WO2020199197A1 - 回波信号的处理方法及装置 - Google Patents

回波信号的处理方法及装置 Download PDF

Info

Publication number
WO2020199197A1
WO2020199197A1 PCT/CN2019/081517 CN2019081517W WO2020199197A1 WO 2020199197 A1 WO2020199197 A1 WO 2020199197A1 CN 2019081517 W CN2019081517 W CN 2019081517W WO 2020199197 A1 WO2020199197 A1 WO 2020199197A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo signal
inflection point
data segment
inflection
signal
Prior art date
Application number
PCT/CN2019/081517
Other languages
English (en)
French (fr)
Inventor
李强
李洪磊
姜彤
巫红英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980060497.7A priority Critical patent/CN112703420B/zh
Priority to PCT/CN2019/081517 priority patent/WO2020199197A1/zh
Priority to EP19922528.5A priority patent/EP3936893B1/en
Publication of WO2020199197A1 publication Critical patent/WO2020199197A1/zh
Priority to US17/490,200 priority patent/US20220026532A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular to a method and device for processing echo signals.
  • Lidar is a kind of optical remote sensing technology. Lidar can be used in fields such as intelligent transportation, autonomous driving, atmospheric environment monitoring, geographic surveying and mapping and drones.
  • the working principle of lidar is that the transmitter emits laser pulses to the target, and the receiver Receive the echo signal reflected by the target object, and use the echo signal to complete functions such as ranging, target detection, tracking and imaging recognition.
  • the lidar can combine the echo signals of different pixels. To improve the signal-to-noise ratio of the echo signal.
  • the echo signals combined by the lidar are not echo signals from the same target, not only the signal-to-noise ratio of the echo signal cannot be improved, but noise is introduced, which causes the signal-to-noise ratio of the echo signal to decrease.
  • the embodiments of the present application provide an echo signal processing method and device, which are used to receive the first moment of the first inflection point in the first echo signal and the second inflection point of the second echo signal.
  • combining the first echo signal and the second echo signal improves the signal-to-noise ratio of the signal obtained by combining the first echo signal and the second echo signal.
  • the first aspect of the embodiments of the present application provides one, including:
  • At least two echo signals including a first echo signal and a second echo signal, the first echo signal and the second echo signal are received in different directions;
  • a first inflection point is determined from the first echo signal, and a second inflection point is determined from the second echo signal.
  • the first inflection point is a sampling point of the first echo signal and is adjacent to the left and right.
  • the amplitude value of the sampling point is smaller than the amplitude value of the first inflection point
  • the second inflection point is a sampling point of the second echo signal
  • the amplitude values of the adjacent sampling points on the left and right are smaller than the amplitude of the second inflection point.
  • Amplitude value determines whether the time difference between the first moment when the first inflection point is received in the first echo signal and the second moment when the second inflection point is received in the second echo signal is less than a first preset threshold ; If yes, combine the first echo signal and the second echo signal.
  • the first aspect when the time difference between the first moment of receiving the first inflection point and the second moment of receiving the second inflection point is less than the first preset threshold, it means that the first echo signal and the second echo signal have passed through
  • the difference in duration of is small, it can be determined that the first echo signal and the second echo signal are reflected by the same target, and it is obtained by combining the first echo signal and the second echo signal reflected by the same target
  • the signal can improve the signal-to-noise ratio of the signal.
  • the first data segment is determined from the first echo signal and the second data is determined from the second echo signal Segment, the first inflection point is included in the first data segment, and the second inflection point is included in the second data segment;
  • the combining the first echo signal and the second echo signal includes: Combine the first data segment and the second data segment. It can be seen from the first implementation of the first aspect that in this embodiment, combining the first data segment including the first inflection point and the second data segment including the second inflection point can improve the combination of the first data segment and the second data segment. The signal-to-noise ratio of the combined signal.
  • the first data is determined from the first echo signal
  • the segment includes: determining that a set of the first inflection point and P sampling points adjacent to the first inflection point is the first data segment, and the P is an integer greater than or equal to 1; from the second round
  • the wave signal determining the second data segment includes: determining a set of the second inflection point and P sampling points adjacent to the second inflection point as the second data segment.
  • this embodiment provides a manner for determining the first data segment and the second data segment, which improves the feasibility of the solution.
  • determining a first inflection point from the first echo signal includes: determining a first inflection point set from the first echo signal, and the first inflection point is the value of the first N inflection points in the first inflection point set.
  • the first inflection point set is the set of all inflection points of the first echo signal, and the inflection points in the first inflection point set are sorted in descending order of amplitude; from the second echo signal Determining the second inflection point includes: determining a second inflection point set from the second echo signal, the second inflection point being any one of the first N inflection points in the second inflection point set, and the second inflection point set Is the set of all inflection points of the second echo signal, and the inflection points in the second inflection point set are sorted by amplitude value from large to small.
  • the The turning point serves as the first turning point and the second turning point, which improves the accuracy of calculating the flight time of the target.
  • determining the first data segment from the first echo signal includes: intercepting M data segments from the first echo signal to obtain a first data segment set, and the first data segment is the first data segment.
  • the first Z data segments of the data segment set, the first data segment set sorts the M data segments intercepted from the first echo signal according to the energy value of the data segment, and the M and the The Z is an integer greater than or equal to 1;
  • the determining the second data segment from the second echo signal includes: intercepting M data segments from the second echo signal to obtain a second data segment set, the The second data segment is the first Z data segments of the second data segment set, and the second data segment set uses the energy value of the data segment to pair M segments of data intercepted from the second echo signal in descending order The segments are sorted.
  • the first data segment with a larger capability value is determined from the first echo signal and the data segment with a larger energy value is determined from the second echo signal as the second data. This improves the accuracy of calculating the flight time of the target.
  • the fifth implementation manner of the first aspect of the embodiments of the present application In the step of determining whether the time difference between the first moment of receiving the first inflection point in the first echo signal and the second moment of receiving the second inflection point in the second echo signal is smaller than a first preset Before the threshold, the method further includes: determining that the first direction for receiving the first echo signal and the second direction for receiving the second echo signal are located in the same target area; if so, determining that the first echo signal is Whether the time difference between the first moment of receiving the first inflection point and the second moment of receiving the second inflection point in the second echo signal is less than a first preset threshold.
  • the first moment of the first inflection point of the first echo signal and the second moment of the second inflection point of the second echo signal in the same target area are judged, so that the first time The probability that the wave signal and the second echo signal are reflected by the same target object increases.
  • the sixth implementation of the first aspect of the embodiments of the present application Determining that the first direction for receiving the first echo signal and the second direction for receiving the second echo signal are located before the same target area, and the method further includes: correspondingly receiving the at least one echo signal
  • the FOV of the field of view is divided into multiple target areas, and the FOV includes the target. It can be seen from the sixth implementation manner of the first aspect that by dividing the target area in advance, the probability that the first echo signal and the second echo signal in the same target area are reflected by the same target object is increased.
  • the seventh implementation of the first aspect of the embodiments of the present application Determining that the first direction for receiving the first echo signal and the second direction for receiving the second echo signal are located before the same target area, and the method further includes: determining that the first echo signal is received The first direction and an area adjacent to the first direction in which the first echo signal is received are the target area.
  • the seventh implementation of the first aspect by using the first direction and the adjacent areas in the first direction as the target area, the accuracy of the target area is improved, so that the first echo signal and the first echo signal in the same target area are The probability that the two echo signals are reflected by the same target object increases.
  • the eighth implementation of the first aspect of the embodiments of the present application in the method, further includes: determining a sampling point with the largest amplitude value from the combined signal of the first echo signal and the second echo signal; determining the third sampling point corresponding to the sampling point with the largest amplitude value Time, and calculating the distance between the target object and the receiving point that receives the first echo signal according to the third time.
  • the distance is calculated from the sampling point with the largest signal amplitude after the first echo signal and the second echo signal are combined, which improves the calculation of the target object and the reception of the first echo signal.
  • the accuracy of the distance between the receiving points of an echo signal is improved.
  • the ninth implementation manner of the first aspect of the embodiments of the present application wherein, the signal-to-noise ratio of the first echo signal is less than a second preset threshold, and the signal-to-noise ratio of the second echo signal is less than a third preset threshold. From the ninth implementation of the first aspect, it can be seen that the signal-to-noise ratio of the first echo signal and the signal-to-noise ratio of the second echo signal are low, and the first echo signal and the second echo signal are combined. The signal-to-noise ratio of the signal obtained by combining the one echo signal and the second echo signal.
  • the tenth implementation of the first aspect of the embodiments of the present application The method further includes: performing noise reduction processing on the first echo signal and the second echo signal respectively, and the noise reduction processing includes matched filtering, Gaussian filtering, wavelet denoising, and frequency domain filtering. At least one of. It can be seen from the tenth implementation of the first aspect that the noise reduction processing of the first echo signal and the second echo signal improves the signal-to-noise of the signal obtained by combining the first echo signal and the second echo signal. ratio.
  • a second aspect of the embodiments of the present application provides an echo signal processing device, and the echo signal processing device has a function of implementing the foregoing first aspect or any possible implementation manner of the first aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software, or by combining software and hardware.
  • the hardware and/or software includes one or more modules corresponding to the above-mentioned functions.
  • a third aspect of the embodiments of the present application provides an echo signal processing device.
  • the echo signal processing device includes a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions.
  • the echo signal processing device executes the processing or operation in the first aspect or any possible implementation manner of the first aspect.
  • a fourth aspect of the embodiments of the present application provides a storage medium on which a computer program or instruction is stored.
  • the computer executes the first aspect or any possible implementation method of the first aspect.
  • the fifth aspect of the embodiments of the present application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the first aspect or any possible implementation method of the first aspect.
  • a sixth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes at least one processor and a communication interface.
  • the chip system may also include a memory.
  • the memory, the communication interface, and the at least one processor pass through Lines are interconnected, and instructions are stored in the at least one memory; the instructions are executed by the at least one processor to execute the first aspect or any possible implementation method of the first aspect.
  • the lidar determines the first inflection point from the first echo signal and the second inflection point from the second echo signal, and determines whether the first inflection point is received or the second inflection point is received.
  • the lidar combines the first echo signal and the second echo signal.
  • the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object reflected by the same target object can improve the signal-to-noise ratio of the combined signal.
  • Figure 1 is a schematic diagram of an embodiment provided by an embodiment of the application.
  • Figure 2 is a schematic diagram of another embodiment provided by an embodiment of the application.
  • FIG. 3 is a schematic block diagram of an echo signal processing method provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of another embodiment provided by an embodiment of the application.
  • Figure 5 is a schematic diagram of another embodiment provided by an embodiment of the application.
  • FIG. 6 is a schematic block diagram of another echo signal processing method provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another embodiment provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another embodiment provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another embodiment provided by an embodiment of this application.
  • FIG. 10 is a schematic block diagram of another echo signal processing method provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of another embodiment provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another embodiment provided by an embodiment of the application.
  • FIG. 13 is a schematic block diagram of another echo signal processing method provided by an embodiment of this application.
  • FIG. 14 is a schematic block diagram of another echo signal processing method provided by an embodiment of the application.
  • 15 is a schematic block diagram of an echo signal processing apparatus provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of a hardware structure of an echo signal processing apparatus provided by an embodiment of the application.
  • the embodiments of the present application provide an echo signal processing method and device, which are used to receive the first moment of the first inflection point in the first echo signal and the second inflection point of the second echo signal.
  • combining the first echo signal and the second echo signal improves the signal-to-noise ratio of the signal obtained by combining the first echo signal and the second echo signal.
  • FIG. 1 is a system architecture block diagram of a lidar (lightLaser detection and ranging, LIDAR) provided by an embodiment of the application.
  • the signal processing and control unit sends pulse signals to the laser driving circuit.
  • the circuit modulates the pulse signal to the laser, the laser emits an echo signal with pulses, the scanning device and the emitting optical element scan and reshape the beam; the receiving optical element focuses and reshapes the received echo signal and detects
  • the receiver receives the echo signal and converts the echo signal into a current signal.
  • a transimpedance amplifier can amplify the current signal into a voltage signal; an analog-to-digital converter (ADC) can The analog voltage signal is converted into a digitized signal.
  • ADC analog-to-digital converter
  • the distance between the flight time and the target is calculated by processing the echo signal sampled by the ADC.
  • FIG 2 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • the lidar includes a transmitter and a receiver.
  • the transmitter is used to transmit echo signals
  • the receiver is used to receive echoes.
  • the laser radar measures the time of flight (TOF) between the receiving time and the transmitting time of the echo signal, and completes the distance measurement according to the TOF and the speed of light c.
  • TOF time of flight
  • the basic process of the laser radar measuring distance can be as follows As shown in Figure 2, for example, the distance between the lidar and the target can be calculated by formula (2-1).
  • R in formula (2-1) is the distance between the lidar and the target, c is the speed of light, and t is the TOF of the echo signal.
  • FIG. 3 is a schematic block diagram of an echo signal processing method provided by an embodiment of the application. As shown in FIG. 3, the echo signal processing method may include the following steps:
  • the transmitter transmits an echo signal.
  • Lidar scans its field of view (FOV), and transmits at least two echo signals within the FOV range through a transmitter, where the at least echo signal includes at least a first echo signal and a second echo signal.
  • the at least echo signal includes at least a first echo signal and a second echo signal.
  • only the first echo signal and the second echo signal are used as at least two echo signals for description.
  • At least two echo signals transmitted by the transmitter are transmitted in different directions within the FOV range, for example, the transmitter transmits the first echo signal in the first direction (x, y) , Transmit the second echo signal in the second direction (x, y+1).
  • Figure 4 is a schematic diagram of the transmitter transmitting echo signals in the FOV range. As shown in Figure 4, the transmitter realizes different effects in the FOV range by rotating the micromirror (MEMS). Echo signal is emitted in the direction of MEMS.
  • MEMS micromirror
  • the receiver receives the echo signal.
  • the transmitter of the lidar transmits the echo signal in the FOV range, the echo signal is reflected by the object in the FOV range, and the receiver (receiving optics) receives the echo signal reflected by the object in the FOV range.
  • the wave signal includes a first echo signal and a second echo signal.
  • the lidar determines the first inflection point from the first echo signal and the second inflection point from the second echo signal.
  • the lidar receives the first echo signal and the second echo signal, respectively, and determines the first inflection point from the first echo signal and the second inflection point from the second echo signal.
  • the first echo signal received by the lidar in the first direction (x, y) and the second echo signal received in the second direction (x, y+1) can be as shown in Figure 5.
  • the lidar determines the first inflection point in the first echo signal, where the first inflection point can be as shown in Figure 5, the first inflection point is used as a sampling point in the first echo signal, and the first inflection point is relative to the left and right.
  • the amplitude values of adjacent sampling points are all smaller than the amplitude value of the first inflection point.
  • the second inflection point is a sampling point in the second echo signal, and the second inflection point is the value of the adjacent sampling points.
  • the amplitude values are all smaller than the amplitude value of the second inflection point.
  • the lidar determines a first moment t (x, y) when the first inflection point is received and a second moment t (x, y+1) when the second inflection point is received.
  • the sampling points of the first echo signal are received by lidar at different times. After the lidar determines the first inflection point, the lidar can determine that in the first echo signal, the first time t (x ,y) , for example, as shown in Fig. 5, the lidar determines that the first moment t (x,y) at which the first inflection point is received is 678.
  • the lidar can also determine the second time t (x, y+1) when the second inflection point is received in the second echo signal. For example, as shown in Fig. 5, the lidar can determine the Time t (x, y+1) is 675.
  • first moment of 678 and the second moment of 675 provided in this embodiment are merely an example, and in actual applications, they may be other.
  • the lidar judges whether the time difference between the first time t (x, y) and the second time t (x, y+1) is less than a first preset threshold, and if so, execute step 306.
  • the lidar can determine whether the time difference between the first time t (x, y) and the second time t (x, y+1) is less than the first preset threshold by formula (3-1).
  • thr in formula (3-1) is the first preset threshold.
  • the lidar when the lidar determines that the first moment t (x, y) is 678 and the second moment t (x, y+1) is 675, the lidar can determine the first moment t (x ,y) and the second time t (x, y+1) time difference is 2, when the first preset threshold thr is greater than 2, the first time t (x, y) and the second time t (x, The time difference between y+1) is less than the first preset threshold, otherwise, the opposite is true.
  • the lidar combines the first echo signal and the second echo signal.
  • the lidar When the time difference between the first time t (x, y) and the second time t (x, y+1) is less than or equal to the first preset threshold, the lidar combines the first echo signal and the second echo signal. For example, when the first preset threshold is 3, the first time t (x, y) is 678, and the second time t (x, y+1) is 675, the lidar combines the first echo signal and the second echo signal.
  • the lidar determines the amplitude value of each sampling point of the first echo signal and the amplitude value of each sampling point of the second echo signal, for example, determines the amplitude value of the sampling point of the first echo signal 0-1200 , Where the amplitude value of the first inflection point corresponding to the sampling point 678 is 3 and the amplitude value of the sampling point 675 is 2.9.
  • the lidar can also determine the amplitude values of the sampling points 0-1200 of the second echo signal, where it is determined that the amplitude value of the second inflection point corresponding to the sampling point 675 is 2.9 and the amplitude value of the sampling point 678 is 2.8.
  • the amplitude value in this embodiment may refer to the amplitude value of the level signal.
  • the sampling time corresponding to sampling point 1 is 1, the sampling time corresponding to sampling point 2 is 2, and so on.
  • Lidar combining the first echo signal and the second echo signal may refer to combining the respective amplitude values of the sampling point S of the first echo signal and the sampling point S of the second echo signal, for example, combining the first echo signal
  • the amplitude value 3 of the sampling point 678 of the wave signal is superimposed with the amplitude value 2.8 of the sampling point 678 of the second echo signal, and the resulting amplitude value is 5.8.
  • other sampling points can also be superimposed, which will not be repeated here.
  • the amplitude value of the first inflection point and the amplitude value of the second inflection point can also be superimposed, for example, the amplitude value 3 of the sampling point 678 of the first inflection point and the amplitude value of the sampling point 675 of the second inflection point are superimposed.
  • the value of 2.9 is superimposed to obtain an amplitude value of 5.9.
  • sampling points are also offset and superimposed relative to the sampling interval d of the first inflection point and the second inflection point, for example,
  • the distance d between the sampling point of the first inflection point and the sampling point of the second inflection point is 2, and the amplitude value of the sampling point S of the first echo signal and the amplitude value of the sampling point S+2 of the second echo signal are superimposed.
  • the sampling point with the largest amplitude value is determined from the combined signal, and the sampling point with the largest amplitude value is determined.
  • the lidar when the time difference between the first time t (x, y) and the second time t (x, y+1) is greater than the first preset threshold, in this embodiment, the lidar The first callback signal and the second echo signal are not combined.
  • the lidar determines the first inflection point from the first echo signal and the second inflection point from the second echo signal, and determines whether the first inflection point is received or the second inflection point is received.
  • the lidar combines the first echo signal and the second echo signal.
  • the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object reflected by the same target object can improve the signal-to-noise ratio of the combined signal.
  • FIG. 6 is a schematic block diagram of another echo signal processing method provided by an embodiment of the application. As shown in FIG. 6, the echo signal processing method may include the following steps:
  • the lidar divides the screen corresponding to the FOV into multiple target areas.
  • Lidar scans its FOV and divides the FOV into multiple target areas, where the FOV includes the target.
  • Figure 7 is a schematic diagram of a target area division provided by an embodiment of this application.
  • the laser radar divides the scanned FOV into multiple target areas as shown in Figure 11, and the laser radar can divide the FOV into 6 Target area, including target area 1-target area 6.
  • the lidar can also divide the FOV into other numbers of target areas, which is not limited here.
  • the transmitter transmits an echo signal.
  • the receiver receives the echo signal.
  • step 602 to step 603 are similar to step 301 to step 302 of the aforementioned embodiment corresponding to FIG. 3, and will not be repeated here.
  • the lidar determines whether the signal-to-noise ratio of the first echo signal is less than a second preset threshold and determines whether the second echo signal is less than a third preset threshold.
  • the lidar judges the SNR of the first echo signal and the SNR of the second echo signal, when the SNR of the first echo signal is less than the second preset threshold and/or the SNR of the second echo signal When the ratio is less than the third preset threshold, the lidar executes step 605.
  • the lidar determines whether the first echo signal and the second echo signal can be combined when the signal-to-noise ratio of the first echo signal and the signal-to-noise ratio of the second echo signal are low.
  • the signal-to-noise ratio of the combined signal is improved.
  • the signal-to-noise of the echo signal will not be reduced Ratio;
  • the signal-to-noise ratio of the first echo signal and the signal-to-noise ratio of the second echo signal are high, the first echo signal and the second echo signal are not combined, which saves network resources.
  • the lidar determines whether the first direction and the second direction are located in the same target area, and if so, perform step 606.
  • the lidar determines that the first direction for receiving the first echo signal is (x, y), and the second direction for receiving the second echo signal is (x, y+1), and then determines the first direction (x, y) ) And the second direction (x, y+1) are located in the same target area, for example, the lidar determines whether the first direction (x, y) and the second direction (x, y+1) are located at the same time as shown in Figure 7 Any one of target area 1 to target area 6, when the lidar determines that the first direction (x, y) and the second direction (x, y+1) are located in any one of target area 1 to target area 6 at the same time In the target area, the lidar determines that the first direction (x, y) and the second direction (x, y+1) are located in the same target area.
  • the lidar determines the first direction (x, y) and The second direction (x, y+1) is not located in the same target area, and the lidar does not perform subsequent steps, which obviously saves network resources.
  • the lidar performs noise reduction processing on the first echo signal and the second echo signal respectively.
  • the lidar After the lidar determines that the first direction (x, y) of the first echo signal and the second direction (x, y+1) of the second echo signal are located in the same target area, the lidar measures the first echo signal and The second return signal undergoes noise reduction processing to reduce the interference of noise to the return signal.
  • the noise reduction processing method provided in this embodiment may include any one or more of matched filtering, Gaussian filtering, wavelet denoising and frequency domain filtering.
  • the noise reduction processing method provided in this embodiment may also include other The method is not specifically limited here.
  • the lidar determines the first inflection point and the second inflection point.
  • the lidar determines the first inflection point from the first echo signal. Specifically, the lidar determines that the received first echo signal is r x, y (n), where n is the number of sampling points of the first echo signal, and the laser
  • the radar sorts the n sampling points of the first echo signal r x, y (n) according to the amplitude value from large to small, and determines the sequence of n sampling points sorted by the amplitude value from large to small as the first inflection point Set, the lidar uses the first N sampling points in the first inflection point set as the first inflection point. For example, as shown in Figure 8, when N is 3, the first inflection point can be as shown in Figure 8. In this embodiment, N is an integer greater than or equal to 1.
  • the determination of the second inflection point by the laser radar from the second echo signal is similar to the determination of the first inflection point from the first echo signal.
  • the laser radar determines that the received second echo signal is r x,y+1 (n), where the number of sampling points of the second echo signal can also be n, and the laser radar uses the amplitude value of the second echo signal r x,y+1 (n) as n Sort the sampling points, and determine the sequence of n sampling points sorted from largest to smallest amplitude value as the second inflection point set.
  • Lidar will sort the first N sampling points in the second inflection point set as the second inflection point, for example , As shown in Figure 9, when N is 3, the second inflection point can be as shown in Figure 9.
  • the lidar determines the first data segment and the second data segment.
  • the first inflection point and the P sampling points adjacent to the first inflection point form the first data segment, where the first data segment can be expressed as w x, y, i (k), 0 ⁇ k ⁇ P, 0 ⁇ i ⁇ N, k is the sampling point of the first data segment, i is the i-th data segment in the first data segment, and P is an integer greater than or equal to 1.
  • the lidar takes the first inflection point as the center and intercepts a total of 50 sampling points on both sides of the first inflection point as the first data segment.
  • the first data segment can be as Shown in Figure 8.
  • the lidar can also intercept P sampling points on one side of the first inflection point as the first data segment, which is not limited here.
  • the method for determining the second data segment by lidar is similar to the method for determining the first data segment. Please refer to FIG. 9 for details.
  • the second data segment can be expressed as w x, y+1, j (k), 0 ⁇ k ⁇ P, 0 ⁇ j ⁇ N, k is the sampling point of the second data segment, and j is the j-th data segment in the second data segment, which will not be repeated here.
  • the lidar determines a first moment t (x, y) (i) when receiving the first inflection point and a second moment t (x, y+1) (j) when receiving the second inflection point.
  • the first time t (x, y) (i) can be understood as the receiving time of the first inflection point of the i-th data segment in the first data segment
  • the second time t (x, y+1) (j) can be understood as the receiving time of the second inflection point of the j segment of the second data segment.
  • the lidar determines whether the time difference between the first time t (x, y) (i) and the second time t (x, y+1) (j) is less than a first preset threshold, and if so, perform step 611 .
  • the lidar can use formula (6-1) to determine whether the time difference between the first time t (x, y) (i) and the second time t (x, y+1) (j) is smaller than the first A preset threshold.
  • thr in formula (6-1) is the first preset threshold.
  • the lidar determines whether
  • the lidar merges the first data segment and the second data segment.
  • the lidar merges the first data segment w x, y, i (k) and the second data segment w x, y, i (k).
  • the lidar can combine the first data segment and the second data segment by formula (6-2) to obtain w x, y, f (k), where f is the f-th data segment.
  • the lidar sequentially compares the first time t (x, y) (i) of the first inflection point in the i-th data segment w x,y,i (k) in the first data segment with the second data segment
  • the j-th data segment w x,y,j (k) at the second moment t (x,y) (i) at the second inflection point in the data segment w x,y,j (k) is compared, and the data that meets the conditions shown in formula (3-1)
  • the segments are merged.
  • the lidar is determined by formula (6-1)
  • the lidar can also convert the first data segment w x, y,1 (k) at the first time t (x, y) (1) is compared with the second time at the second inflection point of other data segments in the second data segment, for example, the first time t (x, y) (1) Compare with the second time t (x,y+1) (2), if the first time t (x,y) (1) is compared with the second time t (x,y+1) (2 The difference between) is less than 2, and w x,y,1 (k) and w x,y+1,2 (k) are also combined.
  • the lidar combining w x, y, 1 (k) and w x, y + 1, 2 (k) can also refer to the sampling point S of w x, y, 1 (k)
  • the amplitude value is superimposed with the amplitude value of the sampling point S of w x,y+1,2 (k), or the amplitude value of the sampling point S of w x,y,1 (k) is added to w x,y+1, 2 (k)
  • the amplitude values of the sampling point S+d are superimposed, where d is the sampling point of the first inflection point of w x,y,1 (k) and the second inflection point of w x,y+1,2 (k)
  • the amplitude value in this embodiment may refer to the amplitude value of the level signal.
  • combining w x, y, 1 (k) and w x, y+1, 2 (k) is similar to combining the
  • the lidar calculates the distance between the target and the lidar.
  • the lidar determines that the sampling point with the largest amplitude value in the combined signal of the first data segment and the second data segment is the peak point n max , and determines that the sampling time corresponding to the peak point n max is the third time, and then according to the third time Determine TOF, and then use formula (2-1) according to TOF and the speed of light c Calculate the distance R between the target and the lidar. Obviously, calculating the distance at the third time corresponding to the peak point n max with a high signal-to-noise ratio improves the accuracy of calculating the distance between the target and the lidar.
  • the lidar can determine the third moment by the peak point n max , or other methods can be used to determine the third moment.
  • the lidar can use a rising edge, and a constant fraction discriminator , CFD), center of gravity and other methods, which are not limited here.
  • the lidar in this application can also determine the reflectivity and amplitude through the combined signal of the first data segment and the second data segment, which will not be repeated here.
  • step 601, step 604, step 605, step 606, and step 612 are optional steps, which may or may not be executed in actual applications.
  • the lidar determines the first inflection point from the first inflection point set and the second inflection point from the second inflection point set, and is between the first moment when the first inflection point is received and the second moment when the second inflection point is received
  • the time difference of is less than the first preset threshold
  • the first data segment obtained at the first inflection point and the second data segment obtained at the second inflection point are combined.
  • the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object can improve the signal-to-noise ratio of the signal obtained after the combination.
  • FIG. 10 is a schematic block diagram of another echo signal processing method provided by an embodiment of the application. As shown in FIG. 10, the echo signal processing method may include the following steps:
  • the transmitter transmits an echo signal.
  • the receiver receives the echo signal.
  • steps 1001 to 1002 are similar to steps 301 to 302 of the aforementioned embodiment corresponding to FIG. 3, and will not be repeated here.
  • the lidar determines whether the signal-to-noise ratio of the first echo signal is less than a second preset threshold and determines whether the second echo signal is less than a third preset threshold.
  • step 1003 is similar to step 604 in the aforementioned embodiment corresponding to FIG. 6, and will not be repeated here.
  • the lidar determines whether the first direction and the second direction are located in the same target area, and if so, perform step 1005.
  • the lidar receives the first echo signal and determines the first direction (x, y) to receive the first echo signal, where the area where the first direction (x, y) can be located can be as shown in Figure 11, the lidar The target area is composed of the first direction (x, y) and the area adjacent to the first direction (x, y). It can be understood that in this embodiment, the area adjacent to the first direction (x, y) It can be an area directly adjacent to the first direction (x, y), such as shown in Figure 11, or an area indirectly adjacent to the first direction (x, y), such as shown in Figure 12. limited.
  • the lidar receives the second echo signal, and determines the second direction (x, y+1) for receiving the second echo signal, and determines whether the first direction (x, y) and the second direction (x, y+1) are Located in the same target area, for example, the lidar determines whether the second direction (x, y+1) is located in the target area shown in Figure 11 or Figure 12, when the lidar determines that the second direction (x, y+1) is located For the target area shown in FIG. 11 or FIG. 12, it is determined that the first direction (x, y) and the second direction (x, y+1) are located in the same target area.
  • the lidar determines that the second direction (x, y+1) is not located in the target area shown in FIG. 11 or FIG. 12, the pair of the first direction (x, y) and the second direction (x, If y+1) is not located in the same target area, the subsequent steps will not be executed, which obviously saves network resources.
  • the lidar performs noise reduction processing on the first echo signal and the second echo signal respectively.
  • the lidar determines the first inflection point and the second inflection point.
  • the lidar determines the first data segment and the second data segment.
  • the lidar determines the first time t (x, y) (i) when receiving the first inflection point and the second time t (x, y+1) (j) when receiving the second inflection point.
  • the lidar judges whether the time difference between the first time t (x, y) (i) and the second time t (x, y+1) (j) is less than the first preset threshold, if yes, go to step 1010 .
  • the lidar merges the first data segment and the second data segment.
  • the lidar calculates the distance between the target and the lidar.
  • step 1005 to step 1011 are similar to step 606 to step 6012 of the aforementioned embodiment corresponding to FIG. 6, and will not be repeated here.
  • step 1003, step 1004, step 1005, and step 1011 are optional steps, which may or may not be executed in actual applications.
  • the lidar determines the first inflection point from the first inflection point set and the second inflection point from the second inflection point set, and is between the first moment when the first inflection point is received and the second moment when the second inflection point is received
  • the time difference of is less than the first preset threshold
  • the first data segment obtained at the first inflection point and the second data segment obtained at the second inflection point are combined.
  • the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object reflected by the same target object can improve the signal-to-noise ratio of the combined signal.
  • FIG. 13 is a schematic block diagram of another echo signal processing method according to an embodiment of the application.
  • the echo signal processing method may include the following steps:
  • the lidar divides the screen corresponding to the FOV into multiple target areas.
  • the transmitter transmits an echo signal.
  • the receiver receives the echo signal.
  • the lidar determines whether the signal-to-noise ratio of the first echo signal is less than a second preset threshold and determines whether the second echo signal is less than a third preset threshold.
  • the lidar determines whether the first direction and the second direction are in the same target area, and if so, perform step 1306.
  • the lidar performs noise reduction processing on the first echo signal and the second echo signal respectively.
  • steps 1301 to 1306 are similar to steps 601 to 606 of the aforementioned embodiment corresponding to FIG. 6, and will not be repeated here.
  • the lidar determines the first data segment from the first echo signal and determines the second data segment from the second echo signal.
  • the lidar determines the first data segment from the first echo signal. Specifically, the lidar can intercept the first echo signal in M data segments according to preset rules, and determine the energy of each data segment of the M data segments.
  • the laser radar sorts the M data segments according to the ability value from large to small, and determines the sequence of sorting the M data segments with the ability value from large to small as the first data segment set.
  • the first Z data segments in a data segment set are regarded as the first data segment, where M and Z are integers greater than or equal to 1.
  • the lidar determines the second data segment from the second echo signal, where the lidar determines the second data segment from the second echo signal is similar to the aforementioned lidar determines the first data segment from the first echo signal. Repeat it again.
  • each data segment can be the sum of the amplitude values of each sampling point of each data segment.
  • the lidar determines the first inflection point and the second inflection point.
  • the lidar determines the first inflection point from the first data segment, where the first inflection point is a sampling point in the first data segment, and the amplitude values of the adjacent sampling points on the left and right of the first inflection point are smaller than the amplitude of the first inflection point value.
  • the lidar determines the second inflection point from the second data segment, where the second inflection point is a sampling point in the second data segment, and the amplitude values of the adjacent sampling points on the left and right of the second inflection point are less than the amplitude of the second inflection point value.
  • the lidar determines a first moment t (x, y) (i) when the first inflection point is received and a second moment t (x, y+1) (j) when the second inflection point is received.
  • the lidar judges whether the time difference between the first time t (x, y) (i) and the second time t (x, y+1) (j) is less than the first preset threshold, if yes, go to step 1311 .
  • the lidar merges the first data segment and the second data segment.
  • the lidar calculates the distance between the target and the lidar.
  • steps 1309 to 1312 are similar to steps 609 to 612 in the aforementioned embodiment corresponding to FIG. 6, and will not be repeated here.
  • step 1301, step 1304, step 1305, step 1306, and step 1312 are optional steps, which may or may not be executed in actual applications.
  • the lidar determines the first inflection point from the first data segment and the second inflection point from the second data segment, and is between the first moment of receiving the first inflection point and the second moment of receiving the second inflection point When the time difference of is less than the first preset threshold, the first data segment and the second data segment are merged. Obviously, when the time difference between the first moment of receiving the first inflection point and the second moment of receiving the second inflection point is less than the first preset threshold, the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object reflected by the same target object can improve the signal-to-noise ratio of the combined signal.
  • FIG. 14 is a schematic block diagram of another echo signal processing method provided by an embodiment of the application.
  • the echo signal processing method may include the following steps:
  • the transmitter transmits an echo signal.
  • the receiver receives the echo signal.
  • the lidar determines whether the signal-to-noise ratio of the first echo signal is less than a second preset threshold and determines whether the second echo signal is less than a third preset threshold.
  • the lidar determines whether the first direction and the second direction are in the same target area, and if so, perform step 1405.
  • the lidar performs noise reduction processing on the first echo signal and the second echo signal respectively.
  • steps 1401 to 1405 are similar to steps 1001 to 1005 of the embodiment corresponding to FIG. 10, and will not be repeated here.
  • the lidar determines the first data segment from the first echo signal and determines the second data segment from the second echo signal.
  • the lidar determines the first inflection point and the second inflection point.
  • the lidar determines a first time t (x, y) (i) at which the first inflection point is received and a second time t (x, y+1) (j) at which the second inflection point is received.
  • the lidar determines whether the time difference between the first time t (x, y) (i) and the second time t (x, y+1) (j) is less than the first preset threshold, and if so, perform step 1410 .
  • the lidar merges the first data segment and the second data segment.
  • the lidar calculates the distance between the target and the lidar.
  • steps 1406 to 1411 are similar to steps 1307 to 1312 in the embodiment corresponding to FIG. 13 and will not be repeated here.
  • step 1403, step 1404, step 1405, and step 1411 are optional steps, which may or may not be executed in actual applications.
  • the lidar determines the first inflection point from the first data segment and the second inflection point from the second data segment, and is between the first moment of receiving the first inflection point and the second moment of receiving the second inflection point When the time difference of is less than the first preset threshold, the first data segment and the second data segment are merged. Obviously, when the time difference between the first moment of receiving the first inflection point and the second moment of receiving the second inflection point is less than the first preset threshold, the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object reflected by the same target object can improve the signal-to-noise ratio of the combined signal.
  • FIG. 15 is a schematic block diagram of an echo signal processing device provided by an embodiment of the present application.
  • the echo signal processing device 150 may be a laser radar, and the echo signal processing device 150 include:
  • the receiving unit 1501 is configured to receive at least two echo signals, the at least two echo signals including a first echo signal and a second echo signal, the first echo signal and the second echo signal Receive in different directions;
  • the processing unit 1502 is configured to determine a first inflection point from the first echo signal and a second inflection point from the second echo signal, the first inflection point being a sampling point of the first echo signal , And the amplitude value of the left and right adjacent sampling points is less than the amplitude value of the first inflection point, the second inflection point is a sampling point of the second echo signal, and the amplitude value of the left and right adjacent sampling points is less than The amplitude value of the second inflection point;
  • the processing unit 1502 is further configured to determine whether the time difference between the first moment of receiving the first inflection point in the first echo signal and the second moment of receiving the second inflection point in the second echo signal is less than The first preset threshold;
  • the combining unit 1503 is configured to: when the time difference between the first moment when the first inflection point is received in the first echo signal and the second moment when the second inflection point is received in the second echo signal is smaller than the first preset When the threshold is set, the first echo signal and the second echo signal are combined.
  • the processing unit 1502 is further configured to determine a first data segment from the first echo signal and determine a second data segment from the second echo signal, the first inflection point Included in the first data segment, and the second inflection point is included in the second data segment;
  • the merging unit is specifically configured to merge the first data segment and the second data segment.
  • the processing unit 1502 is specifically configured to determine that a set of the first inflection point and P sampling points adjacent to the first inflection point is the first data segment, and P is an integer greater than or equal to 1;
  • the processing unit 1502 is specifically configured to determine that a set of the second inflection point and P sampling points adjacent to the second inflection point is the second data segment.
  • the processing unit 1502 is specifically configured to determine a first set of inflection points from the first echo signal, and the first inflection points are the first N in the first set of inflection points. Any one of the inflection points, the first inflection point set is a set of all inflection points of the first echo signal, and the inflection points in the first inflection point set are sorted in descending order of amplitude value;
  • the processing unit 1502 is specifically configured to determine a second set of inflection points from the second echo signal, where the second inflection point is any one of the first N inflection points in the second set of inflection points, and the second The inflection point set is a set of all inflection points of the second echo signal, and the inflection points in the second inflection point set are sorted in descending order of amplitude values.
  • the processing unit 1502 is specifically configured to intercept M data segments from the first echo signal to obtain a first data segment set, and the first data segment is the first data segment.
  • the first Z data segments of a data segment set, the first data segment set sorts the M data segments intercepted from the first echo signal according to the energy value of the data segments in descending order, the M and
  • the Z is an integer greater than or equal to 1;
  • the processing unit 1502 is specifically configured to intercept M data segments from the second echo signal to obtain a second data segment set, where the second data segment is the first Z data segments of the second data segment set In the second data segment set, the M data segments intercepted from the second echo signal are sorted according to energy values of the data segments in descending order.
  • the processing unit 1502 is further configured to determine that the first direction for receiving the first echo signal and the second direction for receiving the second echo signal are located in the same target area;
  • the processing unit 1502 is used to determine the time difference between the first moment when the first inflection point is received in the first echo signal and the second moment when the second inflection point is received in the second echo signal Whether it is less than the first preset threshold.
  • the processing unit 1502 is further configured to divide the FOV corresponding to the received at least one echo signal into a plurality of target regions, and the FOV includes the target.
  • the processing unit 1502 is further configured to determine that the first direction for receiving the first echo signal and the area adjacent to the first direction for receiving the first echo signal are The target area.
  • processing unit 1502 is further configured to:
  • the third time corresponding to the sampling point with the largest amplitude value is determined, and the distance between the target object and the receiving point that receives the first echo signal is calculated according to the third time.
  • the signal-to-noise ratio of the first echo signal is less than a second preset threshold
  • the signal-to-noise ratio of the second echo signal is less than a third preset threshold
  • the processing unit 1502 is further configured to perform noise reduction processing on the first echo signal and the second echo signal respectively, and the noise reduction processing includes matched filtering, Gaussian At least one of filtering, wavelet denoising and frequency domain filtering.
  • the processing unit 1502 determines the first inflection point from the first echo signal and the second inflection point from the second echo signal, and determines the first moment when the receiving unit 1501 receives the first inflection point and the second inflection point.
  • the combining unit 1503 combines the first echo signal and the second echo signal.
  • the lidar can determine that the received first echo signal and the second echo signal are determined by Combining the first echo signal and the second echo signal reflected by the same target object reflected by the same target object can improve the signal-to-noise ratio of the combined signal.
  • FIG. 16 is a schematic structural diagram of an echo signal processing device provided by an embodiment of the application, wherein the echo signal processing device 160 may be a lidar, and the echo signal processing device 160 includes : At least one processor 1610, memory 1650, and transceiver 1630.
  • the transceiver may include a receiver and a transmitter, and the memory 1650 may include a read-only memory and/or a random access memory, and provide operating instructions and data to the processor 1610.
  • a part of the memory 1650 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1650 stores the following elements, executable modules or data structures, or their subsets, or their extended sets.
  • the corresponding operation is executed by calling the operation instruction stored in the memory 1650 (the operation instruction may be stored in the operating system).
  • the processor 1610 controls the operation of the echo signal processing device 160, and the processor 1610 may also be called a CPU (Central Processing Unit, central processing unit).
  • the memory 1650 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1610. A part of the memory 1650 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the components of the echo signal processing device 160 are coupled together through a bus system 1620, where the bus system 1620 may include a power bus, a control bus, a status signal bus, etc. in addition to a data bus.
  • various buses are marked as the bus system 1620 in the figure.
  • the method disclosed in the foregoing embodiments of the present application may be applied to the processor 1610 or implemented by the processor 1610.
  • the processor 1610 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 1610 or instructions in the form of software.
  • the aforementioned processor 1610 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware Components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1650.
  • the memory 1650 may be a physically independent unit or integrated with the processor 1610.
  • the processor 1610 reads information in the memory 1650 and completes the steps of the above method in combination with its hardware.
  • the transceiver 1630 in this embodiment can be used to perform the operation steps involved in receiving and sending in the foregoing method embodiment. Or the steps of sending and receiving data of the echo signal processing device in other optional embodiments.
  • the processor 1610 may be used to execute the steps involved in data processing in the foregoing method embodiments. Or the data processing steps of the echo signal processing device in other optional embodiments.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请实施例公开了一种回波信号的处理方法,本申请实施例方法包括:接收至少两个回波信号,至少两个回波信号包括第一回波信号和第二回波信号,第一回波信号和第二回波信号在不同的方向接收;从第一回波信号确定第一拐点,以及从第二回波信号确定第二拐点,第一拐点为第一回波信号的一个采样点,且左右相邻的采样点的幅度值小于第一拐点的幅度值,第二拐点为第二回波信号的一个采样点,且左右相邻的采样点的幅度值小于第二拐点的幅度值;判断在第一回波信号中接收第一拐点的第一时刻和在第二回波信号中接收第二拐点的第二时刻之间的时间差是否小于第一预设阈值;若是,则合并第一回波信号和第二回波信号。

Description

回波信号的处理方法及装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种回波信号的处理方法及装置。
背景技术
激光雷达是一种光学遥感技术,激光雷达可应用于智能交通、自动驾驶、大气环境监测、地理测绘和无人机等领域,激光雷达的工作原理为发射机向目标物发射激光脉冲,接收机接收目标物反射的回波信号,并利用回波信号完成测距、目标探测、跟踪和成像识别等功能。
现有技术中,在目标物距离较远,或者传输条件较差的情况下,接收机接收的回波信号的信噪比较低时,激光雷达可通过将不同像素的回波信号的进行合并来提高回波信号的信噪比。
但是,当激光雷达合并的回波信号并非来自同一个目标物的回波信号时,不仅不能提高回波信号的信噪比,反而会引入噪声,从而导致回波信号的信噪比降低。
发明内容
本申请实施例提供了一种回波信号的处理方法及装置,用于当在第一回波信号中接收第一拐点的第一时刻和在第二回波信号中接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并第一回波信号和第二回波信号,提高了由第一回波信号和第二回波信号合并得到的信号的信噪比。
本申请实施例的第一方面提供一种,包括:
接收至少两个回波信号,所述至少两个回波信号包括第一回波信号和第二回波信号,所述第一回波信号和所述第二回波信号在不同的方向接收;从所述第一回波信号确定第一拐点,以及从所述第二回波信号确定第二拐点,所述第一拐点为所述第一回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第一拐点的幅度值,所述第二拐点为所述第二回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第二拐点的幅度值;判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值;若是,则合并所述第一回波信号和所述第二回波信号。由第一方面可见,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,说明第一回波信号和第二回波信号分别经过的时长的差值较小,可确定第一回波信号和第二回波信号由相同的目标物反射的,通过合并由相同目标物反射的第一回波信号和第二回波信号所得到的信号,可提高信号的信噪比。
基于本申请实施例第一方面,本申请实施例第一方面的第一种实现方式中,从所述第一回波信号确定第一数据段和从所述第二回波信号确定第二数据段,所述第一拐点包含于所述第一数据段,所述第二拐点包含于所述第二数据段;所述合并所述第一回波信号和所述第二回波信号包括:合并所述第一数据段和所述第二数据段。由第一方面的第一种实现方式可见,本实施例中合并由包含第一拐点的第一数据段和包含第二拐点的第二数据段,可提高由第一数据段和第二数据段合并所得到的信号的信噪比。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式,本申请实施例第一方面的第二种实现方式中,从所述第一回波信号确定第一数据段包括:确定所述第一拐点和与所述第一拐点相邻的P个采样点的集合为所述第一数据段,所述P为大于或等于1的整数;从所述第二回波信号确定第二数据段包括:确定所述第二拐点和与所述第二拐点相邻的P个采样点的集合为所述第二数据段。由第一方面的第二种实现方式可见,本实施例中提供了一种确定第一数据段和第二数据段的方式,提高了方案的可实现性。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第二种实现方式,本申请实施例第一方面的第三种实现方式中,从所述第一回波信号确定第一拐点包括:从所述第一回波信号中确定第一拐点集合,所述第一拐点为所述第一拐点集合中的前N个拐点的任意一个拐点,所述第一拐点集合为所述第一回波信号的所有拐点的集合,所述第一拐点集合中的拐点以幅度值由大到小排序;从所述第二回波信号确定第二拐点包括:从所述第二回波信号中确定第二拐点集合,所述第二拐点为所述第二拐点集合中的前N个拐点的任意一个拐点,所述第二拐点集合为所述第二回波信号的所有拐点的集合,所述第二拐点集合中的拐点以幅度值由大到小排序,由第一方面的第三种实现方式可见,以幅度值较高的拐点作为第一拐地和第二拐点,提高了计算目标物的飞行时间的准确性。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第三种实现方式,本申请实施例第一方面的第四种实现方式中,从所述第一回波信号确定第一数据段包括:从所述第一回波信号截取M段数据段,以得到第一数据段集合,所述第一数据段为所述第一数据段集合的前Z段数据段,所述第一数据段集合以数据段的能量值由大到小对从所述第一回波信号截取的M段数据段进行排序,所述M和所述Z分别为大于或等于1的整数;从所述第二回波信号确定第二数据段包括:从所述第二回波信号截取M段数据段,以得到第二数据段集合,所述第二数据段为所述第二数据段集合的前Z段数据段,所述第二数据段集合以数据段的能量值由大到小对从所述第二回波信号截取的M段数据段进行排序。由第一方面的第四种实现方式可见,从第一回波信号确定能力值较大的数据段第一数据段以及从第二回波信号中确定能量值较大的数据段作为第二数据段,提高了计算目标物的飞行时间的准确性。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第四种实现方式,本申请实施例第一方面的第五种实现方式中,所述判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值之前,所述方法还包括:确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域;若是,则判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值。由第一方面的第五种实现方式可见,判断在同一目标区域的第一回波信号的第一拐点的第一时刻和第二回波信号的第二拐点的第二时刻,使得第一回波信号和第二回波信号为相同目标物反射的概率增大。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实 施例第一方面的第五种实现方式,本申请实施例第一方面的第六种实现方式中,确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域之前,所述方法还包括:将接收所述至少一个回波信号对应的视场FOV划分为多个目标区域,所述FOV包括所述目标物。由第一方面的第六种实现方式可见,通过预先划分目标区域,使得在同一目标区域的第一回波信号和第二回波信号为相同目标物反射的概率增大。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第六种实现方式,本申请实施例第一方面的第七种实现方式中,确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域之前,所述方法还包括:确定接收所述第一回波信号的第一方向以及与接收所述第一回波信号的第一方向的相邻区域为所述目标区域。由第一方面的第七种实现方式可见,通过将第一方向以及第一方向的相邻区域作为目标区域,提高了目标区域的准确性,使得在同一目标区域的第一回波信号和第二回波信号为相同目标物反射的概率增大。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第七种实现方式,本申请实施例第一方面的第八种实现方式中,所述方法还包括:从所述第一回波信号和所述第二回波信号合并后的信号中确定幅度值最大的采样点;确定所述幅度值最大的采样点对应的第三时刻,以及根据所述第三时刻计算所述目标物与接收所述第一回波信号的接收点之间的距离。由第一方面的第八种实现方式可见,通过由所述第一回波信号和所述第二回波信号合并后的信号幅度值最大的采样点计算距离,提高了计算目标物与接收第一回波信号的接收点之间的距离的准确性。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第八种实现方式,本申请实施例第一方面的第九种实现方式中,所述第一回波信号的信噪比小于第二预设阈值,所述第二回波信号的信噪比小于第三预设阈值。由第一方面的第九种实现方式可见,在第一回波信号的信噪比和第二回波信号的信噪比较低,合并第一回波信号和第二回波信号,由第一回波信号和第二回波信号合并所得到的信号的信噪比。
基于本申请实施例第一方面以及本申请实施例第一方面的第一种实现方式至本申请实施例第一方面的第九种实现方式,本申请实施例第一方面的第十种实现方式中,所述方法还包括:分别对所述第一回波信号和所述第二回波信号进行降噪处理,所述降噪处理包括匹配滤波、高斯滤波、小波去噪和频域滤波中的至少一种。由第一方面的第十种实现方式可见,对第一回波信号和第二回波信号进行降噪处理,提高了由第一回波信号和第二回波信号合并得到的信号的信噪比。
本申请实施例第二方面提供了一种回波信号的处理装置,所述回波信号的处理装置具有实现上述第一方面或者第一方面任一可能实现的方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,还可以采用软件与硬件结合的形式实现。该硬件和/或软件包括一个或多个与上述功能相对应的模块。
本申请实施例第三方面提供了一种回波信号的处理装置,所述回波信号的处理装置包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或 指令被所述处理器执行时,使得回波信号的处理装置执行上述第一方面或者第一方面任一可能实现的方式的处理或操作。
本申请实施例第四方面提供一种存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行第一方面或者第一方面任一可能实现的方法。
本申请实施例第五方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行第一方面或者第一方面任一可能实现的方法。
本申请实施例第六方面提供一种芯片系统,所述芯片系统包括至少一个处理器和通信接口,所述芯片系统还可以包括存储器,所述存储器、所通信接口和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述至少一个处理器执行,以执行第一方面或者第一方面任一可能实现的方法。
本实施例中,激光雷达从第一回波信号确定第一拐点以及从第二回波信号中确定第二拐点,并确定接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达合并第一回波信号和第二回波信号。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
附图说明
图1为本申请实施例提供的一个实施例示意图;
图2为本申请实施例提供的另一个实施例示意图;
图3为本申请实施例提供的一种回波信号的处理方法的示意性框图;
图4为本申请实施例提供的另一个实施例示意图;
图5为本申请实施例提供的另一个实施例示意图;
图6为本申请实施例提供的另一种回波信号的处理方法的示意性框图;
图7为本申请实施例提供的另一个实施例示意图;
图8为本申请实施例提供的另一个实施例示意图;
图9为本申请实施例提供的另一个实施例示意图;
图10为本申请实施例提供的另一种回波信号的处理方法的示意性框图;
图11为本申请实施例提供的另一个实施例示意图;
图12为本申请实施例提供的另一个实施例示意图;
图13为本申请实施例提供的另一种回波信号的处理方法的示意性框图;
图14为本申请实施例提供的另一种回波信号的处理方法的示意性框图;
图15为本申请实施例提供的一个回波信号的处理装置的一个示意性框图;
图16为本申请实施例提供的一个回波信号的处理装置一个硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四” 等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种回波信号的处理方法及装置,用于当在第一回波信号中接收第一拐点的第一时刻和在第二回波信号中接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并第一回波信号和第二回波信号,提高了由第一回波信号和第二回波信号合并得到的信号的信噪比。
请参考图1,图1为本申请实施例提供的激光雷达(lightLaser detection and ranging,LIDAR)的系统架构框图,如图1所示,信号处理与控制单元发送脉冲信号给激光驱动电路,激光驱动电路将脉冲信号调制到激光器上,激光器发射出带有脉冲的回波信号,扫描器件和发端光学元件对光束进行扫描和整型;收端光学元件对接收的回波信号聚焦整型后,探测器接收回波信号,将回波信号转化成电流信号,跨阻放大器(trans impedance amplifier,TIA)可将电流信号放大变成电压信号;模数转换器(analog-to-digital converte,ADC)可将模拟的电压信号变成数字化信号,本申请实施例中,通过对ADC采样后的回波信号的处理计算出飞行时刻和目标物的距离。
请参考图2,图2为本申请实施例提供的一个应用场景示意图,如图2所示,激光雷达包括发射机和接收机,发射机用于发射回波信号,接收机用于接收回波信号,其中,激光雷达通过测量回波信号的接收时刻和发射时刻的时间差(Time of Flight,TOF),以及依据TOF和光速c完成距离的测量,具体地,激光雷达测量距离的基本过程可如图2所示,例如,可通过公式(2-1)计算激光雷达与目标物之间的距离。
Figure PCTCN2019081517-appb-000001
其中,公式(2-1)中的R为激光雷达与目标物之间的距离,c为光速,t为回波信号的TOF。
上面对本申请实施例提供的系统框架和应用场景进行了描述,下面对本申请实施例提供的一种回波信号的处理方法进行描述。
请参考图3,图3为本申请实施例提供的一种回波信号的处理方法的示意性框图,如图3所示,该回波信号的处理方法可以包括以下步骤:
301、发射机发射回波信号。
激光雷达对其视场(field of view,FOV)进行扫描,并通过发射机在FOV范围内发射至少两个回波信号,其中,该至少回波信号至少包括第一回波信号和第二回波信号,本实施例以及后续实施例仅以第一回波信号和第二回波信号作为至少两个回波信号为例进行说明。
需要说明的是,本实施例中,发射机发射的至少两个回波信号是在FOV范围内的不同方向发射的,比如,发射机在第一方向(x,y)发射第一回波信号,在第二方向(x,y+1)发射 第二回波信号。
具体地,请参考图4,图4为发射机在FOV范围内发射回波信号的示意图,如图4所示,发射机通过转动微机械振镜(micromirror,MEMS),实现在FOV范围内不同的方向发射回波信号。
302、接收机接收回波信号。
激光雷达的发射机在FOV范围内发射回波信号,回波信号经过FOV范围内的物体得到反射,接收机(receiving optics)接收由FOV范围内的物体反射的回波信号,其中,接收的回波信号包括第一回波信号和第二回波信号。
303、激光雷达从第一回波信号确定第一拐点以及从第二回波信号确定第二拐点。
激光雷达接收分别第一回波信号和第二回波信号,并从第一回波信号中确定第一拐点,以及从第二回波信号中确定第二拐点。
具体地,请参考图5,激光雷达在第一方向(x,y)接收的第一回波信号和在第二方向(x,y+1)接收的第二回波信号可以如图5所示,激光雷达在第一回波信号中确定第一拐点,其中,第一拐点可以如图5所示,第一拐点作为第一回波信号中的一个采样点,并且第一拐点其左右相邻的采样点的幅度值均小于第一拐点的幅度值。
当然,激光雷达在第二回波信号中确定第二拐点也可以参考图5所示,第二拐点为第二回波信号中的一个采样点,并且第二拐点其左右相邻的采样点的幅度值均小于第二拐点的幅度值。
304、激光雷达确定接收第一拐点的第一时刻t (x,y)和接收第二拐点的第二时刻t (x,y+1)
第一回波信号的采样点是激光雷达在不同的时刻接收得到的,激光雷达确定第一拐点之后,激光雷达可以确定在第一回波信号中,接收第一拐点的第一时刻t (x,y),比如,如图5所示,激光雷达确定接收第一拐点的第一时刻t (x,y)为678。
同样,激光雷达也可以确定在第二回波信号中,接收第二拐点的第二时刻t (x,y+1),比如,如图5所示,激光雷达确定接收第一拐点的第二时刻t (x,y+1)为675。
可以理解的是,本实施例提供的第一时刻为678和第二时刻为675仅仅作为一个举例,在实际应用中,还可以是其他。
305、激光雷达判断第一时刻t (x,y)和第二时刻t (x,y+1)之间的时间差是否小于第一预设阈值,若是,则执行步骤306。
本实施例中,激光雷达可以通过公式(3-1)判断第一时刻t (x,y)和第二时刻t (x,y+1)之间的时间差是否小于第一预设阈值。
|t (x,y)-t (x,y+1)|≤thr  (3-1)
其中,公式(3-1)中的thr为第一预设阈值。
比如,当激光雷达确定第一时刻t (x,y)为678,第二时刻t (x,y+1)为675,则激光雷达通过公式(3-1)可以确定第一时刻t (x,y)和第二时刻t (x,y+1)之间的时间差为2,当第一预设阈值thr大于2时,第一时刻t (x,y)和第二时刻t (x,y+1)之间的时间差小于第一预设阈值,否则,则相反。
306、激光雷达合并第一回波信号和第二回波信号。
当第一时刻t (x,y)和第二时刻t (x,y+1)之间的时间差小于或者等于第一预设阈值,激光雷达合并第一回波信号和第二回波信号。比如,当第一预设阈值为3,第一时刻t (x,y)为678,第二时刻t (x,y+1)为675,激光雷达合并第一回波信号和第二回波信号。
下面举例对激光雷达合并第一回波信号和第二回波信号进行描述:
请参考图5,激光雷达确定第一回波信号各采样点的幅度值和第二回波信号的各采样点的幅度值,比如,确定第一回波信号的采样点0-1200的幅度值,其中,采样点678对应的第一拐点的幅度值为3和采样点675的幅度值为2.9。激光雷达还可以确定第二回波信号的采样点0-1200的幅度值,其中,确定采样点675对应的第二拐点的幅度值为2.9和采样点678对应的幅度值为2.8。需要说明的是,本实施例中幅度值可以是指电平信号的幅度值。采样点1对应的采样时间为1,采样点2对应的采样时间为2,依次类推。
激光雷达合并第一回波信号和第二回波信号可以是指将第一回波信号的采样点S和第二回波信号的采样点S各自对应的幅度值合并,比如,将第一回波信号的采样点678的幅度值3和第二回波信号的采样点678的幅度值2.8叠加,得到的幅度值为5.8,当然,其他采样点也可以进行叠加,此处不再赘述。当然,本实施例中也可以以将第一拐点的幅度值和第二拐点的幅度值进行叠加,比如,将第一拐点的采样点678的幅度值3与第二拐点的采样点675的幅度值2.9进行叠加,得到幅度值5.9,当然,当以第一拐点和第二拐点进行叠加时,其他采样点也相对于第一拐点和第二拐点的采样间距d进行偏移后叠加,比如,第一拐点的采样点和第二拐点的采样点的间距d为2,则第一回波信号的采样点S的幅度值与第二回波信号的采样点S+2幅度值进行叠加。
本实施中,激光雷达将第一回波信号和第二回波信号的各采样点的幅度值合并后,从合并后的信号中确定幅度值最大的采样点,并以幅度值最大的采样点的采样时间确定目标物的TOF,以及根据TOF计算目标物与激光雷达的距离,或者根据合并后的信号计算反射率和幅度等。
可以理解的是,本实施例中当第一时刻t (x,y)和第二时刻t (x,y+1)之间的时间差大于第一预设阈值时,本实施例中,激光雷达不合并第一回拨信号和第二回波信号。
本实施例中,激光雷达从第一回波信号确定第一拐点以及从第二回波信号中确定第二拐点,并确定接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达合并第一回波信号和第二回波信号。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
上面对本申请实施例提供的一种回波信号的处理方法进行了描述,下面对本申请实施例提供的另一种回波信号的处理方法进行描述。
请参考图6,图6为本申请实施例提供的另一种回波信号的处理方法的示意性框图,如图6所示,该回波信号的处理方法可以包括以下步骤:
601、激光雷达将FOV对应的画面划分多个目标区域。
激光雷达对其FOV进行扫描,并将FOV划分为多个目标区域,其中,FOV包括所述目 标物。
比如,请参考图7,图7为本申请实施例提供的一个目标区域划分示意图,激光雷达将扫描的FOV划分为多个目标区域可如图11所示,激光雷达可以将FOV划分为6个目标区域,包括目标区域1-目标区域6。当然,激光雷达也可以将FOV划分为其他数目的目标区域,此处不做限定。
602、发射机发射回波信号。
603、接收机接收回波信号。
本实施例中,步骤602至步骤603与前述图3对应实施例的步骤301至步骤302类似,此处不再赘述。
604、激光雷达判断第一回波信号的信噪比是否小于第二预设阈值以及判断第二回波信号是否小于第三预设阈值。
激光雷达判断第一回波信号的信噪比和第二回波信号的信噪比,当第一回波信号的信噪比小于第二预设阈值和/或第二回波信号的信噪比小于第三预设阈值时,激光雷达则执行步骤605。
本实施例中,激光雷达在第一回波信号的信噪比和第二回波信号的信噪比较低时,判断第一回波信号和第二回波信号是否可以合并,当第一回波信号和第二回波信号可以合并时,提高了合并后的信号的信噪比,当第一回波信号和第二回波信号不可以合并时,不会降低回波信号的信噪比;在第一回波信号的信噪比和第二回波信号的信噪比较高时,不合并第一回波信号和第二回波信号,节约了网络资源。
605、激光雷达确定第一方向和第二方向是否位于同一目标区域,若是,则执行步骤606。
激光雷达确定接收第一回波信号的第一方向为(x,y),以及确定接收第二回波信号的第二方向为(x,y+1),然后判断第一方向(x,y)和第二方向(x,y+1)是否位于同一目标区域,比如,激光雷达判断第一方向(x,y)和第二方向(x,y+1)是否同时位于如图7所示目标区域1-目标区域6中的任意一个目标区域,当激光雷达确定第一方向(x,y)和第二方向(x,y+1)同时位于目标区域1-目标区域6中的任意一个目标区域,激光雷达确定第一方向(x,y)和第二方向(x,y+1)位于同一目标区域。
可以理解的是,当第一方向(x,y)和第二方向(x,y+1)位于目标区域1-目标区域6不同目标区域时,激光雷达确定第一方向(x,y)和第二方向(x,y+1)不位于同一目标区域,同时激光雷达不再执行后续步骤,显然节省了网络资源。
606、激光雷达分别对第一回波信号和第二回信进行降噪处理。
激光雷达确定第一回波信号的第一方向(x,y)和第二回波信号的第二方向(x,y+1)位于同一目标区域后,激光雷达分别对第一回波信号和第二回信进行降噪处理,以降低噪声对回波信号的干扰。
其中,本实施例提供的降噪处理方法可以包括匹配滤波、高斯滤波、小波去噪和频域滤波中任意一种或者任意几种,当然,本实施例提供的降噪处理方还可以包括其他方法,此处不做具体限定。
607、激光雷达确定第一拐点和第二拐点。
激光雷达从第一回波信号确定第一拐点,具体地,激光雷达确定接收的第一回波信号为r x,y(n),n为第一回波信号的采样点的个数,激光雷达依据幅度值由大到小对第一回波信号r x,y(n)的n个采样点进行排序,并确定以幅度值由大到小排序的n个采样点的序列作为第一拐点集合,激光雷达将第一拐点集合中排序在前N个采样点作为第一拐点,比如,如图8所示,当N为3时,第一拐点可以如图8所示,需要说明的是,本实施例中,N为大于或等于1的整数。
本实施例中,激光雷达从第二回波信号确定第二拐点与从第一回波信号确定第一拐点类似,具体地,请参考图9,激光雷达确定接收的第二回波信号为r x,y+1(n),其中,第二回波信号的采样点数也可以为n,激光雷达以幅度值的大到小对第二回波信号r x,y+1(n)的n个采样点进行排序,并确定以幅度值由大到小排序的n个采样点的序列作为第二拐点集合,激光雷达将第二拐点集合中排序在前N个采样点作为第二拐点,比如,如图9所示,当N为3时,第二拐点可以如图9所示。
608、激光雷达确定第一数据段和第二数据段。
请参考图8,激光雷达确定第一拐点之后,以第一拐点以及与第一拐点相邻的P个采样点组成第一数据段,其中,第一数据段可以表示为w x,y,i(k),0<k≤P,0<i≤N,k为第一数据段的采样点,i为第一数据段中的第i段数据段,P为大于或等于1的整数。比如,如图8所示,当第一拐点的个数为3时,激光雷达以第一拐点为中心截取第一拐点两侧共50个采样点作为第一数据段,第一数据段可如图8所示。当然,激光雷达也可以以第一拐点的一侧截取P个采样点作为第一数据段,此处不做限定。
本实施例中,激光雷达确定第二数据段与确定第一数据段的方法类似,具体请参考图9,其中,第二数据段可以表示为w x,y+1,j(k),0<k≤P,0<j≤N,k为第二数据段的采样点,j为第二数据段中的第j段数据段,此处不再赘述。
609、激光雷达确定接收第一拐点的第一时刻t (x,y)(i)和接收第二拐点的第二时刻t (x,y+1)(j)。
本实施例中,第一时刻t (x,y)(i)可以理解为第一数据段中的第i段数据段的第一拐点的接收时刻,第二时刻t (x,y+1)(j)可以理解为第二数据段中的j段数据段的第二拐点的接收时刻。
610、激光雷达判断第一时刻t (x,y)(i)和第二时刻t (x,y+1)(j)之间的时间差是否小于第一预设阈值,若是,则执行步骤611。
本实施例中,激光雷达可以通过公式(6-1)判断第一时刻t (x,y)(i)和第二时刻t (x,y+1)(j)之间的时间差是否小于第一预设阈值。
|t (x,y)(i)-t (x,y+1)(j)|≤thr  (6-1)
其中,公式(6-1)中的thr为第一预设阈值。
比如,当第一数据段w x,y,i(k)中的第1段数据段w x,y,1(k)的第一拐点的第一时刻为 t (x,y)(1),第二数据段w x,y+1,j(k)中的第1段数据段w x,y+1,1(k)的第二拐点的第二时刻为t (x,y+1)(1),则激光雷达判断|t (x,y)(1)-t (x,y+1)(1)|是否小于等于thr,比如,当t (x,y)(1)为175,t (x,y+1)(1)为176,thr为2时,激光雷达确定第一时刻t (x,y)(1)和第二时刻t (x,y+1)(1)之间的时间差小于第一预设阈值。
611、激光雷达合并第一数据段和第二数据段。
当第一时刻t (x,y)(i)和第二时刻t (x,y+1)(j)之间的时间差小于第一预设阈值,则激光雷达合并第一数据段w x,y,i(k)和第二数据段w x,y,i(k)。
本实施例中,激光雷达可以通过公式(6-2)合并第一数据段和第二数据段,得到w x,y,f(k),f为第f段数据段。
w x,y,f(k)=w x,y,i(k)+w x,y+1,j(k)  (6-2)
具体地,激光雷达依次将第一数据段中的第i段数据段w x,y,i(k)中的第一拐点的第一时刻t (x,y)(i)与第二数据段中的第j段数据段w x,y,j(k)中的第二拐点的第二时刻t (x,y)(i)进行比较,将符合公式(3-1)所示条件的数据段进行合并。比如,当第一数据段中的第1段数据段w x,y,1(k)的第一时刻t (x,y)(1)为175,第二数据段的第1数据段w x,y+1,1(k)的第二时刻为t (x,y+1)(1)为176,且第一预设阈值thr为2,则激光雷达通过公式(6-1)确定|t (x,y)(1)-t (x,y+1)(1)|小于等于thr,则激光雷达通过公式(6-2)合并第1段数据段w x,y,1(k)和第1段数据段w x,y+1,1(k)得到数据段w x,y,1(k),激光雷达还可以将第一数据段中的第1段数据段w x,y,1(k)的第一时刻t (x,y)(1)与第二数据段中的其他数据段的第二拐点的第二时刻进行比较,比如,将第一时刻t (x,y)(1)与第二时刻t (x,y+1)(2)进行比较,若第一时刻t (x,y)(1)与第二时刻t (x,y+1)(2)之间的差值小于2,同样将w x,y,1(k)和w x,y+1,2(k)进行合并。
其中,本实施例中,激光雷达合并w x,y,1(k)和w x,y+1,2(k)也可以是指将w x,y,1(k)的采样点S的幅度值和w x,y+1,2(k)采样点S的幅度值进行叠加,或者将w x,y,1(k)的采样点S的幅度值和w x,y+1,2(k)采样点S+d的幅度值进行叠加,其中,d为w x,y,1(k)的第一拐点的采样点和w x,y+1,2(k)的第二拐点的采样点的间距,需要说明的是,本实施例中幅度值可以是指电平信号的幅度值。具体地,合并w x,y,1(k)和w x,y+1,2(k)与前述步骤306中合并第一回波信号和第二回波信号类似,此处不再赘述。
612、激光雷达计算目标物与激光雷达的距离。
激光雷达确定第一数据段和第二数据段合并后的信号中幅度值最大的采样点为峰值点n max,并确定该峰值点n max对应的采样时间为第三时刻,然后根据第三时刻确定TOF,再根据TOF和光速c通过公式(2-1)
Figure PCTCN2019081517-appb-000002
计算目标物与激光雷达的距离R。显然,通过信噪比较高的峰值点n max对应的第三时刻计算距离,提高了计算目标物与激光雷达之间的距离的准确性。
需要说明的是,本实施例中,激光雷达可以通过峰值点n max确定第三时刻,也可以采用其他方法确定第三时刻,例如,激光雷达可通过上升沿,恒定分数鉴别器(constant  fraction discriminator,CFD),重心(center of gravity)等方法,此处不做限定。
可以理解的是,本申请中激光雷达还可以通过第一数据段和第二数据段合并后的信号确定反射率和幅度,此处不再赘述。
需要说明的是,本实施例中,步骤601、步骤604、步骤605、步骤606和步骤612为可选步骤,在实际应用中,可以执行,也可以不执行。
本实施例中,激光雷达从第一拐点集合中确定第一拐点以及从第二拐点集合中确定第二拐点,并在接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,将以第一拐点得到的第一数据段和以第二拐点得到的第二数据段进行合并。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
上面对本申请实施例提供的一种回波信号的处理方法进行了描述,下面对本申请实施例提供的另一种回波信号的处理方法进行描述。
请参考图10,图10为本申请实施例提供的另一种回波信号的处理方法的示意性框图,如图10所示,该回波信号的处理方法可以包括以下步骤:
1001、发射机发射回波信号。
1002、接收机接收回波信号。
本实施例中,步骤1001至步骤1002与前述图3对应实施例的步骤301至302类似,此处不再赘述。
1003、激光雷达判断第一回波信号的信噪比是否小于第二预设阈值以及判断第二回波信号是否小于第三预设阈值。
本实施例中,步骤1003与前述图6对应实施例的步骤604类似,此处不再赘述。
1004、激光雷达确定第一方向和第二方向是否位于同一目标区域,若是,则执行步骤1005。
激光雷达接收第一回波信号,以及确定接收第一回波信号的第一方向(x,y),其中,第一方向(x,y)可所在的区域可如图11所示,激光雷达以第一方向(x,y)以及与第一方向(x,y)相邻的区域组成目标区域,可以理解的是,本实施例中,与第一方向(x,y)相邻的区域可以是与第一方向(x,y)直接相邻的区域,比如图11所示,也可以是与第一方向(x,y)间接相邻的区域,比如图12所示,此处不限定。
激光雷达接收第二回波信号,以及确定接收第二回波信号的第二方向(x,y+1),判断第一方向(x,y)和第二方向(x,y+1)是否位于同一目标区域,比如,激光雷达判断第二方向(x,y+1)是否位于如图11或者图12所示的目标区域中,当激光雷达确定第二方向(x,y+1)位于图11或者图12所示的目标区域,则确定第一方向(x,y)和第二方向(x,y+1)位于同一目标区域。
可以理解的是,当激光雷达确定第二方向(x,y+1)不位于图11或者图12所示的目标区域时,确定第一方向(x,y)对和第二方向(x,y+1)不位于同一目标区域,则不再执行后续步骤,显然节省了网络资源。
1005、激光雷达分别对第一回波信号和第二回信进行降噪处理。
1006、激光雷达确定第一拐点和第二拐点。
1007、激光雷达确定第一数据段和第二数据段。
1008、激光雷达确定接收第一拐点的第一时刻t (x,y)(i)和接收第二拐点的第二时刻t (x,y+1)(j)。
1009、激光雷达判断第一时刻t (x,y)(i)和第二时刻t (x,y+1)(j)之间的时间差是否小于第一预设阈值,若是,则执行步骤1010。
1010、激光雷达合并第一数据段和第二数据段。
1011、激光雷达计算目标物与激光雷达的距离。
本实施例中,步骤1005至步骤1011与前述图6对应实施例的步骤606至步骤6012类似,此处不再赘述。
需要说明的是,本实施例中,步骤1003、步骤1004、步骤1005和步骤1011为可选步骤,在实际应用中,可以执行,也可以不执行。
本实施例中,激光雷达从第一拐点集合中确定第一拐点以及从第二拐点集合中确定第二拐点,并在接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,将以第一拐点得到的第一数据段和以第二拐点得到的第二数据段进行合并。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
上面对本申请实施例提供的一种回波信号的处理方法进行了描述,下面对本申请实施例提供的另一种回波信号的处理方法进行描述。
请参考图13,图13为本申请实施例提供的另一种回波信号的处理方法的示意性框图,如图13所示,该回波信号的处理方法可以包括以下步骤:
1301、激光雷达将FOV对应的画面划分多个目标区域。
1302、发射机发射回波信号。
1303、接收机接收回波信号。
1304、激光雷达判断第一回波信号的信噪比是否小于第二预设阈值以及判断第二回波信号是否小于第三预设阈值。
1305、激光雷达确定第一方向和第二方向是否位于同一目标区域,若是,则执行步骤1306。
1306、激光雷达分别对第一回波信号和第二回信进行降噪处理。
本实施例中,步骤1301至步骤1306与前述图6对应实施例的步骤601至606类似,此处不再赘述。
1307、激光雷达从第一回波信号确定第一数据段和从第二回波信号确定第二数据段。
激光雷达从第一回波信号确定第一数据段,具体地,激光雷达可以以预设规则将第一回波信号截取M段数据段,并确定该M段数据段的每一段数据段的能量值,激光雷达依据 能力值由大到小对该M段数据段进行排序,并确定以能力值由大到小对该M段数据段进行排序的序列作为第一数据段集合,激光雷达将第一数据段集合中排序在前Z段数据段作为第一数据段,其中,M和Z分别为大于或等于1的整数。
激光雷达从第二回波信号确定第二数据段,其中,激光雷达从第二回波信号确定第二数据段与前述激光雷达从第一回波信号中确定第一数据段类似,此处不再赘述。
可以理解的是,每一段数据段的能力值可以为每一段数据的每个采样点的幅度值之和。
1308、激光雷达确定第一拐点和第二拐点。
激光雷达从第一数据段中确定第一拐点,其中,第一拐点为第一数据段中的一个采样点,且第一拐点其左右相邻的采样点的幅度值均小于第一拐点的幅度值。
激光雷达从第二数据段中确定第二拐点,其中,第二拐点为第二数据段中的一个采样点,且第二拐点其左右相邻的采样点的幅度值均小于第二拐点的幅度值。
1309、激光雷达确定接收第一拐点的第一时刻t (x,y)(i)和接收第二拐点的第二时刻t (x,y+1)(j)。
1310、激光雷达判断第一时刻t (x,y)(i)和第二时刻t (x,y+1)(j)之间的时间差是否小于第一预设阈值,若是,则执行步骤1311。
1311、激光雷达合并第一数据段和第二数据段。
1312、激光雷达计算目标物与激光雷达的距离。
本实施例中,步骤1309至步骤1312与前述图6对应实施例的步骤609至612类似,此处不再赘述。
需要说明的是,本实施例中,步骤1301、步骤1304、步骤1305、步骤1306和步骤1312为可选步骤,在实际应用中,可以执行,也可以不执行。
本实施例中,激光雷达从第一数据段中确定第一拐点以及从第二数据段中确定第二拐点,并在接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并第一数据段和第二数据段。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
上面对本申请实施例提供的一种回波信号的处理方法进行了描述,下面对本申请实施例提供的另一种回波信号的处理方法进行描述。
请参考图14,图14为本申请实施例提供的另一种回波信号的处理方法的示意性框图,如图14所示,该回波信号的处理方法可以包括以下步骤:
1401、发射机发射回波信号。
1402、接收机接收回波信号。
1403、激光雷达判断第一回波信号的信噪比是否小于第二预设阈值以及判断第二回波信号是否小于第三预设阈值。
1404、激光雷达确定第一方向和第二方向是否位于同一目标区域,若是,则执行步骤1405。
1405、激光雷达分别对第一回波信号和第二回信进行降噪处理。
本实施例中,步骤1401至步骤1405与前述图10对应实施例的步骤1001至1005类似,此处不再赘述。
1406、激光雷达从第一回波信号确定第一数据段和从第二回波信号确定第二数据段。
1407、激光雷达确定第一拐点和第二拐点。
1408、激光雷达确定接收第一拐点的第一时刻t (x,y)(i)和接收第二拐点的第二时刻t (x,y+1)(j)。
1409、激光雷达判断第一时刻t (x,y)(i)和第二时刻t (x,y+1)(j)之间的时间差是否小于第一预设阈值,若是,则执行步骤1410。
1410、激光雷达合并第一数据段和第二数据段。
1411、激光雷达计算目标物与激光雷达的距离。
本实施例中,步骤1406至步骤1411与前述图13对应实施例的步骤1307至1312类似,此处不再赘述。
需要说明的是,本实施例中,步骤1403、步骤1404、步骤1405和步骤1411为可选步骤,在实际应用中,可以执行,也可以不执行。
本实施例中,激光雷达从第一数据段中确定第一拐点以及从第二数据段中确定第二拐点,并在接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并第一数据段和第二数据段。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
上面对本申请实施例提供的回波信号的处理方法进行描述,下面对本申请实施例的装置进行描述。
请参考图15,图15为本申请实施例提供的一种回波信号的处理装置的示意性框图,其中,该回波信号的处理装置150可以为激光雷达,该回波信号的处理装置150包括:
接收单元1501,用于接收至少两个回波信号,所述至少两个回波信号包括第一回波信号和第二回波信号,所述第一回波信号和所述第二回波信号在不同的方向接收;
处理单元1502,用于从所述第一回波信号确定第一拐点,以及从所述第二回波信号确定第二拐点,所述第一拐点为所述第一回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第一拐点的幅度值,所述第二拐点为所述第二回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第二拐点的幅度值;
所述处理单元1502还用于判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值;
合并单元1503,用于当在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并所述第一回波信号和所述第二回波信号。
在一种可能实现的方式中,所述处理单元1502还用于从所述第一回波信号确定第一数 据段和从所述第二回波信号确定第二数据段,所述第一拐点包含于所述第一数据段,所述第二拐点包含于所述第二数据段;
所述合并单元具体用于合并所述第一数据段和所述第二数据段。
在另一种可能实现的方式中,所述处理单元1502具体用于确定所述第一拐点和与所述第一拐点相邻的P个采样点的集合为所述第一数据段,所述P为大于或等于1的整数;
所述处理单元1502具体用于确定所述第二拐点和与所述第二拐点相邻的P个采样点的集合为所述第二数据段。
在另一种可能实现的方式中,所述处理单元1502具体用于从所述第一回波信号中确定第一拐点集合,所述第一拐点为所述第一拐点集合中的前N个拐点的任意一个拐点,所述第一拐点集合为所述第一回波信号的所有拐点的集合,所述第一拐点集合中的拐点以幅度值由大到小排序;
所述处理单元1502具体用于从所述第二回波信号中确定第二拐点集合,所述第二拐点为所述第二拐点集合中的前N个拐点的任意一个拐点,所述第二拐点集合为所述第二回波信号的所有拐点的集合,所述第二拐点集合中的拐点以幅度值由大到小排序。
在另一种可能实现的方式中,所述处理单元1502具体用于从所述第一回波信号截取M段数据段,以得到第一数据段集合,所述第一数据段为所述第一数据段集合的前Z段数据段,所述第一数据段集合以数据段的能量值由大到小对从所述第一回波信号截取的M段数据段进行排序,所述M和所述Z分别为大于或等于1的整数;
所述处理单元1502具体用于从所述第二回波信号截取M段数据段,以得到第二数据段集合,所述第二数据段为所述第二数据段集合的前Z段数据段,所述第二数据段集合以数据段的能量值由大到小对从所述第二回波信号截取的M段数据段进行排序。
在另一种可能实现的方式中,所述处理单元1502还用于确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域;
若是,则所述处理单元1502用于判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值。
在另一种可能实现的方式中,所述处理单元1502还用于将接收所述至少一个回波信号对应的视场FOV划分为多个目标区域,所述FOV包括所述目标物。
在另一种可能实现的方式中,所述处理单元1502还用于确定接收所述第一回波信号的第一方向以及与接收所述第一回波信号的第一方向的相邻区域为所述目标区域。
在另一种可能实现的方式中,所述处理单元1502还用于:
从所述第一回波信号和所述第二回波信号合并后的信号中确定幅度值最大的采样点;
确定所述幅度值最大的采样点对应的第三时刻,以及根据所述第三时刻计算所述目标物与接收所述第一回波信号的接收点之间的距离。
在另一种可能实现的方式中,所述第一回波信号的信噪比小于第二预设阈值,所述第二回波信号的信噪比小于第三预设阈值。
在另一种可能实现的方式中,所述处理单元1502还用于分别对所述第一回波信号和所述第二回波信号进行降噪处理,所述降噪处理包括匹配滤波、高斯滤波、小波去噪和频域 滤波中的至少一种。
本实施例中,处理单元1502从第一回波信号确定第一拐点以及从第二回波信号中确定第二拐点,并确定接收单元1501接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并单元1503合并第一回波信号和第二回波信号。显然,当接收第一拐点的第一时刻和接收第二拐点的第二时刻之间的时间差小于第一预设阈值时,激光雷达可以确定接收的第一回波信号和第二回波信号由相同的目标物反射的,合并由相同目标物反射的第一回波信号和第二回波信号可提高合并后所得到的信号的信噪比。
上面对本申请实施提供的一种回波信号的处理装置进行了描述,下面对本申请实施例提供的另一种回波信号的处理装置进行描述。
请参考图16,图16为本申请实施例提供的一种回波信号的处理装置的结构示意图,其中,该回波信号的处理装置160可以为激光雷达,该回波信号的处理装置160包括:至少一个处理器1610、存储器1650和收发器1630。该收发器可包括接收机和发射机,该存储器1650可以包括只读存储器和/或随机存取存储器,并向处理器1610提供操作指令和数据。存储器1650的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器1650存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
在本申请实施例中,通过调用存储器1650存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。处理器1610控制回波信号的处理装置160的操作,处理器1610还可以称为CPU(Central Processing Unit,中央处理单元)。存储器1650可以包括只读存储器和随机存取存储器,并向处理器1610提供指令和数据。存储器1650的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中回波信号的处理装置160的各个组件通过总线系统1620耦合在一起,其中总线系统1620除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1620。
上述本申请实施例揭示的方法可以应用于处理器1610中,或者由处理器1610实现。处理器1610可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1610中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1610可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1650,该存储器1650可以是物理上独立的单元,也可以是与处理器1610集成在一起的,处理器1610读取存储器1650中的信息,结合其硬件完成上述方法的步骤。
其中,本实施例中收发器1630可以用于执行上述方法实施例中涉及到接收和发送的操 作步骤。或其他可选实施例中的回波信号的处理装置的数据发送以及接收的步骤。
处理器1610可以用于执行上述方法实施例中涉及到数据处理的步骤。或其他可选实施例中的回波信号的处理装置的数据处理的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种回波信号的处理方法,其特征在于,包括:
    接收至少两个回波信号,所述至少两个回波信号包括第一回波信号和第二回波信号,所述第一回波信号和所述第二回波信号在不同的方向接收;
    从所述第一回波信号确定第一拐点,以及从所述第二回波信号确定第二拐点,所述第一拐点为所述第一回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第一拐点的幅度值,所述第二拐点为所述第二回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第二拐点的幅度值;
    判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值;
    若是,则合并所述第一回波信号和所述第二回波信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    从所述第一回波信号确定第一数据段和从所述第二回波信号确定第二数据段,所述第一拐点包含于所述第一数据段,所述第二拐点包含于所述第二数据段;
    所述合并所述第一回波信号和所述第二回波信号包括:合并所述第一数据段和所述第二数据段。
  3. 根据权利要求2所述的方法,其特征在于,
    从所述第一回波信号确定第一数据段包括:确定所述第一拐点和与所述第一拐点相邻的P个采样点的集合为所述第一数据段,所述P为大于或等于1的整数;
    从所述第二回波信号确定第二数据段包括:确定所述第二拐点和与所述第二拐点相邻的P个采样点的集合为所述第二数据段。
  4. 根据权利要求1至3所述的方法,其特征在于,从所述第一回波信号确定第一拐点包括:
    从所述第一回波信号中确定第一拐点集合,所述第一拐点为所述第一拐点集合中的前N个拐点的任意一个拐点,所述第一拐点集合为所述第一回波信号的所有拐点的集合,所述第一拐点集合中的拐点以幅度值由大到小排序;
    从所述第二回波信号确定第二拐点包括:
    从所述第二回波信号中确定第二拐点集合,所述第二拐点为所述第二拐点集合中的前N个拐点的任意一个拐点,所述第二拐点集合为所述第二回波信号的所有拐点的集合,所述第二拐点集合中的拐点以幅度值由大到小排序。
  5. 根据权利要求2所示的方法,其特征在于,
    从所述第一回波信号确定第一数据段包括:从所述第一回波信号截取M段数据段,以得到第一数据段集合,所述第一数据段为所述第一数据段集合的前Z段数据段,所述第一数据段集合以数据段的能量值由大到小对从所述第一回波信号截取的M段数据段进行排序,所述M和所述Z分别为大于或等于1的整数;
    从所述第二回波信号确定第二数据段包括:从所述第二回波信号截取M段数据段,以得到第二数据段集合,所述第二数据段为所述第二数据段集合的前Z段数据段,所述第二 数据段集合以数据段的能量值由大到小对从所述第二回波信号截取的M段数据段进行排序。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值之前,所述方法还包括:
    确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域;
    若是,则判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值。
  7. 根据权利要求6所述的方法,其特征在于,确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域之前,所述方法还包括:
    将接收所述至少一个回波信号对应的视场FOV划分为多个目标区域,所述FOV包括所述目标物。
  8. 根据权利要求6所述的方法,其特征在于,确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域之前,所述方法还包括:
    确定接收所述第一回波信号的第一方向以及与接收所述第一回波信号的第一方向的相邻区域为所述目标区域。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一回波信号和所述第二回波信号合并后的信号中确定幅度值最大的采样点;
    确定所述幅度值最大的采样点对应的第三时刻,以及根据所述第三时刻计算所述目标物与接收所述第一回波信号的接收点之间的距离。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一回波信号的信噪比小于第二预设阈值,所述第二回波信号的信噪比小于第三预设阈值。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    分别对所述第一回波信号和所述第二回波信号进行降噪处理,所述降噪处理包括匹配滤波、高斯滤波、小波去噪和频域滤波中的至少一种。
  12. 一种回波信号的处理装置,其特征在于,包括:
    接收单元,用于接收至少两个回波信号,所述至少两个回波信号包括第一回波信号和第二回波信号,所述第一回波信号和所述第二回波信号在不同的方向接收;
    处理单元,用于从所述第一回波信号确定第一拐点,以及从所述第二回波信号确定第二拐点,所述第一拐点为所述第一回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第一拐点的幅度值,所述第二拐点为所述第二回波信号的一个采样点,且左右相邻的采样点的幅度值小于所述第二拐点的幅度值;
    所述处理单元还用于判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值;
    合并单元,用于当在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差小于第一预设阈值时,合并所述第一回波信 号和所述第二回波信号。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元还用于从所述第一回波信号确定第一数据段和从所述第二回波信号确定第二数据段,所述第一拐点包含于所述第一数据段,所述第二拐点包含于所述第二数据段;
    所述合并单元具体用于合并所述第一数据段和所述第二数据段。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理单元具体用于确定所述第一拐点和与所述第一拐点相邻的P个采样点的集合为所述第一数据段,所述P为大于或等于1的整数;
    所述处理单元具体用于确定所述第二拐点和与所述第二拐点相邻的P个采样点的集合为所述第二数据段。
  15. 根据权利要求12至14任一项所述的装置,其特征在于,所述处理单元具体用于从所述第一回波信号中确定第一拐点集合,所述第一拐点为所述第一拐点集合中的前N个拐点的任意一个拐点,所述第一拐点集合为所述第一回波信号的所有拐点的集合,所述第一拐点集合中的拐点以幅度值由大到小排序;
    所述处理单元具体用于从所述第二回波信号中确定第二拐点集合,所述第二拐点为所述第二拐点集合中的前N个拐点的任意一个拐点,所述第二拐点集合为所述第二回波信号的所有拐点的集合,所述第二拐点集合中的拐点以幅度值由大到小排序。
  16. 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于从所述第一回波信号截取M段数据段,以得到第一数据段集合,所述第一数据段为所述第一数据段集合的前Z段数据段,所述第一数据段集合以数据段的能量值由大到小对从所述第一回波信号截取的M段数据段进行排序,所述M和所述Z分别为大于或等于1的整数;
    所述处理单元具体用于从所述第二回波信号截取M段数据段,以得到第二数据段集合,所述第二数据段为所述第二数据段集合的前Z段数据段,所述第二数据段集合以数据段的能量值由大到小对从所述第二回波信号截取的M段数据段进行排序。
  17. 根据权利要求12至16任一项所述的装置,其特征在于,所述处理单元还用于确定接收所述第一回波信号的第一方向和接收所述第二回波信号的第二方向位于同一目标区域;
    若是,则所述处理单元用于判断在第一回波信号中接收所述第一拐点的第一时刻和在第二回波信号中接收所述第二拐点的第二时刻之间的时间差是否小于第一预设阈值。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于将接收所述至少一个回波信号对应的视场FOV划分为多个目标区域,所述FOV包括所述目标物。
  19. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于确定接收所述第一回波信号的第一方向以及与接收所述第一回波信号的第一方向的相邻区域为所述目标区域。
  20. 根据权利要求12至19任一项所述的装置,其特征在于,所述处理单元还用于:
    从所述第一回波信号和所述第二回波信号合并后的信号中确定幅度值最大的采样点;
    确定所述幅度值最大的采样点对应的第三时刻,以及根据所述第三时刻计算所述目标 物与接收所述第一回波信号的接收点之间的距离。
  21. 根据权利要求12至20任一项所述的装置,其特征在于,所述第一回波信号的信噪比小于第二预设阈值,所述第二回波信号的信噪比小于第三预设阈值。
  22. 根据权利要求12至21任一项所述的装置,其特征在于,所述处理单元还用于分别对所述第一回波信号和所述第二回波信号进行降噪处理,所述降噪处理包括匹配滤波、高斯滤波、小波去噪和频域滤波中的至少一种。
  23. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至11任一项所述的方法。
PCT/CN2019/081517 2019-04-04 2019-04-04 回波信号的处理方法及装置 WO2020199197A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980060497.7A CN112703420B (zh) 2019-04-04 2019-04-04 回波信号的处理方法及装置
PCT/CN2019/081517 WO2020199197A1 (zh) 2019-04-04 2019-04-04 回波信号的处理方法及装置
EP19922528.5A EP3936893B1 (en) 2019-04-04 2019-04-04 Method and apparatus for processing echo signals
US17/490,200 US20220026532A1 (en) 2019-04-04 2021-09-30 Echo Signal Processing Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081517 WO2020199197A1 (zh) 2019-04-04 2019-04-04 回波信号的处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,200 Continuation US20220026532A1 (en) 2019-04-04 2021-09-30 Echo Signal Processing Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020199197A1 true WO2020199197A1 (zh) 2020-10-08

Family

ID=72664667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081517 WO2020199197A1 (zh) 2019-04-04 2019-04-04 回波信号的处理方法及装置

Country Status (4)

Country Link
US (1) US20220026532A1 (zh)
EP (1) EP3936893B1 (zh)
CN (1) CN112703420B (zh)
WO (1) WO2020199197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759339B (zh) * 2021-11-10 2022-02-25 北京一径科技有限公司 一种回波信号的处理方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223019A1 (en) * 2009-03-02 2010-09-02 Karl Griessbaum Measuring Filling Level by Means of Evaluating an Echo Curve
CN103486987A (zh) * 2013-10-14 2014-01-01 上海电力学院 一种利用曲线拟合提高超声测厚精度的方法
CN105549027A (zh) * 2015-12-28 2016-05-04 北京握奇数据系统有限公司 一种基于激光脉冲波形前沿检测的测距方法和系统
CN106154279A (zh) * 2016-07-22 2016-11-23 武汉海达数云技术有限公司 一种激光测距仪校正方法
CN106500671A (zh) * 2016-09-22 2017-03-15 天津大学 一种基于lm算法分解激光雷达波形确定海水深度的方法
EP3339901A1 (de) * 2016-12-21 2018-06-27 Hexagon Technology Center GmbH Laserdistanzmessmodul mit adc-fehlerkompensation durch variation der samplingzeitpunkte
CN108226907A (zh) * 2017-12-11 2018-06-29 武汉万集信息技术有限公司 用于激光测距设备的测距校准方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2122449B (en) * 1982-04-10 1986-10-29 Licentia Gmbh Detecting targets and suppressing clutter in radar
EP2240798B1 (en) * 2008-01-30 2016-08-17 Heptagon Micro Optics Pte. Ltd. Adaptive neighborhood filtering (anf) system and method for 3d time of flight cameras
CN101539623B (zh) * 2008-03-21 2011-08-31 深圳市亿威尔信息技术有限公司 一种雷达ppi图像像素的更新方法及系统
EP2430472B1 (en) * 2009-05-12 2016-10-26 Raytheon Anschütz GmbH Combining data from multiple radar signals on a single plan position indicator (ppi) display
JP5580621B2 (ja) * 2010-02-23 2014-08-27 古野電気株式会社 エコー信号処理装置、レーダ装置、エコー信号処理方法、およびエコー信号処理プログラム
CN104166135A (zh) * 2014-09-05 2014-11-26 武汉中原电子集团有限公司 一种宽带雷达目标的原始点迹凝聚处理方法
CN107272018B (zh) * 2017-04-24 2020-02-14 北京航空航天大学 一种三维扫描全波形激光雷达系统
WO2019011803A1 (en) * 2017-07-10 2019-01-17 Trinamix Gmbh DETECTOR FOR OPTICALLY DETECTING AT LEAST ONE OBJECT
CN107703503B (zh) * 2017-09-22 2020-10-23 电子科技大学 一种基于gpu加速的点迹凝聚方法
CN109073743A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 弱目标检测方法、微波雷达传感器及无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223019A1 (en) * 2009-03-02 2010-09-02 Karl Griessbaum Measuring Filling Level by Means of Evaluating an Echo Curve
CN103486987A (zh) * 2013-10-14 2014-01-01 上海电力学院 一种利用曲线拟合提高超声测厚精度的方法
CN105549027A (zh) * 2015-12-28 2016-05-04 北京握奇数据系统有限公司 一种基于激光脉冲波形前沿检测的测距方法和系统
CN106154279A (zh) * 2016-07-22 2016-11-23 武汉海达数云技术有限公司 一种激光测距仪校正方法
CN106500671A (zh) * 2016-09-22 2017-03-15 天津大学 一种基于lm算法分解激光雷达波形确定海水深度的方法
EP3339901A1 (de) * 2016-12-21 2018-06-27 Hexagon Technology Center GmbH Laserdistanzmessmodul mit adc-fehlerkompensation durch variation der samplingzeitpunkte
CN108226907A (zh) * 2017-12-11 2018-06-29 武汉万集信息技术有限公司 用于激光测距设备的测距校准方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936893A4 *

Also Published As

Publication number Publication date
EP3936893A1 (en) 2022-01-12
EP3936893A4 (en) 2022-02-23
EP3936893B1 (en) 2024-03-13
CN112703420A (zh) 2021-04-23
US20220026532A1 (en) 2022-01-27
CN112703420B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN109917408B (zh) 激光雷达的回波处理方法、测距方法及激光雷达
Brodeski et al. Deep radar detector
EP3936895B1 (en) Distance measurement method, apparatus and device
US9903946B2 (en) Low cost apparatus and method for multi-modal sensor fusion with single look ghost-free 3D target association from geographically diverse sensors
JP4368852B2 (ja) レーダ装置
WO2020146983A1 (zh) 一种车道检测方法、装置及车道检测设备、移动平台
KR20220145845A (ko) 솔리드 스테이트 LiDAR용 잡음 필터링 시스템 및 방법
CN107290755B (zh) 基于4d成像光子计数激光雷达系统实现的目标距离和目标强度的获取方法
Liu et al. An improvement in multichannel SAR-GMTI detection in heterogeneous environments
WO2020191727A1 (zh) 一种雷达功率控制方法及装置
WO2021046768A1 (zh) 一种目标物的反射率计算方法、装置及相关设备
JP2017156219A (ja) 追尾装置、追尾方法およびプログラム
JP2015219120A (ja) 距離測定装置
WO2020199197A1 (zh) 回波信号的处理方法及装置
JP6919764B2 (ja) レーダ画像処理装置、レーダ画像処理方法、および、プログラム
Huang et al. Yolo-ore: A deep learning-aided object recognition approach for radar systems
US20230139751A1 (en) Clustering in automotive imaging
WO2021179583A1 (zh) 探测方法及探测设备
US11061113B2 (en) Method and apparatus for object detection system
WO2020253764A1 (zh) 确定行驶区域信息的方法及装置
US20200081104A1 (en) Systems and methods for detecting an electromagnetic signal in a constant interference environment
RU2513041C2 (ru) Устройство идентификации воздушных объектов по структуре дальностного портрета
CN114814746A (zh) 针对雷达的检测方法、检测雷达、设备及存储介质
CN116027288A (zh) 生成数据的方法、装置、电子设备及存储介质
WO2024000587A1 (zh) 一种干扰信号检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922528

Country of ref document: EP

Effective date: 20211005