WO2020196964A1 - Drug-loaded hydrogel formed in real time - Google Patents

Drug-loaded hydrogel formed in real time Download PDF

Info

Publication number
WO2020196964A1
WO2020196964A1 PCT/KR2019/003664 KR2019003664W WO2020196964A1 WO 2020196964 A1 WO2020196964 A1 WO 2020196964A1 KR 2019003664 W KR2019003664 W KR 2019003664W WO 2020196964 A1 WO2020196964 A1 WO 2020196964A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
group
pharmaceutical composition
drug
buffer
Prior art date
Application number
PCT/KR2019/003664
Other languages
French (fr)
Korean (ko)
Inventor
김형환
고영주
윤혜성
장지현
맹진희
안수경
Original Assignee
주식회사 삼양바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양바이오팜 filed Critical 주식회사 삼양바이오팜
Priority to PCT/KR2019/003664 priority Critical patent/WO2020196964A1/en
Publication of WO2020196964A1 publication Critical patent/WO2020196964A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a drug-carrying support that can be attached to the seed surface, and more specifically, to a real-time hydrogel formed with a drug.
  • drugs are prescribed in the form of oral or injection to treat patients with cancer.
  • Such a therapeutic method has the advantage of being simple to administer, but since the drug is delivered to the tumor via the whole body, it has side effects that adversely affect normal tissues, and has an effective effect due to the low drug content delivered to the tumor compared to the administered dose.
  • side effects eg systemic toxicity
  • side effects eg systemic toxicity
  • the drug-carrying matrix is locally treated on the tumor to minimize side effects caused by general chemical use, and the drug is designed to be released from the support in a sustained manner, resulting in inconvenience due to repeated administration. Can be minimized.
  • a drug-carrying scaffold since such a drug-carrying scaffold has no adhesion to a tumor, it can be used only in a form such as subcutaneous implantation, and thus, its available range is narrow. Accordingly, there is a need for development of an improved drug delivery system capable of overcoming the disadvantages that the conventional invention has not essentially solved.
  • a first solution containing an alginate polymer relates to a drug-releasing hydrogel containing Doxorubicin by reacting a second solution containing a calcium ion capable of crosslinking alginate and a drug (Doxorubicin) in a 1:1 ratio, wherein a hydrogel for carrying a drug by mixing two solutions It is manufactured and confirmed the behavior of sustained-release drug release over time.
  • the hydrogel since the hydrogel is not formed immediately, it can be used only in the form already made, i.e., the hydrogel is not formed in real time, and the crosslinking reaction by calcium ions acts selectively only on alginate, so it does not react separately with the tissue and does not show adhesion. Does not.
  • Conjugated linoleic acid (CLA)-conjugated poloxamer a temperature-sensitive polymer that changes from a solution (sol) state to a gel state when the temperature is above a certain temperature, is used as a drug delivery vehicle, and the tissue (for example, a hydrogel drug delivery device capable of forming a hydrogel when sprayed on a tumor) is disclosed.
  • hydrogels made of temperature-sensitive polymers do not react separately with tissues during gel formation, their adhesion to tissues (tumors) is very low.
  • the antitumor effect was confirmed through cell experiments, but in fact, since the gel formation rate is slow (takes tens of seconds), it is expected that most of it will flow down even if it is sprayed on the tumor, which is expected to show low effective anticancer effect.
  • a cyclodextrin-based hydrogel physically bound to PEG as a drug-bearing support.
  • physical crosslinking temporarily changes from a gel state to a solution (sol) state, and external force When disappears, it has a thixotropic property that changes back to a gel state.
  • a gel filled material loaded with a drug in a syringe is applied with an external force with a syringe plunger to give a solution (sol). After making it into a state, it is designed to be sprayed onto the tissue to form a gel again.
  • PEG-PAEU poly(amino ester urethane)-based block copolymer
  • the conventional technology is a problem in that even if a hydrogel containing a drug is applied to a tissue (for example, a tumor), since there is no separate adhesion (chemical bond) with the tissue, it is easily detached and cannot continuously deliver the drug. There was this.
  • the present invention has a technical problem to provide a drug-carrying support that can be attached to a tissue surface in real time (in situ) with excellent adhesion to the tissue.
  • L is a linker
  • Each M is independently H, an alkali metal or an alkaline earth metal
  • R is CH 2 ,
  • b is 0 or 1;
  • c is an integer from 1 to 5;
  • the hydrogel formed has excellent adhesion to the tumor surface and surrounding tissues. As it is attached to the body, it is not detached from the movement of the organs and can deliver the drug locally while attached to the tissue for a long time. Also, a part of the drug carried on the hydrogel is not released initially, but is gradually released while trapped in the hydrogel. It was discovered that it can act as a drug delivery system, and the present invention was completed.
  • the present invention provides a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of (i) a ⁇ -polyglutamic acid derivative of Formula 1 above: and (ii) an amine group, a thiol group, and a hydroxy group. It provides a pharmaceutical composition for adhering to a tumor surface or surrounding tissues, comprising a hydrogel formed by mixing a second solution containing a substance.
  • the present invention is (i) a first solution containing the ⁇ -polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It provides a support for drug delivery for adhering to a tumor surface or surrounding tissues, including a hydrogel formed by mixing a second solution containing a substance.
  • the present invention a. (i) a first solution containing the ⁇ -polyglutamic acid derivative of Formula 1: and (ii) a hydrophilic material having at least one selected from the group consisting of an amine group, a thiol group, and a hydroxy group, which are nucleophilic functional groups. Mixing the second solution; b. Applying the mixture to the tumor surface; And c. It provides a method for inhibiting tumor growth, comprising the step of forming a hydrogel in which the applied mixture is in situ.
  • the present invention is (i) a first solution containing the ⁇ -polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It relates to a use of a hydrogel formed by mixing a second solution containing a substance, and specifically, provides a use for attaching to a tumor surface or surrounding tissues, for inhibiting tumor growth, and for a drug delivery support.
  • the hydrogel of the present invention is fixed (adhered) by a chemical bond, the drug can be delivered locally while being attached to the tissue for a long time without being detached from the movement of the organ.
  • the hydrogel of the present invention can deliver a drug locally, systemic toxicity is reduced, and an effective therapeutic effect can be exhibited even if a small dose of the drug is administered.
  • hydrogel of the present invention some of the drugs carried on the hydrogel are not initially released, but are slowly released while trapped in the hydrogel, so that discomfort caused by repeated drug administration as a sustained-release drug formulation can be alleviated.
  • the hydrogel of the present invention can be used as a drug delivery vehicle by spraying it on the surface of the tumor, and when a small amount of bleeding occurs in the incision site of the tumor, the hydrogel formed immediately serves to prevent bleeding as a sealant.
  • it can be used as a surgical material that performs two functions at the same time as a treatment to remove the remaining tumor cells remaining in the incision.
  • the hydrogel of the present invention itself exhibits a tumor growth inhibitory effect. Specifically, it was observed that when the hydrogel of the present invention is applied to a tumor, physical pressure is applied during the initial growth of the tumor to suppress the growth of the tumor. Therefore, the hydrogel of the present invention can exhibit effective anti-cancer effect as a result, since it has both the physical tumor growth inhibitory effect as well as the chemical inhibitory effect of the anticancer agent.
  • FIG. 1 shows a schematic diagram of the application of a drug-loaded hydrogel according to the present invention to treat pancreatic cancer.
  • Example 3 is a graph of cumulative release of gemza (gemcitabine) and genexol PM (paclitaxel) in a drug-supported hydrogel over time according to Example 6.
  • Example 4 is a graph showing a change in weight over time for each group according to Example 7.
  • Example 5 shows a graph of an average initial vs. tumor volume and an average tumor growth inhibition rate of each group according to Example 7.
  • Example 6 is a graph showing the average tumor metastasis grade and metastasis inhibition rate of each group according to Example 7.
  • the present invention (i) a first solution containing a ⁇ -polyglutamic acid derivative represented by the following formula (1):
  • L is a linker
  • Each M is independently H, an alkali metal or an alkaline earth metal
  • R is CH 2 ,
  • b is 0 or 1;
  • c is an integer from 1 to 5;
  • the present invention is (i) a first solution containing the ⁇ -polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It relates to a support for drug delivery for adhering to a tumor surface or surrounding tissues, including a hydrogel formed by mixing a second solution containing a substance.
  • the present invention a. (i) a first solution containing the ⁇ -polyglutamic acid derivative of Formula 1: and (ii) a hydrophilic material having at least one selected from the group consisting of an amine group, a thiol group, and a hydroxy group, which are nucleophilic functional groups. Mixing the second solution; b. Applying the mixture to the tumor surface; And c. The applied mixture relates to a method for inhibiting tumor growth, comprising the step of forming a hydrogel in situ.
  • the present invention is (i) a first solution containing the ⁇ -polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It relates to the use of a hydrogel formed by mixing a second solution containing a substance, and specifically, to the use of the hydrogel to adhere to the tumor surface or surrounding tissues, to inhibit tumor growth, and to use as a drug delivery support.
  • L (linker) in the ⁇ -polyglutamic acid derivative of Formula 1 contained in the first solution, L (linker) may be represented by -HN-(R)aO-, where R is CH 2 , and a May be an integer of 1 to 5.
  • L (linker) is aminomethanol, 1-amino-2-propanol , 1-amino-3-propanol, 1-amino-4-butanol, 1-amino-5-pentanol (1-amino-5- pentanol) or 1-amino-2-ethanol (MEA or 1-amino-2-ethanol).
  • the -(CO)b-(R)c-CO- moiety is -CH 2 CH 2 CH 2 CH 2 -CO- , -CO-CH 2 CH 2 CH 2 -CO-, -CH 2 CH 2 -CO-, -CO-CH 2 CH 2 -CO- or -CH 2 -CO-.
  • the ⁇ -polyglutamic acid derivative of Formula 1 contained in the first solution may be succinimidyl succinyl polyglutamic acid (SSPGA) having the following structure:
  • the hydrophilic material contained in the second solution may have two or more nucleophilic functional groups selected from the group consisting of an amine group, a thiol group, and a hydroxy group.
  • the hydrophilic material contained in the second solution is a poly(ethylene glycol) (PEG) derivative, poly(vinyl alcohol) (PVA), poly(ethylene imine) having two or more arms (multi-arm) (PEI), poly (lysine) (PL), trilysine amine (Trilysine amine), and may be one or more selected from the group consisting of poly (allylamine) (PAA).
  • PEG poly(ethylene glycol)
  • PVA poly(vinyl alcohol)
  • PEI poly(ethylene imine) having two or more arms
  • PEI poly (lysine)
  • PL poly (lysine)
  • Trilysine amine trilysine amine
  • the hydrophilic material contained in the second solution is multi-arm PEG, PEI or trilysine amine.
  • the hydrophilic material contained in the second solution is a polyethylene glycol-based polymer
  • the polyethylene glycol-based polymer may be represented by the following Formula 2:
  • I is a radical derived from a dihydric polyhydric alcohol
  • X is an amine group, a thiol group, or a hydroxy group
  • n 19 to 170
  • n is an integer of 2 to 12, and is the same as the number of hydroxy groups of the polyhydric alcohol from which I is derived.
  • the hydrophilic material contained in the second solution is a polyethylene glycol-based polymer
  • the polyethylene glycol-based polymer may be represented by the following Formula 3 or 4:
  • X represents an amine group, a thiol group, or a hydroxy group, and n is 19 to 170.
  • the first solution and the second solution may be a buffer solution.
  • the pH of the first solution may be in the range of 5-6
  • the pH of the second solution may be in the range of 10-11.
  • the pH may be in the range of 5 to 9.
  • the buffer solution is distilled water, NaCl (Sodium chloride), KCl (Potassium chloride), NaH 2 PO 4 (Monosodium phosphate), Na 2 HPO 4 (Disodium phosphate), KH 2 PO 4 (Monopotassium phosphate), It may be an aqueous solution in which at least one selected from the group consisting of Na 2 CO 3 (Sodium carbonate), HCl (Hydrochloric acid), Borate, MES, Tris, and HEPES is dissolved.
  • the buffer of the first solution may be a mixed buffer of NaH 2 PO 4 (Monosodium phosphate) and Na 2 HPO 4 (Disodium phosphate).
  • the buffer of the first solution may be a mixture of NaH 2 PO 4 and Na 2 HPO 4 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 9:1 to 5:5.
  • the buffer of the second solution may be a mixed buffer of Na 2 HPO 4 (Disodium phosphate) and Na 2 CO 3 (Sodium carbonate).
  • the buffer of the second solution may be a mixture of Na 2 HPO 4 and Na 2 CO 3 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 5:5 to 1:9.
  • the pharmaceutical composition of the present invention can be used for tumor growth inhibition.
  • the hydrogel of the present invention itself has an anticancer effect and exhibits a tumor growth inhibitory effect. Specifically, it was observed that when the hydrogel of the present invention is applied to a tumor, physical pressure is applied during the initial growth of the tumor to suppress the growth of the tumor. Therefore, since the hydrogel of the present invention has a chemical inhibitory effect of an anticancer agent by adding a drug as well as such a physical tumor growth inhibitory effect, as a result, it can exhibit an effective anticancer effect.
  • the hydrogel of the present invention may be attached to the surrounding tissues of the tumor.
  • the hydrogel of the present invention may be used in the form of a sealant on the site where the tumor is incised.
  • the pharmaceutical composition of the present invention may additionally carry a drug.
  • the first solution and/or the second solution may additionally contain a drug, and more specifically, both the first solution and the second solution may additionally contain a drug.
  • the drug may be at least one selected from the group consisting of anticancer agents, antibiotics, and analgesics.
  • the anticancer agent is at least one selected from the group consisting of Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin, and Cyclophosphamide;
  • the antibiotic is at least one selected from the group consisting of Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin and Ciprofloxacin;
  • the analgesic may be at least one selected from the group consisting of Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine, and Articaine.
  • the first solution and the second solution may each further contain an anticancer agent.
  • the first solution may contain Paclitaxel, Docetaxel, or a mixture thereof, and the second solution may contain Gemcitabine.
  • the first solution of the present invention contains the ⁇ -polyglutamic acid derivative of Formula 1.
  • the ⁇ -polyglutamic acid derivative of Formula 1 is disclosed in Korean Patent Application Publication No. 10-2013-0078549, which is a prior patent document of the present applicant.
  • the ⁇ -polyglutamic acid derivative of Formula 1 includes (a) a first step of reacting at least a part of the carboxy group of ⁇ -polyglutamic acid with a lower alkanolamine having 1 to 5 carbon atoms to form a ⁇ -polyglutamic acid-alkanolamine; (b) the hydroxy group of the ⁇ -polyglutamic acid-alkanolamine, consisting of an anhydride of an acid selected from the group consisting of glutaric acid and succinic acid, or 1-halo valeric acid, 1-halopropionic acid, and 1-halo methylcarboxylic acid A second step of forming a carboxy terminal into which an alkyl group is introduced by reacting with 1-halo alkanoic acid selected from the group; And (c) reacting the formed carboxy terminal with N-hydroxysuccinimide (NHS) or N-hydroxysulfosuccinimide to form a ⁇ -polyglutamic acid derivative in which at least
  • the ⁇ -polyglutamic acid derivative of Formula 1 is, depending on the type of the introduced alkyl group, that is, according to the definition of the substituent at the -(CO)b-(R)c-CO- site, succinimidyl valerate (SVA : -CH 2 CH 2 CH 2 CH 2 -CO-O-succinimide), Succinimidyl Glutarate (SG: -CO-CH 2 CH 2 CH 2 -CO-O-succinimide) , Succinimdyl Propionate (SPA: -CH 2 CH 2 -CO-O-succinimide), Succinimidyl Succinate (SS: -CO-CH 2 CH 2 -CO-O- Succinimide), and Succinimidyl Carboxymethylated (SCM: -CH 2 -CO-O-succinimide).
  • the ⁇ -polyglutamic acid derivative of Formula 1 contained in the first solution may be succinimidyl succinyl polyglutamic acid (SSPGA) having the following structure:
  • the first solution when the SSPGA is included in the first solution, the first solution is also referred to as “SSPGA solution” or “SSPGA buffer”. In the examples to be described later, the case where the SSPGA solution is used as the first solution is illustrated.
  • the concentration of the ⁇ -polyglutamic acid derivative of Formula 1 in the first solution may be 3 to 20% (w/v), preferably 5 to 15% (w/v).
  • the second solution of the present invention contains a hydrophilic substance having at least one selected from the group consisting of an amine group (-NH 2 ), a thiol group (-SH), and a hydroxy group (-OH), which are nucleophilic functional groups.
  • the hydrophilic material may have two or more nucleophilic functional groups selected from the group consisting of an amine group, a thiol group, and a hydroxy group.
  • the hydrophilic material is a poly(ethylene glycol) (PEG) derivative having two or more arms (multi-arm), poly(vinyl alcohol) (PVA), poly(ethylene imine) (PEI), poly(lysine) It may be one or more selected from the group consisting of (PL), trilysine amine, and poly(allylamine) (PAA).
  • PEG poly(ethylene glycol)
  • PVA poly(vinyl alcohol)
  • PEI poly(ethylene imine)
  • PAA poly(allylamine)
  • the hydrophilic material is multi-arm PEG, PEI or trilysine amine.
  • such a hydrophilic material is a polyethylene glycol-based polymer
  • the polyethylene glycol-based polymer is a polyethylene glycol repeating unit is bonded to each hydroxy group of a polyhydric alcohol having a dihydric or higher, preferably 2 to 12, amine group at its end.
  • a thiol group or a hydroxy group may have a bonded structure.
  • such a polyethylene glycol-based polymer may be represented by the following formula (2).
  • I is a radical derived from a dihydric polyhydric alcohol
  • X is an amine group, a thiol group, or a hydroxy group
  • n 19 to 170
  • n is an integer of 2 to 12, and is the same as the number of hydroxy groups of the polyhydric alcohol from which I is derived.
  • I in Formula 2 include diols such as ethylene glycol, propandiol, butandiol, pentandiol, and hexanediol; Or glycerol, erythritol, thritol, pentaerythritol, xylitol, adonitol, sorbitol, mannitol palatinose (palatinose), maltose monohydrate (maltose monohydrate) or maltitol (maltitol), such as disaccharides and trisaccharides such as D-raffinose pentahydrate (D-raffinose pentahydrate) selected from 3 to 12-valent polyol Can be mentioned. More specifically, I may be a radical derived from a 4 to 12 polyhydric alcohol.
  • polyethylene glycol-based polymers falling within the scope of Formula 2 include polymers in which a polyethylene glycol repeating unit having a terminal nucleophilic functional group is bonded to a radical derived from pentaerythritol or sorbitol, for example, the following Formula 3 Or the polymer of 4 can be mentioned.
  • X represents an amine group, a thiol group, or a hydroxy group, and n is 19 to 170.
  • the activated ⁇ -polyglutamic acid derivative of Formula 1 can form an amide bond, a thioamide bond, or an ester bond. And, by forming a crosslinked structure from this, a crosslinked product and a hydrogel having a three-dimensional network structure can be formed.
  • this polyethylene glycol-based polymer causes a rapid crosslinking reaction with the activated ⁇ -polyglutamic acid derivative, thereby enabling the provision of a hydrogel having a short gelation time.
  • the polyethylene glycol-based polymer may be 4arm-PEG-thiol (4PEGSH), which has four arms and a thiol group at each end.
  • 4PEGSH 4arm-PEG-thiol
  • the second solution when 4PEGSH is included in the second solution, the second solution is also referred to as “4PEGSH solution” or “4PEGSH buffer”. In the examples to be described later, a case where 4PEGSH solution is used as the second solution is illustrated.
  • the concentration of the hydrophilic material in the second solution may be 3 to 30% (w/v), and preferably 10 to 20% (w/v).
  • non-toxic ones such as distilled water, physiological saline, sodium hydrogen carbonate (NaHCO 3 ), boric acid, and a buffer such as phosphoric acid may be used.
  • the mixing ratio of the first solution and the second solution may be 9:1 to 1:9, but preferably, it may be prepared by mixing in a ratio of 1:2 to 2:1.
  • the pH after mixing is important, and when the final pH changes according to the mixing ratio, the concentration of the buffer can be changed to adjust the reactivity.
  • the first solution and the second solution may be a buffer (buffer).
  • the pH of the first solution may be in the range of 5-6
  • the pH of the second solution may be in the range of 10-11.
  • the pH may be in the range of 5 to 9.
  • the buffer is distilled water, NaCl (Sodium chloride), KCl (Potassium chloride), NaH 2 PO 4 (Monosodium phosphate), Na 2 HPO 4 (Disodium phosphate), KH 2 PO 4 (Monopotassium phosphate), Na 2 It may be an aqueous solution in which at least one selected from the group consisting of CO 3 (Sodium carbonate), HCl (Hydrochloric acid), Borate, MES, Tris, and HEPES is dissolved.
  • the buffer in the solvent affects the gelation time. That is, depending on the type of buffer, the gelation reaction may or may not occur, and the gelation time can be adjusted quickly or slowly.
  • the buffer should be made using a salt having a pKa similar to the pH of each polymer of the first solution and the second solution, and the buffering effect is maximized at that time, helping to reduce the decrease in the activity of the ⁇ -polyglutamic acid derivative activated in the aqueous solution. Can give.
  • a sodium phosphate buffer may be used as a buffer to prepare the first solution, and may be a mixture of different types of sodium phosphate buffers.
  • a mixing buffer of sodium phosphate and sodium carbonate may be used.
  • the buffer of the first solution may be a mixed buffer of NaH 2 PO 4 (Monosodium phosphate) and Na 2 HPO 4 (Disodium phosphate).
  • the buffer of the first solution may be a mixture of NaH 2 PO 4 and Na 2 HPO 4 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 9:1 to 5:5.
  • the buffer of the second solution may be a mixed buffer of Na 2 HPO 4 (Disodium phosphate) and Na 2 CO 3 (Sodium carbonate).
  • the buffer of the second solution may be a mixture of Na 2 HPO 4 and Na 2 CO 3 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 5:5 to 1:9.
  • the buffer of the first solution is preferably 0.01 mol to 0.3 mol, more preferably can be used in a concentration of 0.05 mol to 0.2 mol
  • the buffer of the second solution is preferably 0.01 mol to 0.5 mol, more preferably It can be used in a concentration of 0.1 mol to 0.3 mol.
  • a drug that can be mixed can be used by selecting a drug that is not reactive with a substance dissolved in the first solution or the second solution.
  • a surfactant e.g. mPEG-PLA, Sodium dodecyl sulfate, Tween 80, etc. may be used.
  • the reaction rate of the hydrogel may increase or decrease.
  • the buffer composition of the first solution or the second solution to control the buffering effect of the buffer, it is possible to minimize the change in the gel formation time of the hydrogel by the drug.
  • hydrogel as used herein may be defined to mean a swellable polymer matrix (support) containing water, and may have a crosslinked structure including a covalent bond or a non-covalent bond.
  • the hydrogel absorbs water through a three-dimensional network structure composed of the crosslinked structure, and may exhibit elasticity according to the degree of crosslinking of the three-dimensional network.
  • the polymer of the first solution and the polymer of the second solution react to form a hydrogel in real time.
  • the drug is mixed in the step of preparing the first solution and the second solution.
  • an amide, thioamide, or ester bond is formed between the activated carboxyl group (succinimide ester group, etc.) of the ⁇ polyglutamic acid derivative and the nucleophilic functional group, which becomes a crosslinking point.
  • a hydrogel having a three-dimensional network structure may be formed.
  • the NHS functional group of SSPGA and the thiol functional group of 4arm-PEG-thiol (4PEGSH) are chemically reacted to prepare a hydrogel. . Since such a reaction reacts rapidly under an appropriate pH condition, it is possible to prepare a hydrogel that is formed in situ in real time.
  • the number of NHS functional groups introduced into SSPGA is more than the number of thiol functional groups of 4PEGSH, the residual NHS functional groups of SSPGA that did not participate in the hydrogel reaction even if the hydrogel formation reaction occurs are functional groups (Amine groups, Thiol Group, Hydroxyl group) and chemically form a covalent bond (see FIG. 1). Since the hydrogel formed by this covalent bond shows strong adhesion to the tissue, spraying a mixed solution of two polymers on the tissue surface can serve as a sealant capable of performing a sealing function.
  • cross-linking occurs by bonding between mutually reacting polymer chains having at least two or more functional groups, and at least one of the polymers forms a covalent bond with the tissue surface at the same time as the cross-linking reaction.
  • the preferred time until the two mixed solutions form a gel may vary slightly depending on the application, but preferably within 10 minutes, for example, within 2 minutes, within 1 minute, within 30 seconds, and within 20 seconds. , Within 10 seconds, within 5 seconds, within 3 seconds, preferably within 1 second to 3 seconds. If the gelation time is less than 1 second, smooth application may be difficult due to clogging of the injection needle or spray tip, and since there is not enough time for each component to be mixed, it is difficult to form a non-uniform gel or to form a covalent bond with the tissue surface. There is a risk of this lowering.
  • the gelation time is too long, it may flow into a solution state before the gel is formed at the application site, and thus the usability is insufficient and it is not easy to accurately apply the desired amount. Therefore, it is preferable that it is 1 second or longer, particularly 1 second or more and 2 seconds or less, until it penetrates into living tissues and maintains high adhesion and burst strength.
  • the hydrogel of the present invention may have the following physical property conditions.
  • Gelation time within 10 seconds, for example, 1-2 seconds. If the gelation time is too fast, it hardens before it touches the tissue surface, and if it exceeds 2 seconds, even if it is sprayed on the tissue, it flows down, making it impossible to apply a quantitative amount.
  • Burst Pressure 25 to 500 mmHg, more preferably 50 to 250 mmHg. If it is lower than 50mmHg, it is easily crushed by external damage, and if it is higher than 250mmHg, the flexibility is greatly reduced.
  • Sustained-release drug release period 7 days or more, more preferably 14 days or more. If the drug release period is short within 7 days, it is difficult to show an effective drug effect against long-term tumors.
  • the drug contained in the first solution is a drug that is not reactive with the polymer (eg, SSPGA) of the first solution, and a drug that does not have an amine group, a thiol group, or a hydroxyl group, which is a nucleophilic functional group, may be used.
  • Hydrophilic drugs are convenient to use because they have good solubility in nature, but depending on circumstances, poorly soluble drugs and surfactants capable of dissolving them can be used after dissolving in the first solution.
  • the drug contained in the second solution should be a drug that does not cause an oxidation reaction with the polymer of the second solution (eg, 4PEGSH).
  • the stability of the second solution is degraded because it causes a crosslinking reaction by itself through oxidation.
  • the dissolution concentration of the drug in the first solution should be set to a concentration capable of exhibiting an effective drug effect and a concentration not exhibiting toxicity. It can be used at a concentration of 1-30% (w/v) of the first solution, and preferably dissolved in a concentration of 5-15% (w/v).
  • the concentration of the buffer may be adjusted to buffer such changes.
  • the dissolution concentration of the drug in the second solution should be set to a concentration that can exhibit an effective drug effect and a concentration that does not exhibit toxicity. It can be used at a concentration of 1-30% (w/v) of the second solution, and preferably dissolved in a concentration of 5-15% (w/v).
  • concentration of the buffer may be adjusted to buffer such changes.
  • the drug may be at least one selected from the group consisting of anticancer agents, antibiotics, and analgesics.
  • the anticancer agent is at least one selected from the group consisting of Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin, and Cyclophosphamide;
  • the antibiotic is at least one selected from the group consisting of Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin and Ciprofloxacin;
  • the analgesic may be at least one selected from the group consisting of Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine, and Articaine.
  • the first solution and the second solution may each further contain an anticancer agent.
  • the first solution may contain Paclitaxel, Docetaxel, or a mixture thereof, and the second solution may contain Gemcitabine.
  • mixing and using of the first solution and the second solution may be carried out by various methods.
  • mixing can be carried out by coating one of the undiluted solutions of the first solution and the second solution on the surface of the adherend and then applying the other solution, or the first solution and the second solution are mixed with a double barrel syringe ( It can also be applied by mixing in an applicator such as a double barrel syringe).
  • the first solution and the second solution are mixed through a spray-attached connector and sprayed onto a tissue surface such as a tumor, the two solutions immediately react at the tissue surface, and the drug is loaded in a form attached to the tissue.
  • a hydrogel is formed.
  • a first solution was prepared by dissolving 7 w/v% of SSPGA and 14 ⁇ 32 w/v% of Genexol PM (Paclitaxel drug) in 0.15M SSPGA buffer.
  • 12 w/v% of 4PEGSH was dissolved in 0.3M PEG buffer to prepare a second solution.
  • the first solution and the second solution were mixed in a volume of 1:1 to prepare a sealant containing Genexol PM.
  • Table 1 below shows the composition and buffer concentration of SSPGA and 4PEGSH buffer.
  • the gelation time 200 ⁇ L of the first solution was added to a 96 well plate, and then a magnetic spin bar was added, and 200 ⁇ L of the second solution was added while the magnetic spin bar was rotated at 200 rpm. After the second solution was added, the time taken until the magnetic spin bar could no longer rotate was defined as the gelation time.
  • a first solution was prepared by dissolving 7 w/v% of SSPGA and 20-30 w/v% of Nanoxel M (Docetaxel's raw material drug) in 0.15 M SSPGA buffer.
  • 12% of 4PEGSH was dissolved in 0.3M PEG buffer to prepare a second solution, and a sealant containing Nanoxel M was prepared by mixing the first solution and the second solution in a volume of 1:1.
  • Example 1-2 The experiment was performed in the same manner as in Example 1-2 in order to confirm the gelling properties of the sealant according to the content of Nanoxel M in the first solution.
  • the contents of each component used in the first solution and the second solution and the measured gelling properties are shown in Table 3 below.
  • Nanoxel M As shown in Table 3, up to 24% of Nanoxel M concentration was transparently dissolved in 0.15M SSPGA buffer, but at a concentration higher than that, it was not completely dissolved, resulting in a precipitate. In addition, since Nanoxel M does not affect the pH change of the buffer, it was confirmed that the gelation time formed as fast as 1 second in all conditions regardless of the drug content.
  • Example 3-1 Manufacture of sealant containing gemja
  • a first solution was prepared by dissolving 7 w/v% of SSPGA in 0.15M SSPGA buffer. Subsequently, 12 w/v% of 4PEGSH and 6-24 w/v% of Gemzar (Gemcitabine drug) were dissolved in 0.3-0.6M PEG buffer to prepare a second solution. Next, the first solution and the second solution were mixed in a volume of 1:1 to prepare a sealant containing gemja.
  • Example 3-2 Gelling properties of sealants containing gemja
  • Example 1-2 The experiment was performed in the same manner as in Example 1-2 in order to confirm the gelling properties of the sealant according to the content of gemza, PEG buffer, or SSPGA of the second solution.
  • the contents of each component used in the first solution and the second solution and the measured gelation properties are shown in Table 4 below.
  • a first solution was prepared by dissolving 7-10 w/v% of SSPGA and 8-24 w/v% of Genexol PM in 0.15M SSPGA buffer. Then, 4PEGSH 12-18 w/v% and Gemza 6-30 w/v% were dissolved in 0.3-0.7M PEG buffer to prepare a second solution, and the first solution and the second solution were prepared in a volume of 1:1. By mixing, a sealant containing both Genexol PM and Gemja was prepared.
  • Example 1-2 The experiment was performed in the same manner as in Example 1-2 in order to confirm the gelation characteristics of the sealant according to the content of Genexol PM in the first solution, the content of gemza in the second solution, and the content of PEG buffer or SSPGA.
  • the content of each component used in the first solution and the second solution and the measured gelling properties are shown in Table 5 below and FIG. 2.
  • the storage modulus (G') and loss modulus (G'') changes were confirmed by setting the conditions of the rotational viscometer analysis as follows. At this time, the first solution was first loaded onto the geometry and analysis was started.After about 100 seconds, the second solution was injected to check the numerical change of G'and G''. It was defined as the time point of sol-gel change (gelation time).
  • Figure 2 shows a first solution mixed with 8 w/v% of SSPGA 7 w/v%/Genexol PM (paclitaxel), 12 w/v% of 4PEGSH, and 10 w/v% of Gemja reacted with each other for several seconds ( 1 ⁇ 2 seconds) shows that hydrogel is formed.
  • the results shown in FIG. 2 indicate that the 0.5M 4PEGSH buffer sufficiently exhibited a buffering effect under the current drug content condition to sufficiently buffer the pH change caused by the gemza. This shows that when sprayed from the tumor surface with the composition, a hydrogel can be formed quickly.
  • a first solution was prepared by dissolving SSPGA 5-9 w/v% and Genexol PM 8 w/v% in 0.15 M SSPGA buffer. Then, 4PEGSH 8-16 w/v% and Gemja 10 w/v% were dissolved in 0.5M PEG buffer to prepare a second solution, and the first solution and the second solution were mixed in 1:1 volume to prepare Genexol PM. A sealant containing and gemja was prepared.
  • the gelation time was measured in the same manner as in Example 1-2.
  • Burst strength was measured according to ASTM2392-04 (Standard Test Method for Burst Strength of Surgical Sealants).
  • the collagen casing was cut into a size of 3 cm ⁇ 3 cm, washed twice with distilled water and ethanol, respectively, to remove glycerin on the surface and used as a tissue replacement.
  • the first solution and the second solution were put into a double barrel syringe, and then sprayed to a thickness of about 2 mm through a spray tip in the casing hole. After coating, it was allowed to stand for 5 minutes, hardened, and fixed to a burst strength meter, and water was flowed at a rate of 2 mL/min to measure the water pressure applied at this time. At this time, the highest hydraulic pressure when the cured gel breaks or falls from the collagen casing was defined as the burst pressure.
  • the disintegration time was measured as follows. First, 0.3 g of hydrogel was put in 10 mL PBS buffer (pH 7.4), immersed in a constant temperature bath at 37° C. and 50 rpm for 24 hours, and then lightly wiped off the moisture on the surface, and the swelling degree (%) after immersion was calculated as follows. Samples were taken at regular time intervals to calculate the degree of swelling, and the experiment was stopped at a point in time when no more samples were recovered (ie, all samples were decomposed), and this was defined as the decomposition time.
  • Swelling degree (%) (weight of hydrogel after immersion)/(weight of initial hydrogel)*100%
  • pancreatic cancer orthotopic mouse model An experiment was performed to evaluate the anticancer effect of the drug-carrying sealant on tumors through a pancreatic cancer orthotopic mouse model.
  • a stereotactic pancreatic cancer transplant mouse model was derived. Specifically, human-derived pancreatic cancer cell line (AsPC-1) was cultured and prepared at a concentration of 6 ⁇ 10 6 /mL. After 45 6-week-old female nude mice were anesthetized with ketamine and lumpun, the left abdomen of the mouse was incised about 2 cm vertically, and the spleen and pancreas were exposed.
  • AsPC-1 human-derived pancreatic cancer cell line
  • pancreas and spleen were placed in place and abdominal suture was performed using 5-0 sutures.
  • the untreated group in Table 7 did not treat anything, and in the positive control group, Genexol PM was injected once intravenously 2-3 days after the tumor volume measurement day, and gemza was injected intravenously 3 times at 3-4 days intervals. .
  • test group G2 only sealant was applied to the tumor, and in test group G3, a sealant loaded with Gemza and Genexol PM was applied to the tumor. After the sealant was hardened, the pancreas and tumor were placed in place, and abdominal sutures were performed using 5-0 sutures.
  • mice The clinical symptoms and death of the mice in the untreated group, test group G1, test group G2, and positive control group of Table 6 were checked every day, and weight, tumor volume (TV), relative tumor volume (RV), Tumor Growth Inhibition rate (TGI) and tumor metastasis criteria were measured, and the results are shown in FIGS. 4 to 6.
  • TGI Tumor Growth Inhibition rate
  • RV TVn/TV0 (TVn: tumor volume at the end of the experiment / TV0: tumor volume at the day of drug administration)
  • TGI (%) (1-RTVT/RTVC) ⁇ 100 (RTVT: RTV of experimental group / RTVC: RTV of non-treatment group)
  • body weight was recovered from 20 days after drug administration, and in the case of G3, there was a temporary weight loss from the day after drug administration, but all recovered within 10 days.
  • the test group G3 significantly increased the tumor growth inhibition rate by about 57% compared to the untreated group G1 (P ⁇ 0.01), which was similar to that of the positive control group G4.
  • the ratio of tumor weight to body weight was also significantly decreased in the test group G3 compared to the untreated group G1 (P ⁇ 0.05).
  • the drug-carrying sealant exhibited excellent tumor growth inhibitory effect even with a single administration as well as low systemic toxicity (no weight loss phenomenon) compared to intravenous administration. Furthermore, it was confirmed that the sealant alone group also exhibited a certain level of tumor growth inhibitory effect, and thus tumor growth was inhibited by simply applying the sealant to the tumor, and anticancer effect was present.
  • the drug-carrying sealant has not only a physical tumor growth inhibitory effect, but also a chemical inhibitory effect of an anticancer agent, resulting in an effective anticancer effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a drug-loaded matrix that can attach to the surface of a tumor and, specifically, to a drug-loaded hydrogel formed in real time.

Description

약물이 담지된 실시간 형성 수화겔Real-time formation hydrogel containing drug
본 발명은 종앙 표면에 부착될 수 있는 약물 담지 지지체에 관한 것으로, 구체적으로 약물이 담지된 실시간 형성 수화겔에 관한 것이다.The present invention relates to a drug-carrying support that can be attached to the seed surface, and more specifically, to a real-time hydrogel formed with a drug.
일반적으로 암에 걸린 환자를 치료하기 위해 경구제나 주사제 형태로 약물을 처방한다. 이와 같은 치료용법은 투여가 간단하다는 장점이 있으나 약물이 전신을 거쳐 종양으로 전달되기 때문에 정상적인 조직에도 악영향을 미치는 부작용이 있을 뿐만 아니라 투여한 용량에 비해 종양으로 전달되는 약물 함량이 낮아 유효적인 효과를 나타내기 위하여 과량의 약물이 투여되는데 이러한 이유로 환자에게 나타나는 부작용(예. 전신 독성)이 크다는 문제점이 있다. 뿐만 아니라 지속적으로 약물의 유효적인 효과를 보기 위해서는 반복적으로 약물 투여해야하나 이는 환자에게 반복투여에 의한 불편함을 초래하는 단점이 있다.In general, drugs are prescribed in the form of oral or injection to treat patients with cancer. Such a therapeutic method has the advantage of being simple to administer, but since the drug is delivered to the tumor via the whole body, it has side effects that adversely affect normal tissues, and has an effective effect due to the low drug content delivered to the tumor compared to the administered dose. In order to indicate that an excessive amount of drugs is administered, there is a problem that side effects (eg systemic toxicity) appearing to patients are large for this reason. In addition, in order to continuously see the effective effect of the drug, it is necessary to repeatedly administer the drug, but this has the disadvantage of causing inconvenience to the patient due to repeated administration.
이러한 문제점을 해결하기 위해 약물을 담지하고 있는 지지체(matrix)를 종양에 국부적으로 처치함으로써 일반적인 화학용법에 의해 발생하는 부작용을 최소화하고 약물이 지지체에서 서방적으로 방출되도록 설계함으로써 반복투여로 인한 불편함을 최소화할 수 있다. 하지만, 이와 같은 약물 담지 지지체는 종양과의 접착력이 없기 때문에 피하삽입과 같은 형태로만 활용 가능하고, 따라서 그 활용가능한 범위가 좁다. 이에, 종래의 발명이 본질적으로 해결하지 못한 단점을 극복할 수 있는 향상된 형태의 약물 전달체의 개발이 필요한 실정이다.In order to solve this problem, the drug-carrying matrix is locally treated on the tumor to minimize side effects caused by general chemical use, and the drug is designed to be released from the support in a sustained manner, resulting in inconvenience due to repeated administration. Can be minimized. However, since such a drug-carrying scaffold has no adhesion to a tumor, it can be used only in a form such as subcutaneous implantation, and thus, its available range is narrow. Accordingly, there is a need for development of an improved drug delivery system capable of overcoming the disadvantages that the conventional invention has not essentially solved.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(1) 한국 등록특허 제10-1901649호, “서방형 하이드로겔 복합체의 제조방법”(1) Korean Patent Registration No. 10-1901649, “Method of manufacturing sustained-release hydrogel composite”
알지네이트 고분자를 함유하는 제1용액; 및 알지네이트를 가교시킬 수 있는 칼슘 이온과 약물(Doxorubicin)을 포함하는 제2용액을 1:1로 반응시켜 Doxorubicin을 함유하는 약물 방출 수화겔에 관한 것으로, 2개의 용액을 혼합하여 약물을 담지하는 수화겔을 제조하여 시간 경과에 따른 약물의 서방적 방출 거동을 확인하고 있다.A first solution containing an alginate polymer; And it relates to a drug-releasing hydrogel containing Doxorubicin by reacting a second solution containing a calcium ion capable of crosslinking alginate and a drug (Doxorubicin) in a 1:1 ratio, wherein a hydrogel for carrying a drug by mixing two solutions It is manufactured and confirmed the behavior of sustained-release drug release over time.
그러나 수화겔이 즉시 형성되지 않기 때문에 이미 만들어진 형태로만 활용 가능하고, 즉, 실시간으로 수화겔이 형성되지 않으며, 칼슘 이온에 의한 가교반응은 알지네이트에만 선택적으로 작용하기 때문에 조직과 별도로 반응하지 않아 접착성을 나타내지 않는다.However, since the hydrogel is not formed immediately, it can be used only in the form already made, i.e., the hydrogel is not formed in real time, and the crosslinking reaction by calcium ions acts selectively only on alginate, so it does not react separately with the tissue and does not show adhesion. Does not.
(2) 한국 특허공개번호 제10-2010-0095940호, “파클리탁셀 적재 공액화 리놀레산 폴록사머 하이드로겔 약물 전달 장치”(2) Korean Patent Publication No. 10-2010-0095940, “Paclitaxel-loaded conjugated linoleic acid poloxamer hydrogel drug delivery device”
일정 온도 이상일 때 용액(sol) 상태에서 겔(gel) 상태로 변화하는 온도감응성 고분자인 공액화 리놀레산(CLA)-결합 폴록사머를 약물 전달체로 사용하여, 약물(항암제)을 담지한 상태에서 조직(예를 들어, 종양)에 뿌렸을 때 수화겔이 형성이 될 수 있는 수화겔 약물 전달 장치를 개시하고 있다.Conjugated linoleic acid (CLA)-conjugated poloxamer, a temperature-sensitive polymer that changes from a solution (sol) state to a gel state when the temperature is above a certain temperature, is used as a drug delivery vehicle, and the tissue ( For example, a hydrogel drug delivery device capable of forming a hydrogel when sprayed on a tumor) is disclosed.
그러나 온도감응성 고분자로 만들어진 수화겔은 겔 형성 시 조직과 별도의 반응을 하지 않기 때문에 조직(종양)과의 접착력이 매우 낮다. 세포 실험을 통해 항종양 효과를 확인하였으나 실제로는 겔 형성 속도가 느리기 때문에(수십초 소요) 종양에 뿌려지더라도 대부분 흘러내릴 것으로 예상되며 이로 인해 유효적인 항암 효과가 낮게 나타날 것으로 예상된다.However, since hydrogels made of temperature-sensitive polymers do not react separately with tissues during gel formation, their adhesion to tissues (tumors) is very low. The antitumor effect was confirmed through cell experiments, but in fact, since the gel formation rate is slow (takes tens of seconds), it is expected that most of it will flow down even if it is sprayed on the tumor, which is expected to show low effective anticancer effect.
(3) 미국 등록특허 US 8,003,125호, “INJECTABLE DRUG DELIVERY SYSTEMS WITH CYCLODEXTRIN-POLYMER BASED HYDROGELS”(3) US Patent No. 8,003,125, “INJECTABLE DRUG DELIVERY SYSTEMS WITH CYCLODEXTRIN-POLYMER BASED HYDROGELS”
PEG와 물리적으로 결합한 cyclodextrin 기반 수화겔을 약물 담지 지지체로 사용한 발명에 관한 것으로, 물리적 가교결합은 화학적 가교결합과는 다르게 외력이 가해지면 겔(gel) 상태에서 용액(sol) 상태로 일시적으로 변화하고 외력이 사라지면 다시 겔(gel) 상태로 변화하는 thixotropic한 성질을 갖는데, cyclodextrin 기반 수화겔의 이러한 구조적 특성을 활용하여 시린지에 약물이 담지된 겔 상태의 충진된 물질을 시린지 플런저로 외력을 가하여 용액(sol) 상태로 만든 후 조직에 분사되어 다시 겔(gel)이 형성되도록 설계하고 있다.It relates to the invention using a cyclodextrin-based hydrogel physically bound to PEG as a drug-bearing support. Unlike chemical crosslinking, when an external force is applied, physical crosslinking temporarily changes from a gel state to a solution (sol) state, and external force When disappears, it has a thixotropic property that changes back to a gel state.Using this structural property of a cyclodextrin-based hydrogel, a gel filled material loaded with a drug in a syringe is applied with an external force with a syringe plunger to give a solution (sol). After making it into a state, it is designed to be sprayed onto the tissue to form a gel again.
그러나 thixotropic한 성질을 갖는 수화겔은 물리적 가교결합으로 이루어지기 때문에 조직과의 접착력이 매우 낮다.However, since the hydrogel with thixotropic properties is formed by physical crosslinking, the adhesion to the tissue is very low.
(4) 미국 특허공개번호 US 2013/0022545호, “DRUG DELIVERY SYSTEM FOR TREATMENT OF LIVER CANCER BASED ON INTERVENTIONAL INJECTION OF TEMPERATURE AND PH-SENSITIVE HYDROGEL(4) US Patent Publication No. US 2013/0022545, “DRUG DELIVERY SYSTEM FOR TREATMENT OF LIVER CANCER BASED ON INTERVENTIONAL INJECTION OF TEMPERATURE AND PH-SENSITIVE HYDROGEL
온도 및 pH에 의해 sol-gel 변화가 발생하는 poly(amino ester urethane)-based block copolymer (PEG-PAEU) 고분자를 활용하여 약물을 담지하고 있는 PEG-PAEU 용액이 카테터를 통해 간 종양에 도포되었을 때 온도 및 pH 환경 변화에 의해 겔(gel)이 되어 종양 표면에 도포할 수 있는 약물 담지 수화겔을 개시하고 있다.When a PEG-PAEU solution carrying a drug is applied to a liver tumor through a catheter using a poly(amino ester urethane)-based block copolymer (PEG-PAEU) polymer that changes sol-gel by temperature and pH Disclosed is a drug-carrying hydrogel that can be applied to a tumor surface as a gel by changes in temperature and pH environment.
그러나 위 선행문헌과 마찬가지로 물리적 가교결합에 의해 수화겔을 형성하기 때문에 조직(종양)과의 접착력이 매우 낮다.However, as in the preceding literature, since the hydrogel is formed by physical crosslinking, the adhesion to the tissue (tumor) is very low.
(5) 미국 등록특허 US 9,125,814, “BIOCOMPATIBLE CROSSLINKED HYDROGELS, DRUG-LOADED HYDROGELS AND METHODS OF USING THE SAME”(5) US registered patent US 9,125,814, “BIOCOMPATIBLE CROSSLINKED HYDROGELS, DRUG-LOADED HYDROGELS AND METHODS OF USING THE SAME”
친핵체와 반응 가능한 숙신이미드 작용기가 있는 PEG 및 약물(진통제)이 동시에 용해된 제1용액; 및 상기 제1용액과 반응 가능한 친핵성 작용기를 갖는 PEG를 함유하는 제2용액을 반응시켜 실시간으로 수화겔을 형성하는, 약물을 담지하는 수화겔을 개시하고 있다.A first solution in which PEG having a succinimide functional group capable of reacting with a nucleophile and a drug (analgesic) are simultaneously dissolved; And a hydrogel carrying a drug, which reacts with the first solution and a second solution containing PEG having a reactive nucleophilic functional group to form a hydrogel in real time.
이와 같이, 종래의 기술은 약물을 담지하고 있는 수화겔을 조직(예를 들어, 종양)에 도포하더라도 조직과의 별도의 접착력(화학적 결합)이 없었기 때문에 쉽게 탈착되어 지속적으로 약물을 전달해줄 수 없는 문제점이 있었다.As such, the conventional technology is a problem in that even if a hydrogel containing a drug is applied to a tissue (for example, a tumor), since there is no separate adhesion (chemical bond) with the tissue, it is easily detached and cannot continuously deliver the drug. There was this.
이에, 본 발명은 조직과의 접착력이 우수한, 실시간(in situ)으로 조직 표면에 부착될 수 있는 약물 담지 지지체를 제공하는 것을 그 기술적 과제로 한다.Accordingly, the present invention has a technical problem to provide a drug-carrying support that can be attached to a tissue surface in real time (in situ) with excellent adhesion to the tissue.
본 발명자들은 상기와 같은 과제를 해결하기 위하여 연구하였으며, 그 결과 (i) 하기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및The present inventors have studied to solve the above problems, and as a result (i) a first solution containing a γ-polyglutamic acid derivative of the following formula (1): and
[화학식 1][Formula 1]
Figure PCTKR2019003664-appb-I000001
Figure PCTKR2019003664-appb-I000001
상기 화학식 1에서,In Formula 1,
l, m 및 n의 총 합은 390 내지 15,500의 정수이고, 상기 l, m 및 n의 비율은 l : m : n = 0 내지 0.5 : 0.2 내지 0.5 : 0.2 내지 0.8이며;the total sum of l, m and n is an integer of 390 to 15,500, and the ratio of l, m and n is l:m:n = 0 to 0.5:0.2 to 0.5:0.2 to 0.8;
L은 링커이고;L is a linker;
M은 각각 독립적으로 H, 알칼리 금속 또는 알칼리 토금속이고; Each M is independently H, an alkali metal or an alkaline earth metal;
R은 CH2이고, R is CH 2 ,
b는 0 또는 1이고;b is 0 or 1;
c는 1 내지 5의 정수이고;c is an integer from 1 to 5;
(ii) 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합할 경우 형성되는 수화겔이 종양 표면 및 그 주변 조직에 우수한 접착력으로 부착되어 장기의 움직임에도 탈착되지 않고 장시간 동안 조직에 부착된 상태로 국부적으로 약물을 전달할 수 있고, 또한 수화겔에 담지된 약물의 일부가 초기에 방출되지 않고 수화겔에 갇힌 상태로 서서히 방출되어 서방형 약물 전달체로서 작용할 수 있음을 발견하고 본 발명을 완성하게 되었다.(ii) When a second solution containing a hydrophilic material having at least one nucleophilic functional group selected from the group consisting of amine, thiol and hydroxy groups is mixed, the hydrogel formed has excellent adhesion to the tumor surface and surrounding tissues. As it is attached to the body, it is not detached from the movement of the organs and can deliver the drug locally while attached to the tissue for a long time. Also, a part of the drug carried on the hydrogel is not released initially, but is gradually released while trapped in the hydrogel. It was discovered that it can act as a drug delivery system, and the present invention was completed.
따라서 본 발명은 (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔을 포함하는, 종양 표면 또는 주변 조직 부착용 약제학적 조성물을 제공한다.Accordingly, the present invention provides a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of (i) a γ-polyglutamic acid derivative of Formula 1 above: and (ii) an amine group, a thiol group, and a hydroxy group. It provides a pharmaceutical composition for adhering to a tumor surface or surrounding tissues, comprising a hydrogel formed by mixing a second solution containing a substance.
또한 본 발명은 (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔을 포함하는, 종양 표면 또는 주변 조직 부착용 약물 전달용 지지체를 제공한다.In addition, the present invention is (i) a first solution containing the γ-polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It provides a support for drug delivery for adhering to a tumor surface or surrounding tissues, including a hydrogel formed by mixing a second solution containing a substance.
또한 본 발명은 a. (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 친핵성 작용기인 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상을 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하는 단계; b. 상기 혼합물을 종양 표면에 도포하는 단계; 및 c. 상기 도포된 혼합물이 실시간으로(in situ) 수화겔을 형성하는 단계를 포함하는, 종양 성장 억제 방법을 제공한다.In addition, the present invention a. (i) a first solution containing the γ-polyglutamic acid derivative of Formula 1: and (ii) a hydrophilic material having at least one selected from the group consisting of an amine group, a thiol group, and a hydroxy group, which are nucleophilic functional groups. Mixing the second solution; b. Applying the mixture to the tumor surface; And c. It provides a method for inhibiting tumor growth, comprising the step of forming a hydrogel in which the applied mixture is in situ.
또한 본 발명은 (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔의 용도에 관한 것으로서, 구체적으로 종양 표면 또는 주변 조직 부착 용도, 종양 성장 억제 용도 및 약물 전달 지지체로서의 용도를 제공한다.In addition, the present invention is (i) a first solution containing the γ-polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It relates to a use of a hydrogel formed by mixing a second solution containing a substance, and specifically, provides a use for attaching to a tumor surface or surrounding tissues, for inhibiting tumor growth, and for a drug delivery support.
본 발명의 수화겔은 화학적인 결합으로 고정(접착)되어 있기 때문에 장기의 움직임에도 탈착되지 않고 장시간동안 조직에 부착된 상태로 국부적으로 약물을 전달할 수 있다.Since the hydrogel of the present invention is fixed (adhered) by a chemical bond, the drug can be delivered locally while being attached to the tissue for a long time without being detached from the movement of the organ.
또한 본 발명의 수화겔은 국부적으로 약물을 전달할 수 있기 때문에 전신독성이 경감되며 약물 용량을 적게 투여하더라도 유효적인 치료 효과를 나타낼 수 있다.In addition, since the hydrogel of the present invention can deliver a drug locally, systemic toxicity is reduced, and an effective therapeutic effect can be exhibited even if a small dose of the drug is administered.
또한 본 발명의 수화겔은 수화겔에 담지된 약물의 일부는 초기에 방출되지 않고 수화겔에 갇힌 상태로 서서히 방출되기 때문에 서방형 약물 제제로서 반복적인 약물 투여에 의한 불편함을 경감할 수 있다.In addition, in the hydrogel of the present invention, some of the drugs carried on the hydrogel are not initially released, but are slowly released while trapped in the hydrogel, so that discomfort caused by repeated drug administration as a sustained-release drug formulation can be alleviated.
또한 본 발명의 수화겔은 종양 표면에 분사되어 약물 전달체로 사용할 수 있을 뿐만 아니라 종양을 절개한 부위에 소량의 출혈이 발생한 경우 즉시 형성되는 수화겔은 실란트(sealant)로서 출혈(leak)을 막는 역할을 수행하는 동시에 절개부에 남아있는 잔존 종양세포를 제거하는 치료제로서 동시에 두 가지 기능을 수행하는 수술용 재료로 활용할 수 있다.In addition, the hydrogel of the present invention can be used as a drug delivery vehicle by spraying it on the surface of the tumor, and when a small amount of bleeding occurs in the incision site of the tumor, the hydrogel formed immediately serves to prevent bleeding as a sealant. At the same time, it can be used as a surgical material that performs two functions at the same time as a treatment to remove the remaining tumor cells remaining in the incision.
또한 놀랍게도 본 발명의 수화겔은 그 자체가 종양 성장 억제 효과를 나타낸다. 구체적으로, 본 발명의 수화겔을 종양에 도포하는 경우 종양 초기 성장 시 물리적인 압력을 가하여 종양의 성장을 억제하는 것으로 관찰되었다. 따라서 본 발명의 수화겔은 이러한 물리적인 종양 성장 억제 효과뿐만 아니라 항암제의 화학적인 억제효과를 동시에 가지고 있기 때문에 결과적으로 유효한 항암 효과를 나타낼 수 있다.In addition, surprisingly, the hydrogel of the present invention itself exhibits a tumor growth inhibitory effect. Specifically, it was observed that when the hydrogel of the present invention is applied to a tumor, physical pressure is applied during the initial growth of the tumor to suppress the growth of the tumor. Therefore, the hydrogel of the present invention can exhibit effective anti-cancer effect as a result, since it has both the physical tumor growth inhibitory effect as well as the chemical inhibitory effect of the anticancer agent.
도 1은 본 발명에 따른 약물 담지 수화겔의 췌장암 치료 응용 모식도를 나타낸다.1 shows a schematic diagram of the application of a drug-loaded hydrogel according to the present invention to treat pancreatic cancer.
도 2는 실시예 4에 따른, 약물 함유 실란트의 겔화 거동 그래프이다.2 is a graph of gelation behavior of the drug-containing sealant according to Example 4.
도 3은 실시예 6에 따른, 시간 경과에 따른 약물 담지 수화겔에서의 젬자(젬시타빈) 및 제넥솔PM(파클리탁셀) 누적 방출 그래프이다.3 is a graph of cumulative release of gemza (gemcitabine) and genexol PM (paclitaxel) in a drug-supported hydrogel over time according to Example 6.
도 4는 실시예 7에 따른, 각 그룹별 시간 경과에 따른 체중 변화 그래프를 나타낸다.4 is a graph showing a change in weight over time for each group according to Example 7.
도 5는 실시예 7에 따른, 각 군의 평균 초기대비 종양부피 그래프와 평균 종양성장 억제율 그래프를 나타낸다.5 shows a graph of an average initial vs. tumor volume and an average tumor growth inhibition rate of each group according to Example 7.
도 6은 실시예 7에 따른, 각 군의 평균 종양 전이등급 및 전이억제율 그래프를 나타낸다.6 is a graph showing the average tumor metastasis grade and metastasis inhibition rate of each group according to Example 7.
본 발명은 (i) 하기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및The present invention (i) a first solution containing a γ-polyglutamic acid derivative represented by the following formula (1): and
[화학식 1][Formula 1]
Figure PCTKR2019003664-appb-I000002
Figure PCTKR2019003664-appb-I000002
상기 화학식 1에서,In Formula 1,
l, m 및 n의 총 합은 390 내지 15,500의 정수이고, 상기 l, m 및 n의 비율은 l : m : n = 0 내지 0.5 : 0.2 내지 0.5 : 0.2 내지 0.8이며;the total sum of l, m and n is an integer of 390 to 15,500, and the ratio of l, m and n is l:m:n = 0 to 0.5:0.2 to 0.5:0.2 to 0.8;
L은 링커이고;L is a linker;
M은 각각 독립적으로 H, 알칼리 금속 또는 알칼리 토금속이고; Each M is independently H, an alkali metal or an alkaline earth metal;
R은 CH2이고, R is CH 2 ,
b는 0 또는 1이고;b is 0 or 1;
c는 1 내지 5의 정수이고;c is an integer from 1 to 5;
(ii) 친핵성 작용기인 아민기(-NH2), 티올기(-SH) 및 히드록시기(-OH)로 이루어진 군에서 선택되는 하나 이상을 보유하는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔을 포함하는, 종양 표면 또는 주변 조직 부착용 약제학적 조성물에 관한 것이다.(ii) Formed by mixing a second solution containing a hydrophilic substance having at least one selected from the group consisting of an amine group (-NH 2 ), a thiol group (-SH), and a hydroxy group (-OH), which are nucleophilic functional groups. It relates to a pharmaceutical composition for attaching to the tumor surface or surrounding tissues, including a hydrogel.
또한 본 발명은 (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔을 포함하는, 종양 표면 또는 주변 조직 부착용 약물 전달용 지지체에 관한 것이다.In addition, the present invention is (i) a first solution containing the γ-polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It relates to a support for drug delivery for adhering to a tumor surface or surrounding tissues, including a hydrogel formed by mixing a second solution containing a substance.
또한 본 발명은 a. (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 친핵성 작용기인 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상을 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하는 단계; b. 상기 혼합물을 종양 표면에 도포하는 단계; 및 c. 상기 도포된 혼합물이 실시간으로(in situ) 수화겔을 형성하는 단계를 포함하는, 종양 성장 억제 방법에 관한 것이다.In addition, the present invention a. (i) a first solution containing the γ-polyglutamic acid derivative of Formula 1: and (ii) a hydrophilic material having at least one selected from the group consisting of an amine group, a thiol group, and a hydroxy group, which are nucleophilic functional groups. Mixing the second solution; b. Applying the mixture to the tumor surface; And c. The applied mixture relates to a method for inhibiting tumor growth, comprising the step of forming a hydrogel in situ.
또한 본 발명은 (i) 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및 (ii) 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔의 용도에 관한 것으로서, 구체적으로 상기 수화겔의 종양 표면 또는 주변 조직 부착 용도, 종양 성장 억제 용도 및 약물 전달 지지체로서의 용도에 관한 것이다.In addition, the present invention is (i) a first solution containing the γ-polyglutamic acid derivative of Formula 1: and (ii) a hydrophilicity having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group. It relates to the use of a hydrogel formed by mixing a second solution containing a substance, and specifically, to the use of the hydrogel to adhere to the tumor surface or surrounding tissues, to inhibit tumor growth, and to use as a drug delivery support.
일 구체예에서, 상기 제1용액에 포함되는 화학식 1의 γ-폴리글루탐산 유도체에 있어서, L(링커)은 -HN-(R)a-O-로 표시될 수 있으며, 여기서 R은 CH2이고, a는 1 내지 5의 정수일 수 있다.In one embodiment, in the γ-polyglutamic acid derivative of Formula 1 contained in the first solution, L (linker) may be represented by -HN-(R)aO-, where R is CH 2 , and a May be an integer of 1 to 5.
일 구체예에서, 상기 제1용액에 포함되는 화학식 1의 γ-폴리글루탐산 유도체에 있어서, L(링커)는 아미노메탄올(aminomethanol), 1-아미노-2-프로판올(1-amino-2-propanol), 1-아미노-3-프로판올(1-amino-3-propanol), 1-아미노-4-부탄올(1-amino-4-butanol), 1-아미노-5-펜탄올(1-amino-5-pentanol) 또는 1-아미노-2-에탄올(MEA 또는 1-amino-2-ethanol)로부터 유래된 것일 수 있다.In one embodiment, in the γ-polyglutamic acid derivative of Formula 1 contained in the first solution, L (linker) is aminomethanol, 1-amino-2-propanol , 1-amino-3-propanol, 1-amino-4-butanol, 1-amino-5-pentanol (1-amino-5- pentanol) or 1-amino-2-ethanol (MEA or 1-amino-2-ethanol).
일 구체예에서, 상기 제1용액에 포함되는 화학식 1의 γ-폴리글루탐산 유도체에 있어서, -(CO)b-(R)c-CO- 부위는 -CH2CH2CH2CH2-CO-, -CO-CH2CH2CH2-CO-, -CH2CH2-CO-, -CO-CH2CH2-CO- 또는 -CH2-CO- 일 수 있다.In one embodiment, in the γ-polyglutamic acid derivative of Formula 1 contained in the first solution, the -(CO)b-(R)c-CO- moiety is -CH 2 CH 2 CH 2 CH 2 -CO- , -CO-CH 2 CH 2 CH 2 -CO-, -CH 2 CH 2 -CO-, -CO-CH 2 CH 2 -CO- or -CH 2 -CO-.
일 구체예에서, 상기 제1용액에 포함되는 화학식 1의 γ-폴리글루탐산 유도체는 하기 구조를 갖는 숙신이미딜 숙시닐 폴리글루탐산(SSPGA)일 수 있다:In one embodiment, the γ-polyglutamic acid derivative of Formula 1 contained in the first solution may be succinimidyl succinyl polyglutamic acid (SSPGA) having the following structure:
Figure PCTKR2019003664-appb-I000003
.
Figure PCTKR2019003664-appb-I000003
.
일 구체예에서, 상기 제2용액에 포함되는 친수성 물질은 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 친핵성 작용기를 2개 이상 보유할 수 있다.In one embodiment, the hydrophilic material contained in the second solution may have two or more nucleophilic functional groups selected from the group consisting of an amine group, a thiol group, and a hydroxy group.
일 구체예에서, 상기 제2용액에 포함되는 친수성 물질은 2개 이상의 arm을 보유한(multi-arm) 폴리(에틸렌 글리콜)(PEG) 유도체, 폴리(비닐 알코올)(PVA), 폴리(에틸렌 이민)(PEI), 폴리(리신)(PL), 트리리신 아민(Trilysine amine), 및 폴리(알릴아민)(PAA)으로 이루어진 군에서 선택된 하나 이상일 수 있다. 바람직하게는, 상기 제2용액에 포함되는 친수성 물질은 multi-arm PEG, PEI 또는 트리리신 아민이다.In one embodiment, the hydrophilic material contained in the second solution is a poly(ethylene glycol) (PEG) derivative, poly(vinyl alcohol) (PVA), poly(ethylene imine) having two or more arms (multi-arm) (PEI), poly (lysine) (PL), trilysine amine (Trilysine amine), and may be one or more selected from the group consisting of poly (allylamine) (PAA). Preferably, the hydrophilic material contained in the second solution is multi-arm PEG, PEI or trilysine amine.
일 구체예에서, 상기 제2용액에 포함되는 친수성 물질은 폴리에틸렌글리콜계 고분자이고, 상기 폴리에틸렌글리콜계 고분자는 하기 화학식 2로 표시되는 것일 수 있다:In one embodiment, the hydrophilic material contained in the second solution is a polyethylene glycol-based polymer, and the polyethylene glycol-based polymer may be represented by the following Formula 2:
[화학식 2][Formula 2]
Figure PCTKR2019003664-appb-I000004
Figure PCTKR2019003664-appb-I000004
상기 화학식 2에서, In Chemical Formula 2,
I는 2 내지 12가의 다가 알코올에서 유래한 라디칼이고; I is a radical derived from a dihydric polyhydric alcohol;
X는 아민기, 티올기 또는 히드록시기이고;X is an amine group, a thiol group, or a hydroxy group;
n은 19 내지 170이고;n is 19 to 170;
m은 2 내지 12의 정수로서, 상기 I가 유래한 다가 알코올의 히드록시기수와 같다.m is an integer of 2 to 12, and is the same as the number of hydroxy groups of the polyhydric alcohol from which I is derived.
일 구체예에서, 상기 제2용액에 포함되는 친수성 물질은 폴리에틸렌글리콜계 고분자이고, 상기 폴리에틸렌글리콜계 고분자는 하기 화학식 3 또는 4으로 표시되는 것일 수 있다:In one embodiment, the hydrophilic material contained in the second solution is a polyethylene glycol-based polymer, and the polyethylene glycol-based polymer may be represented by the following Formula 3 or 4:
[화학식 3][Formula 3]
Figure PCTKR2019003664-appb-I000005
Figure PCTKR2019003664-appb-I000005
[화학식 4][Formula 4]
Figure PCTKR2019003664-appb-I000006
Figure PCTKR2019003664-appb-I000006
상기 화학식 3 및 4에서, X는 아민기, 티올기 또는 히드록시기를 나타내며, n은 19 내지 170이다.In Formulas 3 and 4, X represents an amine group, a thiol group, or a hydroxy group, and n is 19 to 170.
일 구체예에서, 상기 제1용액 및 제2용액은 버퍼(buffer) 용액일 수 있다. 구체적으로, 상기 제1용액의 pH가 5-6의 범위이고, 제2용액의 pH가 10-11의 범위일 수 있다. 또한 상기 제1용액 및 제2용액의 혼합 후 pH가 5 내지 9의 범위일 수 있다.In one embodiment, the first solution and the second solution may be a buffer solution. Specifically, the pH of the first solution may be in the range of 5-6, and the pH of the second solution may be in the range of 10-11. In addition, after mixing the first solution and the second solution, the pH may be in the range of 5 to 9.
일 구체예에서, 상기 버퍼 용액은 증류수, NaCl(Sodium chloride), KCl(Potassium chloride), NaH2PO4(Monosodium phosphate), Na2HPO4(Disodium phosphate), KH2PO4(Monopotassium phosphate), Na2CO3(Sodium carbonate), HCl(Hydrochloric acid), Borate, MES, Tris 및 HEPES로 구성된 그룹 중에서 선택되는 하나 이상이 용해된 수용액일 수 있다.In one embodiment, the buffer solution is distilled water, NaCl (Sodium chloride), KCl (Potassium chloride), NaH 2 PO 4 (Monosodium phosphate), Na 2 HPO 4 (Disodium phosphate), KH 2 PO 4 (Monopotassium phosphate), It may be an aqueous solution in which at least one selected from the group consisting of Na 2 CO 3 (Sodium carbonate), HCl (Hydrochloric acid), Borate, MES, Tris, and HEPES is dissolved.
일 구체예에서, 상기 제1용액의 버퍼는 NaH2PO4(Monosodium phosphate)와 Na2HPO4(Disodium phosphate)의 혼합 버퍼일 수 있다. 구체적으로, 상기 제1용액의 버퍼는 NaH2PO4와 Na2HPO4가 9:1 내지 1:9의 부피 비, 바람직하게는 9:1 내지 5:5의 부피 비로 혼합된 것일 수 있다.In one embodiment, the buffer of the first solution may be a mixed buffer of NaH 2 PO 4 (Monosodium phosphate) and Na 2 HPO 4 (Disodium phosphate). Specifically, the buffer of the first solution may be a mixture of NaH 2 PO 4 and Na 2 HPO 4 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 9:1 to 5:5.
상기 제2용액의 버퍼는 Na2HPO4(Disodium phosphate)와 Na2CO3(Sodium carbonate)의 혼합 버퍼일 수 있다. 구체적으로, 상기 제2용액의 버퍼는 Na2HPO4와 Na2CO3가 9:1 내지 1:9의 부피 비, 바람직하게는 5:5 내지 1:9의 부피 비로 혼합된 것일 수 있다.The buffer of the second solution may be a mixed buffer of Na 2 HPO 4 (Disodium phosphate) and Na 2 CO 3 (Sodium carbonate). Specifically, the buffer of the second solution may be a mixture of Na 2 HPO 4 and Na 2 CO 3 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 5:5 to 1:9.
일 구체예에서, 본 발명의 약제학적 조성물은 종양 성장 억제 용도로 사용될 수 있다. 놀랍게도 본 발명의 수화겔은 그 자체가 항암효과를 가지며, 종양 성장 억제 효과를 나타낸다. 구체적으로, 본 발명의 수화겔을 종양에 도포하는 경우 종양 초기 성장 시 물리적인 압력을 가하여 종양의 성장을 억제하는 것으로 관찰되었다. 따라서 본 발명의 수화겔은 이러한 물리적인 종양 성장 억제 효과뿐만 아니라 약물을 추가로 포함함으로써 항암제의 화학적인 억제효과를 동시에 가지고 있기 때문에 결과적으로 유효한 항암 효과를 나타낼 수 있다.In one embodiment, the pharmaceutical composition of the present invention can be used for tumor growth inhibition. Surprisingly, the hydrogel of the present invention itself has an anticancer effect and exhibits a tumor growth inhibitory effect. Specifically, it was observed that when the hydrogel of the present invention is applied to a tumor, physical pressure is applied during the initial growth of the tumor to suppress the growth of the tumor. Therefore, since the hydrogel of the present invention has a chemical inhibitory effect of an anticancer agent by adding a drug as well as such a physical tumor growth inhibitory effect, as a result, it can exhibit an effective anticancer effect.
또한 본 발명의 수화겔은 종양의 주변 조직에 부착될 수 있다. 일 구체예에서, 본 발명의 수화겔은 종양이 절개된 부위에 실란트 형태로 사용될 수 있다.In addition, the hydrogel of the present invention may be attached to the surrounding tissues of the tumor. In one embodiment, the hydrogel of the present invention may be used in the form of a sealant on the site where the tumor is incised.
일 구체예에서, 본 발명의 약제학적 조성물은 추가로 약물을 담지할 수 있다. 구체적으로, 상기 제1용액 및/또는 제2용액이 약물을 추가로 포함할 수 있으며, 보다 구체적으로는 상기 제1용액 및 제2용액 양자 모두가 약물을 추가로 포함할 수 있다.In one embodiment, the pharmaceutical composition of the present invention may additionally carry a drug. Specifically, the first solution and/or the second solution may additionally contain a drug, and more specifically, both the first solution and the second solution may additionally contain a drug.
구체적으로, 상기 약물은 항암제, 항생제 및 진통제로 구성된 그룹 중에서 선택되는 하나 이상일 수 있다. 구체적으로, 상기 항암제는 Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin 및 Cyclophosphamide로 구성된 그룹 중에서 선택되는 하나 이상이고; 항생제는 Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin 및 Ciprofloxacin으로 구성된 그룹 중에서 선택되는 하나 이상이고; 진통제는 Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine 및 Articaine으로 구성된 그룹 중에서 선택되는 하나 이상일 수 있다.Specifically, the drug may be at least one selected from the group consisting of anticancer agents, antibiotics, and analgesics. Specifically, the anticancer agent is at least one selected from the group consisting of Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin, and Cyclophosphamide; The antibiotic is at least one selected from the group consisting of Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin and Ciprofloxacin; The analgesic may be at least one selected from the group consisting of Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine, and Articaine.
일 구체예에서, 본 발명의 약제학적 조성물은 상기 제1용액 및 제2용액이 각각 항암제를 추가로 포함할 수 있다. 구체적으로, 상기 제1용액이 Paclitaxel, Docetaxel, 또는 이의 혼합물을 포함하고, 제2용액이 Gemcitabine을 포함할 수 있다 In one embodiment, in the pharmaceutical composition of the present invention, the first solution and the second solution may each further contain an anticancer agent. Specifically, the first solution may contain Paclitaxel, Docetaxel, or a mixture thereof, and the second solution may contain Gemcitabine.
이하, 본 발명의 약제학적 조성물에 대하여 상세히 설명한다.Hereinafter, the pharmaceutical composition of the present invention will be described in detail.
(i) 제1용액의 고분자(i) Polymer in the first solution
본 발명의 제1용액은 상기 화학식 1의 γ-폴리글루탐산 유도체를 포함한다. 상기 화학식 1의 γ-폴리글루탐산 유도체는 본 출원인의 선행특허문헌인 한국 공개특허 제10-2013-0078549호에 개시되어 있다.The first solution of the present invention contains the γ-polyglutamic acid derivative of Formula 1. The γ-polyglutamic acid derivative of Formula 1 is disclosed in Korean Patent Application Publication No. 10-2013-0078549, which is a prior patent document of the present applicant.
상기 화학식 1의 γ-폴리글루탐산 유도체는 (a) γ-폴리글루탐산의 적어도 일부의 카르복시기를 탄소수 1 내지 5인 저급 알칸올아민과 반응시켜 γ-폴리글루탐산-알칸올아민을 형성하는 제1단계; (b) 상기 γ-폴리글루탐산-알칸올아민의 히드록시기를, 글루타르산 및 숙신산으로 이루어진 군에서 선택된 산의 무수물, 또는 1-할로 발레르산, 1-할로 프로피온산 및 1-할로 메틸카본산으로 이루어진 군에서 선택된 1-할로 알칸산(1-halo alkanoic acid)과 반응시켜 알킬기가 도입된 카르복시 말단을 형성하는 제2단계; 및 (c) 상기 형성된 카르복시 말단을 N-하이드록시숙신이미드(NHS) 또는 N-하이드록시술포숙신이미드와 반응시켜 적어도 일부의 카르복시기가 활성화된 γ-폴리글루탐산 유도체를 형성하는 제3단계에 의해 제조될 수 있다.The γ-polyglutamic acid derivative of Formula 1 includes (a) a first step of reacting at least a part of the carboxy group of γ-polyglutamic acid with a lower alkanolamine having 1 to 5 carbon atoms to form a γ-polyglutamic acid-alkanolamine; (b) the hydroxy group of the γ-polyglutamic acid-alkanolamine, consisting of an anhydride of an acid selected from the group consisting of glutaric acid and succinic acid, or 1-halo valeric acid, 1-halopropionic acid, and 1-halo methylcarboxylic acid A second step of forming a carboxy terminal into which an alkyl group is introduced by reacting with 1-halo alkanoic acid selected from the group; And (c) reacting the formed carboxy terminal with N-hydroxysuccinimide (NHS) or N-hydroxysulfosuccinimide to form a γ-polyglutamic acid derivative in which at least some carboxyl groups are activated. Can be manufactured by
상기 화학식 1의 γ-폴리글루탐산 유도체는, 도입된 알킬기의 종류에 따라, 즉 -(CO)b-(R)c-CO- 부위의 치환기 정의에 따라, 숙신이미딜 발레르산염(Succinimidyl Valerate, SVA: -CH2CH2CH2CH2-CO-O-숙신이미드), 숙신이미딜 글루타르산염(Succinimidyl Glutarate, SG: -CO-CH2CH2CH2-CO-O-숙신이미드), 숙신이미딜 프로피온산염(Succinimdyl Propionate, SPA: -CH2CH2-CO-O-숙신이미드), 숙신이미딜 숙신산염(Succinimidyl Succinate, SS: -CO-CH2CH2-CO-O-숙신이미드), 및 숙신이미딜 메틸카본산염(Succinimidyl Carboxymethylated, SCM: -CH2-CO-O-숙신이미드) 등이 될 수 있다.The γ-polyglutamic acid derivative of Formula 1 is, depending on the type of the introduced alkyl group, that is, according to the definition of the substituent at the -(CO)b-(R)c-CO- site, succinimidyl valerate (SVA : -CH 2 CH 2 CH 2 CH 2 -CO-O-succinimide), Succinimidyl Glutarate (SG: -CO-CH 2 CH 2 CH 2 -CO-O-succinimide) , Succinimdyl Propionate (SPA: -CH 2 CH 2 -CO-O-succinimide), Succinimidyl Succinate (SS: -CO-CH 2 CH 2 -CO-O- Succinimide), and Succinimidyl Carboxymethylated (SCM: -CH 2 -CO-O-succinimide).
일 구체예에서, 제1용액에 포함되는 화학식 1의 γ-폴리글루탐산 유도체는 하기 구조를 갖는 숙신이미딜 숙시닐 폴리글루탐산(SSPGA)일 수 있다:In one embodiment, the γ-polyglutamic acid derivative of Formula 1 contained in the first solution may be succinimidyl succinyl polyglutamic acid (SSPGA) having the following structure:
Figure PCTKR2019003664-appb-I000007
.
Figure PCTKR2019003664-appb-I000007
.
일 구체예에서, 제1용액에 상기 SSPGA가 포함될 경우, 제1용액을 “SSPGA 용액” 또는 “SSPGA 버퍼”라고도 한다. 후술하는 실시예에서는 제1용액으로 SSPGA 용액이 사용된 경우가 예시되어 있다.In one embodiment, when the SSPGA is included in the first solution, the first solution is also referred to as “SSPGA solution” or “SSPGA buffer”. In the examples to be described later, the case where the SSPGA solution is used as the first solution is illustrated.
일 구체예에서, 제1용액 내 상기 화학식 1의 γ-폴리글루탐산 유도체의 농도는 3 내지 20 %(w/v)이고, 바람직하게는 5 내지 15%(w/v)일 수 있다.In one embodiment, the concentration of the γ-polyglutamic acid derivative of Formula 1 in the first solution may be 3 to 20% (w/v), preferably 5 to 15% (w/v).
(ii) 제2용액의 고분자(ii) Polymer in the second solution
본 발명의 제2용액은 친핵성 작용기인 아민기(-NH2), 티올기(-SH) 및 히드록시기(-OH)로 이루어진 군에서 선택되는 하나 이상을 보유하고 있는 친수성 물질을 포함한다. The second solution of the present invention contains a hydrophilic substance having at least one selected from the group consisting of an amine group (-NH 2 ), a thiol group (-SH), and a hydroxy group (-OH), which are nucleophilic functional groups.
일 구체예에서, 상기 친수성 물질은 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 친핵성 작용기를 2개 이상 보유할 수 있다. 구체적으로, 상기 친수성 물질은 2개 이상의 arm을 보유한(multi-arm) 폴리(에틸렌 글리콜)(PEG) 유도체, 폴리(비닐 알코올)(PVA), 폴리(에틸렌 이민)(PEI), 폴리(리신)(PL), 트리리신 아민(Trilysine amine), 및 폴리(알릴아민)(PAA)으로 이루어진 군에서 선택된 하나 이상일 수 있다. 바람직하게는, 상기 친수성 물질은 multi-arm PEG, PEI 또는 트리리신 아민이다.In one embodiment, the hydrophilic material may have two or more nucleophilic functional groups selected from the group consisting of an amine group, a thiol group, and a hydroxy group. Specifically, the hydrophilic material is a poly(ethylene glycol) (PEG) derivative having two or more arms (multi-arm), poly(vinyl alcohol) (PVA), poly(ethylene imine) (PEI), poly(lysine) It may be one or more selected from the group consisting of (PL), trilysine amine, and poly(allylamine) (PAA). Preferably, the hydrophilic material is multi-arm PEG, PEI or trilysine amine.
예를 들어, 이러한 친수성 물질은 폴리에틸렌글리콜계 고분자이고, 상기 폴리에틸렌글리콜계 고분자는 2가 이상, 바람직하게는 2 내지 12가의 다가 알코올의 각 히드록시기에 폴리에틸렌글리콜 반복단위가 결합되고, 그 말단에 아민기, 티올기 또는 히드록시기가 결합된 구조를 가질 수 있다. 보다 구체적으로, 이러한 폴리에틸렌글리콜계 고분자는 하기 화학식 2로 표시될 수 있다.For example, such a hydrophilic material is a polyethylene glycol-based polymer, and the polyethylene glycol-based polymer is a polyethylene glycol repeating unit is bonded to each hydroxy group of a polyhydric alcohol having a dihydric or higher, preferably 2 to 12, amine group at its end. , A thiol group or a hydroxy group may have a bonded structure. More specifically, such a polyethylene glycol-based polymer may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2019003664-appb-I000008
Figure PCTKR2019003664-appb-I000008
상기 화학식 2에서, In Chemical Formula 2,
I는 2 내지 12가의 다가 알코올에서 유래한 라디칼이고; I is a radical derived from a dihydric polyhydric alcohol;
X는 아민기, 티올기 또는 히드록시기이고;X is an amine group, a thiol group, or a hydroxy group;
n은 19 내지 170이고;n is 19 to 170;
m은 2 내지 12의 정수로서, 상기 I가 유래한 다가 알코올의 히드록시기수와 같다.m is an integer of 2 to 12, and is the same as the number of hydroxy groups of the polyhydric alcohol from which I is derived.
상기 화학식 2에서 I의 구체적인 예로는 에틸렌글리콜(ethylene glycol), 프로판디올(propandiol), 부탄디올(butandiol), 펜탄디올(pentandiol), 헥산디올(hexandiol) 등의 디올; 또는 글리세롤(glycerol), 에리쓰리톨(erythritol), 쓰레이톨(threitol), 펜타에리쓰리톨(pentaerythritol), 자일리톨(xylitol), 아도니톨(adonitol), 솔비톨(sorbitol), 만니톨(mannitol) 팔라티노즈(palatinose), 말토즈 모노하이드레이트(maltose monohydrate) 또는 말티톨(maltitol) 등의 이당류나, D-라피노즈 펜타하이드레이트(D-raffinose pentahydrate) 등의 삼당류에서 선택되는 3 내지 12가의 폴리올에서 유래한 라디칼을 들 수 있다. 보다 구체적으로, 상기 I는 4 내지 12가의 다가 알코올에서 유래한 라디칼로 될 수 있다. Specific examples of I in Formula 2 include diols such as ethylene glycol, propandiol, butandiol, pentandiol, and hexanediol; Or glycerol, erythritol, thritol, pentaerythritol, xylitol, adonitol, sorbitol, mannitol palatinose (palatinose), maltose monohydrate (maltose monohydrate) or maltitol (maltitol), such as disaccharides and trisaccharides such as D-raffinose pentahydrate (D-raffinose pentahydrate) selected from 3 to 12-valent polyol Can be mentioned. More specifically, I may be a radical derived from a 4 to 12 polyhydric alcohol.
상기 화학식 2의 범주에 속하는 폴리에틸렌글리콜계 고분자의 예로는, 펜타에리트리톨이나 솔비톨에서 유래한 라디칼에, 말단 친핵성 작용기를 갖는 폴리에틸렌글리콜 반복 단위가 결합된 형태의 고분자, 예를 들어, 하기 화학식 3 또는 4의 고분자를 들 수 있다.Examples of polyethylene glycol-based polymers falling within the scope of Formula 2 include polymers in which a polyethylene glycol repeating unit having a terminal nucleophilic functional group is bonded to a radical derived from pentaerythritol or sorbitol, for example, the following Formula 3 Or the polymer of 4 can be mentioned.
[화학식 3][Formula 3]
Figure PCTKR2019003664-appb-I000009
Figure PCTKR2019003664-appb-I000009
[화학식 4][Formula 4]
Figure PCTKR2019003664-appb-I000010
Figure PCTKR2019003664-appb-I000010
상기 화학식 3 및 4에서, X는 아민기, 티올기 또는 히드록시기를 나타내며, n은 19 내지 170이다.In Formulas 3 and 4, X represents an amine group, a thiol group, or a hydroxy group, and n is 19 to 170.
이러한 폴리에틸렌글리콜계 고분자는 상기 아민기, 티올기 또는 히드록시기와 같은 친핵성 작용기를 다수 포함함에 따라, 상기 화학식 1의 활성화된 γ-폴리글루탐산 유도체와 아마이드 결합, 티오아마이드 결합 또는 에스테르 결합을 형성할 수 있으며, 이로부터 가교 구조를 형성하여 3차원 네트워크 구조를 갖는 가교체 및 수화겔을 이룰 수 있다. 특히, 이러한 폴리에틸렌글리콜계 고분자는 상기 활성화된 γ-폴리글루탐산 유도체와 빠른 가교 반응을 일으켜 짧은 겔화 시간을 갖는 수화겔의 제공을 가능케 한다.As such polyethylene glycol-based polymer contains a plurality of nucleophilic functional groups such as the amine group, thiol group, or hydroxy group, the activated γ-polyglutamic acid derivative of Formula 1 can form an amide bond, a thioamide bond, or an ester bond. And, by forming a crosslinked structure from this, a crosslinked product and a hydrogel having a three-dimensional network structure can be formed. In particular, this polyethylene glycol-based polymer causes a rapid crosslinking reaction with the activated γ-polyglutamic acid derivative, thereby enabling the provision of a hydrogel having a short gelation time.
일 구체예에서, 상기 폴리에틸렌글리콜계 고분자는 4개의 arm을 가지고, 각 말단에 티올기를 가지는, 4arm-PEG-thiol (4PEGSH)일 수 있다.In one embodiment, the polyethylene glycol-based polymer may be 4arm-PEG-thiol (4PEGSH), which has four arms and a thiol group at each end.
일 구체예에서, 제2용액에 상기 4PEGSH가 포함될 경우, 제2용액을 “4PEGSH 용액” 또는 “4PEGSH 버퍼”라고도 한다. 후술하는 실시예에서는 제2용액으로 4PEGSH 용액이 사용된 경우가 예시되어 있다.In one embodiment, when 4PEGSH is included in the second solution, the second solution is also referred to as “4PEGSH solution” or “4PEGSH buffer”. In the examples to be described later, a case where 4PEGSH solution is used as the second solution is illustrated.
일 구체예에서, 제2용액 내 상기 친수성 물질의 농도는 3 내지 30 %(w/v)이고, 바람직하게는 10 내지 20%(w/v)일 수 있다.In one embodiment, the concentration of the hydrophilic material in the second solution may be 3 to 30% (w/v), and preferably 10 to 20% (w/v).
(iii) 제1용액 및 제2용액의 용매(iii) Solvent of the first solution and the second solution
제1용액 및 제2용액을 제조하기 위한 용매로서는 증류수, 생리식염수, 탄산수소나트륨 (NaHCO3), 붕산, 인산 등의 버퍼(buffer, 완충액) 등 독성이 없는 것을 이용할 수 있다.As a solvent for preparing the first solution and the second solution, non-toxic ones such as distilled water, physiological saline, sodium hydrogen carbonate (NaHCO 3 ), boric acid, and a buffer such as phosphoric acid may be used.
제1용액과 제2용액의 혼합비율은 9:1~1:9가 사용될 수 있으나 바람직하게는 1:2~2:1의 비율로 혼합하여 제조할 수 있다. 두 용액이 혼합되어 빠르게 수화겔을 형성하기 위해서는 혼합 후 pH가 중요하며 혼합 비율에 따라 최종 pH가 변경될 경우 이를 완충할 수 있도록 버퍼의 농도를 변경하여 반응성을 조절할 수 있다.The mixing ratio of the first solution and the second solution may be 9:1 to 1:9, but preferably, it may be prepared by mixing in a ratio of 1:2 to 2:1. In order to quickly form a hydrogel by mixing the two solutions, the pH after mixing is important, and when the final pH changes according to the mixing ratio, the concentration of the buffer can be changed to adjust the reactivity.
일 구체예에서, 상기 제1용액 및 제2용액은 버퍼(buffer)일 수 있다. 구체적으로, 상기 제1용액의 pH가 5-6의 범위이고, 제2용액의 pH가 10-11의 범위일 수 있다. 또한 상기 제1용액 및 제2용액의 혼합 후 pH가 5 내지 9의 범위일 수 있다.In one embodiment, the first solution and the second solution may be a buffer (buffer). Specifically, the pH of the first solution may be in the range of 5-6, and the pH of the second solution may be in the range of 10-11. In addition, after mixing the first solution and the second solution, the pH may be in the range of 5 to 9.
일 구체예에서, 상기 버퍼는 증류수, NaCl(Sodium chloride), KCl(Potassium chloride), NaH2PO4(Monosodium phosphate), Na2HPO4(Disodium phosphate), KH2PO4(Monopotassium phosphate), Na2CO3(Sodium carbonate), HCl(Hydrochloric acid), Borate, MES, Tris 및 HEPES로 구성된 그룹 중에서 선택되는 하나 이상이 용해된 수용액일 수 있다.In one embodiment, the buffer is distilled water, NaCl (Sodium chloride), KCl (Potassium chloride), NaH 2 PO 4 (Monosodium phosphate), Na 2 HPO 4 (Disodium phosphate), KH 2 PO 4 (Monopotassium phosphate), Na 2 It may be an aqueous solution in which at least one selected from the group consisting of CO 3 (Sodium carbonate), HCl (Hydrochloric acid), Borate, MES, Tris, and HEPES is dissolved.
상기 용매 중 버퍼는 겔화 시간에 영향을 준다. 즉, 버퍼의 종류에 따라 겔화 반응이 일어나기도 하고 일어나지 않기도 하며, 겔화 시간을 빠르게 혹은 느리게도 조절할 수 있다. 버퍼는 제1용액 및 제2용액의 각 고분자의 pH와 유사한 pKa를 갖는 염을 사용하여 만들어져야 하며, 그때 버퍼링 효과가 최대가 되어 수용액 상에서 활성화된 γ-폴리글루탐산 유도체의 활성 저하를 줄이는데 도움을 줄 수 있다.The buffer in the solvent affects the gelation time. That is, depending on the type of buffer, the gelation reaction may or may not occur, and the gelation time can be adjusted quickly or slowly. The buffer should be made using a salt having a pKa similar to the pH of each polymer of the first solution and the second solution, and the buffering effect is maximized at that time, helping to reduce the decrease in the activity of the γ-polyglutamic acid derivative activated in the aqueous solution. Can give.
구체적으로, 제1용액을 제조하기 위해 버퍼로서 인산나트륨 버퍼(sodium phosphate buffer)를 사용할 수 있고, 서로 다른 종류의 인산나트륨 버퍼의 혼합물일 수 있다. 제2용액을 제조하기 위해 인산나트륨과 탄산나트륨(sodium carbonate)의 혼합 버퍼를 사용할 수 있다. Specifically, a sodium phosphate buffer may be used as a buffer to prepare the first solution, and may be a mixture of different types of sodium phosphate buffers. To prepare the second solution, a mixing buffer of sodium phosphate and sodium carbonate may be used.
일 구체예에서, 제1용액의 버퍼는 NaH2PO4(Monosodium phosphate)와 Na2HPO4(Disodium phosphate)의 혼합 버퍼일 수 있다. 구체적으로, 제1용액의 버퍼는 NaH2PO4와 Na2HPO4가 9:1 내지 1:9의 부피 비, 바람직하게는 9:1 내지 5:5의 부피 비로 혼합된 것일 수 있다.In one embodiment, the buffer of the first solution may be a mixed buffer of NaH 2 PO 4 (Monosodium phosphate) and Na 2 HPO 4 (Disodium phosphate). Specifically, the buffer of the first solution may be a mixture of NaH 2 PO 4 and Na 2 HPO 4 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 9:1 to 5:5.
일 구체예에서, 제2용액의 버퍼는 Na2HPO4(Disodium phosphate)와 Na2CO3(Sodium carbonate)의 혼합 버퍼일 수 있다. 구체적으로, 제2용액의 버퍼는 Na2HPO4와 Na2CO3가 9:1 내지 1:9의 부피 비, 바람직하게는 5:5 내지 1:9의 부피 비로 혼합된 것일 수 있다.In one embodiment, the buffer of the second solution may be a mixed buffer of Na 2 HPO 4 (Disodium phosphate) and Na 2 CO 3 (Sodium carbonate). Specifically, the buffer of the second solution may be a mixture of Na 2 HPO 4 and Na 2 CO 3 in a volume ratio of 9:1 to 1:9, preferably in a volume ratio of 5:5 to 1:9.
제1용액의 버퍼는 바람직하게는 0.01 몰 내지 0.3 몰, 더욱 바람직하게는 0.05 몰 내지 0.2 몰의 농도로 사용할 수 있으며, 제2용액의 버퍼는 바람직하게는 0.01 몰 내지 0.5 몰, 더욱 바람직하게는 0.1 몰 내지 0.3 몰의 농도로 사용할 수 있다.The buffer of the first solution is preferably 0.01 mol to 0.3 mol, more preferably can be used in a concentration of 0.05 mol to 0.2 mol, the buffer of the second solution is preferably 0.01 mol to 0.5 mol, more preferably It can be used in a concentration of 0.1 mol to 0.3 mol.
이 때 혼합할 수 있는 약물은 제1용액 혹은 제2용액에 용해된 물질과 반응성이 없는 약물을 선택하여 사용할 수 있으며 약물의 용해성을 향상시키기 위해 계면활성제(예를 들어, mPEG-PLA, Sodium dodecyl sulfate, Tween 80) 등이 사용될 수 있다.At this time, a drug that can be mixed can be used by selecting a drug that is not reactive with a substance dissolved in the first solution or the second solution. To improve the solubility of the drug, a surfactant (e.g. mPEG-PLA, Sodium dodecyl sulfate, Tween 80), etc. may be used.
제1용액과 제2용액 물질과 반응성은 없는 약물을 사용했음에도 불구하고 용해되었을 때 버퍼의 pH를 변경하는 경우 수화겔의 반응 속도가 증가하거나 감소할 수도 있다. 이러한 경우 제1용액 혹은 제2용액의 버퍼 조성을 변경하여 버퍼의 완충효과를 조절함으로써 약물에 의해 수화겔의 겔 형성 시간이 변경되는 것을 최소화 할 수 있다.When the pH of the buffer is changed when dissolved even though a drug that is not reactive with the first solution and the second solution substance is used, the reaction rate of the hydrogel may increase or decrease. In this case, by changing the buffer composition of the first solution or the second solution to control the buffering effect of the buffer, it is possible to minimize the change in the gel formation time of the hydrogel by the drug.
(iv) (iv) 수화겔의Hydrogel 형성 formation
본 명세서에서 사용된 용어 “수화겔”은 물을 함유하고 있는 팽윤이 가능한 고분자 매트릭스(지지체)를 의미하는 것으로 정의될 수 있으며, 공유 결합 또는 비공유 결합을 포함한 가교 구조를 가질 수 있다. 수화겔은 상기 가교 구조로 이루어진 3차원 네트워크 구조를 통해 물을 흡수하고 있으며 3차원 네트워크의 가교도에 따라 탄성(elastic)을 나타낼 수 있다.The term “hydrogel” as used herein may be defined to mean a swellable polymer matrix (support) containing water, and may have a crosslinked structure including a covalent bond or a non-covalent bond. The hydrogel absorbs water through a three-dimensional network structure composed of the crosslinked structure, and may exhibit elasticity according to the degree of crosslinking of the three-dimensional network.
본 명세서에서 “실란트(sealant)”는 상기 “수화겔”과 동일한 의미로 사용된다.In the present specification, “sealant” is used in the same meaning as the “hydrogel”.
제1용액 및 제2용액이 혼합되면 제1용액의 고분자와 제2용액의 고분자가 반응하여 실시간으로 수화겔을 형성한다. 이와 같은 수화겔 형성 시스템에 약물을 담지하기 위하여 제1용액과 제2용액을 제조하는 단계에서 약물이 혼합된다. 1개 이상의 약물을 제1용액 혹은 제2용액 혹은 두 용액 각각에 용해한 후 앞에서 언급한 방법대로 두 용액을 혼합하였을 때 약물을 담지한 수화겔을 형성할 수 있다.When the first solution and the second solution are mixed, the polymer of the first solution and the polymer of the second solution react to form a hydrogel in real time. In order to support the drug in the hydrogel formation system, the drug is mixed in the step of preparing the first solution and the second solution. When one or more drugs are dissolved in the first solution, the second solution, or each of the two solutions, and then the two solutions are mixed as described above, a hydrogel carrying the drug can be formed.
구체적으로, 제1용액과 제2용액이 혼합되면 γ폴리글루탐산 유도체의 활성화된 카르복시기(숙신이미드 에스테르기 등)와 친핵성 작용기 사이에 아미드, 티오아미드 또는 에스테르 결합이 형성되고, 이것이 가교점이 되어 3차원 네트워크 구조를 갖는 수화겔이 형성될 수 있다.Specifically, when the first solution and the second solution are mixed, an amide, thioamide, or ester bond is formed between the activated carboxyl group (succinimide ester group, etc.) of the γ polyglutamic acid derivative and the nucleophilic functional group, which becomes a crosslinking point. A hydrogel having a three-dimensional network structure may be formed.
본 발명의 일 구체예에서, SSPGA 용액과 4arm-PEG-thiol (4PEGSH)용액을 혼합하면 SSPGA의 NHS 작용기와 4arm-PEG-thiol (4PEGSH)의 티올 작용기가 화학적으로 반응하여 수화겔을 제조할 수 있다. 이러한 반응은 적정 pH 조건에서 빠르게 반응하기 때문에 실시간으로 형성되는(in situ forming) 수화겔을 제조할 수 있다. SSPGA에 도입된 NHS 작용기의 개수가 4PEGSH의 티올 작용기 개수보다 많기 때문에 수화겔 형성 반응이 일어나더라도 수화겔 반응에 참여하지 않은 SSPGA의 잔여 NHS 작용기는 생체 조직(단백질로 구성된)에 있는 작용기(Amine기, Thiol기, Hydroxyl기)와 반응하여 화학적으로 공유결합을 형성한다(도 1 참조). 이러한 공유결합에 의해 형성된 수화겔은 조직과 강한 접착력을 나타내기 때문에 두 고분자의 혼합 용액을 조직 표면에 분사하면 sealing 기능을 수행할 수 있는 실란트로서의 역할을 수행할 수 있다.In one embodiment of the present invention, when the SSPGA solution and the 4arm-PEG-thiol (4PEGSH) solution are mixed, the NHS functional group of SSPGA and the thiol functional group of 4arm-PEG-thiol (4PEGSH) are chemically reacted to prepare a hydrogel. . Since such a reaction reacts rapidly under an appropriate pH condition, it is possible to prepare a hydrogel that is formed in situ in real time. Since the number of NHS functional groups introduced into SSPGA is more than the number of thiol functional groups of 4PEGSH, the residual NHS functional groups of SSPGA that did not participate in the hydrogel reaction even if the hydrogel formation reaction occurs are functional groups (Amine groups, Thiol Group, Hydroxyl group) and chemically form a covalent bond (see FIG. 1). Since the hydrogel formed by this covalent bond shows strong adhesion to the tissue, spraying a mixed solution of two polymers on the tissue surface can serve as a sealant capable of performing a sealing function.
접착력이 있는 수화겔이 생성되기 위해서는 적어도 2개 이상의 작용기를 가진 상호 반응하는 고분자 사슬간에 결합으로 가교가 일어나고, 고분자 중 적어도 하나는 가교반응과 동시에 조직 표면과도 공유결합을 형성하는 것이 바람직하다.In order to generate an adhesive hydrogel, it is preferable that cross-linking occurs by bonding between mutually reacting polymer chains having at least two or more functional groups, and at least one of the polymers forms a covalent bond with the tissue surface at the same time as the cross-linking reaction.
혼합된 두 용액이 겔을 형성하기까지의 바람직한 시간은 용도에 따라서 다소 다를 수 있기는 하지만, 바람직하게는 10분 이내, 예를 들어, 2분 이내, 1분 이내, 30초 이내, 20초 이내, 10초 이내, 5초 이내, 3초 이내, 바람직하게는 1초 내지 3초 이내로 이루어질 수 있다. 겔화 시간이 1초 미만인 경우에는 주사 바늘이나 스프레이 팁이 막혀 원활한 도포가 어려울 수 있고, 또한 각 성분이 혼합되는데 시간이 충분하지 않기 때문에 불균일한 겔이 형성되거나 조직 표면과 공유 결합을 형성하기도 힘들어 접착력이 낮아질 우려가 있다. 반면, 겔화 시간이 지나치게 길어지면 도포 부위에서 겔이 형성되기도 전에 용액상태로 흘러버릴 수 있어 사용편의성이 부족하고 원하는 양을 정확하게 도포하기 쉽지 않다. 따라서 생체 조직내까지 침투하여 고도의 접착력과 파열강도(burst strength)를 유지하기까지는 1초 이상, 특히 1초 이상 2초 이하인 것이 바람직하다.The preferred time until the two mixed solutions form a gel may vary slightly depending on the application, but preferably within 10 minutes, for example, within 2 minutes, within 1 minute, within 30 seconds, and within 20 seconds. , Within 10 seconds, within 5 seconds, within 3 seconds, preferably within 1 second to 3 seconds. If the gelation time is less than 1 second, smooth application may be difficult due to clogging of the injection needle or spray tip, and since there is not enough time for each component to be mixed, it is difficult to form a non-uniform gel or to form a covalent bond with the tissue surface. There is a risk of this lowering. On the other hand, if the gelation time is too long, it may flow into a solution state before the gel is formed at the application site, and thus the usability is insufficient and it is not easy to accurately apply the desired amount. Therefore, it is preferable that it is 1 second or longer, particularly 1 second or more and 2 seconds or less, until it penetrates into living tissues and maintains high adhesion and burst strength.
구체적으로, 본 발명의 수화겔은 하기 물성 조건을 가질 수 있다.Specifically, the hydrogel of the present invention may have the following physical property conditions.
(1) 겔화 시간: 10초 이내, 예를 들어, 1-2초이다. 겔화 시간이 너무 빠르면 조직 표면에 닿기 전에 굳어버리고, 2초를 초과해 면 조직에 분사되더라도 흘러내려 정량을 도포할 수 없게 된다.(1) Gelation time: within 10 seconds, for example, 1-2 seconds. If the gelation time is too fast, it hardens before it touches the tissue surface, and if it exceeds 2 seconds, even if it is sprayed on the tissue, it flows down, making it impossible to apply a quantitative amount.
(2) 파열 강도(Burst Pressure): 25 내지 500 mmHg, 보다 바람직하게는 50 내지 250 mmHg이다. 50mmHg보다 낮을 경우 외부 파손에 쉽게 으깨지며 250 mmHg 보다 높을 경우 Flexibility가 크게 감소한다.(2) Burst Pressure: 25 to 500 mmHg, more preferably 50 to 250 mmHg. If it is lower than 50mmHg, it is easily crushed by external damage, and if it is higher than 250mmHg, the flexibility is greatly reduced.
(3) 서방적 약물방출기간: 7일 이상, 보다 바람직하게는 14일 이상이다. 7일 이내로 약물방출기간이 짧을 경우 장시간 종양에 대한 유효적 약물 효과를 나타내기 어렵다. (3) Sustained-release drug release period: 7 days or more, more preferably 14 days or more. If the drug release period is short within 7 days, it is difficult to show an effective drug effect against long-term tumors.
(v) 담지 약물(v) supported drugs
제1용액에 포함되는 약물은 제1용액의 고분자(예를 들어, SSPGA)와 반응성이 없는 약물로서 약물 중 친핵성 작용기인 amine기, thiol기, hydroxyl기를 보유하지 않는 약물이 사용될 수 있다. 친수성 약물이 성질적으로 용해성이 좋아 사용하기 편리하나 상황에 따라 난용성 약물과 이를 용해할 수 있는 계면활성제를 사용하여 제1용액에 용해한 후 사용할 수 있다.The drug contained in the first solution is a drug that is not reactive with the polymer (eg, SSPGA) of the first solution, and a drug that does not have an amine group, a thiol group, or a hydroxyl group, which is a nucleophilic functional group, may be used. Hydrophilic drugs are convenient to use because they have good solubility in nature, but depending on circumstances, poorly soluble drugs and surfactants capable of dissolving them can be used after dissolving in the first solution.
제2용액에 포함되는 약물은 제2용액의 고분자(예를 들어, 4PEGSH)와 산화반응을 일으키지 않는 약물이 사용되어야 한다. 4PEGSH의 경우 산화반응에 의해 스스로 가교반응을 일으키기 때문에 제2용액의 안정성을 떨어뜨리게 된다.The drug contained in the second solution should be a drug that does not cause an oxidation reaction with the polymer of the second solution (eg, 4PEGSH). In the case of 4PEGSH, the stability of the second solution is degraded because it causes a crosslinking reaction by itself through oxidation.
제1용액 내 약물의 용해 농도는 유효적 약물효과를 나타낼 수 있는 농도이자 독성을 나타내지 않는 농도로 설정되어야 한다. 제1용액의 1-30%(w/v) 농도로 사용될 수 있으며 바람직하게는 5-15%(w/v)의 농도로 용해하여 사용할 수 있다. 제2용액에 포함된 약물이 buffer의 pH를 변경할 경우 이러한 변화를 완충해 줄 수 있도록 buffer의 농도를 조절 할 수 있다.The dissolution concentration of the drug in the first solution should be set to a concentration capable of exhibiting an effective drug effect and a concentration not exhibiting toxicity. It can be used at a concentration of 1-30% (w/v) of the first solution, and preferably dissolved in a concentration of 5-15% (w/v). When the drug contained in the second solution changes the pH of the buffer, the concentration of the buffer may be adjusted to buffer such changes.
제2용액 내 약물의 용해 농도는 유효적 약물효과를 나타낼 수 있는 농도이자 독성을 나타내지 않는 농도로 설정되어야 한다. 제2용액의 1-30%(w/v) 농도로 사용될 수 있으며 바람직하게는 5-15%(w/v)의 농도로 용해하여 사용할 수 있다. 제2용액에 포함된 약물이 buffer의 pH를 변경할 경우 이러한 변화를 완충해 줄 수 있도록 buffer의 농도를 조절 할 수 있다.The dissolution concentration of the drug in the second solution should be set to a concentration that can exhibit an effective drug effect and a concentration that does not exhibit toxicity. It can be used at a concentration of 1-30% (w/v) of the second solution, and preferably dissolved in a concentration of 5-15% (w/v). When the drug contained in the second solution changes the pH of the buffer, the concentration of the buffer may be adjusted to buffer such changes.
구체적으로, 상기 약물은 항암제, 항생제 및 진통제로 구성된 그룹 중에서 선택되는 하나 이상일 수 있다. 구체적으로, 상기 항암제는 Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin 및 Cyclophosphamide로 구성된 그룹 중에서 선택되는 하나 이상이고; 항생제는 Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin 및 Ciprofloxacin으로 구성된 그룹 중에서 선택되는 하나 이상이고; 진통제는 Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine 및 Articaine으로 구성된 그룹 중에서 선택되는 하나 이상일 수 있다.Specifically, the drug may be at least one selected from the group consisting of anticancer agents, antibiotics, and analgesics. Specifically, the anticancer agent is at least one selected from the group consisting of Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin, and Cyclophosphamide; The antibiotic is at least one selected from the group consisting of Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin and Ciprofloxacin; The analgesic may be at least one selected from the group consisting of Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine, and Articaine.
일 구체예에서, 본 발명의 약제학적 조성물은 상기 제1용액 및 제2용액이 각각 항암제를 추가로 포함할 수 있다. 구체적으로, 상기 제1용액이 Paclitaxel, Docetaxel, 또는 이의 혼합물을 포함하고, 제2용액이 Gemcitabine을 포함할 수 있다.In one embodiment, in the pharmaceutical composition of the present invention, the first solution and the second solution may each further contain an anticancer agent. Specifically, the first solution may contain Paclitaxel, Docetaxel, or a mixture thereof, and the second solution may contain Gemcitabine.
일 구체예에서, 제1용액과 제2용액의 혼합 및 사용은 여러 가지 방법에 의해 실시할 수 있다. 예를 들어, 제1용액 및 제2용액의 원액의 한쪽을 피착제 표면에 도포하고, 계속하여 또 한쪽을 도포함으로써 혼합을 실시할 수 있으며, 또는 제1용액과 제2용액을 더블 배럴 시린지(double barrel syringe)와 같은 어플리케이터에서 혼합하여 도포를 실시할 수도 있다. 일 구체예에서, 제1용액 및 제2용액을 스프레이가 부착된 컨넥터를 통해 혼합하여 종양과 같은 조직표면에 분사할 경우 조직표면에서 두 용액이 즉시 반응하여 조직에 부착된 형태로 약물을 담지한 수화겔을 형성한다.In one embodiment, mixing and using of the first solution and the second solution may be carried out by various methods. For example, mixing can be carried out by coating one of the undiluted solutions of the first solution and the second solution on the surface of the adherend and then applying the other solution, or the first solution and the second solution are mixed with a double barrel syringe ( It can also be applied by mixing in an applicator such as a double barrel syringe). In one embodiment, when the first solution and the second solution are mixed through a spray-attached connector and sprayed onto a tissue surface such as a tumor, the two solutions immediately react at the tissue surface, and the drug is loaded in a form attached to the tissue. A hydrogel is formed.
이하 본 발명을 구체적으로 설명하기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, in order to describe the present invention in detail, it will be described in detail with reference to examples. However, the embodiments according to the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.
실시예Example 1. One. 제넥솔PM을Genexol PM 함유하는 실란트의 제조 및 Preparation of containing sealant and 겔화Gelation 특성 characteristic
1-1. 제넥솔PM을 함유하는 실란트의 제조1-1. Preparation of sealant containing Genexol PM
SSPGA 7 w/v%와 Genexol PM(Paclitaxel 완제의약품) 14 ~ 32 w/v%를 0.15M의 SSPGA buffer에 용해하여 제1용액을 제조하였다. 다음으로, 4PEGSH 12 w/v%를 0.3M PEG buffer에 용해하여 제2용액을 제조하였다. 상기 제1용액과 제2용액을 1:1 부피로 혼합하여 제넥솔PM을 함유하는 실란트를 제조하였다. 아래 표 1은 SSPGA와 4PEGSH buffer의 조성과 버퍼 농도를 나타낸다.A first solution was prepared by dissolving 7 w/v% of SSPGA and 14 ~ 32 w/v% of Genexol PM (Paclitaxel drug) in 0.15M SSPGA buffer. Next, 12 w/v% of 4PEGSH was dissolved in 0.3M PEG buffer to prepare a second solution. The first solution and the second solution were mixed in a volume of 1:1 to prepare a sealant containing Genexol PM. Table 1 below shows the composition and buffer concentration of SSPGA and 4PEGSH buffer.
[표 1][Table 1]
Figure PCTKR2019003664-appb-I000011
Figure PCTKR2019003664-appb-I000011
1-2. 제넥솔PM을 함유하는 실란트의 겔화 특성1-2. Gelling Characteristics of Sealant Containing Genexol PM
제1용액의 제넥솔PM의 함량에 따른 실란트의 겔화 특성을 확인하기 위한 실험을 수행하였다. 제1용액과 제2용액에 사용된 각 구성성분의 함량과 측정한 겔화 특성을 아래 표 2에 나타냈다.An experiment was conducted to confirm the gelling properties of the sealant according to the content of Genexol PM in the first solution. The contents of each component used in the first solution and the second solution and the measured gelling properties are shown in Table 2 below.
구체적으로, 제1용액을 96 well plate에 200 μL 씩 넣은 후 magnetic spin bar를 넣고, magnetic spin bar를 200rpm으로 회전시킨 상태에서 제2용액을 200 μL 투입하였다. 제2용액을 투입한 후 magnetic spin bar가 더 이상 회전하지 못하는 시점까지 걸린 시간을 겔화시간으로 정의하였다.Specifically, 200 μL of the first solution was added to a 96 well plate, and then a magnetic spin bar was added, and 200 μL of the second solution was added while the magnetic spin bar was rotated at 200 rpm. After the second solution was added, the time taken until the magnetic spin bar could no longer rotate was defined as the gelation time.
[표 2][Table 2]
Figure PCTKR2019003664-appb-I000012
Figure PCTKR2019003664-appb-I000012
*P.O: 침천물 발생*P.O: precipitation occurs
표 2에 나타낸 바와 같이, Genexol PM 농도가 24%까지는 0.15M SSPGA buffer에 투명하게 용해되었으나, 그 이상의 농도에서는 완전히 용해되지 않아 침전물이 발생하였다. 또한, Genexol PM은 buffer의 pH 변화에 영향을 미치지 않기 때문에 약물 함량에 상관 없이 모든 조건에서 겔화시간이 1초 정도로 빠르게 수화겔을 형성함을 확인하였다.As shown in Table 2, up to 24% of Genexol PM concentration was transparently dissolved in 0.15M SSPGA buffer, but at a concentration higher than that, it was not completely dissolved, resulting in a precipitate. In addition, since Genexol PM does not affect the pH change of the buffer, it was confirmed that the gelation time formed as fast as 1 second in all conditions regardless of the drug content.
실시예Example 2. 2. 나녹셀M을Nanoxel M 함유하는 실란트의 제조 및 Preparation of containing sealant and 겔화Gelation 특성 characteristic
2-1. 나녹셀M을 함유하는 실란트의 제조2-1. Preparation of sealant containing Nanoxel M
SSPGA 7 w/v%와 Nanoxel M(Docetaxel의 원료 의약품) 20-30 w/v%를 0.15M의 SSPGA buffer에 용해하여 제 1용액을 제조하였다. 다음으로, 4PEGSH 12%를 0.3M PEG buffer에 용해하여 제 2용액을 제조하였으며, 제1용액과 제2용액을 1:1 부피로 혼합하여 Nanoxel M을 함유하는 실란트를 제조하였다.A first solution was prepared by dissolving 7 w/v% of SSPGA and 20-30 w/v% of Nanoxel M (Docetaxel's raw material drug) in 0.15 M SSPGA buffer. Next, 12% of 4PEGSH was dissolved in 0.3M PEG buffer to prepare a second solution, and a sealant containing Nanoxel M was prepared by mixing the first solution and the second solution in a volume of 1:1.
2-2. 나녹셀 M을 함유하는 실란트의 겔화 특성2-2. Gelling properties of sealant containing Nanoxel M
제1용액의 나녹셀 M의 함량에 따른 실란트의 겔화 특성을 확인하기 위해 실시예 1-2와 동일한 방법으로 실험을 수행하였다. 제1용액과 제2용액에 사용된 각 구성성분의 함량과 측정한 겔화 특성을 아래 표 3에 나타냈다.The experiment was performed in the same manner as in Example 1-2 in order to confirm the gelling properties of the sealant according to the content of Nanoxel M in the first solution. The contents of each component used in the first solution and the second solution and the measured gelling properties are shown in Table 3 below.
[표 3][Table 3]
Figure PCTKR2019003664-appb-I000013
Figure PCTKR2019003664-appb-I000013
*P.O: 침전물 발생*P.O: occurrence of sediment
표 3에 나타낸 바와 같이, Nanoxel M 농도가 24%까지는 0.15M SSPGA buffer에 투명하게 용해되었으나, 그 이상의 농도에서는 완전히 용해되지 않아 침전물이 발생하였다. 또한, Nanoxel M은 buffer의 pH 변화에 영향을 미치지 않기 때문에 약물 함량에 상관 없이 모든 조건에서 겔화시간이 1초 정도로 빠르게 수화겔을 형성함을 확인하였다.As shown in Table 3, up to 24% of Nanoxel M concentration was transparently dissolved in 0.15M SSPGA buffer, but at a concentration higher than that, it was not completely dissolved, resulting in a precipitate. In addition, since Nanoxel M does not affect the pH change of the buffer, it was confirmed that the gelation time formed as fast as 1 second in all conditions regardless of the drug content.
실시예Example 3. 3. 젬자를Gemja 함유하는 실란트의 제조 및 Preparation of containing sealant and 겔화Gelation 특성 characteristic
실시예 3-1. 젬자를 함유하는 실란트 제조Example 3-1. Manufacture of sealant containing gemja
SSPGA 7 w/v%를 0.15M의 SSPGA buffer에 용해하여 제 1용액을 제조하였다. 이어서, 4PEGSH 12 w/v%와 젬자(Gemzar, Gemcitabine 완제의약품) 6-24 w/v%를 0.3-0.6M PEG buffer에 용해하여 제 2용액을 제조하였다. 다음으로, 제1용액과 제2용액을 1:1 부피로 혼합하여 젬자를 함유하는 실란트를 제조하였다.A first solution was prepared by dissolving 7 w/v% of SSPGA in 0.15M SSPGA buffer. Subsequently, 12 w/v% of 4PEGSH and 6-24 w/v% of Gemzar (Gemcitabine drug) were dissolved in 0.3-0.6M PEG buffer to prepare a second solution. Next, the first solution and the second solution were mixed in a volume of 1:1 to prepare a sealant containing gemja.
실시예 3-2. 젬자를 함유하는 실란트의 겔화 특성Example 3-2. Gelling properties of sealants containing gemja
제2용액의 젬자 함량, PEG buffer 또는 SSPGA의 함량에 따른 실란트의 겔화 특성을 확인하기 위해 실시예 1-2와 동일한 방법으로 실험을 수행하였다. 제1용액과 제2용액에 사용된 각 구성성분의 함량과 측정한 겔화 특성을 아래 표 4에 나타냈다.The experiment was performed in the same manner as in Example 1-2 in order to confirm the gelling properties of the sealant according to the content of gemza, PEG buffer, or SSPGA of the second solution. The contents of each component used in the first solution and the second solution and the measured gelation properties are shown in Table 4 below.
[표 4][Table 4]
Figure PCTKR2019003664-appb-I000014
Figure PCTKR2019003664-appb-I000014
표 4에 나타낸 바와 같이, 젬자는 모든 PEG buffer 농도 조건에서 불투명하게 분산된 형태로 존재함을 확인하였다. 또한, 동일한 PEG buffer 조건에서 젬자 함량이 증가할수록 겔 형성시간이 증가하나 SSPGA 고분자 함량을 높이거나 PEG buffer의 농도를 증가시킴으로써 젬자에 의한 산성화를 완충시켜 겔화 시간을 단축할 수 있음을 확인하였다. As shown in Table 4, it was confirmed that Gemja exists in an opaquely dispersed form under all PEG buffer concentration conditions. In addition, it was confirmed that the gel formation time increased as the amount of gemja increased in the same PEG buffer condition, but the gelation time could be shortened by buffering acidification by the gemza by increasing the SSPGA polymer content or increasing the concentration of the PEG buffer.
실시예Example 4. 4. 제넥솔PM과Genexol PM Department 젬자를Gemja 함유하는 실란트의 제조 및 Preparation of containing sealant and 겔화Gelation 특성 (약물함량 변경) Characteristics (drug content change)
4-1. 제넥솔PM과 젬자를 함유하는 실란트의 제조4-1. Preparation of sealant containing Genexol PM and Gemja
SSPGA 7-10 w/v%와 Genexol PM 8-24 w/v%를 0.15M의 SSPGA buffer에 용해하여 제1용액을 제조하였다. 이어서, 4PEGSH 12-18 w/v%와 젬자 6-30 w/v%를 0.3-0.7M PEG buffer에 용해하여 제2용액을 제조하였으며, 상기 제1용액과 제2용액을 1:1 부피로 혼합하여 제넥솔PM과 젬자를 동시에 함유하는 실란트를 제조하였다.A first solution was prepared by dissolving 7-10 w/v% of SSPGA and 8-24 w/v% of Genexol PM in 0.15M SSPGA buffer. Then, 4PEGSH 12-18 w/v% and Gemza 6-30 w/v% were dissolved in 0.3-0.7M PEG buffer to prepare a second solution, and the first solution and the second solution were prepared in a volume of 1:1. By mixing, a sealant containing both Genexol PM and Gemja was prepared.
4-2. 제넥솔PM과 젬자를 함유하는 실란트의 겔화 특성4-2. Gelation Characteristics of Sealant Containing Genexol PM and Gemja
제1용액의 제넥솔PM 함량, 제2용액의 젬자 함량, PEG buffer 또는 SSPGA의 함량에 따른 실란트의 겔화 특성을 확인하기 위해 실시예 1-2와 동일한 방법으로 실험을 수행하였다. 제1용액과 제2용액에 사용된 각 구성성분의 함량과 측정한 겔화 특성을 아래 표 5와 도 2에 나타냈다.The experiment was performed in the same manner as in Example 1-2 in order to confirm the gelation characteristics of the sealant according to the content of Genexol PM in the first solution, the content of gemza in the second solution, and the content of PEG buffer or SSPGA. The content of each component used in the first solution and the second solution and the measured gelling properties are shown in Table 5 below and FIG. 2.
[표 5][Table 5]
Figure PCTKR2019003664-appb-I000015
Figure PCTKR2019003664-appb-I000015
*P.O: 침전물 발생*P.O: occurrence of sediment
표 5에 나타낸 바와 같이, 제1용액에 포함된 Genexol PM은 buffer의 pH 변화에 영향을 미치지 않기 때문에 약물 함량에 상관 없이 겔화 시간에 영향을 미치지 않음을 확인하였다. 또한, 제2용액의 경우 동일한 PEG buffer 조건에서 젬자 함량이 증가할수록 겔 형성시간이 증가하나 PEG buffer의 농도를 증가하여 젬자에 의한 산성화를 완충하면 겔화 시간을 단축할 수 있음을 확인하였다. PEG buffer의 농도가 0.7M 이상인 경우 4PEGSH의 용해도가 큰 폭으로 감소함에 따라 침전되어 겔을 형성하지 못하였다.As shown in Table 5, since Genexol PM contained in the first solution did not affect the pH change of the buffer, it was confirmed that it did not affect the gelation time regardless of the drug content. In addition, in the case of the second solution, it was confirmed that the gel formation time increased as the amount of gemja increased in the same PEG buffer condition, but the gelation time could be shortened by buffering acidification by the gemza by increasing the concentration of the PEG buffer. When the concentration of the PEG buffer was 0.7M or more, the solubility of 4PEGSH decreased significantly, resulting in precipitation and thus not forming a gel.
4-3. 제넥솔PM과 젬자를 함유하는 실란트의 유변학적 겔화 특성4-3. Rheological Gelation Characteristics of Sealant Containing Genexol PM and Gemja
약물을 함유하는 실란트의 유변학적 겔화 특성을 확인하기 위해 회전형 점도계 분석 조건을 아래와 같이 설정하여 Storage modulus(G')과 Loss modulus(G'') 변화를 확인하였다. 이때 제1용액을 geometry에 먼저 로딩한 후 분석을 시작하였으며 약 100초 이후에 제2용액을 주입하여 G'과 G''의 수치 변화를 확인하였으며 G'값이 G''값보다 커지는 시점을 sol-gel 변화 시점(겔화 시간)으로 정의하였다.In order to confirm the rheological gelation properties of the sealant containing the drug, the storage modulus (G') and loss modulus (G'') changes were confirmed by setting the conditions of the rotational viscometer analysis as follows. At this time, the first solution was first loaded onto the geometry and analysis was started.After about 100 seconds, the second solution was injected to check the numerical change of G'and G''. It was defined as the time point of sol-gel change (gelation time).
(1) Mode: Time-sweep oscillatory mode(1) Mode: Time-sweep oscillatory mode
(2) Measuring geometry: 40 mm, Frequency: 1 Hz, Temperature: 22±2°C, Time: 10 min, Strain: 5%, Measuring gap: 0.1 mm(2) Measuring geometry: 40 mm, Frequency: 1 Hz, Temperature: 22±2°C, Time: 10 min, Strain: 5%, Measuring gap: 0.1 mm
도 2는 SSPGA 7 w/v%/제넥솔PM(파클리탁셀) 8 w/v% 혼합한 제1용액과 4PEGSH 12 w/v%, 젬자 10 w/v%를 혼합한 용액이 서로 반응하여 수초(1~2초) 내 수화겔이 형성됨을 보여준다. 도 2에 나타난 결과는 현재 약물 함량 조건에서 0.5M 4PEGSH buffer가 충분히 완충 효과를 나타내어 젬자에 의한 pH 변화를 충분히 완충하였음을 의미한다. 이는, 해당 조성으로 종양 표면에서 분사하였을 때 빠르게 수화겔을 형성할 수 있음을 보여준다.Figure 2 shows a first solution mixed with 8 w/v% of SSPGA 7 w/v%/Genexol PM (paclitaxel), 12 w/v% of 4PEGSH, and 10 w/v% of Gemja reacted with each other for several seconds ( 1~2 seconds) shows that hydrogel is formed. The results shown in FIG. 2 indicate that the 0.5M 4PEGSH buffer sufficiently exhibited a buffering effect under the current drug content condition to sufficiently buffer the pH change caused by the gemza. This shows that when sprayed from the tumor surface with the composition, a hydrogel can be formed quickly.
실시예Example 5. 5. 제넥솔PM과Genexol PM Department 젬자를Gemja 함유하는 실란트의 제조 및 겔 물성 측정 (고분자 함량 변경) Preparation of containing sealant and measurement of gel properties (change of polymer content)
5-1. 제넥솔PM과 젬자를 함유하는 실란트의 제조5-1. Preparation of sealant containing Genexol PM and Gemja
SSPGA 5-9 w/v%와 Genexol PM 8 w/v%를 0.15M의 SSPGA buffer에 용해하여 제1용액을 제조하였다. 이어서, 4PEGSH 8-16 w/v%와 젬자 10 w/v%를 0.5M PEG buffer에 용해하여 제2용액을 제조하였으며, 제1용액과 제2용액을 1:1 부피로 혼합하여 제넥솔PM과 젬자를 함유하는 실란트를 제조하였다.A first solution was prepared by dissolving SSPGA 5-9 w/v% and Genexol PM 8 w/v% in 0.15 M SSPGA buffer. Then, 4PEGSH 8-16 w/v% and Gemja 10 w/v% were dissolved in 0.5M PEG buffer to prepare a second solution, and the first solution and the second solution were mixed in 1:1 volume to prepare Genexol PM. A sealant containing and gemja was prepared.
5-2. 제넥솔PM과 젬자를 함유하는 실란트의 겔 물성 측정5-2. Measurement of gel properties of sealant containing Genexol PM and Gemza
제넥솔PM과 젬자의 함량이 동일할 때, 제1용액의 SSPGA의 함량, 제2용액의 4PEGSH 고분자 함량에 따른 실란트의 겔 물성 겔화시간(Gelation time), 파열강도(Burst pressure), 분해시간(Degradation time)을 측정하였다. 제1용액과 제2용액에 사용된 각 구성성분의 함량과 측정한 3종류의 겔화 특성을 아래 표 6에 나타냈다.When the contents of Genexol PM and Gemza are the same, the gel properties of the sealant according to the SSPGA content in the first solution and the 4PEGSH polymer content in the second solution Gelation time, burst pressure, and decomposition time ( Degradation time) was measured. The contents of each component used in the first and second solutions and the measured three types of gelation properties are shown in Table 6 below.
구체적으로, 겔화시간은 앞선 실시예 1-2와 동일한 방법으로 측정하였다.Specifically, the gelation time was measured in the same manner as in Example 1-2.
파열강도는 ASTM2392-04 (Standard Test Method for Burst Strength of Surgical Sealants)에 따라 측정하였다. 콜라겐 케이싱을 3 cm × 3 cm 크기로 자른 후 증류수와 에탄올에 각각 2회 세척하여 표면에 묻어있는 글리세린을 제거하여 조직 대체제로 사용하였다. 3 mm 직경의 구멍을 뚫은 후 제1용액과 제2용액을 double barrel syringe에 넣은 후 케이싱 구멍에 spray tip을 통해 2 mm 정도 두께가 되도록 분사를 진행하였다. 도포한 후 5분간 방치하여 경화시킨 후 파열강도 측정기에 고정한 후 2 mL/min의 속도로 물을 흘려 이 때 걸리는 수압을 측정하였다. 이때 경화된 겔이 부서지거나 콜라겐 케이싱에서 떨어질 때의 최고의 수압을 burst pressure로 정의하였다. Burst strength was measured according to ASTM2392-04 (Standard Test Method for Burst Strength of Surgical Sealants). The collagen casing was cut into a size of 3 cm × 3 cm, washed twice with distilled water and ethanol, respectively, to remove glycerin on the surface and used as a tissue replacement. After drilling a 3 mm diameter hole, the first solution and the second solution were put into a double barrel syringe, and then sprayed to a thickness of about 2 mm through a spray tip in the casing hole. After coating, it was allowed to stand for 5 minutes, hardened, and fixed to a burst strength meter, and water was flowed at a rate of 2 mL/min to measure the water pressure applied at this time. At this time, the highest hydraulic pressure when the cured gel breaks or falls from the collagen casing was defined as the burst pressure.
분해시간은 다음과 같이 측정하였다. 우선, 수화겔 0.3 g을 10 mL PBS buffer(pH 7.4)에 넣고 37℃, 50 rpm의 항온조에서 24시간 동안 침지하고 이후 표면의 수분을 가볍게 닦아내고 침지 후의 팽윤도(%)를 하기와 같이 계산하였다. 일정 시간 간격으로 샘플을 채취하여 팽윤도를 계산하며 더 이상 샘플이 회수되지 않는 시점(즉, 샘플이 모두 분해된 시점)에서 실험을 중지하고 이를 분해 시간으로 정의하였다.The disintegration time was measured as follows. First, 0.3 g of hydrogel was put in 10 mL PBS buffer (pH 7.4), immersed in a constant temperature bath at 37° C. and 50 rpm for 24 hours, and then lightly wiped off the moisture on the surface, and the swelling degree (%) after immersion was calculated as follows. Samples were taken at regular time intervals to calculate the degree of swelling, and the experiment was stopped at a point in time when no more samples were recovered (ie, all samples were decomposed), and this was defined as the decomposition time.
[수학식 1][Equation 1]
팽윤도 (%) = (침지후 수화겔 중량)/(초기 수화겔 중량)*100%Swelling degree (%) = (weight of hydrogel after immersion)/(weight of initial hydrogel)*100%
[표 6][Table 6]
Figure PCTKR2019003664-appb-I000016
Figure PCTKR2019003664-appb-I000016
표 6에 나타낸 바와 같이, 실란트의 고분자(SSPGA, 4PEGSH) 농도의 증가는 겔화시간에는 영향을 미치지 않으나, 분해시간이 연장되며 Burst pressure 또한 향상되는 경향을 나타냈다.As shown in Table 6, the increase in the polymer (SSPGA, 4PEGSH) concentration of the sealant did not affect the gelation time, but the decomposition time was prolonged and the burst pressure was also increased.
실시예Example 6. 6. 제넥솔PM과Genexol PM Department 젬자를Gemja 함유하는 실란트의 약물 방출 거동(In vitro drug release profile) In vitro drug release profile of containing sealant
두 약물 제넥솔PM 및 젬자가 담지된 수화겔의 시간 경과에 따른 약물 방출 거동을 확인하고 이를 통해 수화겔에 담지된 약물이 서방적으로 방출되는지 확인하기 위해, HPLC 실험을 진행하였다. 실험결과는 도 3에 나타냈다.In order to confirm the drug release behavior over time of the hydrogels loaded with the two drugs Genexol PM and Gemza, and through this, an HPLC experiment was conducted to confirm whether the drug supported on the hydrogel was released sustainedly. The experimental results are shown in FIG. 3.
구체적으로, 제넥솔PM의 약물 방출 거동을 분석하기 위해, 파클리탁셀 100mg을 정밀하게 칭량하여 100mL 용량 플라스크에 넣고 아세토니트릴을 넣어 녹이고 이 액을 80% 아세토니트릴을 이용하여 1, 2, 5, 10 50, 100, 200, 600 ㎍/mL로 희석하여 표준액을 제조하였다. 이어서 다음과 같은 조건으로 HPLC 분석을 수행하였다. 컬럼 (Poroshell 120 PFP column (2.7 ㎛, 4.6 x 150 mm, Agilent, USA)), 검출기 (λnm), 유속 (0.6 mL/min), 주입량 (10 uL), 컬럼 온도 (25 ℃, 이동상 (0~25분: 물/ACN=65/35(v/v) →45/55(v/v), 25~28분: 물/ACN=45/55(v/v), 25~30분: 물/ACN=45/55(v/v)) →65/35(v/v), 30~35분: 물/ACN=65/35(v/v))Specifically, in order to analyze the drug release behavior of Genexol PM, 100 mg of paclitaxel was precisely weighed and placed in a 100 mL volumetric flask, and acetonitrile was added to dissolve it, and this solution was dissolved in 80% acetonitrile for 1, 2, 5, 10 50 , 100, 200, 600 μg/mL to prepare a standard solution. Subsequently, HPLC analysis was performed under the following conditions. Column (Poroshell 120 PFP column (2.7 µm, 4.6 x 150 mm, Agilent, USA)), detector (λnm), flow rate (0.6 mL/min), injection volume (10 uL), column temperature (25 °C, mobile phase (0~ 25 minutes: water/ACN=65/35(v/v) →45/55(v/v), 25~28 minutes: water/ACN=45/55(v/v), 25~30 minutes: water/ ACN=45/55(v/v)) →65/35(v/v), 30~35 minutes: water/ACN=65/35(v/v))
젬자의 약물 방출 거동을 분석하기 위해, 우선 젬시타빈 100mg을 정밀하게 칭량하여 100mL 용량 플라스크에 넣고 아세토니트릴을 넣어 녹였다(1,000 ㎍/mL). 젬시타빈 100mg을 정밀하게 칭량하여 100mL 용량 플라스크에 넣고 아세토니트릴을 넣어 녹였다(1,000 ㎍/mL). 두 표준액을 1:1로 혼합하여 표준액을 제조하였다(500 ㎍/mL). 이어서, 다음과 같은 조건으로 HPLC 분석을 수행하엿다. Zorbax SB-C8 (5 ㎛, 4.6 x 250 mm), 검출기 (λnm), 유속 (1.0 mL/min), 주입량 (20 uL), 컬럼 온도 (25 ℃, 이동상 (0~5분: 0.1% Phosphoric acid/ACN =95/5(v/v), 5~10분: 0.1% Phosphoric acid/ACN =95/5(v/v) →20/80(v/v), 10~15분: 0.1% Phosphoric acid/ACN =20/80(v/v), 15~18분: 0.1% Phosphoric acid/ACN =20/80(v/v) →95/5(v/v), 18~25분: 0.1% Phosphoric acid/ACN =95/5(v/v))In order to analyze the drug release behavior of Gemza, first 100 mg of gemcitabine was precisely weighed, placed in a 100 mL volumetric flask, and dissolved in acetonitrile (1,000 μg/mL). 100 mg of gemcitabine was precisely weighed, placed in a 100 mL volumetric flask, and dissolved by adding acetonitrile (1,000 μg/mL). The two standard solutions were mixed at 1:1 to prepare a standard solution (500 μg/mL). Then, HPLC analysis was performed under the following conditions. Zorbax SB-C8 (5 µm, 4.6 x 250 mm), detector (λnm), flow rate (1.0 mL/min), injection volume (20 uL), column temperature (25 ℃, mobile phase (0-5 min: 0.1% Phosphoric acid) /ACN =95/5(v/v), 5~10min: 0.1% Phosphoric acid/ACN =95/5(v/v) →20/80(v/v), 10~15min: 0.1% Phosphoric acid/ACN =20/80(v/v), 15~18 min: 0.1% Phosphoric acid/ACN =20/80(v/v) →95/5(v/v), 18~25 min: 0.1% Phosphoric acid/ACN =95/5(v/v))
도 3에 나타낸 바와 같이, 수용성 약물인 젬시타빈은 파클리탁셀과는 달리 초반에 대부분(67%) 방출 되며 시간 경과에 따라 추가적으로 약물이 방출되나 그 양이 많지 않았다(71%). 제넥솔PM의 경우 paclitaxel이 난용성 약물임에도 불구하고 계면활성제인 mPEG-PLA에 의해 용해되어 1일 동안 20%가량 빠르게 방출되었다. 그러나 계면활성제인 mPEG-PLA가 완전히 빠져나간 후에는 파클리탁셀이 수화겔에 갇힌 상태에서 서방성으로 방출되는 것이 확인되었다. 위 결과로부터 수용성 약물(gemcitabine)과 난용성 약물(paclitaxel)을 수화겔에 함께 담지함으로써 초반에는 수용성 약물에 의한 치료가 가능하며 시간 경과에 따라 난용성 약물에 의한 항암 치료가 가능함을 확인하였다.As shown in FIG. 3, unlike paclitaxel, gemcitabine, a water-soluble drug, was released most (67%) at the beginning, and additional drugs were released over time, but the amount was not large (71%). In the case of Genexol PM, although paclitaxel was a poorly soluble drug, it was dissolved by mPEG-PLA, a surfactant, and was rapidly released by 20% for 1 day. However, after the surfactant mPEG-PLA completely escaped, it was confirmed that paclitaxel was released in a sustained release state while trapped in the hydrogel. From the above results, it was confirmed that by loading a water-soluble drug (gemcitabine) and a poorly soluble drug (paclitaxel) together in a hydration gel, treatment with a water-soluble drug is possible at the beginning, and anticancer treatment with a poorly soluble drug is possible over time.
실시예Example 7. 약물 담지 실란트의 In 7. In of drug-carrying sealant vivovivo 항암 유효성 평가 Anticancer efficacy evaluation
7-1. 췌장암 정위이식 마우스 모델 유도 및 약물 담지 실란트 처리7-1. Induction of stereotactic transplantation mouse model for pancreatic cancer and treatment with drug-laden sealant
췌장암 정위이식(orthotopic) 마우스 모델을 통해 약물 담지 실란트의 종양에 대한 항암 효과를 평가하기 위한 실험을 수행하였다. 우선, 췌장암 정위이식 마우스 모델을 유도하였다. 구체적으로, 사람 유래의 췌장암 세포주 (AsPC-1)를 배양하여 6 × 106/mL의 농도로 준비하였다. 6주령 암컷 누드마우스 45마리를 케타민과 럼푼을 이용하여 마취시킨 후 마우스의 왼쪽 복부를 세로로 약 2 cm 절개하고 비장 및 췌장을 노출시켰다. 노출된 췌장 말단에 30 G 주사침을 이용하여 췌장 혈관을 피해 준비한 췌장암 세포주를 0.1 mL 주사한 후, 췌장과 비장을 제자리에 위치시키고 5-0 봉합사를 이용하여 복부 봉합을 진행하였다.An experiment was performed to evaluate the anticancer effect of the drug-carrying sealant on tumors through a pancreatic cancer orthotopic mouse model. First, a stereotactic pancreatic cancer transplant mouse model was derived. Specifically, human-derived pancreatic cancer cell line (AsPC-1) was cultured and prepared at a concentration of 6 × 10 6 /mL. After 45 6-week-old female nude mice were anesthetized with ketamine and lumpun, the left abdomen of the mouse was incised about 2 cm vertically, and the spleen and pancreas were exposed. After 0.1 mL of the prepared pancreatic cancer cell line was injected to the exposed pancreatic extremity using a 30 G needle to avoid pancreatic blood vessels, the pancreas and spleen were placed in place and abdominal suture was performed using 5-0 sutures.
다음으로, 췌장암 세포주를 이식하고 약 2주가 지난 후 손으로 만졌을 때 종양의 직경이 약 5 mm 이상 될 때 약물 처치를 진행하였다. 각 실험군의 구성 및 투여약물, 개체 수, 투여경로는 하기 표 7과 같이 설정하였다. 이어서, 마우스를 케타민과 럼푼을 이용하여 마취시킨 후 마우스의 왼쪽 복부를 세로로 약 2 cm 절개하고 종양 및 췌장을 노출시킨 후에 버니어 캘리퍼스를 이용하여 약물 투여일의 종양 부피(TV0)를 측정하였다. 표 7의 비처치군은 아무 것도 처치하지 않았으며, 양성대조군은 종양부피 측정일 2-3일 후에 제넥솔PM을 1회 정맥내 주사하고 3-4일 간격으로 3회 젬자를 정맥 내 주사하였다. 시험군 G2는 실란트만을 종양에 도포하였으며 시험군 G3는 젬자와 제넥솔PM이 탑재된 실란트를 종양에 도포하였다. 실란트가 굳은 후에 췌장과 종양을 제자리에 위치시키고 5-0 봉합사를 이용하여 복부 봉합을 진행하였다.Next, about 2 weeks after the pancreatic cancer cell line was transplanted, drug treatment was performed when the diameter of the tumor became more than about 5 mm when touched by hand. The composition of each experimental group, drug administration, number of individuals, and administration route were set as shown in Table 7 below. Subsequently, the mouse was anesthetized with ketamine and lumpun, the left abdomen of the mouse was incised about 2 cm vertically, and the tumor and pancreas were exposed, and then the tumor volume (TV0) on the day of drug administration was measured using a vernier caliper. The untreated group in Table 7 did not treat anything, and in the positive control group, Genexol PM was injected once intravenously 2-3 days after the tumor volume measurement day, and gemza was injected intravenously 3 times at 3-4 days intervals. . In test group G2, only sealant was applied to the tumor, and in test group G3, a sealant loaded with Gemza and Genexol PM was applied to the tumor. After the sealant was hardened, the pancreas and tumor were placed in place, and abdominal sutures were performed using 5-0 sutures.
[표 7][Table 7]
Figure PCTKR2019003664-appb-I000017
Figure PCTKR2019003664-appb-I000017
7-2. In vivo 항암 유효성 평가7-2. In vivo anticancer efficacy evaluation
매일 상기 표 6의 비처치군, 시험군G1, 시험군G2, 양성대조군 마우스의 임상증상 및 사망여부를 확인하였으며, 체중, 종양의 부피 (TV), 상대적 종양 부피 (Relative tumor Volume, RV), 종양성장억제율 (Tumor Growth Inhibition rate, TGI), 종양 전이 정도 기준을 측정하였고, 그 결과를 도 4 내지 도 6에 나타냈다.The clinical symptoms and death of the mice in the untreated group, test group G1, test group G2, and positive control group of Table 6 were checked every day, and weight, tumor volume (TV), relative tumor volume (RV), Tumor Growth Inhibition rate (TGI) and tumor metastasis criteria were measured, and the results are shown in FIGS. 4 to 6.
(1) 마우스의 체중은 약물투여일을 포함하여 주 2회 전자저울을 이용하여 마우스의 체중을 측정하였으며, 그 결과를 도 4에 나타냈다.(1) The weight of the mouse was measured using an electronic balance twice a week including the day of drug administration, and the results are shown in FIG. 4.
(2) 종양의 부피(TV)는 다음의 수학식 2을 이용해 측정하였으며, 그 결과를 도 5에 나타냈다.(2) The tumor volume (TV) was measured using Equation 2 below, and the results are shown in FIG. 5.
[수학식 2][Equation 2]
TV (mm3)= A × A × B/2 (A: 종양의 장경 / B: 종양 장경과 직각을 이루는 직경TV (mm 3 )= A × A × B/2 (A: long diameter of tumor / B: diameter perpendicular to tumor long diameter
(3) 상대적 종양 부피 (Relative tumor Volume, RV)는 다음 수학식 3을 이용해 측정하였으며, 종양성장억제율 (Tumor Growth Inhibition rate, TGI) 은 수학식 4를 이용해 측정하였고 그 결과를 도 5에 나타냈다.(3) Relative tumor volume (RV) was measured using Equation 3 below, and the Tumor Growth Inhibition rate (TGI) was measured using Equation 4, and the results are shown in FIG.
[수학식 3][Equation 3]
RV = TVn/TV0 (TVn: 실험종료일의 종양부피 / TV0: 약물 투여일의 종양부피)RV = TVn/TV0 (TVn: tumor volume at the end of the experiment / TV0: tumor volume at the day of drug administration)
[수학식 4][Equation 4]
TGI (%) = (1-RTVT/RTVC) × 100 (RTVT: 실험군의 RTV / RTVC: 비처치군의 RTV)TGI (%) = (1-RTVT/RTVC) × 100 (RTVT: RTV of experimental group / RTVC: RTV of non-treatment group)
(4) 종양 전이 정도는 다음 표 8를 기준으로 종양 전이 정도를 점수화하였으며, 도 6에 나타냈다.(4) The degree of tumor metastasis was scored based on the following Table 8, and is shown in FIG. 6.
[표 8][Table 8]
Figure PCTKR2019003664-appb-I000018
Figure PCTKR2019003664-appb-I000018
In vivo 항암 유효성 평가결과, 각 군당 11마리씩 약물을 투여하였으나 G2-3, G3-3, G3-4, G4-10번 개체는 약물투여 개복술 다음 날 폐사하였으며, 실험 기간 동안 이를 제외한 다른 실험동물에서 빈사나 폐사, 특이 임상증상은 관찰되지 않았다. 당초에 젬자를 총 6회 투여할 계획이었으나, 4회차 투여예정일에 체중의 급감현상이 관찰되어 투여를 중단하였다. As a result of the in vivo anticancer efficacy evaluation, 11 animals were administered per group, but subjects G2-3, G3-3, G3-4, and G4-10 died the day after drug-administered laparotomy. No moribund, death, or specific clinical symptoms were observed. Initially, it was planned to administer Gemza a total of 6 times, but on the scheduled day of the 4th administration, a sudden decrease in body weight was observed and the administration was stopped.
도 4에 나타낸 바와 같이, 약물투여 20일 후부터 체중이 회복되었으며, G3의 경우 약물투여 익일부터 일시적인 체중감소가 있었으나 10일 이내에 모두 회복되었다.As shown in FIG. 4, body weight was recovered from 20 days after drug administration, and in the case of G3, there was a temporary weight loss from the day after drug administration, but all recovered within 10 days.
도 5에 나타낸 바와 같이, 시험군 G3은 비처치군 G1에 비해 종양성장 억제율이 약 57% 유의하게 증가하였으며(P<0.01), 이는 양성대조군 G4와 유사한 수준이었다. 체중 대비 종양 중량비 역시 시험군 G3은 비처치군 G1에 비해 유의적으로 감소하였다(P<0.05).As shown in FIG. 5, the test group G3 significantly increased the tumor growth inhibition rate by about 57% compared to the untreated group G1 (P<0.01), which was similar to that of the positive control group G4. The ratio of tumor weight to body weight was also significantly decreased in the test group G3 compared to the untreated group G1 (P<0.05).
도 6에 나타낸 바와 같이, 시험군 G3의 전이등급도 감소하는 경향을 확인하였다. 한편, 실란트만 처치한 G2도 종양성장 억제율이 비처치군에 비해 증가하는 경향을 보였으며, 전이도 감소하는 경향을 나타내었다.As shown in Fig. 6, it was confirmed that the transition grade of test group G3 also decreased. On the other hand, G2 treated with sealant only showed a tendency to increase the tumor growth inhibition rate compared to the non-treated group, and also showed a tendency to decrease metastasis.
위 결과로부터, 약물을 담지하는 실란트는 정맥 주사 투여와 비교하여 전신 독성이 낮을 뿐만 아니라(체중 감소 현상이 없음) 1회 투여로도 우수한 종양성장 억제 효과를 나타내고 있음을 확인할 수 있었다. 이에 나아가, 실란트 단독군 또한 일정 수준의 종양 성장 억제 효과를 나타내는 것으로 보아 실란트를 종양에 도포하는 것만으로도 종양의 성장이 억제되며, 항암효과가 존재하는 것을 확인하였다.From the above results, it was confirmed that the drug-carrying sealant exhibited excellent tumor growth inhibitory effect even with a single administration as well as low systemic toxicity (no weight loss phenomenon) compared to intravenous administration. Furthermore, it was confirmed that the sealant alone group also exhibited a certain level of tumor growth inhibitory effect, and thus tumor growth was inhibited by simply applying the sealant to the tumor, and anticancer effect was present.
약물을 담지한 실란트는 물리적인 종양성장 억제 효과뿐만 아니라 항암제의 화학적인 억제효과를 동시에 가지고 있기 때문에 결과적으로 유효한 항암 효과를 나타냄을 알 수 있다.It can be seen that the drug-carrying sealant has not only a physical tumor growth inhibitory effect, but also a chemical inhibitory effect of an anticancer agent, resulting in an effective anticancer effect.

Claims (23)

  1. (i) 하기 화학식 1의 γ-폴리글루탐산 유도체를 포함하는 제1용액: 및(i) a first solution containing a γ-polyglutamic acid derivative represented by the following formula (1): and
    [화학식 1][Formula 1]
    Figure PCTKR2019003664-appb-I000019
    Figure PCTKR2019003664-appb-I000019
    상기 화학식 1에서,In Formula 1,
    l, m 및 n의 총 합은 390 내지 15,500의 정수이고, 상기 l, m 및 n의 비율은 l : m : n = 0 내지 0.5 : 0.2 내지 0.5 : 0.2 내지 0.8이며;the total sum of l, m and n is an integer of 390 to 15,500, and the ratio of l, m and n is l:m:n = 0 to 0.5:0.2 to 0.5:0.2 to 0.8;
    L은 링커이고;L is a linker;
    M은 각각 독립적으로 H, 알칼리 금속 또는 알칼리 토금속이고; Each M is independently H, an alkali metal or an alkaline earth metal;
    R은 CH2이고, R is CH 2 ,
    b는 0 또는 1이고;b is 0 or 1;
    c는 1 내지 5의 정수이고;c is an integer from 1 to 5;
    (ii) 아민기, 티올기, 및 히드록시기로 이루어진 군에서 선택되는 하나 이상의 친핵성 작용기를 보유하고 있는 친수성 물질을 포함하는 제2용액을 혼합하여 형성되는 수화겔을 포함하는, 종양 표면 또는 주변 조직 부착용 약제학적 조성물.(ii) A hydrogel formed by mixing a second solution containing a hydrophilic material having at least one nucleophilic functional group selected from the group consisting of an amine group, a thiol group, and a hydroxy group, including a hydrogel formed, for attaching to the tumor surface or surrounding tissues Pharmaceutical composition.
  2. 제1항에 있어서, 제1용액 내 화학식 1의 γ-폴리글루탐산 유도체의 링커가 -HN-(R)a-O-(상기 R은 CH2이고, a는 1 내지 5의 정수)인 것을 특징으로 하는 약제학적 조성물.The method of claim 1, wherein the linker of the γ-polyglutamic acid derivative of Formula 1 in the first solution is -HN-(R)aO- (wherein R is CH 2 and a is an integer of 1 to 5). Pharmaceutical composition.
  3. 제2항에 있어서, 링커가 아미노메탄올(aminomethanol), 1-아미노-2-프로판올(1-amino-2-propanol), 1-아미노-3-프로판올(1-amino-3-propanol), 1-아미노-4-부탄올(1-amino-4-butanol), 1-아미노-5-펜탄올(1-amino-5-pentanol) 또는 1-아미노-2-에탄올(MEA 또는 1-amino-2-ethanol)로부터 유래된 것임을 특징으로 하는 약제학적 조성물.The method of claim 2, wherein the linker is aminomethanol, 1-amino-2-propanol, 1-amino-3-propanol, 1- Amino-4-butanol (1-amino-4-butanol), 1-amino-5-pentanol (1-amino-5-pentanol) or 1-amino-2-ethanol (MEA or 1-amino-2-ethanol A pharmaceutical composition, characterized in that derived from).
  4. 제1항에 있어서, 제1용액 내 화학식 1의 γ-폴리글루탐산 유도체의 -(CO)b-(R)c-CO- 부위가 -CH2CH2CH2CH2-CO-, -CO-CH2CH2CH2-CO-, -CH2CH2-CO-, -CO-CH2CH2-CO- 또는 -CH2-CO- 인 것을 특징으로 하는 약제학적 조성물.The method of claim 1, wherein the -(CO)b-(R)c-CO- moiety of the γ-polyglutamic acid derivative of Formula 1 in the first solution is -CH 2 CH 2 CH 2 CH 2 -CO-, -CO- CH 2 CH 2 CH 2 -CO-, -CH 2 CH 2 -CO-, -CO-CH 2 CH 2 -CO- or -CH 2 -CO-, characterized in that the pharmaceutical composition.
  5. 제1항에 있어서, 제1용액 내 화학식 1의 γ-폴리글루탐산 유도체가 하기 구조를 갖는 숙신이미딜 숙시닐 폴리글루탐산(SSPGA)인 것을 특징으로 하는 약제학적 조성물:The pharmaceutical composition according to claim 1, wherein the γ-polyglutamic acid derivative of Formula 1 in the first solution is succinimidyl succinyl polyglutamic acid (SSPGA) having the following structure:
    Figure PCTKR2019003664-appb-I000020
    .
    Figure PCTKR2019003664-appb-I000020
    .
  6. 제1항에 있어서, 제2용액 내 친수성 물질이 아민기, 티올기 및 히드록시기로 이루어진 군에서 선택되는 친핵성 작용기를 2개 이상 보유하는 것임을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 1, wherein the hydrophilic material in the second solution has two or more nucleophilic functional groups selected from the group consisting of an amine group, a thiol group, and a hydroxy group.
  7. 제1항에 있어서, 제2용액 내 친수성 물질이 2개 이상의 arm을 보유한(multi-arm) 폴리(에틸렌 글리콜)(PEG) 유도체, 폴리(비닐 알코올)(PVA), 폴리(에틸렌 이민)(PEI), 폴리(리신)(PL), 트리리신 아민(Trilysine amine), 및 폴리(알릴아민)(PAA)으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 약제학적 조성물.The method of claim 1, wherein the hydrophilic material in the second solution is a poly(ethylene glycol) (PEG) derivative, poly(vinyl alcohol) (PVA), poly(ethylene imine) (PEI) having two or more arms (multi-arm). ), poly (lysine) (PL), trilysine amine (Trilysine amine), and a pharmaceutical composition, characterized in that at least one selected from the group consisting of poly (allylamine) (PAA).
  8. 제1항에 있어서, 제2용액 내 친수성 물질이 multi-arm PEG, PEI 또는 트리리신 아민인 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 1, wherein the hydrophilic substance in the second solution is multi-arm PEG, PEI or trilysine amine.
  9. 제1항에 있어서, 제2용액 내 친수성 물질이 폴리에틸렌글리콜계 고분자이고, 상기 폴리에틸렌글리콜계 고분자는 하기 화학식 2로 표시되는 것임을 특징으로 하는 약제학적 조성물:The pharmaceutical composition according to claim 1, wherein the hydrophilic material in the second solution is a polyethylene glycol-based polymer, and the polyethylene glycol-based polymer is represented by the following formula (2):
    [화학식 2][Formula 2]
    Figure PCTKR2019003664-appb-I000021
    Figure PCTKR2019003664-appb-I000021
    상기 화학식 2에서, In Chemical Formula 2,
    I는 2 내지 12가의 다가 알코올에서 유래한 라디칼이고; I is a radical derived from a dihydric polyhydric alcohol;
    X는 아민기, 티올기 또는 히드록시기이고;X is an amine group, a thiol group, or a hydroxy group;
    n은 19 내지 170이고;n is 19 to 170;
    m은 2 내지 12의 정수로서, 상기 I가 유래한 다가 알코올의 히드록시기수와 같다.m is an integer of 2 to 12, and is the same as the number of hydroxy groups of the polyhydric alcohol from which I is derived.
  10. 제9항에 있어서, 제2용액 내 친수성 물질이 폴리에틸렌글리콜계 고분자이고, 상기 폴리에틸렌글리콜계 고분자는 하기 화학식 3 또는 4으로 표시되는 것임을 특징으로 하는 약제학적 조성물: The pharmaceutical composition according to claim 9, wherein the hydrophilic material in the second solution is a polyethylene glycol-based polymer, and the polyethylene glycol-based polymer is represented by the following Chemical Formula 3 or 4:
    [화학식 3][Formula 3]
    Figure PCTKR2019003664-appb-I000022
    Figure PCTKR2019003664-appb-I000022
    [화학식 4][Formula 4]
    Figure PCTKR2019003664-appb-I000023
    Figure PCTKR2019003664-appb-I000023
    상기 화학식 3 및 4에서, X는 아민기, 티올기 또는 히드록시기를 나타내며, n은 19 내지 170이다.In Formulas 3 and 4, X represents an amine group, a thiol group, or a hydroxy group, and n is 19 to 170.
  11. 제1항에 있어서, 제1용액 및 제2용액이 버퍼(buffer) 용액인 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 1, wherein the first solution and the second solution are buffer solutions.
  12. 제11항에 있어서, 제1용액의 pH가 5-6의 범위이고, 제2용액의 pH가 10-11의 범위인 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 11, wherein the pH of the first solution is in the range of 5-6, and the pH of the second solution is in the range of 10-11.
  13. 제11항에 있어서, 제1용액 및 제2용액의 혼합 후 pH가 5 내지 9의 범위인 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 11, wherein after mixing the first solution and the second solution, the pH is in the range of 5 to 9.
  14. 제11항에 있어서, 버퍼 용액이 증류수, NaCl(Sodium chloride), KCl(Potassium chloride), NaH2PO4(Monosodium phosphate), Na2HPO4(Disodium phosphate), KH2PO4(Monopotassium phosphate), Na2CO3(Sodium carbonate), HCl(Hydrochloric acid), Borate, MES, Tris 및 HEPES로 구성된 그룹 중에서 선택되는 하나 이상이 용해된 수용액인 것을 특징으로 하는 약제학적 조성물.The method of claim 11, wherein the buffer solution is distilled water, NaCl (Sodium chloride), KCl (Potassium chloride), NaH 2 PO 4 (Monosodium phosphate), Na 2 HPO 4 (Disodium phosphate), KH 2 PO 4 (Monopotassium phosphate), A pharmaceutical composition, characterized in that it is an aqueous solution in which at least one selected from the group consisting of Na 2 CO 3 (Sodium carbonate), HCl (Hydrochloric acid), Borate, MES, Tris and HEPES is dissolved.
  15. 제14항에 있어서, 제1용액의 버퍼는 NaH2PO4(Monosodium phosphate)와 Na2HPO4(Disodium phosphate)의 혼합 버퍼이고, 제2용액의 버퍼는 Na2HPO4(Disodium phosphate)와 Na2CO3(Sodium carbonate)의 혼합 버퍼인 것을 특징으로 하는 약제학적 조성물. The method of claim 14, wherein the buffer of the first solution is a mixed buffer of NaH 2 PO 4 (Monosodium phosphate) and Na 2 HPO 4 (Disodium phosphate), and the buffer of the second solution is Na 2 HPO 4 (Disodium phosphate) and Na Pharmaceutical composition, characterized in that the mixing buffer of 2 CO 3 (Sodium carbonate).
  16. 제15항에 있어서, 제1용액의 버퍼는 NaH2PO4와 Na2HPO4가 9:1 내지 1:9의 부피 비로 혼합된 것이고, 제2용액의 버퍼는 Na2HPO4와 Na2CO3가 9:1 내지 1:9의 부피 비로 혼합된 것임을 특징으로 하는 약제학적 조성물.The method of claim 15, wherein the buffer of the first solution is a mixture of NaH 2 PO 4 and Na 2 HPO 4 in a volume ratio of 9:1 to 1:9, and the buffer of the second solution is Na 2 HPO 4 and Na 2 CO A pharmaceutical composition, characterized in that 3 is mixed in a volume ratio of 9:1 to 1:9.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서, 종양 성장 억제 용도로 사용되는 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to any one of claims 1 to 16, which is used for inhibiting tumor growth.
  18. 제1항 내지 제16항 중 어느 한 항에 있어서, 주변 조직이 종양 절개 부위인 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to any one of claims 1 to 16, wherein the surrounding tissue is a tumor incision site.
  19. 제1항 내지 제16항 중 어느 한 항에 있어서, 제1용액 및/또는 제2용액이 약물을 추가로 포함하는 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to any one of claims 1 to 16, characterized in that the first solution and/or the second solution further comprise a drug.
  20. 제19항에 있어서, 약물이 항암제, 항생제 및 진통제로 구성된 그룹 중에서 선택되는 하나 이상인 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 19, wherein the drug is at least one selected from the group consisting of anticancer agents, antibiotics and analgesics.
  21. 제20항에 있어서, 항암제가 Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin 및 Cyclophosphamide로 구성된 그룹 중에서 선택되는 하나 이상이고; 항생제가 Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin 및 Ciprofloxacin으로 구성된 그룹 중에서 선택되는 하나 이상이고; 또는 진통제가 Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine 및 Articaine으로 구성된 그룹 중에서 선택되는 하나 이상인 것을 특징으로 하는 약제학적 조성물.The method of claim 20, wherein the anticancer agent is at least one selected from the group consisting of Paclitaxel, Gemcitabine, Docetaxel, Doxorubicin, and Cyclophosphamide; The antibiotic is at least one selected from the group consisting of Streptomycin, Gentamicin, Amoxicillin, Doxycycline, Cephalexin and Ciprofloxacin; Or a pharmaceutical composition, characterized in that the analgesic agent is at least one selected from the group consisting of Acetaminophen, Bupivacaine, Levobupivacaine, Aspirin Diphenhydramine, Ropivacaine, Lidocaine, Mepivacaine, Prilocaine, Cinchocaine, Etidocaine and Articaine.
  22. 제19항에 있어서, 제1용액 및 제2용액이 각각 항암제를 추가로 포함하는 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 19, wherein the first solution and the second solution each further contain an anticancer agent.
  23. 제22항에 있어서, 제1용액이 Paclitaxel, Decetaxel 또는 이의 혼합물을 포함하고, 제2용액이 Gemcitabine을 포함하는 것을 특징으로 하는 약제학적 조성물.The pharmaceutical composition according to claim 22, wherein the first solution comprises Paclitaxel, Decetaxel, or a mixture thereof, and the second solution comprises Gemcitabine.
PCT/KR2019/003664 2019-03-28 2019-03-28 Drug-loaded hydrogel formed in real time WO2020196964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/003664 WO2020196964A1 (en) 2019-03-28 2019-03-28 Drug-loaded hydrogel formed in real time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/003664 WO2020196964A1 (en) 2019-03-28 2019-03-28 Drug-loaded hydrogel formed in real time

Publications (1)

Publication Number Publication Date
WO2020196964A1 true WO2020196964A1 (en) 2020-10-01

Family

ID=72608871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003664 WO2020196964A1 (en) 2019-03-28 2019-03-28 Drug-loaded hydrogel formed in real time

Country Status (1)

Country Link
WO (1) WO2020196964A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080593A (en) * 2000-09-06 2002-03-19 Meiji Seika Kaisha Ltd gamma-POLYGLUTAMIC ACID DERIVATIVE
KR20110076826A (en) * 2009-12-28 2011-07-06 주식회사 삼양사 Hydrgel, preparation method and use thereof
KR20130078549A (en) * 2011-12-30 2013-07-10 주식회사 삼양바이오팜 In situ crosslinking hydrogel comprising γ-polyglutamic acid and method for producing the same
KR20130093769A (en) * 2011-12-29 2013-08-23 주식회사 삼양바이오팜 &gamma;-POLYGLUTAMIC ACID HAVING CATECHOL GROUP, PREPARATION METHOD THEREOF AND TISSUE ADHESIVES COMPRISING THE SAME
KR101670249B1 (en) * 2016-02-16 2016-10-31 (주) 메디프레소 Drug Delivery Systems for Cancer Therapy and Preparation Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080593A (en) * 2000-09-06 2002-03-19 Meiji Seika Kaisha Ltd gamma-POLYGLUTAMIC ACID DERIVATIVE
KR20110076826A (en) * 2009-12-28 2011-07-06 주식회사 삼양사 Hydrgel, preparation method and use thereof
KR20130093769A (en) * 2011-12-29 2013-08-23 주식회사 삼양바이오팜 &gamma;-POLYGLUTAMIC ACID HAVING CATECHOL GROUP, PREPARATION METHOD THEREOF AND TISSUE ADHESIVES COMPRISING THE SAME
KR20130078549A (en) * 2011-12-30 2013-07-10 주식회사 삼양바이오팜 In situ crosslinking hydrogel comprising γ-polyglutamic acid and method for producing the same
KR101670249B1 (en) * 2016-02-16 2016-10-31 (주) 메디프레소 Drug Delivery Systems for Cancer Therapy and Preparation Method Thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHN, S.: "Application of drug combined bioabsorbable sealants in orthotopic pancreatic cancer model", 2018 SPRING MEETING OF KSBM (JOINT HOST: KORS, 29 March 2018 (2018-03-29) *

Similar Documents

Publication Publication Date Title
US9211358B2 (en) Dressing compositions and methods
WO2012008722A2 (en) Filler composition for tissue reinforcement
WO2011028031A2 (en) In situ-forming hydrogel for tissue adhesives and biomedical use thereof
WO2016159734A1 (en) Bleed-free injection needle coated with crosslinked chitosan having introduced catechol group and oxidized catechol group
WO2011002249A2 (en) In situ forming hydrogel and biomedical use thereof
WO2018080221A1 (en) Biocompatible hydrogel and method for producing same
WO2010117248A2 (en) Ph-sensitive graft copolymer, manufacturing method for same, and polymer micelles using method
CA2394716A1 (en) Hydrolytically degradable carbamate derivatives of poly(ethylene glycol)
WO2011078457A2 (en) Ph-sensitive block copolymer forming polyionic complex micelle, and drug or protein delivery vehicle using same
WO2020196964A1 (en) Drug-loaded hydrogel formed in real time
WO2021080345A1 (en) Injectable intraocular microgel as drug delivery system, and hydrogel comprising same
WO2016043547A1 (en) Tissue repair composition and preparation method therefor
WO2022019701A1 (en) Anti-adhesion polymer composition
CA2391161A1 (en) Pharmaceutical combinations comprising a p2t receptor antagonist and an anti-thrombotic agent
WO2021162529A1 (en) Phenol derivative-functionalized chondroitin sulfate hydrogel and use of same
WO2017018717A1 (en) Dermal filler hydrogel composition
WO2019216744A2 (en) Injection formulation composition for use as filler or drug carrier through click chemistry reaction
WO2021145586A1 (en) Gas-generating micelle for reducing localized fat
WO2022215899A1 (en) Sustained-release lipid pre-concentrate
AU2021270155B2 (en) Percutaneous absorption preparation comprising donepezil with improved stability
WO2022050694A1 (en) Biomimetic tissue-adhesive hydrogel patch for preventing or treating cartilage or bone diseases
KR102508680B1 (en) Drug loaded in situ forming hydrogel
WO2017142164A1 (en) Anticancer drug carrier and method for producing same
WO2023038463A1 (en) Sol-gel transition of 6-arm peg hydrogel over time
WO2022216134A1 (en) Hydrogel including phenol derivative-modified cellulose and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921862

Country of ref document: EP

Kind code of ref document: A1