WO2020199187A1 - Optical receiver structure - Google Patents

Optical receiver structure Download PDF

Info

Publication number
WO2020199187A1
WO2020199187A1 PCT/CN2019/081456 CN2019081456W WO2020199187A1 WO 2020199187 A1 WO2020199187 A1 WO 2020199187A1 CN 2019081456 W CN2019081456 W CN 2019081456W WO 2020199187 A1 WO2020199187 A1 WO 2020199187A1
Authority
WO
WIPO (PCT)
Prior art keywords
implementations
tia
plc
cdr
chip
Prior art date
Application number
PCT/CN2019/081456
Other languages
French (fr)
Inventor
Yujian Bao
Zhaoming Li
Original Assignee
Lumentum Operations Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumentum Operations Llc filed Critical Lumentum Operations Llc
Priority to PCT/CN2019/081456 priority Critical patent/WO2020199187A1/en
Priority to PCT/CN2019/091382 priority patent/WO2020199352A1/en
Priority to US16/454,920 priority patent/US10795080B1/en
Priority to CN201910577246.8A priority patent/CN111786731A/en
Publication of WO2020199187A1 publication Critical patent/WO2020199187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • G02B6/4224Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera using visual alignment markings, e.g. index methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Definitions

  • Some implementations described herein provide a method to make an optical transceiver by passive die bonding processes without the need of active alignment. This improves the production efficiency and reduces the cost.
  • a gap between a photodiode (PD) and a planar lightwave chip (PLC) there may be a gap between a photodiode (PD) and a planar lightwave chip (PLC) .
  • PD photodiode
  • PLC planar lightwave chip
  • Such a gap may be approximately 15 microns. This gap allows an active aligner to move the PLC on top of the PD until a best coupling is found. However, a larger gap decreases a coupling efficiency.
  • some implementations described herein provide a die bond process to reduce the gap to 1-5 microns. In this way, some implementations improve a coupling efficiency between a PD and a PLC.
  • an optical receiver may include an optical demultiplexer (e.g., using free space filters or a PLC) , a photodiode array (PD) (e.g., a 4 channel PD) , and a transimpedance amplifier (TIA) (e.g., with clock data recovery (CDR) ) , which may be termed a TIA+CDR chip.
  • an optical demultiplexer e.g., using free space filters or a PLC
  • PD photodiode array
  • TIA transimpedance amplifier
  • CDR clock data recovery
  • an assembly process for the optical receiver may include die bonding the PD and the TIA+CDR chip on a substrate.
  • the assembly process may include actively aligning PLC optical waveguide outputs to an optically sensitive area of the PD.
  • actively aligning may take a threshold amount of time (e.g., using a hill climbing algorithm that is used to find the highest photocurrent of PD) and may be a bottleneck of production efficiency.
  • a compact structure may be provided that can be assembled using a die bond process only and without active alignment, as shown in Fig. 1.
  • the PD may be back-illuminated, and the optically sensitive area and the electrodes may be on opposite sides of a die.
  • the PD is attached on top of a PLC output using a high accuracy die bond (e.g., with within 5 micrometers accuracy or a higher level of accuracy) .
  • the TIA+CDR chip is attached on top of the PLC using a die bond process.
  • the PD and the TIA+CDR are connected by a wire bond.
  • a position of a receive optical subassembly (ROSA) and a transmit optical subassembly (TOSA) may be important for reducing cross-talk.
  • the ROSA and the TOSA may be separated to minimize this cross-talk.
  • connections from the ROSA to a module output may be relatively short to minimize noise.
  • the die bond technique may reduce process time.
  • active alignment for the PD to the PLC positioning may also be used, but the process time for active alignment may be greater than a threshold.
  • a die bond passively aligns the PD with the PLC, thereby minimizing the time required for alignment.
  • the TIA+CDR may be disposed on the right of PD, as shown in Fig. 2. In this case, it may be easier to connect electrical outputs (e.g., direct current (DC) and radio frequency (RF) ) to a flexible circuit or a rigid PCB.
  • electrical outputs e.g., direct current (DC) and radio frequency (RF)
  • RF radio frequency
  • a matching block may be added under the TIA+CDR chip.
  • the block may be made of silicon, thereby providing good coefficient of thermal expansion (CTE) matching with the PLC chip.
  • a reflection surface of the PLC may be metal coated.
  • an RF trace length may be reduced as shown in Fig. 3.
  • the PD is front-illuminated, and the optically sensitive area and the electrodes are on the same sides of the die.
  • the PD is flip chip bonded onto a joint surface of the PLC and the TIA+CDR chip.
  • PD photocurrent outputs are directly connected to the TIA+CDR chip by solder ball grids.
  • a substrate may be disposed under the TIA+CDR chip.
  • a flip chip is attached directly to the TIA+CDR chip.
  • the flip chip may minimize an RF trace length from the PD to the TIA+CDR chip, which may yield an improved RF performance relative to a wire connection.
  • the TIA+CDR chip, the PD, and the PLC may form an integrated, rigid structure.
  • an optical device may include a PD attached on a PLC directly.
  • an optical device may include a TIA (e.g., a TIA+CDR) attached on a PLC.
  • an optical device may include a PD flip chip mounted on the TIA.
  • the optical device achieves a PD attachment accuracy of less than 1 micron (e.g., a distance between the PD and PLC) .
  • a PD attachment accuracy of less than 1 micron (e.g., a distance between the PD and PLC) .
  • an increased coupling efficiency between the PD and the PLC may be achieved with a die bond machine.
  • some implementations described herein achieve a shorter trace from the PD to the TIA by using a flip chip connection rather than a wire connection, thereby resulting in better RF performance.

Abstract

A method, device, optical receiver, planar lightwave chip (PLC), photodiode (PD), transimpedance amplifier (TIA), clock and data recover (CDR), computer program product, and non-transitory computer-readable medium are provided. For example, a method may include manufacturing an optical transceiver by passive die bonding processes without the need of active alignment. Other implementations may be provided.

Description

OPTICAL RECEIVER STRUCTURE
Some implementations described herein provide a method to make an optical transceiver by passive die bonding processes without the need of active alignment. This improves the production efficiency and reduces the cost.
In some optical systems, there may be a gap between a photodiode (PD) and a planar lightwave chip (PLC) . Such a gap may be approximately 15 microns. This gap allows an active aligner to move the PLC on top of the PD until a best coupling is found. However, a larger gap decreases a coupling efficiency. As a result, some implementations described herein provide a die bond process to reduce the gap to 1-5 microns. In this way, some implementations improve a coupling efficiency between a PD and a PLC.
In some implementations, an optical receiver may include an optical demultiplexer (e.g., using free space filters or a PLC) , a photodiode array (PD) (e.g., a 4 channel PD) , and a transimpedance amplifier (TIA) (e.g., with clock data recovery (CDR) ) , which may be termed a TIA+CDR chip.
In some implementations, an assembly process for the optical receiver may include die bonding the PD and the TIA+CDR chip on a substrate. In some techniques, the assembly process may include actively aligning PLC optical waveguide outputs to an optically sensitive area of the PD. In some implementations, actively aligning may take a threshold amount of time (e.g., using a hill climbing algorithm that is used to find the highest photocurrent of PD) and may be a bottleneck of production efficiency. Thus, a compact structure may be provided that can be assembled using a die bond process only and without active alignment, as shown in Fig. 1.
In some implementations, the PD may be back-illuminated, and the optically sensitive area and the electrodes may be on opposite sides of a die. In some implementations, the PD is attached on top of a PLC output using a high accuracy die bond (e.g., with within 5  micrometers accuracy or a higher level of accuracy) . In some implementations, the TIA+CDR chip is attached on top of the PLC using a die bond process. In some implementations, the PD and the TIA+CDR are connected by a wire bond.
Further, a position of a receive optical subassembly (ROSA) and a transmit optical subassembly (TOSA) may be important for reducing cross-talk. In other words, the ROSA and the TOSA may be separated to minimize this cross-talk. In this case, connections from the ROSA to a module output may be relatively short to minimize noise.
In some implementations, the die bond technique may reduce process time. In some implementations, active alignment for the PD to the PLC positioning may also be used, but the process time for active alignment may be greater than a threshold. In some implementations, a die bond passively aligns the PD with the PLC, thereby minimizing the time required for alignment.
In some implementations, the TIA+CDR may be disposed on the right of PD, as shown in Fig. 2. In this case, it may be easier to connect electrical outputs (e.g., direct current (DC) and radio frequency (RF) ) to a flexible circuit or a rigid PCB. In this case, a matching block may be added under the TIA+CDR chip. The block may be made of silicon, thereby providing good coefficient of thermal expansion (CTE) matching with the PLC chip. In some implementations, a reflection surface of the PLC may be metal coated.
In some implementations, an RF trace length may be reduced as shown in Fig. 3. In this case, the PD is front-illuminated, and the optically sensitive area and the electrodes are on the same sides of the die. In some implementations, the PD is flip chip bonded onto a joint surface of the PLC and the TIA+CDR chip. In some implementations, PD photocurrent outputs are directly connected to the TIA+CDR chip by solder ball grids. In some implementations, to match a height of the PLC and the TIA+CDR chip, a substrate may be disposed under the TIA+CDR chip. In some implementations, a flip chip is attached directly  to the TIA+CDR chip. In this case, the flip chip may minimize an RF trace length from the PD to the TIA+CDR chip, which may yield an improved RF performance relative to a wire connection. In some implementations, the TIA+CDR chip, the PD, and the PLC may form an integrated, rigid structure.
In some implementations, an optical device may include a PD attached on a PLC directly. In some implementations, an optical device may include a TIA (e.g., a TIA+CDR) attached on a PLC. In some implementations, an optical device may include a PD flip chip mounted on the TIA. Some implementations described herein provide a compact structure of an optical receiver, including a PLC, a PD, and a TIA (e.g., with or without CDR) .
In this way, the optical device achieves a PD attachment accuracy of less than 1 micron (e.g., a distance between the PD and PLC) . By achieving this attachment accuracy, an increased coupling efficiency between the PD and the PLC may be achieved with a die bond machine. Further, some implementations described herein achieve a shorter trace from the PD to the TIA by using a flip chip connection rather than a wire connection, thereby resulting in better RF performance.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the implementations.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of  various implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, a combination of related items, and unrelated items, etc. ) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (1)

  1. A method, device, optical receiver, planar lightwave chip (PLC) , photodiode (PD) , transimpedance amplifier (TIA) , clock and data recover (CDR) , computer program product, and non-transitory computer-readable medium as substantially described herein with reference to and as illustrated by the accompanying drawings.
PCT/CN2019/081456 2019-04-04 2019-04-04 Optical receiver structure WO2020199187A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/081456 WO2020199187A1 (en) 2019-04-04 2019-04-04 Optical receiver structure
PCT/CN2019/091382 WO2020199352A1 (en) 2019-04-04 2019-06-14 Optical receiver with photodiode disposed directly on a planar lightwave circuit
US16/454,920 US10795080B1 (en) 2019-04-04 2019-06-27 Optical receiver with photodiode disposed directly on a planar lightwave circuit
CN201910577246.8A CN111786731A (en) 2019-04-04 2019-06-28 Optical receiver with photodiode directly arranged on planar lightwave circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081456 WO2020199187A1 (en) 2019-04-04 2019-04-04 Optical receiver structure

Publications (1)

Publication Number Publication Date
WO2020199187A1 true WO2020199187A1 (en) 2020-10-08

Family

ID=72664411

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/081456 WO2020199187A1 (en) 2019-04-04 2019-04-04 Optical receiver structure
PCT/CN2019/091382 WO2020199352A1 (en) 2019-04-04 2019-06-14 Optical receiver with photodiode disposed directly on a planar lightwave circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091382 WO2020199352A1 (en) 2019-04-04 2019-06-14 Optical receiver with photodiode disposed directly on a planar lightwave circuit

Country Status (2)

Country Link
CN (1) CN111786731A (en)
WO (2) WO2020199187A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903673U (en) * 2010-11-04 2011-07-20 浙江彩虹鱼通讯技术有限公司 Optical module, interface and optical fiber transmission line
US20170168252A1 (en) * 2015-12-10 2017-06-15 Kaiam Corp. Optical transceiver with combined transmitter and receiver assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290606A (en) * 1990-04-09 1991-12-20 Fujitsu Ltd Optical semiconductor device
JP2002261300A (en) * 2000-12-25 2002-09-13 Sumitomo Electric Ind Ltd Light receiver
JP2003167175A (en) * 2001-12-04 2003-06-13 Matsushita Electric Ind Co Ltd Optical mounted substrate and optical device
US6834133B1 (en) * 2003-08-27 2004-12-21 Intel Corporation Optoelectronic packages and methods to simultaneously couple an optoelectronic chip to a waveguide and substrate
US7372120B1 (en) * 2003-09-17 2008-05-13 Intel Corporation Methods and apparatus to optically couple an optoelectronic chip to a waveguide
US20050201668A1 (en) * 2004-03-11 2005-09-15 Avi Neta Method of connecting an optical element at a slope
CN102914834A (en) * 2012-05-28 2013-02-06 华为技术有限公司 Optical device
US20190052369A1 (en) * 2017-08-08 2019-02-14 Macom Technology Solutions Holdings, Inc. Techniques for high speed optoelectronic coupling by redirection of optical path

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903673U (en) * 2010-11-04 2011-07-20 浙江彩虹鱼通讯技术有限公司 Optical module, interface and optical fiber transmission line
US20170168252A1 (en) * 2015-12-10 2017-06-15 Kaiam Corp. Optical transceiver with combined transmitter and receiver assembly

Also Published As

Publication number Publication date
CN111786731A (en) 2020-10-16
WO2020199352A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US6808320B2 (en) Parallel fiber optics communications module
US7056032B2 (en) Transceiver assembly for use in fiber optics communications
US9323014B2 (en) High-speed optical module with flexible printed circuit board
US10268004B2 (en) Multi-channel receiver optical sub-assembly and manufacturing method thereof
US20100247043A1 (en) Optical module and wavelength division multiplexing optical module
US20040105627A1 (en) Receiver optical sub-assembly
KR20140016993A (en) Optical frame attached with alignment features microfabricated in die
US20200041736A1 (en) Receptacle configuration to support on-board receiver optical subassembly (rosa)
US8750657B2 (en) Flip-chip optical interface with micro-lens array
JPWO2016088349A1 (en) Optical module
KR100526505B1 (en) Structure of coupling up optical device to optical waveguide and method for coupling arrangement using the same
CN104049323B (en) Optical module
WO2020199187A1 (en) Optical receiver structure
US10795080B1 (en) Optical receiver with photodiode disposed directly on a planar lightwave circuit
JP6832023B2 (en) Optical modules for optical fibers and how to manufacture them
US7073954B1 (en) Transceiver assembly for use in fiber optics communications
KR101824668B1 (en) Optical receiver module using optical waveguide chip and method for manufacturing the same
KR102113817B1 (en) Optical module
US20130156394A1 (en) Optical communication module and method of manufacturing the same
US10072977B2 (en) Optical module with capacitor and digital coherent receiver using the same
US20020130249A1 (en) Optical subassembly
JP5919632B2 (en) Manufacturing method of parts for photoelectric conversion module
Yap et al. rf optoelectronic transmitter and receiver arrays on silicon wafer boards
TW202222047A (en) Optical transceiver module and optical transceiver device
JP2019075479A (en) Back illuminated semiconductor light receiving element, semiconductor light receiving device and manufacturing methods ot the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19922904

Country of ref document: EP

Kind code of ref document: A1