WO2020197312A1 - Fluxgate magnetometer and manufacturing method therefor - Google Patents

Fluxgate magnetometer and manufacturing method therefor Download PDF

Info

Publication number
WO2020197312A1
WO2020197312A1 PCT/KR2020/004183 KR2020004183W WO2020197312A1 WO 2020197312 A1 WO2020197312 A1 WO 2020197312A1 KR 2020004183 W KR2020004183 W KR 2020004183W WO 2020197312 A1 WO2020197312 A1 WO 2020197312A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic material
pickup
drive
magnetic
Prior art date
Application number
PCT/KR2020/004183
Other languages
French (fr)
Korean (ko)
Inventor
장한성
서주희
박정원
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Publication of WO2020197312A1 publication Critical patent/WO2020197312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • G01R33/05Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle in thin-film element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Definitions

  • the present invention relates to a fluxgate magnetometer and a manufacturing method thereof, and more particularly, to a thin film fluxgate measuring an application direction and intensity of an external magnetic field, and a manufacturing method thereof.
  • Fluxgate Magnetometer (hereinafter simply referred to as'Fluxgate') is a type of magnetic sensor, and is used to search for buried materials containing steel such as mines or to detect the earth's magnetic field by being implemented as an electronic compass. It is a sensor.
  • a fluxgate sensor including three fluxgates arranged in the X-axis, Y-axis and Z-axis directions, respectively, can detect the direction and strength of a magnetic field applied from the outside.
  • the basic structure of the flux gate is a structure in which a drive coil 3 and a pickup coil 4 are wound around a magnetic body 1 surrounded by an insulating film 2.
  • a voltage is induced in the pickup coil 4.
  • the induced voltage is measured through a voltmeter V to detect the application direction and strength of the external magnetic field.
  • a flux gate having a rod-shaped structure as shown in Fig. 1(a) may be used.
  • a flux gate having a circular structure having a small height as shown in Fig. 1(b) is suitable as a flux gate for the Z-axis.
  • FIG. 2 shows the internal structure of a conventional fluxgate.
  • a silicon wafer substrate formed with an insulating film 2 made of silicon oxide by a method such as high temperature oxidation is used.
  • the lower coil 5 constituting the lower half of the drive coil 3 and/or the pickup coil 4 is formed on the surface of the insulating film 2 of the substrate.
  • the lower coil 5 is formed of a metal material such as aluminum or copper having high electrical conductivity.
  • a lower insulating film 6 made of a material such as SiO 2 , Ta 2 O 5 , or Al 2 O 3 is formed on the upper end of the lower coil 5.
  • a magnetic body 1 having ferromagnetic properties is formed on the upper end of the lower insulating film 6.
  • the magnetic body 1 may have a structure in which several layers of NiFe are stacked.
  • An upper insulating film 7 made of a material such as SiO 2 , Ta 2 O 5 , or Al 2 O 3 is formed on the upper end of the magnetic body 1.
  • the upper coil 9 constituting the upper half of the drive coil 3 and/or the pickup coil 4 is formed. Accordingly, a fluxgate magnetometer in which the lower coil 5 and the upper coil 9 surround the magnetic body 1 is completed.
  • FIG. 2(b) is a cross-sectional view in the direction AA′, which is the longitudinal direction of the flux gate shown in FIG. 2(a).
  • the flux gate is formed in a structure in which a lower coil 5, a lower insulating film 6, a magnetic material 1, an upper insulating film 7 and an upper coil 9 are stacked.
  • the magnetic body 1 may be formed in a structure in which a plurality of magnetic thin films (eg, NiFe film) and a plurality of insulating interlayers (eg, SiO 2 film, Ta 2 O 5 film, or Al 2 O 3 film) are alternately stacked. have.
  • a side insulating film 8 may be formed to prevent an electric short circuit between the side portion of the magnetic body 1 and the upper coil 9.
  • FIG. 3 illustrates a three-axis fluxgate sensor (eg, an electronic compass chip) composed of an X-axis fluxgate 14, a Y-axis fluxgate 13, and a Z-axis fluxgate 12.
  • the X-axis fluxgate 14 and the Y-axis fluxgate 13 are implemented in a rod-shaped structure
  • the Z-axis fluxgate 12 is implemented in a circular structure.
  • Each fluxgate is combined with the fluxgate driving circuit 15 (ASIC) and die-bonded on the packaging PCB 10, and then epoxy molding 11 is performed to implement the three-axis fluxgate sensor shown in FIG. have.
  • An object according to an aspect of the present invention is to introduce a structure capable of buffering the stress caused by the difference in the thermal expansion coefficient between the components, to prevent damage to the device in the manufacturing process and to improve through the implementation of a magnetic body with good characteristics. It is to provide a fluxgate device having performance and a method of manufacturing the same.
  • Another object of the present invention is to provide a fluxgate device having improved performance and a manufacturing method thereof through a structure capable of increasing the magnitude of a pickup voltage detected from a pickup coil under a condition that the minimum height of the fluxgate is maintained. will be.
  • a fluxgate magnetometer for achieving the above objects includes a lower coil, a lower structure, a magnetic material, an upper insulating film, and an upper coil sequentially stacked on a substrate insulating film on a substrate.
  • the lower coil is formed in a form buried in a plurality of rows of grooves for burying the lower coil provided in the substrate insulating film, and each lower coil has its own edge portion lower than the upper end of the lower coil burying groove to bury the lower coil.
  • a buffer groove which is an empty space, is formed above the edge portion near the upper end of the sidewall portion of the dragon groove.
  • the lower structure is formed by using a spin-on-glass composition or material or a flowable oxide material to provide a flat surface while filling the buffer groove and covering the substrate insulating film and the lower coils. It includes a planarization thin film configured to buffer stress due to a difference in thermal expansion coefficient between neighboring components.
  • each of the plurality of conductive lower coils has a height of a central portion of an upper surface substantially the same as a height of an upper end of the groove for filling the lower coil, and a height of the edge portion is lower than that of the central portion of the upper surface.
  • a buffer groove may be provided.
  • the lower structure may further include a lower insulating layer formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
  • the lower insulating layer is formed of any of SiO 2 , Ta 2 O 3 and Al 2 O 3 to prevent destruction of the planarization thin film due to compressive stress of the magnetic material during the process of the flux gate. It can be formed of one material.
  • the lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape, and are induced by a drive coil for passing a drive current and a magnetic flux passing through it. It may be configured to separately form a pickup coil for detecting the pickup voltage.
  • the magnetic material is a pick-up area magnetic material that extends in a straight line for a predetermined length and at least the pick-up coil is wound, and the pick-up area is branched in both directions from the upper and lower ends of the magnetic material, and has an elliptical structure or a straight section and a curved section.
  • a land track-type structure consisting of a combination of, a square structure, and a drive area in which the pickup area is formed in any one of two U-shaped structures that face each other in an S shape connected to the magnetic body, and at least the drive coil is wound. It may contain a magnetic material.
  • the drive coil may be further wound around the pickup area magnetic material in order to prevent a peak value of the pickup voltage from decreasing due to an externally applied magnetic field.
  • a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area may be 1:1 or 1:2.
  • the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. It is formed of a two-stage magnetic body including the formed second-stage drive region magnetic body, and a sum of cross-sectional areas of the first and second-stage drive region magnetic bodies may be greater than the cross-sectional area of the pickup region magnetic body.
  • the magnetic material has a structure in which a plurality of sets of magnetic layers are continuously stacked, and a set of magnetic layers may include a magnetic thin layer formed of a magnetic material and an insulating thin layer stacked thereon.
  • a fluxgate magnetometer includes a lower coil, a lower structure, a magnetic material, an upper insulating film, and an upper coil sequentially stacked on a substrate insulating film on a substrate.
  • the lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape to detect a pickup voltage induced by a magnetic flux passing through a drive coil for passing a drive current. Separately form the pickup coil.
  • the magnetic material is a pick-up area magnetic material that extends for a predetermined length in a straight line and at least the pick-up coil is wound; And a land track-type structure composed of a combination of a straight section and a curved section by branching from the upper and lower ends of the magnetic material in the pickup area, a rectangular structure, and two facing each other in a form connected to the magnetic material in the pickup area forming an S shape. It is formed in any one of the U-shaped structure, and at least includes a drive region magnetic material wound around the drive coil.
  • the drive coil may be further wound around the pickup area magnetic material in order to prevent a peak value of the pickup voltage from decreasing due to an externally applied magnetic field.
  • a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area may be 1:1 or 1:2.
  • the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. It is formed of a two-stage magnetic body including the formed second-stage drive region magnetic body, and a sum of cross-sectional areas of the first and second-stage drive region magnetic bodies may be greater than the cross-sectional area of the pickup region magnetic body.
  • the lower coil is formed to be buried in a plurality of rows of grooves for filling the lower coil provided in the substrate insulating layer, and each lower coil has its own edge portion lower than the upper end of the lower coil buried groove. It may be formed such that a buffer groove is provided on the edge portion near an upper end of the sidewall portion of the lower coil buried groove.
  • the lower structure part is formed by using an SOG composition or a flowable oxide material to fill the buffer groove and provide a flat surface while covering the substrate insulating film and the lower coils, so that the difference in thermal expansion coefficient between neighboring components It may include a planarization thin film configured to buffer the resulting stress.
  • the lower structure may further include a lower insulating layer formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
  • a fluxgate magnetometer for achieving the above objects includes: a substrate; A substrate insulating film stacked on an upper surface of the substrate to provide insulation and having a plurality of rows of grooves for filling the lower coils formed on the upper surface; Each of the plurality of rows of lower coil embedding grooves is buried, and each edge portion is an empty space between the edge portion and the sidewall portion of the lower coil embedding groove by a step formed lower than the upper end surface of the lower coil embedding groove.
  • a plurality of rows of lower coils formed to have buffer grooves; A planarization thin film filling the buffer groove and covering the substrate insulating layer and the plurality of rows of lower coils to provide a flat surface; And a lower insulating layer formed on the planarized surface of the planarizing thin film to provide insulation.
  • a magnetic material stacked on the upper surface of the lower structure; An upper insulating layer covering the side and upper surfaces of the magnetic material to cooperate with the lower structure to insulate the magnetic material from the outside; And it includes a plurality of rows of upper coils formed to surround the upper surface and side surfaces of the upper insulating layer.
  • the lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape to detect a pickup voltage induced by a magnetic flux passing through a drive coil for passing a drive current.
  • the magnetic body extends a predetermined length in a straight line, and at least the pickup area magnetic body around which the pickup coil is wound, and the pickup area magnetic body are branched in both directions at the upper and lower ends of the magnetic body in the pickup area, and are formed of an elliptical structure, or a combination of a straight section and a curved section.
  • a track-shaped structure, a quadrangular structure, and a drive area magnetic material connected to the pickup area magnetic material is formed in any one of two U-shaped structures facing each other in an S shape, and at least the drive coil is wound.
  • the planarization thin film is coated on the plurality of lower coils and the substrate insulating film while filling the buffer groove in a spin coating method in a sol state to form a flat surface, and after curing, hard gel It may be made of a material that is transformed into a gel) state and has physical properties capable of buffering the stress caused by the difference in the coefficient of thermal expansion between neighboring components.
  • the planarization thin film may be formed of an SOG composition (spin-on-glass composition or material) or a flowable oxide material.
  • the drive coil may be further wound around the pickup area magnetic material in order to prevent a peak value of the pickup voltage from decreasing due to an externally applied magnetic field.
  • the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. It is formed of a two-stage magnetic body including the formed second-stage drive region magnetic body, and a sum of cross-sectional areas of the first and second-stage drive region magnetic bodies may be greater than the cross-sectional area of the pickup region magnetic body.
  • the drive coil wound around the curved section of the magnetic body of the drive area magnetic body of the elliptical structure or the curved section of the drive area magnetic body of the land track structure and the two U-shaped structures is from the center of the radius of curvature to the outside. It may be formed to increase the line width as it goes.
  • the method of manufacturing a fluxgate magnetometer according to still another embodiment of the present invention for achieving the above objects is to manufacture a fluxgate magnetometer formed by sequentially stacking a lower coil, a lower structure part, a magnetic material, an upper insulating film, and an upper coil. That's the way.
  • the manufacturing method includes the steps of forming a plurality of rows of grooves for burying lower coils in which the lower coils are to be formed in a substrate insulating film formed on a silicon wafer substrate; A plurality of rows of lower coils are formed in the form of being buried in the plurality of rows of lower coil embedding grooves, but the edge of each lower coil is formed lower than the upper end of the lower coil embedding groove, so that the sidewall of the lower coil embedding groove Forming a lower coil such that a plurality of buffer grooves in the form of empty spaces are provided above the edge portion near an upper end; And SOG composition or flowable oxide material is coated on the substrate insulating film and the lower coils while filling the buffer groove, performing spin coating to form a flat surface, and curing to form a hard gel state. And forming an understructure including the formed planarization thin film.
  • the planarizing thin film has physical properties capable of buffering a stress caused by a difference in thermal expansion coefficient between neighboring components.
  • a conductive metal is sputtered on the plurality of rows of lower coil embedding grooves while the photoresist is coated, so that the height of the central part is It is substantially the same as the upper end, and the height of the edge portion is lower than the central portion to form a lower coil having a surface profile in which the buffer groove is provided.
  • the lower coil in the forming of the groove for filling the lower coil, is formed by performing a primary etching on an etching region on the substrate insulating layer that is not coated with a photoresist (PR). Forming a primary region; And forming the lower coil embedding groove in a structure in which the inlet edge of the lower coil embedding groove is covered by the photoresist by additionally performing a second etching on the first region to expand the first region. It may include.
  • PR photoresist
  • the first etching may be performed through a dry etching process
  • the second etching may be performed through wet etching.
  • a portion of the lateral tip of the photoresist covering the inlet of the groove for burying the lower coil is removed through additional dry etching, and then the groove for burying the lower coil is removed. It may include the step of forming the lower coil.
  • the manufacturing method further includes forming a lower insulating layer to be stacked on the planarizing thin film as a part of the lower structure with any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 . can do.
  • the lower insulating layer may prevent destruction of the planarization thin film due to compressive stress of the magnetic material during the manufacturing process of the fluxgate magnetometer, and may provide insulation.
  • the magnetic material is formed in a structure in which a plurality of magnetic material films are continuously stacked on the lower structure part, and the magnetic material film of one set is a magnetic thin film formed of a magnetic material and an insulating thin film laminated thereon.
  • an upper coil connected to the lower coils is formed to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape, and pass through a drive coil for passing a drive current. It may further include a step of separately forming a pickup coil for detecting the pickup voltage induced by the magnetic flux.
  • the forming of the magnetic body includes a pickup area magnetic body in which the magnetic body extends in a linear shape for a predetermined length and at least the pickup coil is wound, and the pickup area magnetic body is branched in both directions at the upper and lower ends of the magnetic body.
  • a structure, or a track-type structure consisting of a combination of a straight section and a curved section, a square structure, and one of two U-shaped structures facing each other in which the shape connected to the pickup area magnetic body forms an S-shape, and at least It may be formed to include a drive area magnetic material wound around the drive coil.
  • the drive area magnetic material in the forming of the magnetic material, is stacked on a first stage drive area magnetic material having a thickness substantially the same as the pickup area magnetic material, and the first stage drive area magnetic material Forming a two-stage magnetic material to include a second-stage drive area magnetic material formed smaller than the first-stage drive area magnetic material, wherein the sum of the cross-sectional areas of the first-stage drive area magnetic material is the pickup area magnetic material Can be larger than the cross-sectional area of
  • a buffer groove formed through a stepped structure between both ends of a lower coil incompletely buried in a trench structure formed in an insulating layer of a substrate and a sidewall of the trench structure is formed.
  • a lower structure of a two-layer structure comprising a planarization film layer that fills the buffer groove and provides a flat surface and a lower insulating film layer stacked thereon is formed.
  • the planarizing thin film layer of the lower structure can buffer stress caused by a difference in thermal expansion coefficient between the constituent layers in the process of manufacturing the fluxgate. Accordingly, it is possible to improve the performance of the fluxgate by preventing the magnetic properties of the magnetic material from deteriorating due to damage or cracking of components during the manufacturing process.
  • the magnetic material of the Z-axis fluxgate is a land track-type structure composed of a bar-structured pickup area and an elliptical structure, or a combination of a straight section and a curved section, and a square structure, and the shape connected to the pickup area magnetic material forms an S-shape. It includes two U-shaped drive areas facing each other. According to the present invention, (i) the radius of curvature or the line width of the drive coil can be optimized, or the drive area can be greatly enlarged so that the drive coil can be wound as much as possible or the winding density can be increased.
  • a drive region having a straight section orthogonal to the pickup region can maximize an area capable of winding a coil, and thus the amount of driving magnetic flux can be greatly increased.
  • the drive area has a larger cross-sectional area than the pickup area by introducing the drive area of a two-tiered structure. Thereby, a large amount of magnetic flux can be transmitted to the pickup area.
  • Wind the pickup coil as well as the drive coil in the pickup area By employing these various structural features, it is possible to greatly increase the driving magnetic flux generated in the drive area, more driving magnetic flux can be introduced into the pickup area, and the intensity of the pickup voltage detected in the pickup area can be enhanced.
  • 1 and 2 are exemplary views showing the basic structure of a conventional flux gate.
  • FIG 3 is an exemplary view showing a conventional 3-axis fluxgate sensor composed of an X-axis fluxgate, a Y-axis fluxgate, and a Z-axis fluxgate.
  • FIG. 4 is an exemplary view showing an operation process of a flux gate according to an embodiment of the present invention.
  • 5 to 9 are exemplary views showing problems in the process of a conventional flux gate to be solved through the structure of the flux gate according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of manufacturing a fluxgate according to the first embodiment of the present invention.
  • FIG. 11 is an exemplary view showing a process of manufacturing a fluxgate according to the first embodiment of the present invention.
  • FIG. 12 to 14 are diagrams for explaining in detail a process of forming a lower structure part in a flux gate according to the first embodiment of the present invention
  • FIG. 12 is a structure of a magnetic material formed by a planarizing thin film employed to fill a buffer groove.
  • Fig. 13 schematically shows that the flattening thin film may be damaged by compressive stress of a magnetic material
  • Fig. 14 is a buffer groove formed by a step difference between the substrate insulating layer and the lower coil, filled with SOC material, etc.
  • An example of a fluxgate structure with improved stress resistance by introducing a planarizing thin film is illustrated.
  • 15 is a view for explaining a structure of a circular magnetic body of a conventional Z-axis fluxgate, a winding form of a drive coil, and a form of generating magnetic lines of force.
  • Fig. 16 shows the magnetic structure of the Z-axis fluxgate and the winding form of the coil according to the second embodiment of the present invention in comparison with the conventional one.
  • 17 and 18 illustrate a wet etching process for a planarization thin film in a flux gate according to a second embodiment of the present invention.
  • 19 to 24 illustrate a magnetic structure of a Z-axis fluxgate and a winding type of a coil according to various other embodiments of the present invention.
  • FIG. 25 exemplifies a configuration in which the pickup coil and the drive coil are actually wound in the pickup area of the structure shown in FIG.
  • Fig. 26 exemplifies a form in which a pickup coil and a drive coil are actually wound in the pickup area of the structure shown in Fig. 22.
  • Fig. 27 illustrates a structure of a land track type magnetic body in which a drive region is formed of a magnetic thin film having a two-stage structure according to an exemplary embodiment of the present invention.
  • the first embodiment of the present invention is a thin-film fluxgate capable of improving the performance of a fluxgate by preventing a decrease in magnetic properties of a magnetic material due to cracks or breakages due to a difference in thermal expansion coefficient between components in the process of manufacturing a fluxgate.
  • FIG. 4 is a diagram for explaining the operation principle of the flux gate
  • FIGS. 5 to 9 illustrate problems in the manufacturing process of the conventional flux gate to be solved through the structure of the flux gate according to the first embodiment of the present invention. It is a drawing to do.
  • the principle of operation of the fluxgate will be described first with reference to FIG. 4.
  • the term "fluxgate” refers to a fluxgate magnetometer or an X-axis fluxgate device, a Y-axis fluxgate device, or a Z-axis fluxgate device constituting the fluxgate magnetometer.
  • an alternating current In order to operate the fluxgate, an alternating current must flow through the drive coil. Depending on the direction of the current, a magnetic field is formed inside the drive coil according to the right-hand rule of amperes. The magnetic field flows into the magnetic body inside the drive coil, and makes the spin direction of the atoms constituting the magnetic body directed toward the magnetic field created by the drive coil. When the direction of the current flowing through the drive coil is reversed, the direction of the magnetic field of the drive coil is also reversed. Accordingly, the spin direction of the atoms inside the magnetic body is also directed in the opposite direction. At the moment such magnetization reversal occurs, voltage is induced to the pickup coil wound around the pickup area. The pickup voltage is output in the form of an isolated voltage peak through the pickup coil pad 122.
  • Figures 4(a), (d), and (g) conceptually show the structure of a general rod-shaped and circular fluxgate
  • Figures 4(b), (e), and (h) are magnetic materials constituting each fluxgate.
  • Figs.4(c), (f), and (i) are the pickup voltages generated in the pickup coil (4). Shows the waveform of
  • FIGS. 4(a), (b), and (c) When an alternating current, for example, a triangular wave current represented by the dotted line in Fig. 4(c) is input to the drive coil 3, a magnetic field is formed inside the drive coil 3, and the direction of the magnetic field is periodically reversed. Whenever the direction of the magnetic field is reversed, a voltage (hereinafter, referred to as “pickup voltage”) is induced in the pickup coil 4. The pickup voltage is output in the form of a voltage peak indicated by a solid line in Fig. 4(c).
  • a voltage hereinafter, referred to as “pickup voltage”
  • the reason why the voltage peak in the form of an impulse wave (or triangular wave) is generated is because the waveform of the pickup voltage induced in the pickup coil 4 is proportional to the amount of change in the magnetization value (that is, dM/dt) with respect to time change.
  • the magnetization curve of the magnetic body 1 inside the fluxgate follows the trajectory of the order 1 to 8 in Fig. 4(b).
  • the first voltage peak occurs due to a sudden change in magnetization value (2M), and the cycle of triangular wave current is completed.
  • the first voltage peak and the second voltage peak in which the sign is opposite occurs.
  • the X-axis, Y-axis and Z-axis components of the externally applied magnetic field can be measured, from which The external applied magnetic field vector is known.
  • FIG. 5 shows a general process procedure for manufacturing a fluxgate.
  • the lower coil 5 is protruded from the substrate insulating film 17 (Silicon Oxide) on the silicon wafer substrate 16.
  • the substrate insulating film 17 Silicon Oxide
  • a lower insulating film 6 is deposited on the protruding lower coil 5 (see Fig. 5(b)).
  • the upper surface of the lower insulating film 6 has an uneven surface by the lower coil 5.
  • the protruding portion of the lower insulating layer 6 is planarized through a chemical mechanical polishing (CMP) process (see FIG. 5(c)).
  • CMP chemical mechanical polishing
  • the magnetic body 1 is formed on the planarized lower insulating film 6 (see Fig. 5(d)), and the upper insulating film 7 and the upper coil 9 are sequentially formed thereon (Fig. 5(e)). And (f)) the fluxgate is completed.
  • FIG. 6 shows the CMP process of FIG. 5C, that is, a process of polishing the protruding portion of the lower insulating layer 6 through the CMP process.
  • the protruding portion of the lower insulating film 6 is disposed to face the CMP plate 19 (lapping plate of CMP equipment) to which the CMP abrasive 20 is supplied. In that state, a heavy CMP load 18 is applied to the back side of the silicon wafer substrate 16 to polish the protruding portion of the lower insulating film 6.
  • the lower insulating film 6 at the upper end of the lower coil 5 formed of a metal material such as aluminum with low hardness is pushed toward the silicon wafer substrate 16, thereby forming the lower insulating film 6 Cracks 21 may occur.
  • a method of forming the lower insulating film 6 as thick as possible may be considered.
  • the distance between the lower coil 5 and the magnetic body 1 is increased, magnetization reversal of the magnetic body by the magnetic field formed in the drive coil 3 becomes difficult.
  • the magnitude of the voltage peak induced into the pickup coil 4 when the magnetization in the magnetic body 1 is reversed is also Becomes smaller. Due to these problems, the ability of the fluxgate to detect changes in the external magnetic field is degraded.
  • the polishing amount (c) of the CMP process the polishing amount E1 at the center portion of the silicon wafer substrate 16 is generally greater than the polishing amount E2 at the outer portion. Therefore, the thickness of the lower insulating film 6 of the fluxgate fabricated at the outer portion of the silicon wafer substrate 16 is thicker than the lower insulating film 6 of the fluxgate fabricated at the center portion of the silicon wafer substrate 16.
  • the flux gate manufactured at the outer portion of the silicon wafer substrate 16 has a poorer external magnetic field sensing characteristic than the flux gate manufactured at the central portion of the silicon wafer substrate 16. Even if the outer portion of the silicon wafer substrate 16 is separated by the same distance from the center of the silicon wafer substrate 16, the thickness of the lower insulating layer 6 may not be formed equally due to the difference in the amount of polishing for each outer portion. As such, there may be a problem in that the electrical characteristics of each fluxgate manufactured on the same silicon wafer substrate 16 are not uniform because there is a process variation according to the position.
  • FIG. 8 is a diagram for explaining a problem of deterioration in performance of a fluxgate due to a difference in thermal expansion characteristics for each component of a fluxgate on an extension of the fluxgate process described with reference to FIGS. 5 to 7.
  • the lower structure ie, the lower coil Changes in the magnetic properties of the magnetic body 1 according to changes in (5) and the lower insulating film 6 are shown.
  • the magnetic body 1 may be formed on the lower insulating film 6 through a sputtering process or the like. At that time, a thermal expansion phenomenon may occur (see Fig. 8(b)).
  • the sputtering process which is mainly used in the process of depositing a thin film of the fluxgate, generates a lot of heat during the process.
  • the lower coil 5 may be mainly formed of aluminum.
  • the coefficient of thermal expansion ( ⁇ ) of aluminum is 2.5*10 -5 /°C.
  • the expanded lower coil 5 expands the lower insulating film 6 continuously formed thereon.
  • the magnetic body 1 is formed on the expanded lower insulating film 6. Since the magnetic material 1 formed at this time is formed through a sputtering process performed in a high temperature environment, the lattice parameter, which is the distance between atoms of the NiFe magnetic material 1, is formed in a state of a wider distance as it is formed at a high temperature. do.
  • the film formation of the magnetic body 1 is completed, the temperature of the silicon wafer substrate 16 is lowered.
  • the lower coil 5 formed of aluminum is greatly reduced (condensed), and accordingly, the lower insulating film 6 formed on the lower coil 5 and the magnetic material 1 deposited on the lower insulating film 6 are also condensed. .
  • the magnetic body 22 formed on the lower coil 5 made of a metal material such as aluminum having a high coefficient of thermal expansion (corresponding to the area A'in Fig. 8(d)) is the area of the substrate insulating film 17 where the lower coil 5 is not formed. It is subjected to a higher compressive stress than the magnetic body 23 formed thereon (corresponding to region B'in Fig. 8(d)).
  • the compressive stress applied to the magnetic body 23 formed in the region B'in Fig. 8(d) is very slight. Therefore, as shown in B'of Fig. 8(e), in a section in which the magnetization direction of the magnetic body 23 changes, the M-H loop has a sharp inclination (that is, a change in magnetization value occurs).
  • the NiFe alloy used as the magnetic body 1 has a characteristic that the M-H loop greatly changes depending on the applied stress. Therefore, when compressive stress is applied to the magnetic body 22 formed in the region A'in Fig. 8(d), the slope of the MH loop in the section in which the magnetization direction of the magnetic body 22 changes is MH corresponding to B' It is gentler than the slope of the loop.
  • the voltage peak of the pickup coil 4 formed by the magnetic body 23 without compressive stress is formed as a high voltage peak value of the shape B'in Fig. 8(f). Since the driving circuit 15 can easily read the position of the high voltage peak, it is possible to improve the ability of the flux gate to sense an external magnetic field. On the other hand, since the voltage peak of the pickup coil 4 formed by the magnetic material 22 processed in the state in which the compressive stress is formed is formed with a greatly reduced voltage peak value in the shape A'in Fig. 8(f), the driving circuit ( 15) It becomes difficult to read the position of the small voltage peak, so the fluxgate's ability to sense the external magnetic field is greatly degraded.
  • FIG. 9 shows an example of a manufacturing process of a flux gate different from that of FIG. 5.
  • a plurality of trenches in which the lower coil 5 is to be installed are formed on the surface of the substrate insulating layer 17 formed on the silicon wafer substrate 16 through a photolithography process and a dry etching process.
  • a lower coil 5 made of a conductive metal such as aluminum or copper is formed in the formed groove using a method such as a sputtering process.
  • photoresist PR: Photo Resist, 24
  • the conductive metal deposited thereon are removed together.
  • the protruding portion 25 of the lower coil 5 is removed through a CMP process to planarize the surface.
  • the hardness of the lower coil 5, that is, a conductive metal such as aluminum or copper, is lower than that of the substrate insulating film 17 (i.e., silicon oxide) around the lower coil 5, and abrasion resistance to the CMP abrasive 20 is significantly lower. . Therefore, the lower coil 5 is preferentially worn during the planarization process according to the CMP process.
  • the lower structure of the fluxgate has a wavy structure 26 having an amplitude of at least 500 ⁇ , such as a wavy structure. Accordingly, the lower insulating film 6 and the magnetic body 1 formed thereon also have a wavy structure 26 ′, and thus, the consistency of the magnetization reversal of the magnetic body 1 is deteriorated.
  • the protruding portion 25 of the lower coil 5 having low hardness and abrasion resistance may fall off.
  • deep scratches are generated in the lower coil 5 formed on the substrate insulating layer 17. Scratches generated in the lower coil 5 may cause detachment and breakage of the lower insulating film 6 and the magnetic material 1 formed on the lower coil 5 in a subsequent process.
  • the process of the flux gate according to FIGS. 5 to 8 includes a CMP process for removing the protruding portion of the lower insulating layer 6. Due to the CMP process, a crack 21 may occur in the lower insulating film 6 on the upper end of the lower coil 5 with weak hardness, resulting in a problem of destruction.
  • the method of increasing the thickness of the lower insulating film 6 to prevent damage to the lower insulating film 6 is that the sensing ability of the magnetization reversal deteriorates as the coils sensing the magnetization reversal characteristics of the magnetic body 1 are located farther away. Thus, the voltage peak of the pickup coil 4 is reduced. As a result, the ability of the fluxgate to sense an external magnetic field may be degraded.
  • the manufacturing process of the flux gate shown in FIG. 9 includes a CMP process for removing the protruding portion 25 of the lower coil 5. Due to the CMP process, the lower structure of the fluxgate is formed into wavy structures 26 and 26', resulting in a problem that the consistency of the magnetization reversal of the magnetic body 1 is deteriorated. In addition, the protruding portion 25 of the lower coil 5 removed during the CMP process may cause scratches on the lower coil 5. As a result, the lower insulating film 6 and the magnetic material 1 may be detached and damaged due to peeling.
  • exemplary embodiments of the present invention eliminate the CMP process in the manufacturing process of the flux gate, prevent formation of the protruding portion 25 of the lower insulating film 6 or the lower coil 5, and flatten the lower structure.
  • exemplary embodiments may improve the magnetization reversal characteristic of the magnetic body 1 by compensating for thermal expansion of each layer due to a change in the process temperature of the flux gate and removing compressive stress of the magnetic body 1. Accordingly, a method of manufacturing a fluxgate capable of improving the external magnetic field sensing performance of the fluxgate as a minimum device size, and a structure of the fluxgate according to the method are presented.
  • FIG. 10 is a flowchart for explaining a method of manufacturing a flux gate according to the first embodiment of the present invention
  • FIG. 11 is an exemplary view showing a process of manufacturing a flux gate according to the first embodiment of the present invention
  • FIG. 12 14 to 14 are exemplary views for explaining in detail a process of forming a lower structure part in a flux gate according to the first embodiment of the present invention.
  • the fluxgate according to the first embodiment has a lower coil 5, a lower structure 35 and 6, a magnetic body 1, and an upper part on the substrate insulating film 17 on the surface of the substrate 16.
  • the insulating film 7 and the upper coil 9 may be sequentially stacked to be formed.
  • the lower structure may include a planarization thin film 35 and a lower insulating layer 6 as described later.
  • the lower coil 5, the lower insulating film 6, the magnetic body 1, the upper insulating film 7 and the upper coil 9 may have the same material as the conventional flux gate described through the above-described process.
  • the planarization thin film 35 is coated on the plurality of lower coils and the substrate insulating film while filling the buffer groove in a spin coating method in a sol state to form a flat surface, cured and transformed into a hard gel state. As a result, it can be formed as a material having physical properties capable of buffering the stress caused by the difference in the coefficient of thermal expansion between neighboring components.
  • a method of manufacturing a fluxgate according to the present embodiment will be described based on the above contents.
  • a groove 31 for filling a lower coil having a trench structure in which the lower coil 5 is to be formed is formed in the substrate insulating film 17 (silicon oxide) formed on the silicon wafer substrate 16 (S100) (Fig. 11(a) to (d)).
  • the lower coil ie, a thin film forming the lower coil, hereinafter referred to as the term of the lower coil
  • the lower coil 5 may be formed of a conductive material such as aluminum or copper, and the drive coil 3 to which a triangular wave current is applied together with the upper coil 9 and the pickup coil 4 at which a voltage peak is formed. ) Can be configured.
  • Step S100 will be described in detail with reference to FIG. 11, in a state in which the photoresist 24 is coated on the silicon wafer substrate 16 on which the substrate insulating film 17 is formed (FIG. 11(a)), the lower coil 5
  • the photoresist 24 on the region to be formed that is, the groove 31 for filling the lower coil
  • Fig. 11(b) photolithography process
  • the groove 31 for filling the lower coil is formed through an etching process (FIGS. 11(c) to (d)).
  • the groove 31 for filling the lower coil may be formed in a plurality of rows.
  • the groove 31 for filling each lower coil may be formed by performing a two-step etching process.
  • a first region 30 in which the lower coil 5 is to be formed may be formed by performing a first etching on the region on the substrate insulating layer 17 from which the photoresist 24 has been removed (Fig. 11(c)). )).
  • the first etching may be performed by a dry etching process.
  • the primary region 30 is a region in which a region under a portion of the substrate insulating layer 17 to which the photoresist 24 is not applied is etched in a trench structure.
  • a second etching process may be further performed on the first region 30.
  • the secondary etching may be performed by a wet etching process.
  • Wet etching may be performed, for example, by using a BOE (Buffered Oxide Etcher) solution capable of dissolving the substrate insulating layer 17.
  • BOE Bovine Oxide Etcher
  • the sidewalls and the bottom of the primary region 30 may be further carved out through the secondary etching, so that the width and depth of the groove of the primary region 30 may be expanded.
  • the groove 31 for filling the lower coil that is enlarged compared to the primary region may be formed (Fig. 11(d)).
  • the sidewall of the lower coil burial groove 31 is further penetrated by a predetermined width d below the photoresist 24, so that the inlet edge portion of the lower coil burial groove 31 It may be formed in a groove structure covered by the photoresist 24.
  • a plurality of lower coils 5 may be formed in a form in which each of the plurality of lower coils is buried in the plurality of lower coil buried grooves 31 (S200).
  • the lower coil 5 may be formed by depositing metal particles such as aluminum or copper in the groove 31 for filling the lower coil by a sputtering process.
  • the edge of the lower coil 5 in contact with the sidewall of the substrate insulating film 17 is lower than the top surface of the lower coil buried groove 31 so that a step can be made. I can.
  • a buffer groove 32 which is an empty space, may be provided between the edge portion of the lower coil 5 and the sidewall portion of the lower coil filling groove 31. That is, each lower coil 5 may have a higher edge portion surrounding itself in the center portion. That is, each lower coil 5 may have a downwardly inclined surface structure whose height decreases from a center portion to an edge portion.
  • the center portion of each lower coil 5 may be formed substantially equal to the height of the top surface of the lower coil buried groove 31.
  • the groove 31 for filling the lower coil without contact with the photoresist 24 and the metal (eg, aluminum) thin film formed thereon It is possible to form the lower coil (5).
  • the photoresist 24 is removed using a solvent such as acetone, the lower coil 5 is not formed with the protruding portion 25 as shown in Fig. 9(d), and the lower coil buried groove 31 ) Can be formed.
  • a side end portion of the photoresist 24 covering the edge of the inlet portion of the lower coil buried groove 31 may function as a structural mask for the sputtering process. Due to the mask function, the edge portion of the lower coil 5 is formed in a downwardly inclined surface structure, and a step is formed with the sidewall portion of the substrate insulating layer 17, thereby forming an empty space of the buffer groove 32.
  • the inner surfaces of the wet-etched substrate insulating layer 17, that is, the sidewall portions of the lower coil burial groove 31 may have a porous surface due to wet etching.
  • the adhesion between the lower coil buried groove 31 and the lower coil 5 may be reduced. If the buffer groove 32 is too large, the structural robustness of the fluxgate element may be disadvantageous.
  • the buffer groove 32 sufficiently prevents cracking or breakage due to the difference in thermal expansion coefficient between the lower coil 5, the lower structure parts 6 and 35 and the magnetic body 1 in the process of the fluxgate element (to be described later), and a flattening thin film It is necessary to make the appropriate size so that the flattening of the substructure by (35) can be achieved.
  • the lower coil in order to improve the surface structure of the lower coil embedding groove 31 that reduces the adhesion of the lower coil 5 and minimize the size (width and depth) of the buffer groove 32, the lower coil ( In step S200 of forming 5), a part of the lateral front end of the photoresist 24 covering the inlet of the lower coil buried groove 31 may be removed through dry etching. Then, the lower coil 5 may be formed in the lower coil buried groove 31. That is, after performing the two-step etching process (ie, dry etching and wet etching process) of step S100, a dry etching process may be additionally performed.
  • the two-step etching process ie, dry etching and wet etching process
  • the uneven silicon oxide structure of the lower coil buried groove 31 is cleaned, and at the same time, a part of the lateral tip of the photoresist 24, as shown in Fig. 11(e), protrudes by a width d formed by wet etching. Some protrusions of the photoresist 24 may be removed.
  • the size of the structural mask part for the sputtering process for forming the lower coil 5 and the lower coil 5 is reduced, and as a result, the size of the buffer groove 32 can be made narrower by that amount.
  • FIG. 11(f) shows a structure in which the lower coil 5 is formed in the groove 31 for filling the lower coil formed through the above-described first dry etching, second wet etching, and third dry etching. Thereafter, when the photoresist 24 and the aluminum thin film thereon are removed through a solvent such as acetone, as shown in Fig. 11(g), a buffer groove 32 is formed at the boundary line between the lower coil 5 and the substrate insulating film 17. In the formed state, the lower coil 5 may be formed.
  • the buffer groove 32 formed as described above may contribute to compensating for a difference in thermal expansion between the lower coil 5, the lower structure, and the magnetic body 1 in a subsequent process of the fluxgate element. That is, in the process of forming the magnetic body 1 through a sputtering process in a high-temperature environment, the lower coil 5 is expanded by the walls on both sides of the substrate insulating film 17 forming the boundary of the lower coil buried groove 31. This can be limited. At this time, the limit of the expansion is buffered by the buffer groove 32, so that the lower coil 5 maintains its physical properties and does not cause expansion of the planarization thin film 35 and the lower insulating film 6 to be described later. It can be expanded to a certain degree.
  • Fig. 11(h) shows the actual measurement specifications of the lower coil 5 when manufactured according to the actual specifications of the fluxgate.
  • the width and depth of the buffer groove 32 may be adjusted by adjusting the dry etching process time in step S200.
  • the lower structure may be formed (S300).
  • the lower structure may include a planarization thin film 35.
  • a planarization thin film 35 may be formed using a predetermined planarization material.
  • the flattening thin film 35 may be stacked on the substrate insulating layer and the lower coil 5 while filling the buffer groove 32 formed in step S200 to form a flat surface.
  • the planarization thin film 35 may be an SOG material layer formed by using an SOG material as the predetermined planarization material.
  • SOG materials can be largely classified into silicate-based compounds, organosilicon compounds, and dopant-organic compounds (e.g.) with regard to their constituent materials. All of these SOG compositions can be used in the present invention.
  • the SOG composition made of an organosilicon compound can be seen to have optimal properties for the present invention.
  • the material used to form the planarization thin film 35 may also include a material having substantially equivalent or similar properties to the SOG material. Flowable oxide materials with good gap-fill properties can be viewed as materials with such equivalent properties.
  • flowable oxides include silicate-based oxides such as TEOS (tetra ethoxysilane), USG (undoped silicate glass), BSG (boron doped silicate glass), PSG (phosphorous doped silicate glass), and BPSG (boron doped phosphosilicate glass).
  • silicate-based oxides such as TEOS (tetra ethoxysilane), USG (undoped silicate glass), BSG (boron doped silicate glass), PSG (phosphorous doped silicate glass), and BPSG (boron doped phosphosilicate glass).
  • TEOS and USG films, and the like, and commercialized products include, for example, FOx products of Dow Corning. This fluent oxide can also be viewed as an SOG material in the broadest sense.
  • a liquid SOG composition (glass melted with an organic solvent) is first mixed with the substrate insulating film 17 and the lower coil 5 A thin coating film is formed by spin coating on the uneven surface.
  • the liquid SOG composition flows into the buffer groove 32 to form a coating film in a state that is completely filled.
  • the viscosity of the liquid SOG composition increases rapidly, and the surface of the coating film becomes flat despite the uneven surface.
  • volatile components such as a solvent constituting the SOG composition are discharged, and the silica (SiO 2 ) component mainly remains. That is, the SOG composition is applied by rotation in the first sol state, then transformed into a sticky gel state, and finally a hard gel state coating film through high temperature heat treatment at 400 to 500°C. Can be changed to
  • the SOG flattening thin film 35 which has been changed so hard, may serve as an insulating layer or a dielectric layer inside the fluxgate device, and may also serve as a buffer layer that buffers stress due to a difference in coefficient of thermal expansion between the upper and lower components. By its role, it is possible to prevent the occurrence of cracks in the fluxgate device and ensure a uniform magnetization reversal characteristic of the magnetic body 1.
  • the lower structure may further include a lower insulating layer 6 stacked on the planarized surface of the planarizing thin film 35.
  • the lower insulating layer 6 may provide insulation.
  • planarization thin film 35 formed of an SOG material or an equivalent thereof flattens the surface on which the lower insulating film 6 is stacked, and compensates for the difference in thermal expansion between the lower coil 5 and the lower insulating film 6. Can function.
  • FIG. 12 shows the effect of the planarization thin film 35 employed to fill the buffer groove 32 formed in step S200 on the formation structure of the magnetic body 1.
  • the buffer groove 32 formed in the lower coil buried groove 31 Directly affects the shape of the lower insulating film 6 and the magnetic body 1 formed thereon. That is, the lower insulating film 6 has a surface profile including a plurality of grooves by the buffer grooves 32, and the surface profile of the magnetic body 1 is the same. Accordingly, the magnetic body 1 is formed in an uneven structure 32' as shown in Fig.
  • the magnetization reversal of the magnetic body 1 is cut off at the uneven portion 32' or its direction is distorted, so that the magnetic body ( 1) It is difficult to achieve an overall uniform magnetization reversal (see ⁇ in Fig. 12(a)). As a result, the magnitude of the voltage peak induced in the pickup coil 4 is formed to be small, and the external magnetic field sensing performance of the fluxgate magnetometer is lowered.
  • the buffer groove 32 is filled with SOG material, etc. to form a planarization thin film 35 having a flat surface on the lower coil 5.
  • the magnetic body 1 stacked thereon can be formed in a flat structure.
  • the magnetization reversal of the magnetic body 1 becomes easy (see ⁇ 'in Fig. 12(b))
  • the magnitude of the voltage peak induced in the pickup coil 4 is large, and the fluxgate magnetometer's external magnetic field sensing performance is large. It can be improved.
  • the lower insulating film 6 may be formed in a structure that is stacked on the planarized surface of the planarization thin film 35.
  • the magnetic body 1 to which high compressive stress can be applied is formed thickly on the planarizing thin film 35 as shown in FIG. 13.
  • the compressive stress of the magnetic body 1 may be directly transmitted to the planarizing thin film 35 having low stress resistance, so that cracks or breaks 21 may be caused in the planarizing thin film 35.
  • a phenomenon in which the flattening thin film 35 combined with the magnetic body 1 may be detached may occur.
  • an exemplary embodiment applies, cures, and cures a flattening thin film 35 filling the buffer groove 32 with a SOC material or an equivalent material thereof, as shown in FIG.
  • a structure in which the lower insulating film 6 is formed of a material having high stress resistance is employed.
  • the flattening thin film 35 by the physical properties of the SOC material or its equivalent material flattens the surface on which the lower insulating film 6 is laminated, and at the same time, the lower coil 5 and the lower insulating film ( 6) It can function to prevent thermal shock damage such as cracks that may occur due to the difference in thermal expansion between them.
  • the lower insulating layer 6 may be formed of any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 . Such a material has advantageous properties in preventing destruction of the planarization thin film 35 due to compressive stress of the magnetic body 1 in the process of the fluxgate device. According to the above-described structure, a flux gate made by mixing at least seven or more materials can have high magnetic field sensing performance without damage.
  • step S400 of sequentially stacking the magnetic body 1, the upper insulating layer 7 and the upper coil 9 may be performed to complete the flux gate.
  • a conventional fluxgate manufacturing process may be employed, so a detailed description thereof will be omitted.
  • Fig. 14 shows a structure of a fluxgate manufactured by a method of manufacturing a fluxgate according to an exemplary embodiment.
  • the fluxgate magnetometer may be formed by sequentially stacking the lower coil 5, the lower structure parts 35 and 6, the magnetic body 1, the upper insulating film 7 and the upper coil 9.
  • the lower coil 5 may be formed in the groove 31 for filling the lower coil provided in the substrate insulating layer 17 formed on the silicon wafer substrate 16.
  • the lower coil 5 may be formed to have a step difference between its edge portion and the sidewall portion of the substrate insulating layer 17 in contact therewith.
  • a buffer groove 32 may be provided in an upper edge region of the lower coil embedding groove 31 corresponding to the stepped structure.
  • the buffer groove 32 may function to compensate for a difference in thermal expansion between the lower coil 5, the lower structure, and the magnetic body 1 in the process of the flux gate.
  • the lower structure portion is stacked on the flattened surface of the planarization thin film 35 and the planarization thin film 35 formed in a flat structure on the substrate insulating film 17 and the lower coil 5 while filling the buffer groove 32 It may include a lower insulating film 6 is formed.
  • the planarization thin film 35 may be formed of an SOG material or a material having properties equivalent thereto (eg, a fluid oxide).
  • the planarization thin film 35 formed of such a material may planarize the surface on which the lower insulating layer 6 is stacked, and compensate for a difference in thermal expansion between the lower coil 5 and the lower insulating layer 6.
  • the lower insulating film 6 is any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 to prevent destruction of the planarization thin film 35 due to the compressive stress of the magnetic body 1 during the manufacturing process of the flux gate. It can be formed of a material.
  • the magnetic body 1, the upper insulating film 7 and the upper coil 9 are sequentially stacked on the lower structure.
  • a planarization thin film 35 made of SOG material is formed to fill the buffer groove 32 formed at the edge of the lower coil 5 in contact with the substrate insulating layer 17. do.
  • the flattening thin film 35 can be used as a lower structure to form a magnetic body 1 thereon.
  • a lower insulating film 6 may be further stacked on the planarizing thin film 35 to employ a lower structure of a double-stacked structure.
  • the planarizing thin film 35 made of an SOG-based material may compensate for a difference in thermal expansion between layers constituting the flux gate. Through this, it is possible to prevent breakage due to stress due to the difference in thermal expansion coefficient of each layer. That is, a fluxgate magnetometer with improved stress resistance can be obtained. In addition, it is possible to improve the performance of the flux gate by preventing the magnetic properties of the magnetic body 1 from deteriorating.
  • FIGS. 15 and 16 are exemplary diagrams for explaining the structure of a fluxgate magnetometer according to a second embodiment of the present invention
  • FIGS. 17 and 18 are diagrams showing an SOG thin film in the fluxgate magnetometer according to the second embodiment of the present invention. This is an exemplary diagram showing the wet etching process for Korea.
  • a structure of a Z-axis fluxgate capable of improving the pickup voltage detected by the pickup coil 4 under the condition that the minimum height of the fluxgate magnetometer is maintained is proposed.
  • the Z-axis fluxgate of the second exemplary embodiment described below may be manufactured according to the manufacturing method of the first exemplary embodiment, and the contents described in the first exemplary embodiment may be equally applied to the second exemplary embodiment.
  • FIG. 15 a magnetic field shape of a conventional Z-axis fluxgate that is mounted on a conventional electronic compass chip and measures the strength of the magnetic field of the Z-axis component is shown.
  • Fig. 15A in general, when a current flows through the solenoid coil 27, circular magnetic lines of force are formed around the solenoid coil 27. When the winding density of the solenoid coil 27 is increased, magnetic lines of force generated from each coil wound overlap each other in a region separated by a predetermined distance from the solenoid coil 27. A linear magnetic force line or a linear magnetic field is formed in the inner region of the solenoid coil 27.
  • Fig. 15(b) shows the structure of the drive coil 3 of a conventional Z-axis fluxgate.
  • the regions of the magnetic body 1 in which the drive coil 3 and the pickup coil 4 are wound are defined as the drive region 28 and the pickup region 29, respectively.
  • the inner part of the drive area 28 is tightly wound (ie, the winding density is high), and the outer part of the drive area 28 is loosely wound (ie. , The winding density is low).
  • Fig. 15(c) shows the shape of the magnetic field generated according to the position of the drive coil 3 when the drive coil 3 with the same line width is wound on a curved magnetic body (ie, drive area 28). have.
  • the winding density of the drive coil 3 is high in the inner portion of the drive region 28, the magnetic lines of force generated from each coil can be easily connected.
  • the magnetic field generated by the connection of the magnetic lines of force forms a strong magnetic flux inside the magnetic body 1 by magnetizing the magnetic body 1 located inside the drive coil 3 in the longitudinal direction.
  • the formed magnetic flux flows to the pickup region 29 where the pickup coil 4 is wound.
  • the outer portion of the drive region 28 has a low winding density of the drive coil 3.
  • FIG. 16 shows a magnetic structure of a Z-axis fluxgate 50 and 60 according to a second embodiment of the present invention and a coil winding type (see (b) and (c)) in order to solve the above-described problem. It is shown in comparison with the Z-axis fluxgate (see (a)).
  • the detailed configuration of the Z-axis fluxgate is as follows.
  • the lower coil 5 and the upper coil 9 are connected to each other to form a solenoid by winding the magnetic body 1 or 1-1 in a coil shape multiple times.
  • the lower coil 5 and the upper coil 9 are respectively wound around the drive area 28 and the pickup area 29 of the magnetic body 1 or 1-1 to form the drive coil 3 and the pickup coil 4, respectively.
  • a pickup coil 4 in which an induced voltage is formed according to a change in magnetization characteristics of the magnetic body 1 due to a driving current applied to the drive coil 3 may be configured.
  • the magnetic body 1 may include a pickup area 29 and a drive area 28.
  • the pickup region 29 is defined as a magnetic region of a rod structure in which the pickup coil 4 is wound, and the drive region 28 is branched from the first end in the longitudinal direction of the pickup region 29 to both left and right, respectively. It is defined as a magnetic region formed in a structure that extends into an arc structure having a defined radius of curvature and then joins at the second end in the longitudinal direction of the pickup region 29.
  • the drive area 28 can be viewed as a rugby ball shape or an ellipse shape as a whole.
  • the drive area 28-1 may have a first structure in the shape of an elliptical shape or a rugby ball having a radius of curvature equal to or greater than a predetermined critical radius of curvature.
  • the radius of curvature R 2 of the drive area 28-1 formed in an elliptical shape is a predefined critical radius of curvature R T It can be defined as a structure of a fluxgate implemented to have the above value.
  • the drive area 28-1 of the first structure may further increase the winding density of the drive coil 27-1 compared to the conventional circular drive area 28.
  • the drive area 28 is formed in a circular structure as in the prior art, and the line width of the drive coil 27-2 increases from the center of the radius of curvature of the drive area 28 toward the outer side.
  • This may be a second structure implemented in a wider form.
  • the line width of the drive coil 27-2 formed at the outer portion of the drive area 28 is increased than the line width of the drive coil 27-2 formed inside the drive area 28. It is possible to minimize a portion in which the drive coil 27-2 is not wound on the outer portion of the drive area 28.
  • the amount of current applied to the drive coil 27-2 increases, and thus the magnetic flux generated in the drive region 28 may increase.
  • the first and second structures are advantageous in that as much magnetic flux as possible is formed in the drive region 28 or 28-1 and transmitted to the pickup region 29. Accordingly, the magnitude of the voltage peak output from the pickup coil 4 increases, so that the magnetic field sensing capability of the flux gates 50 and 60 may be improved.
  • a third structure in which the drive coil 27-1 of the first structure is transformed into the drive coil 27-2 of the second structure is also possible.
  • the flux gates 50 and 60 of the second embodiment have the winding density of the pickup coil 4 wound in the pickup area 29 (that is, the number of windings of the pickup coil 4 per unit length of the pickup area 29). ) May be implemented as a structure having a predetermined critical density or higher.
  • the critical density may be defined by the designer in consideration of the winding density of the pickup coil 4 wound in the pickup region 29 of the conventional Z-axis fluxgate 40, that is, the second embodiment
  • 17 shows the difference in step coverage of the conductive thin film according to the method of removing the planarization thin film to connect the upper coil to the lower coil.
  • the winding structure is formed by removing the SOG thin film formed at the end of the lower coil and then completing the formation of a solenoid-shaped coil using the upper coil.
  • the planarization thin film 35 formed of an SOG material or the like may be formed to a thickness of about 5,000 ⁇ .
  • a film is formed on the planarizing thin film 35 as shown in Fig. 17-(d).
  • the conductive thin film 38 to be formed must be formed to have a thickness of 5,000 ⁇ or more and at least 6,000 ⁇ so that the flattening thin film 35 can cross a high level of the cross-section.
  • a thick upper coil 9 is formed as shown in FIG. 17(d).
  • the winding pitch of the upper coil 9 is increased compared to the structure in which the thin upper coil 9 is formed as shown in FIG. 18(b), and the number of windings of the upper coil 9 per unit length decreases.
  • the conductive thin film 38 for forming the upper coil 9 may be formed according to the process shown in FIGS. 17(e) to (h).
  • a photoresist 24 is applied on the surface of the planarization thin film 35 except for the area to be etched to form the upper coil 9.
  • a wet etching process using a BOE (Buffered Oxide Etcher) solution is performed.
  • the planarization thin film 35 in the region where the photoresist 24 is not applied may be removed.
  • the planarization thin film 35 is formed in a shape as shown in FIG. 17(g).
  • a conductive thin film 38 is formed on the planarizing thin film 35 as shown in Fig. 17(h).
  • FIG. 18 (a) and (b) show the winding structure when the coil is manufactured through a wet etching process.
  • FIG. 18(a) shows that a dense winding structure having 4 pitches can be manufactured.
  • the dry etching process commonly used in the removal process of the planarization thin film 35 used in the present invention is replaced with a wet etching process, the upper part is formed narrower than the lower part in the shape of the planarization thin film 35 and thus has a thin thickness. Even with a conductive thin film, a winding structure in which the upper coil does not break can be formed. As a result, it is possible to improve the magnetic field sensing capability of the fluxgate element by improving the number of turns per unit length and ultimately increasing the output volt peak of the pickup coil.
  • the method of optimizing the radius of curvature of the drive region 28 of the Z-axis fluxgate or the line width of the drive coil 3, and the winding density of the pickup coil 4 By adopting an increasing method, the performance of the Z-axis fluxgate can be improved by improving the pickup voltage detected by the pickup coil 4 under the condition that the minimum height of the Z-axis fluxgate is maintained.
  • FIG. 19 to 24 show a magnetic body of a Z-axis fluxgate and a winding structure of a coil according to various other embodiments of the present invention.
  • FIG. 19 shows a structure 100 in which a drive coil and a pickup coil are wound around an eight-shaped magnetic body 110 of a land track type.
  • the magnetic body 100 includes a land track type drive area and a straight pick-up area 120 that connects a middle portion between two parallel straight line sections of the drive area.
  • the drive region is at the first and second straight sections 130-1a and 130-1b linearly branching from the first end of the pickup region 120 to both left and right, and at the second end of the pickup region 120.
  • a first curved section connected to both ends of the third and fourth straight sections 130-1c and 130-1d, which are linearly branched to the left and right, and the first and third straight sections 130-1a and 130-1c.
  • It may be in the shape of a running track including (130-2a) and a second curved section (130-2b) connected to both ends of the second and fourth straight sections (130-1b, 130-1d).
  • the pickup coil 125 is wound around the pickup area 120 and both ends thereof are connected to the pickup coil pad 122.
  • the drive coils 135a and 135b are wound around the drive area, and both ends thereof are connected to the drive coil pads 132.
  • the magnetic body and coil winding structure 100 is compared with the elliptical structure shown in Fig. 16(b), first to fourth straight sections 130-1a, 130-1b, 130-1c, and 130- The drive area of 1d) is further included. These straight sections can be used to wind more drive coils, thus generating more magnetic flux.
  • the pickup region 120 in the center will receive as much magnetic flux from the drive coils on the left and right sides as possible. I can. It is an efficient structure with a large amount of magnetic flux that can be received compared to the occupied area.
  • FIG. 20 shows a structure 150 in which a drive coil and a pickup coil are wound around an S-shaped magnetic body 160.
  • the structure 150 includes a pickup area 120 extending a predetermined length in a straight line at the center, and two facing each other in a form connected to the pickup area 120 forming an S shape. It includes four U-shaped drive areas.
  • the first U-shaped drive area disposed on the left side of the pickup area 120 includes two parallel straight sections 180-1a and 180-1c and a curved section 180-2a connecting them, and one straight line Only the section 180-1c is connected to the lower end of the pickup area 120, and the other straight section 180-1a extends only to the vicinity of the upper end of the pickup area 120, but is not connected.
  • the second U-shaped drive area disposed on the right side of the pickup area 120 includes two parallel straight sections 180-1b and 180-1d and a curved section 180-2b connecting them, and has one straight line. Only the section 180-1b is connected to the upper end of the pickup area 120, and the other straight section 180-1d extends only to the vicinity of the lower end of the pickup area 120, but is not connected.
  • the pickup coil 175 is wound only in the pickup area 120, and the drive coil 185 is wound only in the two U-shaped drive areas.
  • the structure 150 according to this embodiment is different from the structure 150 shown in FIG. 19 (a structure in which a drive coil and a pickup coil are connected to rotate a caterpillar), a first drive area --> a pickup area 120 --> The 2nd drive area forms a single line connected in sequence.
  • a magnetic flux having a sufficient size can be drawn from there to pass through the pickup region 120 in the center. Even if the magnetic flux generated in the two drive regions is not entered from both left and right sides of the pickup region 120, the intensity of the magnetization reversal of the pickup region can be increased.
  • connection portion 184 of the lower end of the pickup area 120 and the third straight section 180-1c of the first drive area may be connected in a smooth curve, and the upper end of the pickup area 120 and the second drive The same applies to the connection portion 184 of the second straight section 180-1 of the region.
  • Such a connection structure can maximize the length of the section in which the direction of the magnetic flux is vertically present in the pickup area 120. That is, this connection structure can increase the length of an effective pickup section that contributes to detection of the pickup voltage.
  • 21 and 22 show structures 200 and 250 in which a drive coil and a pickup coil are wound around an eight-shaped magnetic body 110 of a land track type as shown in FIG. 19.
  • the magnetic body and coil winding structure 200 shown in FIG. 21 employs a magnetic body 110 having the same structure as the magnetic body 110 shown in FIG. 19, and a pickup coil 225 is attached to the pickup area 120. Winding is the same. However, in the magnetic material and coil winding structure 200 according to the present embodiment, the first drive areas 130-1a and 130-2a and the second drive areas 130-1b and 130-2b on the left and right sides of the pickup area 120 In addition, the drive coils 235a, 235b, and 235c are also wound in the pickup area 120, which is different from the magnetic material and coil winding structure 100 of FIG. 19. In the pickup area 120, the pickup coil 225 and the drive coil 235c may be wound alternately by one turn or by k turns (where k is a natural number of 2 or more) as shown.
  • the curved drive area is extended to the left and right away from the pickup area 120, so that the drive coil can be wound a lot.
  • the amount of drive magnetic flux is increased, and the dynamic range, which is an area in which the output characteristic of the pickup voltage can be measured, can be expanded.
  • linearity of the amount of change in the magnetic field and the amount of movement of the pickup voltage peak can be ensured.
  • a drive coil and a pickup coil are alternately wound around the pickup area 120.
  • the reason that the drive coil 235c is wound around the pickup area 120 is to increase the sensitivity of the fluxgate magnetometer by increasing the peak of the pickup voltage detected by the pickup coil 225. Even if a large magnetic field is applied from the outside, the drive coil 235c wound around the pickup area 120 may continue to generate magnetic flux and drive it in the pickup direction. Accordingly, the atoms in the magnetic body of the pickup region 120 can maintain the spin direction in the length direction of the pickup region 120. Accordingly, a voltage peak output from the pickup coil 225 may be output in the longitudinal direction of the pickup region 120.
  • the pickup coil 225 only has a function of detecting a simple magnetization inversion without a current flow of itself. If only the pickup coil 225 is wound around the pickup region 120, when a large external magnetic field (for example, 3 Gauss or more) is applied, the spin direction of the atoms inside the magnetic body of the pickup region 120 is changed by the external magnetic field. The direction of the magnetic field is aligned. In this case, the hysteresis loop becomes a shape lying down in the length direction of the pickup area, and the peak of the pickup voltage induced to the pickup coil 225 gradually decreases. In that case, it becomes difficult to detect the position of the bolt peak, which lets you know the direction of the externally applied magnetic field.
  • the drive coil 235c wound around the pickup area 120 can advantageously contribute to preventing this phenomenon.
  • the magnetic body and coil winding structure 250 shown in FIG. 22 differs only in the winding shape of the pickup coil 275 wound around the pickup region 120 as compared with the magnetic body and coil winding structure 200 of FIG. 21.
  • the pickup coil 275 is wound around the pickup area 120 together with the drive coil 235c, and the pickup coils 275a and 275b and the drive coil 235c are at a ratio of 2 turns to 1 turn. Take turns winding.
  • the winding of the first pickup coil 275a may be wound adjacent to the drive coil 235, and the winding of the second pickup coil 275b may be wound next to the first pickup coil 275a.
  • the drive coil 235, the first pickup coil 275a, and the second pickup coil 275b are repeatedly wound in this order, and then the end of the first pickup coil 275a is pulled down and lowered to By connecting to the beginning of the pickup coil 275b, the first pickup coil 275a and the second pickup coil 275b may function as one pickup coil 275 as a whole.
  • This winding method of the pickup coil is advantageous in increasing the number of turns of the pickup coil per unit length of the pickup region 120 to increase the peak value of the pickup voltage output from the pickup coil 275.
  • the driving circuit 15 is less affected by noise when reading the point where the peak of the pickup voltage occurs, so that it can be accurately read.
  • Figs. 23 and 24 show structures 300 and 350 in which a drive coil and a pickup coil are wound around a magnetic body 310 in a square 8 shape.
  • the magnetic body and coil winding structure 300 shown in FIG. 23 is different from the structure 200 of FIG. 21 in that the drive area of the magnetic body 310 has a rectangular shape. That is, the drive area of the magnetic body 110 of the structure 200 shown in FIG. 21 has a shape of a running track including curved sections 130-2a and 130-2b, whereas the structure 300 of FIG. 23 is curved It consists of straight sections 330-1c and 330-2c instead of sections. These two straight sections 330-1c and 330-2c are respectively connected to the left and right sides of the upper portion of the pickup area 120 and the straight sections 330-1a and 330-2a connected to the left and right sides of the lower portion of the pickup area 120, respectively. They are connected to the ends of the straight sections 330-1b and 330-2b, respectively, to form an overall rectangular drive area.
  • the drive coils 335a and 335b may be tightly wound over the entire section of the rectangular drive area. You can maximize the number of turns of the drive coil. Further, the drive coil 335c may be cross-wound in the pickup area 120 together with the pickup coil 225 for the same reason and shape as the structure 200 of FIG. 21. By cross-winding the pickup coil 225 and the drive coil 335c in this way, as mentioned above, the dynamic range is increased to prevent the voltage pickup function of the pickup coil 225 from deteriorating in the pickup region 120 by an externally applied magnetic field. Is advantageous.
  • the magnetic material and coil winding structure 300 shown in FIG. 24 differs only in the winding shape of the pickup coil 275 wound around the pickup area 120 as compared with the magnetic material and coil winding structure 300 of FIG. 23. That is, the pickup coil 275 is wound around the pickup area 120 together with the drive coil 235c, and the pickup coil 275a of 2 turns per turn of the drive coil 235c wound around the pickup area 120, 275b) is wound.
  • the shape and purpose of windings of the drive coil 235c and the pickup coils 275a and 275b in the pickup area 120 are the same as those in the pickup area 120 of the structure 250 shown in FIG.
  • the pickup coil 225 and the drive coil 235c are actually wound around the pickup area 120 of the structure 200 shown in FIG.
  • the magnetic material 1 or 110 of the pickup area 120 is surrounded by a lower insulating film 6 and an upper insulating film 7, and a drive coil 235c and a pickup coil 225 are 1 It is wound alternately at the ratio of turn to 1 turn.
  • the conductor section marked with hatched corresponds to the drive coil 235c
  • the conductor section marked with hatched corresponds to the pickup coil 225.
  • the conductor section indicated by the dotted line corresponds to the drive coil 235c and the lower coil 5 of the pickup coil 225
  • the conductor section indicated by the solid line is the drive coil 235c and the upper coil of the pickup coil 225 ( It corresponds to 9).
  • This description can be applied equally to the structure 300 shown in FIG. 23.
  • the magnetic body 1 or 110 of the pickup region 120 is surrounded by a lower insulating film 6 and an upper insulating film 7, and the drive coil 235c and the pickup coil 275 are 1 It is wound alternately at the ratio of turns to 2 turns.
  • the conductor section marked with white blanks without marking anything such as hatched corresponds to the drive coil 235c
  • the conductor section marked with hatched corresponds to the first pickup coil 275a
  • the conductor section marked with a net corresponds to the first pickup coil 275a.
  • the conductor section indicated by the dotted line corresponds to the drive coil 235c and the lower coil 5 of the pickup coil 275
  • the conductor section indicated by the solid line is the drive coil 235c and the upper coil of the pickup coil 275 ( It corresponds to 9). This description can equally be applied to the structure 350 shown in FIG. 24.
  • Fig. 27 illustrates a magnetic material including a drive region formed of a magnetic thin film having a two-stage structure according to an exemplary embodiment.
  • the lower magnetic bodies 130L and 130R are firstly formed. Then, with the pickup area 120 as the center, U on the lower drive areas 130-1a, 130-1b, 130-2a on the left and the lower drive areas 130-1c, 130-1d, 130-2b on the right.
  • the first upper magnetic body 210L and the second upper magnetic body 210R of the shape are additionally formed.
  • the upper magnetic bodies 210L and 210R may be formed of the same laminated structure and the same thickness using the same material as the lower magnetic bodies 130L and 130R. However, the upper magnetic bodies 210L and 210R may have a smaller cross-sectional area than the lower magnetic bodies 130L and 130R.
  • the volume of the magnetic material inside the drive coil wound in the drive area is increased, so that the amount of magnetic flux flowing inside the magnetic material can be much greater than that of a single-layered magnetic material.
  • By increasing the volume of the magnetic material more magnetic flux can flow from the drive area to the pickup area.
  • the signal-to-noise ratio (SNR) increases, so that the driving circuit 15 can more easily detect the position of the voltage peak.
  • SNR signal-to-noise ratio
  • the magnetic body 210 having a two-stage structure shown in FIG. 27(b) may be made of a laminated thin film structure.
  • the magnetic material 1, 110, 160, or 310 according to the various embodiments described above may also be made of the same magnetic thin film structure.
  • the magnetic thin film 210 may be made in a structure in which a plurality of sets of magnetic films 220 are continuously stacked.
  • the set of magnetic layers 220 may include a magnetic thin layer 220-1 formed of a magnetic material such as NiFe, and an insulating thin layer 220-2 stacked thereon.
  • Such a laminated magnetic thin film 210 can be manufactured to have soft magnetic properties of soft magnetic thin films, that is, small coercivity, fast saturated magnetization, and high permeability. have. Since the manufacturing method thereof is already widely known, a detailed description thereof is omitted.
  • the number of sets of the stacked magnetic layers 220 may be increased.
  • the magnetic thin film 210 is formed of, for example, a magnetic thin film 220-1 made of NiFe to a thickness of about 500 ⁇ , and an insulating thin film such as SiO 2 , AL 2 O 3 , Ta 2 O 5 ( 220-2) was formed to a thickness of approximately 100 ⁇ .
  • the magnetic thin film 210 may be formed by stacking approximately several to tens of sets of the'magnetic thin film 220-1 + the insulating thin film 220-2'.
  • both the lower magnetic bodies 130L and 130R and the upper magnetic bodies 210L and 210R may be formed in the same structure as the magnetic thin film 210 mentioned above.
  • the magnetic thin film 210 having a two-stage structure can be formed by forming a primary magnetic thin film and then forming an additional secondary magnetic thin film thereon. have.
  • the secondary magnetic material thin film may be formed to have the same vertical structure as the primary magnetic material thin film.
  • the thickness of the magnetic thin film formed in a two-stage structure may be determined according to the output size of the fluxgate magnetometer and the magnetic field sensing performance.
  • Magnetic bodies according to all other embodiments of the present invention may be adopted by appropriately modifying the drive area of the two-stage structure illustrated in FIG. 27 to suit the shape of the corresponding magnetic body.
  • the drive area of the circular or elliptical shape magnetic body of Fig. 16 the first and second drive areas of the S-shaped magnetic body 160 of Fig. 20, the drive area of the square 8-shaped magnetic body 310 of Figs. 23 and 24, etc. It can be composed of a magnetic thin film with a two-stage structure. Since a person of ordinary skill in the art may implement the two-stage drive area of the magnetic bodies based on the description of FIG. 27, a description thereof will be omitted here.
  • the various magnetic material and winding structures 100, 150, 200, 250, 300, and 350 shown in FIGS. 19 to 24 can greatly increase the number of turns of the drive coil, so that the magnetic flux provided to the pickup area 120 The amount increases.
  • the structure 200, 250, 300, and 350 further winding up to the drive coil in addition to the pickup coil in the pickup region 120 can transmit a stronger magnetic flux to the pickup region 120, an external magnetic field in the pickup region 120 Even if applied, the spin direction of the atoms of the magnetic material 1 in the pickup region 120 can be maintained in the longitudinal direction (Z direction) of the pickup region 120.
  • the drive region of the magnetic material is formed in a two-stage structure to make the cross-sectional area larger than that of the pickup region, the amount of magnetic flux generated in the drive region and applied to the pickup region can be further increased.
  • the structures of various embodiments presented in the present invention may be applied to a fluxgate magnetometer alone or in combination of two or more.
  • a fluxgate magnetometer employing such structures can have an enlarged dynamic range and an improved linearity between the amount of change in the magnetic field and the amount of movement of the voltage peak.
  • the present invention can be used to design and manufacture magnetic sensors such as fluxgate magnetometers.
  • substrate insulating film silicon oxide, SiO 2

Abstract

A fluxgate magnetometer and a manufacturing method therefor are disclosed. Lower coils, a lower structure, a magnetic bodies, an upper insulating film, and upper coils are sequentially stacked on a substrate insulating film on a substrate. The lower coils are embedded in respective grooves, which are in a plurality of rows for embedding the lower coils provided on the substrate insulating film. Each lower coil has an edge portion that is formed to be lower than the upper ends of the grooves for embedding the lower coils, such that a buffer groove is provided on the upper edge portion thereof. A flattening thin film may be formed by using an SOG composition or a fluid oxide material so as to fill the buffer groove, cover the substrate insulating film and the lower coils, and provide a flat surface, thereby absorbing stress due to differences in the thermal expansion rates of neighboring components. A lower insulating film may be further formed on the flattening thin film. The magnetic substance for a Z-axis fluxgate comprises: a linear pickup region; and a drive region which is branched from both ends of the pickup region to both sides and is formed in any one of an elliptical structure, a track structure formed of a combination of a straight section and a curved section, a rectangular structure, and a double U-shaped structure , and on which at least a drive coil is wound. The drive region may be formed in a two-stage structure such that the cross-sectional area thereof is larger than that of the pickup region.

Description

플럭스게이트 자력계 및 그 제조 방법Fluxgate magnetometer and manufacturing method thereof
본 발명은 플럭스게이트 자력계 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는 외부 자기장의 인가 방향 및 세기를 측정하는 박막 플럭스게이트 및 그 제조 방법에 관한 것이다.The present invention relates to a fluxgate magnetometer and a manufacturing method thereof, and more particularly, to a thin film fluxgate measuring an application direction and intensity of an external magnetic field, and a manufacturing method thereof.
플럭스게이트 자력계(Fluxgate Magnetometer, 이하에서는 간단히‘플럭스게이트’라 함)는 자기 센서(Magnetic Sensor)의 일종으로서, 지뢰 등과 같은 철강 함유 매설물을 탐색하거나 전자나침반으로 구현되어 지구 자계를 검출하는 용도로 활용되는 센서이다. X축, Y축 및Z축 방향으로 각각 배치된 세 개의 플럭스게이트를 포함하는 플럭스게이트 센서는 외부에서 인가되는 자기장의 방향 및 세기를 검출할 수 있다.Fluxgate Magnetometer (hereinafter simply referred to as'Fluxgate') is a type of magnetic sensor, and is used to search for buried materials containing steel such as mines or to detect the earth's magnetic field by being implemented as an electronic compass. It is a sensor. A fluxgate sensor including three fluxgates arranged in the X-axis, Y-axis and Z-axis directions, respectively, can detect the direction and strength of a magnetic field applied from the outside.
도1의 (a)와 (b)는 종래의 막대형 및 원형 플럭스게이트를 각각 도시한다. 도1을 참조하면, 플럭스게이트의 기본 구조는 절연막(2)에 의해 둘러싸인 자성체(1)에 드라이브 코일(3) 및 픽업 코일(4)이 감겨있는 구조이다. 드라이브 코일(3)로 교류 전류가 인가됨에 따라 픽업 코일(4)에 전압이 유도된다. 그 유도 전압을 전압계(V)를 통해 측정하여 외부 자기장의 인가 방향 및 세기를 검출할 수 있다.1A and 1B show a conventional rod-shaped and circular fluxgate, respectively. Referring to FIG. 1, the basic structure of the flux gate is a structure in which a drive coil 3 and a pickup coil 4 are wound around a magnetic body 1 surrounded by an insulating film 2. As an alternating current is applied to the drive coil 3, a voltage is induced in the pickup coil 4. The induced voltage is measured through a voltmeter V to detect the application direction and strength of the external magnetic field.
통상적으로, 플럭스게이트는 구현되는 센서의 높이의 제한이 없는 경우에는, 도1(a)에 도시된 것과 같이 막대형 구조의 플럭스게이트가 사용될 수 있다. 하지만, 휴대폰과 같은 전자장치에 적용되는 칩에 실장되는 경우와 같이, 구현되는 센서의 높이에 제한이 있을 수 있다. 그런 경우에는 도1(b)에 도시된 것과 같이 작은 높이를 갖는 원형 구조의 플럭스게이트가 Z축용 플럭스게이트로 적합하다.Typically, when there is no restriction on the height of a sensor to be implemented, a flux gate having a rod-shaped structure as shown in Fig. 1(a) may be used. However, there may be a limit on the height of a sensor to be implemented, such as when mounted on a chip applied to an electronic device such as a mobile phone. In such a case, a flux gate having a circular structure having a small height as shown in Fig. 1(b) is suitable as a flux gate for the Z-axis.
도2는 종래의 플럭스게이트의 내부 구조를 도시하고 있다. 도2에 도시된 것과 같이 플럭스게이트를 제조하기 위해서, 고온 옥시데이션(thermal oxidation) 등의 방법으로 실리콘 옥사이드 재질의 절연막(2)을 형성시킨 실리콘 웨이퍼 기판을 사용한다. 그 기판의 절연막(2) 표면 위에 드라이브 코일(3) 및/또는 픽업 코일(4)의 아래쪽 절반을 구성하는 하부 코일(5)이 형성된다. 하부 코일(5)은 전기전도도가 높은 알루미늄 또는 구리와 같은 금속 재질로 형성된다. 하부 코일(5)의 상단에는 SiO2, Ta2O5, 또는 Al2O3 등의 재질을 갖는 하부 절연막(6)이 형성된다. 하부 절연막(6)의 상단에는 강자성체의 특성을 가지는 자성체(1)가 형성된다. 자성체(1)는NiFe를 여러 층 적층한 구조일 수 있다. 자성체(1)의 상단에는SiO2, Ta2O5, 또는 Al2O3 등의 재질을 갖는 상부 절연막(7)이 형성된다. 그리고, 최종적으로 드라이브 코일(3) 및/또는 픽업 코일(4)의 위쪽 절반을 구성하는 상부 코일(9)이 형성된다. 이에 의해 하부 코일(5)과 상부 코일(9)이 자성체(1)를 둘러싸는 구조로 된 플럭스게이트 자력계가 완성된다. 2 shows the internal structure of a conventional fluxgate. In order to manufacture the flux gate as shown in FIG. 2, a silicon wafer substrate formed with an insulating film 2 made of silicon oxide by a method such as high temperature oxidation is used. The lower coil 5 constituting the lower half of the drive coil 3 and/or the pickup coil 4 is formed on the surface of the insulating film 2 of the substrate. The lower coil 5 is formed of a metal material such as aluminum or copper having high electrical conductivity. A lower insulating film 6 made of a material such as SiO 2 , Ta 2 O 5 , or Al 2 O 3 is formed on the upper end of the lower coil 5. A magnetic body 1 having ferromagnetic properties is formed on the upper end of the lower insulating film 6. The magnetic body 1 may have a structure in which several layers of NiFe are stacked. An upper insulating film 7 made of a material such as SiO 2 , Ta 2 O 5 , or Al 2 O 3 is formed on the upper end of the magnetic body 1. And finally, the upper coil 9 constituting the upper half of the drive coil 3 and/or the pickup coil 4 is formed. Accordingly, a fluxgate magnetometer in which the lower coil 5 and the upper coil 9 surround the magnetic body 1 is completed.
도2의(b)는 도2의 (a)에 나타난 플럭스게이트의 길이 방향인 A-A' 방향에 대한 단면도이다. 도2(b)에 도시된 것과 같이, 플럭스게이트는 하부 코일(5), 하부 절연막(6), 자성체(1), 상부 절연막(7) 및 상부 코일(9)이 적층되는 구조로 형성된다. 자성체(1)는 다수의 자성체 박막(예컨대, NiFe 막)과 다수의 절연성 중간막(예컨대, SiO2 막, Ta2O5 막, 또는 Al2O3 막)이 교대로 적층된 구조로 형성될 수 있다. 나아가, 자성체(1)의 측면 부분과 상부 코일(9) 사이의 전기적 누전을 방지하기 위한 측면 절연막(8)이 형성될 수도 있다.FIG. 2(b) is a cross-sectional view in the direction AA′, which is the longitudinal direction of the flux gate shown in FIG. 2(a). As shown in Fig. 2(b), the flux gate is formed in a structure in which a lower coil 5, a lower insulating film 6, a magnetic material 1, an upper insulating film 7 and an upper coil 9 are stacked. The magnetic body 1 may be formed in a structure in which a plurality of magnetic thin films (eg, NiFe film) and a plurality of insulating interlayers (eg, SiO 2 film, Ta 2 O 5 film, or Al 2 O 3 film) are alternately stacked. have. Further, a side insulating film 8 may be formed to prevent an electric short circuit between the side portion of the magnetic body 1 and the upper coil 9.
도3에는 X축 플럭스게이트(14), Y축 플럭스게이트(13) 및Z축 플럭스게이트(12)로 구성된3축 플럭스게이트 센서(예: 전자나침반 칩)가 예시되어 있다. 도3에서, X축 플럭스게이트(14) 및 Y축 플럭스게이트(13)는 막대형 구조로 구현되고, Z축 플럭스게이트(12)는 원형 구조로 구현된 것이다. 각 플럭스게이트를 플럭스게이트 구동 회로(15, ASIC)와 조합하여 패키징용PCB(10) 위에 다이본딩한 후, 에폭시 몰딩(11)을 수행함으로써 도3에 도시된 3축 플럭스게이트 센서가 구현될 수 있다.3 illustrates a three-axis fluxgate sensor (eg, an electronic compass chip) composed of an X-axis fluxgate 14, a Y-axis fluxgate 13, and a Z-axis fluxgate 12. 3, the X-axis fluxgate 14 and the Y-axis fluxgate 13 are implemented in a rod-shaped structure, and the Z-axis fluxgate 12 is implemented in a circular structure. Each fluxgate is combined with the fluxgate driving circuit 15 (ASIC) and die-bonded on the packaging PCB 10, and then epoxy molding 11 is performed to implement the three-axis fluxgate sensor shown in FIG. have.
본 발명의 배경기술은 대한민국 공개특허공보 제10-2009-0029800호(2009. 03. 23. 공개)에 개시되어 있다.Background art of the present invention is disclosed in Korean Patent Application Publication No. 10-2009-0029800 (published on March 23, 2009).
본 발명의 일 측면에 따른 목적은 구성요소들 간의 열 팽창률 차이로 인해 발생하는 응력을 완충할 수 있는 구조가 도입되어, 제조 공정 과정에서 소자의 파손을 방지하고 양호한 특성의 자성체의 구현을 통해 향상된 성능을 갖는 플럭스게이트 장치 및 이의 제조 방법을 제공하는 것이다.An object according to an aspect of the present invention is to introduce a structure capable of buffering the stress caused by the difference in the thermal expansion coefficient between the components, to prevent damage to the device in the manufacturing process and to improve through the implementation of a magnetic body with good characteristics. It is to provide a fluxgate device having performance and a method of manufacturing the same.
본 발명의 다른 측면에 따른 목적은 플럭스게이트의 최소 높이가 유지되는 조건 하에서 픽업 코일에서 검출되는 픽업 전압의 크기를 증가시킬 수 있는 구조를 통해 향상된 성능을 갖는 플럭스게이트 장치 및 이의 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a fluxgate device having improved performance and a manufacturing method thereof through a structure capable of increasing the magnitude of a pickup voltage detected from a pickup coil under a condition that the minimum height of the fluxgate is maintained. will be.
본 발명이 해결하고자 하는 과제는 상술한 과제들에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-described problems, and may be variously expanded without departing from the spirit and scope of the present invention.
상기 목적들을 달성하기 위한 본 발명의 실시예들에 따른 플럭스게이트 자력계는 기판 상의 기판 절연막 위에 순차적으로 적층된 하부 코일, 하부 구조부, 자성체, 상부 절연막 및 상부 코일을 포함한다. 상기 하부 코일은 상기 기판 절연막에 마련된 하부 코일 매립용 복수 열의 홈 안에 각각 매립된 형태로 형성되며, 각 하부코일은 자신의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단보다 낮게 형성되어 상기 하부 코일 매립용 홈의 측벽부 상단 근처의 상기 가장자리 부위 상부에 빈 공간인 완충 홈이 마련되게 형성된다. 상기 하부 구조부는, 상기 완충 홈을 채우고 상기 기판 절연막과 상기 하부 코일들을 덮으면서 평탄한 표면을 제공하도록 SOG 조성물(spin-on-glass composition or material) 또는 유동성 산화물(flowable oxide) 물질을 이용하여 형성되어 이웃하는 구성요소들 간의 열팽창율 차이에 따른 응력을 완충할 수 있도록 구성된 평탄화 박막을 포함한다.A fluxgate magnetometer according to embodiments of the present invention for achieving the above objects includes a lower coil, a lower structure, a magnetic material, an upper insulating film, and an upper coil sequentially stacked on a substrate insulating film on a substrate. The lower coil is formed in a form buried in a plurality of rows of grooves for burying the lower coil provided in the substrate insulating film, and each lower coil has its own edge portion lower than the upper end of the lower coil burying groove to bury the lower coil. A buffer groove, which is an empty space, is formed above the edge portion near the upper end of the sidewall portion of the dragon groove. The lower structure is formed by using a spin-on-glass composition or material or a flowable oxide material to provide a flat surface while filling the buffer groove and covering the substrate insulating film and the lower coils. It includes a planarization thin film configured to buffer stress due to a difference in thermal expansion coefficient between neighboring components.
예시적인 실시예에서, 상기 복수의 도전성 하부코일 각각은 상면 중앙부의 높이가 상기 하부코일 매립용 홈의 상단 높이와 실질적으로 동일하고, 상기 상면 중앙부에 비해 상기 가장자리 부위의 높이가 낮게 형성되어, 상기 완충 홈이 마련될 수 있다.In an exemplary embodiment, each of the plurality of conductive lower coils has a height of a central portion of an upper surface substantially the same as a height of an upper end of the groove for filling the lower coil, and a height of the edge portion is lower than that of the central portion of the upper surface. A buffer groove may be provided.
예시적인 실시예에서, 상기 하부 구조부는 상기 평탄화 박막의 평탄화된 표면 상에 적층되어 절연성을 제공하도록 형성되는 하부 절연막을 더 포함할 수 있다.In an exemplary embodiment, the lower structure may further include a lower insulating layer formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
예시적인 실시예에서, 상기 하부 절연막은, 상기 플럭스게이트의 공정 과정에서 상기 자성체의 압축 응력에 따른 상기 평탄화 박막의 파괴가 방지될 수 있도록, SiO2, Ta2O3 및 Al2O3 중 어느 하나의 물질로 형성될 수 있다.In an exemplary embodiment, the lower insulating layer is formed of any of SiO 2 , Ta 2 O 3 and Al 2 O 3 to prevent destruction of the planarization thin film due to compressive stress of the magnetic material during the process of the flux gate. It can be formed of one material.
예시적인 실시예에서, 상기 하부코일과 상기 상부코일은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 서로 연결되어 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성하도록 구성될 수 있다. In an exemplary embodiment, the lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape, and are induced by a drive coil for passing a drive current and a magnetic flux passing through it. It may be configured to separately form a pickup coil for detecting the pickup voltage.
예시적인 실시예에서, 상기 자성체는 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체와, 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어, 타원형 구조 또는, 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함할 수 있다. In an exemplary embodiment, the magnetic material is a pick-up area magnetic material that extends in a straight line for a predetermined length and at least the pick-up coil is wound, and the pick-up area is branched in both directions from the upper and lower ends of the magnetic material, and has an elliptical structure or a straight section and a curved section. A land track-type structure consisting of a combination of, a square structure, and a drive area in which the pickup area is formed in any one of two U-shaped structures that face each other in an S shape connected to the magnetic body, and at least the drive coil is wound. It may contain a magnetic material.
예시적인 실시예에서, 상기 드라이브 코일은 외부 인가 자기장에 의한 픽업 전압의 피크 값 감소를 막기 위해 상기 픽업 영역 자성체에도 더 감긴 형태로 구성될 수 있다.In an exemplary embodiment, the drive coil may be further wound around the pickup area magnetic material in order to prevent a peak value of the pickup voltage from decreasing due to an externally applied magnetic field.
예시적인 실시예에서, 상기 픽업 영역에 감긴 상기 드라이브 코일과 상기 픽업코인 간의 권선수 비는 1:1 또는 1:2일 수 있다.In an exemplary embodiment, a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area may be 1:1 or 1:2.
예시적인 실시예에서, 상기 드라이브 영역 자성체는 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하는 2단 구조 자성체로 형성되고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 클 수 있다.In an exemplary embodiment, the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. It is formed of a two-stage magnetic body including the formed second-stage drive region magnetic body, and a sum of cross-sectional areas of the first and second-stage drive region magnetic bodies may be greater than the cross-sectional area of the pickup region magnetic body.
예시적인 실시예에서, 상기 자성체는 복수 세트의 자성체막이 연속적으로 적층된 구조이며, 한 세트의 자성체막은 자성물질로 형성된 자성박막과 그 위에 적층된 절연박막을 포함할 수 있다.In an exemplary embodiment, the magnetic material has a structure in which a plurality of sets of magnetic layers are continuously stacked, and a set of magnetic layers may include a magnetic thin layer formed of a magnetic material and an insulating thin layer stacked thereon.
상기 목적들을 달성하기 위한 본 발명의 다른 실시예들에 따른 플럭스게이트 자력계는 기판 상의 기판 절연막 위에 순차적으로 적층된 하부 코일, 하부 구조부, 자성체, 상부 절연막 및 상부 코일을 포함한다. 상기 하부코일과 상기 상부코일은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 서로 연결되어 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성한다. 상기 자성체는 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체; 및 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고, 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함한다.A fluxgate magnetometer according to another exemplary embodiment of the present invention to achieve the above objects includes a lower coil, a lower structure, a magnetic material, an upper insulating film, and an upper coil sequentially stacked on a substrate insulating film on a substrate. The lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape to detect a pickup voltage induced by a magnetic flux passing through a drive coil for passing a drive current. Separately form the pickup coil. The magnetic material is a pick-up area magnetic material that extends for a predetermined length in a straight line and at least the pick-up coil is wound; And a land track-type structure composed of a combination of a straight section and a curved section by branching from the upper and lower ends of the magnetic material in the pickup area, a rectangular structure, and two facing each other in a form connected to the magnetic material in the pickup area forming an S shape. It is formed in any one of the U-shaped structure, and at least includes a drive region magnetic material wound around the drive coil.
예시적인 실시예에서, 상기 드라이브 코일은 외부 인가 자기장에 의한 픽업 전압의 피크 값 감소를 막기 위해 상기 픽업 영역 자성체에도 더 감긴 형태로 구성될 수 있다.In an exemplary embodiment, the drive coil may be further wound around the pickup area magnetic material in order to prevent a peak value of the pickup voltage from decreasing due to an externally applied magnetic field.
예시적인 실시예에서, 상기 픽업 영역에 감긴 상기 드라이브 코일과 상기 픽업코인 간의 권선수 비는 1:1 또는 1:2일 수 있다.In an exemplary embodiment, a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area may be 1:1 or 1:2.
예시적인 실시예에서, 상기 드라이브 영역 자성체는 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하는 2단 구조 자성체로 형성되고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 클 수 있다.In an exemplary embodiment, the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. It is formed of a two-stage magnetic body including the formed second-stage drive region magnetic body, and a sum of cross-sectional areas of the first and second-stage drive region magnetic bodies may be greater than the cross-sectional area of the pickup region magnetic body.
예시적인 실시예에서, 상기 하부 코일은 상기 기판 절연막에 마련된 하부 코일 매립용 복수 열의 홈 안에 각각 매립된 형태로 형성되며, 각 하부코일은 자신의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단보다 낮게 형성되어 상기 하부 코일 매립용 홈의 측벽부 상단 근처의 상기 가장자리 부위 상부에 완충 홈이 마련되게 형성될 수 있다. 상기 하부 구조부는, 상기 완충 홈을 채우고 상기 기판 절연막과 상기 하부 코일들을 덮으면서 평탄한 표면을 제공하도록 SOG 조성물 또는 유동성 산화물(flowable oxide) 물질을 이용하여 형성되어 이웃하는 구성요소들 간의 열팽창율 차이에 따른 응력을 완충할 수 있도록 구성된 평탄화 박막을 포함할 수 있다.In an exemplary embodiment, the lower coil is formed to be buried in a plurality of rows of grooves for filling the lower coil provided in the substrate insulating layer, and each lower coil has its own edge portion lower than the upper end of the lower coil buried groove. It may be formed such that a buffer groove is provided on the edge portion near an upper end of the sidewall portion of the lower coil buried groove. The lower structure part is formed by using an SOG composition or a flowable oxide material to fill the buffer groove and provide a flat surface while covering the substrate insulating film and the lower coils, so that the difference in thermal expansion coefficient between neighboring components It may include a planarization thin film configured to buffer the resulting stress.
예시적인 실시예에서, 상기 하부 구조부는 상기 평탄화 박막의 평탄화된 표면상에 적층되어 절연성을 제공하도록 형성되는 하부 절연막을 더 포함할 수 있다.In an exemplary embodiment, the lower structure may further include a lower insulating layer formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
상기 목적들을 달성하기 위한 본 발명의 또 다른 실시예들에 따른 플럭스게이트 자력계는, 기판; 상기 기판의 상면에 적층되어 절연성을 제공하고, 상면에 복수 열의 하부코일 매립용 홈이 형성된 기판 절연막; 상기 복수 열의 하부코일 매립용 홈 안에 각각 매립되되, 각각의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단면보다 낮게 형성된 단차에 의해 상기 가장자리 부위와 상기 하부코일 매립용 홈의 측벽부 사이에 빈 공간인 완충 홈이 마련되도록 형성된 복수 열의 하부 코일; 상기 완충 홈을 채우고 상기 기판 절연막과 상기 복수 열의 하부 코일들을 덮으면서 평탄한 표면을 제공하는 평탄화 박막; 및 상기 평탄화 박막의 평탄화된 표면상에 적층되어 절연성을 제공하도록 형성되는 하부 절연막을 포함하는 하부 구조부; 상기 하부 구조부의 상면에 적층된 자성체; 상기 자성체의 측면과 상면을 감싸서 상기 하부 구조부와 협력하여 상기 자성체를 외부로부터 절연되게 하는 상부 절연막; 그리고 상기 상부 절연막의 상면과 측면을 감싸도록 형성된 복수 열의 상부 코일을 포함한다. 상기 하부코일과 상기 상부코일은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 서로 연결되어 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성한다. 상기 자성체는 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체와, 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어, 타원형 구조, 또는 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함한다. A fluxgate magnetometer according to still another embodiment of the present invention for achieving the above objects includes: a substrate; A substrate insulating film stacked on an upper surface of the substrate to provide insulation and having a plurality of rows of grooves for filling the lower coils formed on the upper surface; Each of the plurality of rows of lower coil embedding grooves is buried, and each edge portion is an empty space between the edge portion and the sidewall portion of the lower coil embedding groove by a step formed lower than the upper end surface of the lower coil embedding groove. A plurality of rows of lower coils formed to have buffer grooves; A planarization thin film filling the buffer groove and covering the substrate insulating layer and the plurality of rows of lower coils to provide a flat surface; And a lower insulating layer formed on the planarized surface of the planarizing thin film to provide insulation. A magnetic material stacked on the upper surface of the lower structure; An upper insulating layer covering the side and upper surfaces of the magnetic material to cooperate with the lower structure to insulate the magnetic material from the outside; And it includes a plurality of rows of upper coils formed to surround the upper surface and side surfaces of the upper insulating layer. The lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape to detect a pickup voltage induced by a magnetic flux passing through a drive coil for passing a drive current. Separately form the pickup coil. The magnetic body extends a predetermined length in a straight line, and at least the pickup area magnetic body around which the pickup coil is wound, and the pickup area magnetic body are branched in both directions at the upper and lower ends of the magnetic body in the pickup area, and are formed of an elliptical structure, or a combination of a straight section and a curved section. A track-shaped structure, a quadrangular structure, and a drive area magnetic material connected to the pickup area magnetic material is formed in any one of two U-shaped structures facing each other in an S shape, and at least the drive coil is wound.
예시적인 실시예에서, 상기 평탄화 박막은, 졸 상태에서 스핀 코팅 방식으로 상기 완충 홈을 채우면서 상기 복수의 하부 코일과 상기 기판 절연막 위에 코팅되어 평탄면을 형성하고, 큐어링된 후 하드 겔(hard gel) 상태로 변형되어 이웃하는 구성요소들 간의 열팽창률 차이에 따른 응력을 완충시킬 수 있는 물성을 지닌 물질로 이루어진 것일 수 있다.In an exemplary embodiment, the planarization thin film is coated on the plurality of lower coils and the substrate insulating film while filling the buffer groove in a spin coating method in a sol state to form a flat surface, and after curing, hard gel It may be made of a material that is transformed into a gel) state and has physical properties capable of buffering the stress caused by the difference in the coefficient of thermal expansion between neighboring components.
예시적인 실시예에서, 상기 평탄화 박막은 SOG 조성물(spin-on-glass composition or material) 또는 유동성 산화물 물질로 형성된 것일 수 있다.In an exemplary embodiment, the planarization thin film may be formed of an SOG composition (spin-on-glass composition or material) or a flowable oxide material.
예시적인 실시예에서, 상기 드라이브 코일은 외부 인가 자기장에 의한 픽업 전압의 피크 값 감소를 막기 위해 상기 픽업 영역 자성체에도 더 감긴 형태로 구성될 수 있다. In an exemplary embodiment, the drive coil may be further wound around the pickup area magnetic material in order to prevent a peak value of the pickup voltage from decreasing due to an externally applied magnetic field.
예시적인 실시예에서, 상기 드라이브 영역 자성체는 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하는 2단 구조 자성체로 형성되고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 클 수 있다.In an exemplary embodiment, the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. It is formed of a two-stage magnetic body including the formed second-stage drive region magnetic body, and a sum of cross-sectional areas of the first and second-stage drive region magnetic bodies may be greater than the cross-sectional area of the pickup region magnetic body.
예시적인 실시예에서, 상기 타원형 구조의 드라이브 영역 자성체의 곡선구간 또는 상기 육상 트랙형 구조와 상기 2개의 U자형 구조의 드라이브 영역 자성체의 곡선 구간에 감기는 상기 드라이브 코일은 곡률 반경 중심으로부터 외곽 방향으로 갈수록 선폭이 증가하도록 형성될 수 있다.In an exemplary embodiment, the drive coil wound around the curved section of the magnetic body of the drive area magnetic body of the elliptical structure or the curved section of the drive area magnetic body of the land track structure and the two U-shaped structures is from the center of the radius of curvature to the outside. It may be formed to increase the line width as it goes.
한편, 상기 목적들을 달성하기 위한 본 발명의 또 다른 실시예들에 따른 플럭스게이트 자력계의 제조 방법은 하부 코일, 하부 구조부, 자성체, 상부 절연막 및 상부 코일이 순차적으로 적층되어 형성된 플럭스게이트 자력계를 제조하는 방법이다. 상기 제조 방법은, 실리콘 웨이퍼 기판 상에 형성된 기판 절연막에 상기 하부 코일이 형성될 복수 열의 하부 코일 매립용 홈을 형성하는 단계; 복수 열의 하부 코일을 상기 복수 열의 하부 코일 매립용 홈 안에 각각 매립된 형태로 형성하되, 각 하부 코일의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단 보다 낮게 형성되어 상기 하부 코일 매립용 홈의 측벽부 상단 근처의 상기 가장자리 부위 상부에 빈 공간 형태의 완충 홈이 복수 개 마련되도록 하부 코일을 형성하는 단계; 및 SOG 조성물 또는 유동성 산화물(flowable oxide) 물질이 상기 완충 홈을 채우면서 상기 기판 절연막과 상기 하부 코일들 위에 코팅되어 평탄면을 형성하도록 스핀코팅을 수행하고, 큐어링 처리를 하여 하드 겔 상태로 변형된 평탄화 박막을 포함하는 하부구조부를 형성하는 단계를 포함한다. 상기 평탄화 박막은 이웃하는 구성요소들 간의 열팽창률 차이에 따른 응력을 완충시킬 수 있는 물성을 갖는다.On the other hand, the method of manufacturing a fluxgate magnetometer according to still another embodiment of the present invention for achieving the above objects is to manufacture a fluxgate magnetometer formed by sequentially stacking a lower coil, a lower structure part, a magnetic material, an upper insulating film, and an upper coil. That's the way. The manufacturing method includes the steps of forming a plurality of rows of grooves for burying lower coils in which the lower coils are to be formed in a substrate insulating film formed on a silicon wafer substrate; A plurality of rows of lower coils are formed in the form of being buried in the plurality of rows of lower coil embedding grooves, but the edge of each lower coil is formed lower than the upper end of the lower coil embedding groove, so that the sidewall of the lower coil embedding groove Forming a lower coil such that a plurality of buffer grooves in the form of empty spaces are provided above the edge portion near an upper end; And SOG composition or flowable oxide material is coated on the substrate insulating film and the lower coils while filling the buffer groove, performing spin coating to form a flat surface, and curing to form a hard gel state. And forming an understructure including the formed planarization thin film. The planarizing thin film has physical properties capable of buffering a stress caused by a difference in thermal expansion coefficient between neighboring components.
예시적인 실시예에서, 상기 하부 코일을 형성하는 단계는, 상기 포토레지스트가 코팅된 상태에서 상기 복수 열의 하부 코일 매립용 홈에 대하여 도전성 금속을 스퍼터링하여, 중앙부의 높이가 상기 하부코일 매립용 홈의 상단과 실질적으로 동일하고, 상기 가장자리 부위의 높이가 상기 중앙부보다 더 낮아 상기 완충 홈이 마련되는 표면 프로파일을 갖는 하부 코일을 형성할 수 있다.In an exemplary embodiment, in the forming of the lower coil, a conductive metal is sputtered on the plurality of rows of lower coil embedding grooves while the photoresist is coated, so that the height of the central part is It is substantially the same as the upper end, and the height of the edge portion is lower than the central portion to form a lower coil having a surface profile in which the buffer groove is provided.
예시적인 실시예에서, 상기 하부 코일 매립용 홈을 형성하는 단계는, 상기 기판 절연막 상에서 포토레지스트(PR: Photo Resist)가 코팅되지 않은 식각 영역에 대하여 1차 식각을 실시하여 상기 하부 코일이 형성될1차 영역을 형성하는 단계; 및 상기1차 영역에 대한2차 식각을 추가적으로 실시하여 상기1차 영역을 확장시켜 상기 하부 코일 매립용 홈의 입구 가장자리 부분이 상기 포토레지스트에 의해 덮인 구조로 상기 하부 코일 매립용 홈을 형성하는 단계를 포함할 수 있다.In an exemplary embodiment, in the forming of the groove for filling the lower coil, the lower coil is formed by performing a primary etching on an etching region on the substrate insulating layer that is not coated with a photoresist (PR). Forming a primary region; And forming the lower coil embedding groove in a structure in which the inlet edge of the lower coil embedding groove is covered by the photoresist by additionally performing a second etching on the first region to expand the first region. It may include.
예시적인 실시예에서, 상기1차 식각은 건식 식각(Dry Etching) 공정을 통해 이루어지고, 상기2차 식각은 습식 식각(Wet Etching)을 통해 이루어질 수 있다.In an exemplary embodiment, the first etching may be performed through a dry etching process, and the second etching may be performed through wet etching.
예시적인 실시예에서, 상기 하부 코일 매립용 홈을 형성하는 단계는, 상기 하부 코일 매립용 홈의 입구부를 덮고 있는 포토레지스트의 측방 선단부 일부를 추가적인 건식 식각을 통해 제거한 후 상기 하부 코일 매립용 홈에 상기 하부 코일을 형성하는 단계를 포함할 수 있다. In an exemplary embodiment, in the forming of the groove for burying the lower coil, a portion of the lateral tip of the photoresist covering the inlet of the groove for burying the lower coil is removed through additional dry etching, and then the groove for burying the lower coil is removed. It may include the step of forming the lower coil.
예시적인 실시예에서, 상기 제조 방법은 SiO2, Ta2O3 및 Al2O3중 어느 하나의 물질로 상기 하부 구조부의 일부로서 상기 평탄화 박막 상에 적층되게 하부 절연막을 형성하는 단계를 더 포함할 수 있다. 상기 하부 절연막은 플럭스게이트 자력계의 제조과정에서 상기 자성체의 압축 응력에 따른 상기 평탄화 박막의 파괴를 방지하고, 절연성을 제공할 수 있다.In an exemplary embodiment, the manufacturing method further includes forming a lower insulating layer to be stacked on the planarizing thin film as a part of the lower structure with any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 . can do. The lower insulating layer may prevent destruction of the planarization thin film due to compressive stress of the magnetic material during the manufacturing process of the fluxgate magnetometer, and may provide insulation.
예시적인 실시예에서, 상기 제조 방법은 상기 하부 구조부 위에 상기 자성체를 복수 세트의 자성체막이 연속적으로 적층된 구조로 형성하되, 한 세트의 자성체막은 자성물질로 형성된 자성박막과 그 위에 적층된 절연박막을 포함하도록 상기 자성체를 형성하는 단계; 및 상기 자성체의 상면과 측면을 감싸도록 형성되어 상기 하부 구조부와 협력하여 상기 자성체를 완전히 포위하여 절연되게 하는 상기 상부 절연막을 형성하는 단계를 더 포함할 수 있다.In an exemplary embodiment, in the manufacturing method, the magnetic material is formed in a structure in which a plurality of magnetic material films are continuously stacked on the lower structure part, and the magnetic material film of one set is a magnetic thin film formed of a magnetic material and an insulating thin film laminated thereon. Forming the magnetic material to include; And forming the upper insulating layer formed so as to surround the upper surface and the side surface of the magnetic material so as to completely surround and insulate the magnetic material in cooperation with the lower structure.
예시적인 실시예에서, 상기 제조 방법은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 상기 하부코일들과 연결되는 상부 코일을 형성하되, 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성하는 단계를 더 포함할 수 있다.In an exemplary embodiment, in the manufacturing method, an upper coil connected to the lower coils is formed to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape, and pass through a drive coil for passing a drive current. It may further include a step of separately forming a pickup coil for detecting the pickup voltage induced by the magnetic flux.
예시적인 실시예에서, 상기 자성체를 형성하는 단계는, 상기 자성체가 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체와, 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어, 타원형 구조, 또는 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함하도록 형성할 수 있다.In an exemplary embodiment, the forming of the magnetic body includes a pickup area magnetic body in which the magnetic body extends in a linear shape for a predetermined length and at least the pickup coil is wound, and the pickup area magnetic body is branched in both directions at the upper and lower ends of the magnetic body. A structure, or a track-type structure consisting of a combination of a straight section and a curved section, a square structure, and one of two U-shaped structures facing each other in which the shape connected to the pickup area magnetic body forms an S-shape, and at least It may be formed to include a drive area magnetic material wound around the drive coil.
예시적인 실시예에서, 상기 자성체를 형성하는 단계는, 상기 드라이브 영역 자성체가 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하도록 2단 구조 자성체로 형성하는 단계를 포함하고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 클 수 있다.In an exemplary embodiment, in the forming of the magnetic material, the drive area magnetic material is stacked on a first stage drive area magnetic material having a thickness substantially the same as the pickup area magnetic material, and the first stage drive area magnetic material Forming a two-stage magnetic material to include a second-stage drive area magnetic material formed smaller than the first-stage drive area magnetic material, wherein the sum of the cross-sectional areas of the first-stage drive area magnetic material is the pickup area magnetic material Can be larger than the cross-sectional area of
본 발명의 일 측면에 따르면, 기판의 절연막에 형성된 트렌치 구조 안에 불완전 매립된 하부 코일의 양측 단부와 그 트렌치 구조의 측벽 간의 단차 구조를 통해 형성되는 완충 홈이 형성된다. 그 완충 홈을 채우면서 평탄면을 제공하는 평탄화 막층과 그 위에 적층되는 하부 절연막층으로 구성되는 2층 구조의 하부 구조부가 형성된다. 그 하부 구조부의 평탄화 박막층은 플럭스게이트를 제조하는 과정에서 구성 층들(Layers) 간의 열팽창률 차이로 인해 발생하는 응력을 완충할 수 있다. 이에 의해, 제조 과정에서 구성요소들의 파손이나 균열 발생으로 인한 자성체의 자기적 특성 저하를 방지하여 플럭스게이트의 성능을 향상시킬 수 있다.According to an aspect of the present invention, a buffer groove formed through a stepped structure between both ends of a lower coil incompletely buried in a trench structure formed in an insulating layer of a substrate and a sidewall of the trench structure is formed. A lower structure of a two-layer structure comprising a planarization film layer that fills the buffer groove and provides a flat surface and a lower insulating film layer stacked thereon is formed. The planarizing thin film layer of the lower structure can buffer stress caused by a difference in thermal expansion coefficient between the constituent layers in the process of manufacturing the fluxgate. Accordingly, it is possible to improve the performance of the fluxgate by preventing the magnetic properties of the magnetic material from deteriorating due to damage or cracking of components during the manufacturing process.
또한, Z축 플럭스게이트의 자성체는 막대 구조의 픽업 영역과 타원형 구조 또는 직선구간과 곡선구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조의 드라이브 영역을 포함한다. 본 발명에 의하면, (i) 곡률 반경 또는 드라이브 코일의 선폭을 최적화하거나 드라이브 영역을 크게 확대하여 드라이브 코일이 가능한 한 많이 감길 수 있거나 권선 밀도를 증가시킬 수 있다. 특히, 픽업영역과 직교하는 직선구간을 갖는 드라이브 영역은 코일을 권선할 수 있는 면적을 극대화할 수 있어 구동 자속량을 크게 늘릴 수 있다. (ii) 2단 적층 구조의 드라이브 영역을 도입하여 드라이브 영역이 픽업 영역에 비해 더 큰 단면적을 가진다. 이에 의해, 픽업 영역에 많은 자속을 전달할 수 있다. (iii) 픽업 영역에 픽업 코일뿐만 아니라 드라이브 코일도 함께 감는다. 이러한 여러 가지 구조적 특징들을 채용함으로써 드라이브 영역에서 생성되는 구동 자속을 크게 증가시킬 수 있고, 더 많은 구동 자속이 픽업 영역으로 유입될 수 있으며, 픽업 영역에서 검출되는 픽업전압의 세기를 강화시킬 수 있다. 픽업 영역에 외부 자기장이 인가되더라도 픽업 영역 내의 자성체의 원자들의 스핀방향을 픽업영역의 길이방향(Z방향)으로 계속 유지할 수 있게 해준다. 결과적으로, Z축 플럭스게이트의 최소 높이가 유지되는 조건 하에서 픽업 코일에서 검출되는 픽업 전압을 증가시켜 Z축 플럭스게이트의 성능을 향상시킬 수 있다.In addition, the magnetic material of the Z-axis fluxgate is a land track-type structure composed of a bar-structured pickup area and an elliptical structure, or a combination of a straight section and a curved section, and a square structure, and the shape connected to the pickup area magnetic material forms an S-shape. It includes two U-shaped drive areas facing each other. According to the present invention, (i) the radius of curvature or the line width of the drive coil can be optimized, or the drive area can be greatly enlarged so that the drive coil can be wound as much as possible or the winding density can be increased. In particular, a drive region having a straight section orthogonal to the pickup region can maximize an area capable of winding a coil, and thus the amount of driving magnetic flux can be greatly increased. (ii) The drive area has a larger cross-sectional area than the pickup area by introducing the drive area of a two-tiered structure. Thereby, a large amount of magnetic flux can be transmitted to the pickup area. (iii) Wind the pickup coil as well as the drive coil in the pickup area. By employing these various structural features, it is possible to greatly increase the driving magnetic flux generated in the drive area, more driving magnetic flux can be introduced into the pickup area, and the intensity of the pickup voltage detected in the pickup area can be enhanced. Even if an external magnetic field is applied to the pickup region, it is possible to keep the spin direction of the atoms of the magnetic material in the pickup region in the longitudinal direction (Z direction) of the pickup region. As a result, it is possible to improve the performance of the Z-axis fluxgate by increasing the pickup voltage detected by the pickup coil under the condition that the minimum height of the Z-axis fluxgate is maintained.
도1 및 도2는 종래의 플럭스게이트의 기본 구조를 도시한 예시도이다.1 and 2 are exemplary views showing the basic structure of a conventional flux gate.
도3은 종래 X축 플럭스게이트, Y축 플럭스게이트 및 Z축 플럭스게이트로 구성된3축 플럭스게이트 센서를 도시한 예시도이다.3 is an exemplary view showing a conventional 3-axis fluxgate sensor composed of an X-axis fluxgate, a Y-axis fluxgate, and a Z-axis fluxgate.
도4는 본 발명의 일 실시예에 따른 플럭스게이트의 동작 과정을 보인 예시도이다.4 is an exemplary view showing an operation process of a flux gate according to an embodiment of the present invention.
도5 내지 도9는 본 발명의 제1 실시예에 따른 플럭스게이트의 구조를 통해 해소하고자 하는 종래의 플럭스게이트의 공정 과정상의 문제점을 보인 예시도이다.5 to 9 are exemplary views showing problems in the process of a conventional flux gate to be solved through the structure of the flux gate according to the first embodiment of the present invention.
도10은 본 발명의 제1 실시예에 따른 플럭스게이트의 제조 방법을 설명하기 위한 흐름도이다.10 is a flowchart illustrating a method of manufacturing a fluxgate according to the first embodiment of the present invention.
도11은 본 발명의 제1 실시예에 따른 플럭스게이트를 제조하는 공정을 보인 예시도이다.11 is an exemplary view showing a process of manufacturing a fluxgate according to the first embodiment of the present invention.
도12 내지 도14는 본 발명의 제1 실시예에 따른 플럭스게이트에서 하부 구조부를 형성하는 과정을 구체적으로 설명하기 위한 도면들로서, 도12는 완충 홈을 채우기 위해 채용된 평탄화 박막이 자성체의 형성 구조에 미치는 영향을 도시하고, 도13은 자성체의 압축 응력에 의해 평탄화 박막이 파손될 수 있는 것을 도식적으로 나타내며, 도14는 기판 절연층과 하부 코일 간의 단차에 의해 마련되는 완충 홈을SOC 물질 등으로 채운 평탄화 박막을 도입하여 내응력 강도가 향상된 플럭스게이트 구조를 예시한다.12 to 14 are diagrams for explaining in detail a process of forming a lower structure part in a flux gate according to the first embodiment of the present invention, and FIG. 12 is a structure of a magnetic material formed by a planarizing thin film employed to fill a buffer groove. Fig. 13 schematically shows that the flattening thin film may be damaged by compressive stress of a magnetic material, and Fig. 14 is a buffer groove formed by a step difference between the substrate insulating layer and the lower coil, filled with SOC material, etc. An example of a fluxgate structure with improved stress resistance by introducing a planarizing thin film is illustrated.
도15는 종래의Z축 플럭스게이트의 원형 자성체 구조 및 드라이브 코일의 권선 형태와 자력선 생성 형태를 설명하기 위한 도면이다.15 is a view for explaining a structure of a circular magnetic body of a conventional Z-axis fluxgate, a winding form of a drive coil, and a form of generating magnetic lines of force.
도16은 본 발명의 제2 실시예에 따른 Z축 플럭스게이트의 자성체 구조 및 코일의 권선 형태를 종래의 그것과 비교하여 도시한다.Fig. 16 shows the magnetic structure of the Z-axis fluxgate and the winding form of the coil according to the second embodiment of the present invention in comparison with the conventional one.
도17 및 도18은 본 발명의 제2 실시예에 따른 플럭스게이트에서 평탄화 박막에 대한 습식 식각 과정을 도시한다.17 and 18 illustrate a wet etching process for a planarization thin film in a flux gate according to a second embodiment of the present invention.
도19 내지 도24는 본 발명의 여러 가지 다른 실시예에 따른 Z축 플럭스게이트의 자성체 구조 및 코일의 권선 형태를 도시한다.19 to 24 illustrate a magnetic structure of a Z-axis fluxgate and a winding type of a coil according to various other embodiments of the present invention.
도25는 도21에 도시된 구조의 픽업영역에 픽업 코일과 드라이브 코일이 실제로 권선된 형태를 예시한다.FIG. 25 exemplifies a configuration in which the pickup coil and the drive coil are actually wound in the pickup area of the structure shown in FIG.
도26은 도22에 도시된 구조의 픽업영역에 픽업 코일과 드라이브 코일이 실제로 권선된 형태를 예시한다.Fig. 26 exemplifies a form in which a pickup coil and a drive coil are actually wound in the pickup area of the structure shown in Fig. 22.
도27은 본 발명의 예시적인 실시예에 따른 드라이브 영역이 2단 구조의 자성체 박막으로 형성된 육상트랙형 자성체의 구조를 예시한다.Fig. 27 illustrates a structure of a land track type magnetic body in which a drive region is formed of a magnetic thin film having a two-stage structure according to an exemplary embodiment of the present invention.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings. The same reference numerals are used for the same elements in the drawings, and duplicate descriptions for the same elements are omitted.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance. In addition, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component.
<실시예 1><Example 1>
본 발명의 제1 실시예는 플럭스게이트의 제조 공정 과정에서 구성요소들간의 열팽창률 차이에 따른 크랙이나 파손에 따른 자성체의 자기적 특성 저하를 방지함으로써 플럭스게이트의 성능을 향상시킬 수 있는 박막 플럭스게이트의 구조와 이를 제조할 수 있는 방법을 제시한다.The first embodiment of the present invention is a thin-film fluxgate capable of improving the performance of a fluxgate by preventing a decrease in magnetic properties of a magnetic material due to cracks or breakages due to a difference in thermal expansion coefficient between components in the process of manufacturing a fluxgate. We present the structure of and how to manufacture it.
도4는 플럭스게이트의 동작 원리를 설명하기 위한 도면이고, 도5 내지 도9는 본 발명의 제1 실시예에 따른 플럭스게이트의 구조를 통해 해소하고자 하는 종래의 플럭스게이트의 제조공정 상의 문제점을 설명하기 위한 도면이다. 제1 실시예의 이해를 돕기 위해 먼저 도4를 참조하여 플럭스게이트의 동작 원리를 개괄적으로 설명하기로 한다. 이하에서, ‘플럭스게이트’라 함은, 플럭스케이트 자력계 또는 그 플럭스게이트 자력계를 구성하는 X축 플럭스게이트 소자, Y축 플럭스게이트 소자, 또는 Z축 플럭스게이트 소자를 지칭하는 것으로 한다.4 is a diagram for explaining the operation principle of the flux gate, and FIGS. 5 to 9 illustrate problems in the manufacturing process of the conventional flux gate to be solved through the structure of the flux gate according to the first embodiment of the present invention. It is a drawing to do. In order to aid in understanding the first embodiment, the principle of operation of the fluxgate will be described first with reference to FIG. 4. Hereinafter, the term "fluxgate" refers to a fluxgate magnetometer or an X-axis fluxgate device, a Y-axis fluxgate device, or a Z-axis fluxgate device constituting the fluxgate magnetometer.
플럭스게이트의 동작을 위해서는 드라이브 코일에 교류전류가 흘러야 한다. 전류의 방향에 따라서 암페어의 오른손법칙에 따라서 드라이브 코일의 내부로 자기장이 형성된다. 그 자기장은 드라이브 코일 내부에 있는 자성체로 흘러 들어가서 자성체를 구성하고 있는 원자들의 스핀(spin) 방향을 드라이브 코일이 만드는 자기장의 방향으로 향하도록 만든다. 드라이브 코일에 흐르는 전류의 방향이 반대로 바뀌면, 드라이브 코일의 자기장 방향도 반대 방향으로 바뀐다. 그에 따라 자성체 내부 원자들의 스핀 방향도 반대방향으로 향하게 된다. 이 같은 자화 반전이 일어나는 순간에 픽업영역에 감긴 픽업 코일로는 전압이 유도된다. 그 픽업 전압은 픽업코일 패드(122)를 통해 전압 피크(isolated voltage peak) 형태로 출력된다.In order to operate the fluxgate, an alternating current must flow through the drive coil. Depending on the direction of the current, a magnetic field is formed inside the drive coil according to the right-hand rule of amperes. The magnetic field flows into the magnetic body inside the drive coil, and makes the spin direction of the atoms constituting the magnetic body directed toward the magnetic field created by the drive coil. When the direction of the current flowing through the drive coil is reversed, the direction of the magnetic field of the drive coil is also reversed. Accordingly, the spin direction of the atoms inside the magnetic body is also directed in the opposite direction. At the moment such magnetization reversal occurs, voltage is induced to the pickup coil wound around the pickup area. The pickup voltage is output in the form of an isolated voltage peak through the pickup coil pad 122.
도4(a), (d), (g)는 일반적인 막대형 및 원형 플럭스게이트의 구조를 개념적으로 나타내고, 도4(b), (e), (h)는 각각의 플럭스게이트를 구성하는 자성체의 자기적 특성에 따른 자기이력곡선(hysteresis loop, 또는 M-H(magnetization-magnetic field) loop)을 나타내며, 도4(c), (f), (i)는 픽업 코일(4)에서 발생하는 픽업 전압의 파형을 나타낸다.Figures 4(a), (d), and (g) conceptually show the structure of a general rod-shaped and circular fluxgate, and Figures 4(b), (e), and (h) are magnetic materials constituting each fluxgate. Represents a hysteresis loop, or magnetization-magnetic field (MH) loop according to the magnetic characteristics of, and Figs.4(c), (f), and (i) are the pickup voltages generated in the pickup coil (4). Shows the waveform of
먼저, 도4(a), (b), (c)를 참조하여 외부에서 인가되는 자기장이 존재하지 않는 경우에 대하여 설명한다. 드라이브 코일(3)에 교류 전류 예컨대, 도4(c)의 점선으로 표현된 삼각파 전류를 입력할 경우, 드라이브 코일(3) 내부에 자기장이 형성되는데 그 자기장의 방향은 주기적으로 반전된다. 그 자기장의 방향이 반전될 때마다 픽업 코일(4)에 전압(이하, ‘픽업 전압’이라 함)이 유도된다. 그 픽업 전압은 도4(c)에서 실선으로 표시된 전압 피크(Voltage Peak)의 형태로 출력된다. 이렇게 임펄스파(또는 삼각파) 형태의 전압 피크가 발생되는 이유는 픽업 코일(4)에 유도되는 픽업 전압의 파형이 시간 변화에 대한 자화값의 변화량(즉, dM/dt)에 비례하기 때문이다. First, a case where no externally applied magnetic field exists will be described with reference to FIGS. 4(a), (b), and (c). When an alternating current, for example, a triangular wave current represented by the dotted line in Fig. 4(c) is input to the drive coil 3, a magnetic field is formed inside the drive coil 3, and the direction of the magnetic field is periodically reversed. Whenever the direction of the magnetic field is reversed, a voltage (hereinafter, referred to as “pickup voltage”) is induced in the pickup coil 4. The pickup voltage is output in the form of a voltage peak indicated by a solid line in Fig. 4(c). The reason why the voltage peak in the form of an impulse wave (or triangular wave) is generated is because the waveform of the pickup voltage induced in the pickup coil 4 is proportional to the amount of change in the magnetization value (that is, dM/dt) with respect to time change.
드라이브 코일(3)에 삼각파 전류를 입력하면, 플럭스게이트 내부의 자성체(1)의 자화 곡선은 도4(b)의 ①~⑧ 순서의 궤적을 따른다. 자성체(1)의 자화 방향이 -M에서 +M으로 변화하는 ②~③ 구간에서 급격한 자화값의 변화(2M)에 따른 제1 전압 피크가 발생하고, 삼각파 전류의 싸이클이 마무리되는 ⑥~⑦ 구간에서 제1 전압 피크와 부호가 반대인 제2 전압 피크가 발생한다.When a triangular wave current is input to the drive coil 3, the magnetization curve of the magnetic body 1 inside the fluxgate follows the trajectory of the order ① to ⑧ in Fig. 4(b). In the section ②~③ where the magnetization direction of the magnetic body (1) changes from -M to +M, the first voltage peak occurs due to a sudden change in magnetization value (2M), and the cycle of triangular wave current is completed. The first voltage peak and the second voltage peak in which the sign is opposite occurs.
도4(d), (e), (f)는 외부 자기장이 플럭스게이트의 좌측에서 우측으로 인가되는 경우를 도시하고 있다. 플럭스게이트에 좌측에서 우측으로의 외부 자기장이 인가되면, 도4(e)에 도시된 것과 같이 자성체(1)에서 형성되는 M-H loop는 자성체(1)에 인가된 외부 자기장의 크기만큼 우측으로 시프트(shift)된다. 그 상태에서 드라이브 코일(3)에 삼각파 전류를 입력하면, 도4(f)에 도시된 것과 같이 픽업 코일(4)에서 검출되는 제1 및 제2 전압 피크 간의 거리 즉, 제1 및 제2 전압 피크가 발생하는 시간 간격이 감소한다. 4(d), (e), and (f) show a case where an external magnetic field is applied from left to right of the flux gate. When an external magnetic field from left to right is applied to the fluxgate, the MH loop formed in the magnetic body 1 is shifted to the right by the amount of the external magnetic field applied to the magnetic body 1 as shown in Fig. 4(e). shift). In that state, when a triangular wave current is input to the drive coil 3, the distance between the peaks of the first and second voltages detected by the pickup coil 4, that is, the first and second voltages, as shown in Fig. 4(f). The time interval at which the peak occurs decreases.
도4(g), (h), (i)는 외부 자기장이 플럭스게이트의 우측에서 좌측으로 인가되는 경우를 도시한다. 도4(d), (e), (f)와 동일한 원리가 적용되어, 이 경우에는 앞의 경우와는 반대로 제1 및 제2 전압 피크 간의 거리 즉, 제1 및 제2 전압 피크가 발생하는 시간 간격은 증가하게 된다.4(g), (h), and (i) show cases where an external magnetic field is applied from the right to the left of the flux gate. The same principle as in Figs. 4(d), (e), and (f) is applied, and in this case, the distance between the first and second voltage peaks, that is, the first and second voltage peaks, is opposite to the previous case. The time interval will increase.
이러한 동작 원리에 따라, X축, Y축, Z축 플럭스게이트의 픽업코일에 각각 유도되는 픽업전압을 이용하면 외부에서 인가되는 자기장의 X축, Y축 및 Z축 성분을 측정할 수 있고, 그로부터 외부 인가 자기장 벡터를 알 수 있다.According to this principle of operation, by using the pickup voltages induced in each of the pickup coils of the X-axis, Y-axis, and Z-axis fluxgates, the X-axis, Y-axis and Z-axis components of the externally applied magnetic field can be measured, from which The external applied magnetic field vector is known.
다음으로, 도5 내지 도9를 참조하여 본 발명의 제1 실시예에 따른 플럭스게이트의 기술적 과제를 구체적으로 설명한다.Next, a technical problem of the flux gate according to the first embodiment of the present invention will be described in detail with reference to FIGS. 5 to 9.
도5는 플럭스게이트를 제조하는 일반적인 공정 과정을 도시하고 있다. 포토 리소그래피(Photo Lithography) 공정과 하부 코일용 금속박막에 대한 습식 식각 공정을 통해 하부 코일(5)을 실리콘 웨이퍼 기판(16) 상의 기판 절연막(17, 실리콘 옥사이드(Silicon Oxide))에서 돌출된 형태로 형성한다(도5의(a) 참조). 돌출된 하부 코일(5) 위에 하부 절연막(6)을 증착한다(도5의(b) 참조). 이 때 하부 절연막(6)의 상면은 하부 코일(5)에 의해 요철 표면을 가진다. 하부 절연막(6)의 돌출된 부위는 CMP(Chemical Mechanical Polishing) 공정을 통해 평탄화 한다(도5(c) 참조). 이후, 평탄화된 하부 절연막(6) 위에 자성체(1)가 형성되고(도5(d) 참조), 그 위에 상부 절연막(7) 및 상부 코일(9)을 순차적으로 형성함으로써(도5(e) 및 (f) 참조) 플럭스게이트가 완성된다.5 shows a general process procedure for manufacturing a fluxgate. Through a photolithography process and a wet etching process for the metal thin film for the lower coil, the lower coil 5 is protruded from the substrate insulating film 17 (Silicon Oxide) on the silicon wafer substrate 16. To form (see Fig. 5(a)). A lower insulating film 6 is deposited on the protruding lower coil 5 (see Fig. 5(b)). At this time, the upper surface of the lower insulating film 6 has an uneven surface by the lower coil 5. The protruding portion of the lower insulating layer 6 is planarized through a chemical mechanical polishing (CMP) process (see FIG. 5(c)). Thereafter, the magnetic body 1 is formed on the planarized lower insulating film 6 (see Fig. 5(d)), and the upper insulating film 7 and the upper coil 9 are sequentially formed thereon (Fig. 5(e)). And (f)) the fluxgate is completed.
도6은 도5의 (c)의 CMP 공정, 즉 하부 절연막(6)의 돌출 부위를 CMP 공정을 통해 연마하는 과정을 보이고 있다. FIG. 6 shows the CMP process of FIG. 5C, that is, a process of polishing the protruding portion of the lower insulating layer 6 through the CMP process.
도6을 참조하면, 하부 절연막(6)의 돌출 부위가 CMP 연마제(20)가 공급되고 있는 CMP 플레이트(19, CMP 장비의 Lapping 정반) 측을 향하도록 배치된다. 그 상태에서 실리콘 웨이퍼 기판(16) 뒷면에 무거운 CMP용 하중(18)을 인가하여 하부 절연막(6)의 돌출 부위를 연마한다. 이렇게 CMP 공정을 수행할 때, 경도가 약한 알루미늄 등의 금속 재질로 형성된 하부 코일(5)의 상단 부위의 하부 절연막(6)이 실리콘 웨이퍼 기판(16) 방향 쪽으로 밀려들어감으로써 하부 절연막(6)에 균열(21)이 발생할 수 있다.Referring to Fig. 6, the protruding portion of the lower insulating film 6 is disposed to face the CMP plate 19 (lapping plate of CMP equipment) to which the CMP abrasive 20 is supplied. In that state, a heavy CMP load 18 is applied to the back side of the silicon wafer substrate 16 to polish the protruding portion of the lower insulating film 6. When performing the CMP process in this way, the lower insulating film 6 at the upper end of the lower coil 5 formed of a metal material such as aluminum with low hardness is pushed toward the silicon wafer substrate 16, thereby forming the lower insulating film 6 Cracks 21 may occur.
CMP 공정에 따른 하부 절연막(6)의 균열 발생을 방지하기 위해, 하부 절연막(6)의 두께를 가능한 한 두껍게 형성시키는 방안을 고려할 수 있다. 그러나, 이 경우 하부 코일(5) 및 자성체(1) 간의 거리가 멀어지게 되어 드라이브 코일(3)에서 형성되는 자기장에 의한 자성체의 자화 반전(magnetization reversal)이 어려워진다. 나아가 하부 코일(5)에 의해 구성되는 픽업 코일(4) 및 자성체(1) 간의 거리가 멀어지면, 자성체(1) 내부의 자화 반전 시에 픽업 코일(4) 내부로 유도되는 전압 피크의 크기도 작아진다. 이런 문제점들로 인해, 플럭스게이트가 외부 자기장의 변화량을 감지하는 능력이 저하되게 된다.In order to prevent the occurrence of cracks in the lower insulating film 6 according to the CMP process, a method of forming the lower insulating film 6 as thick as possible may be considered. However, in this case, since the distance between the lower coil 5 and the magnetic body 1 is increased, magnetization reversal of the magnetic body by the magnetic field formed in the drive coil 3 becomes difficult. Further, as the distance between the pickup coil 4 and the magnetic body 1 constituted by the lower coil 5 increases, the magnitude of the voltage peak induced into the pickup coil 4 when the magnetization in the magnetic body 1 is reversed is also Becomes smaller. Due to these problems, the ability of the fluxgate to detect changes in the external magnetic field is degraded.
도7은 전술한 CMP 공정에 의해 발생하는 추가적인 문제점을 도시한다.7 shows an additional problem caused by the CMP process described above.
도7을 참조하면, 도7의(a) 상태의 하부 절연막(6)을 CMP 공정으로 평탄화하면, 도7의(b)와 같이 평탄화된 하부 절연막(6)이 얻어질 수 있다. 그런데 CMP 공정의 연마량(c)은, 일반적으로 실리콘 웨이퍼 기판(16)의 중앙 부위에서 연마량(E1)이 외곽 부위의 연마량(E2)보다 많다. 그러므로, 실리콘 웨이퍼 기판(16)의 외곽 부위에서 제작되는 플럭스게이트의 하부 절연막(6)의 두께는 실리콘 웨이퍼 기판(16)의 중앙 부위에서 제작되는 플럭스게이트의 하부 절연막(6)보다 더 두껍다. 이에 따라, 실리콘 웨이퍼 기판(16)의 외곽 부위에서 제작되는 플럭스게이트는 실리콘 웨이퍼 기판(16)의 중앙 부위에서 제작되는 플럭스게이트보다 외부 자기장 감지 특성이 좋지 않다. 실리콘 웨이퍼 기판(16)의 중앙에서 동일한 거리만큼 떨어진 외곽 부위라 하더라도, 각 외곽부위별 연마량 차이로 인해 하부 절연막(6)의 두께가 동일하게 형성되지 않을 수 있다. 이렇듯 위치에 따른 공정 편차가 존재하기 때문에 동일한 실리콘 웨이퍼 기판(16) 상에서 제작되는 각 플럭스게이트의 전기적 특성이 균일하지 않은 문제도 생길 수 있다.Referring to FIG. 7, when the lower insulating layer 6 in the state of FIG. 7 (a) is planarized by a CMP process, the lower insulating layer 6 that is flattened as shown in FIG. 7 (b) can be obtained. By the way, as for the polishing amount (c) of the CMP process, the polishing amount E1 at the center portion of the silicon wafer substrate 16 is generally greater than the polishing amount E2 at the outer portion. Therefore, the thickness of the lower insulating film 6 of the fluxgate fabricated at the outer portion of the silicon wafer substrate 16 is thicker than the lower insulating film 6 of the fluxgate fabricated at the center portion of the silicon wafer substrate 16. Accordingly, the flux gate manufactured at the outer portion of the silicon wafer substrate 16 has a poorer external magnetic field sensing characteristic than the flux gate manufactured at the central portion of the silicon wafer substrate 16. Even if the outer portion of the silicon wafer substrate 16 is separated by the same distance from the center of the silicon wafer substrate 16, the thickness of the lower insulating layer 6 may not be formed equally due to the difference in the amount of polishing for each outer portion. As such, there may be a problem in that the electrical characteristics of each fluxgate manufactured on the same silicon wafer substrate 16 are not uniform because there is a process variation according to the position.
도8은 도5 내지 도7을 통해 기술한 플럭스게이트 공정 과정의 연장선 상에서, 플럭스게이트의 구성요소 별 열팽창 특성 차이로 인한 플럭스게이트의 성능 저하의 문제를 설명하기 위한 도면이다.FIG. 8 is a diagram for explaining a problem of deterioration in performance of a fluxgate due to a difference in thermal expansion characteristics for each component of a fluxgate on an extension of the fluxgate process described with reference to FIGS. 5 to 7.
도8을 참조하면, 실리콘 웨이퍼 기판(16) 상에서 알루미늄 또는 구리 등과 같은 도전성 금속을 이용하여 돌출된 형태로 형성된 하부 코일(5) 위에 자성체(1)가 형성될 경우, 하부 구조(즉, 하부 코일(5) 및 하부 절연막(6))의 변화에 따른 자성체(1)의 자기적 특성 변화가 도시되어 있다.Referring to FIG. 8, when the magnetic body 1 is formed on the lower coil 5 formed in a protruding shape using a conductive metal such as aluminum or copper on the silicon wafer substrate 16, the lower structure (ie, the lower coil Changes in the magnetic properties of the magnetic body 1 according to changes in (5) and the lower insulating film 6 are shown.
하부 코일(5) 위에 하부 절연막(6)이 형성된 상태에서(도8의(a) 참조), 그 하부 절연막(6) 위에 스퍼터링(Sputtering) 공정 등을 통해 자성체(1)가 형성될 수 있고. 그 때 열팽창 현상이 나타날 수 있다(도8의(b) 참조). 플럭스게이트의 박막 증착 과정에서 주로 사용되는 스퍼터링 공정은 그 공정 과정에서 많은 열이 발생하게 된다. 하부 코일(5)은 주로 알루미늄으로 형성될 수 있다. 알루미늄의 열팽창 계수(α)는 2.5*10-5/℃이다. 알루미늄으로 형성되는 하부 코일(5) 주위의 다른 재질의 구성요소들은 알루미늄의 열팽창 계수보다 적어도 10배에서 100배 만큼 더 작은 열팽창 계수들(αNiFe = 7.7*10-6/℃, αSiO2 = 5.5*10-7/℃, αSiwafer = 2.6*10-6/℃, αTa2O5 = 3.6*10-6/℃, αAl2O3 = 7.2*10-6/℃)을 갖는다. 즉, 동일한 온도 변화에서, 알루미늄으로 된 하부 코일(5)은 주위의 다른 재질의 구성요소들보다 적어도 10배 내지 100배 이상의 열팽창을 하게 된다(도8(b)의①-->②). In the state where the lower insulating film 6 is formed on the lower coil 5 (see Fig. 8(a)), the magnetic body 1 may be formed on the lower insulating film 6 through a sputtering process or the like. At that time, a thermal expansion phenomenon may occur (see Fig. 8(b)). The sputtering process, which is mainly used in the process of depositing a thin film of the fluxgate, generates a lot of heat during the process. The lower coil 5 may be mainly formed of aluminum. The coefficient of thermal expansion (α) of aluminum is 2.5*10 -5 /℃. Components of other materials around the lower coil 5 made of aluminum have coefficients of thermal expansion that are at least 10 to 100 times smaller than that of aluminum (α NiFe = 7.7*10 -6 /°C, α SiO2 = 5.5. *10 -7 /℃, α Siwafer = 2.6*10 -6 /℃, α Ta2O5 = 3.6*10 -6 /℃, α Al2O3 = 7.2*10 -6 /℃). That is, at the same temperature change, the lower coil 5 made of aluminum undergoes thermal expansion at least 10 to 100 times or more than other elements of other materials around it (①-->② in Fig. 8(b)).
팽창된 하부 코일(5)은 그 위에 연속적으로 성막된 하부 절연막(6)을 팽창시키게 된다. 자성체(1)는 팽창된 하부 절연막(6) 위에 형성된다. 이때 형성되는 자성체(1)는 고온 환경 하에서 수행되는 스퍼터링 공정을 통해 성막이 이루어지므로, NiFe 자성체(1)의 원자 간 거리인 격자상수(lattice parameter)는 높은 온도에서 형성되는 만큼 넓어진 거리 상태로 형성된다. 자성체(1)의 성막이 완료되면, 실리콘 웨이퍼 기판(16)의 온도는 저하된다. 이때, 알루미늄으로 형성되는 하부 코일(5)이 크게 축소(응축)되고, 그에 따라 하부 코일(5) 위에 형성된 하부 절연막(6)과, 하부 절연막(6) 위에 성막된 자성체(1)도 응축된다. 그 결과, 자성체(1)의 내부에는 압축 응력이 발생하게 된다(도8(c) 참조). NiFe 자성체(1)가 고온의 스퍼터링 공정 환경에서 성막되어 그 격자상수가 크게 형성된 점을 고려할 때, 스퍼터링 공정이 완료된 후 자성체(1)의 온도가 저하되면 고온의 스퍼터링 공정 환경에서 큰 값으로 형성되었던 격자상수는 감소한다. 따라서 자성체(1) 내부에는 하부 절연막(6)의 응축에 따른 압축 응력뿐만 아니라 격자상수 감소에 따른 자연적인 압축 응력이 추가적으로 발생하게 된다.The expanded lower coil 5 expands the lower insulating film 6 continuously formed thereon. The magnetic body 1 is formed on the expanded lower insulating film 6. Since the magnetic material 1 formed at this time is formed through a sputtering process performed in a high temperature environment, the lattice parameter, which is the distance between atoms of the NiFe magnetic material 1, is formed in a state of a wider distance as it is formed at a high temperature. do. When the film formation of the magnetic body 1 is completed, the temperature of the silicon wafer substrate 16 is lowered. At this time, the lower coil 5 formed of aluminum is greatly reduced (condensed), and accordingly, the lower insulating film 6 formed on the lower coil 5 and the magnetic material 1 deposited on the lower insulating film 6 are also condensed. . As a result, compressive stress is generated inside the magnetic body 1 (see Fig. 8(c)). Considering that the NiFe magnetic material 1 is formed in a high-temperature sputtering process environment and its lattice constant is large, when the temperature of the magnetic material 1 decreases after the sputtering process is completed, it has been formed at a large value in the high-temperature sputtering process environment. The lattice constant decreases. Accordingly, in the magnetic body 1, not only compressive stress due to condensation of the lower insulating film 6 but also natural compressive stress due to a decrease in the lattice constant is additionally generated.
도8의(d)와(e)는 하부 코일(5) 및 하부 절연막(6) 위에 형성된 자성체(1)의 위치 별 압축 응력의 상태를 나타내고 있다. 열팽창률이 큰 알루미늄 등의 금속 재질로 된 하부 코일(5) 위에 형성된 자성체(22, 도8(d)의 A' 영역에 대응)는 하부 코일(5)이 형성되지 않은 기판 절연막(17) 영역 위에 형성된 자성체(23, 도8(d)의 B' 영역에 대응)보다 더 높은 압축 응력을 받게 된다. 8D and 8E show the state of compressive stress for each position of the magnetic body 1 formed on the lower coil 5 and the lower insulating film 6. The magnetic body 22 formed on the lower coil 5 made of a metal material such as aluminum having a high coefficient of thermal expansion (corresponding to the area A'in Fig. 8(d)) is the area of the substrate insulating film 17 where the lower coil 5 is not formed. It is subjected to a higher compressive stress than the magnetic body 23 formed thereon (corresponding to region B'in Fig. 8(d)).
도8(d)의 B' 영역에 형성된 자성체(23)에 인가되는 압축 응력이 아주 미미하다. 그렇기 때문에, 도8(e)의 B'와 같이, 자성체(23)의 자화 방향이 변화하는 구간에서 M-H loop는 급격한 기울기를 갖는다(즉, 자화값 변화가 발생함). 반면, 자성체(1)로 사용되는 NiFe 합금은 그 인가되는 응력에 따라 M-H loop가 크게 변화하는 특성을 갖는다. 그렇기 때문에, 도8(d)의 A' 영역에 형성된 자성체(22)에 압축 응력이 인가될 때, 자성체(22)의 자화 방향이 변하는 구간에서의 그 M-H loop의 기울기가 B'에 해당하는 M-H loop의 기울기에 비해 완만하다. The compressive stress applied to the magnetic body 23 formed in the region B'in Fig. 8(d) is very slight. Therefore, as shown in B'of Fig. 8(e), in a section in which the magnetization direction of the magnetic body 23 changes, the M-H loop has a sharp inclination (that is, a change in magnetization value occurs). On the other hand, the NiFe alloy used as the magnetic body 1 has a characteristic that the M-H loop greatly changes depending on the applied stress. Therefore, when compressive stress is applied to the magnetic body 22 formed in the region A'in Fig. 8(d), the slope of the MH loop in the section in which the magnetization direction of the magnetic body 22 changes is MH corresponding to B' It is gentler than the slope of the loop.
따라서 도8(f)를 통해 확인할 수 있듯이, 압축 응력이 없는 자성체(23)로 인해 형성되는 픽업 코일(4)의 전압 피크는 도8(f)의B' 형태의 높은 전압 피크값으로 형성되므로 구동회로(15)가 높은 전압 피크의 위치를 용이하게 읽어들일 수 있어서 플럭스게이트의 외부 자기장 감지 능력을 향상시킬 수 있다. 반면, 압축 응력이 형성된 상태로 공정된 자성체(22)로 인해 형성되는 픽업 코일(4)의 전압 피크는 도8의(f)의A' 형태의 크게 감소된 전압 피크값으로 형성되므로 구동회로(15)가 작은 전압 피크의 위치를 읽어들이기 어려워지므로 플럭스게이트의 외부 자기장 감지 능력은 크게 저하되게 된다.Therefore, as can be seen from Fig. 8(f), the voltage peak of the pickup coil 4 formed by the magnetic body 23 without compressive stress is formed as a high voltage peak value of the shape B'in Fig. 8(f). Since the driving circuit 15 can easily read the position of the high voltage peak, it is possible to improve the ability of the flux gate to sense an external magnetic field. On the other hand, since the voltage peak of the pickup coil 4 formed by the magnetic material 22 processed in the state in which the compressive stress is formed is formed with a greatly reduced voltage peak value in the shape A'in Fig. 8(f), the driving circuit ( 15) It becomes difficult to read the position of the small voltage peak, so the fluxgate's ability to sense the external magnetic field is greatly degraded.
도9는 도5와는 다른 플럭스게이트의 제조 공정의 예시를 도시하고 있다. 9 shows an example of a manufacturing process of a flux gate different from that of FIG. 5.
구체적으로 실리콘 웨이퍼 기판(16) 상에 형성된 기판 절연막(17) 표면에 포토 리소그래피 공정 및 건식 식각 공정을 통해 하부 코일(5)이 설치될 홈(trench)을 다수 개 형성한다. 형성된 홈에 스퍼터링 공정 등의 방법을 이용하여 알루미늄 또는 구리 등의 도전성 금속으로 이루어지는 하부 코일(5)을 형성한다. 아세톤 등의 용제를 사용하여 포토레지스트(PR: Photo Resist, 24)와 그 위에 증착된 도전성 금속을 함께 제거한다. 그런 다음, 하부 코일(5)의 돌출 부위(25)를 CMP 공정을 통해 제거하여 표면을 평탄화한다. Specifically, a plurality of trenches in which the lower coil 5 is to be installed are formed on the surface of the substrate insulating layer 17 formed on the silicon wafer substrate 16 through a photolithography process and a dry etching process. A lower coil 5 made of a conductive metal such as aluminum or copper is formed in the formed groove using a method such as a sputtering process. Using a solvent such as acetone, photoresist (PR: Photo Resist, 24) and the conductive metal deposited thereon are removed together. Then, the protruding portion 25 of the lower coil 5 is removed through a CMP process to planarize the surface.
이 경우, 하부 코일(5), 즉 알루미늄 또는 구리 등의 도전성 금속의 경도는 하부 코일(5) 주변의 기판 절연막(17, 즉 실리콘 옥사이드)에 비해 낮고 CMP 연마제(20)에 대한 내마모성도 크게 낮다. 그러므로, CMP 공정에 따른 평탄화 과정 도중에 하부 코일(5)이 우선적으로 마모된다. CMP 공정을 거친 후 플럭스게이트의 하부 구조는 적어도 500Å의 진폭 크기를 갖는, 이를테면 물결 모양 구조의 wavy 구조(26)를 가진다. 이에 따라 그 위에 형성되는 하부 절연막(6) 및 자성체(1) 역시 wavy 구조(26')를 갖게 된다, 따라서, 자성체(1)의 자화 역전의 일관성이 저하되는 문제점이 발생하게 된다. In this case, the hardness of the lower coil 5, that is, a conductive metal such as aluminum or copper, is lower than that of the substrate insulating film 17 (i.e., silicon oxide) around the lower coil 5, and abrasion resistance to the CMP abrasive 20 is significantly lower. . Therefore, the lower coil 5 is preferentially worn during the planarization process according to the CMP process. After the CMP process, the lower structure of the fluxgate has a wavy structure 26 having an amplitude of at least 500Å, such as a wavy structure. Accordingly, the lower insulating film 6 and the magnetic body 1 formed thereon also have a wavy structure 26 ′, and thus, the consistency of the magnetization reversal of the magnetic body 1 is deteriorated.
나아가, CMP 공정을 수행하는 과정에서 경도 및 내마모성이 낮은 하부 코일(5)의 돌출 부위(25)가 떨어져 나갈 수 있다. 그 과정에서 기판 절연막(17)에 형성된 하부 코일(5)에 깊은 스크래치가 발생한다. 하부 코일(5)에 발생된 스크래치는 이후의 공정에서 하부 코일(5) 위에 형성되는 하부 절연막(6) 및 자성체(1)의 박리에 의한 탈락 및 파손을 야기할 수 있다.Further, during the CMP process, the protruding portion 25 of the lower coil 5 having low hardness and abrasion resistance may fall off. In the process, deep scratches are generated in the lower coil 5 formed on the substrate insulating layer 17. Scratches generated in the lower coil 5 may cause detachment and breakage of the lower insulating film 6 and the magnetic material 1 formed on the lower coil 5 in a subsequent process.
이상에서 검토한 종래의 플럭스게이트의 문제점을 정리하면 다음과 같다.The problems of the conventional fluxgate reviewed above are summarized as follows.
첫째, 도5 내지 도8에 따른 플럭스게이트의 공정 과정은 하부 절연막(6)의 돌출 부위를 제거하기 위한 CMP 공정을 포함한다. 그 CMP 공정으로 인해 경도가 약한 하부 코일(5) 상단의 하부 절연막(6)에 균열(21)이 발생하여 파괴되는 문제점이 발생할 수 있다. 둘째, 하부 절연막(6)의 파손을 방지를 위해 하부 절연막(6)의 두께를 증가시키는 방안은 자성체(1)의 자화 반전 특성을 감지하는 코일들이 멀리 위치하게 됨에 따라 자화반전의 감지 능력이 악화되어서 픽업 코일(4)의 전압 피크가 감소된다. 그 결과, 플럭스게이트가 외부 자기장을 감지하는 성능이 저하될 수 있다. 셋째, CMP 공정에 의한 연마량은 실리콘 웨이퍼 기판(16)의 위치에 따라 달라지는 점 때문에, 동일한 실리콘 웨이퍼 기판(16) 상에서 제작되는 각 플럭스게이트의 전기적 특성이 기판 웨이퍼(16) 상의 위치에 따라 불균일하게 제작된다. 넷째, 플럭스게이트의 제조 과정에서 야기되는 공정 온도의 변화로 인한 하부 코일(5)의 열팽창 및 응축은 자성체(1)의 압축 응력을 형성하여 자성체(1)의 자화 반전 특성을 악화시킨다. 이로 인해 작아진 출력 전압 피크는 플럭스게이트의 외부 자기장 감지 성능을 저하시킨다.First, the process of the flux gate according to FIGS. 5 to 8 includes a CMP process for removing the protruding portion of the lower insulating layer 6. Due to the CMP process, a crack 21 may occur in the lower insulating film 6 on the upper end of the lower coil 5 with weak hardness, resulting in a problem of destruction. Second, the method of increasing the thickness of the lower insulating film 6 to prevent damage to the lower insulating film 6 is that the sensing ability of the magnetization reversal deteriorates as the coils sensing the magnetization reversal characteristics of the magnetic body 1 are located farther away. Thus, the voltage peak of the pickup coil 4 is reduced. As a result, the ability of the fluxgate to sense an external magnetic field may be degraded. Third, since the amount of polishing by the CMP process varies depending on the position of the silicon wafer substrate 16, the electrical characteristics of each fluxgate manufactured on the same silicon wafer substrate 16 are uneven according to the position on the substrate wafer 16. It is made to be. Fourth, thermal expansion and condensation of the lower coil 5 due to a change in the process temperature caused in the manufacturing process of the fluxgate creates a compressive stress in the magnetic body 1 and deteriorates the magnetization reversal characteristics of the magnetic body 1. The resulting smaller output voltage peak degrades the fluxgate's ability to sense external magnetic fields.
또한, 도9에 도시된 플럭스게이트의 제조 공정은 하부 코일(5)의 돌출 부위(25)를 제거하기 위한 CMP 공정을 포함한다. 그 CMP 공정으로 인해 플럭스게이트의 하부 구조가 wavy 구조(26, 26')로 형성되어, 자성체(1)의 자화 역전의 일관성이 저하되는 문제점이 발생한다. 또한 CMP 공정 과정에서 제거되는 하부 코일(5)의 돌출 부위(25)는 하부 코일(5)에 스크래치를 발생시킬 수 있다. 결과적으로, 하부 절연막(6) 및 자성체(1)의 박리에 의한 탈락 및 파손을 야기할 수 있다.In addition, the manufacturing process of the flux gate shown in FIG. 9 includes a CMP process for removing the protruding portion 25 of the lower coil 5. Due to the CMP process, the lower structure of the fluxgate is formed into wavy structures 26 and 26', resulting in a problem that the consistency of the magnetization reversal of the magnetic body 1 is deteriorated. In addition, the protruding portion 25 of the lower coil 5 removed during the CMP process may cause scratches on the lower coil 5. As a result, the lower insulating film 6 and the magnetic material 1 may be detached and damaged due to peeling.
이에, 본 발명의 예시적인 실시예들은 플럭스게이트의 제조 과정에서 CMP 공정을 제거하고, 하부 절연막(6) 또는 하부 코일(5)의 돌출 부위(25)가 형성되지 않도록 함과 동시에 하부 구조의 평탄화를 이룰 수 있는 방안을 제시한다. 이를 위해, 예시적인 실시예들은 플럭스게이트의 공정 온도 변화로 인한 각 레이어의 열팽창을 보상하고 자성체(1)의 압축 응력을 제거하여 자성체(1)의 자화 반전 특성을 향상시킬 수 있다. 이에 의해, 최소의 소자 크기로서 플럭스게이트의 외부 자기장 감지 성능을 향상시킬 수 있는 플럭스게이트의 제조 방법과, 그에 따른 플럭스게이트의 구조를 제시한다.Accordingly, exemplary embodiments of the present invention eliminate the CMP process in the manufacturing process of the flux gate, prevent formation of the protruding portion 25 of the lower insulating film 6 or the lower coil 5, and flatten the lower structure. We propose a way to achieve this. To this end, exemplary embodiments may improve the magnetization reversal characteristic of the magnetic body 1 by compensating for thermal expansion of each layer due to a change in the process temperature of the flux gate and removing compressive stress of the magnetic body 1. Accordingly, a method of manufacturing a fluxgate capable of improving the external magnetic field sensing performance of the fluxgate as a minimum device size, and a structure of the fluxgate according to the method are presented.
도10은 본 발명의 제1 실시예에 따른 플럭스게이트의 제조 방법을 설명하기 위한 흐름도이고, 도11은 본 발명의 제1 실시예에 따른 플럭스게이트를 제조하는 공정을 보인 예시도이며, 도12 내지 도14는 본 발명의 제1 실시예에 따른 플럭스게이트에서 하부 구조부를 형성하는 과정을 구체적으로 설명하기 위한 예시도이다. FIG. 10 is a flowchart for explaining a method of manufacturing a flux gate according to the first embodiment of the present invention, and FIG. 11 is an exemplary view showing a process of manufacturing a flux gate according to the first embodiment of the present invention, and FIG. 12 14 to 14 are exemplary views for explaining in detail a process of forming a lower structure part in a flux gate according to the first embodiment of the present invention.
도10 내지 도14를 참조하면, 제1 실시예에 따른 플럭스게이트는 기판(16) 표면의 기판 절연막(17) 위에 하부 코일(5), 하부 구조부(35, 6), 자성체(1), 상부 절연막(7) 및 상부 코일(9)이 순차적으로 적층되어 형성될 수 있다. 10 to 14, the fluxgate according to the first embodiment has a lower coil 5, a lower structure 35 and 6, a magnetic body 1, and an upper part on the substrate insulating film 17 on the surface of the substrate 16. The insulating film 7 and the upper coil 9 may be sequentially stacked to be formed.
하부 구조부는 후술하는 것과 같이 평탄화 박막(35)과 하부 절연막(6)을 포함할 수 있다. 하부 코일(5), 하부 절연막(6), 자성체(1), 상부 절연막(7) 및 상부 코일(9)은 전술한 과정을 통해 설명한 종래의 플럭스게이트와 그 재질은 동일할 수 있다. 평탄화 박막(35)은 졸 상태에서 스핀 코팅 방식으로 상기 완충 홈을 채우면서 상기 복수의 하부 코일과 상기 기판 절연막 위에 코팅되어 평탄면을 형성하고, 큐어링된 후 하드 겔(hard gel) 상태로 변형되어 이웃하는 구성요소들 간의 열팽창률 차이에 따른 응력을 완충시킬 수 있는 물성을 지닌 물질로 형셩될 수 있다. 이상의 내용에 기초하여 본 실시예에 따른 플럭스게이트의 제조 방법을 설명한다.The lower structure may include a planarization thin film 35 and a lower insulating layer 6 as described later. The lower coil 5, the lower insulating film 6, the magnetic body 1, the upper insulating film 7 and the upper coil 9 may have the same material as the conventional flux gate described through the above-described process. The planarization thin film 35 is coated on the plurality of lower coils and the substrate insulating film while filling the buffer groove in a spin coating method in a sol state to form a flat surface, cured and transformed into a hard gel state. As a result, it can be formed as a material having physical properties capable of buffering the stress caused by the difference in the coefficient of thermal expansion between neighboring components. A method of manufacturing a fluxgate according to the present embodiment will be described based on the above contents.
먼저, 실리콘 웨이퍼 기판(16) 상에 형성된 기판 절연막(17, 실리콘 옥사이드)에 하부 코일(5)이 형성될 홈(trench) 구조의 하부 코일 매립용 홈(31)을 형성한다(S100)(도11(a) 내지(d)). 하부 코일 매립용 홈(31) 안에 하부 코일(즉, 하부 코일을 형성시키는 박막, 이하 하부 코일의 용어로 표기한다)을 매립한 형태로 형성될 수 있다(S200)(도11(e) 내지(g)). 전술한 것과 같이 하부 코일(5)은 알루미늄 또는 구리와 같은 도전성 재질로 형성될 수 있으며, 상부 코일(9)과 함께 삼각파 전류가 인가되는 드라이브 코일(3) 및 전압 피크가 형성되는 픽업 코일(4)을 구성할 수 있다.First, a groove 31 for filling a lower coil having a trench structure in which the lower coil 5 is to be formed is formed in the substrate insulating film 17 (silicon oxide) formed on the silicon wafer substrate 16 (S100) (Fig. 11(a) to (d)). The lower coil (ie, a thin film forming the lower coil, hereinafter referred to as the term of the lower coil) may be embedded in the lower coil buried groove 31 (S200) (Figs. 11(e) to ( g)). As described above, the lower coil 5 may be formed of a conductive material such as aluminum or copper, and the drive coil 3 to which a triangular wave current is applied together with the upper coil 9 and the pickup coil 4 at which a voltage peak is formed. ) Can be configured.
S100 단계를 도11을 참조하여 구체적으로 설명하면, 기판 절연막(17)이 형성된 실리콘 웨이퍼 기판(16)에 포토레지스트(24)가 코팅된 상태에서(도11(a)), 하부 코일(5)을 형성할 영역(즉, 하부 코일 매립용 홈(31)) 상의 포토레지스트(24)를 포토 리소그래피 공정을 통해 제거한다(도11(b)). 이후, 식각 공정을 통해 하부 코일 매립용 홈(31)을 형성한다(도11(c) 내지(d)). 하부 코일 매립용 홈(31)은 복수 열로 형성될 수 있다.Step S100 will be described in detail with reference to FIG. 11, in a state in which the photoresist 24 is coated on the silicon wafer substrate 16 on which the substrate insulating film 17 is formed (FIG. 11(a)), the lower coil 5 The photoresist 24 on the region to be formed (that is, the groove 31 for filling the lower coil) is removed through a photolithography process (Fig. 11(b)). Thereafter, the groove 31 for filling the lower coil is formed through an etching process (FIGS. 11(c) to (d)). The groove 31 for filling the lower coil may be formed in a plurality of rows.
예시적인 실시예에서, 각 하부 코일 매립용 홈(31)은 2단계의 식각 공정을 수행하는 것에 의해 형성될 수 있다. 먼저, 기판 절연막(17) 표면에 포토레지스트(24)를 도포한 후(도11의(a)), 포토 리소그래피 공정을 통해 하부 코일 매립용 홈(31)을 형성할 영역에 도포된 포토레지스트(24)를 제거한다(도11(b)). 기판 절연막(17) 상에서 포토레지스트(24)가 제거된 영역에 대하여1차 식각(Etching)을 실시하여 하부 코일(5)이 형성될1차 영역(30)을 형성할 수 있다(도11(c)). 예시적인 실시예에서, 상기1차 식각은 건식 식각(Dry etching) 공정으로 수행될 수 있다. 1차 영역(30)은 기판 절연막(17)에서 포토레지스트(24)가 도포되어 있지 않은 부위의 아래 영역이 홈(Trench) 구조로 식각된 영역이다.In an exemplary embodiment, the groove 31 for filling each lower coil may be formed by performing a two-step etching process. First, after applying the photoresist 24 on the surface of the substrate insulating film 17 (Fig. 11(a)), the photoresist applied to the region where the groove 31 for filling the lower coil will be formed through a photolithography process ( 24) is removed (Fig. 11(b)). A first region 30 in which the lower coil 5 is to be formed may be formed by performing a first etching on the region on the substrate insulating layer 17 from which the photoresist 24 has been removed (Fig. 11(c)). )). In an exemplary embodiment, the first etching may be performed by a dry etching process. The primary region 30 is a region in which a region under a portion of the substrate insulating layer 17 to which the photoresist 24 is not applied is etched in a trench structure.
그 1차 영역(30)에 대하여 2차 식각 공정을 더 수행할 수 있다. 2차 식각은 습식 식각(Wet Etching) 공정으로 수행될 수 있다. 습식 식각은 예컨대 기판 절연막(17)을 녹일 수 있는 BOE(Buffered Oxide Etcher) 용액을 이용하여 수행될 수 있다. 2차 식각을 통해 1차 영역(30)의 측벽과 바닥을 더 깎아내어 1차 영역(30)의 홈의 너비 및 깊이를 확장시킬 수 있다. 그 결과 1차 영역에 비해 확장된 하부 코일 매립용 홈(31)이 형성될 수 있다(도11(d)). 즉, 이러한 2단계 식각에 의해 하부 코일 매립용 홈(31)은 그 측벽이 포토레지스트(24) 아래쪽으로 소정 폭(d)만큼 더 파고들어가서, 하부 코일 매립용 홈(31)의 입구 가장자리 부분이 포토레지스트(24)에 의해 덮인 형태의 홈 구조로 형성될 수 있다.A second etching process may be further performed on the first region 30. The secondary etching may be performed by a wet etching process. Wet etching may be performed, for example, by using a BOE (Buffered Oxide Etcher) solution capable of dissolving the substrate insulating layer 17. The sidewalls and the bottom of the primary region 30 may be further carved out through the secondary etching, so that the width and depth of the groove of the primary region 30 may be expanded. As a result, the groove 31 for filling the lower coil that is enlarged compared to the primary region may be formed (Fig. 11(d)). That is, by the two-step etching, the sidewall of the lower coil burial groove 31 is further penetrated by a predetermined width d below the photoresist 24, so that the inlet edge portion of the lower coil burial groove 31 It may be formed in a groove structure covered by the photoresist 24.
S100 단계 이후, 복수의 하부 코일 매립용 홈(31) 안에 복수의 하부 코일(5)이 각각 매립된 형태로 형성될 수 있다(S200). After step S100, a plurality of lower coils 5 may be formed in a form in which each of the plurality of lower coils is buried in the plurality of lower coil buried grooves 31 (S200).
예시적인 실시예에서, 하부 코일(5)은 하부 코일 매립용 홈(31)에 예컨대 알루미늄 또는 구리와 같은 금속 입자를 스퍼터링 공정으로 증착하여 형성될 수 있다. 이때 도11(f) 및 (g)에 도시된 것과 같이 기판 절연막(17)의 측벽부와 접하는 하부 코일(5)의 가장자리 부위는 하부 코일 매립용 홈(31)의 상단면보다 낮아 단차가 만들어질 수 있다. 그 단차에 의해, 하부 코일(5)의 가장자리 부위와 하부코일 매립용 홈(31)의 측벽부 사이에 빈 공간인 완충 홈(32)이 마련될 수 있다. 즉, 각 하부 코일(5)은 가운데 부위가 자신을 포위하는 상기 가장자리 부위가 보다 더 높게 형성될 수 있다. 즉, 각 하부 코일(5)은 가운데 부위에서 가장자리 부위로 갈수록 높이가 낮아지는 하향 경사면 구조를 가질 수 있다. 각 하부 코일(5)의 가운데 부위는 대략 하부코일 매립용 홈(31)의 상단면의 높이와 실질적으로 동일하게 형성될 수 있다. In an exemplary embodiment, the lower coil 5 may be formed by depositing metal particles such as aluminum or copper in the groove 31 for filling the lower coil by a sputtering process. At this time, as shown in Figs. 11(f) and (g), the edge of the lower coil 5 in contact with the sidewall of the substrate insulating film 17 is lower than the top surface of the lower coil buried groove 31 so that a step can be made. I can. Due to the step difference, a buffer groove 32, which is an empty space, may be provided between the edge portion of the lower coil 5 and the sidewall portion of the lower coil filling groove 31. That is, each lower coil 5 may have a higher edge portion surrounding itself in the center portion. That is, each lower coil 5 may have a downwardly inclined surface structure whose height decreases from a center portion to an edge portion. The center portion of each lower coil 5 may be formed substantially equal to the height of the top surface of the lower coil buried groove 31.
도11(d)의 구조에서 스퍼터링 공정을 통해 하부 코일(5)을 형성하면, 포토레지스트(24) 및 그 위에 형성되는 금속(예: 알루미늄) 박막과의 접촉 없이 하부 코일 매립용 홈(31)에 하부 코일(5)을 형성시킬 수 있다. 이 상태에서 포토레지스트(24)를 아세톤 등의 용제를 이용하여 제거하면, 하부 코일(5)은 도9(d)와 같은 돌출 부위(25)가 형성되지 않은 상태로 하부 코일 매립용 홈(31)에 형성될 수 있다. 나아가, 하부 코일 매립용 홈(31)의 입구부 가장자리를 덮는 포토레지스트(24)의 측방 선단부가 스퍼터링 공정에 대한 구조적 마스크로 기능할 수 있다. 그 마스크 기능에 의해, 하부 코일(5)의 가장자리 부위는 하향 경사면 구조로 형성되면서 기판 절연막(17)의 측벽부와 단차를 형성함으로써, 완충 홈(32)의 빈 공간이 형성될 수 있다. In the structure of Fig. 11(d), when the lower coil 5 is formed through a sputtering process, the groove 31 for filling the lower coil without contact with the photoresist 24 and the metal (eg, aluminum) thin film formed thereon It is possible to form the lower coil (5). In this state, when the photoresist 24 is removed using a solvent such as acetone, the lower coil 5 is not formed with the protruding portion 25 as shown in Fig. 9(d), and the lower coil buried groove 31 ) Can be formed. Further, a side end portion of the photoresist 24 covering the edge of the inlet portion of the lower coil buried groove 31 may function as a structural mask for the sputtering process. Due to the mask function, the edge portion of the lower coil 5 is formed in a downwardly inclined surface structure, and a step is formed with the sidewall portion of the substrate insulating layer 17, thereby forming an empty space of the buffer groove 32.
다만, 전술한 공정을 수행할 경우 습식 식각된 기판 절연막(17)의 안쪽 면들 즉, 하부 코일 매립용 홈(31)의 측벽부는 습식 식각에 따른 다공성 표면을 가질 수 있다. 습식 식각 후 곧바로 하부 코일(5)을 형성할 경우, 하부 코일 매립용 홈(31) 및 하부 코일(5) 간의 접착력이 저하될 수 있다. 완충 홈(32)은 지나치게 크면, 플럭스게이트 소자의 구조적 강건성에 불리할 수 있다. 완충 홈(32)은 플럭스게이트 소자의 공정 과정에서 하부 코일(5), 하부 구조부(6, 35) 및 자성체(1) 간의 열팽창률 차이에 따른 균열 또는 파손을 충분히 방지하고(후술함) 평탄화 박막(35)에 의한 하부 구조의 평탄화가 달성될 수 있도록 적절한 크기로 만들 필요가 있다. However, when the above-described process is performed, the inner surfaces of the wet-etched substrate insulating layer 17, that is, the sidewall portions of the lower coil burial groove 31 may have a porous surface due to wet etching. When the lower coil 5 is formed immediately after wet etching, the adhesion between the lower coil buried groove 31 and the lower coil 5 may be reduced. If the buffer groove 32 is too large, the structural robustness of the fluxgate element may be disadvantageous. The buffer groove 32 sufficiently prevents cracking or breakage due to the difference in thermal expansion coefficient between the lower coil 5, the lower structure parts 6 and 35 and the magnetic body 1 in the process of the fluxgate element (to be described later), and a flattening thin film It is necessary to make the appropriate size so that the flattening of the substructure by (35) can be achieved.
예시적인 실시예에서는, 하부 코일(5)의 접착력을 저하시키는 하부 코일 매립용 홈(31)의 표면 구조를 개선하고 완충 홈(32)의 크기(너비 및 깊이)를 최소화시키기 위해, 하부 코일(5)을 형성하는S200 단계에서 하부 코일 매립용 홈(31)의 입구부를 덮고 있는 포토레지스트(24)의 측방 선단부 일부를 건식 식각을 통해 제거할 수 있다. 그런 후에 하부 코일 매립용 홈(31)에 하부 코일(5)을 형성할 수도 있다. 즉, S100 단계의 2단계 식각 공정(즉, 건식 식각 및 습식 식각 공정)을 실시한 후, 건식 식각 공정을 추가적으로 실시할 수 있다. 이에 의해 하부 코일 매립용 홈(31)의 불균일한 실리콘 옥사이드 조직을 클리닝함과 동시에 도11(e)에 도시된 것과 같이 포토레지스트(24)의 측방 선단부 일부 즉, 습식 식각으로 형성된 폭 d 만큼 돌출된 포토레지스트(24)의 일부 돌출부위를 제거할 수 있다. 포토레지스트(24)의 최종적인 측방 선단부가 하부 코일 매립용 홈(31)의 경계 쪽으로 후퇴한 만큼(즉, 포토레지스트(24)의 측방 선단부가 하부 코일 매립용 홈(31)의 측벽부 쪽으로 돌출된 d 만큼 크기를 줄이며 이동), 하부 코일(5) 형성을 위한 스퍼터링 공정에 대한 구조적 마스크 부분의 크기가 줄어들고, 결과적으로 완충 홈(32)의 크기를 그 만큼 더 좁게 만들 수 있다. In an exemplary embodiment, in order to improve the surface structure of the lower coil embedding groove 31 that reduces the adhesion of the lower coil 5 and minimize the size (width and depth) of the buffer groove 32, the lower coil ( In step S200 of forming 5), a part of the lateral front end of the photoresist 24 covering the inlet of the lower coil buried groove 31 may be removed through dry etching. Then, the lower coil 5 may be formed in the lower coil buried groove 31. That is, after performing the two-step etching process (ie, dry etching and wet etching process) of step S100, a dry etching process may be additionally performed. As a result, the uneven silicon oxide structure of the lower coil buried groove 31 is cleaned, and at the same time, a part of the lateral tip of the photoresist 24, as shown in Fig. 11(e), protrudes by a width d formed by wet etching. Some protrusions of the photoresist 24 may be removed. As much as the final side end of the photoresist 24 retreats toward the boundary of the lower coil embedding groove 31 (that is, the lateral end of the photoresist 24 protrudes toward the side wall of the lower coil embedding groove 31) The size of the structural mask part for the sputtering process for forming the lower coil 5 and the lower coil 5 is reduced, and as a result, the size of the buffer groove 32 can be made narrower by that amount.
도11(f)는 전술한 1차 건식 식각, 2차 습식 식각 및 3차 건식 식각을 통해 형성된 하부 코일 매립용 홈(31)에 하부 코일(5)이 형성된 구조를 도시한다. 이후 포토레지스트(24) 및 그 위의 알루미늄 박막을 아세톤 등의 용제를 통해 제거하면 도11(g)에 도시된 것과 같이 하부 코일(5) 및 기판 절연막(17)의 경계선에 완충 홈(32)이 형성된 상태로 하부 코일(5)이 형성될 수 있다. FIG. 11(f) shows a structure in which the lower coil 5 is formed in the groove 31 for filling the lower coil formed through the above-described first dry etching, second wet etching, and third dry etching. Thereafter, when the photoresist 24 and the aluminum thin film thereon are removed through a solvent such as acetone, as shown in Fig. 11(g), a buffer groove 32 is formed at the boundary line between the lower coil 5 and the substrate insulating film 17. In the formed state, the lower coil 5 may be formed.
이와 같이 형성된 완충 홈(32)은 이후의 플럭스게이트 소자의 공정 과정에서 하부 코일(5), 하부 구조부 및 자성체(1) 간의 열팽창 차이를 보상하는 데 기여할 수 있다. 즉, 고온 환경의 스퍼터링 공정을 통해 자성체(1)가 형성되는 과정에서, 하부 코일(5)은 하부 코일 매립용 홈(31)의 경계를 형성하는 기판 절연막(17)의 양측 벽에 의해 그 팽창이 제한될 수 있다. 이 때, 그 팽창의 제한이 완충 홈(32)에 의해 완충되어, 하부 코일(5)은 그의 물성이 유지되고 후술하는 평탄화 박막(35) 및 하부 절연막(6)의 팽창을 야기하지 않는 범위 내에서 소정 정도로 팽창될 수 있다. 플럭스게이트의 공정 온도에 변화가 생기더라도, 완충 홈(32)과 평탄화 박막(35)의 완충 기능에 의해, 자성체(1)의 팽창 및 응축 현상이 일어나지 않는다. 그 결과, 자성체(1)의 자화 반전 특성이 향상될 수 있어 플럭스게이트의 외부 자기장 감지 성능이 향상될 수 있다. 도11(h)는 실제의 플럭스게이트의 규격으로 제작하였을 때의 하부 코일(5)의 실측 규격을 보이고 있다. 완충 홈(32)의 너비 및 깊이는 S200 단계에서의 건식 식각의 공정 시간 조정으로 조절될 수 있다.The buffer groove 32 formed as described above may contribute to compensating for a difference in thermal expansion between the lower coil 5, the lower structure, and the magnetic body 1 in a subsequent process of the fluxgate element. That is, in the process of forming the magnetic body 1 through a sputtering process in a high-temperature environment, the lower coil 5 is expanded by the walls on both sides of the substrate insulating film 17 forming the boundary of the lower coil buried groove 31. This can be limited. At this time, the limit of the expansion is buffered by the buffer groove 32, so that the lower coil 5 maintains its physical properties and does not cause expansion of the planarization thin film 35 and the lower insulating film 6 to be described later. It can be expanded to a certain degree. Even if there is a change in the process temperature of the flux gate, expansion and condensation of the magnetic body 1 does not occur due to the buffering function of the buffer groove 32 and the flattening thin film 35. As a result, since the magnetization reversal characteristic of the magnetic body 1 can be improved, the external magnetic field sensing performance of the flux gate can be improved. Fig. 11(h) shows the actual measurement specifications of the lower coil 5 when manufactured according to the actual specifications of the fluxgate. The width and depth of the buffer groove 32 may be adjusted by adjusting the dry etching process time in step S200.
S200 단계를 통해 하부 코일(5)이 형성된 후, 하부 구조부가 형성될 수 있다(S300). 예시적인 실시예에서, 도12의(b) 또는 도14에 예시된 것처럼 하부 구조부는 평탄화 박막(35)을 포함할 수 있다. S300 단계에서는 소정의 평탄화 물질을 이용하여 평탄화 박막(35)을 형성할 수 있다. 그 평탄화 박막(35)은 S200 단계에서 형성된 완충 홈(32)을 채우면서 기판 절연층과 하부 코일(5) 위에 적층되어 평탄면을 형성할 수 있다.After the lower coil 5 is formed through the step S200, the lower structure may be formed (S300). In an exemplary embodiment, as illustrated in FIG. 12B or 14, the lower structure may include a planarization thin film 35. In step S300, a planarization thin film 35 may be formed using a predetermined planarization material. The flattening thin film 35 may be stacked on the substrate insulating layer and the lower coil 5 while filling the buffer groove 32 formed in step S200 to form a flat surface.
예시적인 실시예에서, 평탄화 박막(35)은 SOG 물질을 상기 소정의 평탄화 물질로 사용하여 형성되는 SOG 물질층일 수 있다. SOG 물질은 그것의 구성 재료와 관련해서 크게 규산염 기반 조성물(Silicate based compounds), 유기 실리콘 화합물(Organosilicon compounds), 도펀트 유기 화합물(Dopant-organic compound) (예:)으로 구분될 수 있다. 이들SOG 조성물은 모두 본 발명에 사용될 수 있다. 유기 실리콘 화합물로 된 SOG 조성물은 본 발명에 최적인 물성을 가진 것으로 볼 수 있다. 평탄화 박막(35)을 형성하는 데 사용하는 물질은 SOG 물질과 실질적으로 균등하거나 비슷한 특성을 지닌 물질도 포함할 수 있다. 갭필(gap-fill) 특성이 좋은 유동성 산화물(flowable oxide) 물질은 그런 등가적인 특성을 지닌 물질로 볼 수 있다. 유동성 산화물의 예로는 TEOS(Tetra ethoxysilane), USG(undoped silicate glass), BSG(boron doped silicate glass), PSG(phosphorous doped silicate glass), BPSG(boron doped phosphosilicate glass)와 같은 실리케이트(silicate) 계열의 산화물, 또는 TEOS 와 USG막 등을 들 수 있고, 상용화된 제품으로는 예컨대 Dow corning 사의 FOx제품을 들 수 있다. 이 유동성 산화물은 광의의 SOG 물질로 볼 수도 있다.In an exemplary embodiment, the planarization thin film 35 may be an SOG material layer formed by using an SOG material as the predetermined planarization material. SOG materials can be largely classified into silicate-based compounds, organosilicon compounds, and dopant-organic compounds (e.g.) with regard to their constituent materials. All of these SOG compositions can be used in the present invention. The SOG composition made of an organosilicon compound can be seen to have optimal properties for the present invention. The material used to form the planarization thin film 35 may also include a material having substantially equivalent or similar properties to the SOG material. Flowable oxide materials with good gap-fill properties can be viewed as materials with such equivalent properties. Examples of flowable oxides include silicate-based oxides such as TEOS (tetra ethoxysilane), USG (undoped silicate glass), BSG (boron doped silicate glass), PSG (phosphorous doped silicate glass), and BPSG (boron doped phosphosilicate glass). , Or TEOS and USG films, and the like, and commercialized products include, for example, FOx products of Dow Corning. This fluent oxide can also be viewed as an SOG material in the broadest sense.
예시적인 실시예에서, SOG 조성물(또는 그것의 균등물)로 평탄화 박막(35)을 형성하기 위해, 먼저 액상의 SOG 조성물(유기 용제로 녹인glass)을 기판 절연막(17)과 하부 코일(5)로 된 요철 표면 위에 회전 도포(spin coating)하여 얇은 코팅막을 형성한다. 이때, 액상의 SOG 조성물은 완충 홈(32) 안으로 흘러들어가 전부 채운 상태로 코팅막을 형성하게 된다. 그 과정 중에서 액상의 SOG 조성물의 점도(viscosity)가 급격하게 증가하여, 그 요철 표면에도 불구하고 코팅막의 표면은 평편하게 된다. 이후, 여러 단계의 열처리를 통해서, SOG 조성물을 구성하는 용제(solvent) 등의 휘발 성분들은 배출되고, 실리카(SiO2)성분이 주로 남는다. 즉, SOG 조성물은 최초의 졸(sol) 상태에서 회전 도포되고, 그 후 끈적거리는 겔(gel) 상태로 변형되고, 400~500℃의 고온 열처리를 통해서 최종적으로 하드 겔(hard gel) 상태의 코팅막으로 바뀔 수 있다. In an exemplary embodiment, in order to form the planarization thin film 35 from the SOG composition (or its equivalent), first, a liquid SOG composition (glass melted with an organic solvent) is first mixed with the substrate insulating film 17 and the lower coil 5 A thin coating film is formed by spin coating on the uneven surface. At this time, the liquid SOG composition flows into the buffer groove 32 to form a coating film in a state that is completely filled. During the process, the viscosity of the liquid SOG composition increases rapidly, and the surface of the coating film becomes flat despite the uneven surface. Thereafter, through several stages of heat treatment, volatile components such as a solvent constituting the SOG composition are discharged, and the silica (SiO 2 ) component mainly remains. That is, the SOG composition is applied by rotation in the first sol state, then transformed into a sticky gel state, and finally a hard gel state coating film through high temperature heat treatment at 400 to 500°C. Can be changed to
이렇게 단단하게 변한 SOG 평탄화 박막(35)은 플럭스게이트 소자 내부에서 절연막 내지 유전체막의 역할을 수행함과 동시에 상하부의 구성요소들 간의 열팽창 계수 차이에 따른 응력을 완충하는 완충막의 역할도 함께 수행할 수 있다. 그 역할에 의해, 플럭스게이트 소자 내부에서 균열 발생을 막고 자성체(1)의 균일한 자화 반전 특성이 확보될 수 있다. 예시적인 실시예에서, 도14에 도시된 것처럼, 하부 구조부는 평탄화 박막(35)의 평탄화된 표면상에 적층되는 하부 절연막(6)을 더 포함할 수 있다. 하부 절연막(6)은 절연성을 제공할 수 있다. 이 경우, SOG 물질 또는 그것의 균등물로 형성된 평탄화 박막(35)은 하부 절연막(6)이 적층되는 표면을 평탄화 함과 동시에, 하부 코일(5) 및 하부 절연막(6) 간의 열팽창 차이를 보상하는 기능을 할 수 있다.The SOG flattening thin film 35, which has been changed so hard, may serve as an insulating layer or a dielectric layer inside the fluxgate device, and may also serve as a buffer layer that buffers stress due to a difference in coefficient of thermal expansion between the upper and lower components. By its role, it is possible to prevent the occurrence of cracks in the fluxgate device and ensure a uniform magnetization reversal characteristic of the magnetic body 1. In an exemplary embodiment, as shown in FIG. 14, the lower structure may further include a lower insulating layer 6 stacked on the planarized surface of the planarizing thin film 35. The lower insulating layer 6 may provide insulation. In this case, the planarization thin film 35 formed of an SOG material or an equivalent thereof flattens the surface on which the lower insulating film 6 is stacked, and compensates for the difference in thermal expansion between the lower coil 5 and the lower insulating film 6. Can function.
도12는S200 단계에서 형성된 완충 홈(32)을 채우기 위해 채용된 평탄화 박막(35)이 자성체(1)의 형성 구조에 미치는 영향을 도시하고 있다. FIG. 12 shows the effect of the planarization thin film 35 employed to fill the buffer groove 32 formed in step S200 on the formation structure of the magnetic body 1.
하부 코일(5) 및 하부 절연막(6) 사이에 평탄화 박막(35)을 개재시킨 기술적 의의에 대하여 도12를 참조하여 설명한다. 도12(a)와 같이 하부 코일(5)을 형성한 후 평탄화 박막(35)을 개재시키지 않고 바로 하부 절연막(6)을 형성할 경우, 하부 코일 매립용 홈(31)에 형성된 완충 홈(32)은 그 위에 형성되는 하부 절연막(6)과 자성체(1)의 형상에 직접적인 영향을 미치게 된다. 즉, 그 하부 절연막(6)은 완충 홈(32)들에 의해 다수의 홈부를 포함하는 표면 프로파일을 가지고, 자성체(1)의 표면 프로파일도 마찬가지이다. 그에 따라 자성체(1)가 도12(a)와 같은 요철 구조(32')로 형성되고, 자성체(1)의 자화 반전은 요철 부위(32’)에서 끊어지거나 그 방향이 틀어지게 되어, 자성체(1) 전체의 균일한 자화 반전이 달성되기 어렵다(도12(a)의 α 참조). 그 결과, 픽업 코일(4)에 유도되는 전압 피크의 크기가 작게 형성되어, 플럭스게이트 자력계의 외부 자기장 감지 성능이 낮아지게 된다. The technical significance of interposing the planarization thin film 35 between the lower coil 5 and the lower insulating film 6 will be described with reference to FIG. 12. When the lower insulating film 6 is formed immediately after the lower coil 5 is formed as shown in Fig. 12(a) without interposing the flattening thin film 35, the buffer groove 32 formed in the lower coil buried groove 31 ) Directly affects the shape of the lower insulating film 6 and the magnetic body 1 formed thereon. That is, the lower insulating film 6 has a surface profile including a plurality of grooves by the buffer grooves 32, and the surface profile of the magnetic body 1 is the same. Accordingly, the magnetic body 1 is formed in an uneven structure 32' as shown in Fig. 12(a), and the magnetization reversal of the magnetic body 1 is cut off at the uneven portion 32' or its direction is distorted, so that the magnetic body ( 1) It is difficult to achieve an overall uniform magnetization reversal (see α in Fig. 12(a)). As a result, the magnitude of the voltage peak induced in the pickup coil 4 is formed to be small, and the external magnetic field sensing performance of the fluxgate magnetometer is lowered.
반면, 본 발명의 실시예에서 채용된 도12(b)와 같은 구조의 경우, SOG 물질 등으로 완충 홈(32)을 채우도록 하여 하부 코일(5) 상에서 평탄한 표면을 갖는 평탄화 박막(35)을 형성함으로써, 그 위에 적층되는 자성체(1)가 평탄한 구조로 형성될 수 있다. 이에 따라 자성체(1)의 자화 반전이 용이해지기 때문에(도12(b)의 α' 참조), 픽업 코일(4)에 유도되는 전압 피크의 크기가 커서 플럭스게이트 자력계의 외부 자기장 감지 성능이 크게 향상될 수 있다.On the other hand, in the case of the structure as shown in Fig. 12(b) adopted in the embodiment of the present invention, the buffer groove 32 is filled with SOG material, etc. to form a planarization thin film 35 having a flat surface on the lower coil 5. By forming, the magnetic body 1 stacked thereon can be formed in a flat structure. As a result, since the magnetization reversal of the magnetic body 1 becomes easy (see α'in Fig. 12(b)), the magnitude of the voltage peak induced in the pickup coil 4 is large, and the fluxgate magnetometer's external magnetic field sensing performance is large. It can be improved.
한편, 전술한 것과 같이S300 단계에서는 평탄화 박막(35)을 형성한 후, 평탄화 박막(35)의 평탄화된 표면상에 적층시키는 구조로 하부 절연막(6)을 형성할 수 있다.Meanwhile, in step S300 as described above, after the planarization thin film 35 is formed, the lower insulating film 6 may be formed in a structure that is stacked on the planarized surface of the planarization thin film 35.
구체적으로, 도13에 도시된 것과 같이 평탄화 박막(35) 위에 높은 압축 응력이 인가될 수 있는 자성체(1)가 두껍게 형성되는 경우를 고려한다. 이 경우, 자성체(1)의 압축 응력이 내응력 강도가 낮은 평탄화 박막(35)에 직접 전달되어 평탄화 박막(35) 내부에 균열 내지 파손(21)이 야기될 수 있다. 그러한 파손이 발생하면, 자성체(1)와 결합된 평탄화 박막(35)이 탈락하는 현상이 발생할 수 있다. Specifically, consider a case in which the magnetic body 1 to which high compressive stress can be applied is formed thickly on the planarizing thin film 35 as shown in FIG. 13. In this case, the compressive stress of the magnetic body 1 may be directly transmitted to the planarizing thin film 35 having low stress resistance, so that cracks or breaks 21 may be caused in the planarizing thin film 35. When such breakage occurs, a phenomenon in which the flattening thin film 35 combined with the magnetic body 1 may be detached may occur.
이 문제를 해결하기 위해, 예시적인 실시예는 도14에 도시된 구조와 같이 완충 홈(32)을SOC 물질이나 이의 균등 물질로 채우는 평탄화 박막(35)을 도포, 큐어링 및 경화시킨 후, 그 위에 내응력 강도가 높은 재질로 하부 절연막(6)을 형성시키는 구조를 채용한다. SOC 물질이나 이의 균등 물질의 물성에 의해 평탄화 박막(35)은 하부 절연막(6)이 적층되는 표면을 평탄화 함과 동시에 열팽창 계수의 차이가 큰(약 100배) 하부 코일(5) 및 하부 절연막(6) 간의 열팽창 차이로 인해 발생할 수 있는 균열 등과 같은 열충격 파손을 막아주는 기능을 할 수 있다. In order to solve this problem, an exemplary embodiment applies, cures, and cures a flattening thin film 35 filling the buffer groove 32 with a SOC material or an equivalent material thereof, as shown in FIG. A structure in which the lower insulating film 6 is formed of a material having high stress resistance is employed. The flattening thin film 35 by the physical properties of the SOC material or its equivalent material flattens the surface on which the lower insulating film 6 is laminated, and at the same time, the lower coil 5 and the lower insulating film ( 6) It can function to prevent thermal shock damage such as cracks that may occur due to the difference in thermal expansion between them.
하부 절연막(6)은 SiO2, Ta2O3 및 Al2O3 중 어느 하나의 재질로 형성될 수 있다. 이런 물질은 플럭스게이트 소자의 공정 과정에서 자성체(1)의 압축 응력에 따른 평탄화 박막(35)의 파괴를 막는 데 유리한 특성을 갖는다. 전술한 구조에 따라, 적어도7종 이상의 재질이 혼합되어 만들어지는 플럭스게이트로 하여금 그 파손 없이 높은 자기장 감지 성능을 가지도록 할 수 있다.The lower insulating layer 6 may be formed of any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 . Such a material has advantageous properties in preventing destruction of the planarization thin film 35 due to compressive stress of the magnetic body 1 in the process of the fluxgate device. According to the above-described structure, a flux gate made by mixing at least seven or more materials can have high magnetic field sensing performance without damage.
예시적인 실시예에서, 하부 구조부가 형성된 후, 자성체(1), 상부 절연막(7) 및 상부 코일(9)을 순차적으로 적층시키는 S400 단계가 수행되어 플럭스게이트가 완성될 수 있다. S400 단계는 통상의 플럭스게이트 제조 공정이 채용될 수 있으므로 그 구체적인 설명은 생략한다.In an exemplary embodiment, after the lower structure portion is formed, step S400 of sequentially stacking the magnetic body 1, the upper insulating layer 7 and the upper coil 9 may be performed to complete the flux gate. In step S400, a conventional fluxgate manufacturing process may be employed, so a detailed description thereof will be omitted.
도14는 예시적인 실시예에 따른 플럭스게이트 제조 방법으로 제조된 플럭스게이트의 구조를 도시하고 있다. Fig. 14 shows a structure of a fluxgate manufactured by a method of manufacturing a fluxgate according to an exemplary embodiment.
도14를 참조하면, 기판 절연층(17)과 그 내부에 매립된 하부 코일(5) 간의 단차에 의해 마련되는 완충 홈(32)을SOC 물질 등으로 채운 평탄화 박막(35)이 도입된 플럭스게이트 구조가 예시되어 있다. 본 실시예의 플럭스게이트의 특징을 기술하면 다음과 같다. 예시적인 실시예에서, 플럭스게이트 자력계는 하부 코일(5), 하부 구조부(35, 6), 자성체(1), 상부 절연막(7) 및 상부 코일(9)이 순차적으로 적층되어 형성될 수 있다. 하부 코일(5)은 실리콘 웨이퍼 기판(16) 상에 형성되는 기판 절연막(17)에 마련된 하부 코일 매립용 홈(31)에 형성될 수 있다. 이때, 앞에서 도11의(e)-(f)와 관련하여 설명된 것처럼, 하부 코일(5)은 그것의 가장자리 부위와 이에 접하는 기판 절연막(17)의 측벽부 간에 단차가 생기도록 형성될 수 있다. 그 단차 구조에 대응되는 하부 코일 매립용 홈(31)의 상부 가장자리 영역에 완충 홈(32)이 마련될 수 있다. Referring to FIG. 14, a flux gate into which a flattening thin film 35 is introduced filled with a buffer groove 32 formed by a step difference between the substrate insulating layer 17 and the lower coil 5 embedded therein. The structure is illustrated. The characteristics of the fluxgate of the present embodiment will be described as follows. In an exemplary embodiment, the fluxgate magnetometer may be formed by sequentially stacking the lower coil 5, the lower structure parts 35 and 6, the magnetic body 1, the upper insulating film 7 and the upper coil 9. The lower coil 5 may be formed in the groove 31 for filling the lower coil provided in the substrate insulating layer 17 formed on the silicon wafer substrate 16. At this time, as previously described with reference to FIGS. 11(e)-(f), the lower coil 5 may be formed to have a step difference between its edge portion and the sidewall portion of the substrate insulating layer 17 in contact therewith. . A buffer groove 32 may be provided in an upper edge region of the lower coil embedding groove 31 corresponding to the stepped structure.
완충 홈(32)은 플럭스게이트의 공정 과정에서 하부 코일(5), 하부 구조부 및 자성체(1) 간의 열팽창 차이를 보상하도록 기능할 수 있다. 구체적으로, 하부 구조부는 완충 홈(32)을 채우면서 기판 절연막(17)과 하부 코일(5) 상에서 평탄한 구조로 형성되는 평탄화 박막(35), 및 평탄화 박막(35)의 평탄화된 표면상에 적층되어 형성되는 하부 절연막(6)을 포함할 수 있다. 평탄화 박막(35)은 SOG 물질 또는 이와 균등한 물성의 물질(예: 유동성 산화물)로 형성될 수 있다. 이런 물질로 형성된 평탄화 박막(35)은 하부 절연막(6)이 적층되는 표면을 평탄화 함과 동시에, 하부 코일(5) 및 하부 절연막(6) 간의 열팽창 차이를 보상할 수 있다. 하부 절연막(6)은 플럭스게이트의 제조공정 과정에서 자성체(1)의 압축 응력에 따른 평탄화 박막(35)의 파괴가 방지될 수 있도록, SiO2, Ta2O3 및 Al2O3 중 어느 하나의 재질로 형성될 수 있다. 자성체(1), 상부 절연막(7) 및 상부 코일(9)은 하부 구조부 위에 순차적으로 적층된 구조로 구성된다.The buffer groove 32 may function to compensate for a difference in thermal expansion between the lower coil 5, the lower structure, and the magnetic body 1 in the process of the flux gate. Specifically, the lower structure portion is stacked on the flattened surface of the planarization thin film 35 and the planarization thin film 35 formed in a flat structure on the substrate insulating film 17 and the lower coil 5 while filling the buffer groove 32 It may include a lower insulating film 6 is formed. The planarization thin film 35 may be formed of an SOG material or a material having properties equivalent thereto (eg, a fluid oxide). The planarization thin film 35 formed of such a material may planarize the surface on which the lower insulating layer 6 is stacked, and compensate for a difference in thermal expansion between the lower coil 5 and the lower insulating layer 6. The lower insulating film 6 is any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 to prevent destruction of the planarization thin film 35 due to the compressive stress of the magnetic body 1 during the manufacturing process of the flux gate. It can be formed of a material. The magnetic body 1, the upper insulating film 7 and the upper coil 9 are sequentially stacked on the lower structure.
이상에서 설명한 제1 실시예에 의하면, 기판 절연막(17)에 접하는 하부 코일(5)의 가장자리 부위에 형성되는 완충 홈(32)을 채우도록 형성되는 SOG 물질 계열로 된 평탄화 박막(35)을 형성한다. 그 평탄화 박막(35)을 하부 구조부로 삼아 그 위에 자성체(1)를 형성할 수 있다. 나아가, 그 평탄화 박막(35)에 하부 절연막(6)을 더 적층하여 2중 적층 구조의 하부 구조부를 채용할 수도 있다. SOG 계열 물질로 된 평탄화 박막(35)은 플럭스게이트를 구성하는 각 레이어(Layer) 간의 열팽창 차이를 보상할 수 있다. 이를 통해, 각 레이어의 열팽창률 차이에 따른 응력으로 인한 파손을 방지할 수 있다. 즉, 내응력 강도가 향상된 플럭스게이트 자력계가 얻어질 수 있다. 또한, 자성체(1)의 자기적 특성 저하를 방지하여 플럭스게이트의 성능을 향상시킬 수 있다.According to the first embodiment described above, a planarization thin film 35 made of SOG material is formed to fill the buffer groove 32 formed at the edge of the lower coil 5 in contact with the substrate insulating layer 17. do. The flattening thin film 35 can be used as a lower structure to form a magnetic body 1 thereon. Further, a lower insulating film 6 may be further stacked on the planarizing thin film 35 to employ a lower structure of a double-stacked structure. The planarizing thin film 35 made of an SOG-based material may compensate for a difference in thermal expansion between layers constituting the flux gate. Through this, it is possible to prevent breakage due to stress due to the difference in thermal expansion coefficient of each layer. That is, a fluxgate magnetometer with improved stress resistance can be obtained. In addition, it is possible to improve the performance of the flux gate by preventing the magnetic properties of the magnetic body 1 from deteriorating.
<실시예2><Example 2>
도15 및 도16은 본 발명의 제2 실시예에 따른 플럭스게이트 자력계의 구조를 설명하기 위한 예시도이고, 도17 및 도18은 본 발명의 제2 실시예에 따른 플럭스게이트 자력계에서 SOG 박막에 대한 습식 식각 과정을 보인 예시도이다.15 and 16 are exemplary diagrams for explaining the structure of a fluxgate magnetometer according to a second embodiment of the present invention, and FIGS. 17 and 18 are diagrams showing an SOG thin film in the fluxgate magnetometer according to the second embodiment of the present invention. This is an exemplary diagram showing the wet etching process for Korea.
본 발명의 제2 실시예에서는 플럭스게이트 자력계의 최소 높이가 유지되는 조건 하에서 픽업 코일(4)에서 검출되는 픽업 전압을 향상시킬 수 있는 Z축 플럭스게이트의 구조를 제시한다. 이하에서 설명하는 제2 실시예의 Z축 플럭스게이트는 제1 실시예의 제조 방법에 따라 제조될 수 있으며, 제1 실시예에서 설명한 내용은 제2 실시예에도 동일하게 적용될 수 있다.In the second embodiment of the present invention, a structure of a Z-axis fluxgate capable of improving the pickup voltage detected by the pickup coil 4 under the condition that the minimum height of the fluxgate magnetometer is maintained is proposed. The Z-axis fluxgate of the second exemplary embodiment described below may be manufactured according to the manufacturing method of the first exemplary embodiment, and the contents described in the first exemplary embodiment may be equally applied to the second exemplary embodiment.
먼저, 도15를 참조하면, 통상의 전자나침반 칩에 실장되어 Z축 성분의 자기장의 세기를 측정하는 종래의 Z축 플럭스게이트의 자기장 형태를 도시하고 있다. 도15(a)에 도시된 것과 같이 일반적으로 솔레노이드 코일(27)에 전류가 흐르면 솔레노이드 코일(27) 주변에는 원형의 자력선들이 형성된다. 솔레노이드 코일(27)의 권선 밀도를 증가시키면, 솔레노이드 코일(27)에서 일정 거리만큼 떨어진 영역에서는 권선된 각 코일에서 발생된 자력선들이 서로 겹친다. 솔레노이드 코일(27) 내부 영역에는 직선적인 자력선 또는 직선적인 자기장이 형성된다.First, referring to FIG. 15, a magnetic field shape of a conventional Z-axis fluxgate that is mounted on a conventional electronic compass chip and measures the strength of the magnetic field of the Z-axis component is shown. As shown in Fig. 15A, in general, when a current flows through the solenoid coil 27, circular magnetic lines of force are formed around the solenoid coil 27. When the winding density of the solenoid coil 27 is increased, magnetic lines of force generated from each coil wound overlap each other in a region separated by a predetermined distance from the solenoid coil 27. A linear magnetic force line or a linear magnetic field is formed in the inner region of the solenoid coil 27.
도15(b)는 종래의 Z축 플럭스게이트의 드라이브 코일(3)의 구조를 도시하고 있다. Z축 플럭스게이트에서, 드라이브 코일(3) 및 픽업 코일(4)이 권선되는 자성체(1)의 영역을 각각 드라이브 영역(28) 및 픽업 영역(29)으로 정의하자. 도15(b)에 도시된 것과 같이 드라이브 영역(28)의 안쪽 부분은 드라이브 코일(3)이 촘촘하게 권선되고(즉, 권선 밀도가 높고) 드라이브 영역(28)의 외곽 부분은 느슨하게 권선되는(즉, 권선 밀도가 낮은) 구조로 형성된다.Fig. 15(b) shows the structure of the drive coil 3 of a conventional Z-axis fluxgate. In the Z-axis fluxgate, the regions of the magnetic body 1 in which the drive coil 3 and the pickup coil 4 are wound are defined as the drive region 28 and the pickup region 29, respectively. As shown in Fig.15(b), the inner part of the drive area 28 is tightly wound (ie, the winding density is high), and the outer part of the drive area 28 is loosely wound (ie. , The winding density is low).
도15(c)는 곡선 형태의 자성체(즉, 드라이브 영역(28))에 그 선폭이 동일한 드라이브 코일(3)을 권선한 경우 드라이브 코일(3)의 위치에 따라 생성되는 자기장의 형태를 도시하고 있다. 도15(c)에 도시된 것과 같이 드라이브 영역(28)의 안쪽 부분은 드라이브 코일(3)의 권선 밀도가 높기 때문에 각각의 코일에서 발생되는 자력선들의 용이한 연결이 이루어진다. 자력선들의 연결로 인해 생성되는 자기장은 드라이브 코일(3) 내부에 위치한 자성체(1)를 길이 방향으로 자화(magnetization)시켜서 자성체(1) 내부에 강한 자속(magnetic flux)을 형성한다. 형성된 자속은 픽업 코일(4)이 권선된 픽업 영역(29)으로 흘러간다. 반면, 드라이브 영역(28)의 외곽 부분은 드라이브 코일(3)의 권선 밀도가 낮다. 그렇기 때문에, 드라이브 코일(3) 내부에는 자력선이 원형으로 맴돌고 있는 영역이 넓게 된다. 그 외곽 부분의 드라이브 코일(3) 내부에 위치한 자성체(1)에서는 길이 방향으로의 자속 발생이 용이하지 않게 된다. 이에 따라 자성체(1)의 외곽 부분에서는 픽업 영역(29)으로 보낼 자속의 형성이 어렵다.Fig. 15(c) shows the shape of the magnetic field generated according to the position of the drive coil 3 when the drive coil 3 with the same line width is wound on a curved magnetic body (ie, drive area 28). have. As shown in Fig. 15(c), since the winding density of the drive coil 3 is high in the inner portion of the drive region 28, the magnetic lines of force generated from each coil can be easily connected. The magnetic field generated by the connection of the magnetic lines of force forms a strong magnetic flux inside the magnetic body 1 by magnetizing the magnetic body 1 located inside the drive coil 3 in the longitudinal direction. The formed magnetic flux flows to the pickup region 29 where the pickup coil 4 is wound. On the other hand, the outer portion of the drive region 28 has a low winding density of the drive coil 3. For this reason, a region in which magnetic lines of force circulate in a circular shape inside the drive coil 3 is widened. In the magnetic body 1 located inside the drive coil 3 at the outer portion, it is not easy to generate magnetic flux in the longitudinal direction. Accordingly, it is difficult to form a magnetic flux to be transmitted to the pickup area 29 in the outer portion of the magnetic body 1.
도16은 전술한 문제점을 해결하기 위한, 본 발명의 제2 실시예에 따른 Z축 플럭스게이트(50, 60)의 자성체 구조 및 코일의 권선 형태((b) 및(c) 참조)를 종래의 Z축 플럭스게이트((a) 참조)와 비교하여 도시한다. 16 shows a magnetic structure of a Z- axis fluxgate 50 and 60 according to a second embodiment of the present invention and a coil winding type (see (b) and (c)) in order to solve the above-described problem. It is shown in comparison with the Z-axis fluxgate (see (a)).
먼저, 제2 실시예의 Z축 플럭스게이트(50, 60)의 구조를 기술하기 위한 전제로서, Z축 플럭스게이트의 세부 구성을 정의하면 다음과 같다. 하부 코일(5) 및 상부 코일(9)은 서로 연결되어 자성체(1 또는1-1)를 코일 형태로 다수 회 감아 솔레노이드를 형성한다. 하부 코일(5)과 상부 코일(9)이 자성체(1 또는1-1)의 드라이브 영역(28)과 픽업 영역(29)에 각각 감겨 드라이브 코일(3)과 픽업 코일(4)을 각각 형성한다. 드라이브 코일(3)에 인가되는 드라이빙 전류에 의한 자성체(1)의 자화 특성 변화에 따라 유도 전압이 형성되는 픽업 코일(4)을 구성할 수 있다. 또한, 자성체(1)는 픽업 영역(29) 및 드라이브 영역(28)을 포함할 수 있다. 여기서 픽업 영역(29)은 픽업 코일(4)이 권선되는 막대 구조의 자성체 영역으로 정의되고, 드라이브 영역(28)은 픽업 영역(29)의 길이 방향의 제1 단부에서 좌우 양쪽으로 분기되어 각각 미리 정의된 곡률 반경을 갖는 호(arc) 구조로 연장된 후 픽업 영역(29)의 길이 방향의 제2 단부에서 합류되는 구조로 형성되는 자성체 영역으로 정의한다. 드라이브 영역(28)은 전체적으로 럭비공 모양 또는 타원모양으로 볼 수 있다.First, as a prerequisite for describing the structure of the Z- axis fluxgates 50 and 60 of the second embodiment, the detailed configuration of the Z-axis fluxgate is as follows. The lower coil 5 and the upper coil 9 are connected to each other to form a solenoid by winding the magnetic body 1 or 1-1 in a coil shape multiple times. The lower coil 5 and the upper coil 9 are respectively wound around the drive area 28 and the pickup area 29 of the magnetic body 1 or 1-1 to form the drive coil 3 and the pickup coil 4, respectively. . A pickup coil 4 in which an induced voltage is formed according to a change in magnetization characteristics of the magnetic body 1 due to a driving current applied to the drive coil 3 may be configured. In addition, the magnetic body 1 may include a pickup area 29 and a drive area 28. Here, the pickup region 29 is defined as a magnetic region of a rod structure in which the pickup coil 4 is wound, and the drive region 28 is branched from the first end in the longitudinal direction of the pickup region 29 to both left and right, respectively. It is defined as a magnetic region formed in a structure that extends into an arc structure having a defined radius of curvature and then joins at the second end in the longitudinal direction of the pickup region 29. The drive area 28 can be viewed as a rugby ball shape or an ellipse shape as a whole.
먼저, 도16 (b)에 도시된 것처럼 드라이브 영역(28-1)은 곡률 반경이 미리 정의된 임계 곡률 반경 이상의 값을 갖는 타원형 모양 또는 럭비공 모양의 제1 구조로 형성될 수 있다. 제1 구조는 픽업 영역(29)의 길이가 일정 길이로 유지되는 조건 하에서, 타원형 모양으로 형성되는 드라이브 영역(28-1)의 곡률 반경(R2)이 미리 정의된 임계 곡률 반경(RT)이상의 값을 갖도록 구현되는 플럭스게이트의 구조로 정의될 수 있다. 여기서, 임계 곡률 반경(RT)은 도16(a)에 도시된 종래의 Z축 플럭스게이트의 드라이브 영역(28)에 해당하는 자성체 부분의 곡률 반경(R1)보다 더 큰 값을 가지며(R2 > RT > R1),설계자에 의해 정의될 수 있다. 예시적인 실시예에서, RT = 1.3 R1일 수 있다. 바람직하게는 R2 = 1.5 R1일 수 있다. 제1 구조의 드라이브 영역(28-1)은 종래의 원형 드라이브 영역(28)에 비해 드라이브 코일(27-1)의 권선밀도를 더 높일 수 있다.First, as shown in FIG. 16(b), the drive area 28-1 may have a first structure in the shape of an elliptical shape or a rugby ball having a radius of curvature equal to or greater than a predetermined critical radius of curvature. In the first structure, under the condition that the length of the pickup area 29 is maintained at a predetermined length, the radius of curvature R 2 of the drive area 28-1 formed in an elliptical shape is a predefined critical radius of curvature R T It can be defined as a structure of a fluxgate implemented to have the above value. Here, the critical radius of curvature R T has a larger value than the radius of curvature R 1 of the magnetic material portion corresponding to the drive area 28 of the conventional Z-axis fluxgate shown in FIG. 16(a) (R 2 > R T > R 1 ), can be defined by the designer. In an exemplary embodiment, it may be R T = 1.3 R 1 . Preferably it may be R 2 = 1.5 R 1 . The drive area 28-1 of the first structure may further increase the winding density of the drive coil 27-1 compared to the conventional circular drive area 28.
다음으로, 도16(c)에 도시된 것처럼 드라이브 영역(28)은 종래와 같이 원형 구조로 형성되고, 드라이브 영역(28)의 곡률 반경 중심으로부터 외곽 방향으로 갈수록 드라이브 코일(27-2)의 선폭이 더 넓어지는 형태로 구현되는 제2 구조일 수 있다. 제2 구조를 통해, 드라이브 영역(28)의 외곽 부위에 형성되는 드라이브 코일(27-2)의 선폭이 드라이브 영역(28)의 내측에 형성되는 드라이브 코일(27-2)의 선폭보다 증가하게 되어 드라이브 영역(28)의 외곽 부위에 드라이브 코일(27-2)이 권선되지 않는 부분을 최소화시킬 수 있다. 하부 코일(5) 및 상부 코일(9)이 접합되는 면적이 증가함으로써 드라이브 코일(27-2)로 인가되는 전류의 양이 증가되어 드라이브 영역(28)에서 발생하는 자속이 증가할 수 있다.Next, as shown in Fig. 16(c), the drive area 28 is formed in a circular structure as in the prior art, and the line width of the drive coil 27-2 increases from the center of the radius of curvature of the drive area 28 toward the outer side. This may be a second structure implemented in a wider form. Through the second structure, the line width of the drive coil 27-2 formed at the outer portion of the drive area 28 is increased than the line width of the drive coil 27-2 formed inside the drive area 28. It is possible to minimize a portion in which the drive coil 27-2 is not wound on the outer portion of the drive area 28. As the area where the lower coil 5 and the upper coil 9 are joined increases, the amount of current applied to the drive coil 27-2 increases, and thus the magnetic flux generated in the drive region 28 may increase.
상기 제1 및 제2 구조는 드라이브 영역(28 또는28-1)에서 가능한 한 많은 자속(magnetic flux)이 형성되어 픽업 영역(29)으로 전달되도록 하여 데 유리하다. 그에 따라 픽업 코일(4)에서 출력되는 전압 피크의 크기가 증가하여 플럭스게이트(50, 60)의 자기장 감지 능력이 향상될 수 있다. 이 두 구조는 제1 구조의 드라이브 코일(27-1)의 형태를 제2 구조의 드라이브 코일(27-2) 형태로 변형한 제3 구조도 가능하다.The first and second structures are advantageous in that as much magnetic flux as possible is formed in the drive region 28 or 28-1 and transmitted to the pickup region 29. Accordingly, the magnitude of the voltage peak output from the pickup coil 4 increases, so that the magnetic field sensing capability of the flux gates 50 and 60 may be improved. In these two structures, a third structure in which the drive coil 27-1 of the first structure is transformed into the drive coil 27-2 of the second structure is also possible.
또한, 제2 실시예의 플럭스게이트(50, 60)는 픽업 영역(29)에 권선되는 픽업 코일(4)의 권선 밀도(즉, 픽업 영역(29)의 단위 길이 당 픽업 코일(4)의 권선 수)가 미리 정의된 임계 밀도 이상인 구조로 구현될 수도 있다. 여기서, 임계 밀도는 종래의 Z축 플럭스게이트(40)의 픽업 영역(29)에 권선되는 픽업 코일(4)의 권선 밀도를 고려하여 설계자에 의해 정의될 수 있으며, 즉 제2 실시예는 픽업 영역(29)에 권선되는 픽업 코일(4)의 권선 밀도를 종래 대비 증가시킴으로써, 픽업 코일(4)의 전압 피크를 증가시켜 플럭스게이트의 자기장 감지 능력을 향상시킬 수 있다.In addition, the flux gates 50 and 60 of the second embodiment have the winding density of the pickup coil 4 wound in the pickup area 29 (that is, the number of windings of the pickup coil 4 per unit length of the pickup area 29). ) May be implemented as a structure having a predetermined critical density or higher. Here, the critical density may be defined by the designer in consideration of the winding density of the pickup coil 4 wound in the pickup region 29 of the conventional Z-axis fluxgate 40, that is, the second embodiment By increasing the winding density of the pickup coil 4 wound around 29, the voltage peak of the pickup coil 4 can be increased, thereby improving the magnetic field sensing capability of the flux gate.
도17은 하부 코일에 상부 코일을 연결하기 위해 평탄화 박막을 제거하는 방법별 도전성 박막의 스텝커버리지의 차이를 나타낸다. 17 shows the difference in step coverage of the conductive thin film according to the method of removing the planarization thin film to connect the upper coil to the lower coil.
본 발명에 따른 박막 플럭스게이트 소자를 제작함에 있어서 권선구조는 하부코일 끝단에 형성된 SOG 박막을 제거한 뒤에 상부코일을 이용하여 솔레노이드 형태의 코일 형성을 완성하면서 이루어진다. SOG 물질 등으로 형성되는 평탄화 박막(35)은 대략 5,000Å 정도의 두께로 형성될 수 있다. 이러한 평탄화 박막(35)의 두께에 따른 높은 단차를 극복하면서 도전성 박막(38)을 성막하여 상부 코일(9)을 형성시키기 위해서는, 도17-(d)에서 보이는 바와 같이 평탄화 박막(35) 위에 성막되는 도전성 박막(38)은 두께가 5,000Å 이상으로, 적어도 6,000Å 이 되도록 형성해주어야 평탄화 박막(35) 단면의 높은 단차를 넘어설 수 있다. 이 경우, 도17(a) 내지(d)에 도시된 것과 같이 평탄화 박막(35)을 건식 식각 공정을 통해 제거할 경우, 도17(d)에 도시된 것과 같이 두꺼운 상부 코일(9)을 형성시켜야 한다. 이에 따라 도18(b)에 도시된 것과 같이 얇은 상부 코일(9)이 형성된 구조에 비해 상부 코일(9)의 권선 피치가 증가하게 되어 단위 길이 당 상부 코일(9)의 권선 수가 감소하게 된다.In manufacturing the thin film fluxgate device according to the present invention, the winding structure is formed by removing the SOG thin film formed at the end of the lower coil and then completing the formation of a solenoid-shaped coil using the upper coil. The planarization thin film 35 formed of an SOG material or the like may be formed to a thickness of about 5,000Å. In order to form the upper coil 9 by forming the conductive thin film 38 while overcoming the high step according to the thickness of the planarizing thin film 35, a film is formed on the planarizing thin film 35 as shown in Fig. 17-(d). The conductive thin film 38 to be formed must be formed to have a thickness of 5,000Å or more and at least 6,000Å so that the flattening thin film 35 can cross a high level of the cross-section. In this case, when the planarization thin film 35 is removed through a dry etching process as shown in FIGS. 17(a) to (d), a thick upper coil 9 is formed as shown in FIG. 17(d). Should be done. Accordingly, the winding pitch of the upper coil 9 is increased compared to the structure in which the thin upper coil 9 is formed as shown in FIG. 18(b), and the number of windings of the upper coil 9 per unit length decreases.
따라서 제2 실시예에서는 상부 코일(9) 형성용 도전성 박막(38)은 도17(e) 내지(h)에 도시된 공정에 따라 형성될 수 있다. 도17(e)에 도시된 것처럼, 평탄화 박막(35) 표면에서 상부 코일(9) 형성을 위해 식각할 영역을 제외한 나머지 영역에 포토레지스트(24)를 도포한다. 그 상태에서, 도17(f)에 도시된 것처럼 BOE(Buffered Oxide Etcher) 용액을 사용하는 습식 식각 공정을 수행한다. 이를 통해 포토레지스트(24)가 도포되지 않은 영역의 평탄화 박막(35)을 제거할 수 있다. BOE 용액을 사용한 식각 공정을 거친 후, 평탄화 박막(35)은 도17(g)와 같은 형태로 형성된다. 이 상태에서, 도17(h)에 도시된 것처럼 평탄화 박막(35) 위에 도전성 박막(38)을 형성한다. 이러한 공정을 이용하면, 얇은 두께의 도전성 박막(38) 형성만으로도 도전 코일의 끊어짐이 없이 두꺼운 박막으로 구성된 박막 소자의 측면을 타고 넘을 수 있다. Accordingly, in the second embodiment, the conductive thin film 38 for forming the upper coil 9 may be formed according to the process shown in FIGS. 17(e) to (h). As shown in Fig. 17(e), a photoresist 24 is applied on the surface of the planarization thin film 35 except for the area to be etched to form the upper coil 9. In that state, as shown in Fig. 17(f), a wet etching process using a BOE (Buffered Oxide Etcher) solution is performed. Through this, the planarization thin film 35 in the region where the photoresist 24 is not applied may be removed. After going through the etching process using the BOE solution, the planarization thin film 35 is formed in a shape as shown in FIG. 17(g). In this state, a conductive thin film 38 is formed on the planarizing thin film 35 as shown in Fig. 17(h). By using such a process, it is possible to cross the side of the thin film element composed of a thick thin film without breaking the conductive coil by simply forming the thin conductive thin film 38.
도18 (a)와 (b)는 습식 식각 공정을 통해 코일제작을 수행했을 때의 권선구조를 나타낸다. 도18 (b)에 도시된 피치 6칸의 코일구조와 비교하여 도18 (a)는 피치 4칸을 가지는 조밀한 권선구조를 제작할 수 있음을 나타낸다. 본 발명에 사용되는 평탄화 박막(35)의 제거 공정에서 통상적으로 사용되는 드라이에칭 공정을 습식 에칭 공정으로 대체해서 사용하면, 평탄화 박막(35)의 형상에서 윗부분이 아래 부분보다 좁게 형성되어서 얇은 두께의 도전성 박막으로도 상부코일이 끊어지지 않는 권선구조를 형성할 수 있다. 그 결과, 단위 길이당 권선수를 향상시켜서 궁극적으로는 픽업코일의 출력 볼트피크를 증가시켜서 플럭스게이트 소자의 자기장 감지 능력을 향상시킬 수 있다.18 (a) and (b) show the winding structure when the coil is manufactured through a wet etching process. Compared with the coil structure of 6 pitches shown in FIG. 18(b), FIG. 18(a) shows that a dense winding structure having 4 pitches can be manufactured. When the dry etching process commonly used in the removal process of the planarization thin film 35 used in the present invention is replaced with a wet etching process, the upper part is formed narrower than the lower part in the shape of the planarization thin film 35 and thus has a thin thickness. Even with a conductive thin film, a winding structure in which the upper coil does not break can be formed. As a result, it is possible to improve the magnetic field sensing capability of the fluxgate element by improving the number of turns per unit length and ultimately increasing the output volt peak of the pickup coil.
이상에서 설명한 본 발명이 제2 실시예에 따를 때, Z축 플럭스게이트의 드라이브 영역(28)의 곡률 반경 또는 드라이브 코일(3)의 선폭을 최적화하는 방식과, 픽업 코일(4)의 권선 밀도를 증가시키는 방식을 채용함으로써, Z축 플럭스게이트의 최소 높이가 유지되는 조건 하에서 픽업 코일(4)에서 검출되는 픽업 전압을 향상시켜Z축 플럭스게이트의 성능을 향상시킬 수 있다.When the present invention described above is in accordance with the second embodiment, the method of optimizing the radius of curvature of the drive region 28 of the Z-axis fluxgate or the line width of the drive coil 3, and the winding density of the pickup coil 4 By adopting an increasing method, the performance of the Z-axis fluxgate can be improved by improving the pickup voltage detected by the pickup coil 4 under the condition that the minimum height of the Z-axis fluxgate is maintained.
<변형 실시예><Modified Example>
도19 내지 도24는 본 발명의 여러 가지 다른 실시예에 따른Z축 플럭스게이트의 자성체 및 코일의 권선 구조를 도시한다. 먼저, 도19는 육상트랙형 8자 모양의 자성체(110)에 드라이브 코일과 픽업코일이 권선된 구조(100)를 도시한다. 19 to 24 show a magnetic body of a Z-axis fluxgate and a winding structure of a coil according to various other embodiments of the present invention. First, FIG. 19 shows a structure 100 in which a drive coil and a pickup coil are wound around an eight-shaped magnetic body 110 of a land track type.
도19를 참조하면, 예시적인 실시예에 따른 자성체(100)는 육상 트랙형 드라이브 영역과, 그 드라이브 영역의 평행한 두 직선구간의 가운데 부분을 연결하는 직선형 픽업영역(120)을 포함한다. 구체적으로, 드라이브 영역은 픽업영역(120)의 제1 단부에서 좌우 양쪽으로 선형으로 분기되는 제1 및 제2 직선구간(130-1a, 130-1b), 픽업영역(120)의 제2 단부에서 좌우 양쪽으로 선형으로 분기되는 제3 및 제4 직선구간(130-1c, 130-1d), 제1 및 제3 직선구간(130-1a, 130-1c)의 양 단부에 연결되는 제1 곡선구간(130-2a), 그리고 제2 및 제4 직선구간(130-1b, 130-1d)의 양 단부에 연결되는 제2 곡선구간(130-2b)을 포함 육상 트랙 모양일 수 있다. 픽업코일(125)이 픽업영역(120)에 감기며 그 양단은 픽업코일 패드(122)에 연결된다. 드라이브 코일(135a, 135b)이 드라이브 영역 감기며 그 양단은 드라이브 코일 패드(132)에 연결된다.Referring to Fig. 19, the magnetic body 100 according to an exemplary embodiment includes a land track type drive area and a straight pick-up area 120 that connects a middle portion between two parallel straight line sections of the drive area. Specifically, the drive region is at the first and second straight sections 130-1a and 130-1b linearly branching from the first end of the pickup region 120 to both left and right, and at the second end of the pickup region 120. A first curved section connected to both ends of the third and fourth straight sections 130-1c and 130-1d, which are linearly branched to the left and right, and the first and third straight sections 130-1a and 130-1c. It may be in the shape of a running track including (130-2a) and a second curved section (130-2b) connected to both ends of the second and fourth straight sections (130-1b, 130-1d). The pickup coil 125 is wound around the pickup area 120 and both ends thereof are connected to the pickup coil pad 122. The drive coils 135a and 135b are wound around the drive area, and both ends thereof are connected to the drive coil pads 132.
이 실시예에 따른 자성체 및 코일 권선 구조(100)는, 도16 (b)에 도시된 타원형 구조에 비해, 제1 내지 제4 직선구간(130-1a, 130-1b, 130-1c, 130-1d)의 드라이브 영역을 더 포함한다. 이들 직선 구간을 이용하여 드라이브 코일을 더 많이 감을 수 있고, 그에 따라 더 많은 자속을 생성할 수 있다. 또한, 이 실시예의 구조(100)처럼 좌우측의 두 개의 드라이브 영역이 중앙의 픽업 영역(120)에 맞물려 있으면, 중앙의 픽업 영역(120)이 좌우 양측의 드라이브 코일에 의한 자속을 가능한 한 많이 받아낼 수 있다. 차지하는 면적에 비해 받아낼 수 있는 자속량이 많아 효율적인 구조이다. The magnetic body and coil winding structure 100 according to this embodiment is compared with the elliptical structure shown in Fig. 16(b), first to fourth straight sections 130-1a, 130-1b, 130-1c, and 130- The drive area of 1d) is further included. These straight sections can be used to wind more drive coils, thus generating more magnetic flux. In addition, as in the structure 100 of this embodiment, if the two drive regions on the left and right are engaged with the pickup region 120 in the center, the pickup region 120 in the center will receive as much magnetic flux from the drive coils on the left and right sides as possible. I can. It is an efficient structure with a large amount of magnetic flux that can be received compared to the occupied area.
도20은 S자 모양의 자성체(160)에 드라이브 코일과 픽업 코일이 권선된 구조(150)를 도시한다.20 shows a structure 150 in which a drive coil and a pickup coil are wound around an S-shaped magnetic body 160.
도20을 참조하면, 예시적 실시예에 따른 구조(150)는 중앙에 직선형으로 소정 길이 연장된 픽업 영역(120)과, 상기 픽업 영역(120)과 연결된 형태가S자 모양을 이루는 대면하는 두 개의U자형 드라이브 영역을 포함한다. 픽업 영역(120)의 좌측에 배치되는 제1 U자형 드라이브 영역은 평행한 두 개의 직선구간(180-1a, 180-1c)와 이들을 연결하는 곡선구간(180-2a)을 포함하며, 하나의 직선구간(180-1c)만이 픽업 영역(120)의 하단부에 연결되고 나머지 하나의 직선구간(180-1a)은 픽업 영역(120)의 상단부 근처까지만 연장될 뿐 연결되지는 않는다. 픽업영역(120)의 우측에 배치되는 제2 U자형 드라이브 영역은 평행한 두 개의 직선구간(180-1b, 180-1d)과 이들을 연결하는 곡선구간(180-2b)을 포함하며, 하나의 직선구간(180-1b)만이 픽업 영역(120)의 상단부에 연결되고, 나머지 하나의 직선구간(180-1d)은 픽업 영역(120)의 하단부 근처까지만 연장될 뿐 연결되지는 않는다. 픽업코일(175)은 픽업 영역(120)에만 감기고, 드라이브 코일(185)은 두 개의 U자형 드라이브 영역에만 감긴다. Referring to Fig. 20, the structure 150 according to the exemplary embodiment includes a pickup area 120 extending a predetermined length in a straight line at the center, and two facing each other in a form connected to the pickup area 120 forming an S shape. It includes four U-shaped drive areas. The first U-shaped drive area disposed on the left side of the pickup area 120 includes two parallel straight sections 180-1a and 180-1c and a curved section 180-2a connecting them, and one straight line Only the section 180-1c is connected to the lower end of the pickup area 120, and the other straight section 180-1a extends only to the vicinity of the upper end of the pickup area 120, but is not connected. The second U-shaped drive area disposed on the right side of the pickup area 120 includes two parallel straight sections 180-1b and 180-1d and a curved section 180-2b connecting them, and has one straight line. Only the section 180-1b is connected to the upper end of the pickup area 120, and the other straight section 180-1d extends only to the vicinity of the lower end of the pickup area 120, but is not connected. The pickup coil 175 is wound only in the pickup area 120, and the drive coil 185 is wound only in the two U-shaped drive areas.
이 실시예에 따른 구조(150)는, 도19에 도시된 구조(150)(드라이브 코일과 픽업코일이 연결되어 무한궤도를 돌아가는 구조)와 다르게, 제1 드라이브 영역 --> 픽업 영역(120) --> 제2 드라이브 영역이 순차적으로 연결된 단일 선로를 형성한다. 제1 및 제2 드라이브 영역을 픽업 영역(120) 좌우로 크게 늘림으로써 그곳으로부터 충분한 크기의 자속을 끌고와서 중앙의 픽업 영역(120)을 지나게 할 수 있다. 두 드라이브 영역에서 발생된 자속을 픽업 영역(120)의 좌우 양측에서 진입시키지 않더라도, 픽업영역의 자화반전의 세기를 크게 할 수 있다. 픽업 영역(120)의 하단부와 제1 드라이브 영역의 제3 직선구간(180-1c)의 연결부위(184)는 완만한 곡선형으로 연결될 수 있고, 그리고 픽업 영역(120)의 상단부와 제2 드라이브 영역의 제2 직선구간(180-1)이 연결부위(184)도 마찬가지이다. 이런 연결 구조는 픽업영역(120)에서 자속의 방향이 수직으로 존재하는 구간을 최대로 길게 해줄 수 있다. 즉, 이 연결 구조는 픽업 전압 검출에 기여하는 유효한 픽업 구간의 길이를 크게 해줄 수 있다.The structure 150 according to this embodiment is different from the structure 150 shown in FIG. 19 (a structure in which a drive coil and a pickup coil are connected to rotate a caterpillar), a first drive area --> a pickup area 120 --> The 2nd drive area forms a single line connected in sequence. By greatly increasing the first and second drive regions to the left and right of the pickup region 120, a magnetic flux having a sufficient size can be drawn from there to pass through the pickup region 120 in the center. Even if the magnetic flux generated in the two drive regions is not entered from both left and right sides of the pickup region 120, the intensity of the magnetization reversal of the pickup region can be increased. The connecting portion 184 of the lower end of the pickup area 120 and the third straight section 180-1c of the first drive area may be connected in a smooth curve, and the upper end of the pickup area 120 and the second drive The same applies to the connection portion 184 of the second straight section 180-1 of the region. Such a connection structure can maximize the length of the section in which the direction of the magnetic flux is vertically present in the pickup area 120. That is, this connection structure can increase the length of an effective pickup section that contributes to detection of the pickup voltage.
도21과 도22는 도19와 같은 육상트랙형 8자 모양의 자성체(110)에 드라이브 코일과 픽업 코일이 권선된 구조(200, 250)를 도시한다.21 and 22 show structures 200 and 250 in which a drive coil and a pickup coil are wound around an eight-shaped magnetic body 110 of a land track type as shown in FIG. 19.
먼저, 도21에 도시된 자성체 및 코일 권선 구조(200)는, 도19에 도시된 자성체(110)와 동일한 구조의 자성체(110)를 채용하고, 픽업 영역(120)에 픽업코일(225)을 감는 것도 동일하다. 다만, 본 실시예에 따른 자성체 및 코일 권선 구조(200)는 픽업 영역(120) 좌우측의 제1 드라이브 영역(130-1a, 130-2a) 및 제2 드라이브 영역(130-1b, 130-2b)뿐만 아니라 픽업 영역(120)에도 드라이브 코일(235a, 235b, 235c)이 감긴다는 점에서 도19의 자성체 및 코일 권선 구조(100)와 다르다. 픽업 영역(120)에는 픽업 코일(225)과 드라이브 코일(235c)이 도시된 것처럼 1턴씩 교대로 감기거나 k턴씩(단, k는 2이상의 자연수) 교대로 감기는 형태로 권선될 수 있다. First, the magnetic body and coil winding structure 200 shown in FIG. 21 employs a magnetic body 110 having the same structure as the magnetic body 110 shown in FIG. 19, and a pickup coil 225 is attached to the pickup area 120. Winding is the same. However, in the magnetic material and coil winding structure 200 according to the present embodiment, the first drive areas 130-1a and 130-2a and the second drive areas 130-1b and 130-2b on the left and right sides of the pickup area 120 In addition, the drive coils 235a, 235b, and 235c are also wound in the pickup area 120, which is different from the magnetic material and coil winding structure 100 of FIG. 19. In the pickup area 120, the pickup coil 225 and the drive coil 235c may be wound alternately by one turn or by k turns (where k is a natural number of 2 or more) as shown.
이 실시예에 따른 자성체 및 코일 권선 구조(200)는 도19의 구조(100)와 마찬가지로 곡선형 드라이브 영역을 픽업 영역(120)으로부터 좌우로 멀리 확장되게 하여 드라이브 코일이 많이 감길 수 있다. 이 구조(200)에 따르면, 드라이브 코일이 많이 감길 수 있으므로 드라이브 자속량도 많아지고, 픽업 전압의 출력특성 측정이 가능한 영역인 다이내믹 레인지(Dynamic range)가 확대될 수 있다. 또한, 자기장 변화량과 픽업전압 피크의 이동량의 선형성이 확보될 수 있다.In the magnetic material and coil winding structure 200 according to this embodiment, as in the structure 100 of FIG. 19, the curved drive area is extended to the left and right away from the pickup area 120, so that the drive coil can be wound a lot. According to this structure 200, since the drive coil can be wound a lot, the amount of drive magnetic flux is increased, and the dynamic range, which is an area in which the output characteristic of the pickup voltage can be measured, can be expanded. In addition, linearity of the amount of change in the magnetic field and the amount of movement of the pickup voltage peak can be ensured.
또한, 픽업 영역(120)에는 드라이브 코일과 픽업코일을 교대로 감긴다. 픽업 영역(120)에 드라이브 코일(235c)을 감은 이유는 픽업 코일(225)에서 검출되는 픽업 전압의 피크를 크게 만들어 플럭스게이트 자력계의 민감도를 좋게 하기 위함이다. 외부에서 큰 자기장이 걸리더라도 픽업 영역(120)에 감긴 드라이브 코일(235c)은 계속 자속을 생성하여 픽업 방향으로 드라이브를 걸 수 있다. 이에 의해, 픽업 영역(120)의 자성체 내부의 원자들은 스핀방향을 픽업 영역(120)의 길이 방향으로 유지할 수 있다. 이로 인해서 픽업 코일(225)로부터 출력되는 전압 피크가 픽업 영역(120)의 길이방향으로 출력될 수 있다. In addition, a drive coil and a pickup coil are alternately wound around the pickup area 120. The reason that the drive coil 235c is wound around the pickup area 120 is to increase the sensitivity of the fluxgate magnetometer by increasing the peak of the pickup voltage detected by the pickup coil 225. Even if a large magnetic field is applied from the outside, the drive coil 235c wound around the pickup area 120 may continue to generate magnetic flux and drive it in the pickup direction. Accordingly, the atoms in the magnetic body of the pickup region 120 can maintain the spin direction in the length direction of the pickup region 120. Accordingly, a voltage peak output from the pickup coil 225 may be output in the longitudinal direction of the pickup region 120.
픽업 코일(225)은 자체 전류 흐름 없이 단순한 자화 반전을 감지하는 기능만 가지고 있다. 픽업 영역(120)에 픽업 코일(225)만 감겨 있으면, 큰 외부 자기장(예컨대 3가우스 이상)이 인가될 때, 그 외부 자기장에 의해서 픽업 영역(120)의 자성체 내부의 원자들의 스핀 방향이 그 외부 자기장의 방향을 정렬된다. 그 경우, 히스테리시스 루프가 픽업 영역의 길이 방향으로 마치 누워있는 형태가 되어, 픽업 코일(225)에 유도되는 픽업 전압의 피크는 크기가 점점 줄어든다. 그렇게 되면, 외부인가 자기장의 방향을 알게 해주는 볼트 피크의 위치를 감지하기 어려워진다. 픽업 영역(120)에 감긴 드라이브 코일(235c)은 이런 현상을 막는 데 유리하게 기여할 수 있다.The pickup coil 225 only has a function of detecting a simple magnetization inversion without a current flow of itself. If only the pickup coil 225 is wound around the pickup region 120, when a large external magnetic field (for example, 3 Gauss or more) is applied, the spin direction of the atoms inside the magnetic body of the pickup region 120 is changed by the external magnetic field. The direction of the magnetic field is aligned. In this case, the hysteresis loop becomes a shape lying down in the length direction of the pickup area, and the peak of the pickup voltage induced to the pickup coil 225 gradually decreases. In that case, it becomes difficult to detect the position of the bolt peak, which lets you know the direction of the externally applied magnetic field. The drive coil 235c wound around the pickup area 120 can advantageously contribute to preventing this phenomenon.
도22에 도시된 자성체 및 코일 권선 구조(250)는, 도21의 자성체 및 코일 권선 구조(200)와 비교할 때, 픽업 영역(120)에 감긴 픽업 코일(275)의 권선 형태만 다르다. 예시적인 실시예에서, 픽업 코일(275)은 드라이브 코일(235c)와 함께 픽업 영역(120)에 감기되, 픽업 코일(275a, 275b)과 드라이브 코일(235c)은2턴 대1턴의 비율로 교대로 감긴다.The magnetic body and coil winding structure 250 shown in FIG. 22 differs only in the winding shape of the pickup coil 275 wound around the pickup region 120 as compared with the magnetic body and coil winding structure 200 of FIG. 21. In an exemplary embodiment, the pickup coil 275 is wound around the pickup area 120 together with the drive coil 235c, and the pickup coils 275a and 275b and the drive coil 235c are at a ratio of 2 turns to 1 turn. Take turns winding.
예시적인 실시예에서, 제1 픽업 코일(275a)의 권선은 드라이브 코일(235)에 인접해서 감기고, 제2 픽업코일(275b)의 권선은 제1 픽업코일(275a) 옆에 권선될 수 있다. 이렇게 형태로 드라이브 코일(235), 제1 픽업코일(275a), 제2 픽업코일(275b) 순서로 반복해서 권선한 다음, 제1 픽업코일(275a)의 끝부분을 아래로 끌고 내려와서 제2 픽업코일(275b)의 시작부분에 연결시킴으로써, 제1 픽업코일(275a)과 제2 픽업코일(275b)은 전체가 하나의 픽업코일(275)로 기능할 수 있다. In an exemplary embodiment, the winding of the first pickup coil 275a may be wound adjacent to the drive coil 235, and the winding of the second pickup coil 275b may be wound next to the first pickup coil 275a. In this form, the drive coil 235, the first pickup coil 275a, and the second pickup coil 275b are repeatedly wound in this order, and then the end of the first pickup coil 275a is pulled down and lowered to By connecting to the beginning of the pickup coil 275b, the first pickup coil 275a and the second pickup coil 275b may function as one pickup coil 275 as a whole.
이러한 픽업코일의 권선 방식은 픽업 영역(120)의 단위 길이 당 픽업 코일의 턴 수를 높여 픽업코일(275)로부터 출력되는 픽업전압의 피크값을 크게 하는 데 유리하다. 픽업전압의 피크가 커지면, 구동회로(15)가 픽업전압의 피크 발생 지점을 판독할 때 노이즈의 영향을 적게 받아 정확하게 판독할 수 있다.This winding method of the pickup coil is advantageous in increasing the number of turns of the pickup coil per unit length of the pickup region 120 to increase the peak value of the pickup voltage output from the pickup coil 275. When the peak of the pickup voltage increases, the driving circuit 15 is less affected by noise when reading the point where the peak of the pickup voltage occurs, so that it can be accurately read.
다음으로, 도23과 도24는 사각형8 모양의 자성체(310)에 드라이브 코일과 픽업 코일이 권선된 구조(300, 350)를 도시한다.Next, Figs. 23 and 24 show structures 300 and 350 in which a drive coil and a pickup coil are wound around a magnetic body 310 in a square 8 shape.
도23에 도시된 자성체 및 코일 권선 구조(300)는, 도21의 구조(200)와 비교할 때, 자성체(310)의 드라이브 영역이 직사각형 모양인 점에서 차이가 있다. 즉, 도21에 도시된 구조(200)의 자성체(110)의 드라이브 영역은 곡선 구간(130-2a, 130-2b)을 포함하는 육상 트랙 모양을 갖는데 비해, 도23의 구조(300)는 곡선 구간 대신에 직선 구간(330-1c, 330-2c)으로 구성된다. 이 두 직선 구간(330-1c, 330-2c)은 픽업 영역(120)의 상단부의 좌우측에 각각 연결된 직선구간(330-1a, 330-2a)과 픽업 영역(120)의 하단부의 좌우측에 각각 연결된 직선구간(330-1b, 330-2b)의 단부들과 각각 연결되어, 전체적으로 직사각형의 드라이브 영역을 형성한다.The magnetic body and coil winding structure 300 shown in FIG. 23 is different from the structure 200 of FIG. 21 in that the drive area of the magnetic body 310 has a rectangular shape. That is, the drive area of the magnetic body 110 of the structure 200 shown in FIG. 21 has a shape of a running track including curved sections 130-2a and 130-2b, whereas the structure 300 of FIG. 23 is curved It consists of straight sections 330-1c and 330-2c instead of sections. These two straight sections 330-1c and 330-2c are respectively connected to the left and right sides of the upper portion of the pickup area 120 and the straight sections 330-1a and 330-2a connected to the left and right sides of the lower portion of the pickup area 120, respectively. They are connected to the ends of the straight sections 330-1b and 330-2b, respectively, to form an overall rectangular drive area.
드라이브 코일(335a, 335b)은 그 직사각형의 드라이브 영역의 전 구간에 촘촘하게 권선될 수 있다. 드라이브 코일의 턴 수를 최대화할 수 있다. 또한, 드라이브 코일(335c)은, 도21의 구조(200)와 동일한 이유와 형태로, 픽업 코일(225)과 함께 픽업 영역(120)에 교차 권선될 수 있다. 이렇게 픽업 코일(225)과 드라이브 코일(335c)을 교차 권선함으로써, 앞서 언급하였듯이 다이내믹 레인지를 증가시켜 외부 인가 자기장에 의해 픽업영역(120)에서 픽업 코일(225)의 전압 픽업 기능이 저하되는 것을 막는 데 유리하다.The drive coils 335a and 335b may be tightly wound over the entire section of the rectangular drive area. You can maximize the number of turns of the drive coil. Further, the drive coil 335c may be cross-wound in the pickup area 120 together with the pickup coil 225 for the same reason and shape as the structure 200 of FIG. 21. By cross-winding the pickup coil 225 and the drive coil 335c in this way, as mentioned above, the dynamic range is increased to prevent the voltage pickup function of the pickup coil 225 from deteriorating in the pickup region 120 by an externally applied magnetic field. Is advantageous.
도24에 도시된 자성체 및 코일 권선 구조(300)는, 도23의 자성체 및 코일 권선 구조(300)와 비교할 때, 픽업 영역(120)에 감긴 픽업 코일(275)의 권선 형태만 다를 뿐이다. 즉, 픽업 코일(275)은 드라이브 코일(235c)와 함께 픽업 영역(120)에 감기되, 그 픽업 영역(120)에 감기는 드라이브 코일(235c)의1턴에2턴의 픽업 코일(275a, 275b)이 감긴다. 이와 같은 픽업 영역(120)에서의 드라이브 코일(235c)과 픽업 코일(275a, 275b)의 권선 형태와 목적은 도22에 도시된 구조(250)의 픽업 영역(120)에서의 그것들과 동일하다.The magnetic material and coil winding structure 300 shown in FIG. 24 differs only in the winding shape of the pickup coil 275 wound around the pickup area 120 as compared with the magnetic material and coil winding structure 300 of FIG. 23. That is, the pickup coil 275 is wound around the pickup area 120 together with the drive coil 235c, and the pickup coil 275a of 2 turns per turn of the drive coil 235c wound around the pickup area 120, 275b) is wound. The shape and purpose of windings of the drive coil 235c and the pickup coils 275a and 275b in the pickup area 120 are the same as those in the pickup area 120 of the structure 250 shown in FIG.
도25에는 도21에 도시된 구조(200)의 픽업영역(120)에 픽업 코일(225)과 드라이브 코일(235c)이 실제로 권선된 형태가 예시되어 있다.In FIG. 25, the pickup coil 225 and the drive coil 235c are actually wound around the pickup area 120 of the structure 200 shown in FIG.
도25를 참조하면, 픽업 영역(120)의 자성체(1 또는110)는 하부 절연막(6)과 상부 절연막(7)으로 둘러싸이고, 그 둘레에 드라이브 코일(235c)과 픽업코일(225)이1턴 대1턴의 비로 교대로 감긴다. 도25에서, 빗금이 표시된 도체 구간은 드라이브 코일(235c)에 해당하고, 빗금이 표시되지 않은 도체 구간은 픽업 코일(225)에 해당한다. 또한, 점선으로 표시된 도체 구간은 드라이브 코일(235c)과 픽업 코일(225)의 하부 코일(5)에 해당하고, 실선으로 표시된 도체 구간은 드라이브 코일(235c)과 픽업 코일(225)의 상부 코일(9)에 해당한다. 이 설명은 도23에 도시된 구조(300)에도 동일하게 적용될 수 있다.Referring to FIG. 25, the magnetic material 1 or 110 of the pickup area 120 is surrounded by a lower insulating film 6 and an upper insulating film 7, and a drive coil 235c and a pickup coil 225 are 1 It is wound alternately at the ratio of turn to 1 turn. In FIG. 25, the conductor section marked with hatched corresponds to the drive coil 235c, and the conductor section marked with hatched corresponds to the pickup coil 225. In addition, the conductor section indicated by the dotted line corresponds to the drive coil 235c and the lower coil 5 of the pickup coil 225, and the conductor section indicated by the solid line is the drive coil 235c and the upper coil of the pickup coil 225 ( It corresponds to 9). This description can be applied equally to the structure 300 shown in FIG. 23.
도26에는 도22에 도시된 구조(250)의 픽업영역(120)에 픽업 코일(275)과 드라이브 코일(235c)이 실제로 권선 형태가 예시되어 있다. In FIG. 26, the pickup coil 275 and the drive coil 235c are actually wound in the pickup area 120 of the structure 250 shown in FIG.
도26을 참조하면, 픽업 영역(120)의 자성체(1 또는110)는 하부 절연막(6)과 상부 절연막(7)으로 둘러싸이고, 그 둘레를 드라이브 코일(235c)과 픽업 코일(275)이1턴 대2턴의 비로 교대로 감긴다. 도26에서, 빗금 등 아무것도 표시되지 않고 흰 여백으로 표시된 도체 구간은 드라이브 코일(235c)에 해당하고, 빗금이 표시된 도체 구간은 제1 픽업 코일(275a)에 해당하고, 그물망으로 표시된 도체 구간은 제2 픽업 코일(275b)에 해당한다. 또한, 점선으로 표시된 도체 구간은 드라이브 코일(235c)과 픽업 코일(275)의 하부 코일(5)에 해당하고, 실선으로 표시된 도체 구간은 드라이브 코일(235c)과 픽업 코일(275)의 상부 코일(9)에 해당한다. 이 설명은 도24에 도시된 구조(350)에도 동일하게 적용될 수 있다.Referring to FIG. 26, the magnetic body 1 or 110 of the pickup region 120 is surrounded by a lower insulating film 6 and an upper insulating film 7, and the drive coil 235c and the pickup coil 275 are 1 It is wound alternately at the ratio of turns to 2 turns. In FIG. 26, the conductor section marked with white blanks without marking anything such as hatched corresponds to the drive coil 235c, the conductor section marked with hatched corresponds to the first pickup coil 275a, and the conductor section marked with a net corresponds to the first pickup coil 275a. 2 Corresponds to the pickup coil 275b. In addition, the conductor section indicated by the dotted line corresponds to the drive coil 235c and the lower coil 5 of the pickup coil 275, and the conductor section indicated by the solid line is the drive coil 235c and the upper coil of the pickup coil 275 ( It corresponds to 9). This description can equally be applied to the structure 350 shown in FIG. 24.
다음으로, 도27에는 예시적인 실시예에 따른 2단 구조의 자성체 박막으로 형성된 드라이브 영역을 포함하는 자성체를 예시한다.Next, Fig. 27 illustrates a magnetic material including a drive region formed of a magnetic thin film having a two-stage structure according to an exemplary embodiment.
도27을 참조하면, 예컨대 육상트랙형 8자 구조의 자성체(210)를 형성함에 있어서, 도21에 도시된 것과 같은 육상 트랙 모양의 하층 드라이브 영역(130-1a, 130-1b, 130-2a, 130-1c, 130-1d, 130-2b)과 그 하층 드라이브 영역의 직선 구간(130-1a, 130-1b, 130-1c, 130-1d)의 가운데 부분을 연결하는 픽업 영역(120)에 해당하는 하층 자성체(130L, 130R)를 1차로 형성한다. 그런 다음, 픽업 영역(120)을 중심으로 좌측의 하층 드라이브 영역(130-1a, 130-1b, 130-2a)과 우측의 하층 드라이브 영역(130-1c, 130-1d, 130-2b) 위에 U자형의 제1 상층 자성체(210L)와 제2 상층 자성체(210R)를 추가로 각각 형성한다. 상층 자성체(210L, 210R)는 하층 자성체(130L, 130R)와 동일한 재질을 사용하여 동일한 적층 구조와 동일한 두께로 형성할 수 있다. 다만, 상층 자성체(210L, 210R)는 하층 자성체(130L, 130R)보다 단면적을 더 적게 형성할 수 있다.Referring to FIG. 27, for example, in forming the magnetic body 210 of the eight-shaped structure of the land track, the lower drive regions 130-1a, 130-1b, 130-2a in the shape of a land track as shown in FIG. 130-1c, 130-1d, 130-2b) and the pickup area 120 connecting the middle of the straight section 130-1a, 130-1b, 130-1c, 130-1d of the lower drive area The lower magnetic bodies 130L and 130R are firstly formed. Then, with the pickup area 120 as the center, U on the lower drive areas 130-1a, 130-1b, 130-2a on the left and the lower drive areas 130-1c, 130-1d, 130-2b on the right. The first upper magnetic body 210L and the second upper magnetic body 210R of the shape are additionally formed. The upper magnetic bodies 210L and 210R may be formed of the same laminated structure and the same thickness using the same material as the lower magnetic bodies 130L and 130R. However, the upper magnetic bodies 210L and 210R may have a smaller cross-sectional area than the lower magnetic bodies 130L and 130R.
이와 같이 자성체를 2단 구조로 적층하면, 드라이브 영역에 권선된 드라이브 코일 내부의 자성체의 볼륨을 증가시켜서 자성체 내부를 흘러가는 자속의 양이 단층 구조의 자성체에 비해 훨씬 더 많아질 수 있다. 자성체의 볼륨을 증가시켜서 더 많은 자속이 드라이브 영역에서 픽업 영역으로 흘러 들어갈 수 있다. 이런 자성체 구조에서 드라이브 코일에 흐르는 교류 전류에 의해 자화 반전이 일어나면, 픽업영역에 감겨진 픽업코일에 훨씬 많은 양의 유도 전류가 흘러서 픽업코일에서 감지되는 독립된 픽업 전압의 피크의 높이가 높아질 수 있다. 독립된 픽업 전압의 피크가 커지면, 신호 대 잡음 비(SNR)가 커져서 구동회로(15)에서는 그 전압 피크의 위치를 더 용이하게 감지할 수 있다. 또한, 플럭스게이트 자력계의 전체 크기를 축소시킬 수 있는 효과를 얻을 수도 있다. When the magnetic material is stacked in a two-stage structure, the volume of the magnetic material inside the drive coil wound in the drive area is increased, so that the amount of magnetic flux flowing inside the magnetic material can be much greater than that of a single-layered magnetic material. By increasing the volume of the magnetic material, more magnetic flux can flow from the drive area to the pickup area. In such a magnetic structure, when magnetization reversal occurs due to an alternating current flowing through the drive coil, a much larger amount of induced current flows through the pickup coil wound around the pickup area, thereby increasing the peak height of the independent pickup voltage sensed by the pickup coil. When the peak of the independent pickup voltage increases, the signal-to-noise ratio (SNR) increases, so that the driving circuit 15 can more easily detect the position of the voltage peak. In addition, it is possible to obtain an effect of reducing the overall size of the fluxgate magnetometer.
도27(b)에 도시된 2단 구조의 자성체(210)는 자성체 박막(Laminated thin films) 구조로 만들어질 수 있다. 물론 앞에서 설명한 여러 실시예들에 따른 자성체(1, 110, 160, 또는 310)도 동일한 자성체 박막 구조로 만들어질 수 있다. The magnetic body 210 having a two-stage structure shown in FIG. 27(b) may be made of a laminated thin film structure. Of course, the magnetic material 1, 110, 160, or 310 according to the various embodiments described above may also be made of the same magnetic thin film structure.
도27(b)를 참조하여, 2단 구조의 자성체(210)를 예로 하여 본 발명에 사용되는 자성체의 구조를 설명한다. 자성체 박막(210)은 복수 세트의 자성체막(220)을 연속적으로 적층한 구조로 만들어질 수 있다. 한 세트의 자성체막(220)은 예컨대 NiFe와 같은 자성물질로 형성된 자성박막(220-1)과 그 위에 적층되는 절연박막(220-2)으로 이루어질 수 있다. 이와 같은 적층 자성체 박막(210)은 연자성 박막(soft magnetic thin films)의 연자성 특성, 즉 작은 보자력(coercivity), 빠른 포화자화(saturated magnetization), 높은 투자율(permeability)을 가질 수 있도록 제조될 수 있다. 이의 제조 방법은 이미 널리 알려져 있으므로, 그에 관한 자세한 설명은 생략한다. 연자성 박막을 제작함에 있어서 출력되는 자기장, 혹은 픽업전압의 피크의 크기를 향상시키기 위해서는 적층되는 자성체막(220)의 세트 수를 많이 할 수 있다. 예시적인 실시예에서, 자성체 박막(210)은 예컨대 NiFe로 된 자성박막(220-1)을 약 500Å의 두께로 성막하고 그 위에 SiO2, AL2O3, Ta2O5 등의 절연 박막(220-2)을 대략 100 Å의 두께로 성막한다. 이러한 ‘자성박막(220-1) + 절연박막(220-2)’ 세트를 대략 수 내지 십 수 세트를 적층하여 자성체 박막(210)을 형성할 수 있다. 2단 구조의 자성체(210)에 있어서, 하층 자성체(130L, 130R)와 상층 자성체(210L, 210R)는 모두 위에서 언급한 자성체 박막(210)과 같은 구조로 형성될 수 있다. 자성체 박막(210)을 두껍게 형성시키고자 하는 영역(드라이브 영역)은1차 자성체 박막을 형성한 뒤 그 위에 추가로 2차 자성체 박막을 성막하는 방법으로 2단 구조의 자성체 박막(210)을 만들 수 있다. 이 때, 2차 자성체 박막은 1차 자성체 박막과 동일한 수직 구조(vertical structure)를 가지도록 형성할 수 있다. 2단 구조로 형성된 자성체 박막의 두께는 플럭스게이트 자력계의 출력크기 및 자기장 감지 성능에 따라서 결정될 수 있다.Referring to Fig. 27(b), the structure of the magnetic body used in the present invention will be described by taking the magnetic body 210 having a two-tier structure as an example. The magnetic thin film 210 may be made in a structure in which a plurality of sets of magnetic films 220 are continuously stacked. The set of magnetic layers 220 may include a magnetic thin layer 220-1 formed of a magnetic material such as NiFe, and an insulating thin layer 220-2 stacked thereon. Such a laminated magnetic thin film 210 can be manufactured to have soft magnetic properties of soft magnetic thin films, that is, small coercivity, fast saturated magnetization, and high permeability. have. Since the manufacturing method thereof is already widely known, a detailed description thereof is omitted. In order to increase the magnitude of the output magnetic field or the peak of the pickup voltage in manufacturing the soft magnetic thin film, the number of sets of the stacked magnetic layers 220 may be increased. In an exemplary embodiment, the magnetic thin film 210 is formed of, for example, a magnetic thin film 220-1 made of NiFe to a thickness of about 500Å, and an insulating thin film such as SiO 2 , AL 2 O 3 , Ta 2 O 5 ( 220-2) was formed to a thickness of approximately 100 Å. The magnetic thin film 210 may be formed by stacking approximately several to tens of sets of the'magnetic thin film 220-1 + the insulating thin film 220-2'. In the magnetic body 210 having a two-stage structure, both the lower magnetic bodies 130L and 130R and the upper magnetic bodies 210L and 210R may be formed in the same structure as the magnetic thin film 210 mentioned above. In the area (drive area) in which the magnetic thin film 210 is to be formed thick, the magnetic thin film 210 having a two-stage structure can be formed by forming a primary magnetic thin film and then forming an additional secondary magnetic thin film thereon. have. In this case, the secondary magnetic material thin film may be formed to have the same vertical structure as the primary magnetic material thin film. The thickness of the magnetic thin film formed in a two-stage structure may be determined according to the output size of the fluxgate magnetometer and the magnetic field sensing performance.
본 발명의 다른 모든 실시예들에 따른 자성체들도 도27에 예시된 2단 구조의 드라이브 영역을 해당 자성체의 형태에 맞게 적절하게 변형하여 채용할 수 있다. 예컨대 도16의 원형 또는 타원형 모양 자성체의 드라이브 영역, 도20의 S자 모양 자성체(160)의 제1 및 제2 드라이브 영역, 도23 및 도24의 사각형 8 모양의 자성체(310)의 드라이브 영역 등도 2단 구조의 자성체 박막으로 구성할 수 있다. 통상의 기술자라면 도27에 관한 설명을 기초로 하여 해당 자성체들의 2단 구조 드라이브 영역을 구현할 수 있을 것이므로, 여기서는 그에 관한 설명은 생략한다.Magnetic bodies according to all other embodiments of the present invention may be adopted by appropriately modifying the drive area of the two-stage structure illustrated in FIG. 27 to suit the shape of the corresponding magnetic body. For example, the drive area of the circular or elliptical shape magnetic body of Fig. 16, the first and second drive areas of the S-shaped magnetic body 160 of Fig. 20, the drive area of the square 8-shaped magnetic body 310 of Figs. 23 and 24, etc. It can be composed of a magnetic thin film with a two-stage structure. Since a person of ordinary skill in the art may implement the two-stage drive area of the magnetic bodies based on the description of FIG. 27, a description thereof will be omitted here.
도19 내지 도24에 도시된 여러 가지 자성체 및 권선 구조들(100, 150, 200, 250, 300, 350)은 드라이브 코일의 턴 수를 크게 증가시킬 수 있어, 픽업 영역(120)으로 제공하는 자속량이 많아진다. 또한, 픽업 영역(120)에 픽업 코일 외에 드라이브 코일까지 더 감는 구조(200, 250, 300, 350)는 픽업 영역(120)에 더 강한 자속을 전달할 수 있으므로, 픽업 영역(120)에 외부 자기장이 인가되더라도 픽업 영역(120) 내의 자성체(1)의 원자들의 스핀방향을 픽업영역(120)의 길이방향(Z방향)으로 계속 유지할 수 있게 해준다. 나아가, 자성체의 드라이브 영역을 2단 구조로 형성하여 픽업 영역보다 단면적을 더 크게 만들면, 드라이브 영역에서 생성되어 픽업영역으로 인가되는 자속의 양을 더 증가시킬 수 있다. 본 발명에서 제시된 다양한 실시예들의 구조들은 단독으로 또는 두 가지 이상 조합된 형태로 플럭스게이트 자력계에 적용될 수 있다. 그러한 구조들을 채택한 플럭스게이트 자력계는 확대된 다이내믹 레인지를 가질 수 있고, 자기장 변화량과 전압피크의 이동량 간의 향상된 선형성을 가질 수 있다. The various magnetic material and winding structures 100, 150, 200, 250, 300, and 350 shown in FIGS. 19 to 24 can greatly increase the number of turns of the drive coil, so that the magnetic flux provided to the pickup area 120 The amount increases. In addition, since the structure 200, 250, 300, and 350 further winding up to the drive coil in addition to the pickup coil in the pickup region 120 can transmit a stronger magnetic flux to the pickup region 120, an external magnetic field in the pickup region 120 Even if applied, the spin direction of the atoms of the magnetic material 1 in the pickup region 120 can be maintained in the longitudinal direction (Z direction) of the pickup region 120. Further, if the drive region of the magnetic material is formed in a two-stage structure to make the cross-sectional area larger than that of the pickup region, the amount of magnetic flux generated in the drive region and applied to the pickup region can be further increased. The structures of various embodiments presented in the present invention may be applied to a fluxgate magnetometer alone or in combination of two or more. A fluxgate magnetometer employing such structures can have an enlarged dynamic range and an improved linearity between the amount of change in the magnetic field and the amount of movement of the voltage peak.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are only exemplary, and those of ordinary skill in the art to which the present technology pertains, various modifications and other equivalent embodiments are possible. I will understand. Therefore, the true technical protection scope of the present invention should be determined by the following claims.
본 발명은 플럭스게이트 자력계와 같은 자기센서의 설계 및 제조에 이용될 수 있다.The present invention can be used to design and manufacture magnetic sensors such as fluxgate magnetometers.
<부호의 설명><Explanation of code>
1: 자성체 또는 자성 적층막(magnetic film or magnetic laminated films) 1: magnetic film or magnetic laminated films
2: 절연막(insulation film)2: insulation film
3: 드라이브 코일(drive coil)3: drive coil
4: 픽업 코일(pick-up coil)4: pick-up coil
5: 하부 코일(bottom coil)5: bottom coil
6: 하부 절연막(bottom oxide film)6: bottom oxide film
7: 상부 절연막(top oxide film)7: top oxide film
8: 측면 절연막(side oxide film)8: side oxide film
9: 상부 코일(top coil)9: top coil
10: 패키징용PCB (PCB for packaging)10: PCB for packaging
11: 에폭시 몰딩(epoxy molding)11: epoxy molding
12: Z축 플럭스게이트(Z-axis fluxgate)12: Z-axis fluxgate
13: Y축 플럭스게이트(Y-axis fluxgate)13: Y-axis fluxgate
14: X축 플럭스게이트(X-axis fluxgate)14: X-axis fluxgate
15: 플럭스게이트 구동 회로(ASIC for fluxgate)15: Fluxgate drive circuit (ASIC for fluxgate)
16: 실리콘 웨이퍼 기판(silicon wafer substrate)16: silicon wafer substrate
17: 기판 절연막(silicon oxide, SiO2)17: substrate insulating film (silicon oxide, SiO 2 )
18: CMP용 하중(load for CMP)18: load for CMP
19: CMP 플레이트(plate for CMP)19: plate for CMP
20: CMP 연마제(abrasive for CMP)20: CMP abrasive (abrasive for CMP)
21: 균열, 파손(crack)21: crack, crack
22: 하부 코일 위에 형성된 자성체(magnetic film on the Aluminum bottom coil)22: magnetic film on the Aluminum bottom coil
23: 기판 절연막 위에 형성된 자성체(magnetic film on the silicon oxide) 23: magnetic film on the silicon oxide formed on the substrate insulating film
24: 포토 리지스트(photo resist)24: photo resist
25: 하부 코일의 돌출 부위(protrusion of the bottom coil)25: protrusion of the bottom coil
26, 26': 물결 모양 구조(wavy structure)26, 26': wavy structure
27: 솔레노이드 코일(solenoid coil)27: solenoid coil
28: 드라이브 영역(drive area)28: drive area
29: 픽업 영역(pick-up area)29: pick-up area
30: 1차 영역(first area)30: first area
31: 하부 코일 매립용 홈(area for bottom coil)31: area for bottom coil
32: 완충 홈(buffer groove)32: buffer groove
32': 요철 구조(groove structure)32': groove structure
33: 자성체 박막(magnetic film)33: magnetic film
34: 중간막(inter layer)34: inter layer
35: 평탄화 박막(SOG(Spin-On-Glass) film)35: planarization thin film (SOG (Spin-On-Glass) film)
36: 곡률 반경 R1 36: radius of curvature R 1
37: 곡률 반경 R2 37: radius of curvature R 2
38: 도전성 박막(thin film for current flow)38: conductive thin film (thin film for current flow)
50, 60: 플럭스게이트50, 60: fluxgate
110: 육상트랙형 8자 모양의 자성체110: land track type 8-shaped magnetic body
120: 픽업 영역120: pickup area
160: S자 모양 자성체160: S-shaped magnetic body
100, 150, 200, 250, 300, 350: 자성체 및 코일 권선 구조100, 150, 200, 250, 300, 350: magnetic body and coil winding structure

Claims (32)

  1. 기판 상의 기판 절연막 위에 순차적으로 적층된 하부 코일, 하부 구조부, 자성체, 상부 절연막 및 상부 코일을 포함하고,A lower coil, a lower structure, a magnetic material, an upper insulating film, and an upper coil sequentially stacked on the substrate insulating film on the substrate,
    상기 하부 코일은 상기 기판 절연막에 마련된 하부 코일 매립용 복수 열의 홈 안에 각각 매립된 형태로 형성되며, 각 하부코일은 자신의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단보다 낮게 형성되어 상기 하부 코일 매립용 홈의 측벽부 상단 근처의 상기 가장자리 부위 상부에 빈 공간 형태의 완충 홈이 마련되게 형성되고,The lower coil is formed in a form buried in a plurality of rows of grooves for burying the lower coil provided in the substrate insulating film, and each lower coil has its own edge portion lower than the upper end of the lower coil burying groove to bury the lower coil. A buffer groove in the form of an empty space is formed at an upper portion of the edge portion near the upper end of the side wall portion of the dragon groove,
    상기 하부 구조부는, 상기 완충 홈을 채우고 상기 기판 절연막과 상기 하부 코일들을 덮으면서 평탄한 표면을 제공하도록 SOG 조성물(spin-on-glass composition or material) 또는 유동성 산화물(flowable oxide) 물질을 이용하여 형성되어 이웃하는 구성요소들 간의 열팽창율 차이에 따른 응력을 완충할 수 있도록 구성된 평탄화 박막을 포함하는 것을 특징으로 하는 플럭스게이트 자력계(Fluxgate Magnetometer).The lower structure is formed by using a spin-on-glass composition or material or a flowable oxide material to provide a flat surface while filling the buffer groove and covering the substrate insulating film and the lower coils. A fluxgate magnetometer comprising a flattening thin film configured to buffer a stress according to a difference in a coefficient of thermal expansion between neighboring components.
  2. 제1항에 있어서, 상기 복수의 도전성 하부코일 각각은 상면 중앙부의 높이가 상기 하부코일 매립용 홈의 상단 높이와 실질적으로 동일하고, 상기 상면 중앙부에 비해 상기 가장자리 부위의 높이가 낮게 형성되어, 상기 완충 홈이 마련되는 것을 특징으로 하는 플럭스케이트 자력계.The method of claim 1, wherein each of the plurality of conductive lower coils has a height of a central portion of an upper surface substantially equal to a height of an upper end of the groove for filling the lower coil, and a height of the edge portion is lower than that of the center of the upper surface, Flux skate magnetometer, characterized in that the buffer groove is provided.
  3. 제1항에 있어서, 상기 하부 구조부는 상기 평탄화 박막의 평탄화된 표면상에 적층되어 절연성을 제공하도록 형성되는 하부 절연막을 더 포함하는 것을 특징으로 하는 플럭스게이트 자력계.The fluxgate magnetometer of claim 1, wherein the lower structure portion further comprises a lower insulating layer formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
  4. 제3항에 있어서, 상기 하부 절연막은, 상기 플럭스게이트의 공정 과정에서 상기 자성체의 압축 응력에 따른 상기 평탄화 박막의 파괴가 방지될 수 있도록, SiO2,Ta2O3 및Al2O3 중 어느 하나의 물질로 형성되는 것을 특징으로 하는 플럭스게이트 자력계.The method of claim 3, wherein the lower insulating layer is formed of any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 to prevent destruction of the planarization thin film due to compressive stress of the magnetic material during the process of the flux gate. Fluxgate magnetometer, characterized in that formed of a single material.
  5. 제1항에 있어서, 상기 하부코일과 상기 상부코일은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 서로 연결되어 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성하도록 구성되며, The method of claim 1, wherein the lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape, and are induced by a drive coil for passing a drive current and a magnetic flux passing through it. It is configured to separately form a pickup coil for detecting the pickup voltage,
    상기 자성체는 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체와, 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어, 타원형 구조 또는, 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함하는 것을 특징으로 하는 플럭스게이트 자력계.The magnetic body extends a predetermined length in a straight line, and at least the pickup area magnetic body around which the pickup coil is wound; A track-shaped structure, a quadrangular structure, and a drive area magnetic material connected to the pickup area magnetic material is formed in any one of two facing U-shaped structures forming an S-shape, and at least the drive coil is wound. Fluxgate magnetometer.
  6. 제5항에 있어서, 상기 드라이브 코일은 외부 인가 자기장에 의한 픽업 전압의 피크 값 감소를 막기 위해 상기 픽업 영역 자성체에도 더 감긴 형태로 구성되는 것을 특징으로 하는 플럭스게이트 자력계.[6] The fluxgate magnetometer of claim 5, wherein the drive coil is further wound around the pickup area magnetic material to prevent a peak value of the pickup voltage from being reduced by an externally applied magnetic field.
  7. 제6항에 있어서, 상기 픽업 영역에 감긴 상기 드라이브 코일과 상기 픽업코인 간의 권선수 비는 1:1 또는 1:2인 것을 특징으로 하는 플럭스게이트 자력계.The fluxgate magnetometer of claim 6, wherein a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area is 1:1 or 1:2.
  8. 제5항에 있어서, 상기 드라이브 영역 자성체는 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하는 2단 구조 자성체로 형성되고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 큰 것을 특징으로 하는 플럭스게이트 자력계.The method of claim 5, wherein the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. A fluxgate magnetometer, characterized in that it is formed of a two-stage magnetic material including a magnetic material in the second-stage drive area and the sum of the cross-sectional areas of the magnetic material in the first and second-stage drive areas is greater than that of the magnetic material in the pickup area. .
  9. 제1항에 있어서, 상기 자성체는 복수 세트의 자성체막이 연속적으로 적층된 구조이며, 한 세트의 자성체막은 자성물질로 형성된 자성박막과 그 위에 적층된 절연박막을 포함하는 것을 특징으로 하는 플럭스게이트 자력계.The fluxgate magnetometer of claim 1, wherein the magnetic material has a structure in which a plurality of sets of magnetic material layers are continuously stacked, and the set of magnetic material layers includes a magnetic thin film formed of a magnetic material and an insulating thin film stacked thereon.
  10. 기판 상의 기판 절연막 위에 순차적으로 적층된 하부 코일, 하부 구조부, 자성체, 상부 절연막 및 상부 코일을 포함하고,A lower coil, a lower structure, a magnetic material, an upper insulating film, and an upper coil sequentially stacked on the substrate insulating film on the substrate,
    상기 하부코일과 상기 상부코일은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 서로 연결되어 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성하며,The lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape to detect a pickup voltage induced by a magnetic flux passing through a drive coil for passing a drive current. The pickup coil is formed separately,
    상기 자성체는 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체; 및 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고, 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함하는 것을 특징으로 하는 플럭스게이트 자력계.The magnetic material is a pick-up area magnetic material that extends for a predetermined length in a straight line and at least the pick-up coil is wound; And a land track-type structure composed of a combination of a straight section and a curved section by branching from the upper and lower ends of the magnetic material in the pickup area, a rectangular structure, and two facing each other in a form connected to the magnetic material in the pickup area forming an S shape. Fluxgate magnetometer, characterized in that it is formed in any one of the U-shaped structure, at least comprising a drive region magnetic material wound around the drive coil.
  11. 제10항에 있어서, 상기 드라이브 코일은 외부 인가 자기장에 의한 픽업 전압의 피크 값 감소를 막기 위해 상기 픽업 영역 자성체에도 더 감긴 형태로 구성되는 것을 특징으로 하는 플럭스게이트 자력계.11. The fluxgate magnetometer of claim 10, wherein the drive coil is further wound around the pickup area magnetic material to prevent a peak value of the pickup voltage from being reduced by an externally applied magnetic field.
  12. 제11항에 있어서, 상기 픽업 영역에 감긴 상기 드라이브 코일과 상기 픽업코인 간의 권선수 비는 1:1 또는 1:2인 것을 특징으로 하는 플럭스게이트 자력계.The fluxgate magnetometer of claim 11, wherein a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area is 1:1 or 1:2.
  13. 제10항에 있어서, 상기 드라이브 영역 자성체는 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하는 2단 구조 자성체로 형성되고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 큰 것을 특징으로 하는 플럭스게이트 자력계.The method of claim 10, wherein the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. A fluxgate magnetometer, characterized in that it is formed of a two-stage magnetic material including a magnetic material in the second-stage drive area and the sum of the cross-sectional areas of the magnetic material in the first and second-stage drive areas is greater than that of the magnetic material in the pickup area. .
  14. 제10항에 있어서, 상기 하부 코일은 상기 기판 절연막에 마련된 하부 코일 매립용 복수 열의 홈 안에 각각 매립된 형태로 형성되며, 각 하부코일은 자신의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단보다 낮게 형성되어 상기 하부 코일 매립용 홈의 측벽부 상단 근처의 상기 가장자리 부위 상부에 완충 홈이 마련되게 형성되고; The method of claim 10, wherein the lower coil is formed in a form buried in a plurality of rows of grooves for burying a lower coil provided in the substrate insulating film, and each lower coil has its own edge portion lower than the upper end of the lower coil burying groove. Is formed such that a buffer groove is provided at an upper portion of the edge portion near an upper end of the sidewall portion of the lower coil buried groove;
    상기 하부 구조부는, 상기 완충 홈을 채우고 상기 기판 절연막과 상기 하부 코일들을 덮으면서 평탄한 표면을 제공하도록 SOG 조성물(spin-on-glass composition or material) 또는 유동성 산화물(flowable oxide) 물질을 이용하여 형성되어 이웃하는 구성요소들 간의 열팽창율 차이에 따른 응력을 완충할 수 있도록 구성된 평탄화 박막을 포함하는 것을 특징으로 하는 플럭스게이트 자력계.The lower structure is formed by using a spin-on-glass composition or material or a flowable oxide material to provide a flat surface while filling the buffer groove and covering the substrate insulating film and the lower coils. A fluxgate magnetometer comprising a flattening thin film configured to buffer a stress according to a difference in a coefficient of thermal expansion between neighboring components.
  15. 제14항에 있어서, 상기 하부 구조부는 상기 평탄화 박막의 평탄화된 표면상에 적층되어 절연성을 제공하도록 형성되는 하부 절연막을 더 포함하는 것을 특징으로 하는 플럭스게이트 자력계.15. The fluxgate magnetometer of claim 14, wherein the lower structure part further comprises a lower insulating layer formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
  16. 기판;Board;
    상기 기판의 상면에 적층되어 절연성을 제공하고, 상면에 복수 열의 하부코일 매립용 홈이 형성된 기판 절연막;A substrate insulating film stacked on an upper surface of the substrate to provide insulation and having a plurality of rows of grooves for filling the lower coils formed on the upper surface;
    상기 복수 열의 하부코일 매립용 홈 안에 각각 매립되되, 각각의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단면보다 낮게 형성된 단차에 의해 상기 가장자리 부위와 상기 하부코일 매립용 홈의 측벽부 사이에 빈 공간인 완충 홈이 마련되도록 형성된 복수 열의 하부 코일;Each of the plurality of rows of lower coil embedding grooves is buried, and each edge portion is an empty space between the edge portion and the sidewall portion of the lower coil embedding groove by a step formed lower than the upper end surface of the lower coil embedding groove. A plurality of rows of lower coils formed to have buffer grooves;
    상기 완충 홈을 채우고 상기 기판 절연막과 상기 복수 열의 하부 코일들을 덮으면서 평탄한 표면을 제공하는 평탄화 박막; 및 상기 평탄화 박막의 평탄화된 표면 상에 적층되어 절연성을 제공하도록 형성되는 하부 절연막을 포함하는 하부 구조부; A planarization thin film filling the buffer groove and covering the substrate insulating layer and the plurality of rows of lower coils to provide a flat surface; And a lower insulating film formed to provide insulation by being stacked on the planarized surface of the planarizing thin film.
    상기 하부 구조부의 상면에 적층된 자성체; A magnetic material stacked on the upper surface of the lower structure;
    상기 자성체의 측면과 상면을 감싸서 상기 하부 구조부와 협력하여 상기 자성체를 외부로부터 절연되게 하는 상부 절연막; 그리고An upper insulating layer covering the side and upper surfaces of the magnetic material to cooperate with the lower structure to insulate the magnetic material from the outside; And
    상기 상부 절연막의 상면과 측면을 감싸도록 형성된 복수 열의 상부 코일을 구비하고,It has a plurality of rows of upper coils formed to surround an upper surface and a side surface of the upper insulating film,
    상기 하부코일과 상기 상부코일은 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 서로 연결되어 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성하며, The lower coil and the upper coil are connected to each other so as to wind the lower structure part and the magnetic body wrapped with the upper insulating film in a solenoid shape to detect a pickup voltage induced by a magnetic flux passing through a drive coil for passing a drive current. The pickup coil is formed separately,
    상기 자성체는 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체와, 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어, 타원형 구조, 또는 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함하는 것을 특징으로 하는 플럭스게이트 자력계.The magnetic body extends a predetermined length in a straight line, and at least the pickup area magnetic body around which the pickup coil is wound; A track-shaped structure, a quadrangular structure, and a drive area magnetic material connected to the pickup area magnetic material is formed in any one of two U-shaped structures facing each other forming an S-shape, and at least the drive coil is wound. Fluxgate magnetometer.
  17. 제16항에 있어서, 상기 평탄화 박막은, 졸 상태에서 스핀 코팅 방식으로 상기 완충 홈을 채우면서 상기 복수의 하부 코일과 상기 기판 절연막 위에 코팅되어 평탄면을 형성하고, 큐어링된 후 하드 겔(hard gel) 상태로 변형되어 이웃하는 구성요소들 간의 열팽창률 차이에 따른 응력을 완충시킬 수 있는 물성을 지닌 물질로 이루어진 것을 특징으로 하는 플럭스게이트 자력계.The method of claim 16, wherein the planarization thin film is coated on the plurality of lower coils and the substrate insulating film while filling the buffer groove in a spin coating method in a sol state to form a flat surface, and after curing, hard gel A fluxgate magnetometer, characterized in that it is made of a material that is transformed into a gel) state and has physical properties capable of buffering stress due to a difference in thermal expansion coefficient between neighboring components.
  18. 제16항에 있어서, 상기 평탄화 박막은 SOG 조성물 또는 유동성 산화물(flowable oxide) 물질로 형성된 것을 특징으로 플럭스 게이트 자력계.The flux gate magnetometer of claim 16, wherein the planarization thin film is formed of an SOG composition or a flowable oxide material.
  19. 제16항에 있어서, 상기 드라이브 코일은 외부 인가 자기장에 의한 픽업 전압의 피크 값 감소를 막기 위해 상기 픽업 영역 자성체에도 더 감긴 형태로 구성되는 것을 특징으로 하는 플럭스게이트 자력계.17. The fluxgate magnetometer of claim 16, wherein the drive coil is further wound around the pickup area magnetic material to prevent a peak value of the pickup voltage from being reduced by an externally applied magnetic field.
  20. 제19항에 있어서, 상기 픽업 영역에 감긴 상기 드라이브 코일과 상기 픽업코인 간의 권선수 비는 1:1 또는 1:2인 것을 특징으로 하는 플럭스게이트 자력계.The fluxgate magnetometer of claim 19, wherein a ratio of the number of turns between the drive coil and the pickup coin wound around the pickup area is 1:1 or 1:2.
  21. 제16항에 있어서, 상기 드라이브 영역 자성체는 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하는 2단 구조 자성체로 형성되고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 큰 것을 특징으로 하는 플럭스게이트 자력계.The method of claim 16, wherein the drive area magnetic material is stacked on a first stage drive area magnetic material having substantially the same thickness as the pickup area magnetic material, and the first stage drive area magnetic material, and has a cross-sectional area smaller than that of the first stage drive area magnetic material. A fluxgate magnetometer, characterized in that it is formed of a two-stage magnetic material including a magnetic material in the second-stage drive area and the sum of the cross-sectional areas of the magnetic material in the first and second-stage drive areas is greater than that of the magnetic material in the pickup area. .
  22. 제16항에 있어서, 상기 타원형 구조의 드라이브 영역 자성체의 곡선구간 또는 상기 육상 트랙형 구조와 상기 2개의 U자형 구조의 드라이브 영역 자성체의 곡선 구간에 감기는 상기 드라이브 코일은 곡률 반경 중심으로부터 외곽 방향으로 갈수록 선폭이 증가하도록 형성된 것을 특징으로 하는 플럭스게이트 자력계.The drive coil of claim 16, wherein the drive coil wound around the curved section of the magnetic body of the drive area magnetic body of the elliptical structure or the curved section of the drive area magnetic body of the land track structure and the two U-shaped structures is in an outer direction from a center of a radius of curvature. Fluxgate magnetometer, characterized in that formed to increase the line width gradually.
  23. 하부 코일, 하부 구조부, 자성체, 상부 절연막 및 상부 코일이 순차적으로 적층되어 형성된 플럭스게이트 자력계를 제조하는 방법으로서,As a method of manufacturing a fluxgate magnetometer formed by sequentially stacking a lower coil, a lower structure part, a magnetic material, an upper insulating film, and an upper coil,
    실리콘 웨이퍼 기판 상에 형성된 기판 절연막에 상기 하부 코일이 형성될 복수 열의 하부 코일 매립용 홈을 형성하는 단계;Forming a plurality of rows of grooves for filling the lower coils in which the lower coils are to be formed in a substrate insulating film formed on a silicon wafer substrate;
    복수 열의 하부 코일을 상기 복수 열의 하부 코일 매립용 홈 안에 각각 매립된 형태로 형성하되, 각 하부 코일의 가장자리 부위가 상기 하부 코일 매립용 홈의 상단 보다 낮게 형성되어 상기 하부 코일 매립용 홈의 측벽부 상단 근처의 상기 가장자리 부위 상부에 빈 공간 형태의 완충 홈이 복수 개 마련되도록 하부 코일을 형성하는 단계; 및A plurality of rows of lower coils are formed in the form of being buried in the plurality of rows of lower coil embedding grooves, but the edge of each lower coil is formed lower than the upper end of the lower coil embedding groove, so that the sidewall of the lower coil embedding groove Forming a lower coil such that a plurality of buffer grooves in the form of empty spaces are provided above the edge portion near an upper end; And
    SOG 조성물 또는 유동성 산화물(flowable oxide) 물질이 상기 완충 홈을 채우면서 상기 기판 절연막과 상기 하부 코일들 위에 코팅되어 평탄면을 형성하도록 스핀코팅을 수행하고, 큐어링 처리를 하여 하드 겔 상태로 변형된 평탄화 박막을 포함하는 하부구조부를 형성하는 단계를 포함하며,SOG composition or flowable oxide material is coated on the substrate insulating film and the lower coils while filling the buffer groove, performing spin coating to form a flat surface, and curing to form a hard gel state. Including the step of forming an underlying structure including a planarization thin film,
    상기 평탄화 박막은 이웃하는 구성요소들 간의 열팽창률 차이에 따른 응력을 완충시킬 수 있는 물성을 갖는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of manufacturing a fluxgate magnetometer, wherein the planarizing thin film has physical properties capable of buffering a stress according to a difference in coefficient of thermal expansion between neighboring components.
  24. 제23항에 있어서, 상기 하부 코일을 형성하는 단계는, 상기 포토 리지스트가 코팅된 상태에서 상기 복수 열의 하부 코일 매립용 홈에 대하여 도전성 금속을 스퍼터링하여, 중앙부의 높이가 상기 하부코일 매립용 홈의 상단과 실질적으로 동일하고, 상기 가장자리 부위의 높이가 상기 중앙부보다 더 낮아 상기 완충 홈이 마련되는 표면 프로파일을 갖는 하부 코일을 형성하는 것을 특징으로 하는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.24. The method of claim 23, wherein the forming of the lower coil comprises sputtering a conductive metal with respect to the plurality of rows of lower coil embedding grooves while the photoresist is coated, so that the height of the central part is increased to the lower coil embedding groove. A method of manufacturing a fluxgate magnetometer, characterized in that a lower coil having a surface profile that is substantially the same as an upper end of and the edge portion is lower than that of the central portion and in which the buffer groove is provided is formed.
  25. 제23항에 있어서, 상기 하부 코일 매립용 홈을 형성하는 단계는, 상기 기판 절연막 상에서 포토레지스트가 코팅되지 않은 식각 영역에 대하여 1차 식각을 실시하여 상기 하부 코일이 형성될 1차 영역을 형성하는 단계; 및 상기 1차 영역에 대한 2차 식각을 추가적으로 실시하여 상기 1차 영역을 확장시켜 상기 하부 코일 매립용 홈의 입구 가장자리 부분이 상기 포토레지스트에 의해 덮인 구조로 상기 하부 코일 매립용 홈을 형성하는 단계를 포함하는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of claim 23, wherein the forming of the groove for filling the lower coil comprises performing a primary etching on an etched region on the substrate insulating layer to which the photoresist is not coated to form a primary region in which the lower coil is to be formed. step; And forming the lower coil embedding groove in a structure in which the inlet edge of the lower coil embedding groove is covered with the photoresist by additionally performing secondary etching on the first region to expand the first region. A method of manufacturing a fluxgate magnetometer comprising a.
  26. 제25항에 있어서, 상기 1차 식각은 건식 식각(Dry Etching) 공정을 통해 이루어지고, 상기 2차 식각은 습식 식각(Wet Etching)을 통해 이루어지는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of claim 25, wherein the first etching is performed through a dry etching process, and the second etching is performed through wet etching.
  27. 제25항에 있어서, 상기 하부 코일 매립용 홈을 형성하는 단계는, 상기 하부 코일 매립용 홈의 입구부를 덮고 있는 포토레지스트의 측방 선단부 일부를 추가적인 건식 식각을 통해 제거한 후 상기 하부 코일 매립용 홈에 상기 하부 코일을 형성하는 단계를 포함하는 것을 특징으로 하는 플럭스게이트 자력계의 제조방법.The method of claim 25, wherein the forming of the groove for burying the lower coil comprises removing a part of the lateral tip of the photoresist covering the inlet of the groove for burying the lower coil through additional dry etching, and then in the groove for burying the lower coil. A method of manufacturing a fluxgate magnetometer, comprising the step of forming the lower coil.
  28. 제23항에 있어서, SiO2, Ta2O3 및 Al2O3 중 어느 하나의 물질로 상기 하부 구조부의 일부로서 상기 평탄화 박막 상에 적층되게 하부 절연막을 형성하는 단계를 더 포함하며, 상기 하부 절연막은 플럭스게이트 자력계의 제조과정에서 상기 자성체의 압축 응력에 따른 상기 평탄화 박막의 파괴를 방지하고, 절연성을 제공하는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of claim 23, further comprising forming a lower insulating layer to be stacked on the planarization thin film as a part of the lower structure with any one of SiO 2 , Ta 2 O 3 and Al 2 O 3 , and the lower portion The method of manufacturing a fluxgate magnetometer, wherein the insulating film prevents destruction of the planarization thin film due to compressive stress of the magnetic material and provides insulation during the manufacture of the fluxgate magnetometer.
  29. 제28항에 있어서, 상기 하부 구조부 위에 상기 자성체를 복수 세트의 자성체막이 연속적으로 적층된 구조로 형성하되, 한 세트의 자성체막은 자성물질로 형성된 자성박막과 그 위에 적층된 절연박막을 포함하도록 상기 자성체를 형성하는 단계; 및 상기 자성체의 상면과 측면을 감싸도록 형성되어 상기 하부 구조부와 협력하여 상기 자성체를 완전히 포위하여 절연되게 하는 상기 상부 절연막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The magnetic material of claim 28, wherein the magnetic material is formed on the lower structure in a structure in which a plurality of sets of magnetic layers are successively stacked, wherein the magnetic material layer includes a magnetic thin film formed of a magnetic material and an insulating thin film stacked thereon. Forming a; And forming the upper insulating film formed to surround the upper and side surfaces of the magnetic body and cooperate with the lower structure to completely surround and insulate the magnetic body.
  30. 제29항에 있어서, 상기 하부 구조부와 상기 상부 절연막으로 감싸인 상기 자성체를 솔레노이드 형태로 감도록 상기 하부코일들과 연결되는 상부 코일을 형성하되, 드라이브 전류를 흘리기 위한 드라이브 코일과 통과하는 자속에 의해 유도되는 픽업 전압을 검출하기 위한 픽업코일을 별도로 형성하는 단계를 더 포함하는 것을 특징으로 하는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of claim 29, wherein an upper coil connected to the lower coils is formed so as to wind the lower structure part and the magnetic material wrapped with the upper insulating film in a solenoid shape, and the drive coil for passing a drive current and a magnetic flux passing through it are formed. A method of manufacturing a fluxgate magnetometer, further comprising the step of separately forming a pickup coil for detecting the induced pickup voltage.
  31. 제29항에 있어서, 상기 자성체를 형성하는 단계는, 상기 자성체가 직선형으로 소정 길이 연장되고 적어도 상기 픽업코일이 감기는 픽업 영역 자성체와, 상기 픽업 영역 자성체의 상단부 및 하단부에서 양쪽으로 분기되어, 타원형 구조, 또는 직선 구간과 곡선 구간의 조합으로 구성되는 육상 트랙형 구조, 사각형 구조, 그리고 상기 픽업 영역 자성체에 연결된 형태가 S자 모양을 이루는 대면하는 2개의 U자형 구조 중 어느 한 가지로 형성되고 적어도 상기 드라이브 코일이 감기는 드라이브 영역 자성체를 포함하도록 형성하는 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of claim 29, wherein the forming of the magnetic body comprises: a pickup area magnetic body in which the magnetic body extends in a straight line for a predetermined length and at least the pickup coil is wound, and the pickup area magnetic body is branched from both upper and lower ends to an elliptical shape. A structure, or a track-type structure consisting of a combination of a straight section and a curved section, a square structure, and one of two U-shaped structures facing each other in which the shape connected to the pickup area magnetic body forms an S-shape, and at least A method of manufacturing a fluxgate magnetometer, characterized in that the drive coil is formed to include a magnetic drive area magnetic material wound thereon.
  32. 제31항에 있어서, 상기 자성체를 형성하는 단계는, 상기 드라이브 영역 자성체가 상기 픽업영역 자성체와 실질적으로 동일한 두께인 제1단 드라이브 영역 자성체와, 상기 제1단 드라이브 영역 자성체 위에 적층되고 단면적이 상기 제1단 드라이브 영역 자성체보다 작게 형성된 제2단 드라이브 영역 자성체를 포함하도록 2단 구조 자성체로 형성하는 단계를 포함하고, 상기 제1단 및 제2단 드라이브 영역 자성체의 단면적의 합이 상기 픽업영역 자성체의 단면적보다 더 큰 것을 특징으로 하는 플럭스게이트 자력계의 제조 방법.The method of claim 31, wherein the forming of the magnetic material comprises: the drive area magnetic material is stacked on a first-stage drive area magnetic material having a thickness substantially the same as that of the pickup area magnetic material, and the first-stage drive area magnetic material Forming a two-stage magnetic material to include a second-stage drive area magnetic material formed smaller than the first-stage drive area magnetic material, wherein the sum of the cross-sectional areas of the first-stage drive area magnetic material is the pickup area magnetic material Method of manufacturing a fluxgate magnetometer, characterized in that greater than the cross-sectional area of.
PCT/KR2020/004183 2019-03-27 2020-03-27 Fluxgate magnetometer and manufacturing method therefor WO2020197312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0035065 2019-03-27
KR20190035065 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020197312A1 true WO2020197312A1 (en) 2020-10-01

Family

ID=72609067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004183 WO2020197312A1 (en) 2019-03-27 2020-03-27 Fluxgate magnetometer and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20200115337A (en)
WO (1) WO2020197312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220033210A (en) 2020-09-09 2022-03-16 에스케이온 주식회사 Secondary Battery Module with Active Pressure Pad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518796B1 (en) * 2003-05-28 2005-10-06 삼성전자주식회사 Magnetic field sensing device and method for fabricating thereof
KR20090029800A (en) * 2009-01-13 2009-03-23 주식회사 마이크로게이트 3 axis thin film fluxgate
KR101030110B1 (en) * 2006-04-28 2011-04-19 주식회사 마이크로게이트 Thin film 3 axis fluxgate and the imple-mentation method thereof
KR101253581B1 (en) * 2005-10-07 2013-04-11 닐로지 Current and magnetic field sensors, control method and magnetic core for said sensors
US20160154069A1 (en) * 2014-12-02 2016-06-02 Texas Instruments Incorporated High performance fluxgate device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518796B1 (en) * 2003-05-28 2005-10-06 삼성전자주식회사 Magnetic field sensing device and method for fabricating thereof
KR101253581B1 (en) * 2005-10-07 2013-04-11 닐로지 Current and magnetic field sensors, control method and magnetic core for said sensors
KR101030110B1 (en) * 2006-04-28 2011-04-19 주식회사 마이크로게이트 Thin film 3 axis fluxgate and the imple-mentation method thereof
KR20090029800A (en) * 2009-01-13 2009-03-23 주식회사 마이크로게이트 3 axis thin film fluxgate
US20160154069A1 (en) * 2014-12-02 2016-06-02 Texas Instruments Incorporated High performance fluxgate device

Also Published As

Publication number Publication date
KR20200115337A (en) 2020-10-07

Similar Documents

Publication Publication Date Title
US9299655B2 (en) Single-chip integrated circuit with capacitive isolation and method for making the same
WO2020197312A1 (en) Fluxgate magnetometer and manufacturing method therefor
US6730983B2 (en) Semiconductor device with spiral inductor and method for fabricating semiconductor integrated circuit device
US6107143A (en) Method for forming a trench isolation structure in an integrated circuit
US6856228B2 (en) Integrated inductor
WO2018097409A1 (en) Semiconductor package produced using insulation frame, and method for producing same
US7462913B2 (en) Semiconductor device having first and second separation trenches
US10345397B2 (en) Highly sensitive, low power fluxgate magnetic sensor integrated onto semiconductor process technologies
US6579612B1 (en) Magnetostrictive sensor structure
WO2022035233A1 (en) Display device
US5940682A (en) Method of measuring electron shading damage
WO2020111862A1 (en) Magnetic sensor and hall sensor, each using anomalous hall effect, and method for manufacturing hall sensor
WO2021054617A1 (en) Thin-film transistor and manufacturing method for same
US5904490A (en) Method of measuring electron shading damage
JPH10154795A (en) Inductor on semiconductor chip and its manufacturing method
US6194249B1 (en) Method of assembly stress protection
WO2020040590A1 (en) Coreless contactless current measurement system
WO2023132446A1 (en) Light-emitting element, method for manufacturing same, and display device
US8039286B2 (en) Method for fabricating optical device
JP3918484B2 (en) Manufacturing method of magnetic tunnel junction element
KR100598632B1 (en) Compensation of a bias magnetic field in a storage surface of a magnetoresistive storage cell
WO2022164088A1 (en) Micro-led device, method for manufacturing same, and display device using same
JP2022108474A (en) Transformer device and semiconductor device
Cheung et al. Charging damage in thin gate-oxides-better or worse?
JP2003218337A (en) Image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778848

Country of ref document: EP

Kind code of ref document: A1