WO2020197109A1 - 치아 영상 정합 장치 및 방법 - Google Patents

치아 영상 정합 장치 및 방법 Download PDF

Info

Publication number
WO2020197109A1
WO2020197109A1 PCT/KR2020/002753 KR2020002753W WO2020197109A1 WO 2020197109 A1 WO2020197109 A1 WO 2020197109A1 KR 2020002753 W KR2020002753 W KR 2020002753W WO 2020197109 A1 WO2020197109 A1 WO 2020197109A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
tooth image
matching
inscribed
tooth
Prior art date
Application number
PCT/KR2020/002753
Other languages
English (en)
French (fr)
Inventor
김진철
김진백
Original Assignee
주식회사 디오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190036022A external-priority patent/KR102270279B1/ko
Priority claimed from KR1020190036023A external-priority patent/KR102267449B1/ko
Application filed by 주식회사 디오 filed Critical 주식회사 디오
Priority to US17/598,602 priority Critical patent/US11869203B2/en
Priority to EP20779991.7A priority patent/EP3949888A4/en
Priority to CN202080023179.6A priority patent/CN113631116A/zh
Publication of WO2020197109A1 publication Critical patent/WO2020197109A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/51
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth

Definitions

  • the present invention relates to an apparatus and method for matching a tooth image, and more particularly, to an apparatus and method for matching a tooth image capable of registering a tooth image with relatively high accuracy and high speed.
  • Image matching refers to processing for transforming different images and displaying them in one coordinate system.
  • an image matching process between CT (Computed Tomography) image data and oral scan image data is generally performed.
  • the image matched through the image registration process becomes the basis for the implant planning work to determine the safe and optimal implant placement position by grasping bone tissue and neural tube positions, so the accuracy of image registration is of great importance in the subsequent procedure. Have.
  • the image registration method provided by the conventional medical software, a user manually inputs a point that is a reference for image registration, and image registration is performed based on this.
  • a conventional image matching method since the user roughly judges with his eyes and selects a reference point, the result is very inaccurate, and the user's manual manipulation process after image registration is inevitably followed. That is, the user corrects the matching result by changing the location of the point or reselecting the point.
  • a user spends a lot of time for image registration due to a continuous repetitive process of matching and correction, and there is a problem in that a satisfactory result cannot be obtained as much as the spent time.
  • An object of the present invention is to provide a dental image matching apparatus and method capable of improving image registration speed and minimizing system load.
  • the present invention provides a dental image matching apparatus and method capable of improving user convenience by automatically performing image registration with high accuracy, and thereby reducing the time required for implant planning and improving the accuracy of implant planning. It aims to provide.
  • the present invention detects a first maximum outer region that is a maximum outer region of a dentition from a first tooth image data, and a second largest outer region that is a maximum outer region of a tooth row from the second tooth image data.
  • the first and second tooth image data are matched based on a maximum outer detection unit that detects, and a first inscribed circle inscribed to the first maximum outer area and a second inscribed circle inscribed to the second maximum outer area, or It provides a tooth image matching apparatus including an image matching unit for matching first and second tooth image data based on a first center point of an area and a second center point of a second maximum outer area.
  • the tooth image matching apparatus of the present invention includes an inscribed circle detector for detecting a first inscribed circle inscribed in the first maximum outer region, and a second inscribed circle inscribed in the second largest outer region, and a rotating body of the first inscribed circle. Further comprising an inscribed sphere detection unit for detecting the first inscribed hole and detecting a second inscribed hole, which is a rotation of the second inscribed circle, and the image matching unit includes first and second teeth based on the first and second inscribed holes. Match the video data.
  • the apparatus for matching a tooth image of the present invention further includes a center point detector configured to detect a first center point of the first maximum outer area and a second center point of the second maximum outer area, and the image matching unit 2 The first and second tooth image data are matched based on the center point.
  • the image matching unit matches the first and second tooth image data by comparing distances between first vertices included in the first inscribed hole and second vertices included in the second inscribed hole.
  • the image matching unit matches the first and second tooth image data by comparing distances between first vertices included in the first maximum outer area and second vertices included in the second maximum outer area.
  • the image matching unit repeats matching of the first and second tooth image data until the sum of all distances between the first and second vertices is equal to or less than the reference value.
  • the image matching unit repeats the matching of the first and second tooth image data a reference number of times.
  • the apparatus for matching a tooth image of the present invention further includes a preprocessing unit for matching resolutions of the first and second tooth image data and converting voxel information of the first and second tooth image data into vertex information.
  • the maximum outermost detection unit detects the first and second largest outer regions in a polygonal shape in which each corner is in contact with the most protruding tooth.
  • the inscribed circle detection unit bisects two circles each having a first radius and contacting both sides forming the left and right upper corners of the first and second maximum outer regions, and the first and second maximum outer regions between the two circles.
  • One circle having a first radius and being in contact with a point where the bisecting line abuts the side forming the lower end of the first and second maximum outer regions is detected as the first and second inscribed circles.
  • the center point detection unit detects the first center point by using the average value of the x-axis, y-axis, and z-axis coordinates of the first vertices, and uses the average value of the x-axis, y-axis, and z-axis coordinates of the second vertices. 2 Detect the center point.
  • the maximum outside detection unit detects the first and second maximum outside regions using vertices having a minimum position value and a maximum position value based on the x-axis, y-axis, and z-axis in the first and second tooth image data.
  • the tooth image matching method of the present invention includes the steps of detecting a first maximum outer region, which is a maximum outer region of a dentition, from the first tooth image data, and a second maximum outer region, which is a maximum outer region of the dentition from the second tooth image data. Detecting an area, and matching the first and second tooth image data based on a first inscribed circle inscribed to the first maximum outer area and a second inscribed circle inscribed to the second maximum outer area, or a first maximum outer area And matching the first and second tooth image data based on the first central point of and the second central point of the second maximum outer area.
  • the matching of the first and second tooth image data includes the steps of detecting the first and second inscribed circles respectively inscribed to the first and second maximum outer regions, and the rotating body of the first and second inscribed circles. And detecting the first and second inscribed holes respectively, and matching the first and second tooth image data based on the first and second inscribed holes.
  • the matching of the first and second tooth image data includes detecting the first and second central points of the first and second maximum outer regions, respectively, and the first and second central points based on the first and second central points. And matching the second tooth image data.
  • an image by comparing only the distances between vertices included in the inscribed sphere of the first and second tooth image data, or comparing only the distances between vertices included in the maximum outer region of the first and second tooth image data As compared to matching the image by comparing the distances between all vertices included in the first and second tooth image data, not only improves the image matching speed, but also increases the system load for comparing the distances between vertices. There is an effect that can be minimized.
  • FIG. 1 is a block diagram of a tooth image matching apparatus according to a first embodiment of the present invention.
  • FIGS. 2 and 3 are diagrams for explaining a method of detecting a maximum outer region from tooth image data when all teeth are provided in a tooth row as a first embodiment of the present invention.
  • 4 and 5 are diagrams for explaining a method of detecting a maximum outer region from tooth image data when there are no teeth in a tooth row as a first embodiment of the present invention.
  • 6 and 7 are diagrams for explaining a method of detecting an inscribed circle in a maximum outer region when all teeth are provided in a dentition as a first embodiment of the present invention.
  • FIGS. 8 and 9 are diagrams for explaining a method of detecting an inscribed circle in a maximum outer region when there are some teeth in a dentition as a first embodiment of the present invention.
  • FIG. 10 is a view for explaining a method of matching first and second tooth image data by an image matching unit according to a first embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for matching a tooth image according to a first embodiment of the present invention.
  • FIG. 12 is a block diagram of a tooth image matching apparatus according to a second embodiment of the present invention.
  • FIG. 13 and 14 are diagrams for explaining a method of detecting a maximum outer region and a center point in 2D tooth image data as a second embodiment of the present invention.
  • 15 and 16 are diagrams for explaining a method of detecting a maximum outer region and a center point in 3D tooth image data as a second embodiment of the present invention.
  • 17 is a view for explaining a method of matching first and second tooth image data by an image matching unit according to a second embodiment of the present invention.
  • FIG. 18 is a flowchart of a method for matching a tooth image according to a second exemplary embodiment of the present invention.
  • each component may be composed of one or more sub-components, and the electrical, electronic, and mechanical functions performed by each component are electronic circuits, integrated circuits, and application specific integrated circuits (ASICs). ) May be implemented with various known devices or mechanical elements, and may be implemented separately or two or more may be integrated into one.
  • ASICs application specific integrated circuits
  • FIG. 1 is a block diagram of a tooth image matching apparatus according to a first embodiment of the present invention.
  • the tooth image matching device 100 includes a maximum outer detection unit 110, an inscribed circle detection unit 120, an inscribed sphere detection unit 130, and an image matching unit 140. ) Can be included.
  • the tooth image matching apparatus 100 matches the first tooth image data and the second tooth image data.
  • the first tooth image data and the second tooth image data are image data having different coordinate systems or resolutions due to reasons such as acquired through different imaging apparatuses or acquired at different viewpoints, respectively, as CT (Computed Tomography). ) It may be any one of image data, oral scan image data, and magnetic resonance image (MRI) data.
  • CT Computer Tomography
  • MRI magnetic resonance image
  • the apparatus 100 for matching a tooth image may further include a direction alignment unit (not shown) and a preprocessor (not shown).
  • the direction aligning unit (not shown) aligns the first tooth image data and the second tooth image data so that the first tooth image data and the second tooth image data face the same direction prior to image registration.
  • the preprocessor (not shown) configures the same unit distance for representing an object in the volume space of the first tooth image data and the second tooth image data, so that the resolution of the first tooth image data and the second tooth image data Match.
  • voxel information of the first tooth image data and the second tooth image data is converted into vertex information using a Marching Cube Algorithm.
  • the marching cube algorithm is an algorithm for extracting an isosurface from 3D image data, and since it is an algorithm widely used in the field of image technology, a detailed description thereof will be omitted.
  • FIGS. 2 and 3 are diagrams for explaining a method of detecting a maximum outer region in tooth image data when all teeth are provided in a dental row as a first embodiment of the present invention
  • FIGS. 4 and 5 are As an exemplary embodiment, a diagram for explaining a method of detecting a maximum outer region from tooth image data when some teeth are missing in a dental row.
  • the maximum outer region detection unit 110 detects a first largest outer region A1, which is the largest outer region of a tooth row, from the first tooth image data. Then, referring to FIGS. 3 and 5, a second maximum outer area A2, which is a maximum outer area of a tooth row, is detected from the second tooth image data.
  • the maximum outer regions A1 and A2 may be defined as regions that are set so that each corner of the figure is in contact with a tooth portion most protruding in the direction of the corresponding corner while taking a shape of a figure capable of accommodating all teeth within a dentition. . That is, the maximum outside detection unit 110 may detect the first and second maximum outside areas A1 and A2 in a polygonal shape in which each corner is in contact with the most protruding tooth.
  • the first and second maximum outer regions A1 and A2 may be detected as rectangles, and FIG. 4 And, as illustrated in FIG. 5, when there are some teeth (eg, molar teeth) in the dentition, the first and second maximum outer regions A1 and A2 may be detected as a trapezoid.
  • the maximum outside detection unit 110 can detect the first and second maximum outside areas A1 and A2 in three dimensions including depth coordinates, which are Z-axis coordinates, within the length of the crown as well as on two dimensions of the x-axis and y-axis. have.
  • the maximum outermost detection unit 110 performs structure and shape analysis on the first and second tooth image data, and image analysis processing through an algorithm based on gray scale, so that the tooth region and other regions, such as soft tissues such as gums, By dividing the bone tissue, the first and second maximum outer regions A1 and A2 may be detected within the tooth region without including other regions.
  • the maximum outer region detection unit 110 uses vertices having a minimum position value and a maximum position value based on the x-axis, y-axis, and z-axis in the first and second tooth image data, and the first and second maximum outer regions ( A1, A2) can be detected.
  • the lower sides of the first and second maximum outer regions A1 and A2 detect vertices having a minimum position value based on the y-axis and generate horizontal extension lines to include the vertices. Further, the left and right sides of the first and second maximum outer regions A1 and A2 detect vertices having a minimum position value and a maximum position value with respect to the x-axis, and vertical extension lines are respectively generated to include the vertices.
  • the upper sides of the first and second maximum outer regions A1 and A2 detect vertices each having a maximum position value in the left and right regions based on the bisector L that is bisected with respect to the x-axis, and these vertices are Create an extension line to be included.
  • first and second maximum outer regions A1 and A2 having points that intersect the generated extension lines as vertices are generated.
  • FIGS. 6 and 7 are diagrams for explaining a method of detecting an inscribed circle in a maximum outer region when all teeth are provided in a dentition as a first embodiment of the present invention
  • FIGS. 8 and 9 are a first embodiment of the present invention.
  • a diagram for explaining a method of detecting an inscribed circle in a maximum outer region when there are some teeth in a dentition As an example, a diagram for explaining a method of detecting an inscribed circle in a maximum outer region when there are some teeth in a dentition.
  • the inscribed circle detector 120 detects a first inscribed circle S1 inscribed with the first maximum outer region A1. And, referring to FIGS. 7 and 9, a second inscribed circle S2 inscribed in the second maximum outer region A2 is detected.
  • the inscribed circle detector 120 may detect the three first inscribed circles S1 in the first maximum outer region A1. Specifically, the inscribed circle detection unit 120 detects two circles each having a first radius and contacting both sides forming the left and right upper corners of the first maximum outer area A1, and a first maximum outer area between the two detected circles. A circle having a first radius, which is in contact with a point where the bisecting line L dividing the area A1 bisects the side forming the lower end of the first maximum outer area A1, can be detected as the first inscribed circle S1. have.
  • the inscribed circle detector 120 may detect the three second inscribed circles S2 in the second maximum outer region A2. Specifically, the inscribed circle detection unit 120 detects two circles each having a first radius and in contact with both sides forming the left and right upper corners of the second maximum outer area A2, and a second maximum outer area between the two detected circles. A circle having a first radius is in contact with a point where the bisector line L dividing the area A2 bisects the side forming the lower end of the second maximum outer area A2, and a circle having a first radius can be detected as a second inscribed circle S2. have.
  • the inscribed sphere detection unit 130 detects a first inscribed sphere, which is a rotating body of the first inscribed circle S1.
  • the x-axis and y-axis center coordinates of the first inscribed sphere coincide with the x-axis and y-axis center coordinates of the first inscribed circle S1
  • the x-axis and y-axis center coordinates of the second inscribed sphere are the second inscribed circles ( It coincides with the x-axis and y-axis center coordinates of S2).
  • the inscribed sphere detection unit 130 calculates the average value of the z-axis coordinate, which is the depth information of the first vertices included in the first inscribed circle S1, as the z-axis coordinate of the center of the first inscribed sphere, and the first inscribed sphere A first inscribed sphere having a first radius based on the center of may be detected.
  • the inscribed sphere detection unit 130 detects a second inscribed sphere, which is a rotation of the second inscribed circle S2.
  • the x-axis and y-axis center coordinates of the second inscribed sphere coincide with the x-axis and y-axis center coordinates of the second inscribed circle S2
  • the x-axis and y-axis center coordinates of the second inscribed sphere are the second inscribed circles ( It coincides with the x-axis and y-axis center coordinates of S2).
  • the inscribed sphere detection unit 130 calculates the average value of the z-axis coordinate, which is the depth information of the second vertices included in the second inscribed circle S2, as the z-axis coordinate of the center of the second inscribed sphere, and the second inscribed sphere A second inscribed sphere having a first radius based on the center of may be detected.
  • first and second inscribed holes detected as described above may include teeth.
  • FIG. 10 is a view for explaining a method of matching first and second tooth image data by an image matching unit according to a first embodiment of the present invention.
  • the image matching unit 140 matches the first and second tooth image data based on the first and second inscribed holes.
  • the image matching unit 140 overlaps the first and second tooth image data based on the first and second inscribed holes, and then included in the first inscribed hole.
  • the first tooth image data and the second tooth image data are matched by comparing distances between the first vertices to be formed and the second vertices included in the second inscribed hole.
  • the image matching unit 140 may repeat matching of the first tooth image data and the second tooth image data until the sum of all distances between the first vertices and the second vertices becomes less than or equal to the reference value.
  • the reference value may be preset by the user and may vary according to the target image matching accuracy. That is, the higher the target image matching accuracy, the smaller the reference value.
  • the matching process when the matching process is repeated and the distance between the first vertices s1, s2, s3 and the second vertices d1, d2, d3 is sufficiently small, the second vertices d1 , d2, d3, the distances (l1, l2, l3) of the extension line extending from the plane in contact with the first vertices (s1, s2, s3) and the extension line and the second vertices (d1, d2, d3)
  • the matching process can be repeated so that the distance of the vertical vector becomes smaller.
  • the image matching unit 140 may repeat the matching of the first tooth image data and the second tooth image data a reference number of times.
  • the reference number may be set in advance by use, and may vary according to the target image matching accuracy. That is, since the image matching accuracy is improved as the number of times of image matching is repeated, the reference number is increased as the target image matching accuracy is higher.
  • the tooth image matching apparatus 100 matches the image by comparing only the distances between vertices included in the inscribed holes of the first and second tooth image data, the first Compared to matching the image by comparing the distances between all the vertices included in the tooth image data and the second tooth image data, it is possible to improve the image registration speed and minimize the system load for comparing the distances between the vertices. .
  • the dental image matching device 100 improves user convenience by automatically performing image registration with high accuracy, thereby reducing the time required for implant planning and accuracy of implant planning. Can improve.
  • the apparatus 100 for matching a tooth image according to the first embodiment of the present invention may further include a display unit 150 that displays a result of matching the first tooth image data and the second tooth image data.
  • the display unit 150 displays the matching result of the first and second tooth image data so that a user can check it.
  • the display unit 150 when displaying the matching result, provides a mark that allows the user to quantitatively grasp the accuracy of the image matching result by displaying a misalignment or relatively inaccurate part in the matching image in different colors. You can objectively grasp the accuracy of the matching.
  • the display unit 150 includes a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, and a micro electro mechanical system (MEMS). ) Displays and electronic paper displays.
  • the display unit 150 may be combined with an input unit (not shown) to be implemented as a touch screen.
  • FIG. 11 is a flowchart of a method for matching a tooth image according to a first embodiment of the present invention.
  • a first largest outer region A1 which is a largest outer region of a dentition, is detected from the first tooth image data (S11).
  • a first inscribed circle S1 inscribed with the first maximum outer region A1 is detected (S21), and a first inscribed hole, which is a rotation of the first inscribed circle S1, is detected (S31).
  • the second largest outer region A2 which is the largest outer region of the tooth row, is detected from the second tooth image data (S12).
  • first and second tooth image data are matched based on the first and second inscribed holes (S40).
  • the first inscribed hole In this step, the first and second tooth image data are matched by comparing distances between first vertices included in and second vertices included in the second inscribed hole.
  • the first and second tooth image data are matched until the sum of all distances between the first and second vertices is less than or equal to a reference value. It may be a repeating step.
  • the step of matching the first and second tooth image data (S40) may be a step of repeating the matching of the first and second tooth image data a reference number of times.
  • the tooth image matching method since the image is matched by comparing only the distances between vertices included in the inscribed spheres of the first and second tooth image data, the first tooth image data And comparing the distances between all vertices included in the second tooth image data to improve the image matching speed compared to matching the image, and minimize the system load for comparing the distances between the vertices.
  • the dental image matching method according to the first embodiment of the present invention improves the user's convenience by automatically performing image registration with high accuracy, and concomitantly reduces the time required for implant planning and improves the accuracy of implant planning. Can be improved.
  • the dental image matching method according to the first embodiment of the present invention may be implemented in various recording media such as magnetic storage media, optical reading media, and digital storage media by being written as a program that can be executed on a computer.
  • image matching between CT image data and oral scan image data has been described as an example, but between CT image data, between oral scan image data, and between magnetic resonance image data and CT image data, etc.
  • the maximum outer region of the dentition within the image data is detected, and the inscribed sphere within the maximum outer region is detected.
  • Image matching may be performed.
  • the depth coordinates which are the Z-axis coordinates within the crown length, are calculated in consideration of that not only the X-axis and Y-axis coordinates, but also the outer teeth of the dentition vary according to the crown length. It is as described above that the maximum outer region can be detected.
  • it can be applied to multidimensional images including 4D image data in addition to the above-described 3D image data.
  • FIG. 12 is a block diagram of a tooth image matching apparatus according to a second embodiment of the present invention.
  • the tooth image matching device 200 may include a maximum outermost detection unit 210, a center point detection unit 220, and an image matching unit 240. have.
  • the tooth image matching apparatus 200 matches the first tooth image data and the second tooth image data.
  • the first tooth image data and the second tooth image data are image data having different coordinate systems or resolutions due to reasons such as acquired through different imaging apparatuses or acquired at different viewpoints, respectively, as CT (Computed Tomography). ) It may be any one of image data, oral scan image data, and magnetic resonance image (MRI) data.
  • CT Computer Tomography
  • MRI magnetic resonance image
  • the apparatus 200 for matching a tooth image according to the second exemplary embodiment of the present invention may further include a direction alignment unit (not shown) and a preprocessor (not shown).
  • the direction aligning unit (not shown) aligns the first tooth image data and the second tooth image data so that the first tooth image data and the second tooth image data face the same direction prior to image registration.
  • the preprocessor (not shown) configures the same unit distance for representing an object in the volume space of the first tooth image data and the second tooth image data, so that the resolution of the first tooth image data and the second tooth image data Match.
  • voxel information of the first tooth image data and the second tooth image data is converted into vertex information using a Marching Cube Algorithm.
  • the marching cube algorithm is an algorithm for extracting an isosurface from 3D image data, and since it is an algorithm widely used in the field of image technology, a detailed description thereof will be omitted.
  • FIGS. 13 and 14 are diagrams for explaining a method of detecting a maximum outer region and a center point from two-dimensional tooth image data as a second embodiment of the present invention
  • FIGS. 15 and 16 are a second embodiment of the present invention.
  • the maximum outer region detection unit 210 detects a first largest outer region A1, which is the largest outer region of a tooth row, from the first tooth image data. And, referring to FIG. 14, a second largest outer region A2, which is the largest outer region of a tooth row, is detected from the second tooth image data.
  • the maximum outer regions A1 and A2 may be defined as regions that are set so that each corner of the figure is in contact with a tooth portion most protruding in the direction of the corresponding corner while taking a shape of a figure capable of accommodating all teeth within a dentition. . That is, the maximum outside detection unit 210 may detect the first and second maximum outside areas A1 and A2 in a polygonal shape in which each corner is in contact with the most protruding tooth.
  • the first and second maximum outer regions A1 and A2 may be detected as rectangles.
  • the first and second maximum outer regions A1 and A2 may be detected as a trapezoid.
  • the maximum outermost detection unit 210 includes first and second outermost areas in three dimensions, including depth coordinates, which are Z-axis coordinates, within the length of the crown as well as in two dimensions of the x-axis and y-axis. (A1, A2) can be detected.
  • the maximum outermost detection unit 210 performs structure and shape analysis on the first and second tooth image data, and image analysis processing through an algorithm based on gray scale, so that the tooth region and other regions, such as soft tissues such as gums, By dividing the bone tissue, the first and second maximum outer regions A1 and A2 may be detected within the tooth region without including other regions.
  • the maximum outermost detection unit 210 uses vertices having a minimum position value and a maximum position value based on the x-axis, y-axis, and z-axis in the first and second tooth image data, and the first and second maximum outer regions ( A1, A2) can be detected.
  • the lower sides of the first and second maximum outer regions A1 and A2 detect vertices having a minimum position value based on the y-axis and generate horizontal extension lines to include the vertices.
  • the left and right sides of the first and second maximum outer regions A1 and A2 detect vertices having a minimum position value and a maximum position value with respect to the x-axis, and vertical extension lines are respectively generated to include the vertices.
  • the upper sides of the first and second maximum outer regions A1 and A2 detect vertices having the maximum position values in the left and right regions, respectively, based on the bisecting line bisected with respect to the x-axis, and an extension line to include these vertices. Create In addition, first and second maximum outer regions A1 and A2 having points that intersect the generated extension lines as vertices are generated.
  • the center point detection unit 220 detects a first center point C1 of a first two-dimensional maximum outer area A1. In addition, referring to FIG. 14, a second central point C2 of a second maximum outer area A2 of two dimensions is detected.
  • the center point detection unit 220 detects the first center point C1 by using the average value of the x-axis and y-axis coordinates of the first vertices included in the first maximum outer area A1.
  • the second center point C2 is detected using the average value of the x-axis and y-axis coordinates of the second vertices included in the second maximum outer area A2.
  • the center point detection unit 220 detects a first center point C1 of a first maximum outer area A1 of three dimensions. In addition, referring to FIG. 16, a second central point C2 of a second maximum outer area A2 of three dimensions is detected.
  • the center point detection unit 220 detects the first center point C1 by using the average value of the x-axis, y-axis and z-axis coordinates of the first vertices included in the first maximum outer area A1. Then, the second central point C2 is detected using the average values of the x-axis, y-axis and z-axis coordinates of the second vertices included in the second maximum outer region A2.
  • 17 is a view for explaining a method of matching first and second tooth image data by an image matching unit according to a second embodiment of the present invention.
  • the image matching unit 240 matches the first and second tooth image data based on the first and second central points C1 and C2.
  • the image matching unit 240 overlaps the first and second tooth image data based on the first and second center points C1 and C2, and then the first The first tooth image data and the second tooth image data are matched by comparing distances between first vertices included in the largest outer area A1 and second vertices included in the second largest outer area A2.
  • the image matching unit 240 may repeat image matching of the first tooth image data and the second tooth image data until the sum of all distances between the first and second vertices is equal to or less than the reference value.
  • the reference value may be preset by the user and may vary according to the target image matching accuracy. That is, the higher the target image matching accuracy, the smaller the reference value.
  • the second vertices d1 , d2, d3) distances (l1, l2, l3) of the extension lines extending from the plane in contact with the first vertices (s1, s2, s3) and the extension lines and the second vertices (d1, d2, d3) The matching process can be repeated so that the distance of the vertical vector becomes smaller.
  • the image matching unit 240 may repeat the image matching of the first tooth image data and the second tooth image data a reference number of times.
  • the reference number may be set in advance by use, and may vary according to the target image matching accuracy. That is, since the image matching accuracy is improved as the number of times of image matching is repeated, the reference number is increased as the target image matching accuracy is higher.
  • the tooth image matching apparatus 200 includes a distance between vertices included in the first and second maximum outer regions A1 and A2 of the first and second tooth image data. Since the image is matched by comparing only the first tooth image data and the second tooth image data, the image matching speed is improved compared to matching the image by comparing the distances between all vertices included in the first tooth image data and the second tooth image data. It is possible to minimize the system load to compare.
  • the tooth image matching device 200 improves user convenience by automatically performing image registration with high accuracy, and concomitantly reduces the time required for implant planning and implant planning. Can improve the accuracy of
  • the tooth image matching apparatus 200 may further include a display unit 250 that displays a result of matching the first tooth image data and the second tooth image data.
  • the display unit 250 displays the matching result of the first and second tooth image data so that the user can check it.
  • the display unit 250 when displaying the matching result, provides a mark that allows the user to quantitatively grasp the accuracy of the image matching result by displaying a misaligned or relatively inaccurate part in the matching image in different colors. You can objectively grasp the accuracy of the matching.
  • Such a display unit 250 includes a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, and a micro electro mechanical system (MEMS). ) Displays and electronic paper displays.
  • the display unit 250 may be combined with an input unit (not shown) to be implemented as a touch screen.
  • FIG. 18 is a flowchart of a method for matching a tooth image according to a second exemplary embodiment of the present invention.
  • a first largest outer region A1 which is a largest outer region of a tooth row, is detected from the first tooth image data (S110).
  • the second largest outer region A2 which is the largest outer region of the tooth row, is detected from the second tooth image data (S120).
  • first and second tooth image data are matched based on the first and second central points C1 and C2 (S300).
  • step of matching the first and second tooth image data after overlapping the first and second tooth image data based on the first and second center points C1 and C2, This is a step of matching the first and second tooth image data by comparing distances between first vertices included in the first maximum outer area A1 and second vertices included in the second maximum outer area A2.
  • matching of the first and second tooth image data is performed until the sum of all distances between the first and second vertices is less than or equal to a reference value. It may be a repeating step.
  • the step of matching the first and second tooth image data (S300) may be a step of repeating the matching of the first and second tooth image data a reference number of times.
  • the tooth image matching method according to the second embodiment of the present invention matches the image by comparing only the distances between vertices included in the first and second maximum outer regions of the first and second tooth image data, .
  • the tooth image matching method according to the second embodiment of the present invention matches the image by comparing only the distances between vertices included in the first and second maximum outer regions of the first and second tooth image data, .
  • the system load for comparing the distances between the vertices is minimized. can do.
  • the dental image matching method according to the second embodiment of the present invention improves user convenience by automatically performing image registration with high accuracy, thereby reducing the time required for implant planning and improving the accuracy of implant planning. Can be improved.
  • the method for matching a tooth image according to the second exemplary embodiment of the present invention may be implemented in various recording media such as magnetic storage media, optical reading media, and digital storage media by being written as a program that can be executed on a computer.
  • image matching between CT image data and oral scan image data has been described as an example, but between CT image data, between oral scan image data, and between magnetic resonance image data and CT image data, etc.
  • image registration is achieved by detecting the maximum outer region of the dentition within the image data and detecting the center point of the maximum outer region as above.
  • the depth coordinates which are the Z-axis coordinates within the crown length, are calculated in consideration of that not only the X-axis and Y-axis coordinates, but also the outer teeth of the dentition vary according to the crown length. It is as described above that the maximum outer region can be detected.
  • it can be applied to multidimensional images including 4D image data in addition to the above-described 3D image data.
  • the apparatus and method for detecting teeth according to the present invention can be used in various dental treatment fields such as implant procedures.

Abstract

본 발명은, 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역을 검출하고, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역을 검출하는 최대 외곽 검출부와, 제1 최대 외곽 영역에 내접하는 제1 내접원 및 제2 최대 외곽 영역에 내접하는 제2 내접원을 기초로 제1 및 제2 치아 영상 데이터를 정합하거나, 제1 최대 외곽 영역의 제1 중심점 및 제2 최대 외곽 영역의 제2 중심점을 기초로 제1 및 제2 치아 영상 데이터를 정합하는 영상 정합부를 포함하는 치아 영상 정합 장치를 제공한다.

Description

치아 영상 정합 장치 및 방법
본 발명은 치아 영상 정합 장치 및 방법에 관한 것으로, 특히, 비교적 높은 정확도 및 빠른 속도로 치아 영상을 정합할 수 있는 치아 영상 정합 장치 및 그 방법에 관한 것이다.
컴퓨터 비전에서 하나의 장면이나 대상을 다른 시간이나 관점에서 촬영할 경우, 서로 다른 좌표계에 따른 영상이 얻어지게 된다. 영상 정합은 이와 같은 서로 다른 영상을 변형하여 하나의 좌표계에 나타내기 위한 처리를 의미한다.
이와 같은 영상 정합을 통하여 서로 다른 측정 방식을 통해 얻은 영상의 대응 관계를 확인할 수 있다.
치과용 수술 가이드(surgical guide) 소프트웨어에서는 임플란트(dental implant) 계획 단계로 진입하기 전에 일반적으로 CT(Computed Tomography) 영상 데이터와 구강 스캔(Oral Scan) 영상 데이터 간의 영상 정합 과정을 거치게 된다.
이러한 영상 정합 과정을 거쳐 정합된 영상은 골조직과 신경관 위치 등을 파악하여 안전하고 최적의 임플란트 식립 위치를 결정하는 임플란트 계획 작업의 기초가 되므로 영상 정합의 정확성은 그 이후 절차 진행에 있어 매우 중요한 의미를 가진다.
종래의 의료용 소프트웨어에서 제공하는 영상 정합 방법은 사용자가 영상 정합의 기준이 되는 포인트를 수동으로 입력하고, 이를 기초로 영상 정합이 이루어지게 된다. 이와 같은 종래의 영상 정합 방법에 따르면, 사용자가 눈으로 대략 판단하여 기준 포인트를 선택하므로 그 결과가 매우 부정확하여 영상 정합 후 사용자의 수동 조작 과정이 필연적으로 따르게 된다. 즉, 사용자는 포인트의 위치를 변경하거나 포인트를 재선택하여 정합 결과를 수정하게 된다. 이와 같이, 종래 기술에 따르면 정합 및 수정의 계속되는 반복 과정으로 인하여 영상 정합에 사용자가 많은 시간을 소비하게 되며, 소비된 시간만큼 만족하는 결과를 얻을 수 없는 문제점이 있었다.
또 다른 종래의 방법으로서, 구강 내 정합 기준으로 활용하기 위한 마커가 포함된 영상을 획득하고, 영상 내의 마커를 기준으로 이종 영상 촬영 장치로부터 획득된 영상을 정합하는 방법을 들 수 있으나, 이는 영상 획득시 환자의 구강 내에 정합을 위한 마킹을 수행하는 과정이 전제되어야 하므로 번거롭고, 환자에게도 불편함을 초래하는 문제점이 있었다.
이와 같은 종래의 방법들은 영상에 포함되는 모든 버텍스들 간 거리를 비교하여 영상을 정합하기 때문에 영상 정합 속도를 저하시킬 뿐만 아니라, 버텍스들 간 거리를 비교하기 위한 시스템 부하가 커지는 문제점이 있다.
따라서, 별도의 마커의 이용이나 수동 조작의 번거로움 없이 빠른 속도 및 높은 정확도로 영상 정합을 자동으로 수행할 수 있는 방안이 요구된다.
또한, 종래의 방법들은 잇몸 영역과 같은 불필요한 노이즈 성분들이 다수 포함되어 있어 영상 정합의 정확성을 떨어뜨리는 문제점이 있다.
본 발명은, 영상 정합 속도를 향상시키고 시스템 부하를 최소화할 수 있는 치아 영상 정합 장치 및 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은, 높은 정확도로 영상 정합을 자동으로 수행하여 사용자의 편의성을 증진시키고, 이에 수반하여 임플란트 계획에 소요되는 시간 단축 및 임플란트 계획의 정확성을 제고할 수 있는 치아 영상 정합 장치 및 방법을 제공하는 것을 목적으로 한다.
전술한 과제를 해결하기 위해, 본 발명은, 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역을 검출하고, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역을 검출하는 최대 외곽 검출부와, 제1 최대 외곽 영역에 내접하는 제1 내접원 및 제2 최대 외곽 영역에 내접하는 제2 내접원을 기초로 제1 및 제2 치아 영상 데이터를 정합하거나, 제1 최대 외곽 영역의 제1 중심점 및 제2 최대 외곽 영역의 제2 중심점을 기초로 제1 및 제2 치아 영상 데이터를 정합하는 영상 정합부를 포함하는 치아 영상 정합 장치를 제공한다.
또한, 본 발명의 치아 영상 정합 장치는, 제1 최대 외곽 영역에 내접하는 제1 내접원을 검출하고, 제2 최대 외곽 영역에 내접하는 제2 내접원을 검출하는 내접원 검출부와, 제1 내접원의 회전체인 제1 내접구를 검출하고, 제2 내접원의 회전체인 제2 내접구를 검출하는 내접구 검출부를 더 포함하고, 영상 정합부는 제1 및 제2 내접구를 기준으로 제1 및 제2 치아 영상 데이터를 정합한다.
또한, 본 발명의 치아 영상 정합 장치는, 제1 최대 외곽 영역의 제1 중심점을 검출하고, 제2 최대 외곽 영역의 제2 중심점을 검출하는 중심점 검출부를 더 포함하고, 영상 정합부는 제1 및 제2 중심점을 기준으로 제1 및 제2 치아 영상 데이터를 정합한다.
여기서, 영상 정합부는 제1 내접구에 포함되는 제1 버텍스들과 제2 내접구에 포함되는 제2 버텍스들 간 거리를 비교하여 제1 및 제2 치아 영상 데이터를 정합한다.
또한, 영상 정합부는 제1 최대 외곽 영역에 포함되는 제1 버텍스들과 제2 최대 외곽영역에 포함되는 제2 버텍스들 간 거리를 비교하여 제1 및 제2 치아 영상 데이터를 정합한다.
또한, 영상 정합부는, 제1 및 제2 버텍스들 간 모든 거리의 합이 기준 값 이하가 될 때까지 제1 및 제2 치아 영상 데이터의 정합을 반복한다.
또한, 영상 정합부는 제1 및 제2 치아 영상 데이터의 정합을 기준 횟수만큼 반복한다.
또한, 본 발명의 치아 영상 정합 장치는, 제1 및 제2 치아 영상 데이터의 해상도를 일치시키고, 제1 및 제2 치아 영상 데이터의 복셀 정보를 버텍스 정보로 변환하는 전처리부를 더 포함한다.
또한, 최대 외곽 검출부는, 제1 및 제2 최대 외곽 영역을 각 모서리가 가장 돌출된 치아와 접하는 다각형 형상으로 검출한다.
또한, 내접원 검출부는, 제1 및 제2 최대 외곽 영역의 좌우측 상단 모서리를 이루는 양변에 각각 접하며 제1 반경을 갖는 두 개의 원과, 두 개의 원 사이에서 제1 및 제2 최대 외곽 영역을 이등분하는 이등분 선이 제1 및 제2 최대 외곽 영역의 하단을 이루는 변과 맞닿는 지점에 접하며 제1 반경을 갖는 하나의 원을 제1 및 제2 내접원으로 검출한다.
또한, 중심점 검출부는, 제1 버텍스들의 x축, y축 및 z축 좌표의 평균값을 이용하여 제1 중심점으로 검출하고, 제2 버텍스들의 x축, y축 및 z축 좌표의 평균값을 이용하여 제2 중심점을 검출한다.
또한, 최대 외곽 검출부는 제1 및 제2 치아 영상 데이터에서 x축, y축 및 z축을 기준으로 최소 위치값 및 최대 위치값을 갖는 버텍스들을 이용하여 제1 및 제2 최대 외곽 영역을 검출한다.
또한, 본 발명의 치아 영상 정합 방법은, 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역을 검출하는 단계와, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역을 검출하는 단계와, 제1 최대 외곽 영역에 내접하는 제1 내접원 및 제2 최대 외곽 영역에 내접하는 제2 내접원을 기초로 제1 및 제2 치아 영상 데이터를 정합하거나, 제1 최대 외곽 영역의 제1 중심점 및 제2 최대 외곽 영역의 제2 중심점을 기초로 제1 및 제2 치아 영상 데이터를 정합하는 단계를 포함한다.
여기서, 제1 및 제2 치아 영상 데이터를 정합하는 단계는, 제1 및 제2 최대 외곽 영역에 각각 내접하는 제1 및 제2 내접원을 각각 검출하는 단계와, 제1 및 제2 내접원의 회전체인 제1 및 제2 내접구를 각각 검출하는 단계와, 제1 및 제2 내접구를 기준으로 제1 및 제2 치아 영상 데이터를 정합하는 단계를 포함한다.
또한, 제1 및 제2 치아 영상 데이터를 정합하는 단계는, 제1 및 제2 최대 외곽 영역의 제1 및 제2 중심점을 각각 검출하는 단계와, 제1 및 제2 중심점을 기준으로 제1 및 제2 치아 영상 데이터를 정합하는 단계를 포함한다.
본 발명에 따르면, 제1 및 제2 치아 영상 데이터의 내접구에 포함되는 버텍스들 간 거리만 비교하거나, 제1 및 제2 치아 영상 데이터의 최대 외곽 영역에 포함되는 버텍스들 간 거리만 비교하여 영상을 정합하기 때문에, 제1 및 제2 치아 영상 데이터에 포함된 모든 버텍스들 간 거리를 비교하여 영상을 정합하는 것 대비 영상 정합 속도를 향상시킬 뿐만 아니라, 버텍스들 간 거리를 비교하기 위한 시스템 부하를 최소화할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 높은 정확도로 영상 정합을 자동으로 수행하여 사용자의 편의성을 증진시키고, 이에 수반하여 임플란트 계획에 소요되는 시간 단축 및 임플란트 계획의 정확성을 제고할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1 실시예에 따른 치아 영상 정합 장치의 블록도이다.
도 2 및 도 3은 본 발명의 제1 실시예로서 치열에 모든 치아를 구비한 경우 치아 영상 데이터에서 최대 외곽 영역을 검출하는 방법을 설명하기 위한 도면이다.
도 4 및 도 5는 본 발명의 제1 실시예로서 치열에 치아가 일부 없는 경우 치아 영상 데이터에서 최대 외곽 영역을 검출하는 방법을 설명하기 위한 도면이다.
도 6 및 도 7은 본 발명의 제1 실시예로서 치열에 모든 치아를 구비한 경우 최대 외곽 영역에서 내접원을 검출하는 방법을 설명하기 위한 도면이다.
도 8 및 도 9는 본 발명의 제1 실시예로서 치열에 치아가 일부 없는 경우 최대 외곽 영역에서 내접원을 검출하는 방법을 설명하기 위한 도면이다.
도 10은 본 발명의 제1 실시예에 따른 영상 정합부가 제1 및 제2 치아 영상 데이터를 정합하는 방법을 설명하기 위한 도면이다.
도 11은 본 발명의 제1 실시예에 따른 치아 영상 정합 방법의 순서도이다.
도 12는 본 발명의 제2 실시예에 따른 치아 영상 정합 장치의 블록도이다.
도 13 및 도 14는 본 발명의 제2 실시예로서 2차원의 치아 영상 데이터에서 최대 외곽 영역 및 중심점을 검출하는 방법을 설명하기 위한 도면이다.
도 15 및 도 16은 본 발명의 제2 실시예로서 3차원의 치아 영상 데이터에서 최대 외곽 영역 및 중심점을 검출하는 방법을 설명하기 위한 도면이다.
도 17은 본 발명의 제2 실시예에 따른 영상 정합부가 제1 및 제2 치아 영상 데이터를 정합하는 방법을 설명하기 위한 도면이다.
도 18은 본 발명의 제2 실시예에 따른 치아 영상 정합 방법의 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 보다 상세하게 설명하고자 한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음을 유의해야 한다. 그리고 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
본 발명의 실시예에 있어서, 각 구성 요소들은 하나 또는 그 이상의 하부 구성 요소로 구성될 수 있으며, 각 구성 요소들이 수행하는 전기, 전자 및 기계적 기능들은 전자 회로, 집적 회로 및 ASIC(Application Specific Integrated Circuit) 등 공지된 다양한 소자들 또는 기계적 요소들로 구현될 수 있으며, 각각 별개로 구현되거나 2 이상이 하나로 통합되어 구현될 수도 있다.
<제 1 실시예>
도 1은 본 발명의 제1 실시예에 따른 치아 영상 정합 장치의 블록도이다.
도 1에 도시한 바와 같이, 본 발명의 제1 실시예에 따른 치아 영상 정합 장치(100)는 최대 외곽 검출부(110), 내접원 검출부(120), 내접구 검출부(130) 및 영상 정합부(140)를 포함하여 구성될 수 있다.
본 발명의 제1 실시예에 따른 치아 영상 정합 장치(100)는 제1 치아 영상 데이터와 제2 치아 영상 데이터를 정합한다.
여기서, 제1 치아 영상 데이터 및 제2 치아 영상 데이터는, 서로 다른 영상 촬영 장치를 통하여 획득되거나 서로 다른 시점에서 획득되는 등의 원인으로 말미암아 서로 다른 좌표계 또는 해상도를 가지는 영상 데이터로서 각각 CT(Computed Tomography) 영상 데이터, 구강 스캔(Oral Scan) 영상 데이터 및 자기 공명 영상(Magnetic Resonance Image; MRI) 데이터 중 어느 하나일 수 있다.
한편, 도면에는 도시하지 않았지만, 본 발명의 실시예에 따른 치아 영상 정합 장치(100)는 방향 정렬부(미도시) 및 전처리부(미도시)를 더 포함하여 구성될 수 있다.
여기서, 방향 정렬부(미도시)는 영상 정합에 앞서 제1 치아 영상 데이터 및 제2 치아 영상 데이터가 동일한 방향을 향하도록 제1 치아 영상 데이터 및 제2 치아 영상 데이터를 정렬한다.
그리고, 전처리부(미도시)는 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 볼륨 공간에서 물체를 표현하는 단위 거리를 동일하게 구성함으로써, 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 해상도를 일치시킨다. 그리고, 마칭 큐브 알고리즘(Marching Cube Algorithm)을 이용하여 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 복셀(Voxel) 정보를 버텍스(Vertex) 정보로 변환한다.
여기서, 마칭 큐브 알고리즘은 3차원 영상 데이터에서 등가면(isosurface)을 추출하기 위한 알고리즘으로서 해당 영상 기술 분야에서 널리 사용되고 있는 알고리즘이기 때문에 이에 대한 상세한 설명은 생략한다.
도 2 및 도 3은 본 발명의 제1 실시예로서 치열에 모든 치아를 구비한 경우 치아 영상 데이터에서 최대 외곽 영역을 검출하는 방법을 설명하기 위한 도면이고, 도 4 및 도 5는 본 발명의 제1 실시예로서 치열에 치아가 일부 없는 경우 치아 영상 데이터에서 최대 외곽 영역을 검출하는 방법을 설명하기 위한 도면이다.
도 2 및 도 4를 참조하면, 최대 외곽 검출부(110)는 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역(A1)을 검출한다. 그리고, 도 3 및 도 5를 참조하면, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역(A2)을 검출한다.
여기서, 최대 외곽 영역(A1, A2)은 치열 내 치아를 모두 수용 가능한 도형의 형태를 취하면서, 도형의 각 모서리가 해당 모서리 방향으로 가장 돌출된 치아 부분과 접하도록 설정되는 영역으로 정의될 수 있다. 즉, 최대 외곽 검출부(110)는 제1 및 제2 최대 외곽 영역(A1, A2)을 각 모서리가 가장 돌출된 치아와 접하는 다각형 형상으로 검출할 수 있다.
예를 들어, 도 2 및 도 3에 도시한 바와 같이 치열에 모든 치아를 구비하고 있고 바르게 정렬되어 있는 경우 제1 및 제2 최대 외곽 영역(A1, A2)은 직사각형으로 검출될 수 있고, 도 4 및 도 5에 도시한 바와 같이 치열에서 치아(예컨대, 어금니)가 일부 없는 경우 제1 및 제2 최대 외곽 영역(A1, A2)은 사다리꼴로 검출될 수 있다.
최대 외곽 검출부(110)는 x축 및 y축의 2차원 상에서뿐만 아니라 치관 길이 내에서 Z축 좌표인 깊이 좌표를 포함하여 3차원 상에서 제1 및 제2 최대 외곽 영역(A1, A2)을 검출할 수 있다.
최대 외곽 검출부(110)는 제1 및 제2 치아 영상 데이터에서 구조 및 형태 분석과, 그레이 스케일에 기반한 알고리즘을 통한 영상 분석 처리를 수행하여 치아 영역과 그 이외의 영역, 예컨대, 잇몸 등의 연조직과 뼈조직을 구분함으로써 다른 영역이 포함됨이 없이 치아 영역 내에서 제1 및 제2 최대 외곽 영역(A1, A2)을 검출할 수 있다.
여기서, 최대 외곽 검출부(110)는 제1 및 제2 치아 영상 데이터에서 x축, y축 및 z축을 기준으로 최소 위치값 및 최대 위치값을 갖는 버텍스들을 이용하여 제1 및 제2 최대 외곽 영역(A1, A2)을 검출할 수 있다.
구체적으로, 제1 및 제2 최대 외곽 영역(A1, A2)의 하변은 y축을 기준으로 최소 위치값을 갖는 버텍스를 검출하고 이 버텍스가 포함되도록 수평 연장선을 생성한다. 그리고, 제1 및 제2 최대 외곽 영역(A1, A2)의 좌우변은 x축을 기준으로 최소 위치값 및 최대 위치값을 각각 갖는 버텍스들을 검출하고 이 버텍스들이 포함되도록 각각 수직 연장선을 생성한다. 그리고, 제1 및 제2 최대 외곽 영역(A1, A2)의 상변은 x축에 대해 이등분되는 이등분선(L)을 기준으로 좌측 및 우측 영역에서 각각 최대 위치값을 각각 갖는 버텍스들을 검출하고 이 버텍스들이 포함되도록 연장선을 생성한다. 그리고, 생성된 연장선들을 교차하는 점을 꼭지점으로하는 제1 및 제2 최대 외곽 영역(A1, A2)을 생성한다.
도 6 및 도 7은 본 발명의 제1 실시예로서 치열에 모든 치아를 구비한 경우 최대 외곽 영역에서 내접원을 검출하는 방법을 설명하기 위한 도면이고, 도 8 및 도 9는 본 발명의 제1 실시예로서 치열에 치아가 일부 없는 경우 최대 외곽 영역에서 내접원을 검출하는 방법을 설명하기 위한 도면이다.
도 6 및 도 8를 참조하면, 내접원 검출부(120)는 제1 최대 외곽 영역(A1)에 내접하는 제1 내접원(S1)을 검출한다. 그리고, 도 7 및 도 9를 참조하면 제2 최대 외곽 영역(A2)에 내접하는 제2 내접원(S2)을 검출한다.
내접원 검출부(120)는 제1 최대 외곽 영역(A1)에서 3개의 제1 내접원(S1)을 검출할 수 있다. 구체적으로, 내접원 검출부(120)는 제1 최대 외곽 영역(A1)의 좌우측 상단 모서리를 이루는 양변에 각각 접하며 제1 반경을 갖는 두 개의 원을 검출하고, 검출된 두 개의 원 사이에서 제1 최대 외곽 영역(A1)을 이등분하는 이등분 선(L)이 제1최대 외곽 영역(A1)의 하단을 이루는 변과 맞닿는 지점에 접하며 제1 반경을 갖는 하나의 원을 제1 내접원(S1)으로 검출할 수 있다.
마찬가지로, 내접원 검출부(120)는 제2 최대 외곽 영역(A2)에서 3개의 제2 내접원(S2)을 검출할 수 있다. 구체적으로, 내접원 검출부(120)는 제2 최대 외곽 영역(A2)의 좌우측 상단 모서리를 이루는 양변에 각각 접하며 제1 반경을 갖는 두 개의 원을 검출하고, 검출된 두 개의 원 사이에서 제2 최대 외곽 영역(A2)을 이등분하는 이등분 선(L)이 제2최대 외곽 영역(A2)의 하단을 이루는 변과 맞닿는 지점에 접하며 제1 반경을 갖는 하나의 원을 제2 내접원(S2)으로 검출할 수 있다.
내접구 검출부(130)는 제1 내접원(S1)의 회전체인 제1 내접구를 검출한다.
여기서, 제1 내접구의 x축 및 y축 중심 좌표는 제1 내접원(S1)의 x축 및 y축 중심 좌표와 일치하고, 제2 내접구의 x축 및 y축 중심 좌표는 제2 내접원(S2)의 x축 및 y축 중심 좌표와 일치한다.
그리고, 내접구 검출부(130)는 제1 내접원(S1)에 포함되는 제1 버텍스들의 깊이 정보인 z축 좌표의 평균 값을 제1 내접구의 중심의 z축 좌표로 산출하고, 제1 내접구의 중심을 기준으로 제1 반경을 갖는 제1 내접구를 검출할 수 있다.
마찬가지로, 내접구 검출부(130)는 제2 내접원(S2)의 회전체인 제2 내접구를 검출한다.
여기서, 제2 내접구의 x축 및 y축 중심 좌표는 제2 내접원(S2)의 x축 및 y축 중심 좌표와 일치하고, 제2 내접구의 x축 및 y축 중심 좌표는 제2 내접원(S2)의 x축 및 y축 중심 좌표와 일치한다.
그리고, 내접구 검출부(130)는 제2 내접원(S2)에 포함되는 제2 버텍스들의 깊이 정보인 z축 좌표의 평균 값을 제2 내접구의 중심의 z축 좌표로 산출하고, 제2 내접구의 중심을 기준으로 제1 반경을 갖는 제2 내접구를 검출할 수 있다.
한편, 이와 같이 검출된 제1 및 제2 내접구에는 치아가 포함될 수 있다.
도 10은 본 발명의 제1 실시예에 따른 영상 정합부가 제1 및 제2 치아 영상 데이터를 정합하는 방법을 설명하기 위한 도면이다.
영상 정합부(140)는 제1 및 제2 내접구를 기준으로 제1 및 제2 치아 영상 데이터를 정합한다.
구체적으로, 도 10을 참조하면, 영상 정합부(140)는, 제1 및 제2 내접구를 기준으로 제1 및 제2 치아 영상 데이터를 오버랩(over lap) 시킨 후, 제1 내접구에 포함되는 제1 버텍스들과 제2 내접구에 포함되는 제2 버텍스들 간 거리를 비교하여 제1 치아 영상 데이터 및 제2 치아 영상 데이터를 정합한다.
영상 정합부(140)는 제1 버텍스들 및 제2 버텍스들 간 모든 거리의 합이 기준 값 이하가 될 때까지 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 정합을 반복할 수 있다.
여기서, 기준 값은 사용자에 의해 미리 설정될 수 있으며 목표로 하는 영상 정합 정확도에 따라 달라질 수 있다. 즉, 목표로 하는 영상 정합 정확도가 높을수록 기준 값은 작아지게 된다.
구체적으로, 도 10을 참조하면, 정합 과정이 반복되어 제1 버텍스들(s1, s2, s3) 및 제2 버텍스들(d1, d2, d3)간 거리가 충분히 작아지면, 제2 버텍스들(d1, d2, d3)에 접한 평면에서 제1 버텍스들(s1, s2, s3)까지 연장되는 연장선의 거리(l1, l2, l3)와, 상기 연장선 및 제2 버텍스들(d1, d2, d3)의 수직 벡터의 거리가 작아지도록 정합 과정을 반복할 수 있다.
이와 달리, 영상 정합부(140)는 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 정합을 기준 횟수만큼 반복할 수 있다.
여기서, 기준 횟수는 사용에 의해 미리 설정될 수 있으며 목표로 하는 영상 정합 정확도에 따라 달라질 수 있다. 즉, 영상 정합 횟수가 반복될수록 영상 정합 정확도는 향상되기 때문에, 목표로 하는 영상 정합 정확도가 높을수록 기준 횟수는 커지게 된다.
이와 같이, 본 발명의 제1 실시예에 따른 치아 영상 정합 장치(100)는, 제1 및 제2 치아 영상 데이터의 내접구에 포함되는 버텍스들 간 거리만 비교하여 영상을 정합하기 때문에, 제1 치아 영상 데이터 및 제2 치아 영상 데이터에 포함된 모든 버텍스들 간 거리를 비교하여 영상을 정합하는 것 대비 영상 정합 속도를 향상시킬 뿐만 아니라, 버텍스들 간 거리를 비교하기 위한 시스템 부하를 최소화할 수 있다.
또한, 본 발명의 실시예에 따른 치아 영상 정합 장치(100)는, 높은 정확도로 영상 정합을 자동으로 수행하여 사용자의 편의성을 증진시키고, 이에 수반하여 임플란트 계획에 소요되는 시간 단축 및 임플란트 계획의 정확성을 제고할 수 있다.
본 발명의 제1 실시예에 따른 치아 영상 정합 장치(100)는 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 정합 결과를 표시하는 표시부(150)를 더 포함할 수 있다.
표시부(150)는 제1 및 제2 치아 영상 데이터의 정합 결과를 표시하여 사용자로 하여금 확인할 수 있도록 한다.
구체적으로, 표시부(150)는 정합 결과 표시시 정합 영상 내에서 정합이 어긋나거나 상대적으로 부정확한 부분을 색을 달리하여 표시하는 등으로 영상 정합 결과의 정확도를 정량적으로 파악할 수 있는 표식을 제공함으로써 사용자가 정합의 정확 정도를 객관적으로 파악하도록 할 수 있다.
이와 같은 표시부(150)는 액정 디스플레이(LCD; liquid crystal display), 발광 다이오드(LED; light emitting diode) 디스플레이, 유기 발광 다이오드(OLED; organic LED) 디스플레이, 마이크로 전자기계 시스템(MEMS; micro electro mechanical systems) 디스플레이 및 전자 종이(electronic paper) 디스플레이를 포함한다. 여기서, 표시부(150)는 입력부(미도시)와 결합되어 터치 스크린(touch screen)으로 구현될 수 있다.
도 11은 본 발명의 제1 실시예에 따른 치아 영상 정합 방법의 순서도이다.
이하, 도 1 내지 도 11을 참조하여 본 발명의 제1 실시예에 따른 치아 영상 정합 방법을 설명하되, 전술한 본 발명의 제1 실시예에 따른 치아 영상 정합 장치와 동일한 내용에 대해서는 생략하겠다.
본 발명의 제1 실시예에 따른 치아 영상 정합 방법은, 먼저, 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역(A1)을 검출한다(S11).
다음, 제1 최대 외곽 영역(A1)에 내접하는 제1 내접원(S1)을 검출하고(S21), 제1 내접원(S1)의 회전체인 제1 내접구를 검출한다(S31).
마찬가지로, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역(A2)을 검출한다(S12).
다음, 제2 최대 외곽 영역(A2)에 내접하는 제2 내접원(S2)을 검출하고(S22), 제2 내접원(S2)의 회전체인 제2 내접구를 검출한다(S32).
다음, 제1 및 제2 내접구를 기준으로 제1 및 제2 치아 영상 데이터를 정합한다(S40).
여기서, 제1 및 제2 치아 영상 데이터를 정합하는 단계(S40)는, 제1 및 제2 내접구를 기준으로 제1 및 제2 치아 영상 데이터를 오버랩(over lap) 시킨 후, 제1 내접구에 포함되는 제1 버텍스들과 제2 내접구에 포함되는 제2 버텍스들 간 거리를 비교하여 제1 및 제2 치아 영상 데이터를 정합하는 단계이다.
또한, 제1 및 제2 치아 영상 데이터를 정합하는 단계(S40)는, 제1 및 제2 버텍스들 간 모든 거리의 합이 기준 값 이하가 될 때까지 제1 및 제2 치아 영상 데이터의 정합을 반복하는 단계일 수 있다.
또한, 제1 및 제2 치아 영상 데이터를 정합하는 단계(S40)는, 제1 및 제2 치아 영상 데이터의 정합을 기준 횟수만큼 반복하는 단계일 수 있다.
이와 같이, 본 발명의 제1 실시예에 따른 치아 영상 정합 방법은, 제1 및 제2 치아 영상 데이터의 내접구에 포함되는 버텍스들 간 거리만 비교하여 영상을 정합하기 때문에, 제1 치아 영상 데이터 및 제2 치아 영상 데이터에 포함된 모든 버텍스들 간 거리를 비교하여 영상을 정합하는 것 대비 영상 정합 속도를 향상시킬 뿐만 아니라, 버텍스들 간 거리를 비교하기 위한 시스템 부하를 최소화할 수 있다.
또한, 본 발명의 제1 실시예에 따른 치아 영상 정합 방법은, 높은 정확도로 영상 정합을 자동으로 수행하여 사용자의 편의성을 증진시키고, 이에 수반하여 임플란트 계획에 소요되는 시간 단축 및 임플란트 계획의 정확성을 제고할 수 있다.
한편, 본 발명의 제1 실시예에 따른 치아 영상 정합 방법은, 컴퓨터에서 실행될 수 있는 프로그램으로 작성되어 마그네틱 저장 매체, 광학적 판독 매체 및 디지털 저장 매체 등 다양한 기록 매체에도 구현될 수 있을 것이다.
전술한 제1 실시예에서는, CT 영상 데이터와 구강 스캔 영상 데이터의 영상 정합이 이루어지는 것을 일 예로 들어 설명하였지만, CT 영상 데이터 간, 구강 스캔 영상 데이터 간 및 자기 공명 영상 데이터 및 CT 영상 데이터 간 등과 같이 2차원 영상 데이터 간, 2차원 및 3차원 영상 데이터 간, 3차원 영상 데이터 간의 다양한 조합에 대해서 위와 동일하게 영상 데이터 내에서 치열의 최대 외곽 영역을 검출하고, 최대 외곽 영역 내에서 내접구를 검출하여 영상 정합이 수행될 수 있을 것이다. 이때, 3차원 영상 데이터에서 치아 최대 외곽 영역 검출시 X축 및 Y축 좌표뿐 아니라, 치열의 외곽이 치관 길이에 따라 달라짐을 고려하여 치관 길이 내에서 Z축 좌표인 깊이 좌표를 산출하여 최종적인 치아 최대 외곽 영역을 검출할 수 있음은 앞서 설명된 바와 같다. 또한, 전술된 3차원 영상 데이터 외에 4차원 영상 데이터를 포함한 다차원 영상에도 두루 적용 가능하다.
<제 2 실시예>
도 12는 본 발명의 제2 실시예에 따른 치아 영상 정합 장치의 블록도이다.
도 12에 도시한 바와 같이, 본 발명의 제2 실시예에 따른 치아 영상 정합 장치(200)는 최대 외곽 검출부(210), 중심점 검출부(220) 및 영상 정합부(240)를 포함하여 구성될 수 있다.
본 발명의 제2 실시예에 따른 치아 영상 정합 장치(200)는 제1 치아 영상 데이터와 제2 치아 영상 데이터를 정합한다.
여기서, 제1 치아 영상 데이터 및 제2 치아 영상 데이터는, 서로 다른 영상 촬영 장치를 통하여 획득되거나 서로 다른 시점에서 획득되는 등의 원인으로 말미암아 서로 다른 좌표계 또는 해상도를 가지는 영상 데이터로서 각각 CT(Computed Tomography) 영상 데이터, 구강 스캔(Oral Scan) 영상 데이터 및 자기 공명 영상(Magnetic Resonance Image; MRI) 데이터 중 어느 하나일 수 있다.
한편, 도면에는 도시하지 않았지만, 본 발명의 제2 실시예에 따른 치아 영상 정합 장치(200)는 방향 정렬부(미도시) 및 전처리부(미도시)를 더 포함하여 구성될 수 있다.
여기서, 방향 정렬부(미도시)는 영상 정합에 앞서 제1 치아 영상 데이터 및 제2 치아 영상 데이터가 동일한 방향을 향하도록 제1 치아 영상 데이터 및 제2 치아 영상 데이터를 정렬한다.
그리고, 전처리부(미도시)는 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 볼륨 공간에서 물체를 표현하는 단위 거리를 동일하게 구성함으로써, 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 해상도를 일치시킨다. 그리고, 마칭 큐브 알고리즘(Marching Cube Algorithm)을 이용하여 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 복셀(Voxel) 정보를 버텍스(Vertex) 정보로 변환한다.
여기서, 마칭 큐브 알고리즘은 3차원 영상 데이터에서 등가면(isosurface)을 추출하기 위한 알고리즘으로서 해당 영상 기술 분야에서 널리 사용되고 있는 알고리즘이기 때문에 이에 대한 상세한 설명은 생략한다.
도 13 및 도 14는 본 발명의 제2 실시예로서 2차원의 치아 영상 데이터에서 최대 외곽 영역 및 중심점을 검출하는 방법을 설명하기 위한 도면이고, 도 15 및 도 16은 본 발명의 제2 실시예로서 3차원의 치아 영상 데이터에서 최대 외곽 영역 및 중심점을 검출하는 방법을 설명하기 위한 도면이다.
도 13을 참조하면, 최대 외곽 검출부(210)는 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역(A1)을 검출한다. 그리고, 도 14를 참조하면, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역(A2)을 검출한다.
여기서, 최대 외곽 영역(A1, A2)은 치열 내 치아를 모두 수용 가능한 도형의 형태를 취하면서, 도형의 각 모서리가 해당 모서리 방향으로 가장 돌출된 치아 부분과 접하도록 설정되는 영역으로 정의될 수 있다. 즉, 최대 외곽 검출부(210)는 제1 및 제2 최대 외곽 영역(A1, A2)을 각 모서리가 가장 돌출된 치아와 접하는 다각형 형상으로 검출할 수 있다.
예를 들어, 도 13 및 도 14에 도시한 바와 같이 치열이 모든 치아를 구비하고 있고 바르게 정렬되어 있는 경우 제1 및 제2 최대 외곽 영역(A1, A2)은 직사각형으로 검출될 수 있다.
한편, 도면과 달리, 치열에서 치아(예컨대, 어금니)가 일부 없는 경우 제1 및 제2 최대 외곽 영역(A1, A2)은 사다리꼴로 검출될 수도 있다.
도 15 및 도 16을 참조하면, 최대 외곽 검출부(210)는 x축 및 y축의 2차원 상에서뿐만 아니라 치관 길이 내에서 Z축 좌표인 깊이 좌표를 포함하여 3차원 상에서 제1 및 제2 최대 외곽 영역(A1, A2)을 검출할 수 있다.
최대 외곽 검출부(210)는 제1 및 제2 치아 영상 데이터에서 구조 및 형태 분석과, 그레이 스케일에 기반한 알고리즘을 통한 영상 분석 처리를 수행하여 치아 영역과 그 이외의 영역, 예컨대, 잇몸 등의 연조직과 뼈조직을 구분함으로써 다른 영역이 포함됨이 없이 치아 영역 내에서 제1 및 제2 최대 외곽 영역(A1, A2)을 검출할 수 있다.
여기서, 최대 외곽 검출부(210)는 제1 및 제2 치아 영상 데이터에서 x축, y축 및 z축을 기준으로 최소 위치값 및 최대 위치값을 갖는 버텍스들을 이용하여 제1 및 제2 최대 외곽 영역(A1, A2)을 검출할 수 있다.
구체적으로, 제1 및 제2 최대 외곽 영역(A1, A2)의 하변은 y축을 기준으로 최소 위치값을 갖는 버텍스를 검출하고 이 버텍스가 포함되도록 수평 연장선을 생성한다. 그리고, 제1 및 제2 최대 외곽 영역(A1, A2)의 좌우변은 x축을 기준으로 최소 위치값 및 최대 위치값을 각각 갖는 버텍스들을 검출하고 이 버텍스들이 포함되도록 각각 수직 연장선을 생성한다. 그리고, 제1 및 제2 최대 외곽 영역(A1, A2)의 상변은 x축에 대해 이등분되는 이등분선을 기준으로 좌측 및 우측 영역에서 각각 최대 위치값을 각각 갖는 버텍스들을 검출하고 이 버텍스들이 포함되도록 연장선을 생성한다. 그리고, 생성된 연장선들을 교차하는 점을 꼭지점으로하는 제1 및 제2 최대 외곽 영역(A1, A2)을 생성한다.
도 13을 참조하면, 중심점 검출부(220)는 2차원의 제1 최대 외곽 영역(A1)의 제1 중심점(C1)을 검출한다. 그리고, 도 14를 참조하면 2차원의 제2 최대 외곽 영역(A2)의 제2 중심점(C2)을 검출한다.
구체적으로, 중심점 검출부(220)는 제1 최대 외곽 영역(A1)에 포함되는 제1 버텍스들의 x축 및 y축 좌표의 평균값을 이용하여 제1 중심점(C1)으로 검출한다. 그리고, 제2 최대 외곽 영역(A2)에 포함되는 제2 버텍스들의 x축 및 y축 좌표의 평균값을 이용하여 제2 중심점(C2)을 검출한다.
또한, 도 15 를 참조하면, 중심점 검출부(220)는 3차원의 제1 최대 외곽 영역(A1)의 제1 중심점(C1)을 검출한다. 그리고, 도 16을 참조하면 3차원의 제2 최대 외곽 영역(A2)의 제2 중심점(C2)을 검출한다.
구체적으로, 중심점 검출부(220)는 제1 최대 외곽 영역(A1)에 포함되는 제1 버텍스들의 x축, y축 및 z축 좌표의 평균값을 이용하여 제1 중심점(C1)으로 검출한다. 그리고, 제2 최대 외곽 영역(A2)에 포함되는 제2 버텍스들의 x축, y축 및 z축 좌표의 평균값을 이용하여 제2 중심점(C2)을 검출한다.
도 17은 본 발명의 제2 실시예에 따른 영상 정합부가 제1 및 제2 치아 영상 데이터를 정합하는 방법을 설명하기 위한 도면이다.
영상 정합부(240)는 제1 및 제2 중심점(C1, C2)을 기준으로 제1 및 제2 치아 영상 데이터를 정합한다.
구체적으로, 도 17을 참조하면, 영상 정합부(240)는, 제1 및 제2 중심점(C1, C2)을 기준으로 제1 및 제2 치아 영상 데이터를 오버랩(over lap) 시킨 후, 제1 최대 외곽 영역(A1)에 포함되는 제1 버텍스들과 제2 최대 외곽 영역(A2)에 포함되는 제2 버텍스들 간 거리를 비교하여 제1 치아 영상 데이터 및 제2 치아 영상 데이터를 정합한다.
영상 정합부(240)는 제1 버텍스들 및 제2 버텍스들 간 모든 거리의 합이 기준 값 이하가 될 때까지 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 영상 정합을 반복할 수 있다.
여기서, 기준 값은 사용자에 의해 미리 설정될 수 있으며 목표로 하는 영상 정합 정확도에 따라 달라질 수 있다. 즉, 목표로 하는 영상 정합 정확도가 높을수록 기준 값은 작아지게 된다.
구체적으로, 도 17을 참조하면, 정합 과정이 반복되어 제1 버텍스들(s1, s2, s3) 및 제2 버텍스들(d1, d2, d3)간 거리가 충분히 작아지면, 제2 버텍스들(d1, d2, d3)에 접한 평면에서 제1 버텍스들(s1, s2, s3)까지 연장되는 연장선의 거리(l1, l2, l3)와, 상기 연장선 및 제2 버텍스들(d1, d2, d3)의 수직 벡터의 거리가 작아지도록 정합 과정을 반복할 수 있다.
이와 달리, 영상 정합부(240)는 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 영상 정합을 기준 횟수만큼 반복할 수도 있다.
여기서, 기준 횟수는 사용에 의해 미리 설정될 수 있으며 목표로 하는 영상 정합 정확도에 따라 달라질 수 있다. 즉, 영상 정합 횟수가 반복될수록 영상 정합 정확도는 향상되기 때문에, 목표로 하는 영상 정합 정확도가 높을수록 기준 횟수는 커지게 된다.
이와 같이, 본 발명의 제2 실시예에 따른 치아 영상 정합 장치(200)는, 제1 및 제2 치아 영상 데이터의 제1 및 제2 최대 외곽 영역(A1, A2)에 포함되는 버텍스들 간 거리만 비교하여 영상을 정합하기 때문에, 제1 치아 영상 데이터 및 제2 치아 영상 데이터에 포함된 모든 버텍스들 간 거리를 비교하여 영상을 정합하는 것 대비 영상 정합 속도를 향상시킬 뿐만 아니라, 버텍스들 간 거리를 비교하기 위한 시스템 부하를 최소화할 수 있다.
또한, 본 발명의 제2 실시예에 따른 치아 영상 정합 장치(200)는, 높은 정확도로 영상 정합을 자동으로 수행하여 사용자의 편의성을 증진시키고, 이에 수반하여 임플란트 계획에 소요되는 시간 단축 및 임플란트 계획의 정확성을 제고할 수 있다.
본 발명의 제2 실시예에 따른 치아 영상 정합 장치(200)는 제1 치아 영상 데이터 및 제2 치아 영상 데이터의 정합 결과를 표시하는 표시부(250)를 더 포함할 수 있다.
표시부(250)는 제1 및 제2 치아 영상 데이터의 정합 결과를 표시하여 사용자로 하여금 확인할 수 있도록 한다.
구체적으로, 표시부(250)는 정합 결과 표시시 정합 영상 내에서 정합이 어긋나거나 상대적으로 부정확한 부분을 색을 달리하여 표시하는 등으로 영상 정합 결과의 정확도를 정량적으로 파악할 수 있는 표식을 제공함으로써 사용자가 정합의 정확 정도를 객관적으로 파악하도록 할 수 있다.
이와 같은 표시부(250)는 액정 디스플레이(LCD; liquid crystal display), 발광 다이오드(LED; light emitting diode) 디스플레이, 유기 발광 다이오드(OLED; organic LED) 디스플레이, 마이크로 전자기계 시스템(MEMS; micro electro mechanical systems) 디스플레이 및 전자 종이(electronic paper) 디스플레이를 포함한다. 여기서, 표시부(250)는 입력부(미도시)와 결합되어 터치 스크린(touch screen)으로 구현될 수 있다.
도 18은 본 발명의 제2 실시예에 따른 치아 영상 정합 방법의 순서도이다.
이하, 도 12 내지 도 18을 참조하여 본 발명의 제2 실시예에 따른 치아 영상 정합 방법을 설명하되, 전술한 본 발명의 제2 실시예에 따른 치아 영상 정합 장치와 동일한 내용에 대해서는 생략하겠다.
본 발명의 제2 실시예에 따른 치아 영상 정합 방법은, 먼저, 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역(A1)을 검출한다(S110).
다음, 제1 최대 외곽 영역(A1)의 제1 중심점(C1)을 검출한다(S210).
마찬가지로, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역(A2)을 검출한다(S120).
다음, 제2 최대 외곽 영역(A2)의 중심점(C2)을 검출한다(S220).
다음, 제1 및 제2 중심점(C1, C2)을 기준으로 제1 및 제2 치아 영상 데이터를 정합한다(S300).
여기서, 제1 및 제2 치아 영상 데이터를 정합하는 단계(S300)는, 제1 및 제2 중심점(C1, C2)을 기준으로 제1 및 제2 치아 영상 데이터를 오버랩(over lap) 시킨 후, 제1 최대 외곽 영역(A1)에 포함되는 제1 버텍스들과 제2 최대 외곽 영역(A2)에 포함되는 제2 버텍스들 간 거리를 비교하여 제1 및 제2 치아 영상 데이터를 정합하는 단계이다.
또한, 제1 및 제2 치아 영상 데이터를 정합하는 단계(S300)는, 제1 및 제2 버텍스들 간 모든 거리의 합이 기준 값 이하가 될 때까지 제1 및 제2 치아 영상 데이터의 정합을 반복하는 단계일 수 있다.
또한, 제1 및 제2 치아 영상 데이터를 정합하는 단계(S300)는, 제1 및 제2 치아 영상 데이터의 정합을 기준 횟수만큼 반복하는 단계일 수 있다.
이와 같이, 본 발명의 제2 실시예에 따른 치아 영상 정합 방법은, 제1 및 제2 치아 영상 데이터의 제1 및 제2 최대 외곽 영역에 포함되는 버텍스들 간 거리만 비교하여 영상을 정합하기 때문에, 제1 치아 영상 데이터 및 제2 치아 영상 데이터에 포함된 모든 버텍스들 간 거리를 비교하여 영상을 정합하는 것 대비 영상 정합 속도를 향상시킬 뿐만 아니라, 버텍스들 간 거리를 비교하기 위한 시스템 부하를 최소화할 수 있다.
또한, 본 발명의 제2 실시예에 따른 치아 영상 정합 방법은, 높은 정확도로 영상 정합을 자동으로 수행하여 사용자의 편의성을 증진시키고, 이에 수반하여 임플란트 계획에 소요되는 시간 단축 및 임플란트 계획의 정확성을 제고할 수 있다.
한편, 본 발명의 제2 실시예에 따른 치아 영상 정합 방법은, 컴퓨터에서 실행될 수 있는 프로그램으로 작성되어 마그네틱 저장 매체, 광학적 판독 매체 및 디지털 저장 매체 등 다양한 기록 매체에도 구현될 수 있을 것이다.
전술한 제2 실시예에서는, CT 영상 데이터와 구강 스캔 영상 데이터의 영상 정합이 이루어지는 것을 일 예로 들어 설명하였지만, CT 영상 데이터 간, 구강 스캔 영상 데이터 간 및 자기 공명 영상 데이터 및 CT 영상 데이터 간 등과 같이 2차원 영상 데이터 간, 2차원 및 3차원 영상 데이터 간, 3차원 영상 데이터 간의 다양한 조합에 대해서 위와 동일하게 영상 데이터 내에서 치열의 최대 외곽 영역을 검출하고, 최대 외곽 영역의 중심점를 검출하여 영상 정합이 수행될 수 있을 것이다. 이때, 3차원 영상 데이터에서 치아 최대 외곽 영역 검출시 X축 및 Y축 좌표뿐 아니라, 치열의 외곽이 치관 길이에 따라 달라짐을 고려하여 치관 길이 내에서 Z축 좌표인 깊이 좌표를 산출하여 최종적인 치아 최대 외곽 영역을 검출할 수 있음은 앞서 설명된 바와 같다. 또한, 전술된 3차원 영상 데이터 외에 4차원 영상 데이터를 포함한 다차원 영상에도 두루 적용 가능하다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 즉 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
본 발명에 따른 치아 검출 장치 및 방법은 임플란트 시술 등 다양한 치과 치료 분야에 이용될 수 있다.

Claims (15)

  1. 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역을 검출하고, 제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역을 검출하는 최대 외곽 검출부; 및
    상기 제1 최대 외곽 영역에 내접하는 제1 내접원 및 상기 제2 최대 외곽 영역에 내접하는 제2 내접원을 기초로 상기 제1 및 제2 치아 영상 데이터를 정합하거나, 상기 제1 최대 외곽 영역의 제1 중심점 및 상기 제2 최대 외곽 영역의 제2 중심점을 기초로 상기 제1 및 제2 치아 영상 데이터를 정합하는 영상 정합부
    를 포함하는 치아 영상 정합 장치.
  2. 제 1 항에 있어서,
    상기 제1 최대 외곽 영역에 내접하는 제1 내접원을 검출하고, 상기 제2 최대 외곽 영역에 내접하는 제2 내접원을 검출하는 내접원 검출부; 및
    상기 제1 내접원의 회전체인 제1 내접구를 검출하고, 상기 제2 내접원의 회전체인 제2 내접구를 검출하는 내접구 검출부를 더 포함하고,
    상기 영상 정합부는
    상기 제1 및 제2 내접구를 기준으로 상기 제1 및 제2 치아 영상 데이터를 정합하는
    치아 영상 정합 장치.
  3. 제 1 항에 있어서,
    상기 제1 최대 외곽 영역의 제1 중심점을 검출하고, 상기 제2 최대 외곽 영역의 제2 중심점을 검출하는 중심점 검출부를 더 포함하고,
    상기 영상 정합부는
    상기 제1 및 제2 중심점을 기준으로 상기 제1 및 제2 치아 영상 데이터를 정합하는
    를 포함하는 치아 영상 정합 장치.
  4. 제 2 항에 있어서,
    상기 영상 정합부는
    상기 제1 내접구에 포함되는 제1 버텍스들과 상기 제2 내접구에 포함되는 제2 버텍스들 간 거리를 비교하여 상기 제1 및 제2 치아 영상 데이터를 정합하는
    치아 영상 정합 장치.
  5. 제 3 항에 있어서,
    상기 영상 정합부는
    상기 제1 최대 외곽 영역에 포함되는 제1 버텍스들과 상기 제2 최대 외곽영역에 포함되는 제2 버텍스들 간 거리를 비교하여 상기 제1 및 제2 치아 영상 데이터를 정합하는
    치아 영상 정합 장치.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 영상 정합부는
    상기 제1 및 제2 버텍스들 간 모든 거리의 합이 기준 값 이하가 될 때까지 상기 제1 및 제2 치아 영상 데이터의 정합을 반복하는
    치아 영상 정합 장치.
  7. 제 4 항 또는 제 5 항에 있어서,
    상기 영상 정합부는
    상기 제1 및 제2 치아 영상 데이터의 정합을 기준 횟수만큼 반복하는
    치아 영상 정합 장치.
  8. 제 4 항 또는 제 5 항에 있어서,
    상기 제1 및 제2 치아 영상 데이터의 해상도를 일치시키고, 상기 제1 및 제2 치아 영상 데이터의 복셀 정보를 버텍스 정보로 변환하는 전처리부
    를 더 포함하는 치아 영상 정합 장치.
  9. 제 4 항 또는 제 5 항에 있어서,
    상기 최대 외곽 검출부는
    상기 제1 및 제2 최대 외곽 영역을 각 모서리가 가장 돌출된 치아와 접하는 다각형 형상으로 검출하는
    치아 영상 정합 장치.
  10. 제 4 항에 있어서,
    상기 내접원 검출부는
    상기 제1 및 제2 최대 외곽 영역의 좌우측 상단 모서리를 이루는 양변에 각각 접하며 제1 반경을 갖는 두 개의 원과, 상기 두 개의 원 사이에서 상기 제1 및 제2 최대 외곽 영역을 이등분하는 이등분 선이 상기 제1 및 제2 최대 외곽 영역의 하단을 이루는 변과 맞닿는 지점에 접하며 상기 제1 반경을 갖는 하나의 원을 상기 제1 및 제2 내접원으로 검출하는
    치아 영상 정합 장치.
  11. 제 5 항에 있어서,
    상기 중심점 검출부는
    상기 제1 버텍스들의 x축, y축 및 z축 좌표의 평균값을 이용하여 상기 제1 중심점으로 검출하고, 상기 제2 버텍스들의 x축, y축 및 z축 좌표의 평균값을 이용하여 상기 제2 중심점을 검출하는
    치아 영상 정합 장치.
  12. 제 4 항 또는 제 5 항에 있어서,
    상기 최대 외곽 검출부는
    상기 제1 및 제2 치아 영상 데이터에서 x축, y축 및 z축을 기준으로 최소 위치값 및 최대 위치값을 갖는 버텍스들을 이용하여 상기 제1 및 제2 최대 외곽 영역을 검출하는
    치아 영상 정합 장치.
  13. 제1 치아 영상 데이터에서 치열의 최대 외곽 영역인 제1 최대 외곽 영역을 검출하는 단계;
    제2 치아 영상 데이터에서 치열의 최대 외곽 영역인 제2 최대 외곽 영역을 검출하는 단계; 및
    상기 제1 최대 외곽 영역에 내접하는 제1 내접원 및 상기 제2 최대 외곽 영역에 내접하는 제2 내접원을 기초로 상기 제1 및 제2 치아 영상 데이터를 정합하거나, 상기 제1 최대 외곽 영역의 제1 중심점 및 상기 제2 최대 외곽 영역의 제2 중심점을 기초로 상기 제1 및 제2 치아 영상 데이터를 정합하는 단계
    를 포함하는 치아 영상 정합 방법.
  14. 제 13 항에 있어서,
    상기 제1 및 제2 치아 영상 데이터를 정합하는 단계는
    상기 제1 및 제2 최대 외곽 영역에 각각 내접하는 제1 및 제2 내접원을 각각 검출하는 단계;
    상기 제1 및 제2 내접원의 회전체인 제1 및 제2 내접구를 각각 검출하는 단계; 및
    상기 제1 및 제2 내접구를 기준으로 상기 제1 및 제2 치아 영상 데이터를 정합하는 단계
    를 포함하는 치아 영상 정합 방법.
  15. 제 13 항에 있어서,
    상기 제1 및 제2 치아 영상 데이터를 정합하는 단계는
    상기 제1 및 제2 최대 외곽 영역의 제1 및 제2 중심점을 각각 검출하는 단계; 및
    상기 제1 및 제2 중심점을 기준으로 상기 제1 및 제2 치아 영상 데이터를 정합하는 단계
    를 포함하는 치아 영상 정합 방법.
PCT/KR2020/002753 2019-03-28 2020-02-26 치아 영상 정합 장치 및 방법 WO2020197109A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/598,602 US11869203B2 (en) 2019-03-28 2020-02-26 Dental image registration device and method
EP20779991.7A EP3949888A4 (en) 2019-03-28 2020-02-26 DEVICE AND METHOD FOR TAKING DENTAL IMAGES
CN202080023179.6A CN113631116A (zh) 2019-03-28 2020-02-26 牙齿图像匹配装置及方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0036023 2019-03-28
KR1020190036022A KR102270279B1 (ko) 2019-03-28 2019-03-28 치아 영상 정합 장치 및 방법
KR1020190036023A KR102267449B1 (ko) 2019-03-28 2019-03-28 치아 영상 정합 장치 및 방법
KR10-2019-0036022 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020197109A1 true WO2020197109A1 (ko) 2020-10-01

Family

ID=72612089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002753 WO2020197109A1 (ko) 2019-03-28 2020-02-26 치아 영상 정합 장치 및 방법

Country Status (5)

Country Link
US (1) US11869203B2 (ko)
EP (1) EP3949888A4 (ko)
CN (1) CN113631116A (ko)
TW (1) TWI762893B (ko)
WO (1) WO2020197109A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802018A (zh) * 2021-03-31 2021-05-14 深圳棱镜空间智能科技有限公司 分段圆形工件的完整性检测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009998A (ko) * 2010-07-23 2012-02-02 정제교 영상처리 참조형상을 지닌 치아형 보철물 및 이를 이용한 영상정합방법
WO2016108453A1 (ko) * 2014-12-31 2016-07-07 오스템임플란트 주식회사 치아 영상 자동 정합 방법, 이를 위한 장치 및 기록 매체
KR101666050B1 (ko) * 2015-09-15 2016-10-14 주식회사 디오에프연구소 스캔데이터 정합용 식별타겟 및 이를 이용한 치아모형 스캔데이터 획득 방법
KR20170118540A (ko) * 2016-04-15 2017-10-25 이화여자대학교 산학협력단 의료 영상 처리 방법 및 의료 영상 처리 장치
KR20180047850A (ko) * 2016-11-01 2018-05-10 한국과학기술연구원 3차원 치아 영상 데이터와 광학식 스캔 치아 모델의 선택적 정합 방법, 장치 및 프로그램
KR20180106451A (ko) * 2017-03-20 2018-10-01 오스템임플란트 주식회사 치아 영상 정합 방법 및 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409504B1 (en) 1997-06-20 2002-06-25 Align Technology, Inc. Manipulating a digital dentition model to form models of individual dentition components
DE102007001684B4 (de) * 2007-01-11 2023-01-26 Sicat Gmbh & Co. Kg Bildregistrierung
KR100998311B1 (ko) 2010-07-30 2010-12-03 정제교 접촉식 표지점 검출을 통한 가공좌표 동기화 방법
KR101292811B1 (ko) 2010-10-23 2013-08-02 이태경 좌표 동기화 겸용 영상 정합용 구내 장착물
US8761493B2 (en) * 2011-07-21 2014-06-24 Carestream Health, Inc. Method and system for tooth segmentation in dental images
CN103886306B (zh) 2014-04-08 2017-06-16 山东大学 一种牙齿X‑ray影像匹配方法
US10136972B2 (en) * 2016-06-30 2018-11-27 Align Technology, Inc. Historical scan reference for intraoral scans
CN109146867B (zh) 2018-08-24 2021-11-19 四川智动木牛智能科技有限公司 口腔曲面ct图像生物特征提取及匹配方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009998A (ko) * 2010-07-23 2012-02-02 정제교 영상처리 참조형상을 지닌 치아형 보철물 및 이를 이용한 영상정합방법
WO2016108453A1 (ko) * 2014-12-31 2016-07-07 오스템임플란트 주식회사 치아 영상 자동 정합 방법, 이를 위한 장치 및 기록 매체
KR101666050B1 (ko) * 2015-09-15 2016-10-14 주식회사 디오에프연구소 스캔데이터 정합용 식별타겟 및 이를 이용한 치아모형 스캔데이터 획득 방법
KR20170118540A (ko) * 2016-04-15 2017-10-25 이화여자대학교 산학협력단 의료 영상 처리 방법 및 의료 영상 처리 장치
KR20180047850A (ko) * 2016-11-01 2018-05-10 한국과학기술연구원 3차원 치아 영상 데이터와 광학식 스캔 치아 모델의 선택적 정합 방법, 장치 및 프로그램
KR20180106451A (ko) * 2017-03-20 2018-10-01 오스템임플란트 주식회사 치아 영상 정합 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3949888A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802018A (zh) * 2021-03-31 2021-05-14 深圳棱镜空间智能科技有限公司 分段圆形工件的完整性检测方法、装置、设备及存储介质
CN112802018B (zh) * 2021-03-31 2021-08-06 深圳棱镜空间智能科技有限公司 分段圆形工件的完整性检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20220156952A1 (en) 2022-05-19
TWI762893B (zh) 2022-05-01
US11869203B2 (en) 2024-01-09
CN113631116A (zh) 2021-11-09
EP3949888A4 (en) 2022-12-21
TW202036468A (zh) 2020-10-01
EP3949888A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2017192020A1 (ko) 치과용 3차원 데이터 처리장치 및 그 방법
WO2016043560A1 (ko) 옵티컬 트래킹 시스템 및 옵티컬 트래킹 시스템의 좌표계 정합 방법
WO2020027377A1 (ko) 3d 영상 정합 제공 장치 및 그 방법
WO2017111464A1 (en) X-ray imaging apparatus, control method for the same, and x-ray detector
WO2014077613A1 (ko) 정복 시술 로봇 및 그의 구동 제어 방법
WO2010058927A2 (ko) 안면 영상 촬영장치
WO2018066764A1 (ko) 임플란트 진단용 영상 생성 시스템 및 그 생성방법
WO2017222089A1 (ko) 치아모델 교합용 장치 및 이를 이용한 교합방법
WO2020197109A1 (ko) 치아 영상 정합 장치 및 방법
WO2022085966A1 (ko) 구강 이미지 처리 장치 및 구강 이미지 처리 방법
WO2018066763A1 (ko) 임플란트 진단용 영상 생성 시스템 및 그 생성방법
WO2016190607A1 (ko) 수술 지원 영상을 제공하는 스마트 글라스 시스템 및 스마트 글라스를 이용한 수술 지원 영상 제공 방법
WO2020209496A1 (ko) 치아 오브젝트 검출 방법 및 치아 오브젝트를 이용한 영상 정합 방법 및 장치
WO2020235784A1 (ko) 신경 검출 방법 및 장치
WO2020141751A1 (ko) 신체 사이즈 측정용 사진 획득 방법 및 이를 이용한 신체 사이즈 측정 방법, 서버 및 프로그램
WO2020209495A1 (ko) 영상 데이터의 전처리 장치
WO2022014965A1 (ko) 구강 이미지 처리 장치 및 구강 이미지 처리 방법
WO2016148350A1 (ko) 의료 영상 재구성 장치 및 그 방법
WO2022065756A1 (ko) 구강 이미지 처리 장치, 및 구강 이미지 처리 방법
WO2019124846A1 (ko) 치과용 임플란트 시술 가이드장치, 치과용 임플란트 시술 가이드장치 제작시스템 및 그 제작방법
WO2018038300A1 (ko) 이미지 제공 장치, 방법 및 컴퓨터 프로그램
WO2020171589A1 (ko) 구강 및 인상의 복합 스캔 시스템 및 방법
WO2021215843A1 (ko) 구강 영상의 마커 검출 방법 및 이를 이용한 구강 영상 정합 장치 및 방법
WO2021193997A1 (ko) 부비동 진단 시스템 및 그것을 이용한 부비동 진단 방법
KR102270279B1 (ko) 치아 영상 정합 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779991

Country of ref document: EP

Effective date: 20211028