材料将得到的燃料电池模块化组件进行密封,模块间的端板单极板组装后形成无泄漏的冷却通道,再用紧固扎带紧固形成燃料电池堆。
  10. 一种燃料电池,其特征在于,所述燃料电池包括权利要求7或8所述的燃料电池堆。
  11. 一种如权利要求7或8所述的燃料电池堆的使用方法,所述使用方法包括以下步骤:
    将所述燃料电池堆用于制备汽车动力电池;
    在所述汽车动力电池中的燃料电池堆因故障无法满足汽车动力要求后,将所述故障燃料电池堆拆卸下来并更换;
    将拆卸下来的所述故障燃料电池堆进行拆解,获得其中的燃料电池模块化组件;
    将获得的燃料电池模块化组件中,性能满足汽车动力电池性能要求的燃料电池模块化组件继续用于制备新的汽车动力电池用燃料电池堆,性能无法满足汽车动力电池性能要求的燃料电池模块化组件用于制备通信基站、UPS、IDC、叉车或特种车辆中的电池。
PCT/CN2019/081537 2019-04-04 2019-04-04 一种基于模块化设计的燃料电池堆及其制作方法 WO2020199201A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081537 WO2020199201A1 (zh) 2019-04-04 2019-04-04 一种基于模块化设计的燃料电池堆及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081537 WO2020199201A1 (zh) 2019-04-04 2019-04-04 一种基于模块化设计的燃料电池堆及其制作方法

Publications (1)

Publication Number Publication Date
WO2020199201A1 true WO2020199201A1 (zh) 2020-10-08

Family

ID=72664664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081537 WO2020199201A1 (zh) 2019-04-04 2019-04-04 一种基于模块化设计的燃料电池堆及其制作方法

Country Status (1)

Country Link
WO (1) WO2020199201A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447583A (zh) * 2008-10-31 2009-06-03 清华大学 一种燃料电池一体化单元模块及其电堆
CN102576882A (zh) * 2009-10-15 2012-07-11 丰田自动车株式会社 燃料电池组
CN105552408A (zh) * 2014-10-27 2016-05-04 丰田自动车株式会社 燃料电池的检査方法及制造方法
JP2017068956A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447583A (zh) * 2008-10-31 2009-06-03 清华大学 一种燃料电池一体化单元模块及其电堆
CN102576882A (zh) * 2009-10-15 2012-07-11 丰田自动车株式会社 燃料电池组
CN105552408A (zh) * 2014-10-27 2016-05-04 丰田自动车株式会社 燃料电池的检査方法及制造方法
JP2017068956A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体

Similar Documents

Publication Publication Date Title
CN101990720B (zh) 燃料电池组
US7323266B2 (en) Sheet-like chemical cell, fuel cell and methods for manufacturing thereof
KR0123727B1 (ko) 연료전지의 적층체
US7807310B2 (en) End plate for fuel cell stack and air breathing fuel cell stack using the same
CN105895938A (zh) 一种质子交换膜燃料电池电堆的活化方法
CN109950593A (zh) 一种基于模块化设计的燃料电池堆及其制作方法
JPWO2008149554A1 (ja) 高分子電解質型燃料電池
CN212380449U (zh) 一种新型膜电极结构以及燃料电池组
CN111224124A (zh) 一种燃料电池单体及其制备方法
US20130022896A1 (en) Bipolar Plate for Fuel Cell
CN110828844A (zh) 一种高性能质子交换膜燃料电池阴阳极流场及其双极板
US20190245236A1 (en) Polymer electrolyte fuel cell stack
CN101447583A (zh) 一种燃料电池一体化单元模块及其电堆
JP2002246042A (ja) プロトン交換膜燃料電池からなるモジュール化単電池及び組立電池ユニット
US8227136B2 (en) Using ionomer to militate against membrane buckling in the tenting region
CN112310433A (zh) 一种燃料电池的密封结构及燃料电池电堆的装配方法
WO2020199201A1 (zh) 一种基于模块化设计的燃料电池堆及其制作方法
CN116190742A (zh) 一种新型的固体氧化物电池电堆及其堆芯堆叠方法
CN109346757A (zh) 一种燃料电池电堆
CN102110838A (zh) 一种质子交换膜燃料电池电堆
US11508982B2 (en) Fuel cell stack
CN211350832U (zh) 一种燃料电池单体
CN208986103U (zh) 一种燃料电池电堆
JP3685039B2 (ja) 固体高分子型燃料電池システム
CN201655892U (zh) 燃料电池拼接双极板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922910

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19922910

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19922910

Country of ref document: EP

Kind code of ref document: A1