WO2020199073A1 - 接入控制方法、装置、用户设备及基站 - Google Patents

接入控制方法、装置、用户设备及基站 Download PDF

Info

Publication number
WO2020199073A1
WO2020199073A1 PCT/CN2019/080795 CN2019080795W WO2020199073A1 WO 2020199073 A1 WO2020199073 A1 WO 2020199073A1 CN 2019080795 W CN2019080795 W CN 2019080795W WO 2020199073 A1 WO2020199073 A1 WO 2020199073A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
service
channel
maximum transmission
transmission times
Prior art date
Application number
PCT/CN2019/080795
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP19923213.3A priority Critical patent/EP3952573A4/en
Priority to US17/593,998 priority patent/US11956824B2/en
Priority to CN201980000574.XA priority patent/CN110169115B/zh
Priority to PCT/CN2019/080795 priority patent/WO2020199073A1/zh
Publication of WO2020199073A1 publication Critical patent/WO2020199073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an access control method, device, user equipment, and base station.
  • the wireless communication system extends the working frequency band to the unlicensed frequency band.
  • NR 5th Generation Mobile Communication Technology
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • NR-U New Radio Access to Unlicensed spectrum
  • NR-U listen-before-talk
  • NR-U listen-before-talk
  • UEs that support NR-U may cause LBT to fail all the time due to fierce competition for unlicensed frequency band resources, thereby reducing the random access success rate of the UE and affecting the performance of the NR-U system. Therefore, in order to improve the performance of the NR-U system, it is necessary to propose a new random access scheme to improve the random access success rate of UEs that support NR-U.
  • the embodiments of the present disclosure provide an access control method, device, user equipment, and base station to improve NR-U-enabled user equipment to perform random access when competition for unlicensed frequency band resources is fierce The success rate of access.
  • an access control method is provided, which is applied to a user equipment that supports access to an unlicensed frequency band of a new air interface, and the method includes:
  • the radio link failure processing is executed, and there is a correspondence between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted.
  • the method further includes:
  • the correspondence between the maximum transmission times of the preamble and the service quality level identifier of the service to be transmitted is determined.
  • the method further includes:
  • the corresponding relationship between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted is parsed from the first system message block.
  • the method further includes:
  • the operation of determining the result of the LBT detection of the channel to be detected is performed.
  • the method further includes:
  • the random access preamble is sent to the base station.
  • an access control method is provided, which is applied to a base station that supports access to an unlicensed frequency band of a new air interface, and the method includes:
  • the first system message block carries the correspondence between the service type and the maximum transmission times of the preamble or the service quality level identifier and the maximum transmission times of the preamble. The corresponding relationship;
  • an access control device which is applied to a user equipment that supports access to an unlicensed frequency band of a new air interface, and the device includes:
  • a channel detection module configured to determine to perform LBT detection on the channel to be detected, and the channel to be detected is an unlicensed channel for sending a random access preamble;
  • a statistics module configured to, when the channel detection module determines that the LBT detection result is a failure, add one to the preamble transmission counter and determine the count value of the preamble counter;
  • the link failure processing module is configured to perform radio link failure processing when the statistics module determines that the count value of the preamble transmission counter reaches the maximum transmission times of the preamble, and the maximum transmission times of the preamble is related to the number of services to be transmitted. There is a corresponding relationship between the business type or the service quality level identifier.
  • the device further includes:
  • the first determining module is configured to determine the correspondence between the maximum transmission times of the preamble and the service type of the service to be transmitted based on the provisions of the communication protocol; or, based on the provisions of the communication protocol, determine the maximum transmission times of the preamble and the Correspondence between the service quality level identifiers of the services to be transmitted.
  • the device further includes:
  • a receiving module configured to receive the first system message block sent by the base station
  • the parsing module is configured to parse the corresponding relationship between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted from the first system message block received by the receiving module.
  • the channel detection module is further configured to perform the operation of determining the result of LBT detection of the channel to be detected when the count value of the preamble transmission counter does not reach the maximum number of transmissions of the preamble.
  • the device further includes:
  • the sending module is configured to send a random access preamble to the base station when the channel detection module determines that the result of the LBT detection is successful.
  • an access control device which is applied to a base station supporting access to an unlicensed frequency band of a new air interface, and the device includes:
  • the second determining module is configured to determine the first system message block based on the supported service type, and the first system message block carries the correspondence relationship or service between the supported service type and the maximum transmission times of the preamble The corresponding relationship between the quality level identifier and the maximum transmission times of the preamble;
  • the broadcasting module is configured to broadcast the first system message block determined by the second determining module.
  • a user equipment including:
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • the count value of the preamble transmission counter reaches the maximum transmission times of the preamble, wireless link failure processing is performed, and there is a correspondence between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted.
  • a base station including:
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • the first system message block carries the correspondence between the service type and the maximum transmission times of the preamble or the service quality level identifier and the maximum transmission times of the preamble. The corresponding relationship;
  • a non-transitory computer-readable storage medium stores computer instructions, and the computer program is used to execute the access control method provided in the first aspect.
  • a non-transitory computer-readable storage medium having computer instructions stored on the storage medium, and the computer program is used to execute the access control method provided in the second aspect above
  • the count value of the preamble transmission counter is added Perform an operation and determine whether the count value of the preamble transmission counter has reached the maximum transmission times of the preamble. If the maximum transmission times of the preamble is reached, the radio link failure (Radio Link Failure, referred to as RLF) processing can be performed.
  • RLF Radio Link Failure
  • the preamble The maximum number of transmissions is determined based on the service type of the service to be transmitted or the Quality of Service Class Identifier (QCI), so that UEs that support NR-U can select the maximum number of preamble transmissions according to different service types
  • the maximum transmission times of the preamble of the delay-insensitive service type can be a relatively large value, and the UE that supports NR-U can perform LBT detection on the channel more times, thereby avoiding the comparison on the unlicensed channel Triggering RLF prematurely under busy conditions leads to random access failure; and the maximum transmission times of the preamble of the delay-sensitive service type can be a relatively small value, and the number of times that a UE that supports NR-U can perform LBT detection on the channel It will be less, so that the UE can choose other ways to access the network as soon as possible when the unlicensed channel is relatively busy, thereby improving the access success rate and the transmission efficiency of service data. Therefore, the technical solution provided by the present disclosure can ensure that a UE supporting
  • Fig. 1A is a flow chart showing an access control method according to an exemplary embodiment.
  • Fig. 1B is a scene diagram showing an access control method according to an exemplary embodiment.
  • Fig. 2 is a flowchart showing another access control method according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing another access control method according to an exemplary embodiment.
  • Fig. 4 is a flowchart showing an access control method according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing an access control device according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing another device for access control according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing an access control device according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a device suitable for access control according to an exemplary embodiment.
  • Fig. 9 is a block diagram showing a device suitable for access control according to an exemplary embodiment.
  • the technical solution provided by the present disclosure is applicable to a communication system supporting NR-U.
  • a communication system based on unlicensed channel access of the new air interface when a UE supporting NR-U accesses the network, it needs to check the channel first, and Perform random access operation when LBT detection succeeds.
  • Fig. 1A is a flow chart showing an access control method according to an exemplary embodiment
  • Fig. 1B is a scene diagram showing an access control method according to an exemplary embodiment
  • the access control method can be applied in On the user equipment, as shown in FIG. 1A, the access control method includes the following steps 110-130:
  • step 110 the result of the LBT detection of the channel to be detected is determined, and the channel to be detected is an unlicensed channel for sending a random access preamble.
  • the LBT detection result can usually be obtained by detecting the signal energy of the channel. For example, when the signal energy value of the channel to be detected is lower than a set threshold, the LBT detection result of the channel to be detected can be determined The result is failure; when the signal energy value is not lower than a set threshold, it can be determined that the result of the LBT detection of the channel to be detected is a success.
  • LBT detection on the channel please refer to the relevant technical solutions on the LBT detection side, which will not be described here.
  • step 120 if the LBT detection result is a failure, the preamble transmission counter is incremented by one and the count value of the preamble transmission counter is determined.
  • the count value of the preamble transmission counter is increased at the same time, and the count value of the preamble transmission counter reaches the maximum transmission of the preamble.
  • the number of times it usually means that the random access process has failed. Therefore, after the preamble transmission counter is incremented due to the failure of the LBT detection, it is necessary to determine whether the count value of the preamble transmission counter has reached the maximum preamble. Number of transfers.
  • step 130 if the count value of the preamble transmission counter reaches the maximum number of preamble transmissions, perform wireless link failure processing.
  • RLF can be triggered and the radio link failure processing operation can be performed, for example, reporting the RLF report to the network side, or trying to access other base stations Wait.
  • the maximum value that can be counted by the preamble transmission counter PREAMBLE_TRANSMISSION_COUNTER is the maximum number of preamble transmissions.
  • the service type may be indicated as a specific service, for example, the service type is a video service, or the service to be transmitted is a normal Internet service.
  • the service type is Ultra Reliable & Low Latency Communication (URLLC for short)
  • URLLC Ultra Reliable & Low Latency Communication
  • the maximum transmission times of the preamble corresponding to the URLLC service can be set to a relatively small value. This can realize that the UE that supports NR-U can perform LBT detection on the channel less frequently, so that the UE can choose other ways to access the network as soon as possible when the unlicensed channel is busy, and improve the access success rate and business Data transmission efficiency.
  • different services require different levels of QCI transmission quality to guarantee, and different QCI quality has different service quality in terms of bandwidth, rate, delay, reliability (data packet loss rate), etc.
  • the corresponding maximum transmission times of the preamble can be set for different QCI levels.
  • the correspondence relationship between the service type or QCI and the maximum transmission times of the preamble may be pre-defined by the communication protocol, so that the user equipment can directly obtain the correspondence relationship based on the communication protocol; in an embodiment The user equipment may also obtain the corresponding relationship through the first system information block (System Information Block1, referred to as SIB1) broadcast by the base station.
  • SIB1 System Information Block1, referred to as SIB1
  • the mobile network is a 5G network and the base station is an evolved base station (eNB) as an example for illustrative description.
  • eNB10 and UE20 are included.
  • ENB10 and UE20 both support NR-U.
  • UE20 When UE20 is preparing for random access, it needs to perform LBT detection on the unlicensed channel used to send the random access preamble, and check the preamble every time the LBT detection result is a failure.
  • the code transmission counter is incremented. When the preamble transmission counter reaches the maximum number of transmissions of the preamble, RLF processing can be performed.
  • the RLF report can be reported to the network side, or access to other base stations, due to the maximum number of transmissions of the preamble Related to the service to be transmitted by the UE 20, it can be ensured that the UE 20 supporting NR-U selects the maximum number of transmissions of the preamble according to different service types, thereby improving the success rate of random access.
  • the maximum transmission times of the code is determined based on the service type or QCI of the service to be transmitted, so that the UE that supports NR-U can select the maximum transmission times of the preamble according to different service types, for example, the preamble of the delay-insensitive service type
  • the maximum number of transmissions can be a relatively large value, which can avoid premature triggering of RLF and cause random access failure when the unlicensed channel is relatively busy; and the maximum number of transmissions of the preamble of the delay-sensitive service type can be one
  • a relatively small value can enable the UE to select other methods to access the network as soon as possible when the unlicensed channel is relatively busy, thereby improving the access success rate and the transmission efficiency of service data.
  • Fig. 2 is a flow chart showing another access control method according to an exemplary embodiment; this embodiment uses the above-mentioned method provided in the embodiments of the present disclosure to determine how the user equipment performs based on the service type or QCI of the service to be transmitted NR's unlicensed spectrum access is taken as an example to illustrate, as shown in Figure 2, it includes the following steps:
  • step 210 the result of LBT detection of the channel to be detected is determined, and the channel to be detected is an unlicensed channel used to send a random access preamble, and step 220 and step 230 are performed.
  • step 220 if the LBT detection result is successful, the random access preamble is sent.
  • the user equipment when it is determined that the result of the LBT detection is successful, the user equipment is instructed to send MSG1 on the channel to be detected and carry a random access preamble in it to complete random access.
  • step 230 if the LBT detection result is a failure, the preamble transmission counter is incremented by one and the count value of the preamble transmission counter is determined.
  • the count value of the preamble transmission counter is increased at the same time, and the count value of the preamble transmission counter reaches the maximum number of transmissions of the preamble.
  • the preamble transmission counter is incremented because the result of LBT detection is failure, it is necessary to determine whether the count value of the preamble transmission counter has reached the maximum transmission of the preamble. frequency.
  • step 240 if the count value of the preamble transmission counter reaches the maximum transmission times of the preamble, the wireless link failure processing is performed.
  • the specific operation of performing RLF processing can refer to the operation of triggering RLF in the related technology, for example, it can send an RLF report to the network side, or try to access another base station.
  • the user equipment may obtain the correspondence between the maximum number of transmissions of the preamble and the service type or service quality level identifier of the service to be transmitted in two ways:
  • Method 1 Determine the correspondence between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted according to the provisions of the communication protocol.
  • Manner 2 According to the dynamic configuration of the base station, the corresponding relationship between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted is obtained.
  • the base station can dynamically configure the above-mentioned corresponding relationship according to the service types supported by itself. For example, base station 1 only supports service 1, then SIB1 The maximum transmission times of the preamble corresponding to the broadcast service 1, and the base station 2 supports the service 1 and the service 2, the maximum transmission times of the preamble corresponding to the service 1 and the service 2 can be broadcast through the SIB1.
  • the corresponding relationship broadcast by the base station can usually be pre-defined through a communication protocol.
  • the preamble transmission counter is incremented by one, and the preamble transmission counter of the channel to be detected.
  • the RLF is triggered when the count value exceeds the maximum number of preamble transmissions counted by the preamble transmission counter, and since the UE can select the maximum number of preamble transmissions according to different services, the success rate of random access can be improved.
  • Fig. 3 is a flow chart showing another access control method according to an exemplary embodiment; this embodiment uses the above-mentioned method provided in the embodiments of the present disclosure, taking how user equipment performs NR-based unlicensed spectrum access as an example
  • An exemplary description, as shown in Figure 3, includes the following steps:
  • step 310 the result of the LBT detection of the channel to be detected is determined, and the channel to be detected is an unlicensed channel for sending a random access preamble.
  • step 320 if the LBT detection result is a failure, the preamble transmission counter is incremented by one and the count value of the preamble transmission counter is determined.
  • step 330 it is determined whether the count value of the preamble transmission counter reaches the maximum transmission times of the preamble, if the maximum transmission times of the preamble is reached, step 340 is performed, and if the maximum transmission times of the preamble is not reached, step 310 is performed.
  • step 340 wireless link failure processing is performed.
  • RLF can be triggered, and radio link failure processing operations can be performed, for example, reporting the base station RLF report, or attempting to access Other base stations, etc.
  • the LBT detection of the channel to be detected is continued.
  • the service type may also be the specific type of the service to be transmitted by the user equipment, for example, the service to be transmitted is a video service, or the service to be transmitted is a normal Internet service, and so on.
  • the QCI level of each service can be specified by the communication protocol.
  • the user equipment can select the maximum transmission times of the preamble based on the service type of the service to be transmitted, so as to improve the access success rate of the user equipment supporting NR-U performing random access when the competition for unlicensed frequency band resources is fierce.
  • the UE chooses other ways to access the network as soon as possible when the unlicensed channel is busy, or when the service type of the service to be transmitted is delay-insensitive In the case of a type of service, the UE triggers RLF prematurely when the unlicensed channel is relatively busy, causing random access failure.
  • Fig. 4 is a flowchart showing an access control method according to an exemplary embodiment; the access control method can be applied to a base station that supports access to an unlicensed frequency band of a new air interface. This embodiment is illustrated in conjunction with Fig. 1B sexual description, as shown in Figure 4, the access control method includes the following steps 410-420:
  • a first system message block is determined based on the supported service type.
  • the first system message block carries the correspondence between the service type and the maximum number of preamble transmissions or the service quality level identifier and the maximum transmission of the preamble. Correspondence between times.
  • the base station can dynamically configure the above-mentioned corresponding relationship according to the service types supported by itself. For example, base station 1 only supports service 1, and the corresponding relationship can be set in SIB1. The maximum transmission times of the preamble corresponding to service 1 is carried in the SIB, and the base station 2 supports service 1 and service 2, and the maximum transmission times of the preamble corresponding to service 1 and service 2 can be carried in SIB1. In another embodiment, the base station may also directly carry the QCI of the supported service and the corresponding maximum transmission times of the preamble in the SIB1 based on the QCI corresponding to the supported service type.
  • step 420 the first system message block is broadcast.
  • the mobile network is a 5G network and the base station is an evolved base station (eNB) as an example for illustrative description.
  • eNB10 and UE20 are included.
  • ENB10 and UE20 both support NR-U, and eNB10 can broadcast the correspondence between the service type supported by SIB1 and the maximum transmission times of the preamble or the correspondence between the service quality level identifier and the maximum transmission times of the preamble through SIB1. This allows the UE 20 preparing to access the eNB 10 to select the maximum number of transmissions of the preamble based on the service type of the service to be transmitted when preparing for random access, thereby increasing the success rate of random access.
  • the base station can broadcast the maximum transmission times of the preamble corresponding to the supported service type through SIB1, so as to dynamically configure the maximum transmission times of the preamble corresponding to the service type or service quality level identifier to the UE. Helps improve the success rate of U E random access.
  • Fig. 5 is a block diagram showing an access control device according to an exemplary embodiment, which is applied to a user equipment supporting unlicensed frequency band access of a new air interface. As shown in Fig. 5, the access control device includes:
  • the channel detection module 51 is configured to determine the result of LBT detection of the channel to be detected, and the channel to be detected is an unlicensed channel used to send a random access preamble;
  • the statistics module 52 is configured to, when the channel detection module 51 determines that the LBT detection result is a failure, add one to the preamble transmission counter and determine the count value of the preamble counter;
  • the link failure processing module 53 is configured to perform wireless link failure processing when the statistics module 52 determines that the count value of the preamble transmission counter reaches the maximum transmission times of the preamble, the maximum transmission times of the preamble and the service type or service of the service to be transmitted There is a corresponding relationship between the quality level marks.
  • Fig. 6 is a block diagram showing another access control device according to an exemplary embodiment. As shown in Fig. 6, on the basis of the embodiment shown in Fig. 5, in an embodiment, the device further includes:
  • the first determining module 54 is configured to determine the correspondence between the maximum transmission times of the preamble and the service type of the service to be transmitted based on the provisions of the communication protocol; or, based on the provisions of the communication protocol, determine the maximum transmission times of the preamble and the service to be transmitted Correspondence between the service quality level identifiers.
  • the device further includes:
  • the receiving module 55 is configured to receive the first system message block sent by the base station;
  • the parsing module 56 is configured to parse the corresponding relationship between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted from the first system message block received by the receiving module 55.
  • the channel detection module 51 is further configured to perform an operation of determining the result of LBT detection of the channel to be detected when the count value of the preamble transmission counter does not reach the maximum number of transmissions of the preamble.
  • the device further includes:
  • the sending module 57 is configured to send a random access preamble to the base station when the channel detection module 51 determines that the result of the LBT detection is successful.
  • Fig. 7 is a block diagram showing an access control device according to an exemplary embodiment, which is applied to a user equipment supporting unlicensed frequency band access of a new air interface. As shown in Fig. 7, the access control device includes:
  • the second determining module 71 is configured to determine the first system message block based on the supported service type, and the first system message block carries the correspondence between the supported service type and the maximum number of transmissions of the preamble or the quality of service Correspondence between the level identification and the maximum transmission times of the preamble;
  • the broadcasting module 72 is configured to broadcast the first system message block determined by the second determining module 71.
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative, and the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one unit. Locally, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the present disclosure. Those of ordinary skill in the art can understand and implement it without creative work.
  • the present disclosure also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and the computer program is used to execute any one of the access control methods in FIGS. 1A to 3.
  • the present disclosure also provides a non-temporary computer-readable storage medium, on which a computer program is stored, and the computer program is used to execute the above-mentioned access control method in FIG. 4.
  • the present disclosure also provides a user equipment, including:
  • a memory for storing processor executable instructions
  • the processor is configured as:
  • the wireless link failure processing is performed, and there is a corresponding relationship between the maximum transmission times of the preamble and the service type or service quality level identifier of the service to be transmitted.
  • Fig. 8 is a schematic structural diagram showing an access control device according to an exemplary embodiment.
  • an access control device 800 is shown according to an exemplary embodiment.
  • the device 800 may be a computer, a mobile phone, a digital broadcasting terminal, a messaging device, a game console, a tablet device, or a medical device. Fitness equipment, personal digital assistants and other terminals.
  • the device 800 may include one or more of the following components: a processing component 801, a memory 802, a power supply component 803, a multimedia component 804, an audio component 805, an input/output (I/O) interface 806, a sensor component 807, And the communication component 808.
  • a processing component 801 a memory 802, a power supply component 803, a multimedia component 804, an audio component 805, an input/output (I/O) interface 806, a sensor component 807, And the communication component 808.
  • the processing component 801 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 801 may include one or more processors 808 to execute instructions to complete all or part of the steps of the above method.
  • the processing component 801 may include one or more modules to facilitate the interaction between the processing component 801 and other components.
  • the processing component 801 may include a multimedia module to facilitate the interaction between the multimedia component 804 and the processing component 801.
  • the memory 802 is configured to store various types of data to support operations on the device 800. Examples of these data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 802 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 803 provides power for various components of the device 800.
  • the power supply component 803 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 804 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 804 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 805 is configured to output and/or input audio signals.
  • the audio component 805 includes a microphone (MIC).
  • the microphone When the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 802 or sent via the communication component 808.
  • the audio component 805 further includes a speaker for outputting audio signals.
  • the I/O interface 806 provides an interface between the processing component 801 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 807 includes one or more sensors for providing the device 800 with various aspects of status assessment.
  • the sensor component 807 can detect the open/close state of the device 800 and the relative positioning of components, such as the display and keypad of the device 800.
  • the sensor component 807 can also detect the position change of the device 800 or a component of the device 800. The presence or absence of contact with the device 800, the orientation or acceleration/deceleration of the device 800, and the temperature change of the device 800.
  • the sensor assembly 807 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 807 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 807 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 808 is configured to facilitate wired or wireless communication between the apparatus 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 808 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 808 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to execute the access control method performed on the user equipment side.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable Implemented by a gate array
  • controller microcontroller, microprocessor, or other electronic components, and used to execute the access control method performed on the user equipment side.
  • non-transitory computer-readable storage medium including instructions, such as the memory 802 including instructions, which may be executed by the processor 808 of the device 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 9 is a block diagram showing a device suitable for access control according to an exemplary embodiment.
  • the apparatus 900 may be provided as a base station. 9, the device 900 includes a processing component 922, a wireless transmitting/receiving component 924, an antenna component 926, and a signal processing part specific to a wireless interface.
  • the processing component 922 may further include one or more processors.
  • One of the processors in the processing component 922 may be configured to:
  • the first system message block carries the correspondence between the service type and the maximum transmission times of the preamble or the correspondence between the service quality level identifier and the maximum transmission times of the preamble. relationship;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种接入控制方法、装置、用户设备及基站。方法包括:确定待检测信道进行LBT检测的结果,所述待检测信道为用于发送随机接入前导码的非授权信道;若所述LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定所述前导码计数器的计数值;若所述前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。本公开技术方案可以确保支持新空口的非授权频段接入的UE在进行随机接入时,基于待传输业务的业务类型选择一个合适的前导码最大传输次数,有效提高支持新空口的非授权频段接入的UE的随机接入成功率。

Description

接入控制方法、装置、用户设备及基站 技术领域
本公开涉及通信技术领域,尤其涉及一种接入控制方法、装置、用户设备及基站。
背景技术
随着无线通信技术的飞速发展,授权频谱上的频谱资源大多都被各种通信系统占用,因此为了扩大频率资源,无线通信系统将工作频段扩展到了非授权频段。
为了将第五代移动通信技术(5th Generation,简称为5G)新空口(New Radio,简称为NR)技术扩展到非授权频段上,第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)通过了基于NR的非授权频谱接入的研究,以便NR能够满足非授权频段的法规要求。基于研究结论,支持新空口的非授权频段接入(New Radio Access to Unlicensed spectrum,简称为NR-U)的用户设备在接入网络时需要遵循先听后说(Listen-Before-Talk,简称为LBT)的信道竞争接入机制。支持NR-U的UE可能会因为非授权频段资源竞争激烈而导致LBT一直失败,进而降低UE的随机接入成功率,影响NR-U系统的性能。因此为了提高NR-U系统的性能,需要提出一种新的随机接入方案,来提高支持NR-U的UE的随机接入成功率。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种接入控制方法、装置、用户设备及基站,用以提高支持NR-U的用户设备在非授权频段资源竞争激烈时执行随机接入的接入成功率。
根据本公开实施例的第一方面,提供一种接入控制方法,应用在支持新空口的非授权频段接入的用户设备上,所述方法包括:
确定待检测信道进行LBT检测的结果,所述待检测信道为用于发送随机接入前导码的非授权信道;
若所述LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定所述前导码传输计数器的计数值;
若所述前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失 败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
可选地,方法还包括:
基于通信协议规定,确定所述前导码最大传输次数与待传输业务的业务类型之间的对应关系;或者,
基于通信协议规定,确定所述前导码最大传输次数与待传输业务的服务质量等级标识之间的对应关系。
可选地,方法还包括:
接收基站发送的第一系统消息块;
从所述第一系统消息块中解析出所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在的对应关系。
可选地,方法还包括:
若所述前导码传输计数器的计数值没有达到前导码最大传输次数,执行所述确定待检测信道进行LBT检测的结果的操作。
可选地,方法还包括:
若所述LBT检测的结果为成功,向基站发送随机接入前导码。
根据本公开实施例的第二方面,提供一种接入控制方法,应用在支持新空口的非授权频段接入的基站上,所述方法包括:
基于所支持的业务类型,确定第一系统消息块,所述第一系统消息块中携带有业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
广播所述第一系统消息块。
根据本公开实施例的第三方面,提供一种接入控制装置,应用在支持新空口的非授权频段接入的用户设备上,所述装置包括:
信道检测模块,被配置为确定对所述待检测信道进行LBT检测,所述待检测信道为用于发送随机接入前导码的非授权信道;
统计模块,被配置为在所述信道检测模块确定所述LBT检测的结果为失败时,对前导码传输计数器进行加一操作并且确定所述前导码计数器的计数值;
链接失败处理模块,被配置为在所述统计模块确定所述前导码传输计数器的计数值达到前导码最大传输次数时,执行无线链路失败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
可选地,装置还包括:
第一确定模块,被配置为基于通信协议规定,确定所述前导码最大传输次数与待传输业务的业务类型之间的对应关系;或者,基于通信协议规定,确定所述前导码最大传输次数与待传输业务的服务质量等级标识之间的对应关系。
可选地,装置还包括:
接收模块,被配置为接收基站发送的第一系统消息块;
解析模块,被配置为从所述接收模块接收到的所述第一系统消息块中解析出所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在的对应关系。
可选地,信道检测模块还被配置为在所述前导码传输计数器的计数值没有达到前导码最大传输次数时,执行所述确定待检测信道进行LBT检测的结果的操作。
可选地,装置还包括:
发送模块,被配置为在所述信道检测模块确定所述LBT检测的结果为成功时,向基站发送随机接入前导码。
根据本公开实施例的第四方面,提供一种接入控制装置,应用在支持新空口的非授权频段接入的基站上,所述装置包括:
第二确定模块,被配置为基于所支持的业务类型,确定第一系统消息块,所述第一系统消息块中携带有所支持的业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
广播模块,被配置为广播所述第二确定模块确定的所述第一系统消息块。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定待检测信道进行LBT检测的结果,所述待检测信道为用于发送随机接入前导码的非授权信道;
若所述LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定所述前导码传输计数器的计数值;
若所述前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
基于所支持的业务类型,确定第一系统消息块,所述第一系统消息块中携带有业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
广播所述第一系统消息块。
根据本公开实施例的第七方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述计算机程序用于执行上述第一方面所提供的接入控制方法。
根据本公开实施例的第八方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述计算机程序用于执行上述第二方面所提供的接入控制方法
本公开的实施例提供的技术方案可以包括以下有益效果:
在支持NR-U的UE进行随机接入时,需要对用于发送随机接入前导码的非授权信道进行LBT检测,在LBT检测的结果为失败时,对前导码传输计数器的计数值进行加一操作并确定前导码传输计数器的计数值是否已达到前导码最大传输次数,若达到前导码最大传输次数,则可执行无线链路失败(Radio Link Failure,简称为RLF)处理,其中,前导码最大传输次数基于待传输业务的业务类型或者服务质量等级标识(Quality of Service Class Identifier,简称为QCI)确定,由此可以实现支持NR-U的UE可根据不同的业务类型选择前导码最大传输次数,例如,时延不敏感的业务类型的前导码最大传输次数可以为一个比较大的值,支持NR-U的UE可以对信道进行LBT检测的次数会多一些,进而可以避免在非授权信道比较繁忙的情况下过早地触发RLF导致随机接入失败;而时延敏感的业务类型的前导码最大传输次数可以为一个比较小的值,支持NR-U的UE可以对信道进行LBT检测的次数会少一些,进而可以使得UE在非授权信道比较繁忙的情况下尽早地选择其它方式接入网络,提高接入成功率和业务数据的传输效率。因此通过本公开提供的技术方案,可以确保支持NR-U的UE根据不同的业务类型选择前导码最大传输次数,进而提高随机接入的成功率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种接入控制方法的流程图。
图1B是根据一示例性实施例示出的一种接入控制方法的场景图。
图2是根据一示例性实施例示出的另一种接入控制方法的流程图。
图3是根据一示例性实施例示出的另一种接入控制方法的流程图。
图4是根据一示例性实施例示出的一种接入控制方法的流程图。
图5是根据一示例性实施例示出的一种接入控制装置的框图。
图6是根据一示例性实施例示出的另一种接入控制装置的框图。
图7是根据一示例性实施例示出的一种接入控制装置的框图。
图8是根据一示例性实施例示出的一种适用于接入控制装置的框图。
图9是根据一示例性实施例示出的一种适用于接入控制装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本公开提供的技术方案适用于支持NR-U的通信系统,在基于新空口非授权频道接入的通信系统中,支持NR-U的UE在接入网络时,需要先信道检侧,并在LBT检测成功时执行随机接入操作。
图1A是根据一示例性实施例示出的一种接入控制方法的流程图,图1B是根据一示例性实施例示出的一种接入控制方法的场景图;该接入控制方法可以应用在用户设备上,如图1A所示,该接入控制方法包括以下步骤110-130:
在步骤110中,确定待检测信道进行LBT检测的结果,待检测信道为用于发送随机接入前导码的非授权信道。
在一实施例中,通常可通过检测信道的信号能量得到LBT检测的结果,例如,在待检测信道的信号能量值低于一个设定的门限值时,可确定待检测信道的LBT检测 的结果为失败;在信号能量值不低于一个设定的门限值时,可确定待检测信道的LBT检测的结果为成功。对信道进行LBT检测的实现方式可参见LBT检侧的相关技术方案,这里不再描述。
在步骤120中,若LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定前导码传输计数器的计数值。
本公开实施例中,在由于LBT检测的结果为失败而导致不能发送随机接入前导码时,会同时增加前导码传输计数器的计数值,而在前导码传输计数器的计数值达到前导码最大传输次数时,则通常意味着此次随机接入过程失败,因此在由于LBT检测的结果为失败而对前导码传输计数器进行加一操作后需要确定前导码传输计数器的计数值是否已达到前导码最大传输次数。
在步骤130中,若前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理。
在一实施例中,如果前导码传输计数器的计数值达到前导码最大传输次数,则可触发RLF,并执行无线链路失败处理操作,例如,向网络侧上报RLF报告,或者尝试接入其他基站等。
在一实施例中,前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
在一实施例中,前导码传输计数器PREAMBLE_TRANSMISSION_COUNTER所可计数的最大值为前导码最大传输次数,本公开实施例中前导码最大传输次数与业务类型或QCI存在对应关系。其中,业务类型可以指示为具体的业务,例如,业务类型为视频业务,或者待传输业务为普通的上网服务等。
在一实施例中,不同的业务类型,对带宽、速率、时延、可靠性等方面的要求不同,例如,业务类型为超高可靠与低时延通信(Ultra Reliable&Low Latency Communication,简称为URLLC)的业务,对网络的时延要求非常高,则为了提高URLLC业务的业务数据的传输效率,避免时延过长,可将URLLC业务对应的前导码最大传输次数设置为一个比较小的值,由此可实现支持NR-U的UE可以对信道进行LBT检测的次数会少一些,进而实现UE可在非授权信道比较繁忙的情况下尽早地选择其它方式接入网络,提高接入成功率和业务数据的传输效率。
在一实施例中,不同的业务需要不同等级的QCI传输质量进行保证,而不同的QCI质量对带宽、速率、时延、可靠性(数据丢包率)等方面的服务质量不相同,因此本公开技术方案中可以针对不同的QCI级别设置对应的前导码最大传输次数。
在一实施例中,业务类型或QCI与前导码最大传输次数之间的对应关系可以由通信协议预先规定好,由此用户设备可直接基于通信协议规定获取到该对应关系;在一实施例中,用户设备还可通过基站的广播的第一系统消息块(System Information Block1,简称为SIB1)获取到该对应关系。
在一示例性场景中,如图1B所示,以移动网络为5G网络并且基站为演进型基站(eNB)为例进行示例性说明,在图1B所示的场景中,包括eNB10、UE20,其中,eNB10和UE20均支持NR-U,UE20在准备进行随机接入时,需要对用于发送随机接入前导码的非授权信道进行LBT检测,并在每次LBT检测的结果为失败时对前导码传输计数器进行加一操作,前导码传输计数器达到前导码传输最大传输次数时,则可执行RLF处理,例如,可向网络侧上报RLF报告,或者接入其他的基站,由于前导码最大传输次数与UE20的待传输业务相关,因此可以确保支持NR-U的UE20根据不同的业务类型选择前导码最大传输次数,进而提高随机接入的成功率。
本实施例中,通过上述步骤110-步骤130,在支持NR-U的UE进行随机接入时,需要对用于发送随机接入前导码的非授权信道进行LBT检测,在LBT检测的结果为失败时,对前导码传输计数器的计数值进行加一操作并确定前导码传输计数器的计数值是否已达到前导码最大传输次数,若达到前导码最大传输次数,则可执行RLF处理,其中,前导码最大传输次数基于待传输业务的业务类型或者QCI确定,由此可以实现支持NR-U的UE可根据不同的业务类型选择前导码最大传输次数,例如,时延不敏感的业务类型的前导码最大传输次数可以为一个比较大的值,进而可以避免在非授权信道比较繁忙的情况下过早地触发RLF导致随机接入失败;而时延敏感的业务类型的前导码最大传输次数可以为一个比较小的值,进而可以使得UE在非授权信道比较繁忙的情况下尽早地选择其它方式接入网络,提高接入成功率和业务数据的传输效率。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2是根据一示例性实施例示出的另一种接入控制方法的流程图;本实施例利用本公开实施例提供的上述方法,以用户设备如何基于待传输业务的业务类型或QCI执行基于NR的非授权频谱接入为例进行示例性说明,如图2所示,包括如下步骤:
在步骤210中,确定待检测信道进行LBT检测的结果,待检测信道为用于发送随机接入前导码的非授权信道,执行步骤220和步骤230。
在步骤220中,若LBT检测的结果为成功,发送随机接入前导码。
在一实施例中,在确定LBT检测的结果为成功时,指示用户设备可以在待检 测信道上发送MSG1,并在其中携带随机接入前导码,以便完成随机接入。
在步骤230中,若LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定前导码传输计数器的计数值。
在一实施例中,在由于LBT检测的结果为失败而导致不能发送随机接入前导码时,会同时增加前导码传输计数器的计数值,在前导码传输计数器的计数值达到前导码最大传输次数时,则通常意味着此次随机接入过程失败,因此在由于LBT检测的结果为失败而对前导码传输计数器进行加一操作后需要确定前导码传输计数器的计数值是否已达到前导码最大传输次数。
在步骤240中,若前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理。
在一实施例中,执行RLF处理的具体操作可以参见相关技术中触发RLF的操作,如可以向网络侧发送RLF报告,或者尝试接入其他基站。
在一实施例中,前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
在一实施例中,用户设备可以通过两种方式获取前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间的对应关系:
方式一:根据通信协议规定,确定前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间的对应关系。
方式二:根据基站的动态配置,获取前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间的对应关系。
在一实施例中,由于不同的基站所支持的业务类型可能不相同,因此基站可以根据自己所支持的业务类型来向动态地配置上述对应关系,比如基站1只支持业务1,则可通过SIB1广播业务1对应的前导码最大传输次数,而基站2支持业务1和业务2,则可通过SIB1广播业务1和业务2分别对应的前导码最大传输次数。其中,基站所广播的对应关系通常可通过通信协议预先规定好。
本实施例中,用户设备在进行随机接入时,通过在确定待检测信道进行LBT检测的结果为失败后,对前导码传输计数器进行加一操作,进而可在待检测信道的前导码传输计数器的计数值超过前导码传输计数器所能计数的前导码最大传输次数时触发RLF,并且由于UE可根据不同的业务选择前导码最大传输次数,因此可提高随机接入的成功率。
图3是根据一示例性实施例示出的另一种接入控制方法的流程图;本实施例利 用本公开实施例提供的上述方法,以用户设备如何执行基于NR的非授权频谱接入为例进行示例性说明,如图3所示,包括如下步骤:
在步骤310中,确定待检测信道进行LBT检测的结果,待检测信道为用于发送随机接入前导码的非授权信道。
在步骤320中,若LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定前导码传输计数器的计数值。
在步骤330中,确定前导码传输计数器的计数值是否达到前导码最大传输次数,若达到前导码最大传输次数,执行步骤340,若没有达到前导码最大传输次数,执行步骤310。
在步骤340中,执行无线链路失败处理。
在一实施例中,如果UE执行的前导码传输计数器的计数值已达到前导码最大传输次数,则可触发RLF,并执行无线链路失败处理操作,例如,上报基站RLF报告,或者尝试接入其他基站等。
在一实施例中,如果前导码传输计数器没有达到前导码最大传输次数,则继续对待检测信道进行LBT检测。
在一实施例中,前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
在一实施例中,业务类型还可以为用户设备的待传输业务的具体类型,例如,待传输业务为视频业务,或者待传输业务为普通的上网服务,等等。每一种业务的QCI等级可以由通信协议规定。
本实施例中,用户设备可基于待传输业务的业务类型,选择前导码最大传输次数,用以提高支持NR-U的用户设备在非授权频段资源竞争激烈时执行随机接入的接入成功率,进而避免在待传输业务的业务类型为时延敏感型业务时,UE在非授权信道比较繁忙的情况下尽早地选择其它方式接入网络,或者在待传输业务的业务类型为时延不敏感型业务时,UE在非授权信道比较繁忙的情况下过早地触发RLF导致随机接入失败。
图4是根据一示例性实施例示出的一种接入控制方法的流程图;该接入控制方法可以应用在支持新空口的非授权频段接入的基站上,本实施例结合图1B进行示例性说明,如图4所示,该接入控制方法包括以下步骤410-420:
在步骤410中,基于所支持的业务类型,确定第一系统消息块,第一系统消息块中携带有业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前 导码最大传输次数之间的对应关系。
在一实施例中,由于不同的基站所支持的业务类型可能不相同,因此基站可以根据自己所支持的业务类型来向动态地配置上述对应关系,比如基站1只支持业务1,则可在SIB1中携带业务1所对应的前导码最大传输次数,而基站2支持业务1和业务2,则可在SIB1中携带业务1和业务2分别对应的前导码最大传输次数。在另一实施例中,基站还可基于所支持的业务类型对应的QCI,直接在SIB1中携带所支持的业务的QCI以及对应的前导码最大传输次数。
在步骤420中,广播第一系统消息块。
在一示例性场景中,如图1B所示,以移动网络为5G网络并且基站为演进型基站(eNB)为例进行示例性说明,在图1B所示的场景中,包括eNB10、UE20,其中,eNB10和UE20均支持NR-U,eNB10可通过SIB1广播所支持业务的业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系,由此可以使得准备接入eNB10的UE20在准备进行随机接入时,基于待传输业务的业务类型选择前导码最大传输次数,进而提高随机接入的成功率。
本实施例中,通过上述步骤410-420,基站可通过SIB1广播所支持业务类型对应的前导码最大传输次数,实现向UE动态配置业务类型或服务质量等级标识对应的前导码最大传输次数,有助于提高U E随机接入的成功率。
图5是根据一示例性实施例示出的一种接入控制装置的框图,应用在支持新空口的非授权频段接入的用户设备上,如图5所示,接入控制装置包括:
信道检测模块51,被配置为确定待检测信道进行LBT检测的结果,待检测信道为用于发送随机接入前导码的非授权信道;
统计模块52,被配置为在信道检测模块51确定LBT检测的结果为失败时,对前导码传输计数器进行加一操作并且确定前导码计数器的计数值;
链接失败处理模块53,被配置为在统计模块52确定前导码传输计数器的计数值达到前导码最大传输次数时,执行无线链路失败处理,前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
图6是根据一示例性实施例示出的另一种接入控制装置的框图,如图6所示,在上述图5所示实施例的基础上,在一实施例中,装置还包括:
第一确定模块54,被配置为基于通信协议规定,确定前导码最大传输次数与待传输业务的业务类型之间的对应关系;或者,基于通信协议规定,确定前导码最大传输次数与待传输业务的服务质量等级标识之间的对应关系。
可选地,装置还包括:
接收模块55,被配置为接收基站发送的第一系统消息块;
解析模块56,被配置为从接收模块55接收到的第一系统消息块中解析出前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在的对应关系。
可选地,信道检测模块51还被配置为在前导码传输计数器的计数值没有达到前导码最大传输次数时,执行确定待检测信道进行LBT检测的结果的操作。
可选地,装置还包括:
发送模块57,被配置为在信道检测模块51确定LBT检测的结果为成功时,向基站发送随机接入前导码。
图7是根据一示例性实施例示出的一种接入控制装置的框图,应用在支持新空口的非授权频段接入的用户设备上,如图7所示,接入控制装置包括:
第二确定模块71,被配置为基于所支持的业务类型,确定第一系统消息块,第一系统消息块中携带有所支持的业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
广播模块72,被配置为广播第二确定模块71确定的第一系统消息块。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提供了一种非临时计算机可读存储介质,存储介质上存储有计算机程序,计算机程序用于执行上述图1A至图3任一的接入控制方法。
本公开还提供了一种非临时计算机可读存储介质,存储介质上存储有计算机程序,计算机程序用于执行上述图4的接入控制方法。
本公开还提供了一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
确定待检测信道进行LBT检测的结果,待检测信道为用于发送随机接入前导码的非授权信道;
若LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定前导码计数器的计数值;
若前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理,前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
图8是根据一示例性实施例示出的一种接入控制装置的结构示意图。如图8所示,根据一示例性实施例示出的一种接入控制装置800,该装置800可以是计算机,移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图8,装置800可以包括以下一个或多个组件:处理组件801,存储器802,电源组件803,多媒体组件804,音频组件805,输入/输出(I/O)的接口806,传感器组件807,以及通信组件808。
处理组件801通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件801可以包括一个或多个处理器808来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件801可以包括一个或多个模块,便于处理组件801和其它组件之间的交互。例如,处理组件801可以包括多媒体模块,以方便多媒体组件804和处理组件801之间的交互。
存储器802被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器802可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件803为装置800的各种组件提供电力。电源组件803可以包括电源管理系统,一个或多个电源,及其它与为装置800生成、管理和分配电力相关联的组件。
多媒体组件804包括在装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触 摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件804包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件805被配置为输出和/或输入音频信号。例如,音频组件805包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器802或经由通信组件808发送。在一些实施例中,音频组件805还包括一个扬声器,用于输出音频信号。
I/O接口806为处理组件801和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件807包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件807可以检测到装置800的打开/关闭状态,组件的相对定位,例如组件为装置800的显示器和小键盘,传感器组件807还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件807可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件807还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件807还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件808被配置为便于装置800和其它设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件808经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件808还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述用户设备侧所执行的接入控制方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器802,上述指令可由装置800的处理器808执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
图9是根据一示例性实施例示出的一种适用于接入控制装置的框图。装置900可以被提供为一基站。参照图9,装置900包括处理组件922、无线发射/接收组件924、天线组件926、以及无线接口特有的信号处理部分,处理组件922可进一步包括一个或多个处理器。
处理组件922中的其中一个处理器可以被配置为:
基于所支持的业务类型,确定第一系统消息块,第一系统消息块中携带有业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
广播第一系统消息块。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本请求旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种接入控制方法,应用在支持新空口的非授权频段接入的用户设备上,其特征在于,所述方法包括:
    确定待检测信道进行LBT检测的结果,所述待检测信道为用于发送随机接入前导码的非授权信道;
    若所述LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定所述前导码计数器的计数值;
    若所述前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于通信协议规定,确定所述前导码最大传输次数与待传输业务的业务类型之间的对应关系;或者,
    基于通信协议规定,确定所述前导码最大传输次数与待传输业务的服务质量等级标识之间的对应关系。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站发送的第一系统消息块;
    从所述第一系统消息块中解析出所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在的对应关系。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述前导码传输计数器的计数值没有达到前导码最大传输次数,执行所述确定待检测信道进行LBT检测的结果的操作。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述LBT检测的结果为成功,向基站发送随机接入前导码。
  6. 一种接入控制方法,应用在支持新空口的非授权频段接入的基站上,其特征在于,所述方法包括:
    基于所支持的业务类型,确定第一系统消息块,所述第一系统消息块中携带有业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
    广播所述第一系统消息块。
  7. 一种接入控制装置,应用在支持新空口的非授权频段接入的用户设备上,其特 征在于,所述装置包括:
    信道检测模块,被配置为确定待检测信道进行LBT检测的结果,所述待检测信道为用于发送随机接入前导码的非授权信道;
    统计模块,被配置为在所述信道检测模块确定所述LBT检测的结果为失败时,对前导码传输计数器进行加一操作并且确定所述前导码计数器的计数值;
    链接失败处理模块,被配置为在所述统计模块确定所述前导码传输计数器的计数值达到前导码最大传输次数时,执行无线链路失败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第一确定模块,被配置为基于通信协议规定,确定所述前导码最大传输次数与待传输业务的业务类型之间的对应关系;或者,基于通信协议规定,确定所述前导码最大传输次数与待传输业务的服务质量等级标识之间的对应关系。
  9. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    接收模块,被配置为接收基站发送的第一系统消息块;
    解析模块,被配置为从所述接收模块接收到的所述第一系统消息块中解析出所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在的对应关系。
  10. 根据权利要求7所述的装置,其特征在于,所述信道检测模块还被配置为在所述前导码传输计数器的计数值没有达到前导码最大传输次数时,执行所述确定待检测信道进行LBT检测的结果的操作。
  11. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    发送模块,被配置为在所述信道检测模块确定所述LBT检测的结果为成功时,向基站发送随机接入前导码。
  12. 一种接入控制装置,应用在支持新空口的非授权频段接入的基站上,其特征在于,所述装置包括:
    第二确定模块,被配置为基于所支持的业务类型,确定第一系统消息块,所述第一系统消息块中携带有所支持的业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
    广播模块,被配置为广播所述第二确定模块确定的所述第一系统消息块。
  13. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定待检测信道进行LBT检测的结果,所述待检测信道为用于发送随机接入前导码的非授权信道;
    若所述LBT检测的结果为失败,对前导码传输计数器进行加一操作并且确定所述前导码计数器的计数值;
    若所述前导码传输计数器的计数值达到前导码最大传输次数,执行无线链路失败处理,所述前导码最大传输次数与待传输业务的业务类型或者服务质量等级标识之间存在对应关系。
  14. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    基于所支持的业务类型,确定第一系统消息块,所述第一系统消息块中携带有业务类型与前导码最大传输次数之间的对应关系或服务质量等级标识与前导码最大传输次数之间的对应关系;
    广播所述第一系统消息块。
  15. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述计算机程序用于执行上述权利要求1-5任一所述的接入控制方法。
  16. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述计算机程序用于执行上述权利要求6所述的接入控制方法。
PCT/CN2019/080795 2019-04-01 2019-04-01 接入控制方法、装置、用户设备及基站 WO2020199073A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19923213.3A EP3952573A4 (en) 2019-04-01 2019-04-01 METHOD AND DEVICE FOR ACCESS CONTROL, USER EQUIPMENT AND BASE STATION
US17/593,998 US11956824B2 (en) 2019-04-01 2019-04-01 Methods and devices for access control, user equipment and base stations
CN201980000574.XA CN110169115B (zh) 2019-04-01 2019-04-01 接入控制方法、装置、用户设备及基站
PCT/CN2019/080795 WO2020199073A1 (zh) 2019-04-01 2019-04-01 接入控制方法、装置、用户设备及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080795 WO2020199073A1 (zh) 2019-04-01 2019-04-01 接入控制方法、装置、用户设备及基站

Publications (1)

Publication Number Publication Date
WO2020199073A1 true WO2020199073A1 (zh) 2020-10-08

Family

ID=67638085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080795 WO2020199073A1 (zh) 2019-04-01 2019-04-01 接入控制方法、装置、用户设备及基站

Country Status (4)

Country Link
US (1) US11956824B2 (zh)
EP (1) EP3952573A4 (zh)
CN (1) CN110169115B (zh)
WO (1) WO2020199073A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230077269A1 (en) * 2020-02-15 2023-03-09 Qualcomm Incorporated Radio access network (ran)-centric data collection for new radio (nr)-unlicensed (u)
CN112332967B (zh) * 2020-11-26 2023-06-23 紫光展锐(重庆)科技有限公司 数据传输方法及系统、终端及存储介质
US20230422294A1 (en) * 2020-11-26 2023-12-28 Unisoc (Chongqing) Technologies Co., Ltd. Method for data transmission, terminal, and chip
CN115623603B (zh) * 2020-11-26 2024-02-23 紫光展锐(重庆)科技有限公司 数据传输方法及系统、终端及存储介质
WO2023077386A1 (zh) * 2021-11-04 2023-05-11 北京小米移动软件有限公司 随机接入方法和装置
CN116133068B (zh) * 2023-02-13 2023-08-11 荣耀终端有限公司 上行资源分配方法、用户设备、存储介质及通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171999A1 (en) * 2016-03-31 2017-10-05 Intel IP Corporation Physical random access channel design for licensed assisted access
CN107734706A (zh) * 2016-08-10 2018-02-23 深圳市金立通信设备有限公司 一种控制信息传输方法、设备以及通信系统
CN107770868A (zh) * 2016-08-19 2018-03-06 中兴通讯股份有限公司 一种控制信元取消方法、装置及终端
WO2019031796A1 (en) * 2017-08-11 2019-02-14 Lg Electronics Inc. METHOD FOR MANAGING PRE-CONFIGURED UPLINK RESOURCES BASED ON LBT PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072908A1 (en) * 2014-11-06 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Dynamic listen before talk in license-assisted access
US10420147B2 (en) * 2015-07-05 2019-09-17 Ofinno, Llc Random access process in carrier aggregation
CN108476532A (zh) 2016-02-02 2018-08-31 英特尔Ip公司 随机接入过程期间的先听后说(lbt)失败
CN107371168A (zh) 2016-05-12 2017-11-21 电信科学技术研究院 一种非授权频谱中的测量方法和设备
WO2018106429A1 (en) * 2016-12-07 2018-06-14 Intel IP Corporation Enhanced handover mechanism
US10568091B2 (en) * 2017-02-08 2020-02-18 Apple Inc. Flexible slot structure for cellular communication in unlicensed spectrum
CN109413669B (zh) 2017-08-16 2020-07-28 维沃移动通信有限公司 网络配置参数的有效取值确定方法、相关设备和系统
US11956822B2 (en) * 2018-06-19 2024-04-09 Interdigital Patent Holdings, Inc. Radio link monitoring in shared spectrum
US11202320B2 (en) * 2018-09-05 2021-12-14 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier
WO2020167219A1 (en) * 2019-02-13 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, radio network node and methodsfor managing recovery procedures therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171999A1 (en) * 2016-03-31 2017-10-05 Intel IP Corporation Physical random access channel design for licensed assisted access
CN107734706A (zh) * 2016-08-10 2018-02-23 深圳市金立通信设备有限公司 一种控制信息传输方法、设备以及通信系统
CN107770868A (zh) * 2016-08-19 2018-03-06 中兴通讯股份有限公司 一种控制信元取消方法、装置及终端
WO2019031796A1 (en) * 2017-08-11 2019-02-14 Lg Electronics Inc. METHOD FOR MANAGING PRE-CONFIGURED UPLINK RESOURCES BASED ON LBT PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952573A4 *

Also Published As

Publication number Publication date
EP3952573A1 (en) 2022-02-09
CN110169115B (zh) 2022-08-19
EP3952573A4 (en) 2022-11-23
US11956824B2 (en) 2024-04-09
CN110169115A (zh) 2019-08-23
US20220191932A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020199073A1 (zh) 接入控制方法、装置、用户设备及基站
WO2020019218A1 (zh) 传输配置方法及装置
WO2018191839A1 (zh) 用于请求系统消息的方法、装置、用户设备及基站
CN109644326B (zh) 传输随机接入指示信息的方法及装置
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
US20220416952A1 (en) Hybrid automatic repeat request feedback indication and feedback method, device, and base station
EP3905762A1 (en) Method for allocating time domain resources, data transmission method, base station, and terminal
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
CN107223363B (zh) 一种分配调度请求sr资源的方法和装置
WO2020087380A1 (zh) 传输随机接入指示信息的方法及装置
WO2020258080A1 (zh) 随机接入方法、装置及存储介质
US20210243704A1 (en) Paging synchronization method and apparatus
US20210297222A1 (en) Method for transmitting harq feedback information, terminal, and base station
WO2021243620A1 (zh) 随机接入配置的确定方法、装置、通信设备及存储介质
JP2022550116A (ja) 情報処理方法及び装置、通信機器及び記憶媒体
CN112088541A (zh) 一种寻呼信道监听方法、寻呼信道监听装置及存储介质
EP3836433A1 (en) Monitoring method and apparatus, device, and storage medium
EP4017040A1 (en) Data processing method and apparatus, communication device and storage medium
WO2020258273A1 (zh) 检测非授权频段的方法和检测非授权频段的装置
US20240064641A1 (en) Information configuration method and apparatus, and communication device and storage medium
WO2018120779A1 (zh) 下行链路数据的传输方法及装置
WO2020258275A1 (zh) 信道占用时间的起始位置确定方法和装置
WO2022226739A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN106793150B (zh) 无线链路的建立方法及终端
CN108702682B (zh) Ac限制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923213

Country of ref document: EP

Effective date: 20211102