WO2020199041A1 - 一种单纤环网结构 - Google Patents

一种单纤环网结构 Download PDF

Info

Publication number
WO2020199041A1
WO2020199041A1 PCT/CN2019/080671 CN2019080671W WO2020199041A1 WO 2020199041 A1 WO2020199041 A1 WO 2020199041A1 CN 2019080671 W CN2019080671 W CN 2019080671W WO 2020199041 A1 WO2020199041 A1 WO 2020199041A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
demultiplexer
dual
signal
Prior art date
Application number
PCT/CN2019/080671
Other languages
English (en)
French (fr)
Inventor
王磊
邓彬林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/080671 priority Critical patent/WO2020199041A1/zh
Priority to CN201980030048.8A priority patent/CN112088501B/zh
Publication of WO2020199041A1 publication Critical patent/WO2020199041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Definitions

  • the embodiments of the present application relate to the field of optical fiber communication, and in particular, to a single-fiber ring network structure.
  • Wavelength Division Multiplexing (WDM) technology is the preferred technology for high-speed and large-capacity data transmission in optical communication networks.
  • WDM Wavelength Division Multiplexing
  • the optical transmission network transmits a large amount of information. Once the fiber channel of the optical transmission network fails or the optical transmission system fails, the impact will be wide and the loss will be serious. On the other hand, network failures are difficult to avoid in practical applications. Therefore, the protection of optical transmission networks is very necessary for optical transmission networks.
  • Figure 1 shows the principle of using 1+1 protection in a single-fiber bidirectional ring network.
  • the optical 2*1 switch 45 and the optical splitter 47 provide protection for the transceiver unit of the optical channel.
  • the optical receiver unit 43 is connected to the optical 2x1 switch 45, and the optical transmitter unit 41 is connected to the optical splitter 47.
  • the two output ports of the optical splitter 47 are respectively connected to the first optical duplexer 38 and the second optical duplexer 39, wherein the first optical duplexer 38 corresponds to the channel port 9a, and the second optical duplexer 39 corresponds to the channel Port 9b.
  • an optical 2*1 switch 45 and an optical switch are performed between the optical transmitter unit 41 (ie, multiplexer/demultiplexer) and the first optical duplexer 38 and the second optical duplexer 39 (ie transmission module).
  • the protected unit is a single transmission module, and the multiplexer and splitter cannot be 1+1 protected.
  • the embodiment of the present application provides a single-fiber ring network structure for simultaneously protecting multiple channels in a WDM system.
  • the first aspect of the embodiments of the present application provides a single-fiber ring network structure, wherein the single-fiber ring network structure includes: a master node and at least one access node, wherein a master signal is configured between the master node and the access node The flow direction and the standby signal flow direction, and the main signal flow direction is opposite to the standby signal flow direction; wherein, the main node includes a first protection module, a first group of optical amplifiers, a second group of optical amplifiers, a first combiner/demultiplexer, and a second Combiner/demultiplexer, first single-fiber-dual fiber converter and second single-fiber-dual fiber converter; the access node includes a third single-fiber-dual fiber converter, a fourth single-fiber-dual fiber converter, and The second protection module; in the main signal flow direction of the signal sent by the master node to the access node (ie, the downlink signal), the first protection module, the first multiplexer and demultiplexer, the first group of optical amplifiers
  • the first protection module, the second combiner/demultiplexer, the second group of optical amplifiers, and the second single fiber-dual fiber converter are connected in sequence;
  • the fourth single fiber-dual fiber converter is connected to the The second protection module is connected in sequence; in the main signal flow direction of the signal sent from the access node to the main node (ie, the uplink signal), the first single fiber-dual fiber converter, the first group of optical amplifiers, and the first A combiner/demultiplexer is connected to the first protection module in sequence;
  • the second protection module is connected to the third single-fiber-dual fiber converter in sequence;
  • the access node sends a signal (that is, an uplink signal) to the master node
  • the second single-fiber-dual-fiber converter, the second group of optical amplifiers, the second multiplexer and demultiplexer and the first protection module are sequentially connected; the second protection module and the fourth single The fiber-dual fiber converters are connected in sequence.
  • the number of the master node and the access node is not limited, but they only need to have the same structure as the embodiment.
  • the master node in the single-fiber ring network places the protection module after the combiner/demultiplexer to ensure that multi-channel optical signals can be combined by the combiner/demultiplexer and amplified by the optical amplifier, and the single-fiber -After the dual fiber converter is converted, it is sent to the access node through a single fiber, and after receiving the multi-channel optical signal, the access node selects the corresponding optical signal through the single fiber-dual fiber converter to ensure the optical The signal can be transmitted in multiple channels at the same time.
  • the main node and the access node in the single fiber ring network are configured with the main and standby signal flow directions, the main node and the protection module of the access node can switch from the main signal to the standby signal when the route fails. , So as to ensure the stability of data transmission.
  • the first protection module is a 2*4 optical switch or optical splitter and a 1*2 optical switch splitter and a 1*2 optical switch, so that the master node can selectively receive between the main signal and the backup signal .
  • the first single fiber-dual fiber converter is a red-blue band filter or an optical cross-wavelength division multiplexer;
  • the second single fiber-dual fiber converter is a red-blue band filter or an optical cross-wavelength division multiplexer multiplexer.
  • the second protection module includes a 1*2 coupler, a 1*2 optical splitter, and a multiplexer/demultiplexer; or, the second protection module includes a 2*4 optical switch and a multiplexer/demultiplexer; or, the second protection The module includes optical splitter, 1*2 optical switch and combiner/demultiplexer. In this way, the access node can selectively receive between the main signal and the standby signal.
  • the third single fiber-dual fiber converter includes a band pass filter; or, the third single fiber to dual fiber converter includes a band pass filter and an optical cross wavelength division multiplexer;
  • the fourth single fiber-dual fiber converter includes a band pass filter; or, the fourth single fiber to dual fiber converter includes a band pass filter and an optical cross wavelength division multiplexer.
  • the single-fiber ring network structure may specifically include but not limited to the following situations:
  • the main node in the single-fiber ring network includes N optical splitters and 1*2 optical switches, a first combiner/demultiplexer, a first group of optical amplifiers, a first red and blue band filter, and a first Two combiner/demultiplexer, a second group of optical amplifiers, and a second red-blue band filter, wherein the value of N is determined by the upper and lower wave ports of the first combiner/demultiplexer and the second combiner/demultiplexer, and the N Greater than or equal to the number of uplink and downlink ports of the first combiner/demultiplexer and the second combiner/demultiplexer;
  • the access node includes an optical splitter and a 1*2 optical switch, a combiner/demultiplexer (for distinction, in this embodiment It is called the third combiner/demultiplexer) and two sets of band pass filters (for distinction, in this embodiment, it is called the first band pass filter and the second band pass filter).
  • each device in the single fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch in the main node and the first combiner/demultiplexer, the first The group of optical amplifiers and the first red-blue band filter are connected in sequence; the first band-pass filter, the optical splitter and the 1*2 optical switch in the access node are connected in sequence with the third combiner/demultiplexer; The backup signal of the signal flows upward, the optical splitter and 1*2 optical switch in the master node are connected to the second multiplexer/demultiplexer, the second group of optical amplifiers, and the second red-blue band filter in sequence; the access The second bandpass filter, the optical splitter and the 1*2 optical switch in the node are connected to the third combiner/demultiplexer in sequence.
  • the signal flow in the single-fiber ring network structure can be as follows:
  • a downstream signal take channel A as an example, pass through the splitter in the master node and the splitter part of the 1*2 optical switch, and send the main signal flow direction and backup signal flow direction to the master node; in the main signal flow Upward, the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red and blue band filter The first red and blue band filter is converted to a single fiber for transmission; in the main signal flow direction, the multiplexed optical signal of channel A passes through the single fiber and reaches the access node, and then passes through the first band pass The wave drop port of the filter is dropped, and then the optical switch of the access node and the optical switch of the 1*2 optical switch is selected to drop the wave demultiplexer of the third combiner/demultiplexer.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the second
  • the red and blue band filter is converted into a single fiber for transmission by the second red and blue band filter;
  • the optical signal of channel A after multiplexing passes through the single fiber to reach the access node, and then passes through the The drop port of the second band-pass filter drops, and then passes through the optical splitter of the access node and the optical switch selection of the 1*2 optical switch. Since the access node selects the optical signal in the main signal flow direction, the The optical signal in the standby signal flow direction is no longer selected.
  • the optical splitter of the access node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction. Switch to the backup signal flow direction, and select to receive the backup signal transmitted upward by the backup signal flow.
  • the optical splitter of the access node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the uplink signal For the uplink signal, take channel B as an example, pass through the multiplexing part of the multiplexer/demultiplexer in the access node, send it to the splitter and 1*2 optical switch, and then pass through the splitter and 1*2 optical switch.
  • the optical splitter part of the switch splits the optical signal of channel B and sends it to the main signal flow direction and the standby signal flow direction; in the main signal flow direction, the optical signal of channel B is converted by the wave port of the first band pass filter It is transmitted in a single fiber; after the optical signal of channel B reaches the master node through a single fiber, it is converted to dual-fiber bidirectional by the first red and blue band filter, and then amplified by the optical amplifier and sent to the first combiner
  • the wave device passes the wave demultiplexing part of the first multiplexer/demultiplexer, and then passes through the optical splitter of the master node and the optical switch in the 1*2 optical switch to select and receive.
  • the optical signal of channel B is converted to a single fiber for transmission through the add-wave port of the second bandpass filter; after the optical signal of channel B reaches the master node through the single fiber, it passes through the second
  • the red and blue band filters are converted into dual-fiber bidirectional, and then after being amplified by the optical amplifier, they are sent to the second combiner/demultiplexer, and pass through the demultiplexer part of the second combiner/demultiplexer, and then pass through the optical splitter of the master node
  • the optical switch selection in the 1*2 optical switch because the master node has selected the optical signal in the main signal flow direction, the optical signal in the standby signal flow direction is no longer selected.
  • the optical splitter of the main node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction, so it switches To the standby signal flow direction, select to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node may also include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • the master node in the single-fiber ring network includes N optical splitters and 1*2 optical switches, a first multiplexer/demultiplexer, a first group of optical amplifiers, and a first optical cross-wavelength division multiplexing , The second multiplexer and demultiplexer, the second group of optical amplifiers, and the second optical cross-wavelength division multiplexer, wherein the value of N is determined by the upper and lower waves of the first multiplexer and the second multiplexer and demultiplexer Port determination, the N is greater than or equal to the number of uplink and downlink ports of the first combiner/demultiplexer and the second combiner/demultiplexer; the access node includes an optical splitter and a 1*2 optical switch, a combiner/demultiplexer (for distinguishing In this embodiment, it is called the third multiplexer/demultiplexer) and two sets of bandpass filters and optical cross-wavelength division multiplexers (for distinction, this embodiment is called the first bandpass filter and the third optical cross-wave
  • each device in the single fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch in the main node and the first combiner/demultiplexer, the first The group of optical amplifiers and the first optical cross-wavelength division multiplexer are connected in sequence; the first band-pass filter, the third optical cross-wavelength division multiplexer, the optical splitter and the 1*2 optical switch in the access node Connected to the third combiner/demultiplexer in sequence; in the standby signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch in the master node, the second combiner/demultiplexer, the second group of optical amplifiers, and the The second optical cross-wavelength division multiplexer is connected in sequence; the second band-pass filter, the fourth optical cross-wavelength division multiplexer, the optical splitter and the 1*2 optical switch in the access node and the third combination The splitters are connected in sequence.
  • a downstream signal take channel A as an example, pass through the splitter in the master node and the splitter part of the 1*2 optical switch, and send the main signal flow direction and backup signal flow direction to the master node; in the main signal flow Upward, the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red and blue band filter
  • the first optical cross-wavelength division multiplexer is converted into a single fiber for transmission; in the main signal flow direction, the multiplexed optical signal of channel A passes through the single fiber to reach the access node, and then passes through the first The band-pass filter and the drop port of the third optical cross-wavelength division multiplexer drop the wave, and then select the optical switch of the third multiplexer and splitter through the optical splitter of the access node and the optical switch of the 1*2 optical switch.
  • the partial wave part drops off.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the second Optical cross wavelength division multiplexer, which is converted into a single fiber for transmission by the second optical cross wavelength division multiplexer; in the standby signal flow direction, the multiplexed optical signal of channel A reaches the access node through a single fiber After that, pass the second band-pass filter and the fourth optical cross-wavelength division multiplexer to drop the wave, and then pass the optical splitter of the access node and the optical switch selection of the 1*2 optical switch.
  • the ingress node selects the optical signal in the main signal flow direction, so the optical signal in the standby signal flow direction is no longer selected.
  • the optical splitter of the access node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction.
  • Switch to the backup signal flow direction and select to receive the backup signal transmitted upward by the backup signal flow.
  • the optical splitter of the access node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the uplink signal For the uplink signal, take channel B as an example, pass through the multiplexing part of the multiplexer/demultiplexer in the access node, send it to the splitter and 1*2 optical switch, and then pass through the splitter and 1*2 optical switch.
  • the optical splitter part of the switch splits the optical signal of channel B and sends it to the main signal flow direction and the standby signal flow direction; in the main signal flow direction, the optical signal of channel B passes through the first band pass filter and the third optical cross
  • the up-wave port of the wavelength division multiplexer is converted to a single fiber for transmission; after the optical signal of channel B reaches the master node through a single fiber, it is converted to dual-fiber bidirectional by the first optical cross-wavelength division multiplexer, and then After being amplified by the optical amplifier, it is sent to the first combiner/demultiplexer, and the wave is removed by the demultiplexer part of the first combiner/demultiplexer, and then the optical switch in the main node's
  • the optical signal of channel B is converted to a single fiber for transmission through the second band pass filter and the add-wave port of the fourth optical cross-wavelength division multiplexer; the optical signal of channel B passes through the single fiber
  • the optical signal of channel B passes through the single fiber
  • it is converted to dual-fiber bidirectional by the second optical cross-wavelength division multiplexer, and after being amplified by the optical amplifier, it is sent to the second multiplexer and demultiplexer.
  • Part of the wave is dropped, and then passes through the optical splitter of the main node and the optical switch selection in the 1*2 optical switch. Since the main node has selected the optical signal in the main signal flow direction, the optical signal in the standby signal flow direction is no longer be chosen.
  • the optical splitter of the main node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction, so it switches To the standby signal flow direction, select to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node may also include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • the master node in the single-fiber ring network includes N optical splitters and 1*2 optical switches, a first combiner/demultiplexer, a first group of optical amplifiers, a first red and blue band filter, and a first Two combiner/demultiplexer, a second group of optical amplifiers, and a second red-blue band filter, wherein the value of N is determined by the upper and lower wave ports of the first combiner/demultiplexer and the second combiner/demultiplexer, and the N is greater than Or equal to the number of uplink and downlink ports of the first combiner/demultiplexer and the second combiner/demultiplexer;
  • the access node includes a 2*4 optical switch, a combiner/demultiplexer (for distinction, it is called the third Combiner/demultiplexer) and two sets of band pass filters (for distinction, in this embodiment, it is called the first band pass filter and the second band pass filter).
  • each device in the single fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch in the main node and the first combiner/demultiplexer, the first The group of optical amplifiers and the first red-blue band filter are connected in sequence; the first band-pass filter, the 2*4 optical switch, and the third combiner/demultiplexer in the access node are connected in sequence; Flow upward, the optical splitter and 1*2 optical switch in the master node are connected to the second multiplexer/demultiplexer, the second group of optical amplifiers, and the second red-blue band filter in sequence; the second in the access node The bandpass filter, the 2*4 optical switch and the third combiner/demultiplexer are connected in sequence.
  • the signal flow in the single-fiber ring network structure can be as follows:
  • a downstream signal take channel A as an example, pass through the splitter in the master node and the splitter part of the 1*2 optical switch, and send the main signal flow direction and backup signal flow direction to the master node; in the main signal flow Upward, the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red and blue band filter The first red and blue band filter is converted to a single fiber for transmission; after the multiplexed optical signal of channel A reaches the access node through a single fiber, it passes through the drop of the first band pass filter The port is dropped, and then the 2*4 optical switch of the access node is selected to drop the wave demultiplexing part of the third combiner/demultiplexer.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the second
  • the red and blue band filter is converted by the second red and blue band filter to a single fiber for transmission; after the multiplexed optical signal of channel A reaches the access node through the single fiber, it passes through the second band pass filter
  • the wave-down port of the device is dropped, and then selected by the 2*4 optical switch of the access node. Since the access node selects the optical signal in the main signal flow direction, the optical signal in the standby signal flow direction is no longer selected .
  • the 2*4 optical switch of the access node cannot detect the main signal transmitted in the original main signal flow direction, so it switches to the backup signal flow direction. Select to receive the backup signal transmitted upward from the backup signal stream.
  • the 2*4 optical switch of the access node still keeps receiving the main signal.
  • an uplink signal take channel B as an example. Because it passes through the multiplexing part of the multiplexer/demultiplexer in the access node and sends it to the 2*4 optical switch, the sending optical switch state of the 2*4 optical switch is the same as The state of the receiving optical switch remains the same.
  • the 2*4 optical switch sends the optical signal of channel B to the main signal flow direction; in the main signal flow direction, the channel The optical signal of channel B is converted to a single fiber for transmission through the up-wave port of the first band-pass filter; after the optical signal of channel B reaches the master node through a single fiber, it is converted to a dual-pass filter through the first red and blue band filter.
  • the optical switch selects to receive.
  • the backup signal flow direction because the transmission optical switch state of the 2*4 optical switch of the access node does not select the backup signal, there is no optical signal transmission in the backup signal flow direction.
  • the optical splitter of the main node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction, so it switches To the standby signal flow direction, select to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node may also include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • the master node in the single-fiber ring network includes N optical splitters and 1*2 optical switches, a first multiplexer/demultiplexer, a first group of optical amplifiers, and a first optical cross-wavelength division multiplexing , The second multiplexer and demultiplexer, the second group of optical amplifiers, and the second optical cross-wavelength division multiplexer, wherein the value of N is determined by the upper and lower waves of the first multiplexer and the second multiplexer and demultiplexer Port determination, the N is greater than or equal to the number of uplink and downlink ports of the first combiner/demultiplexer and the second combiner/demultiplexer; the access node includes a 2*4 optical switch and two combination demultiplexers (for distinction, this In the embodiment, it is called the third combiner/demultiplexer and the fourth combiner/demultiplexer) and two sets of bandpass filters (for the sake of distinction, it is called the first bandpass filter and the second bandpass filter in this embodiment) .
  • each device in the single fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch in the main node and the first combiner/demultiplexer, the first The group of optical amplifiers and the first optical cross-wavelength division multiplexer are connected in sequence; the first band-pass filter, the third multiplexer and demultiplexer and the 2*4 optical switch in the access node are connected in sequence; The standby signal flows upward, the optical splitter and 1*2 optical switch in the master node are connected to the second multiplexer/demultiplexer, the second group of optical amplifiers, and the second optical cross-wavelength division multiplexer in sequence; The second bandpass filter, the fourth combiner/demultiplexer and the 2*4 optical switch in the node are connected in sequence.
  • the signal flow in the single-fiber ring network structure can be as follows:
  • a downstream signal take channel A as an example, pass through the splitter in the master node and the splitter part of the 1*2 optical switch, and send the main signal flow direction and backup signal flow direction to the master node; in the main signal flow Upward, the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red and blue band filter
  • the first optical cross-wavelength division multiplexer is converted into a single fiber for transmission; in the main signal flow direction, the multiplexed optical signal of channel A passes through the single fiber to reach the access node, and then passes through the first
  • the wave is dropped at the drop port of the band-pass filter, and then passes through the demultiplexing part of the third combiner/demultiplexer, and finally selects and receives through the 2*4 optical switch.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer and demultiplexer, and then amplified by the optical amplifier connected to the multiplexing part and output to the second Optical cross wavelength division multiplexer, which is converted into a single fiber for transmission by the second optical cross wavelength division multiplexer; in the standby signal flow direction, the multiplexed optical signal of channel A reaches the access node through a single fiber After that, the wave is dropped through the drop port of the second band-pass filter, and then dropped through the demultiplexing part of the fourth multiplexer/demultiplexer, and then selected by the 2*4 optical switch of the access node, because the access node The optical signal in the main signal flow direction is selected, so the optical signal in the standby signal flow direction is no longer selected.
  • the 2*4 optical switch of the access node cannot detect the main signal transmitted in the original main signal flow direction, so it switches to the backup signal flow direction. Select to receive the backup signal transmitted upward from the backup signal stream.
  • the 2*4 optical switch of the access node still keeps receiving the main signal.
  • the uplink signal take channel B as an example.
  • the 2*4 optical switch has the same transmitting optical switch status and receiving optical switch status. Therefore, when the access node receives the main signal in the downlink signal, the 2*4 optical switch 4 The optical switch sends the optical signal of channel B to the main signal flow direction, and then sends the optical signal to the multiplexing part of the third multiplexer and demultiplexer in the access node; then the optical signal of channel B passes through the first The up-wave port of the band-pass filter is converted to a single fiber for transmission; after the optical signal of channel B reaches the master node through a single fiber, it is converted to a dual-fiber bidirectional by the first optical cross wavelength division multiplexer, and then passes through After the optical amplifier is amplified, it is sent to the first multiplexer/demultiplexer, and is dropped by the demultiplexer part of the first multiplexer/demultiplexer, and then is selected and received by the optical splitter of the master node and the optical switch in the 1*2
  • the optical splitter of the main node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction, so it switches To the standby signal flow direction, select to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node may also include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • the master node in the single-fiber ring network includes N 2*4 optical switches, a first multiplexer/demultiplexer, a first group of optical amplifiers, a first optical cross-wavelength division multiplexer, and a first optical cross-wavelength division multiplexer.
  • the access node includes a 1*2 coupler and a 1*2 optical splitter, a combiner/demultiplexer and two sets Band-pass filter and optical cross-wavelength division multiplexer (for distinction, referred to as the first band-pass filter and the third optical cross-wavelength division multiplexer in this embodiment, the second band-pass filter and the fourth optical cross-wave Multiplexer).
  • each device in the single fiber ring network is as follows: in the main signal flow direction of the downstream signal, the 2*4 optical switch and the first multiplexer/demultiplexer and the first group of optical amplifiers in the main node ,
  • the first optical cross-wavelength division multiplexer is connected in sequence;
  • the multiplexer and demultiplexer are connected in sequence; in the standby signal flow direction of the downstream signal, the 2*4 optical switch and the second multiplexer and demultiplexer, the second group of optical amplifiers, and the second optical cross-wavelength demultiplexer in the master node
  • the multiplexers are connected in sequence;
  • the second bandpass filter, the fourth optical cross-wavelength division multiplexer, the 1*2 coupler and the 1*2 optical splitter in the access node are connected in sequence to the multiplexer/demultiplexer .
  • the optical signal of channel A is sent through the 2*4 optical switch in the master node to select the main signal direction; in the main signal flow direction, the optical signal of channel A passes through the first combination and split
  • the multiplexing part in the wave device is multiplexed with the optical signals on other channels, and then amplified by the optical amplifier connected to the multiplexing part and output to the first optical cross-wavelength division multiplexer, which is multiplexed by the first optical cross-wavelength division multiplexer.
  • the user is converted to a single fiber for transmission; in the main signal flow direction, the multiplexed optical signal of channel A passes through the single fiber to reach the access node, and then passes through the first bandpass filter and the third optical cross-wave The wave-demultiplexer drop-wave port drop, and then pass the 1*2 coupler and the wave splitter part of the third multiplexer and splitter.
  • the master node does not send the optical signal of channel A to the backup signal, so the access node does not receive the backup signal.
  • the 2*4 optical switch of the master node cannot detect the signal in the main signal flow direction, so it switches to the backup signal flow direction and then The standby signal stream sends optical signals upward.
  • the master node still keeps sending the optical signal in the master signal flow direction.
  • the uplink signal take channel B as an example.
  • the optical signal of channel B is combined with the optical signals of other channels through the multiplexing part of the multiplexer and demultiplexer, and then sent to the main signal flow direction, and then the optical signal is sent Wave the multiplexing part of the third combiner/demultiplexer in the access node; then send the optical signal to the main signal flow direction and the standby signal flow direction through the 1*2 optical splitter; in the main signal flow direction, the optical signal passes through the third
  • the add-wave ports of the optical cross-wavelength division multiplexer and the first band-pass filter are converted to a single fiber for transmission; after the optical signal of channel B reaches the master node through a single fiber, it passes through the first optical cross-wavelength division multiplexer
  • the user is converted into a dual-fiber bidirectional, and then amplified by the optical amplifier and sent to the first multiplexer/demultiplexer, and then passes through the demultiplexer part of the first multiplexer/demultiplexer, and
  • the optical signal In the backup signal flow direction, the optical signal is converted to a single fiber for transmission through the fourth optical cross-wavelength division multiplexer and the add-wave port of the second bandpass filter; the optical signal in channel B reaches the master node through the single fiber After that, it is converted to dual-fiber bidirectional by the second optical cross-wavelength division multiplexer, and after being amplified by the optical amplifier, it is sent to the second multiplexer and demultiplexer.
  • the 2*4 optical switch selection of the master node since the transmitting optical switch state of the 2*4 optical switch remains the same as the receiving optical switch state, when the transmitting optical switch state of the master node in the downstream signal is the main signal, The master node no longer receives standby signals.
  • the optical splitter of the main node and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction, so it switches To the standby signal flow direction, select to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node may also include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • Figure 1 is a schematic diagram of single-channel protection in a single-fiber bidirectional ring network
  • FIG. 2 is a schematic diagram of an embodiment of a single fiber ring network structure in an embodiment of the application
  • FIG. 3 is a schematic diagram of another embodiment of a single-fiber ring network structure in an embodiment of the application.
  • FIG. 4 is a schematic diagram of another embodiment in the single-fiber ring network structure in the embodiment of the application.
  • FIG. 5 is a schematic diagram of another embodiment in the single-fiber ring network structure in the embodiment of the application.
  • FIG. 6 is a schematic diagram of another embodiment in the single-fiber ring network structure in the embodiment of the application.
  • FIG. 7 is a schematic diagram of another embodiment in the single-fiber ring network structure in the embodiment of the application.
  • the embodiment of the present application provides a single-fiber ring network structure for simultaneously protecting multiple channels in a WDM system.
  • Wavelength Division Multiplexing (WDM) technology is the preferred technology for high-speed and large-capacity data transmission in optical communication networks.
  • WDM Wavelength Division Multiplexing
  • the optical transmission network transmits a large amount of information. Once the fiber channel of the optical transmission network fails or the optical transmission system fails, the impact will be wide and the loss will be serious. On the other hand, network failures are difficult to avoid in practical applications. Therefore, the protection of optical transmission networks is very necessary for optical transmission networks.
  • the single-fiber bidirectional ring network in most WDM systems usually adopts the traditional 1+1 protection or 1:1 protection mode, and usually only realizes single-channel protection.
  • Figure 1 shows the principle of using 1+1 protection in a single-fiber bidirectional ring network.
  • the optical 2*1 switch 45 and the optical splitter 47 provide protection for the transceiver unit of the optical channel.
  • the optical receiver unit 43 is connected to the optical 2*1 switch 45, and the optical transmitter unit 41 is connected to the optical splitter 47.
  • the two output ports of the optical splitter 47 are respectively connected to the first optical duplexer 38 and the second optical duplexer 39, wherein the first optical duplexer 38 corresponds to the channel port 9a, and the second optical duplexer 39 corresponds to the channel Port 9b.
  • an optical 2*1 switch 45 and an optical switch are performed between the optical transmitter unit 41 (ie, multiplexer/demultiplexer) and the first optical duplexer 38 and the second optical duplexer 39 (ie transmission module).
  • the protected unit is a single transmission module, and the multiplexer and splitter cannot be 1+1 protected.
  • the single-fiber ring network structure 200 includes a master node 201 and at least one access node 202, wherein the master The main signal flow direction and the backup signal flow direction are configured between the node 201 and the access node 202, and the main signal flow direction is opposite to the backup signal flow direction; wherein, the main node 201 includes a first protection module 2011 and a first group of optical amplifiers 2012 , The second group of optical amplifier 2013, the first combiner/demultiplexer 2014, the second combiner/demultiplexer 2015, the first single-fiber-dual fiber converter 2016 and the second single-fiber-dual fiber converter 2017; the access node 202 includes a third single-fiber-dual fiber converter 2021, a fourth single-fiber-dual fiber converter 2022, and a second protection module 2023; when the master node 201 sends a signal (ie, a downlink signal) to the access node
  • a signal ie, a downlink signal
  • the first protection module 2011 is a 2*4 optical switch or an optical splitter and a 1*2 optical switch, so that the master node can selectively receive between the main signal and the backup signal.
  • the first single fiber-dual fiber converter 2016 is a red-blue band filter or an optical cross-wavelength division multiplexer
  • the second single fiber-dual fiber converter 2017 is a red-blue band filter or an optical crossover Wavelength division multiplexer.
  • the second protection module 2023 includes a 1*2 coupler and a 1*2 optical splitter and multiplexer/demultiplexer; or, the second protection module 2023 includes a 2*4 optical switch and multiplexer/demultiplexer; or, the first The second protection module 2023 includes an optical splitter and a 1*2 optical switch and a combiner/demultiplexer. In this way, the access node can selectively receive between the main signal and the standby signal.
  • the third single fiber to dual fiber converter 2021 includes a band pass filter; or, the third single fiber to dual fiber converter 2021 includes a band pass filter and an optical cross wavelength division multiplexer;
  • the fourth single fiber to dual fiber converter 2022 includes a band pass filter; or, the fourth single fiber to dual fiber converter 2022 includes a band pass filter and an optical cross wavelength division multiplexer.
  • the single-fiber ring network structure 200 may specifically include but not limited to the following situations:
  • one implementation manner of the first single-fiber-to-dual-fiber converter 2016 in the single-fiber ring network structure 200 is the first red-blue band filter 2016, and the second single-fiber
  • An implementation of the fiber-to-dual fiber converter 2017 is the second red and blue band filter 2017, and an implementation of the third single-fiber-to-dual fiber converter 2021 is the first band-pass filter 2021, and the fourth single fiber -An implementation of the dual fiber converter 2022 is a second bandpass filter 2022
  • an implementation of the first protection module 2011 is an optical splitter and a 1*2 optical switch 2011, and a second protection module 2023
  • the realization method is splitter and 1*2 optical switch and combiner/demultiplexer.
  • the main node 201 of the single-fiber ring network structure includes N optical splitters and 1*2 optical switches 2011, a first multiplexer and splitter 2014, a first group of optical amplifiers 2012, a first red and blue band filter 2016, and a second The multiplexer and demultiplexer 2015, the second group of optical amplifiers 2013, and the second red-blue band filter 2017, wherein the value of N is determined by the upper and lower wave ports of the first multiplexer/demultiplexer 2014 and the second multiplexer/demultiplexer 2015 It is determined that the N is greater than or equal to the number of uplink and downlink ports of the first combiner/demultiplexer 2014 and the second combiner/demultiplexer 2015; the access node 202 includes an optical splitter, a 1*2 optical switch, and a combiner/demultiplexer ( For the sake of distinction, it is called a third combiner/demultiplexer in this embodiment), a first band pass filter 2021 and a second band pass filter 2022.
  • N optical splitters and 1*
  • each device in the single fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch in the main node and the first combiner/demultiplexer 2014 and the second A set of optical amplifiers 2012 and the first red and blue band filters 2016 are connected in sequence; in the access node, the first band pass filter 2021, the optical splitter and the 1*2 optical switch and the third combiner/demultiplexer are sequentially connected Connected; in the backup signal flow direction of the downlink signal, the optical splitter and 1*2 optical switch 2011 and the second combiner/demultiplexer 2015 in the master node, the second group of optical amplifiers 2013, and the second red-blue band filter The devices 2017 are sequentially connected; the second bandpass filter 2022, the optical splitter and the 1*2 optical switch in the access node and the third combiner/demultiplexer are sequentially connected.
  • the signal flow in the single-fiber ring network structure can be as follows:
  • a downstream signal take channel A as an example, pass through the splitter in the master node and the splitter part of the 1*2 optical switch 2011, and send the main signal flow direction and standby signal flow direction to the master node 201;
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer 2014, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red
  • the blue band filter 2016 is converted by the first red and blue band filter 2016 to a single fiber for transmission; in the main signal flow direction, after the multiplexed optical signal of channel A reaches the access node 202 through the single fiber,
  • the wave is dropped through the drop port of the first band-pass filter 2021, and then the optical switch of the access node 202 and the optical switch of the 1*2 optical switch is selected to drop the wave of the third combiner/demultiplexer .
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer 2015, and then amplified by the optical amplifier connected to the multiplexing part and output to the first Two red and blue band filters 2017 are converted to a single fiber for transmission by the second red and blue band filters 2017; in the backup signal flow direction, the optical signal of channel A after multiplexing passes through the single fiber to reach the access node 202 After that, it passes through the drop port of the second band-pass filter 2022, and then passes through the optical splitter of the access node 202 and the optical switch selection of the 1*2 optical switch.
  • the access node 202 has selected the main signal flow The upward optical signal, so the optical signal of the standby signal flow upward is no longer selected.
  • the optical splitter of the access node 202 and the optical switch of the 1*2 optical switch cannot detect the main signal of the original main signal flow. Therefore, it switches to the standby signal flow direction, and selects to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the access node 202 and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • an uplink signal take channel B as an example, pass through the multiplexing part of the multiplexer/demultiplexer in the access node 202, send it to the splitter and 1*2 optical switch, and then pass through the splitter and 1*2
  • the optical splitter part of the optical switch splits the optical signal of channel B and sends it to the main signal flow direction and the standby signal flow direction; in the main signal flow direction, the optical signal of channel B passes through the wave-up of the first band pass filter 2021
  • the port is converted to a single fiber for transmission; after the optical signal of channel B reaches the master node through a single fiber, it is converted to dual-fiber bidirectional by the first red and blue band filter 2016, and then amplified by the optical amplifier and sent to the first node.
  • a combiner/demultiplexer 2014 passes through the demultiplexing part of the first combiner/demultiplexer 2014, and then passes through the optical splitter of the master node 201 and the optical switch in the 1*2 optical switch 2011 to select and receive.
  • the optical signal of channel B is converted to a single fiber for transmission through the add-wave port of the second band-pass filter 2022; after the optical signal of channel B reaches the master node 201 through the single fiber, it passes through the
  • the second red and blue band filter 2017 is converted to dual-fiber bidirectional, and after being amplified by an optical amplifier, it is sent to the second combiner/demultiplexer 2015, and then passes through the demultiplexer part of the second combiner/demultiplexer 2015.
  • the optical splitter of the main node 201 and the optical switch of the 1*2 optical switch 2011 cannot detect the main signal transmitted in the original main signal flow direction. Therefore, it switches to the standby signal flow direction, and selects to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node 201 and the optical switch of the 1*2 optical switch 2011 still keep receiving the main signal.
  • the access node 202 may also include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • an implementation manner of the first single fiber-dual fiber converter 2016 in the single fiber ring network structure 200 is a first optical cross wavelength division multiplexer 2016,
  • An implementation of the second single-fiber-dual fiber converter 2017 is the second optical cross-wavelength division multiplexer 2017, and an implementation of the third single-fiber-dual fiber converter 2021 is the first band pass filter plus One implementation of the third optical cross wavelength division multiplexer 2021
  • the fourth single fiber-dual fiber converter 2022 is the second band pass filter and the fourth optical cross wavelength division multiplexer 2022
  • the first protection module One implementation manner of 2011 is an optical splitter and a 1*2 optical switch 2011, and an implementation manner of the second protection module 2023 is an optical splitter and a 1*2 optical switch and a combiner/demultiplexer.
  • the main node 201 in the single-fiber ring network structure 200 includes N optical splitters and 1*2 optical switches 2011, a first multiplexer/demultiplexer 2014, a first group of optical amplifiers 2012, and a first optical cross-wavelength division multiplexer.
  • the access node 202 includes an optical splitter and a 1*2 optical switch , Multiplexer (for distinction, called the third multiplexer in this embodiment) and the first band-pass filter and the third optical cross-wavelength division multiplexer 2021, the second band-pass filter and the fourth Optical cross wavelength division multiplexer 2022.
  • each device in the single-fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch 2011 in the main node 201 and the first combiner/demultiplexer 2014, The first group of optical amplifiers 2012 and the first optical cross-wavelength division multiplexer 2016 are sequentially connected; the first band-pass filter, the third optical cross-wavelength division multiplexer, and the optical splitter in the access node 202 Connected to the 1*2 optical switch and the third combiner/demultiplexer in sequence; in the standby signal flow direction of the downstream signal, the optical splitter and the 1*2 optical switch 2011 in the master node 201 and the second combiner/demultiplexer 2015 , The second group of optical amplifiers 2013 and the second optical cross-wavelength division multiplexer 2017 are sequentially connected; the second band-pass filter, the fourth optical cross-wavelength division multiplexer, and the optical splitter in the access node 202 And the 1*2 optical switch and the third
  • the optical splitter of the master node 201 and the optical splitter part of the 1*2 optical switch are waved, and the main signal flow direction and the backup signal flow direction are sent to the main node 201;
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer 2014, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red
  • the blue band filter 2016 is converted by the first optical cross wavelength division multiplexer 2016 to a single fiber for transmission; in the main signal flow direction, the multiplexed optical signal of channel A reaches the access node 202 through the single fiber
  • the first band-pass filter and the third optical cross-wavelength division multiplexer are used to drop the waves, and then pass the optical splitter of the access node 202 and the optical switch of the 1*2 optical switch to select the The demultiplexer part of the third combiner/demultiplexer drops.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer 2015, and then amplified by the optical amplifier connected to the multiplexing part and output to the first
  • the two optical cross wavelength division multiplexer 2017 is converted into a single fiber for transmission by the second optical cross wavelength division multiplexer 2017; in the standby signal flow direction, the optical signal of channel A after multiplexing reaches the single fiber
  • the second band-pass filter and the fourth optical cross-wavelength division multiplexer are used to drop the waves, and then pass through the optical splitter of the access node 202 and the optical switch of the 1*2 optical switch.
  • the access node 202 selects the optical signal in the main signal flow direction, the optical signal in the standby signal flow direction is no longer selected.
  • the optical splitter of the access node 202 and the optical switch of the 1*2 optical switch cannot detect the main signal of the original main signal flow. Therefore, it switches to the standby signal flow direction, and selects to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the access node 202 and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • an uplink signal take channel B as an example, pass through the multiplexing part of the multiplexer/demultiplexer in the access node 202, send it to the splitter and 1*2 optical switch, and then pass through the splitter and 1*2
  • the optical splitter part of the optical switch splits the optical signal of channel B and sends it to the main signal flow direction and standby signal flow direction; in the main signal flow direction, the optical signal of channel B passes through the first band pass filter and the third optical signal.
  • the up-wave port of the cross wavelength division multiplexer is converted to a single fiber for transmission; after the optical signal of channel B reaches the master node 201 through a single fiber, it is converted into a dual fiber by the first optical cross wavelength division multiplexer 2016 Two-way, after being amplified by the optical amplifier, it is sent to the first multiplexer/demultiplexer 2014, and the wave is removed by the demultiplexer part of the first multiplexer/demultiplexer 2014, and then passes through the optical splitter and 1*2 optical switch of the main node 201 The optical switch in the select receives.
  • the optical signal of channel B is converted to a single fiber for transmission through the second band pass filter and the add-wave port of the fourth optical cross-wavelength division multiplexer; the optical signal of channel B passes through the single fiber After reaching the master node 201, it is converted into dual-fiber bidirectional by the second optical cross-wavelength division multiplexer 2017, and then amplified by the optical amplifier and sent to the second multiplexer 2015, which passes through the second multiplexer and splitter. The demultiplexing part of 2015 is dropped, and then passes through the optical splitter of the master node 201 and the optical switch selection in the 1*2 optical switch.
  • the standby signal flow The upward light signal is no longer selected.
  • the optical splitter of the main node 201 and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction. , Therefore switch to the standby signal flow direction, and choose to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node 201 and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node 202 may further include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node 202 can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • an implementation manner of the first single-fiber-to-dual-fiber converter 2016 in the single-fiber ring network structure 200 is the first red and blue band filter 2016, and the second One implementation of the single-fiber-dual-fiber converter 2017 is the second red and blue band filter 2017, and one implementation of the third single-fiber-dual fiber converter 2021 is the first band-pass filter 2021, and the fourth single-fiber
  • An implementation of the fiber-to-dual fiber converter 2022 is a second bandpass filter 2022
  • an implementation of the first protection module 2011 is an optical splitter and a 1*2 optical switch 2011, a second protection module 2023
  • One implementation is 2*4 optical switch and combiner/demultiplexer.
  • the main node 201 in the single-fiber ring network includes N optical splitters and 1*2 optical switches 2011, a first multiplexer 2014, a first set of optical amplifiers 2012, a first red and blue band filter 2016, and a second The multiplexer and demultiplexer 2015, the second group of optical amplifiers 2013, and the second red-blue band filter 2017, wherein the value of N is determined by the upper and lower wave ports of the first multiplexer/demultiplexer 2014 and the second multiplexer/demultiplexer 2015 It is determined that the N is greater than or equal to the number of uplink and downlink ports of the first combiner/demultiplexer 2014 and the second combiner/demultiplexer 2015; the access node 202 includes a 2*4 optical switch, a combiner/demultiplexer (for distinction, In this embodiment, it is called a third combiner/demultiplexer), a first band pass filter 2021, and a second band pass filter 2022.
  • N optical splitters and 1*2 optical switches 2011, a first multiplexer 2014
  • each device in the single-fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch 2011 in the main node 201 and the first combiner/demultiplexer 2014, The first group of optical amplifiers 2012 and the first red and blue band filters 2016 are connected in sequence; the first band pass filter 2021, the 2*4 optical switch, and the third combiner/demultiplexer in the access node 202 are connected in sequence Connected; in the backup signal flow direction of the downlink signal, the optical splitter and 1*2 optical switch 2011 in the master node 201 and the second combiner/demultiplexer 2015, the second group of optical amplifiers 2013, and the second red-blue belt The filters 2017 are connected in sequence; the second bandpass filter 2022 in the access node 202, the 2*4 optical switch, and the third combiner/demultiplexer are connected in sequence.
  • the signal flow in the single-fiber ring network structure can be as follows:
  • the optical splitter of the master node 201 and the optical splitter part of the 1*2 optical switch are waved, and the main signal flow direction and the backup signal flow direction are sent to the main node 201;
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part of the first multiplexer 2014, and then amplified by the optical amplifier connected to the multiplexing part and output to the first red
  • the blue band filter 2016 is converted by the first red and blue band filter 2016 to a single fiber for transmission; after the multiplexed optical signal of channel A reaches the access node 202 through the single fiber, it passes through the first band
  • the wave drop port of the pass filter 2021 is dropped, and then the 2*4 optical switch of the access node 202 is selected to drop the wave demultiplexing part of the third multiplexer/demultiplexer.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer 2015, and then amplified by the optical amplifier connected to the multiplexing part and output to the first
  • Two red and blue band filters 2017 are converted by the second red and blue band filters 2017 to a single fiber for transmission; after the multiplexed optical signal of channel A reaches the access node 202 through the single fiber, it passes through the first
  • the drop port of the two bandpass filter 2022 is dropped, and then is selected by the 2*4 optical switch of the access node 202. Since the access node 202 selects the optical signal with the main signal flowing upward, the standby signal flows upward The optical signal is no longer selected.
  • the 2*4 optical switch of the access node 202 cannot detect the main signal transmitted in the original main signal flow direction, so it switches to the standby Signal flow direction, select to receive the backup signal transmitted upward by the backup signal flow.
  • the 2*4 optical switch of the access node 202 still keeps receiving the main signal.
  • an uplink signal take channel B as an example, because it passes through the multiplexing part of the multiplexer/demultiplexer in the access node 202 and sends it to the 2*4 optical switch, the sending optical switch state of the 2*4 optical switch The state of the receiving optical switch remains the same.
  • the 2*4 optical switch sends the optical signal of channel B to the main signal flow direction; in the main signal flow direction, The optical signal of channel B is converted to a single fiber for transmission through the up-wave port of the first band-pass filter 2021; after the optical signal of channel B reaches the master node 201 through a single fiber, it passes through the first red-blue band filter
  • the converter 2016 is converted to dual-fiber bidirectional, and then amplified by the optical amplifier, and then sent to the first multiplexer and demultiplexer 2014, and then passes through the splitter of the main node 201. And the optical switch in the 1*2 optical switch selects to receive.
  • the optical splitter of the main node 201 and the optical switch of the 1*2 optical switch 2011 cannot detect the main signal transmitted in the original main signal flow direction. Therefore, it switches to the standby signal flow direction, and selects to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node 201 and the optical switch of the 1*2 optical switch 2011 still keep receiving the main signal.
  • the access node 202 may further include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node 202 can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • an implementation manner of the first single fiber-dual fiber converter 2016 in the single fiber ring network structure 200 is a first optical cross wavelength division multiplexer 2016,
  • One implementation of the second single-fiber-dual fiber converter 2017 is the second optical cross-wavelength division multiplexer 2017, and one implementation of the third single-fiber-dual fiber converter 2021 is the first band-pass filter 2021
  • An implementation of the fourth single-fiber-to-dual-fiber converter 2022 is a second bandpass filter 2022
  • an implementation of the first protection module 2011 is an optical splitter and a 1*2 optical switch 2011, and the second protection One implementation of the module 2023 is a 2*4 optical switch and a combiner/demultiplexer.
  • the main node 201 in the single-fiber ring network includes N optical splitters and 1*2 optical switches 2011, a first multiplexer/demultiplexer 2014, a first group of optical amplifiers 2012, a first optical cross-wavelength division multiplexer 2016, The second multiplexer 2015, the second group of optical amplifiers 2013, and the second optical cross wavelength division multiplexer 2017, wherein the value of N is determined by the first multiplexer 2014 and the second multiplexer 2015 It is determined that the N is greater than or equal to the number of uplink and downlink ports of the first combiner/demultiplexer 2014 and the second combiner/demultiplexer 2015; the access node 202 includes a 2*4 optical switch and two combined demultiplexers (For distinction, referred to as the third combiner/demultiplexer and the fourth combiner/demultiplexer in this embodiment), the first band-pass filter 2021, and the second band-pass filter 2022.
  • each device in the single-fiber ring network is as follows: in the main signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch 2011 in the main node 201 and the first combiner/demultiplexer 2014, The first group of optical amplifiers 2012 and the first optical cross-wavelength division multiplexer 2016 are sequentially connected; the first band-pass filter 2021, the third multiplexer and demultiplexer and the 2*4 optical switch in the access node 202 Connected in sequence; in the backup signal flow direction of the downstream signal, the optical splitter and 1*2 optical switch 2011 in the master node 201 and the second multiplexer 2015, the second group of optical amplifiers 2013, and the second optical cross
  • the wavelength division multiplexer 2017 is connected in sequence; the second band-pass filter 2022, the fourth multiplexer/demultiplexer and the 2*4 optical switch in the access node 202 are connected in sequence.
  • the signal flow in the single-fiber ring network structure can be as follows:
  • the optical splitter of the master node 201 and the optical splitter part of the 1*2 optical switch are waved, and the main signal flow direction and the backup signal flow direction are sent to the main node 201;
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the first multiplexer 2014, and then amplified by the optical amplifier connected to the multiplexing part and output to the first optical
  • the cross wavelength division multiplexer 2016 is converted into a single fiber for transmission by the first optical cross wavelength division multiplexer 2016; in the main signal flow direction, the optical signal of channel A after multiplexing passes through the single fiber to reach the access After the node 202, the wave is dropped through the drop port of the first band-pass filter 2021, and then dropped through the demultiplexing part of the third multiplexer/demultiplexer, and finally selected and received through the 2*4 optical switch.
  • the optical signal of channel A is combined with the optical signals on other channels through the multiplexing part in the second multiplexer 2015, and then amplified by the optical amplifier connected to the multiplexing part and output to the first
  • the two optical cross wavelength division multiplexer 2017 is converted into a single fiber for transmission by the second optical cross wavelength division multiplexer 2017; in the standby signal flow direction, the optical signal of channel A after multiplexing reaches the single fiber After accessing the node 202, it passes through the second bandpass filter 2022 drop port to drop, then passes through the demultiplexer part of the fourth combiner/demultiplexer, and then passes through the 2*4 optical switch selection of the access node 202 Since the access node 202 selects the optical signal in the main signal flow direction, the optical signal in the standby signal flow direction is no longer selected.
  • the 2*4 optical switch of the access node 202 cannot detect the main signal transmitted in the original main signal flow direction, so it switches to the standby Signal flow direction, select to receive the backup signal transmitted upward by the backup signal flow.
  • the 2*4 optical switch of the access node 202 still keeps receiving the main signal.
  • the sending optical switch state of the 2*4 optical switch and the receiving optical switch state remain the same. Therefore, when the access node 202 in the downlink signal receives the main signal, the 2 *4 The optical switch sends the optical signal of channel B to the main signal flow direction, and then sends the optical signal to the multiplexing part of the third multiplexer and demultiplexer in the access node 202; then the optical signal of channel B passes
  • the up-wave port of the first band-pass filter 2021 is converted to a single fiber for transmission; after the optical signal of channel B reaches the master node 201 through a single fiber, it is converted to a dual-channel optical signal by the first optical cross-wavelength division multiplexer 2016 Fiber bidirectional, and after being amplified by the optical amplifier, it is sent to the first combiner/demultiplexer 2014, and then passes through the demultiplexer part of the first combiner/demultiplexer 2014, and then passes through the optical splitter of the master node 201 and the
  • the optical splitter of the main node 201 and the optical switch of the 1*2 optical switch 2011 cannot detect the main signal transmitted in the original main signal flow direction. Therefore, it switches to the standby signal flow direction, and selects to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node 201 and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node 202 may further include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node 202 can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • an implementation manner of the first single-fiber-to-dual-fiber converter 2016 in the single-fiber ring network structure 200 is a first optical cross wavelength division multiplexer 2016,
  • An implementation of the second single-fiber-dual fiber converter 2017 is the second optical cross-wavelength division multiplexer 2017, and an implementation of the third single-fiber-dual fiber converter 2021 is the first band pass filter plus An implementation of the third optical cross wavelength division multiplexer 2021
  • the fourth single-fiber-to-dual fiber converter 2022 is a second bandpass filter plus a fourth optical cross wavelength division multiplexer 2022
  • the first protection module One implementation of 2011 is a 2*4 optical switch 2011, and an implementation of the second protection module 2023 is a 1*2 coupler plus a 1*2 optical splitter and multiplexer/demultiplexer.
  • the master node 201 in the single-fiber ring network includes N 2*4 optical switches 2011, a first multiplexer/demultiplexer 2014, a first group of optical amplifiers 2012, a first optical cross-wavelength division multiplexer 2016, and a second multiplexer
  • the access node 202 includes a 1*2 coupler and a 1*2 optical splitter, Demultiplexer and first band pass filter and third optical cross wavelength division multiplexer 2021, and second band pass filter and fourth optical cross wavelength division multiplexer 2022.
  • each device in the single-fiber ring network is as follows: in the main signal flow direction of the downstream signal, the 2*4 optical switch 2011 and the first multiplexer 2014, the first The group of optical amplifiers 2012 and the first optical cross-wavelength division multiplexer 2016 are connected in sequence; the first band-pass filter, the third optical cross-wavelength division multiplexer, the 1*2 coupler and The 1*2 optical splitter and the multiplexer/demultiplexer are sequentially connected; in the backup signal flow direction of the downstream signal, the 2*4 optical switch 2011 and the second multiplexer/demultiplexer 2015 and the second group of optical The amplifier 2013 and the second optical cross-wavelength division multiplexer 2017 are sequentially connected; in the access node 202, the second band-pass filter, the fourth optical cross-wavelength division multiplexer, the 1*2 coupler and 1 *2 The splitter and the combiner/demultiplexer are connected in sequence.
  • the signal flow in the single-fiber ring network structure can be as follows: in the main signal flow direction of the downstream
  • the 2*4 optical switch 2011 in the master node 201 selects the main signal direction to send the optical signal of channel A; in the main signal flow direction, the optical signal of channel A passes through the first
  • the multiplexing part in the multiplexer 2014 is combined with the optical signals on other channels, and then amplified by the optical amplifier connected to the multiplexing part and output to the first optical cross-wavelength division multiplexer 2016.
  • the first optical The cross wavelength division multiplexer 2016 is converted to a single fiber for transmission; in the main signal flow direction, the multiplexed optical signal of channel A reaches the access node 202 through the single fiber, and then passes through the first band-pass filter and The third optical cross-wavelength division multiplexer drops the wave at the drop port, and then passes through the coupler part of the 1*2 coupler and the 1*2 optical splitter and the wave splitting part of the third multiplexer/demultiplexer.
  • the master node 201 does not send the optical signal of the channel A to the backup signal, so the access node 202 does not receive the backup signal.
  • the 2*4 optical switch of the master node 201 cannot detect the signal in the main signal flow direction, so it switches to the backup signal flow direction. Then send an optical signal upwards to the standby signal stream.
  • the master node 201 still keeps sending optical signals in the main signal flow direction.
  • the optical signal of channel B is combined with the optical signals of other channels through the multiplexing part of the multiplexer and demultiplexer, and then sent to the main signal flow direction, and then the optical signal is sent Wave the multiplexing part of the third combiner/demultiplexer in the access node 202; then send the optical signal to the main signal flow direction and the standby signal flow direction through the 1*2 coupler and the optical splitter part of the 1*2 optical splitter ;
  • the optical signal is converted to a single fiber for transmission through the third optical cross-wavelength division multiplexer and the up-wave port of the first band-pass filter;
  • the optical signal in channel B reaches the main fiber through the single fiber After node 201, it is converted to dual-fiber bidirectional by the first optical cross-wavelength division multiplexer 2016, and then amplified by the optical amplifier and sent to the first multiplexer/demultiplexer 2014.
  • the wave part is dropped, and then is selected by the 2*4 optical switch of the master node 201. Since the state of the sending optical switch of the 2*4 optical switch remains the same as the state of the receiving optical switch, when the sending optical switch of the master node 201 is in the downstream signal When the switch state is the main signal, the main node 201 also selects the main signal when receiving the optical switch state.
  • the optical signal is converted to a single fiber for transmission through the fourth optical cross-wavelength division multiplexer and the add-wave port of the second bandpass filter; the optical signal in channel B reaches the master node through the single fiber After 201, it is converted to dual-fiber bidirectional by the second optical cross-wavelength division multiplexer 2017, and then amplified by the optical amplifier and sent to the second multiplexer 2015, which passes through the splitter of the second multiplexer 2015 Part of the wave is dropped, and then selected by the 2*4 optical switch of the master node 201.
  • the state of the transmitting optical switch of the 2*4 optical switch remains the same as the state of the receiving optical switch, when the transmitting optical switch of the master node 201 is in the downstream signal When the status is the main signal, the main node 201 no longer receives the standby signal.
  • the optical splitter of the main node 201 and the optical switch of the 1*2 optical switch cannot detect the main signal transmitted in the original main signal flow direction. , Therefore switch to the standby signal flow direction, and choose to receive the standby signal transmitted upward by the standby signal flow.
  • the optical splitter of the master node 201 and the optical switch of the 1*2 optical switch still keep receiving the main signal.
  • the access node 202 may further include a variable optical attenuator (Variable Optical Attenuator, VOA), so that real-time control of the optical signal sent by the access node 202 can be achieved by attenuating the transmission optical power.
  • VOA variable optical attenuator
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种单纤环网结构,用于对WDM系统中的多个通道同时进行保护。包括:主节点和接入节点,主节点与接入节点之间配置流向相反的主信号流向和备信号流向;主节点包括第一保护模块和两组由光放大器、合分波器、单纤-双纤转换器组成的器件;接入节点包括第三单纤-双纤转换器、第四单纤-双纤转换器,第二保护模块;在下行信号的主信号流向上,第一保护模块、合分波器、光放大器和单纤-双纤转换器依次相连;第三单纤-双纤转换器和第二保护模块依次相连;在下行信号的备信号流向上,第一保护模块、合分波器、光放大器和单纤-双纤转换器依次相连;第四单纤-双纤转换器和第二保护模块依次相连。

Description

一种单纤环网结构 技术领域
本申请实施例涉及光纤通信领域,尤其涉及一种单纤环网结构。
背景技术
光通信技术是目前发展最快的技术领域之一,波分复用(Wavelength Division Multiplexing,WDM)技术是光通信网络中实现高速大容量数据传输的首选技术。同时作为各种电信业务的基础承载网,光传输网络传送着大量的信息,一旦光传输网络的光纤通道发生故障或光传输系统失效,其影响面之广,损失之严重难以想象。而另一方面在实际应用中网络故障又难以避免,因此,光传输网络的保护对光传输网络而言是非常必要的。
目前,大部分的WDM系统中的单纤双向环网通常采用传统的1+1保护或者1∶1保护的保护方式,且通常只能实现单通道保护。如图1所示为单纤双向环网中使用1+1保护的原理示意,其中光学2*1开关45和光分路器47为光学通道的收发器单元提供保护。光接收器单元43连接到光学2x1开关45,光发射器单元41连接到光分路器47。光分路器47的两个输出端口分别连接第一光学双工器38和第二光学双工器39,其中第一光学双工器38对应通道端口9a,第二光学双工器39对应通道端口9b。在该技术方案中,在光发射器单元41(即合分波器)与第一光学双工器38和第二光学双工器39(即传输模块)之间进行光学2*1开关45和光分路器47的1+1保护,保护的单元是单个传输模块,不能对合分波器在内的多路传输单元进行1+1保护。
发明内容
本申请实施例提供了一种单纤环网结构,用于对WDM系统中的多个通道同时进行保护。
本申请实施例的第一方面提供一种单纤环网结构,其中该单纤环网结构包括:主节点和至少一个接入节点,其中,该主节点与该接入节点之间配置主信号流向和备信号流向,且该主信号流向与该备信号流向相反;其中,该主节点包括第一保护模块、第一组光放大器、第二组光放大器、第一合分波器、第二合分波器、第一单纤-双纤转换器和第二单纤-双纤转换器;该接入节点包括第三单纤-双纤转换器、第四单纤-双纤转换器以及第二保护模块;在由该主节点向该接入节点发送信号(即下行信号)的主信号流向上,该第一保护模块、该第一合分波器、该第一组光放大器和该第一单纤-双纤转换器依次相连;该第三单纤-双纤转换器和该第二保护模块依次相连;在由该主节点向该接入节点发送信号(即下行信号)的备信号流向上,该第一保护模块、该第二合分波器、该第二组光放大器和该第二单纤-双纤转换器依次相连;该第四单纤-双纤转换器和该第二保护模块依次相连;在由该接入节点向该主节点发送信号(即上行信号)的主信号流向上,该第一单纤-双纤转换器、该第一组光放大器、该第一合分波器和该第一保护模块依次相连;该第二保护模块和该第三单纤-双纤转换器依次相连;在由该接入节点向该主节点发送信号(即上行信号)的备信号流向上,该第二单纤-双纤转换器、该第二组光放大器、该第二合分波器和该第一保护模块依次相连;该第二保护模块和该第四单纤-双纤转换器依次相连。
可以理解的是,本实施例中,该主节点与接入节点的数量并不限定,但只要拥有与实施例相同的结构即可。
本实施例中,单纤环网中的主节点将保护模块放在合分波器之后,从而保证多通道的光信号可以通过该合分波器实现合波并通过光放大器放大,以及单纤-双纤转换器转换之后通过单纤发送给接入节点,而接入节点中在接收到多通道的光信号之后,通过单纤-双纤转换器选择下波对应的光信号,从而保证光信号可以同时多通道传输。同时,由于该单纤环网中的主节点与该接入节点之间配置主备信号流向,该主节点和该接入节点的保护模块可以在路线出现故障时,由主信号切换到备信号,从而保证数据传输的稳定。
可选的,该第一保护模块为2*4光开关或者分光器和1*2光开关分光器和1*2光开关,这样该主节点可以在主信号和备信号之间进行选择性接收。
可选的,该第一单纤-双纤转换器为红蓝带滤波器或者光交叉波分复用器;该第二单纤-双纤转换器为红蓝带滤波器或者光交叉波分复用器。
可选的,该第二保护模块包括1*2耦合器、1*2分光器和合分波器;或,该第二保护模块包括2*4光开关和合分波器;或,该第二保护模块包括分光器、1*2光开关和合分波器。这样该接入节点可以在主信号和备信号之间进行选择性接收。
可选的,该第三单纤-双纤转换器包括带通滤波器;或,该第三单纤-双纤转换器包括带通滤波器和光交叉波分复用器;
该第四单纤-双纤转换器包括带通滤波器;或,该第四单纤-双纤转换器包括带通滤波器和光交叉波分复用器。
基于上述方案,该单纤环网结构具体可以包括但不限于如下几种情况:
一种可能实现方式中,该单纤环网中的主节点包括N个分光器和1*2光开关、第一合分波器、第一组光放大器、第一红蓝带滤波器、第二合分波器、第二组光放大器、第二红蓝带滤波器,其中该N的取值由该第一合分波器和该第二合分波器的上下波端口确定,该N大于或等于该第一合分波器和该第二合分波器的上下波端口数目;该接入节点包括分光器和1*2光开关、合分波器(为了区别,本实施例中称为第三合分波器)和两组带通滤波器(为了区别,本实施例中称为第一带通滤波器和第二带通滤波器)。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点中该分光器和1*2光开关与该第一合分波器、该第一组光放大器、该第一红蓝带滤波器依次相连;该接入节点中该第一带通滤波器、该分光器和1*2光开关和该第三合分波器依次相连;在下行信号的备信号流向上,该主节点中该分光器和1*2光开关与该第二合分波器、该第二组光放大器、该第二红蓝带滤波器依次相连;该接入节点中该第二带通滤波器、该分光器和1*2光开关和该第三合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点中的分光器和1*2光开关的分光器部分上波,发送到主节点中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器,由该第一红蓝带滤波器转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第一带 通滤波器的下波端口下波,再经过该接入节点的分光器和1*2光开关的光开关选择到该第三合分波器的分波部分下波。在备信号流向上,该通道A的光信号通过第二合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二红蓝带滤波器,由该第二红蓝带滤波器转换到单纤中进行传输;在备信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第二带通滤波器的下波端口下波,再经过该接入节点的分光器和1*2光开关的光开关选择,该接入节点由于选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点与接入节点之间的主信号流向上出现故障时,该接入节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该接入节点的分光器和1*2光开关的光开关仍然保持接收主信号。
在上行信号时,以通道B为例,经过该接入节点中合分波器的合波部分上波,发送到分光器和1*2光开关中,然后经过该分光器和1*2光开关中的分光器部分将通道B的光信号进行分光之后向主信号流向和备信号流向上发送;在主信号流向上,该通道B的光信号通过第一带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第一红蓝带滤波器转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器,通过该第一合分波器的分波部分下波,再经过该主节点的分光器和1*2光开关中的光开关选择接收。在备信号流向上,该通道B的光信号通过第二带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第二红蓝带滤波器转换为双纤双向,再经过光放大器的放大之后发送到第二合分波器,通过该第二合分波器的分波部分下波,再经过该主节点的分光器和1*2光开关中的光开关选择,由于该主节点由于选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点与接入节点之间的主信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点发送的光信号的实时控制。
另一种可能实现方式中,该单纤环网中的主节点包括N个分光器和1*2光开关、第一合分波器、第一组光放大器、第一光交叉波分复用器、第二合分波器、第二组光放大器、第二光交叉波分复用器,其中该N的取值由该第一合分波器和该第二合分波器的上下波端口确定,该N大于或等于该第一合分波器和该第二合分波器的上下波端口数目;该接入节点包括分光器和1*2光开关、合分波器(为了区别,本实施例中称为第三合分波器)和两组带通滤波器和光交叉波分复用器(为了区别,本实施例中称为第一带通滤波器和第三光交叉波分复用器,第二带通滤波器和第四光交叉波分复用器)。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点中该分光器和1*2光开关与 该第一合分波器、该第一组光放大器、该第一光交叉波分复用器依次相连;该接入节点中该第一带通滤波器、该第三光交叉波分复用器、该分光器和1*2光开关和该第三合分波器依次相连;在下行信号的备信号流向上,该主节点中该分光器和1*2光开关与该第二合分波器、该第二组光放大器、该第二光交叉波分复用器依次相连;该接入节点中该第二带通滤波器、该第四光交叉波分复用器、该分光器和1*2光开关和该第三合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点中的分光器和1*2光开关的分光器部分上波,发送到主节点中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器,由该第一光交叉波分复用器转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第一带通滤波器和该第三光交叉波分复用器的下波端口下波,再经过该接入节点的分光器和1*2光开关的光开关选择到该第三合分波器的分波部分下波。在备信号流向上,该通道A的光信号通过第二合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二光交叉波分复用器,由该第二光交叉波分复用器转换到单纤中进行传输;在备信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第二带通滤波器和第四光交叉波分复用器的下波端口下波,再经过该接入节点的分光器和1*2光开关的光开关选择,由于该接入节点选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点与接入节点之间的主信号流向上出现故障时,该接入节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该接入节点的分光器和1*2光开关的光开关仍然保持接收主信号。
在上行信号时,以通道B为例,经过该接入节点中合分波器的合波部分上波,发送到分光器和1*2光开关中,然后经过该分光器和1*2光开关中的分光器部分将通道B的光信号进行分光之后向主信号流向和备信号流向上发送;在主信号流向上,该通道B的光信号通过第一带通滤波器和第三光交叉波分复用器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第一光交叉波分复用器转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器,通过该第一合分波器的分波部分下波,再经过该主节点的分光器和1*2光开关中的光开关选择接收。在备信号流向上,该通道B的光信号通过第二带通滤波器和第四光交叉波分复用器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第二光交叉波分复用器转换为双纤双向,再经过光放大器的放大之后发送到第二合分波器,通过该第二合分波器的分波部分下波,再经过该主节点的分光器和1*2光开关中的光开关选择,由于该主节点由于选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点与接入节点之间的主信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上 传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点发送的光信号的实时控制。
另一种可能实现方式中,该单纤环网中的主节点包括N个分光器和1*2光开关、第一合分波器、第一组光放大器、第一红蓝带滤波、第二合分波器、第二组光放大器、第二红蓝带滤波,其中该N的取值由该第一合分波器和该第二合分波器的上下波端口确定,该N大于或等于该第一合分波器和该第二合分波器的上下波端口数目;该接入节点包括2*4光开关、合分波器(为了区别,本实施例中称为第三合分波器)和两组带通滤波器(为了区别,本实施例中称为第一带通滤波器,第二带通滤波器)。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点中该分光器和1*2光开关与该第一合分波器、该第一组光放大器、该第一红蓝带滤波依次相连;该接入节点中该第一带通滤波器、该2*4光开关和该第三合分波器依次相连;在下行信号的备信号流向上,该主节点中该分光器和1*2光开关与该第二合分波器、该第二组光放大器、该第二红蓝带滤波依次相连;该接入节点中该第二带通滤波器、该2*4光开关和该第三合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点中的分光器和1*2光开关的分光器部分上波,发送到主节点中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器,由该第一红蓝带滤波器转换到单纤中进行传输;在合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第一带通滤波器的下波端口下波,再经过该接入节点的2*4光开关选择到该第三合分波器的分波部分下波。在备信号流向上,该通道A的光信号通过第二合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二红蓝带滤波器,由该第二红蓝带滤波器转换到单纤中进行传输;在合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第二带通滤波器的下波端口下波,再经过该接入节点的2*4光开关选择,由于该接入节点选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点与接入节点之间的主信号流向上出现故障时,该接入节点的2*4光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该接入节点的2*4光开关仍然保持接收主信号。
在上行信号时,以通道B为例,由于经过该接入节点中合分波器的合波部分上波,发送到2*4光开关中,该2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该接入节点接收到的是主信号时,该2*4光开关将通道B的光信号发送给主信号流向;在主信号流向上,该通道B的光信号通过第一带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第一红蓝带滤波器转 换为双纤双向,再经过光放大器的放大之后发送到第一合分波器,通过该第一合分波器的分波部分下波,再经过该主节点的分光器和1*2光开关中的光开关选择接收。在备信号流向上,因为接入节点的2*4光开关的发送光开关状态没有选择备信号,因此备信号流向上没有光信号传输。而在该主节点与接入节点之间的主信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点发送的光信号的实时控制。
另一种可能实现方式中,该单纤环网中的主节点包括N个分光器和1*2光开关、第一合分波器、第一组光放大器、第一光交叉波分复用器、第二合分波器、第二组光放大器、第二光交叉波分复用器,其中该N的取值由该第一合分波器和该第二合分波器的上下波端口确定,该N大于或等于该第一合分波器和该第二合分波器的上下波端口数目;该接入节点包括2*4光开关、两组合分波器(为了区别,本实施例中称为第三合分波器和第四合分波器)和两组带通滤波器(为了区别,本实施例中称为第一带通滤波器,第二带通滤波器)。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点中该分光器和1*2光开关与该第一合分波器、该第一组光放大器、该第一光交叉波分复用器依次相连;该接入节点中该第一带通滤波器、该第三合分波器和2*4光开关依次相连;在下行信号的备信号流向上,该主节点中该分光器和1*2光开关与该第二合分波器、该第二组光放大器、该第二光交叉波分复用器依次相连;该接入节点中该第二带通滤波器、该第四合分波器和2*4光开关依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点中的分光器和1*2光开关的分光器部分上波,发送到主节点中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器,由该第一光交叉波分复用器转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第一带通滤波器下波端口下波,再经过第三合分波器的分波部分下波,最后通过2*4光开关选择接收。在备信号流向上,该通道A的光信号通过第二合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二光交叉波分复用器,由该第二光交叉波分复用器转换到单纤中进行传输;在备信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第二带通滤波器下波端口下波,再经过第四合分波器的分波部分下波,再经过该接入节点的2*4光开关选择,由于该接入节点选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点与接入节点之间的主信号流向上出现故障时,该接入节点的2*4光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。 而在该主节点与接入节点之间的备信号流向上出现故障时,该接入节点的2*4光开关仍然保持接收主信号。
在上行信号时,以通道B为例,该2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该接入节点接收到的是主信号时,该2*4光开关将通道B的光信号发送给主信号流向,然后将该光信号发送给该接入节点中第三合分波器的合波部分上波;然后该通道B的光信号通过第一带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第一光交叉波分复用器转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器,通过该第一合分波器的分波部分下波,再经过该主节点的分光器和1*2光开关中的光开关选择接收。在备信号流向上,因为接入节点的2*4光开关的发送光开关状态没有选择备信号,因此备信号流向上没有光信号传输。而在该主节点与接入节点之间的主信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点发送的光信号的实时控制。
另一种可能实现方式中,该单纤环网中的主节点包括N个2*4光开关、第一合分波器、第一组光放大器、第一光交叉波分复用器、第二合分波器、第二组光放大器、第二光交叉波分复用器,其中该N的取值由该第一合分波器和该第二合分波器的上下波端口确定,该N大于或等于该第一合分波器和该第二合分波器的上下波端口数目;该接入节点包括1*2耦合器和1*2分光器、合分波器和两组带通滤波器和光交叉波分复用器(为了区别,本实施例中称为第一带通滤波器和第三光交叉波分复用器,第二带通滤波器和第四光交叉波分复用器)。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点中该2*4光开关与该第一合分波器、该第一组光放大器、该第一光交叉波分复用器依次相连;该接入节点中该第一带通滤波器、第三光交叉波分复用器、该1*2耦合器和1*2分光器和该合分波器依次相连;在下行信号的备信号流向上,该主节点中该2*4光开关与该第二合分波器、该第二组光放大器、该第二光交叉波分复用器依次相连;该接入节点中该第二带通滤波器、该第四光交叉波分复用器、该1*2耦合器和1*2分光器和该合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点中的2*4光开关选择主信号方向发送通道A的光信号;在主信号流向上,该通道A的光信号通过第一合分波器中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一光交叉波分复用器,由该第一光交叉波分复用器转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点之后,通过该第一带通滤波器和该第三光交叉波分复用器下波端口下波,再经过1*2耦合器和第三合分波器的分波部分下波。在备信号流向上,该主节点未向备信号发送该通道A的光信号,因此接入节点并不接收备信号。而在 该主节点与接入节点之间的主信号流向上出现故障时,该主节点的2*4光开关因检测不到主信号流向上的信号,因此切换到备信号流向,然后向该备信号流向上发送光信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该主节点仍保持在主信号流向上发送光信号。
在上行信号时,以通道B为例,该通道B的光信号通过合分波器的合波部分与其他通道的光信号进行合波,然后通过发送给主信号流向,然后将该光信号发送给该接入节点中第三合分波器的合波部分上波;然后通过1*2分光器将光信号发送给主信号流向和备信号流向;在主信号流向上,光信号通过第三光交叉波分复用器和第一带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第一光交叉波分复用器转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器,通过该第一合分波器的分波部分下波,再经过该主节点的2*4光开关选择,由于2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该主节点的发送光开关状态是主信号时,该主节点在接收光开关状态也选择主信号。在备信号流向上,光信号通过第四光交叉波分复用器和第二带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第二光交叉波分复用器转换为双纤双向,再经过光放大器的放大之后发送到第二合分波器,通过该第二合分波器的分波部分下波,再经过该主节点的2*4光开关选择,由于2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该主节点的发送光开关状态是主信号时,该主节点不再接收备信号。而在该主节点与接入节点之间的主信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点与接入节点之间的备信号流向上出现故障时,该主节点的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点发送的光信号的实时控制。
附图说明
图1为一种单纤双向环网中的单通道保护的示意图;
图2为本申请实施例中单纤环网结构的一个实施例示意图;
图3为本申请实施例中单纤环网结构的另一个实施例示意图;
图4为本申请实施例中单纤环网结构中的另一个实施例示意图;
图5为本申请实施例中单纤环网结构中的另一个实施例示意图;
图6为本申请实施例中单纤环网结构中的另一个实施例示意图;
图7为本申请实施例中单纤环网结构中的另一个实施例示意图。
具体实施方式
本申请实施例提供一种单纤环网结构,用于对WDM系统中的多个通道同时进行保护。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
光通信技术是目前发展最快的技术领域之一,波分复用(Wavelength Division Multiplexing,WDM)技术是光通信网络中实现高速大容量数据传输的首选技术。同时作为各种电信业务的基础承载网,光传输网络传送着大量的信息,一旦光传输网络的光纤通道发生故障或光传输系统失效,其影响面之广,损失之严重难以想象。而另一方面在实际应用中网络故障又难以避免,因此,光传输网络的保护对光传输网络而言是非常必要的。目前,大部分的WDM系统中的单纤双向环网通常采用传统的1+1保护或者1∶1保护的保护方式,且通常只能实现单通道保护。如图1所示为单纤双向环网中使用1+1保护的原理示意,其中光学2*1开关45和光分路器47为光学通道的收发器单元提供保护。光接收器单元43连接到光学2*1开关45,光发射器单元41连接到光分路器47。光分路器47的两个输出端口分别连接第一光学双工器38和第二光学双工器39,其中第一光学双工器38对应通道端口9a,第二光学双工器39对应通道端口9b。在该技术方案中,在光发射器单元41(即合分波器)与第一光学双工器38和第二光学双工器39(即传输模块)之间进行光学2*1开关45和光分路器47的1+1保护,保护的单元是单个传输模块,不能对合分波器在内的多路传输单元进行1+1保护。
为了解决这一问题,本申请实施例提供一种单纤环网结构,具体如图2所示:该单纤环网结构200包括:主节点201和至少一个接入节点202,其中,该主节点201与该接入节点202之间配置主信号流向和备信号流向,且该主信号流向与该备信号流向相反;其中,该主节点201包括第一保护模块2011、第一组光放大器2012、第二组光放大器2013、第一合分波器2014、第二合分波器2015、第一单纤-双纤转换器2016和第二单纤-双纤转换器2017;该接入节点202包括第三单纤-双纤转换器2021、第四单纤-双纤转换器2022以及第二保护模块2023;在由该主节点201向该接入节点202发送信号(即下行信号)的主信号流向上,该第一保护模块2011、该第一合分波器2014、该第一组光放大器2012和该第一单纤-双纤转换器2016依次相连;该第三单纤-双纤转换器2021和该第二保护模块2023依次相连;在由该主节点向该接入节点发送信号(即下行信号)的备信号流向上,该第一保护模块2011、该第二合分波器2015、该第二组光放大器2013和该第二单纤-双纤转换器2017依次相连;该第四单纤-双纤转换器2022和该第二保护模块2023依次相连;在由该接入节点202向该主节点201发送信号(即上行信号)的主信号流向上,该第一单纤-双纤转换器2016、该第一组光放大器2013、该第一合分波器2014和该第一保护模块2011依次相连;该第二保护模块2023和该第三单纤-双纤转换器2021依次相连;在由该接入节点201向该主节点202发送信号(即上行信号)的备信号流向上,该第二单纤-双纤转换器2017、 该第二组光放大器2013、该第二合分波器2015和该第一保护模块2011依次相连;该第二保护模块2023和该第四单纤-双纤转换器2022依次相连。
可选的,该第一保护模块2011为2*4光开关或者分光器和1*2光开关,这样该主节点可以在主信号和备信号之间进行选择性接收。
可选的,该第一单纤-双纤转换器2016为红蓝带滤波器或者光交叉波分复用器;该第二单纤-双纤转换器2017为红蓝带滤波器或者光交叉波分复用器。
可选的,该第二保护模块2023包括1*2耦合器和1*2分光器和合分波器;或,该第二保护模块2023包括2*4光开关和合分波器;或,该第二保护模块2023包括分光器和1*2光开关和合分波器。这样该接入节点可以在主信号和备信号之间进行选择性接收。
可选的,该第三单纤-双纤转换器2021包括带通滤波器;或,该第三单纤-双纤转换器2021包括带通滤波器和光交叉波分复用器;
该第四单纤-双纤转换器2022包括带通滤波器;或,该第四单纤-双纤转换器2022包括带通滤波器和光交叉波分复用器。
基于上述方案,该单纤环网结构200具体可以包括但不限于如下几种情况:
一种可能实现方式中,如图3所示,该单纤环网结构200中的第一单纤-双纤转换器2016的一种实现方式为第一红蓝带滤波器2016,第二单纤-双纤转换器2017的一种实现方式为第二红蓝带滤波器2017,第三单纤-双纤转换器2021的一种实现方式为第一带通滤波器2021,第四单纤-双纤转换器2022的一种实现方式为第二带通滤波器2022,该第一保护模块2011的一种实现方式为分光器和1*2光开关2011,第二保护模块2023的一种实现方式为分光器和1*2光开关和合分波器。即该单纤环网结构的主节点201包括N个分光器和1*2光开关2011、第一合分波器2014、第一组光放大器2012、第一红蓝带滤波器2016、第二合分波器2015、第二组光放大器2013、第二红蓝带滤波器2017,其中该N的取值由该第一合分波器2014和该第二合分波器2015的上下波端口确定,该N大于或等于该第一合分波器2014和该第二合分波器2015的上下波端口数目;该接入节点202包括分光器和1*2光开关、合分波器(为了区别,本实施例中称为第三合分波器)和第一带通滤波器2021和第二带通滤波器2022。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点中该分光器和1*2光开关与该第一合分波器2014、该第一组光放大器2012、该第一红蓝带滤波器2016依次相连;该接入节点中该第一带通滤波器2021、该分光器和1*2光开关和该第三合分波器依次相连;在下行信号的备信号流向上,该主节点中该分光器和1*2光开关2011与该第二合分波器2015、该第二组光放大器2013、该第二红蓝带滤波器2017依次相连;该接入节点中该第二带通滤波器2022、该分光器和1*2光开关和该第三合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点中的分光器和1*2光开关2011的分光器部分上波,发送到主节点201中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器2014中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器2016,由该第一红蓝带滤波器2016转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入 节点202之后,通过该第一带通滤波器2021的下波端口下波,再经过该接入节点202的分光器和1*2光开关的光开关选择到该第三合分波器的分波部分下波。在备信号流向上,该通道A的光信号通过第二合分波器2015中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二红蓝带滤波器2017,由该第二红蓝带滤波器2017转换到单纤中进行传输;在备信号流向上,合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第二带通滤波器2022的下波端口下波,再经过该接入节点202的分光器和1*2光开关的光开关选择,该接入节点202由于选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该接入节点202的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该接入节点202的分光器和1*2光开关的光开关仍然保持接收主信号。
在上行信号时,以通道B为例,经过该接入节点202中合分波器的合波部分上波,发送到分光器和1*2光开关中,然后经过该分光器和1*2光开关中的分光器部分将通道B的光信号进行分光之后向主信号流向和备信号流向上发送;在主信号流向上,该通道B的光信号通过第一带通滤波器2021的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点之后,通过该第一红蓝带滤波器2016转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器2014,通过该第一合分波器2014的分波部分下波,再经过该主节点201的分光器和1*2光开关2011中的光开关选择接收。在备信号流向上,该通道B的光信号通过第二带通滤波器2022的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第二红蓝带滤波器2017转换为双纤双向,再经过光放大器的放大之后发送到第二合分波器2015,通过该第二合分波器2015的分波部分下波,再经过该主节点201的分光器和1*2光开关2011中的光开关选择,由于该主节点201由于选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该主节点201的分光器和1*2光开关2011的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该主节点201的分光器和1*2光开关2011的光开关仍然保持接收主信号。
可以理解的是,该接入节点202还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点发送的光信号的实时控制。
另一种可能实现方式中,如图4所示,该单纤环网结构200中的第一单纤-双纤转换器2016的一种实现方式为第一光交叉波分复用器2016,第二单纤-双纤转换器2017的一种实现方式为第二光交叉波分复用器2017,第三单纤-双纤转换器2021的一种实现方式为第一带通滤波器加第三光交叉波分复用器2021,第四单纤-双纤转换器2022的一种实现方式为第二带通滤波器和第四光交叉波分复用器2022,该第一保护模块2011的一种实现方式为 分光器和1*2光开关2011,第二保护模块2023的一种实现方式为分光器和1*2光开关和合分波器。即该单纤环网结构200中的主节点201包括N个分光器和1*2光开关2011、第一合分波器2014、第一组光放大器2012、第一光交叉波分复用器2016、第二合分波器2015、第二组光放大器2013、第二光交叉波分复用器2017,其中该N的取值由该第一合分波器2014和该第二合分波器2015的上下波端口确定,该N大于或等于该第一合分波器2014和该第二合分波器2015的上下波端口数目;该接入节点202包括分光器和1*2光开关、合分波器(为了区别,本实施例中称为第三合分波器)和第一带通滤波器和第三光交叉波分复用器2021、第二带通滤波器和第四光交叉波分复用器2022。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点201中该分光器和1*2光开关2011与该第一合分波器2014、该第一组光放大器2012、该第一光交叉波分复用器2016依次相连;该接入节点202中该第一带通滤波器、该第三光交叉波分复用器、该分光器和1*2光开关和该第三合分波器依次相连;在下行信号的备信号流向上,该主节点201中该分光器和1*2光开关2011与该第二合分波器2015、该第二组光放大器2013、该第二光交叉波分复用器2017依次相连;该接入节点202中该第二带通滤波器、该第四光交叉波分复用器、该分光器和1*2光开关和该第三合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点201中的分光器和1*2光开关的分光器部分上波,发送到主节点201中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器2014中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器2016,由该第一光交叉波分复用器2016转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第一带通滤波器和该第三光交叉波分复用器的下波端口下波,再经过该接入节点202的分光器和1*2光开关的光开关选择到该第三合分波器的分波部分下波。在备信号流向上,该通道A的光信号通过第二合分波器2015中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二光交叉波分复用器2017,由该第二光交叉波分复用器2017转换到单纤中进行传输;在备信号流向上,合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第二带通滤波器和第四光交叉波分复用器的下波端口下波,再经过该接入节点202的分光器和1*2光开关的光开关选择,由于该接入节点202选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该接入节点202的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该接入节点202的分光器和1*2光开关的光开关仍然保持接收主信号。
在上行信号时,以通道B为例,经过该接入节点202中合分波器的合波部分上波,发送到分光器和1*2光开关中,然后经过该分光器和1*2光开关中的分光器部分将通道B的光信号进行分光之后向主信号流向和备信号流向上发送;在主信号流向上,该通道B的光 信号通过第一带通滤波器和第三光交叉波分复用器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第一光交叉波分复用器2016转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器2014,通过该第一合分波器2014的分波部分下波,再经过该主节点201的分光器和1*2光开关中的光开关选择接收。在备信号流向上,该通道B的光信号通过第二带通滤波器和第四光交叉波分复用器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第二光交叉波分复用器2017转换为双纤双向,再经过光放大器的放大之后发送到第二合分波器2015,通过该第二合分波器2015的分波部分下波,再经过该主节点201的分光器和1*2光开关中的光开关选择,由于该主节点201由于选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该主节点201的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该主节点201的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点202还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点202发送的光信号的实时控制。
另一种可能实现方式中,如图5所示,该单纤环网结构200中的第一单纤-双纤转换器2016的一种实现方式为第一红蓝带滤波器2016,第二单纤-双纤转换器2017的一种实现方式为第二红蓝带滤波器2017,第三单纤-双纤转换器2021的一种实现方式为第一带通滤波器2021,第四单纤-双纤转换器2022的一种实现方式为第二带通滤波器2022,该第一保护模块2011的一种实现方式为分光器和1*2光开关2011,第二保护模块2023的一种实现方式为2*4光开关和合分波器。即该单纤环网中的主节点201包括N个分光器和1*2光开关2011、第一合分波器2014、第一组光放大器2012、第一红蓝带滤波器2016、第二合分波器2015、第二组光放大器2013、第二红蓝带滤波器2017,其中该N的取值由该第一合分波器2014和该第二合分波器2015的上下波端口确定,该N大于或等于该第一合分波器2014和该第二合分波器2015的上下波端口数目;该接入节点202包括2*4光开关、合分波器(为了区别,本实施例中称为第三合分波器)和第一带通滤波器2021,第二带通滤波器2022。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点201中该分光器和1*2光开关2011与该第一合分波器2014、该第一组光放大器2012、该第一红蓝带滤波器2016依次相连;该接入节点202中该第一带通滤波器2021、该2*4光开关和该第三合分波器依次相连;在下行信号的备信号流向上,该主节点201中该分光器和1*2光开关2011与该第二合分波器2015、该第二组光放大器2013、该第二红蓝带滤波器2017依次相连;该接入节点202中该第二带通滤波器2022、该2*4光开关和该第三合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点201中的分光器和1*2光开关的分光器部分上波,发送到主节点201中的主信号流向和备信号流向;在主信号流向上,该通道A 的光信号通过第一合分波器2014中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一红蓝带滤波器2016,由该第一红蓝带滤波器2016转换到单纤中进行传输;在合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第一带通滤波器2021的下波端口下波,再经过该接入节点202的2*4光开关选择到该第三合分波器的分波部分下波。在备信号流向上,该通道A的光信号通过第二合分波器2015中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二红蓝带滤波器2017,由该第二红蓝带滤波器2017转换到单纤中进行传输;在合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第二带通滤波器2022的下波端口下波,再经过该接入节点202的2*4光开关选择,由于该接入节点202选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该接入节点202的2*4光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该接入节点202的2*4光开关仍然保持接收主信号。
在上行信号时,以通道B为例,由于经过该接入节点202中合分波器的合波部分上波,发送到2*4光开关中,该2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该接入节点202接收到的是主信号时,该2*4光开关将通道B的光信号发送给主信号流向;在主信号流向上,该通道B的光信号通过第一带通滤波器2021的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第一红蓝带滤波器2016转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器2014,通过该第一合分波器2014的分波部分下波,再经过该主节点201的分光器和1*2光开关中的光开关选择接收。在备信号流向上,因为接入节点202的2*4光开关的发送光开关状态没有选择备信号,因此备信号流向上没有光信号传输。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该主节点201的分光器和1*2光开关2011的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该主节点201的分光器和1*2光开关2011的光开关仍然保持接收主信号。
可以理解的是,该接入节点202还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点202发送的光信号的实时控制。
另一种可能实现方式中,如图6所示,该单纤环网结构200中的第一单纤-双纤转换器2016的一种实现方式为第一光交叉波分复用器2016,第二单纤-双纤转换器2017的一种实现方式为第二光交叉波分复用器2017,第三单纤-双纤转换器2021的一种实现方式为第一带通滤波器2021,第四单纤-双纤转换器2022的一种实现方式为第二带通滤波器2022,该第一保护模块2011的一种实现方式为分光器和1*2光开关2011,第二保护模块2023的一种实现方式为2*4光开关和合分波器。即该单纤环网中的主节点201包括N个分光器和1*2光开关2011、第一合分波器2014、第一组光放大器2012、第一光交叉波分复用器2016、 第二合分波器2015、第二组光放大器2013、第二光交叉波分复用器2017,其中该N的取值由该第一合分波器2014和该第二合分波器2015的上下波端口确定,该N大于或等于该第一合分波器2014和该第二合分波器2015的上下波端口数目;该接入节点202包括2*4光开关、两组合分波器(为了区别,本实施例中称为第三合分波器和第四合分波器)和第一带通滤波器2021,第二带通滤波器2022。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点201中该分光器和1*2光开关2011与该第一合分波器2014、该第一组光放大器2012、该第一光交叉波分复用器2016依次相连;该接入节点202中该第一带通滤波器2021、该第三合分波器和2*4光开关依次相连;在下行信号的备信号流向上,该主节点201中该分光器和1*2光开关2011与该第二合分波器2015、该第二组光放大器2013、该第二光交叉波分复用器2017依次相连;该接入节点202中该第二带通滤波器2022、该第四合分波器和2*4光开关依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点201中的分光器和1*2光开关的分光器部分上波,发送到主节点201中的主信号流向和备信号流向;在主信号流向上,该通道A的光信号通过第一合分波器2014中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一光交叉波分复用器2016,由该第一光交叉波分复用器2016转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第一带通滤波器2021下波端口下波,再经过第三合分波器的分波部分下波,最后通过2*4光开关选择接收。在备信号流向上,该通道A的光信号通过第二合分波器2015中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第二光交叉波分复用器2017,由该第二光交叉波分复用器2017转换到单纤中进行传输;在备信号流向上,合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第二带通滤波器2022下波端口下波,再经过第四合分波器的分波部分下波,再经过该接入节点202的2*4光开关选择,由于该接入节点202选择了主信号流向上的光信号,因此该备信号流向上的光信号不再被选择。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该接入节点202的2*4光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该接入节点202的2*4光开关仍然保持接收主信号。
在上行信号时,以通道B为例,该2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该接入节点202接收到的是主信号时,该2*4光开关将通道B的光信号发送给主信号流向,然后将该光信号发送给该接入节点202中第三合分波器的合波部分上波;然后该通道B的光信号通过第一带通滤波器2021的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第一光交叉波分复用器2016转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器2014,通过该第一合分波器2014的分波部分下波,再经过该主节点201的分光器和1*2光开关2011中的光开关选择接收。在备信号流向上,因为接入节点202的2*4光开关的发送光开关状态 没有选择备信号,因此备信号流向上没有光信号传输。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该主节点201的分光器和1*2光开关2011的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该主节点201的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点202还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点202发送的光信号的实时控制。
另一种可能实现方式中,如图7所示,该单纤环网结构200中的第一单纤-双纤转换器2016的一种实现方式为第一光交叉波分复用器2016,第二单纤-双纤转换器2017的一种实现方式为第二光交叉波分复用器2017,第三单纤-双纤转换器2021的一种实现方式为第一带通滤波器加第三光交叉波分复用器2021,第四单纤-双纤转换器2022的一种实现方式为第二带通滤波器加第四光交叉波分复用器2022,该第一保护模块2011的一种实现方式为2*4光开关2011,第二保护模块2023的一种实现方式为1*2耦合器加1*2分光器和合分波器。即该单纤环网中的主节点201包括N个2*4光开关2011、第一合分波器2014、第一组光放大器2012、第一光交叉波分复用器2016、第二合分波器2015、第二组光放大器2013、第二光交叉波分复用器2017,其中该N的取值由该第一合分波器2014和该第二合分波器2015的上下波端口确定,该N大于或等于该第一合分波器2014和该第二合分波器2015的上下波端口数目;该接入节点202包括1*2耦合器和1*2分光器、合分波器和第一带通滤波器和第三光交叉波分复用器2021,第二带通滤波器和第四光交叉波分复用器2022。其中,该单纤环网中各器件的具体连接关系如下:在下行信号的主信号流向上,该主节点201中该2*4光开关2011与该第一合分波器2014、该第一组光放大器2012、该第一光交叉波分复用器2016依次相连;该接入节点202中该第一带通滤波器、第三光交叉波分复用器、该1*2耦合器和1*2分光器和该合分波器依次相连;在下行信号的备信号流向上,该主节点201中该2*4光开关2011与该第二合分波器2015、该第二组光放大器2013、该第二光交叉波分复用器2017依次相连;该接入节点202中该第二带通滤波器、该第四光交叉波分复用器、该1*2耦合器和1*2分光器和该合分波器依次相连。在该方案中,该单纤环网结构中的信号流向可以如下:
在下行信号时,以通道A为例,经过该主节点201中的2*4光开关2011选择主信号方向发送通道A的光信号;在主信号流向上,该通道A的光信号通过第一合分波器2014中的合波部分与其他通道上的光信号合波,再经过与合波部分相连的光放大器放大并输出到第一光交叉波分复用器2016,由该第一光交叉波分复用器2016转换到单纤中进行传输;在主信号流向上,合波后的通道A的光信号经过单纤到达该接入节点202之后,通过该第一带通滤波器和该第三光交叉波分复用器下波端口下波,再经过1*2耦合器和1*2分光器中的耦合器部分和第三合分波器的分波部分下波。在备信号流向上,该主节点201未向备信号发送该通道A的光信号,因此接入节点202并不接收备信号。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该主节点201的2*4光开关因检测不到主信号 流向上的信号,因此切换到备信号流向,然后向该备信号流向上发送光信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该主节点201仍保持在主信号流向上发送光信号。
在上行信号时,以通道B为例,该通道B的光信号通过合分波器的合波部分与其他通道的光信号进行合波,然后通过发送给主信号流向,然后将该光信号发送给该接入节点202中第三合分波器的合波部分上波;然后通过1*2耦合器和1*2分光器中的分光器部分将光信号发送给主信号流向和备信号流向;在主信号流向上,光信号通过第三光交叉波分复用器和第一带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第一光交叉波分复用器2016转换为双纤双向,再经过光放大器的放大之后发送到第一合分波器2014,通过该第一合分波器2014的分波部分下波,再经过该主节点201的2*4光开关选择,由于2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该主节点201的发送光开关状态是主信号时,该主节点201在接收光开关状态也选择主信号。在备信号流向上,光信号通过第四光交叉波分复用器和第二带通滤波器的上波端口转换到单纤中进行传输;在通道B的光信号经过单纤到达该主节点201之后,通过该第二光交叉波分复用器2017转换为双纤双向,再经过光放大器的放大之后发送到第二合分波器2015,通过该第二合分波器2015的分波部分下波,再经过该主节点201的2*4光开关选择,由于2*4光开关的发送光开关状态与接收光开关状态保持相同,因此当下行信号中该主节点201的发送光开关状态是主信号时,该主节点201不再接收备信号。而在该主节点201与接入节点202之间的主信号流向上出现故障时,该主节点201的分光器和1*2光开关的光开关检测不到原主信号流向上的传输的主信号,因此切换到备信号流向,选择接收该备信号流向上传输的备信号。而在该主节点201与接入节点202之间的备信号流向上出现故障时,该主节点201的分光器和1*2光开关的光开关仍然保持接收主信号。
可以理解的是,该接入节点202还可以包括可变光衰减器(Variable Optical Attenuator,VOA),这样可以通过衰减传输光功率来实现对接入节点202发送的光信号的实时控制。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种单纤环网结构,其特征在于,包括:
    主节点和接入节点,所述主节点与所述接入节点之间配置主信号流向和备信号流向,所述主信号流向与所述备信号流向相反;
    所述主节点与所述接入节点通过节点间单纤连接;
    所述主节点包括第一保护模块、第一组光放大器、第二组光放大器、第一合分波器、第二合分波器、第一单纤-双纤转换器和第二单纤-双纤转换器,其中,所述第一保护模块,用于选择;
    所述接入节点包括第三单纤-双纤转换器、第四单纤-双纤转换器,第二保护模块;
    在所述主节点向所述接入节点发送信号的主信号流向上,所述第一保护模块、所述第一合分波器、所述第一组光放大器和所述第一单纤-双纤转换器依次相连;所述第三单纤-双纤转换器和所述第二保护模块依次相连;
    在所述主节点向所述接入节点发送信号的备信号流向上,所述第一保护模块、所述第二合分波器、所述第二组光放大器和所述第二单纤-双纤转换器依次相连;所述第四单纤-双纤转换器和所述第二保护模块依次相连。
  2. 根据权利要求1所述的单纤环网结构,其特征在于,所述第一保护模块为双路光开交或者分光器和1*2光开关,所述分光器和1*2光开关包括光开关和分光器。
  3. 根据权利要求1所述的单纤环网结构,其特征在于,所述第一单纤-双纤转换器为红蓝带滤波器或者光交叉波分复用器;
    所述第二单纤-双纤转换器为红蓝带滤波器或者光交叉波分复用器。
  4. 根据权利要求1所述的单纤环网结构,其特征在于,所述第二保护模块包括1*2耦合器和1*2分光器和合分波器;
    或,
    所述第二保护模块包括2*4光开关和合分波器;
    或,
    所述第二保护模块包括分光器和1*2光开关和合分波器。
  5. 根据权利要求1所述的单纤环网结构,其特征在于,所述第三单纤-双纤转换器包括带通滤波器;
    或,
    所述第三单纤-双纤转换器包括带通滤波器和光交叉波分复用器;
    所述第四单纤-双纤转换器包括带通滤波器;
    或,
    所述第四单纤-双纤转换器包括带通滤波器和光交叉波分复用器。
  6. 根据权利要求1至5中任一项所述的单纤环网结构,其特征在于,所述第一保护模块包括光保护分光器和1*2光开关,所述第一单纤-双纤转换器和第二单纤-双纤转换器为红蓝带滤波器;
    所述第二保护模块包括分光器和1*2光开关和合分波器,所述第三单纤-双纤转换器和 所述第四单纤-双纤转换器为带通滤波器,其中,在所述主节点向所述接入节点发送信号的主信号流向上,所述带通滤波器、所述分光器和1*2光开关和所述合分波器依次相连,在所述主节点向所述接入节点发送信号的备信号流向上,所述带通滤波器、所述分光器和1*2光开关和所述合分波器依次相连。
  7. 根据权利要求1至5中任一项所述的单纤环网结构,其特征在于,所述第一保护模块包括分光器和1*2光开关,所述第一单纤-双纤转换器和第二单纤-双纤转换器为光交叉波分复用器;
    所述第二保护模块包括分光器和1*2光开关和合分波器,所述第三单纤-双纤转换器和所述第四单纤-双纤转换器包括带通滤波器和光交叉波分复用器,其中,在所述主节点向所述接入节点发送信号的主信号流向上,所述带通滤波器、所述光交叉波分复用器、所述分光器和1*2光开关和所述合分波器依次相连,在所述主节点向所述接入节点发送信号的备信号流向上,所述带通滤波器、所述光交叉波分复用器、所述分光器和1*2光开关和所述合分波器依次相连。
  8. 根据权利要求1至5中任一项所述的单纤环网结构,其特征在于,所述第一保护模块包括分光器和1*2光开关,所述第一单纤-双纤转换器和第二单纤-双纤转换器为红蓝带滤波器;
    所述第二保护模块包括2*4光开关和合分波器,所述第三单纤-双纤转换器和所述第四单纤-双纤转换器为带通滤波器,其中,在所述主节点向所述接入节点发送信号的主信号流向上,所述带通滤波器、所述2*4光开关和所述合分波器依次相连,在所述主节点向所述接入节点发送信号的备信号流向上,所述带通滤波器、所述2*4光开关和所述合分波器依次相连。
  9. 根据权利要求1至5中任一项所述的单纤环网结构,其特征在于,所述第一保护模块包括分光器和1*2光开关,所述第一单纤-双纤转换器和第二单纤-双纤转换器为光交叉波分复用器;
    所述第二保护模块包括2*4光开关和合分波器,所述第三单纤-双纤转换器和所述第四单纤-双纤转换器为带通滤波器,其中,在所述主节点向所述接入节点发送信号的主信号流向上,所述带通滤波器、所述合分波器和所述2*4光开关依次相连,在所述主节点向所述接入节点发送信号的备信号流向上,所述带通滤波器、所述合分波器和所述2*4光开关依次相连。
  10. 根据权利要求1至5中任一项所述的单纤环网结构,其特征在于,所述第一保护模块包括2*4光开关,所述第一单纤-双纤转换器和第二单纤-双纤转换器为光交叉波分复用器;
    所述第二保护模块包括1*2耦合器和1*2分光器和合分波器,所述第三单纤-双纤转换器和所述第四单纤-双纤转换器为带通滤波器,其中,在所述主节点向所述接入节点发送信号的主信号流向上,所述带通滤波器、所述1*2耦合器和1*2分光器和所述合分波器依次相连,在所述主节点向所述接入节点发送信号的备信号流向上,所述带通滤波器、所述1*2耦合器和1*2分光器和所述合分波器依次相连。
PCT/CN2019/080671 2019-03-29 2019-03-29 一种单纤环网结构 WO2020199041A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/080671 WO2020199041A1 (zh) 2019-03-29 2019-03-29 一种单纤环网结构
CN201980030048.8A CN112088501B (zh) 2019-03-29 2019-03-29 一种单纤环网结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080671 WO2020199041A1 (zh) 2019-03-29 2019-03-29 一种单纤环网结构

Publications (1)

Publication Number Publication Date
WO2020199041A1 true WO2020199041A1 (zh) 2020-10-08

Family

ID=72664437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080671 WO2020199041A1 (zh) 2019-03-29 2019-03-29 一种单纤环网结构

Country Status (2)

Country Link
CN (1) CN112088501B (zh)
WO (1) WO2020199041A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852058A (zh) * 2006-05-29 2006-10-25 浙江工业大学 单纤双向复用段专用保护光纤环网
US7433593B1 (en) * 2002-06-28 2008-10-07 Ciena Corporation Switching algorithm for optical fiber networks
CN101729182A (zh) * 2009-11-24 2010-06-09 中兴通讯股份有限公司 单纤双向环网保护方法、系统及装置
CN104301028A (zh) * 2014-04-22 2015-01-21 国家电网公司 一种基于单纤多环相切式波分复用光网络系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741502A (zh) * 2009-11-26 2010-06-16 上海大学 环形波分复用无源光网实现自愈功能的系统及其传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433593B1 (en) * 2002-06-28 2008-10-07 Ciena Corporation Switching algorithm for optical fiber networks
CN1852058A (zh) * 2006-05-29 2006-10-25 浙江工业大学 单纤双向复用段专用保护光纤环网
CN101729182A (zh) * 2009-11-24 2010-06-09 中兴通讯股份有限公司 单纤双向环网保护方法、系统及装置
CN104301028A (zh) * 2014-04-22 2015-01-21 国家电网公司 一种基于单纤多环相切式波分复用光网络系统

Also Published As

Publication number Publication date
CN112088501B (zh) 2022-07-12
CN112088501A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
US7164861B2 (en) Node apparatus, optical wavelength division multiplexing network, and system switching method
JP3006680B2 (ja) 光伝送装置
US8131149B2 (en) Optical routing device and optical network using same
EP0769859B1 (en) Transparent optical self-healing ring communication network
JP2013541301A (ja) 波長選択スイッチのバンド・アグリゲータおよびバンド・デアグリゲータ、ならびにそれを使用するシステムおよび方法
EP1613001A1 (en) Hybrid optical ring network
WO2004064259A2 (en) Fully protected broadcast and select all optical network
EP1137307A2 (en) Optical node system and connection method
US6091869A (en) Low loss, optical add/drop WDM node
CA2394599A1 (en) Four-fiber ring optical cross-connect system using 4x4 switch matrices
US7120360B2 (en) System and method for protecting traffic in a hubbed optical ring network
JP3698944B2 (ja) 光ファイバ通信システム用の再構成可能な合流/分岐
EP1473960A2 (en) Bi-directional wavelength division multiplexing self-healing optical ring network
CN102265640A (zh) 光线路传输保护系统和方法
WO2020199041A1 (zh) 一种单纤环网结构
US20050129403A1 (en) Method and system for communicating optical traffic at a node
JP2018113556A (ja) 波長多重光通信システム
US6616348B1 (en) Method and optical communication network for bidirectional protection protocols
JP2000134649A (ja) 光クロスコネクト装置
US7305184B2 (en) Method and system for management of directly connected optical components
US20030048504A1 (en) WDM network node module
CA2359446A1 (en) Method and apparatus for terminating optical links in an optical network
JP2000236303A (ja) 光伝送システム
KR20000033945A (ko) 파장분할다중방식 광전송망에서의 동적 라우팅 기능을 갖는 파장분할다중 전송장치
KR20070108130A (ko) 로컬 네트워킹 능력을 갖는 pon 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923131

Country of ref document: EP

Kind code of ref document: A1