WO2017018717A1 - Dermal filler hydrogel composition - Google Patents
Dermal filler hydrogel composition Download PDFInfo
- Publication number
- WO2017018717A1 WO2017018717A1 PCT/KR2016/007945 KR2016007945W WO2017018717A1 WO 2017018717 A1 WO2017018717 A1 WO 2017018717A1 KR 2016007945 W KR2016007945 W KR 2016007945W WO 2017018717 A1 WO2017018717 A1 WO 2017018717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hyaluronic acid
- hydrogel
- filler
- alginic acid
- acid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/20—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/446—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
Definitions
- the present invention relates to a hydrogel composition for dermal filler that is easy to control mechanical properties, mechanical properties and durability is improved.
- botulinum toxin eg, the brand name “Botox”
- Dermal fillers are agents that are injected into a patient, for example to improve facial lines and reduce wrinkles, and unlike Botox, which uses the principle of paralyzing facial muscles that cause wrinkles, Use the principle.
- hyaluronic acid-based compounds that are biocompatible materials have been frequently used.
- Hyaluronic acid also known as hyaluronan, is a non-sulfated glycosaminoglycan that is widely distributed in binding, epithelial and nervous tissues throughout the human body.
- Hyaluronic acid is abundant in many different layers of skin and includes, for example, the ability to ensure good hydration, to assist the organization of the extracellular matrix, and to act as a filler; And complex functions such as those involved in tissue regeneration mechanisms.
- the amount of hyaluronic acid, collagen, elastin, and other matrix polymers present in the skin decreases. For example, repeated exposure to ultraviolet light, for example, from the sun allows dermal cells to reduce their production of hyaluronan as well as to increase their rate of degradation.
- Injectable dermal fillers are successfully used for skin aging. Dermal fillers can replace lost endogenous matrix polymers or treat / promote the function of existing matrix polymers to treat these skin conditions.
- the present inventors earnestly researched to develop a hydrogel composition for dermal filler that is easy to control mechanical properties, and improved mechanical properties and durability.
- a hydrogel for dermal filler having improved mechanical properties and durability can be prepared as compared to a conventional hyaluronic acid hydrogel. It became.
- an object of the present invention is to provide a hydrogel composition for dermal filler.
- Still another object of the present invention is to provide a method for preparing a dermal filler hydrogel.
- the present invention to solve the above problems,
- an ion crosslinkable hyaluronic acid hydrogel comprising hyaluronic acid, alginic acid bound to the hyaluronic acid, and an ion crosslinking agent.
- the ion crosslinking agent provides a hydrogel composition for dermal filler that is a divalent cation or a salt thereof.
- step (b) reacting the reaction product of step (a) with a second reaction material, hyaluronic acid or alginic acid, to obtain an alginic acid-linked hyaluronic acid reformer linked through a linker;
- composition for reinforcing mechanical properties of a chemical crosslinked hyaluronic acid filler comprising an ion crosslinkable hyaluronic acid hydrogel comprising:
- the present invention provides a hydrogel composition for dermal filler with improved persistence and mechanical properties (G ′).
- the present invention provides a method for producing a hydrogel for dermal filler.
- the present invention provides a composition for reinforcing mechanical properties of chemical cross-linked hyaluronic acid filler.
- composition of the present invention can be applied to parts of the body where high mechanical properties are required.
- Hyaluronic acid was first modified with ethylenediamine (NH2-HA). NH2-HA was then reacted with alginic acid (AL) through the carbodiimide chemistry.
- FIG. 2A shows an image of a hyaluronic acid (HA) or alginic acid-grafted-hyaluronic acid (HGA) solution after mixing, in the presence (+) or absence (-) condition of calcium ions.
- HA hyaluronic acid
- HGA alginic acid-grafted-hyaluronic acid
- FIG. 2B shows an image of HGA after injection through a syringe needle.
- FIG. 2C shows the change in storage modulus (G ′, filled representation) and loss modulus (G ′′, empty representation) of HGA1 (circle) and HA (square) solutions in the presence of calcium ions.
- 2D shows the change in storage modulus dependent on hyaluronic acid content.
- 3A shows the change in dry weight of both hyaluronic acid / alginic acid mixed gels or alginic acid-grafted-hyaluronic acid gels after treatment with hyaluronidase at 37 ° C. for 2 weeks.
- 3B shows a cross-sectional SEM image of the alginic acid / hyaluronic acid mixed gel.
- 4A shows the 1 H-NMR spectra of hyaluronic acid, alginic acid and alginic acid-grafted hyaluronic acid.
- 4B shows the results of DMMB analysis for quantitative graft efficacy of alginic acid-grafted hyaluronic acid.
- Figures 5a-5b shows the results of comparison of hydrogel properties according to the molecular weight of hyaluronic acid used in the ion-crosslinked alginic acid-linked hyaluronic acid reformer.
- Figure 5a shows the properties of the hydrogel when using an alginic acid-linked hyaluronic acid reformer containing a hyaluronic acid of 1000 kD.
- Figure 5b shows the properties of the hydrogel when using an alginic acid-linked hyaluronic acid reformer containing a hyaluronic acid of 1000 kD.
- 5A and 5B show the concentration of the alginic acid-binding hyaluronic acid modifier.
- FIGS. 6a-6c show the results of physical property changes when the ion-crosslinked alginic acid-bonded hyaluronic acid hydrogel is mixed with a conventional chemical crosslinked hyaluronic acid filler.
- Figure 6a shows the physical properties when the existing filler cugel Aqua S (BNC Korea) and alginic acid-linked hyaluronic acid hydrogel containing hyaluronic acid having an average molecular weight of 1000 kD at 50:50.
- FIG. 6B shows the physical properties of the existing filler cugel Aqua S and an alginic acid-linked hyaluronic acid hydrogel including hyaluronic acid having an average molecular weight of 1500 kD at 50:50.
- Figure 6c shows the physical properties when the mixture of the existing filler cugel S (BNC Korea) and alginic acid-linked hyaluronic acid hydrogel containing hyaluronic acid having an average molecular weight of 1500 kD at 50:50.
- 6A to 6C show the types and concentrations of hydrogels used.
- Figure 7 shows the cytotoxicity test results according to the mixing weight ratio when the ion-crosslinked alginic acid-linked hyaluronic acid hydrogel is mixed with the conventional chemical cross-linked hyaluronic acid filler.
- Figure 8 shows the results of the change in physical properties (elastic coefficient) according to the mixing weight ratio when the ion-crosslinked alginic acid-linked hyaluronic acid hydrogel is mixed with the conventional chemically cross-linked hyaluronic acid filler.
- the present invention includes a hyaluronic acid, an alginic acid bonded to the hyaluronic acid, and an ion crosslinkable hyaluronic acid hydrogel comprising an ion crosslinking agent, wherein the ion crosslinking agent is a divalent cation or a salt thereof It provides a hydrogel composition for dermal filler, characterized in that.
- the present inventors earnestly researched to develop a hydrogel composition for dermal filler that is easy to control mechanical properties, and improved mechanical properties and durability.
- a hydrogel for dermal filler having improved mechanical properties and durability can be prepared as compared with a conventional hyaluronic acid hydrogel.
- the term "dermal filler” is used for improving or treating wrinkles, depressions, scars, etc. formed on the skin of a subject, and specifically, for improving wrinkles such as forehead, brow, and nasolabial folds, It may mean a biocompatible material for injection into the dermis for the purpose of raising the nose, increasing the skin area volume, improving the scar area, and the like.
- the term "chemical crosslinking hyaluronic acid filler” may refer to a conventional hyaluronic acid filler prepared using a chemical crosslinking agent, and may be any hyaluronic acid filler prepared by adding a chemical crosslinking agent.
- Commercially available filler products Restylane, Irete, Cutegel, Juviderm Perfectha, Teosial, Rofilan, Elevess For example, Elavie (Elavie), Glytone (Glytone), Princess (Princess) and the like.
- the hydrogel composition for dermal fillers according to the present invention may further include a chemically cross-linked hyaluronic acid filler, through which the mechanical properties of the dermal filler can be significantly improved.
- the weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinked hyaluronic acid filler may be 1: 1-9, more specifically 1: 1.
- hyaluronic acid into which alginic acid is introduced is crosslinked by a divalent cation to form a hydrogel.
- a divalent cation for example as specifically Ca 2 +, Ba 2 +, Cu 2 +, Fe 2 2, such as +, and Mg 2 +, causing cross-linking by the interaction with a cation is introduced into hyaluronic acid, alginate, a hydrogel To form.
- the hydrogel may be adjusted to have higher mechanical properties (G ′) than the hydrogel formed from a simple mixture in which hyaluronic acid and alginic acid are not bound.
- the divalent cation of the present invention may be calcium, barium or magnesium ions.
- the calcium, barium or magnesium ions of the present invention may be provided in the form of sulfate or chloride salts with respect to the alginic acid bound hyaluronic acid.
- divalent cations can be introduced by adding calcium chloride, calcium sulfate, barium chloride, magnesium chloride, magnesium sulfate, and the like.
- the composition of the present invention may have a mechanical property (G ′) of 10-3000 Pa. More specifically, it may have a mechanical property of 20-3000 pa, even more specifically 500-3000 pa, even more specifically 500-2500 pa, even more specifically 1000-2500 pa, even more specifically 1500-2500 pa. .
- the composition of the present invention may have a mechanical property of 1500-2500 pa, the composition may be used as a dermal filler composition for skeletal reinforcement.
- the composition may be used as a dermal filler composition for skeletal reinforcement.
- the term "skeletal reinforcement” may refer to a use for applying a deformation to a facial contour including a nose, a cheekbone, and a jawline, and in the case of the skeletal reinforcement dermal filler, a filler having a purpose of removing wrinkles is higher. May require mechanical properties.
- the term mechanical property (G ′) may mean shear storage modulus or elastic modulus, and specifically, the sugar storage modulus is a shear test that transmits a force pushing the sample. It may mean the force required to apply a constant deformation to the sample, the elastic modulus may refer to the force required to apply a constant deformation to the sample by shear test by the force to pull the sample.
- the alginic acid of the present invention may have a molecular weight of 10000-1000000 g / mol
- the hyaluronic acid of the present invention may have a molecular weight of 10000-2500000 g / mol.
- the alginic acid of the present invention may have a molecular weight of 20000 to 500000 g / mol, more specifically, may be used 50000 to 500000 g / mol, and more specifically 100000 to 300000 g / mol. have.
- the hyaluronic acid of the present invention may be used having a molecular weight of 100000 to 2500000 g / mole, more specifically 300000 to 2500000 g / mol can be used, and more specifically 500000 to 1500000 g / mol can be used. .
- the weight ratio of hyaluronic acid and alginic acid of the present invention may be 4: 1 to 1: 2.
- the weight ratio of the hyaluronic acid and the alginic acid described above may mean a ratio of the total weight of each of the hyaluronic acid and the alginic acid included in the hydrogel composition.
- the combined composition ratio of hyaluronic acid and alginic acid included in the hydrogel composition of the present invention is one of the factors that can control the mechanical properties (G ') of the hyaluronic acid gel, to achieve the required physical properties according to the site and purpose of use of the dermal filler
- the weight ratio of the hyaluronic acid and alginic acid in the composition ratio can be suitably used in the range of 4: 1 to 1: 2. More specifically, hyaluronic acid and alginic acid may be used in a weight ratio of 2: 1 to 1: 1.5, and even more specifically, 2: 1 to 1: 1.
- the divalent cation of the present invention can be used by adjusting the amount in a desired range in order to achieve the desired mechanical properties in the preparation of the hydrogel.
- an appropriate amount may be selected and mixed in consideration of solubility and the like.
- the divalent cation salt of the invention may be 5 mM to 100 mM calcium sulfate.
- the divalent cation salt of the invention may be 1 mM to 50 mM calcium chloride.
- the coupling of hyaluronic acid and alginic acid of the present invention may be a covalent bond.
- the covalent bond of the present invention may be made through a linker covalent-formable with the carboxyl group of alginic acid and the carboxyl group of hyaluronic acid.
- the covalent bond of the present invention may be a direct bond between hyaluronic acid and alginic acid, or may be a bond through a linker as described above.
- one molecule forms a bond with both hyaluronic acid and alginic acid, thereby binding the hyaluronic acid and alginic acid.
- the linker of the present invention may use any linker known in the art including at least two functional group moieties capable of covalent bond formation with a carboxyl group included in hyaluronic acid and a carboxyl group included in alginic acid. .
- the linker of the invention is diamine, divinylsulfone, 1,4-butanediol, diglycidyl ether (BDDE) and glutaraldehyde, carbodiimide, hydroxysuccine It is selected from the group consisting of imide, imido ester, maleimide, haloacetyl, disulfide, hydroazide, alkoxyamine. More specifically, for example, diamine may be used as the linker of the present invention.
- the composition of the present invention may further comprise an analgesic agent.
- the hydrogel composition for dermal filler of the present invention is injected into the dermis via topical injection, and may cause short-term pain at the injected site.
- an analgesic may be additionally injected, but by using a hydrogel composition including the analgesic, the same effect may be achieved by only one injection.
- the analgesic agent of the present invention lidocaine, mepivacaine, bupivacaine, procaine, chloroprocaine, ethidocaine, prilocaine diclonin, hexylcaine, procaine, cocaine, Ketamine, morphine, pramoxin, propofol, phenol, naloxone, meperidine, butorpanol, pentazosin, morphine-6-glucuronide, codeine, dihydrocodeine, diamorphine, dextrosepropoxyphene, fetidine , Fentanyl, alfentanil, alphaprodine, buprenorphine, dextromoramide, diphenoxylate, dipiphanone, heroin (diacetylmorphine), hydrocodone (dihydrocodeinone), hydromolphone (die Hydromorphinone), levopanol, meptazinol, methadone, methopone (methyl
- composition of the present invention may be prepared as a pharmaceutical composition.
- compositions of the present invention may be prepared by mixing with one or more additional pharmaceutically acceptable aqueous carriers or excipients.
- Topical pharmaceutical or cosmetic pharmaceutical compositions including, for example, pharmaceutically acceptable carriers or diluents, such as buffered saline, as well as dermatologically or pharmaceutically acceptable carriers, vehicles or mediums. It may include other components typically used in.
- dermatologically or pharmaceutically acceptable may mean that the composition or ingredient described above does not cause excessive toxicity, incompatibility, allergic reactions, etc. upon skin contact.
- compositions of the present invention may optionally include other pharmaceutically acceptable ingredients, including but not limited to buffers, preservatives, isotonicity modifiers, salts, antioxidants, osmolality modifiers, emulsifiers, wetting agents and the like.
- Pharmaceutically acceptable buffers are buffers that can be used to prepare the hydrogel compositions disclosed herein provided that the formulations obtained are pharmaceutically acceptable.
- Non-limiting examples of pharmaceutically acceptable buffers may include acetate buffers, borate buffers, citrate buffers, neutral buffered saline, phosphate buffers and phosphate buffered saline. Any concentration of pharmaceutically acceptable buffer can be useful for formulating the hydrogel compositions disclosed herein, provided that the effective amount of active ingredient can be calculated in consideration of this effective concentration of buffer.
- Physiologically acceptable buffer concentrations range, for example, from about 0.1 mM to about 900 mM, but are not limited thereto.
- the pH of the pharmaceutically acceptable buffer can be adjusted provided that the agent obtained is pharmaceutically acceptable.
- acids or bases may be used to adjust the pH of the hydrogel composition.
- Any buffered pH level may be useful for formulating pharmaceutical compositions, provided that a therapeutically effective amount of active matrix polymer ingredient can be calculated in consideration of this effective pH level.
- Physiologically acceptable pH is, for example, in the range of about pH 5.0 to about pH 8.5, but not limited thereto.
- the pH of the hydrogel compositions disclosed herein can be about 5.0 to about 8.0, or about 6.5 to about 7.5, about 7.0 to about 7.4, or about 7.1 to about 7.3.
- Pharmaceutically acceptable preservatives may include sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
- Pharmaceutically acceptable preservatives include benzalkonium chloride, chlorobutanol, thimerosal, phenylmercury acetate, phenylmercury nitrate, stabilized oxychloro composition, such as PURITE® (California) Allergan Inc., Irvine, Ltd.) and chelating agents, such as DTPA or DTPA-bisamide, calcium DTPA, and CaNaDTPA-bisamide.
- compositions disclosed herein include, for example, sodium chloride and potassium chloride; And salts such as glycerine, but are not limited to these.
- the composition may be provided as a salt and may be formed by a number of acids, including but not limited to hydrochloric acid, sulfuric acid, acetic acid, lactic acid, tartaric acid, malic acid, succinic acid, and the like. Salts tend to be more soluble in aqueous or other protic solvents than the corresponding free base forms. It is understood that these and other materials known in the pharmaceutical arts can be included in the hydrogel compositions disclosed herein.
- composition may further comprise any ingredient conventionally used for cosmetic purposes, such as improvement of skin aging, such as wrinkles, or in the field of treatment of neuromuscular related diseases.
- the composition of the present invention is an injectable composition, which may be used in the form of being administered to the skin region of a subject using an injection device having a fine needle.
- injection device having a fine needle may refer to an injection device having a needle of, for example, about 21 gauge to about 32 gauge.
- the route of administration of the hydrogel composition to a subject may typically be determined based on the cosmetic and / or clinical effects desired by the subject and / or operator, and the body part or region in which the composition is administered. have.
- the compositions disclosed herein may be administered by any means known to those of skill in the art, including needled syringes, pistols (eg, hand-compressed pistols), catheters by topical or direct surgical implantation. It is not limited to this.
- the hydrogel compositions disclosed herein can be administered into a skin region, such as, for example, the dermal or subcutaneous region.
- the suitable dosage of the hydrogel composition of the present invention can be determined in various ways by factors such as the mode of administration, the subject's age, weight, sex, time of administration and site of administration. On the other hand, the dosage of the hydrogel composition of the present invention may be preferably 0.001-100 mg / kg (body weight) per serving.
- the present invention provides a method for preparing a hydrogel composition for dermal filler comprising the following steps:
- step (b) reacting the reaction product of step (a) with a second reaction material, hyaluronic acid or alginic acid, to obtain an alginic acid-linked hyaluronic acid reformer linked through a linker;
- Step (a) of the present invention is a step of covalently linking a linker to a carboxyl group of alginic acid or hyaluronic acid by reacting the linker with alginic acid or hyaluronic acid, and the linker used is the same as the linker which may be included in the hydrogel composition.
- first reactant may refer to a substance that first reacts with a linker in hyaluronic acid or alginic acid to form a bond.
- the linker of the present invention may be used in an amount capable of binding to all of the carboxyl groups included in the first reactant.
- Step (b) of the present invention is a step of coupling the hyaluronic acid and alginic acid through the linker by reacting a linker-bound hyaluronic acid or alginic acid with a second reactant.
- second reactant may refer to a compound other than the compound selected as the first reactant among hyaluronic acid or alginic acid.
- alginic acid-linked hyaluronic acid modifier may refer to hyaluronic acid in a state in which alginic acid is bound.
- Step (c) of the present invention is a step of adding a divalent cation or a salt thereof to the resulting alginic acid-linked hyaluronic acid reformer to cause a crosslinking reaction to gel.
- the crosslinking reaction occurs by the interaction of the divalent cation added with alginic acid, thereby obtaining a hydrogel.
- the present invention may further comprise the step of mixing the obtained crosslinked hyaluronic acid hydrogel with a chemical cross-linked hyaluronic acid filler;
- the mechanical properties of the dermal filler can be significantly improved.
- the mixed weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinked hyaluronic acid filler may be 1: 1-9, and more specifically 1: 1.
- the divalent cation of the present invention may be calcium, barium or magnesium ions.
- the calcium, barium or magnesium ions of the present invention can be used in the form of sulfate or chloride salts with respect to alginic acid bound hyaluronic acid. Specifically, for example, it may be used in the form of calcium chloride, calcium sulfate, barium chloride, magnesium chloride, or magnesium sulfate compound.
- the present invention further comprises the step of adding an analgesic agent to the hydrogel of the present invention after the step (c).
- Method for producing a hydrogel composition for dermal filler relates to a method for producing a "hydrogel composition for dermal filler" which is another embodiment of the present invention, the overlapping content is used, and excessive In order to avoid complexity, description of duplicate contents will be omitted.
- the present invention provides a composition for reinforcing mechanical properties of a chemical cross-linked hyaluronic acid filler comprising an ion-crosslinkable hyaluronic acid hydrogel comprising:
- the weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinking-hyaluronic acid filler may be 1: 1-9, more specifically 1: 1.
- the hyaluronic acid of the present invention may have a molecular weight of 500000 g / mol to 2500000 g / mol.
- the divalent cation of the present invention may be calcium, barium or magnesium ions.
- the divalent cations of the invention may be added in the form of chloride salts.
- the chloride salt of the invention may be calcium chloride.
- composition for reinforcing the mechanical properties of the chemical cross-linked hyaluronic acid filler according to the present invention uses the hydrogel composition for dermal filler, which is one embodiment of the present invention described above, and the overlapping content is omitted so as to avoid excessive complexity of the present specification. do.
- hyaluronic acid (molecular weight 600000-850000; Lifecore) was reacted with ethylenediamine (Sigma-Aldrich).
- Synthesis of NH2-hyaluronic acid was synthesized by a conventionally known method using an EDC / NHS reaction. In order to suppress the crosslinking between hyaluronic acid chains during the reaction, an excess of 10 times molar ratio of ethylenediamine was added. And it reacted for 20 hours at room temperature. The solution was dialyzed and treated with activated charcoal, filtered through a 0.22 ⁇ m filter for sterilization and lyophilized. Alginic acid was combined with NH 2 -hyaluronic acid via a carbodiimide chemistry according to a conventionally known method (see FIG. 1).
- Hyaluronic acid, alginic acid and alginic acid-binding hyaluronic acid modifiers were analyzed by 1 H NMR spectroscopy (Bruker assemble 500 MHz) at 70 ° C. Samples were dissolved in D 2 O at 3 mg / ml.
- DMMB analysis was performed to quantify the alginic acid / hyaluronic acid content in the alginic acid-binding hyaluronic acid reformer. That is, 16 mg of DMMB was dissolved in 25 ml of ethanol, filtered with filter paper, and 100 ml of 1 M guanidine hydrochloride containing 0.17 M of sodium formate and 1 ml of formic acid was mixed with the filtered DMMB. . The solution was mixed with deionized water to a total volume of 500 ml. Each sample was diluted with deionized water and 0.1% by weight solution was obtained. 1 ml of DMMB solution was added to 100 ⁇ l of each sample and mixed vigorously for 30 minutes.
- the cultured samples were centrifuged at 12000 g for 10 minutes to precipitate the complex. The supernatant was removed and dried at room temperature for 30 minutes. The pellet was dissolved in 1 ml of decomplexation solution. A decomplexed solution was prepared with 50 mM sodium acetate buffer (pH 6.8) containing 10% 1-propanol and 4 M guanidine hydrochloride. After 30 minutes of mixing, 100 ⁇ l of each sample was transferred to a 96-well plate. Absorbance was measured at 656 nm using a spectrophotometer (SpectraMax M2; Molecular Devices).
- Gel discs were obtained using a punch (10 mm diameter), fed into a PBS solution containing hyaluronidase in a concentration range of 0 to 100 ⁇ g / ml and incubated at 37 ° C. for 24 hours. Gel discs were frozen and lyophilized before measuring dry weight.
- Viscoelastic properties of ion-crosslinked alginic acid-linked hyaluronic acid gels were measured using a rotary rheometer with a cone-and-plate (20 mm diameter plate, 4 ° cone angle) coneand-plate fixture (Bohlin Gemini 150). . A 150 ⁇ m gap opening was set at the top of the cone and plate, and the operating temperature was set constant at 37 ⁇ 0.1 ° C.
- Alginic acid-binding hyaluronic acid modifiers were dissolved in PBS.
- the 2 wt% polymer solution was mixed with a CaSO 4 slurry in an amount dependent on the alginic acid content of the polymer solution (0.42 g of CaSO 4 per 1 g of alginic acid could be mixed).
- Mechanical properties of ion-crosslinked hydrogels were measured using a rotary rheometer (Bohlin Gemini 150). Measurement was made at 0.5 Hz and the temperature was kept constant at 37 ⁇ 0.1 ° C.
- Example 7 Ion crosslinking Alginic acid-linked hyaluronic acid On the reformer Comparison of Hydrogel Properties by Hyaluronic Acid Molecular Weight
- Alginic acid-bound hyaluronic acid modifiers synthesized using hyaluronic acid having a molecular weight of 1000000 g / mol or 1500000 g / mol were dissolved in PBS. 2 wt% of the polymer solution was mixed with a CaSO 4 slurry in an amount depending on the alginic acid content of the polymer solution (0.42 g of CaSO 4 per 1 g of alginic acid could be mixed).
- Mechanical properties of ion-crosslinked hydrogels were measured using a rotary rheometer (Bohlin Gemini 150). Measurement was made at 0.5 Hz and the temperature was kept constant at 37 ⁇ 0.1 ° C.
- Example 8 Chemical crosslinking Hyaluronic acid With filler Ion crosslinking Changes in Physical Properties of Alginate-Linked Hyaluronic Acid Modifiers
- the mixed weight ratios of Humidics' elavies and ion-crosslinkable alginic acid-bonded hyaluronic acid hydrogels were respectively set to 9: 1.
- the elastic modulus was measured after mixing at 7: 3 and 5: 5.
- DDC / F containing ATug5 mouse chondrogenic cell line (ECACC) 10ug / ml human transferring (Sigma-Aldrich), 3 ⁇ 10 -8 M sodium selenite (Sigma-Aldrich), 5% FBS, 1% antibiotics Cells were cultured using -12 culture. The cells were cultured at 37 ° C. and 5% CO 2 , and 5000 cells were cultured in each well in a Transwell 0.4um polyester membrane 12-well plate (Costar).
- HGA Alginic acid-linked hyaluronic acid
- HGA hyaluronic acid
- HA hyaluronic acid
- NH 2 -HA ethylenediamine
- HA-g-AL carbodiimide
- HGA1, HGA2, and HGA4 weight ratios of hyaluronic acid and alginic acid
- HGA Alginic acid-bound hyaluronic acid
- DMMB dimethylmethylene blue
- Ion crosslinked alginic acid-linked hyaluronic acid hydrogels can be injected through a cylinder with a 23-G needle (see FIG. 2B). This is also attractive in terms of enabling minimally invasive delivery of drugs and / or cells to the body.
- the viscoelastic and gelling behavior of the alginic acid-bound hyaluronic acid gels were investigated using a rotary rheometer (see FIGS. 2C-2G).
- the storage modulus (G ') was higher than the loss modulus (G ") at various frequencies (Fig. 2c), indicating that the mixture builds a hydrogel structure through ion crosslinking.
- the hyaluronic acid solution does not form a hydrogel against calcium addition, and then examines the effect of the alginic acid content on the mechanical properties of the ion-crosslinked alginic acid-linked hyaluronic acid gel (see FIG. 2D).
- the weight ratios between hyaluronic acid and alginic acid varied.
- the mechanical properties of the gel changed significantly from 2.5 ⁇ 0.2 kPa to 0.075 ⁇ 0.001 kPa.
- the change in the elasticity of the gel changes with calcium concentration (see Fig. 2e)
- the G 'value of the alginic acid-bound hyaluronic acid gel is 0.3 ⁇ 0.1.
- the kPa increased from 2.7 ⁇ 0.6 kPa, but no further increase was observed when the calcium sulfate concentration increased to 60 mM.
- the gelation time of the alginic acid-linked hyaluronic acid gel was significantly affected by the alginic acid content in the gel.
- the shear modulus of the alginic acid-linked hyaluronic acid gel depends on the alginic acid molecular weight (see Fig. 2g), as the alginic acid molecular weight increases from 50000 g / mol to 250000 g / mol.
- the G 'of the ion crosslinked gel also increased from 0.04 ⁇ 0.003 to 2.4 ⁇ 0.2 kPa
- Alginate-linked hyaluronic acid gels made with 50000 g / mol or 100000 g / mol alginic acid showed poor mechanical properties, even calcium Even in the presence of ions, it is very important to control the mechanical properties of the polymer scaffold in relation to cellular behavior (eg adhesion, proliferation and migration) [39-41].
- mechanical properties are also important for the regulation of stem cell differentiation, which has an immediate effect on tissue regeneration [41–44].
- the mechanical properties of alginic acid-binding hyaluronic acid gels which can be very attractive for use in tissue engineering, are readily controllable through control of polymer composition and calcium ion concentration.
- Alginic acid-binding hyaluronic acid hydrogels were treated with hyaluronidase to test stability for in vitro enzymatic reactions. A slight decrease in gel weight was observed on the two week incubation time. Gel weight was dependent on enzyme concentration (see FIG. 3A). The hydrogels maintained their initial weight of approximately 80% after treatment with 100 ⁇ g / ml hyaluronidase for 2 weeks compared to control conditions without enzymes. Alginic acid-binding hyaluronic acid gels maintained a well packed porous structure after enzymatic treatment (see FIG. 3C).
- gels prepared from a simple mixture of hyaluronic acid and alginic acid showed a significant reduction in gel weight during culturing even in the presence of 1 ⁇ g / ml hyaluronidase. Regardless of the hyaluronidase content, a weight loss of approximately 40% was observed. The weight loss is similar to that expected based on the hyaluronic acid content on the gel.
- Hyaluronic acid / alginic acid mixed gel cross-sectional images after treatment with hyaluronidase showed significant gel loss by enzymatic digestion (FIG. 3B).
- Hyaluronic acid was cleaved into small oligosaccharide fragments by the action of hyaluronidase [45, 46]. However, hyaluronic acid was rapidly degraded in the absence of crosslinking or chemical modification by endogenous hyaluronidase in vitro [47]. During the development of new ECMs from delivered cells, fast gel degradation can be detrimental to the regeneration of many types of tissues, as the gels must provide a 3-D structural environment and maintain their integrity as scaffolds. Hyaluronic acid / alginic acid mixed hydrogels do not form fully interpenetrating polymer network structures, since only alginic acid in the mixture participates in gel formation when calcium ions are added.
- Hyaluronic acid in the mixed gels was mostly degraded entirely by the action of hyaluronidase (see Figure 3).
- the degradation of hyaluronic acid in the alginic acid-binding hyaluronic acid was limited by the covalent conjugation of the alginic acid chain leading to slow gel degradation by hyaluronidase. This may make these gels more suitable than mixed gels for in vivo applications.
- the G 'value of the alginic acid-linked hyaluronic acid gel increased from 480 Pa to 600 Pa. All samples tested produced hydrogels at a constant alginic acid / calcium concentration ratio. This means that at the same alginic acid molecular weight and calcium ion concentration, the hyaluronic acid molecular weight has an important effect on the physical properties of the alginic acid-linked hyaluronic acid gel. In addition, as the concentration of the alginic acid-bound hyaluronic acid reformer decreased, the G 'value also decreased.
- FIG. 8 shows the results of changes in the physical properties (elastic coefficient) according to the mixing weight ratio when the ion-crosslinkable alginic acid-bonded hyaluronic acid hydrogel is mixed with the conventional chemically crosslinked hyaluronic acid filler. It was confirmed that the modulus of elasticity of the ella crosslinked alginic acid-bonded hyaluronic acid hydrogel mixture tended to increase as the content of the ionic crosslinked alginic acid-bonded hyaluronic acid hydrogel increased. When the alginic acid-bonded hyaluronic acid hydrogel was mixed at a ratio of 5: 5, it was confirmed that the physical properties (elastic coefficient) increased by about 35% than when the elavie was used alone (FIG. 8).
- Figure 7 shows the cytotoxicity test results according to the mixing weight ratio when the ion-crosslinked alginic acid-linked hyaluronic acid hydrogel is mixed with the conventional chemical cross-linked hyaluronic acid filler.
- a filler having excellent mechanical properties without using a biotoxic chemical crosslinking agent, which can replace a commercially available hyaluronic acid filler, and as a filler to a body part requiring high mechanical properties. It can be usefully applied.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
The present invention relates to: a dermal filler hydrogel composition facilitating the control of mechanical properties and having improved mechanical properties and durability; and a preparation method therefor. The composition of the present invention is used so as to be applied, as a filler, to body parts requiring high mechanical properties, and if the method of the present invention is used, the mechanical properties of a dermal filler hydrogel, to be prepared, can be easily controlled.
Description
본 발명은 기계적 물성 조절이 용이하고, 기계적 물성 및 지속성이 개선된 진피 필러용 하이드로젤 조성물에 관한 것이다.The present invention relates to a hydrogel composition for dermal filler that is easy to control mechanical properties, mechanical properties and durability is improved.
개인들의 미용에 관한 관심이 나날이 증대됨에 따라, 미용 성형 분야 또한 큰 발전을 거듭하고 있다. 비교적 큰 외형적 변화를 가져오는 외과적 수술 외에도, 간편한 주사 치료를 통해 주름 제거 등의 효과를 볼 수 있는 보톨리늄 독소(예를 들어, 상표명 "보톡스"), 필러(filler) 등의 주입은 날로 보편화 되고 있다. 진피 필러는, 예를 들어 안면 라인 개선 및 주름 감소 등을 위해 환자에게 주입되는 제제이고, 주름을 일으키는 안면 근육을 마비시키는 원리를 이용하는 보톡스와는 달리, 안면 주름 및 패인 곳에 주입되어 공간을 채워넣는 원리를 이용한다.As the individual's interest in beauty increases day by day, the cosmetic surgery field is also undergoing great development. In addition to surgical procedures that result in relatively large cosmetic changes, injections of botulinum toxin (eg, the brand name “Botox”), fillers, and the like, which can benefit from simple injection treatments such as wrinkle removal, are becoming commonplace. It is becoming. Dermal fillers are agents that are injected into a patient, for example to improve facial lines and reduce wrinkles, and unlike Botox, which uses the principle of paralyzing facial muscles that cause wrinkles, Use the principle.
종래 필러의 소재로서 생체친화 소재인 히알루론산 계열 화합물이 빈번하게 이용되어 왔다.As a filler material, hyaluronic acid-based compounds that are biocompatible materials have been frequently used.
히알루로난(Hyaluronan)으로도 알려진 히알루론산(HA)은 인체 전체에 걸쳐 결합, 상피 및 신경 조직에 널리 분포되어 있는 비-설페이트화된 글리코스아미노글리칸이다. 히알루론산은 피부의 여러 상이한 층에 풍부하며, 예를 들면, 양호한 수분공급을 보장하는 기능, 세포외 매트릭스의 조직을 보조하는 기능, 충전물질로서 작용하는 기능; 및 조직 재생 메커니즘에 관여하는 기능과 같은 복합적인 기능을 갖는다. 그러나, 노화와 더불어, 피부에 존재하는 히알루론산, 콜라겐, 엘라스틴, 및 다른 매트릭스 중합체의 양은 감소한다. 예를 들면, 예컨대, 태양으로부터의 자외선에 대한 반복적 노출은 진피 세포로 하여금 이들의 히알루로난의 생산을 줄이는 것은 물론이고 이의 분해 속도를 증가시키게 한다. 이러한 물질의 손실은, 예컨대, 주름, 구멍, 수분 손실, 및/또는 노화에 기여하는 기타 바람직하지 않은 상태를 유발한다. 주사가능한 진피 필러는 피부 노화에 성공적으로 사용되고 있다. 진피 필러는, 이들 피부 상태를 치료하기 위해, 손실된 내생적인 매트릭스 중합체를 대체하거나, 또는 기존의 매트릭스 중합체의 기능을 증진/촉진할 수 있다.Hyaluronic acid (HA), also known as hyaluronan, is a non-sulfated glycosaminoglycan that is widely distributed in binding, epithelial and nervous tissues throughout the human body. Hyaluronic acid is abundant in many different layers of skin and includes, for example, the ability to ensure good hydration, to assist the organization of the extracellular matrix, and to act as a filler; And complex functions such as those involved in tissue regeneration mechanisms. However, with aging, the amount of hyaluronic acid, collagen, elastin, and other matrix polymers present in the skin decreases. For example, repeated exposure to ultraviolet light, for example, from the sun allows dermal cells to reduce their production of hyaluronan as well as to increase their rate of degradation. Loss of such materials leads to, for example, wrinkles, holes, water loss, and / or other undesirable conditions that contribute to aging. Injectable dermal fillers are successfully used for skin aging. Dermal fillers can replace lost endogenous matrix polymers or treat / promote the function of existing matrix polymers to treat these skin conditions.
종래 히알루론산으로 만들어진 필러는 레스틸렌(Restylane), 이브아르(Ivoire), 큐젤(Cutegel), 쥬비덤(Juvederm) 퍼펙타(Perfectha), 테오시알(Teosyal), 로필란(Rofilan), 엘레베스(Elevess), 엘라비에(Elavie), 글라이톤(Glytone), 프린세스(Princess) 등이 있으나, 장기적인 사용이 어렵고, 코 높임 등 의 용도로 이용하기에는 기계적 물성(G')이 낮은 문제가 있었다. 따라서, 장기 지속되는 필러로서 폴리메틸메타아크릴레이트, 칼슘 하이드록실아파타이트, 폴리락틱산, 폴리알킬리마이드 등의 무기물질을 필러 소재로 이용하고 있는 실정이다.Conventional fillers made of hyaluronic acid are Restylane, Ivoire, Cugel, Juvederm Perfectha, Teosial, Rofilan, Elevess. , Ellavie (Elavie), Glytone (Glytone), Princess (Princess), etc., but long-term use is difficult, there is a problem of low mechanical properties (G ') to use for purposes such as raising the nose. Therefore, inorganic fillers such as polymethyl methacrylate, calcium hydroxyl apatite, polylactic acid, polyalkyllimide and the like are used as filler materials for long-lasting fillers.
생체적합성이 뛰어난 소재인 히알루론산을 이용하면서도, 기계적 물성(G')이 용이하게 조절되고, 높은 기계적 물성을 발휘할 수 있으며, 지속성이 개선된 필러 소재의 개발될 필요성이 있다.While using hyaluronic acid, a material having excellent biocompatibility, mechanical properties (G ′) can be easily controlled, high mechanical properties can be exhibited, and there is a need to develop a filler material having improved sustainability.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
본 발명자들은 기계적 물성 조절이 용이하고, 기계적 물성 및 지속성이 개선된 진피 필러용 하이드로젤 조성물을 개발하고자 예의 연구 노력하였다. 그 결과 알긴산이 결합된 히알루론산을 이가 양이온에 의해 가교시키는 경우, 종래 히알루론산 하이드로젤에 비하여 기계적 물성 및 지속성이 개선된 진피 필러용 하이드로젤을 제조할 수 있음을 규명함으로써, 본 발명을 완성하게 되었다.The present inventors earnestly researched to develop a hydrogel composition for dermal filler that is easy to control mechanical properties, and improved mechanical properties and durability. As a result, when the alginic acid-bound hyaluronic acid is crosslinked by a divalent cation, the present invention is completed by elucidating that a hydrogel for dermal filler having improved mechanical properties and durability can be prepared as compared to a conventional hyaluronic acid hydrogel. It became.
따라서, 본 발명의 목적은 진피 필러용 하이드로젤 조성물을 제공하는데 있다.Accordingly, an object of the present invention is to provide a hydrogel composition for dermal filler.
본 발명의 또 다른 목적은 진피 필러용 하이드로젤의 제조방법을 제공하는데 있다.Still another object of the present invention is to provide a method for preparing a dermal filler hydrogel.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명은 상기 과제를 해결하기 위하여,The present invention to solve the above problems,
히알루론산, 상기 히알루론산에 결합된 알긴산, 및 이온 가교제를 포함하는 이온 가교성 히알루론산 하이드로젤;을 포함하고,And an ion crosslinkable hyaluronic acid hydrogel comprising hyaluronic acid, alginic acid bound to the hyaluronic acid, and an ion crosslinking agent.
상기 이온 가교제는 2가의 양이온 또는 이의 염인 진피 필러용 하이드로젤 조성물을 제공한다.The ion crosslinking agent provides a hydrogel composition for dermal filler that is a divalent cation or a salt thereof.
또한, 본 발명은 상기 과제를 해결하기 위하여,In addition, the present invention to solve the above problems,
(a) 제1 반응 물질인 알긴산 또는 히알루론산과 링커를 반응시켜 알긴산 또는 히알루론산의 카르복실기에 링커를 공유 결합시키는 단계;(a) reacting a linker with alginic acid or hyaluronic acid as a first reactant to covalently link the linker to a carboxyl group of alginic acid or hyaluronic acid;
(b) 상기 단계 (a)의 반응 결과물에 제2 반응 물질인 히알루론산 또는 알긴산을 반응시켜, 링커를 통하여 연결된 알긴산-결합 히알루론산 개질체를 수득하는 단계; 및(b) reacting the reaction product of step (a) with a second reaction material, hyaluronic acid or alginic acid, to obtain an alginic acid-linked hyaluronic acid reformer linked through a linker; And
(c) 생성된 알긴산-결합 히알루론산 개질체에 2가 양이온 또는 이의 염을 첨가하여 가교를 형성시켜 이온 가교성 히알루론산 하이드로젤을 수득하는 단계;를 포함하는 진피 필러용 하이드로젤 조성물의 제조방법을 제공한다.(c) adding a divalent cation or a salt thereof to the resulting alginic acid-linked hyaluronic acid reformer to form a crosslinking product to obtain an ionically crosslinkable hyaluronic acid hydrogel; To provide.
또한, 본 발명은 상기 과제를 해결하기 위하여,In addition, the present invention to solve the above problems,
다음을 포함하는 이온 가교성 히알루론산 하이드로젤을 포함하는 화학가교-히알루론산 필러의 기계적 물성 보강용 조성물을 제공한다:Provided is a composition for reinforcing mechanical properties of a chemical crosslinked hyaluronic acid filler comprising an ion crosslinkable hyaluronic acid hydrogel comprising:
(a) 히알루론산;(a) hyaluronic acid;
(b) 상기 히알루론산에 결합된 알긴산; 및(b) alginic acid bound to hyaluronic acid; And
(c) 이온 가교제로서의 2가 양이온 또는 이의 염.(c) divalent cations or salts thereof as ionic crosslinkers.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 지속성 및 기계적 물성(G')이 향상된 진피 필러용 하이드로젤 조성물을 제공한다.(a) The present invention provides a hydrogel composition for dermal filler with improved persistence and mechanical properties (G ′).
(b) 본 발명은 진피 필러용 하이드로젤의 제조 방법을 제공한다.(b) The present invention provides a method for producing a hydrogel for dermal filler.
(c) 본 발명은 화학가교-히알루론산 필러의 기계적 물성 보강용 조성물을 제공한다.(c) The present invention provides a composition for reinforcing mechanical properties of chemical cross-linked hyaluronic acid filler.
(d) 본 발명의 조성물을 이용하면 높은 기계적 물성이 요구되는 신체 부위에 적용이 가능하다.(d) The composition of the present invention can be applied to parts of the body where high mechanical properties are required.
(e) 본 발명의 방법을 이용하면 제조되는 진피 필러용 하이드로젤의 기계적 물성을 용이하게 조절하는 것이 가능하다.(e) Using the method of the present invention, it is possible to easily adjust the mechanical properties of the hydrogel for dermal filler produced.
도 1은 알긴산-그래프트화 히알루론산(HGA) 및 칼슘 이온의 존재 하에서의 이의 하이드로젤 형성에 대한 이론적인 설명을 나타낸다. 히알루론산(HA)은 먼저 에틸렌디아민(NH2-HA)으로 개질시켰다. 그 후, NH2-HA를 카보다이이미드 캐미스트리를 통해 알긴산(AL)과 반응시켰다.1 shows a theoretical explanation for its hydrogel formation in the presence of alginic acid-grafted hyaluronic acid (HGA) and calcium ions. Hyaluronic acid (HA) was first modified with ethylenediamine (NH2-HA). NH2-HA was then reacted with alginic acid (AL) through the carbodiimide chemistry.
도 2a는 칼슘 이온의 존재(+) 또는 부재(-) 조건에서, 혼합 후의 히알루론산(HA) 또는 알긴산-그래프트화-히알루론산(HGA) 용액의 이미지를 나타낸다.2A shows an image of a hyaluronic acid (HA) or alginic acid-grafted-hyaluronic acid (HGA) solution after mixing, in the presence (+) or absence (-) condition of calcium ions.
도 2b는 주사기 바늘을 통한 주입 후의 HGA의 이미지를 나타낸다.2B shows an image of HGA after injection through a syringe needle.
도 2c는 칼슘 이온의 존재하에서의 HGA1(원) 및 HA(사각형) 용액의 저장 탄성계수(G', 채워진 표시) 및 손실 탄성계수(G", 비어있는 표시)의 변화를 나타낸다.FIG. 2C shows the change in storage modulus (G ′, filled representation) and loss modulus (G ″, empty representation) of HGA1 (circle) and HA (square) solutions in the presence of calcium ions.
도 2d는 히알루론산 함량에 의존하는 저장 탄성계수의 변화를 나타낸다.2D shows the change in storage modulus dependent on hyaluronic acid content.
도 2e는 알긴산-그래프트화 히알루론산 젤([HGA1]=2 중량%) 내의 칼슘 농도에 의존하는 저장 탄성계수 변화를 나타낸다.FIG. 2E shows storage modulus change dependent on calcium concentration in alginic acid-grafted hyaluronic acid gel ([HGA1] = 2 wt.%).
도 2f는 HGA 젤의 젤화 시간을 나타낸다.2F shows the gelation time of HGA gel.
도 2g는 알긴산 분자 중량에 의존하는 HGA 젤의 저장 탄성계수([HGA1]=2 중량%, [CaSO4]=29.7 Mm)를 나타낸다.FIG. 2G shows the storage modulus of the HGA gel ([HGA1] = 2 wt%, [CaSO4] = 29.7 Mm) depending on the weight of the alginic acid molecule.
도 3a는 37℃에서 2주 동안 히알루로니다아제로 처리한 후의 히알루론산/알긴산 혼합 젤 또는 알긴산-그래프트화-히알루론산 젤 모두의 건조 중량의 변화를 나타낸다.3A shows the change in dry weight of both hyaluronic acid / alginic acid mixed gels or alginic acid-grafted-hyaluronic acid gels after treatment with hyaluronidase at 37 ° C. for 2 weeks.
도 3b는 알긴산/히알루론산 혼합 젤의 횡단면 SEM 이미지를 나타낸다.3B shows a cross-sectional SEM image of the alginic acid / hyaluronic acid mixed gel.
도 3c는 37℃에서 2주간 히알루로니다아제로 배양([폴리머]=2 중량%, 히알루론산/알긴산(mg/mg)=1, [Ca2
+]=29.7 mM, [히알루로니다아제]=100 μg/ml)한 후의 알긴산-그래프트화 히알루론산 젤의 횡단면 SEM 이미지를 나타낸다.Figure 3c is two weeks as it hyaluronidase azepin culture ([polymer] = 2% by weight, hyaluronic acid / alginate (mg / mg) = 1, [Ca 2 +] = 29.7 mM, in 37 ℃ [The hyaluronidase dehydratase; = 100 μg / ml) and cross-sectional SEM images of alginic acid-grafted hyaluronic acid gels are shown.
도 4a는 히알루론산, 알긴산 및 알긴산-그래프트화 히알루론산의 1H-NMR 스펙트럼을 나타낸다.4A shows the 1 H-NMR spectra of hyaluronic acid, alginic acid and alginic acid-grafted hyaluronic acid.
도 4b는 알긴산-그래프트화 히알루론산의 정량적 그래프트 효능에 대한 DMMB분석 결과를 나타낸다.4B shows the results of DMMB analysis for quantitative graft efficacy of alginic acid-grafted hyaluronic acid.
도 5a-5b는 이온가교성 알긴산-결합 히알루론산 개질체에 사용된 히알루론산 분자량에 따른 하이드로젤 물성 비교 결과를 나타낸다. 도 5a는 1000 kD의 히알루론산을 포함하는 알긴산-결합 히알루론산 개질체를 이용한 경우의 하이드로젤의 물성을 나타낸다. 도 5b는 1000 kD의 히알루론산을 포함하는 알긴산-결합 히알루론산 개질체를 이용한 경우의 하이드로젤의 물성을 나타낸다. 도 5a 및 5b의 가로축은 알긴산-결합 히알루론산 개질체의 농도를 나타낸다.Figures 5a-5b shows the results of comparison of hydrogel properties according to the molecular weight of hyaluronic acid used in the ion-crosslinked alginic acid-linked hyaluronic acid reformer. Figure 5a shows the properties of the hydrogel when using an alginic acid-linked hyaluronic acid reformer containing a hyaluronic acid of 1000 kD. Figure 5b shows the properties of the hydrogel when using an alginic acid-linked hyaluronic acid reformer containing a hyaluronic acid of 1000 kD. 5A and 5B show the concentration of the alginic acid-binding hyaluronic acid modifier.
도 6a-6c는 기존의 화학가교 히알루론산 필러에 이온가교성 알긴산-결합 히알루론산 하이드로젤을 혼합하였을 때의 물성 변화 실험 결과를 나타낸다. 도 6a는 기존 필러 큐젤 Aqua S(한국비엔씨 사)와 평균 분자량 1000 kD의 히알루론산을 포함하는 알긴산-결합 히알루론산 하이드로젤을 50:50으로 혼합한 경우의 물성을 나타낸다. 도 6b는 기존 필러 큐젤 Aqua S와 평균 분자량 1500 kD의 히알루론산을 포함하는 알긴산-결합 히알루론산 하이드로젤을 50:50으로 혼합한 경우의 물성을 나타낸다. 도 6c는 기존 필러 큐젤 S(한국비엔씨 사)와 평균 분자량 1500 kD의 히알루론산을 포함하는 알긴산-결합 히알루론산 하이드로젤을 50:50으로 혼합한 경우의 물성을 나타낸다. 도 6a 내지 6c의 가로축은 사용된 하이드로젤의 종류 및 사용 농도를 나타낸다.6a-6c show the results of physical property changes when the ion-crosslinked alginic acid-bonded hyaluronic acid hydrogel is mixed with a conventional chemical crosslinked hyaluronic acid filler. Figure 6a shows the physical properties when the existing filler cugel Aqua S (BNC Korea) and alginic acid-linked hyaluronic acid hydrogel containing hyaluronic acid having an average molecular weight of 1000 kD at 50:50. FIG. 6B shows the physical properties of the existing filler cugel Aqua S and an alginic acid-linked hyaluronic acid hydrogel including hyaluronic acid having an average molecular weight of 1500 kD at 50:50. Figure 6c shows the physical properties when the mixture of the existing filler cugel S (BNC Korea) and alginic acid-linked hyaluronic acid hydrogel containing hyaluronic acid having an average molecular weight of 1500 kD at 50:50. 6A to 6C show the types and concentrations of hydrogels used.
도 7은 기존의 화학가교 히알루론산 필러에 이온가교성 알긴산-결합 히알루론산 하이드로젤을 혼합하였을 때의 혼합 중량비에 따른 세포독성 시험 결과를 나타낸다. Figure 7 shows the cytotoxicity test results according to the mixing weight ratio when the ion-crosslinked alginic acid-linked hyaluronic acid hydrogel is mixed with the conventional chemical cross-linked hyaluronic acid filler.
도 8은 기존의 화학가교 히알루론산 필러에 이온가교성 알긴산-결합 히알루론산 하이드로젤을 혼합하였을 때의 혼합 중량비에 따른 물성(탄성계수) 변화 시험 결과를 나타낸다.Figure 8 shows the results of the change in physical properties (elastic coefficient) according to the mixing weight ratio when the ion-crosslinked alginic acid-linked hyaluronic acid hydrogel is mixed with the conventional chemically cross-linked hyaluronic acid filler.
본 발명의 일 양태에 따르면, 본 발명은 히알루론산, 상기 히알루론산에 결합된 알긴산, 및 이온 가교제를 포함하는 이온 가교성 히알루론산 하이드로젤;을 포함하고, 상기 이온 가교제는 2가의 양이온 또는 이의 염인 것을 특징으로 하는 진피 필러용 하이드로젤 조성물을 제공한다.According to an aspect of the present invention, the present invention includes a hyaluronic acid, an alginic acid bonded to the hyaluronic acid, and an ion crosslinkable hyaluronic acid hydrogel comprising an ion crosslinking agent, wherein the ion crosslinking agent is a divalent cation or a salt thereof It provides a hydrogel composition for dermal filler, characterized in that.
본 발명자들은 기계적 물성 조절이 용이하고, 기계적 물성 및 지속성이 개선된 진피 필러용 하이드로젤 조성물을 개발하고자 예의 연구 노력하였다. 그 결과 알긴산이 결합된 히알루론산을 이가 양이온에 의해 가교시키는 경우, 종래 히알루론산 하이드로젤에 비하여 기계적 물성 및 지속성이 개선된 진피 필러용 하이드로젤을 제조할 수 있음을 규명하였다.The present inventors earnestly researched to develop a hydrogel composition for dermal filler that is easy to control mechanical properties, and improved mechanical properties and durability. As a result, when the alginic acid-bound hyaluronic acid is crosslinked by a divalent cation, it has been found that a hydrogel for dermal filler having improved mechanical properties and durability can be prepared as compared with a conventional hyaluronic acid hydrogel.
본 명세서에서 사용되는 용어 "진피 필러"는 대상(subject)의 피부에 형성된 주름, 함몰, 흉터 등의 개선 또는 치료를 위해 사용되는 것으로서, 구체적으로는 이마, 미간, 팔자주름과 같은 주름의 개선, 코 높임, 피부 국소부 부피의 증가, 흉터 부위 개선 등의 목적을 위해 진피에 주입하기 위한 생체적합성 물질을 의미할 수 있다.As used herein, the term "dermal filler" is used for improving or treating wrinkles, depressions, scars, etc. formed on the skin of a subject, and specifically, for improving wrinkles such as forehead, brow, and nasolabial folds, It may mean a biocompatible material for injection into the dermis for the purpose of raising the nose, increasing the skin area volume, improving the scar area, and the like.
본 명세서에서 사용되는 용어 "화학가교 히알루론산 필러"는 화학 가교제를 사용하여 제조된 종래의 히알루론산 필러를 의미할 수 있고, 화학가교제를 첨가하여 제조된 히알루론산 필러라면 모두 해당될 수 있으며, 현재 상용화되어 판매되고 있는 필러 제품인 레스틸렌(Restylane), 이브아르(Ivoire), 큐젤(Cutegel), 쥬비덤(Juvederm) 퍼펙타(Perfectha), 테오시알(Teosyal), 로필란(Rofilan), 엘레베스(Elevess), 엘라비에(Elavie), 글라이톤(Glytone), 프린세스(Princess) 등을 예로 들 수 있다.As used herein, the term "chemical crosslinking hyaluronic acid filler" may refer to a conventional hyaluronic acid filler prepared using a chemical crosslinking agent, and may be any hyaluronic acid filler prepared by adding a chemical crosslinking agent. Commercially available filler products Restylane, Ivoire, Cutegel, Juviderm Perfectha, Teosial, Rofilan, Elevess For example, Elavie (Elavie), Glytone (Glytone), Princess (Princess) and the like.
본 발명에 따른 진피 필러용 하이드로젤 조성물은 화학가교 히알루론산 필러를 더 포함할 수 있고, 이를 통해 하기 실시예의 결과로부터 알 수 있는 바와 같이 진피 필러의 기계적 물성을 월등히 향상시킬 수 있다.The hydrogel composition for dermal fillers according to the present invention may further include a chemically cross-linked hyaluronic acid filler, through which the mechanical properties of the dermal filler can be significantly improved.
이때, 상기 이온 가교성 히알루론산 하이드로젤과 상기 화학가교 히알루론산 필러의 중량비는 1:1-9일 수 있고, 더욱 구체적으로는 1:1일 수 있다.In this case, the weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinked hyaluronic acid filler may be 1: 1-9, more specifically 1: 1.
본 발명의 진피 필러용 하이드로젤 조성물은 알긴산이 도입된 히알루론산이 2가 양이온에 의하여 가교됨으로써 하이드로젤을 형성하게 된다. 구체적으로 예를 들어 Ca2
+, Ba2
+, Cu2
+, Fe2
+, 및 Mg2
+와 같은 2가 양이온이 히알루론산에 도입된 알긴산과의 상호작용에 의해 가교를 일으키고, 하이드로젤을 형성하게 된다. 상기 하이드로젤은, 히알루론산과 알긴산이 결합되지 않은 단순 혼합물로부터 형성된 하이드로젤에 비하여 더욱 높은 기계적 물성(G')을 갖도록 조절될 수 있다.In the hydrogel composition for dermal filler of the present invention, hyaluronic acid into which alginic acid is introduced is crosslinked by a divalent cation to form a hydrogel. For example as specifically Ca 2 +, Ba 2 +, Cu 2 +, Fe 2 2, such as +, and Mg 2 +, causing cross-linking by the interaction with a cation is introduced into hyaluronic acid, alginate, a hydrogel To form. The hydrogel may be adjusted to have higher mechanical properties (G ′) than the hydrogel formed from a simple mixture in which hyaluronic acid and alginic acid are not bound.
본 발명의 일 구현예에 있어서, 본 발명의 2가 양이온은 칼슘, 바륨 또는 마그네슘 이온일 수 있다. 본 발명의 칼슘, 바륨 또는 마그네슘 이온은 알긴산이 결합된 히알루론산에 대하여 설페이트 또는 클로라이드 염의 형태로 제공될 수 있다. 구체적으로 예를 들면, 칼슘클로라이드, 칼슘 설페이트, 바륨 클로라이드, 마그네슘 클로라이드, 마그네슘 설페이트 등을 첨가함으로써 2가 양이온을 도입할 수 있다.In one embodiment of the present invention, the divalent cation of the present invention may be calcium, barium or magnesium ions. The calcium, barium or magnesium ions of the present invention may be provided in the form of sulfate or chloride salts with respect to the alginic acid bound hyaluronic acid. Specifically, for example, divalent cations can be introduced by adding calcium chloride, calcium sulfate, barium chloride, magnesium chloride, magnesium sulfate, and the like.
본 발명의 일 구현예에 있어서, 본 발명의 조성물은 10-3000 Pa의 기계적 물성(G')을 가질 수 있다. 더 구체적으로 20-3000 pa, 더욱 더 구체적으로 500-3000 pa, 더욱 더 구체적으로 500-2500 pa, 더욱 더 구체적으로 1000-2500 pa, 더욱 더 구체적으로 1500-2500 pa의 기계적 물성을 가질 수 있다.In one embodiment of the present invention, the composition of the present invention may have a mechanical property (G ′) of 10-3000 Pa. More specifically, it may have a mechanical property of 20-3000 pa, even more specifically 500-3000 pa, even more specifically 500-2500 pa, even more specifically 1000-2500 pa, even more specifically 1500-2500 pa. .
본 발명의 일 구현예에 있어서, 본 발명의 조성물은 1500-2500 pa의 기계적 물성을 가질 수 있으며, 상기 조성물은 골격 보강용 진피 필러 조성물로서 이용할 수 있다. 종래 히알루론산 필러의 경우, 골격 보강용으로 사용하기에 기계적 물성이 낮은 문제가 있었으나, 본 발명의 하이드로젤을 이용하는 경우, 개선된 기계적 물성으로 인해 골격 보강 용도로 이용할 수 있다. 본 명세서 상의 용어 "골격 보강용"이란 콧대, 광대, 턱선을 포함하는 안면 윤곽에 변형을 가하기 위한 용도를 의미할 수 있으며, 상기 골격 보강용 진피 필러의 경우 주름 제거의 목적을 갖는 필러에 비해 높은 기계적 물성을 요할 수 있다.In one embodiment of the present invention, the composition of the present invention may have a mechanical property of 1500-2500 pa, the composition may be used as a dermal filler composition for skeletal reinforcement. In the case of the conventional hyaluronic acid filler, there was a problem of low mechanical properties to use for skeleton reinforcement, when using the hydrogel of the present invention, it can be used for skeleton reinforcement due to the improved mechanical properties. As used herein, the term "skeletal reinforcement" may refer to a use for applying a deformation to a facial contour including a nose, a cheekbone, and a jawline, and in the case of the skeletal reinforcement dermal filler, a filler having a purpose of removing wrinkles is higher. May require mechanical properties.
본 명세서 상의 용어 기계적 물성(G')은 전단 저장 계수(shear storage modulus) 또는 탄성계수(Elastic modulus)를 의미할 수 있고, 구체적으로 전당 저장 계수는 시료에 밀어주는 힘을 전달하여 전단시험을 함으로써 시료에 일정한 변형을 가하는데 필요한 힘을 의미할 수 있으며, 탄성계수는 시료를 잡아당기는 힘에 의해 전단시험을 함으로써 시료에 일정한 변형을 가하는데 필요한 힘을 의미할 수 있다. As used herein, the term mechanical property (G ′) may mean shear storage modulus or elastic modulus, and specifically, the sugar storage modulus is a shear test that transmits a force pushing the sample. It may mean the force required to apply a constant deformation to the sample, the elastic modulus may refer to the force required to apply a constant deformation to the sample by shear test by the force to pull the sample.
본 발명의 일 구현예에 있어서, 본 발명의 알긴산은 분자량이 10000-1000000 g/몰일 수 있고, 본 발명의 히알루론산은 분자량이 10000-2500000 g/몰일 수 있다. 보다 더 구체적으로는 본 발명의 알긴산은 분자량이 20000 내지 500000 g/몰인 것을 이용할 수 있고, 더욱 구체적으로는 50000 내지 500000 g/몰인 것을 이용할 수 있으며, 더욱 구체적으로 100000 내지 300000 g/몰인 것을 이용할 수 있다. 또한, 본 발명의 히알루론산은 분자량이 100000 내지 2500000 g/몰인 것을 이용할 수 있고, 더 구체적으로는 300000 내지 2500000 g/몰인 것을 이용할 수 있으며, 더욱 구체적으로는 500000 내지 1500000 g/몰인 것을 이용할 수 있다.In one embodiment of the present invention, the alginic acid of the present invention may have a molecular weight of 10000-1000000 g / mol, the hyaluronic acid of the present invention may have a molecular weight of 10000-2500000 g / mol. More specifically, the alginic acid of the present invention may have a molecular weight of 20000 to 500000 g / mol, more specifically, may be used 50000 to 500000 g / mol, and more specifically 100000 to 300000 g / mol. have. In addition, the hyaluronic acid of the present invention may be used having a molecular weight of 100000 to 2500000 g / mole, more specifically 300000 to 2500000 g / mol can be used, and more specifically 500000 to 1500000 g / mol can be used. .
본 발명의 일 구현예에 있어서, 본 발명의 히알루론산과 알긴산의 중량비는 4:1 내지 1:2일 수 있다. 상술한 히알루론산과 알긴산의 중량비는 하이드로젤 조성물에 포함되는 히알루론산과 알긴산 각각의 총중량의 비율을 의미할 수 있다. 본 발명인 하이드로젤 조성물에 포함되는 히알루론산과 알긴산의 결합 조성비는 히알루론산젤의 기계적 물성(G')을 조절할 수 있는 요소 중에 하나로서, 진피 필러의 사용 부위 및 사용 목적에 따라 요구되는 물성의 달성을 위해 히알루론산과 알긴산의 결합 조성비를 적절하게 조절할 수 있으며, 중량비로 나타낸 히알루론산과 알긴산의 결합 조성비는 4:1 내지 1:2 범위에서 적절하게 이용 할 수 있다. 더 구체적으로는 히알루론산과 알긴산을 2:1 내지 1:1.5, 더욱 더 구체적으로는 2:1 내지 1:1의 중량비로 이용할 수 있다.In one embodiment of the present invention, the weight ratio of hyaluronic acid and alginic acid of the present invention may be 4: 1 to 1: 2. The weight ratio of the hyaluronic acid and the alginic acid described above may mean a ratio of the total weight of each of the hyaluronic acid and the alginic acid included in the hydrogel composition. The combined composition ratio of hyaluronic acid and alginic acid included in the hydrogel composition of the present invention is one of the factors that can control the mechanical properties (G ') of the hyaluronic acid gel, to achieve the required physical properties according to the site and purpose of use of the dermal filler For the hyaluronic acid and alginic acid can be appropriately adjusted to the combined composition ratio, the weight ratio of the hyaluronic acid and alginic acid in the composition ratio can be suitably used in the range of 4: 1 to 1: 2. More specifically, hyaluronic acid and alginic acid may be used in a weight ratio of 2: 1 to 1: 1.5, and even more specifically, 2: 1 to 1: 1.
본 발명의 2가 양이온은 하이드로젤의 제조과정에서 원하는 기계적 물성의 달성을 위해 그 양을 원하는 범위에서 조절하여 사용할 수 있다. 2가 양이온의 종류 및 그 염의 형태에 따라, 용해도 등을 고려하여 적절한 양을 선정하여 혼합할 수 있다.The divalent cation of the present invention can be used by adjusting the amount in a desired range in order to achieve the desired mechanical properties in the preparation of the hydrogel. Depending on the type of divalent cation and its salt form, an appropriate amount may be selected and mixed in consideration of solubility and the like.
본 발명의 일 구현예에 있어서, 본 발명의 2가 양이온 염은 5 mM 내지 100 mM의 칼슘 설페이트일 수 있다.In one embodiment of the invention, the divalent cation salt of the invention may be 5 mM to 100 mM calcium sulfate.
본 발명의 다른 구현예에 있어서, 본 발명의 2가 양이온 염은 1 mM 내지 50 mM의 칼슘 클로라이드일 수 있다.In another embodiment of the invention, the divalent cation salt of the invention may be 1 mM to 50 mM calcium chloride.
칼슘 클로라이드를 이용하는 경우, 칼슘 설페이트를 이용하는 경우에 비하여 더욱 소량의 사용만으로도 높은 기계적 물성을 갖는 하이드로젤을 제조할 수 있다.When using calcium chloride, it is possible to produce a hydrogel having high mechanical properties with only a small amount of use compared to the case of using calcium sulfate.
본 발명의 일 구현예에 있어서, 본 발명의 히알루론산과 알긴산의 결합은 공유결합일 수 있다.In one embodiment of the present invention, the coupling of hyaluronic acid and alginic acid of the present invention may be a covalent bond.
본 발명의 일 구체예에 있어서, 본 발명의 공유결합은 알긴산의 카복실기 및 히알루론산의 카복실기와 공유결합-형성 가능한 링커를 통해 이루어진 것일 수 있다. 본 발명의 공유결합은 히알루론산과 알긴산 사이의 직접적인 결합일 수 있고, 또는 상술한 바와 같이 링커를 통한 결합일 수 있다. 본 발명의 링커는 하나의 분자가 히알루론산과 알긴산 모두와 결합을 형성하고, 이에 의해 히알루론산과 알긴산을 결합시키는 역할을 한다. 보다 더 구체적으로 본 발명의 링커는 히알루론산에 포함된 카복실기 및 알긴산에 포함된 카복실기와 공유결합 형성이 가능한 적어도 2개 이상의 기능기 부분을 포함하는 당업계에 공지된 링커를 제한없이 사용할 수 있다.In one embodiment of the present invention, the covalent bond of the present invention may be made through a linker covalent-formable with the carboxyl group of alginic acid and the carboxyl group of hyaluronic acid. The covalent bond of the present invention may be a direct bond between hyaluronic acid and alginic acid, or may be a bond through a linker as described above. In the linker of the present invention, one molecule forms a bond with both hyaluronic acid and alginic acid, thereby binding the hyaluronic acid and alginic acid. More specifically, the linker of the present invention may use any linker known in the art including at least two functional group moieties capable of covalent bond formation with a carboxyl group included in hyaluronic acid and a carboxyl group included in alginic acid. .
본 발명의 일 구체예에 있어서, 본 발명의 링커는 다이아민, 다이비닐설폰, 1,4-뷰테인다이올, 다이글리시딜 에테르(BDDE) 및 글루타르알데히드, 카보다이이미드, 하이드록시석신이미드, 이미도에스터, 말레이미드, 할로아세틸, 다이설파이드, 하이드로아자이드, 알콕시아민으로 구성된 군으로부터 선택되는 것이다. 보다 더 구체적으로 예를 들면, 본 발명의 링커로서 다이아민을 이용할 수 있다.In one embodiment of the invention, the linker of the invention is diamine, divinylsulfone, 1,4-butanediol, diglycidyl ether (BDDE) and glutaraldehyde, carbodiimide, hydroxysuccine It is selected from the group consisting of imide, imido ester, maleimide, haloacetyl, disulfide, hydroazide, alkoxyamine. More specifically, for example, diamine may be used as the linker of the present invention.
본 발명의 일 구현예에 있어서, 본 발명의 조성물은 진통제를 추가적으로 더 포함할 수 있다. 본 발명의 진피 필러용 하이드로젤 조성물은 국소 주사를 통해 진피 내로 주입되고, 주입된 부위에서 단기적인 통증을 유발할 수 있다. 이러한 통증을 완화시키기 위하여 진통제를 추가적으로 주사할 수도 있으나, 진통제가 포함된 하이드로젤 조성물을 이용함으로써 1회의 주사만으로 같은 효과를 달성할 수 있다.In one embodiment of the present invention, the composition of the present invention may further comprise an analgesic agent. The hydrogel composition for dermal filler of the present invention is injected into the dermis via topical injection, and may cause short-term pain at the injected site. In order to alleviate such pain, an analgesic may be additionally injected, but by using a hydrogel composition including the analgesic, the same effect may be achieved by only one injection.
본 발명의 일 구체예에 있어서, 본 발명의 진통제는 리도카인, 메피바카인, 부피바카인, 프로카인, 클로로프로카인, 에티도카인, 프릴로카인 다이클로닌, 헥실카인, 프로카인, 코카인, 케타민, 몰핀, 프라목신, 프로포폴, 페놀, 날록손, 메페리딘, 부토르판올, 펜타조신, 몰핀-6-글루쿠로나이드, 코데인, 다이하이드로코데인, 다이아몰핀, 덱스트로프로폭시펜, 페티딘, 펜타닐, 알펜타닐, 알파프로딘, 부프레노르핀, 덱스트로모라미드, 다이페녹실레이트, 다이피파논, 헤로인(다이아세틸몰핀), 하이드로코돈(다이하이드로코데이논), 하이드로몰폰(다이하이드로몰피논), 레보파놀, 멥타지놀, 메타돈, 메토폰(메틸다이하이드로몰피논), 날부핀, 옥시코돈(다이하이드로하이드록시코데이논), 옥시몰폰(다이하이드로하이드록시몰피논), 페나독손, 페나조신, 레미펜타닐, 트라마돌, 테트라카인 및 이들의 약학적으로 허용가능한 염으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. 더 구체적으로는 리도카인을 이용할 수 있다.In one embodiment of the invention, the analgesic agent of the present invention, lidocaine, mepivacaine, bupivacaine, procaine, chloroprocaine, ethidocaine, prilocaine diclonin, hexylcaine, procaine, cocaine, Ketamine, morphine, pramoxin, propofol, phenol, naloxone, meperidine, butorpanol, pentazosin, morphine-6-glucuronide, codeine, dihydrocodeine, diamorphine, dextrosepropoxyphene, fetidine , Fentanyl, alfentanil, alphaprodine, buprenorphine, dextromoramide, diphenoxylate, dipiphanone, heroin (diacetylmorphine), hydrocodone (dihydrocodeinone), hydromolphone (die Hydromorphinone), levopanol, meptazinol, methadone, methopone (methyldihydromolpinone), nalbuphine, oxycodone (dihydrohydroxycodeinone), oxymolphone (dihydrohydroxymorphinone), phenadoxone , Phenazosin, remy Any one selected from titanyl, tramadol, tetracaine, and the group consisting of pharmaceutically acceptable salts may be higher. More specifically, lidocaine can be used.
본 발명의 조성물은 약제학적 조성물로 제조될 수 있다.The composition of the present invention may be prepared as a pharmaceutical composition.
본 발명의 조성물은 하나 이상의 추가적인 약제학적으로 허용 가능한 수성 담체 또는 부형제와 혼합하는 것에 의해 제조될 수 있다. 예를 들면 완충된 염수와 같은 약학적으로 허용가능한 담체 또는 희석제는 물론 피부학적으로 또는 약학적으로 허용가능한 담체, 매체(vehicle) 또는 매질(medium)을 포함하는, 국소 약학적 또는 미용 약학적 조성물에서 전형적으로 사용되는 기타 성분들을 포함할 수 있다. 본 명세서에서 사용되는 용어, "피부학적으로 또는 약학적으로 허용가능한"은 상술한 조성물 또는 성분이 피부 접촉시 과다한 독성, 부적합성, 알레르기 반응 등을 유발하지 않는 것을 의미할 수 있다.Compositions of the present invention may be prepared by mixing with one or more additional pharmaceutically acceptable aqueous carriers or excipients. Topical pharmaceutical or cosmetic pharmaceutical compositions, including, for example, pharmaceutically acceptable carriers or diluents, such as buffered saline, as well as dermatologically or pharmaceutically acceptable carriers, vehicles or mediums. It may include other components typically used in. As used herein, the term "dermatologically or pharmaceutically acceptable" may mean that the composition or ingredient described above does not cause excessive toxicity, incompatibility, allergic reactions, etc. upon skin contact.
본 발명의 조성물은 선택적으로 완충제, 보존제, 등장 조절제, 염, 항산화제, 삼투질 농도 조절제, 유화제, 습윤제 등을 포함하지만 이에 제한되지 않는 다른 약제학적으로 허용가능한 성분을 포함할 수 있다.The compositions of the present invention may optionally include other pharmaceutically acceptable ingredients, including but not limited to buffers, preservatives, isotonicity modifiers, salts, antioxidants, osmolality modifiers, emulsifiers, wetting agents and the like.
약제학적으로 허용가능한 완충제는 본 명세서에 개시된 하이드로젤 조성물을 제조하기 위해 사용될 수 있는 완충제이며, 단, 얻어진 제제는 약제학적으로 허용가능하다. 약제학적으로 허용가능한 완충제의 비제한적 예는 아세테이트 완충제, 보레이트 완충제, 시트레이트 완충제, 중성 완충 식염수, 포스페이트 완충제 및 포스페이트 완충 식염수를 포함할 수 있다. 약제학적으로 허용가능한 완충제의 임의의 농도는 본 명세서에 개시된 하이드로젤 조성물을 제형화하는데 유용할 수 있으며, 단, 활성 성분의 유효량은 완충제의 이런 유효한 농도를 고려하여 계산될 수 있다. 생리적으로 허용가능한 완충제 농도는 예를 들어 약 0.1 mM 내지 약 900 mM의 범위이지만 이에 제한되지 않는다. 약제학적으로 허용가능한 완충제의 pH는 조절될 수 있으며, 단 얻어진 제제는 약제학적으로 허용가능하다. 필요한 경우 산 또는 염기가 하이드로젤 조성물의 pH를 조절하는데 사용될 수 있다. 임의의 완충된 pH 수준은 약제학적 조성물을 제형화하는데 유용할 수 있으며, 단, 기질 중 합체 활성 성분의 치료적 유효량은 이런 효과적인 pH 수준을 고려하여 계산될 수 있다. 생리적으로 허용가능한 pH는 예를 들어 약 pH 5.0 내지 약 pH 8.5의 범위 내이지만 이에 제한되지 않는다. 예를 들어, 본 명세서에 개시된 하이드로젤 조성물의 pH는 약 5.0 내지 약 8.0, 또는 약 6.5 내지 약 7.5, 약 7.0 내지 약 7.4, 또는 약 7.1 내지 약 7.3일 수 있다.Pharmaceutically acceptable buffers are buffers that can be used to prepare the hydrogel compositions disclosed herein provided that the formulations obtained are pharmaceutically acceptable. Non-limiting examples of pharmaceutically acceptable buffers may include acetate buffers, borate buffers, citrate buffers, neutral buffered saline, phosphate buffers and phosphate buffered saline. Any concentration of pharmaceutically acceptable buffer can be useful for formulating the hydrogel compositions disclosed herein, provided that the effective amount of active ingredient can be calculated in consideration of this effective concentration of buffer. Physiologically acceptable buffer concentrations range, for example, from about 0.1 mM to about 900 mM, but are not limited thereto. The pH of the pharmaceutically acceptable buffer can be adjusted provided that the agent obtained is pharmaceutically acceptable. If desired, acids or bases may be used to adjust the pH of the hydrogel composition. Any buffered pH level may be useful for formulating pharmaceutical compositions, provided that a therapeutically effective amount of active matrix polymer ingredient can be calculated in consideration of this effective pH level. Physiologically acceptable pH is, for example, in the range of about pH 5.0 to about pH 8.5, but not limited thereto. For example, the pH of the hydrogel compositions disclosed herein can be about 5.0 to about 8.0, or about 6.5 to about 7.5, about 7.0 to about 7.4, or about 7.1 to about 7.3.
약제학적으로 허용가능한 보존제는 나트륨 메타바이설파이트, 나트륨 티오설페이트, 아세틸시스테인, 뷰틸화된 하이드록시아니솔 및 뷰틸화된 하이드록시톨루엔을 포함할 수 있다. 약제학적으로 허용가능한 보존제는 벤즈알코늄 클로라이드, 클로로뷰탄올, 티메로살, 페닐수은 아세테이트, 페닐수은 나이트레이트, 안정화된 옥시클로로 조성물, 예를 들어, 퓨라이트(PURITE)(등록상표)(캘리포니아주 얼바인에 소재한 앨러건 인코포레이티드) 및 킬레이트제, 예를 들어, DTPA 또는 DTPA-비스아마이드, 칼슘 DTPA, 및 CaNaDTPA-비스아마이드를 포함할 수 있다.Pharmaceutically acceptable preservatives may include sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene. Pharmaceutically acceptable preservatives include benzalkonium chloride, chlorobutanol, thimerosal, phenylmercury acetate, phenylmercury nitrate, stabilized oxychloro composition, such as PURITE® (California) Allergan Inc., Irvine, Ltd.) and chelating agents, such as DTPA or DTPA-bisamide, calcium DTPA, and CaNaDTPA-bisamide.
본 명세서에 개시된 하이드로젤 조성물에 유용한 약제학적으로 허용 가능한 등장 조절제는, 예를 들어 염화나트륨 및 염화칼륨; 및 글라이세린과 같은 염을 포함할 수 있지만, 이들로 제한되지 않는다. 조성물은 염으로서 제공될 수 있으며, 염산, 황산, 아세트산, 락트산, 타르타르산, 말산, 숙신산 등을 포함할 수 있지만, 이들로 제한되지 않는 다수의 산에 의해 형성될 수 있다. 염은 대응되는 유리 염기 형태보다 수성 또는 다른 양성자성 용매 중에서 더 가용성인 경향이 있다. 이들 및 약학계에 공지된 다른 물질은 본 명세서에 개시된 하이드로젤 조성물에 포함될 수 있는 것으로 이해된다.Pharmaceutically acceptable isotonicity modifiers useful in the hydrogel compositions disclosed herein include, for example, sodium chloride and potassium chloride; And salts such as glycerine, but are not limited to these. The composition may be provided as a salt and may be formed by a number of acids, including but not limited to hydrochloric acid, sulfuric acid, acetic acid, lactic acid, tartaric acid, malic acid, succinic acid, and the like. Salts tend to be more soluble in aqueous or other protic solvents than the corresponding free base forms. It is understood that these and other materials known in the pharmaceutical arts can be included in the hydrogel compositions disclosed herein.
나아가 필요한 경우, 본원 조성물은 주름과 같은 피부 노화의 개선과 같은 미용용으로 또는 신경근육 관련 질환의 치료 분야에서 통상적으로 이용되는 임의의 성분을 추가로 포함할 수 있다.Furthermore, if necessary, the composition may further comprise any ingredient conventionally used for cosmetic purposes, such as improvement of skin aging, such as wrinkles, or in the field of treatment of neuromuscular related diseases.
본 발명의 조성물은 주사용 조성물로서, 미세한 바늘을 지니는 주사 장치를 이용하여 대상(subject)의 피부 영역에 투여되는 형태로 이용될 수 있다. 본 명세서 상의 용어 미세한 바늘을 지니는 주사 장치는 예를 들어 21 게이지 내지 32 게이지 정도의 바늘을 지니는 주사 장치를 의미할 수 있다. 대상(subject)에 대한 하이드로젤 조성물의 투여 경로는 전형적으로 대상(subject) 및/또는 시술자에 의해 요망되는 미용적 및/또는 임상적 효과, 그리고 조성물이 투여되는 신체 부분 또는 영역에 기반하여 결정될 수 있다. 본 명세서에 개시된 조성물은 국소적으로 또는 직접적 외과적 이식에 의해 바늘이 있는 주사기, 피스톨(예를 들어, 수공-압축 피스톨), 카테터를 포함하는 당업자에게 공지된 임의의 수단에 의해 투여될 수 있으나 이에 한정되지 않는다. 본 명세서에 개시된 하이드로젤 조성물은, 예를 들어, 진피 영역 또는 피하 영역과 같은 피부 영역 내로 투여될 수 있다.The composition of the present invention is an injectable composition, which may be used in the form of being administered to the skin region of a subject using an injection device having a fine needle. As used herein, the term "injection device having a fine needle" may refer to an injection device having a needle of, for example, about 21 gauge to about 32 gauge. The route of administration of the hydrogel composition to a subject may typically be determined based on the cosmetic and / or clinical effects desired by the subject and / or operator, and the body part or region in which the composition is administered. have. The compositions disclosed herein may be administered by any means known to those of skill in the art, including needled syringes, pistols (eg, hand-compressed pistols), catheters by topical or direct surgical implantation. It is not limited to this. The hydrogel compositions disclosed herein can be administered into a skin region, such as, for example, the dermal or subcutaneous region.
본 발명의 하이드로젤 조성물의 적합한 투여량은 투여 방식, 대상(subject)의 연령, 체중, 성, 투여 시간 및 투여부위와 같은 요인들에 의해 다양하게 결정될 수 있다. 한편, 본 발명의 하이드로젤 조성물의 투여량은 바람직하게는 1회 당 0.001-100 mg/kg(체중)일 수 있다.The suitable dosage of the hydrogel composition of the present invention can be determined in various ways by factors such as the mode of administration, the subject's age, weight, sex, time of administration and site of administration. On the other hand, the dosage of the hydrogel composition of the present invention may be preferably 0.001-100 mg / kg (body weight) per serving.
본 발명의 다른 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 진피 필러용 하이드로젤 조성물의 제조 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for preparing a hydrogel composition for dermal filler comprising the following steps:
(a) 제1 반응 물질인 알긴산 또는 히알루론산과 링커를 반응시켜 알긴산 또는 히알루론산의 카르복실기에 링커를 공유 결합시키는 단계;(a) reacting a linker with alginic acid or hyaluronic acid as a first reactant to covalently link the linker to a carboxyl group of alginic acid or hyaluronic acid;
(b) 상기 단계 (a)의 반응 결과물에 제2 반응 물질인 히알루론산 또는 알긴산을 반응시켜, 링커를 통하여 연결된 알긴산-결합 히알루론산 개질체를 수득하는 단계; 및(b) reacting the reaction product of step (a) with a second reaction material, hyaluronic acid or alginic acid, to obtain an alginic acid-linked hyaluronic acid reformer linked through a linker; And
(c) 생성된 알긴산-결합 히알루론산 개질체에 2가 양이온 또는 이의 염을 첨가하여 가교를 형성시켜 이온 가교성 히알루론산 하이드로젤을 수득하는 단계.(c) adding a divalent cation or a salt thereof to the resulting alginic acid-linked hyaluronic acid reformer to form a crosslinking to obtain an ionically crosslinkable hyaluronic acid hydrogel.
본 발명의 단계(a)는 알긴산 또는 히알루론산과 링커를 반응시켜 알긴산 또는 히알루론산의 카르복실기에 링커를 공유 결합시키는 단계로서, 이용되는 링커는 상술한 하이드로젤 조성물에 포함될 수 있는 링커와 동일하다. 본 명세서상의 용어 "제1 반응 물질"은 히알루론산 또는 알긴산 중 링커와 먼저 반응하여 결합을 형성하는 물질을 의미할 수 있다. 본 발명의 링커는 제1 반응 물질에 포함된 모든 카르복실기 전부에 결합할 수 있는 양으로 사용될 수 있다.Step (a) of the present invention is a step of covalently linking a linker to a carboxyl group of alginic acid or hyaluronic acid by reacting the linker with alginic acid or hyaluronic acid, and the linker used is the same as the linker which may be included in the hydrogel composition. As used herein, the term “first reactant” may refer to a substance that first reacts with a linker in hyaluronic acid or alginic acid to form a bond. The linker of the present invention may be used in an amount capable of binding to all of the carboxyl groups included in the first reactant.
본 발명의 단계(b)는 링커가 결합된 히알루론산 또는 알긴산을 제2 반응 물질과 반응시켜 링커를 통해 히알루론산과 알긴산을 결합시키는 단계이다. 본 명세서상의 용어 "제2 반응 물질"은 히알루론산 또는 알긴산 중 제1 반응 물질로 선택된 화합물이 아닌 나머지 다른 화합물을 의미할 수 있다. 본 명세서상의 용어 "알긴산-결합 히알루론산 개질체"는 알긴산이 결합된 상태의 히알루론산을 의미할 수 있다. 히알루론산과 알긴산의 중량비를 조절함으로써, 생성되는 하이드로젤의 기계적 물성을 용이하게 조절하는 것이 가능하고, 특히 종래 히알루론산 하이드로젤에 비해 더욱 높은 기계적 물성(G')을 갖는 하이드로젤을 얻을 수 있다.Step (b) of the present invention is a step of coupling the hyaluronic acid and alginic acid through the linker by reacting a linker-bound hyaluronic acid or alginic acid with a second reactant. As used herein, the term “second reactant” may refer to a compound other than the compound selected as the first reactant among hyaluronic acid or alginic acid. As used herein, the term "alginic acid-linked hyaluronic acid modifier" may refer to hyaluronic acid in a state in which alginic acid is bound. By controlling the weight ratio of hyaluronic acid and alginic acid, it is possible to easily adjust the mechanical properties of the resulting hydrogel, and in particular, it is possible to obtain a hydrogel having higher mechanical properties (G ') than the conventional hyaluronic acid hydrogel. .
본 발명의 단계(c)는 생성된 알긴산-결합 히알루론산 개질체에 2가 양이온 또는 이의 염을 첨가하여 가교 반응을 일으켜 젤화시키는 단계이다. 첨가되는 2가 양이온과 알긴산의 상호작용에 의해 가교 반응이 일어나고, 이를 통해 하이드로젤을 얻을 수 있다.Step (c) of the present invention is a step of adding a divalent cation or a salt thereof to the resulting alginic acid-linked hyaluronic acid reformer to cause a crosslinking reaction to gel. The crosslinking reaction occurs by the interaction of the divalent cation added with alginic acid, thereby obtaining a hydrogel.
본 발명의 일 구현예에 있어서, 본 발명은 상기 (c) 단계 이후에, 상기 수득한 이온 가교성 히알루론산 하이드로젤을 화학가교 히알루론산 필러와 혼합하는 단계;를 더 포함할 수 있고, 이를 통해 하기 실시예의 결과로부터 알 수 있는 바와 같이 진피 필러의 기계적 물성을 월등히 향상시킬 수 있다.In one embodiment of the present invention, after the step (c), the present invention may further comprise the step of mixing the obtained crosslinked hyaluronic acid hydrogel with a chemical cross-linked hyaluronic acid filler; As can be seen from the results of the following examples, the mechanical properties of the dermal filler can be significantly improved.
이때, 상기 이온 가교성 히알루론산 하이드로젤과 상기 화학가교 히알루론산 필러의 혼합 중량비는 1:1-9일 수 있으며, 더욱 구체적으로는 1:1일 수 있다. In this case, the mixed weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinked hyaluronic acid filler may be 1: 1-9, and more specifically 1: 1.
본 발명의 일 구현예에 있어서, 본 발명의 2가 양이온은 칼슘, 바륨 또는 마그네슘 이온일 수 있다. 본 발명의 칼슘, 바륨 또는 마그네슘 이온은 알긴산이 결합된 히알루론산에 대하여 설페이트 또는 클로라이드 염의 형태로 이용될 수 있다. 구체적으로 예를 들면, 칼슘클로라이드, 칼슘 설페이트, 바륨 클로라이드, 마그네슘 클로라이드, 또는 마그네슘 설페이트 화합물의 형태로 이용될 수 있다.In one embodiment of the present invention, the divalent cation of the present invention may be calcium, barium or magnesium ions. The calcium, barium or magnesium ions of the present invention can be used in the form of sulfate or chloride salts with respect to alginic acid bound hyaluronic acid. Specifically, for example, it may be used in the form of calcium chloride, calcium sulfate, barium chloride, magnesium chloride, or magnesium sulfate compound.
본 발명의 일 구현예에 있어서, 본 발명은 상기 (c) 단계 이후에, 본 발명의 하이드로젤에 진통제를 첨가하는 단계를 추가적으로 더 포함한다.In one embodiment of the present invention, the present invention further comprises the step of adding an analgesic agent to the hydrogel of the present invention after the step (c).
본 발명에 따른 "진피 필러용 하이드로젤 조성물의 제조방법"은 본 발명의 다른 양태인 "진피 필러용 하이드로젤 조성물"을 제조하는 방법에 관한 것으로서, 중복되는 내용을 원용하며, 본 명세서 기재의 과도한 복잡성을 피하기 위하여, 중복되는 내용에 대한 기재는 생략하도록 한다."Method for producing a hydrogel composition for dermal filler" according to the present invention relates to a method for producing a "hydrogel composition for dermal filler" which is another embodiment of the present invention, the overlapping content is used, and excessive In order to avoid complexity, description of duplicate contents will be omitted.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 다음을 포함하는 이온 가교성 히알루론산 하이드로젤을 포함하는 화학가교-히알루론산 필러의 기계적 물성 보강용 조성물을 제공한다:According to another aspect of the present invention, the present invention provides a composition for reinforcing mechanical properties of a chemical cross-linked hyaluronic acid filler comprising an ion-crosslinkable hyaluronic acid hydrogel comprising:
(a) 히알루론산;(a) hyaluronic acid;
(b) 상기 히알루론산에 결합된 알긴산; 및(b) alginic acid bound to hyaluronic acid; And
(c) 이온 가교제로서의 2가 양이온 또는 이의 염.(c) divalent cations or salts thereof as ionic crosslinkers.
종래 화학가교-히알루론산 필러의 경우, 상술한 바와 같이 화학가교제를 이용함으로써 발생하는 문제점 외에도, 높은 기계적 물성을 갖는 하이드로젤을 제조하는데 어려움이 있었다. 본 발명의 조성물을 이용하는 경우, 화학가교-히알루론산 필러의 기계적 물성을 보강하는 용도로 이용될 수 있다. 이는 종래 진피 필러용 조성물로 이용해온 공지의 물질을 그대로 이용하면서 손쉽게 기계적 물성에 변화를 줄 수 있다는 장점이 있고, 화학가교-히알루론산 필러에 의해 달성할 수 있는 기계적 물성의 한계를 보다 높여줄 수 있다는 장점이 있다.In the case of the conventional chemical crosslinking-hyaluronic acid filler, in addition to the problems caused by using the chemical crosslinking agent as described above, there was a difficulty in preparing a hydrogel having high mechanical properties. When using the composition of the present invention, it can be used for the purpose of reinforcing the mechanical properties of the chemical cross-linked hyaluronic acid filler. This has the advantage that it is possible to easily change the mechanical properties while using a known material used as a composition for the conventional dermal filler as it is, it can raise the limit of the mechanical properties that can be achieved by chemical cross-linked hyaluronic acid filler There is an advantage.
이때, 상기 이온 가교성 히알루론산 하이드로젤과 상기 화학가교-히알루론산 필러의 중량비는 1:1-9일 수 있으며, 더욱 구체적으로는 1:1일 수 있다.In this case, the weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinking-hyaluronic acid filler may be 1: 1-9, more specifically 1: 1.
본 발명의 일 구현예에 있어서, 본 발명의 히알루론산은 분자량이 500000 g/몰 내지 2500000 g/몰일 수 있다.In one embodiment of the present invention, the hyaluronic acid of the present invention may have a molecular weight of 500000 g / mol to 2500000 g / mol.
본 발명의 일 구현예에 있어서, 본 발명의 2가 양이온은 칼슘, 바륨 또는 마그네슘 이온일 수 있다.In one embodiment of the present invention, the divalent cation of the present invention may be calcium, barium or magnesium ions.
본 발명의 일 구현예에 있어서, 본 발명의 2가 양이온은 클로라이드 염의 형태로 첨가될 수 있다.In one embodiment of the invention, the divalent cations of the invention may be added in the form of chloride salts.
본 발명의 일 구현예에 있어서, 본 발명의 클로라이드 염은 칼슘 클로라이드일 수 있다.In one embodiment of the invention, the chloride salt of the invention may be calcium chloride.
본 발명에 따른 화학가교-히알루론산 필러의 기계적 물성 보강용 조성물은 상술한 본 발명의 일양태인 진피 필러용 하이드로젤 조성물을 이용하는 것으로서, 중복되는 내용에 대하여는 본 명세서 기재의 과도한 복잡성을 피하기 위해 생략하도록 한다.The composition for reinforcing the mechanical properties of the chemical cross-linked hyaluronic acid filler according to the present invention uses the hydrogel composition for dermal filler, which is one embodiment of the present invention described above, and the overlapping content is omitted so as to avoid excessive complexity of the present specification. do.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예Example
실험 재료 및 방법Experimental Materials and Methods
실시예 1: 알긴산-결합 히알루론산 개질체의 제조Example 1 Preparation of Alginic Acid-Linked Hyaluronic Acid Modifiers
아민 기의 도입을 위해, 히알루론산(분자량 600000-850000;Lifecore)을 에틸렌다이아민(Sigma-Aldrich)과 반응시켰다. NH2-히알루론산의 합성은 EDC/NHS 반응을 이용하여 종래 알려진 방법으로 합성하였다. 반응 동안 히알루론산 사슬 사이의 가교 결합의 억제를 위하여, 10배 몰 비율인 과량의 에틸렌다이아민을 첨가하였다. 그리고 실온에서 20 시간 동안 반응시켰다. 상기 용액을 투석하고 활성탄으로 처리하였으며, 멸균을 위해 0.22 μm의 필터로 여과하였고, 동결 건조했다. 알긴산을 종래 알려진 방법에 따라 카보다이이미드 케미스트리를 통해 NH2-히알루론산과 결합시켰다(참조: 도 1).For the introduction of amine groups, hyaluronic acid (molecular weight 600000-850000; Lifecore) was reacted with ethylenediamine (Sigma-Aldrich). Synthesis of NH2-hyaluronic acid was synthesized by a conventionally known method using an EDC / NHS reaction. In order to suppress the crosslinking between hyaluronic acid chains during the reaction, an excess of 10 times molar ratio of ethylenediamine was added. And it reacted for 20 hours at room temperature. The solution was dialyzed and treated with activated charcoal, filtered through a 0.22 μm filter for sterilization and lyophilized. Alginic acid was combined with NH 2 -hyaluronic acid via a carbodiimide chemistry according to a conventionally known method (see FIG. 1).
실시예 2: 핵 자기 공명 분광법Example 2: Nuclear Magnetic Resonance Spectroscopy
히알루론산, 알긴산 및 알긴산-결합 히알루론산 개질체를 70 ℃에서 1H NMR 분광기(Bruker avance 500 MHz)에 의해 분석하였다. 샘플을 3 mg/ml에서 D2O에서 용해시켰다.Hyaluronic acid, alginic acid and alginic acid-binding hyaluronic acid modifiers were analyzed by 1 H NMR spectroscopy (Bruker avance 500 MHz) at 70 ° C. Samples were dissolved in D 2 O at 3 mg / ml.
실시예 3: 디메틸 메틸렌 블루(DMMB) 분석Example 3: Dimethyl Methylene Blue (DMMB) Assay
알긴산-결합 히알루론산 개질체 내의 알긴산/히알루론산 함량을 정량하기 위해 DMMB 분석을 수행하였다. 즉, 16 mg의 DMMB를 25 ml의 에탄올에 용해시켰고, 필터 페이퍼로 여과하였으며, 0.17 M의 소듐 포르메이트 및 1 ml의 포름산을 포함하는 100 ml의 1 M 구아니딘 하이드로클로라이드를 여과한 DMMB와 혼합하였다. 용액을 탈이온수와 500 ml의 총 부피가 되도록 혼합하였다. 각각의 샘플을 탈이온수로 희석하고, 0.1 중량%의 용액을 얻었다. 1 ml의 DMMB 용액을 100 μl의 각 샘플에 추가하고, 30분 동안 격렬하게 혼합하였다. 복합체를 침전시키기 위해 배양한 샘플을 12000 g로 10분간 원심분리하였다. 상청액을 제거하였고, 실온에서 30분간 건조시켰다. 펠릿을 1 ml의 탈복합 용액으로 용해시켰다. 10% 1-프로판올 및 4 M 구아니딘 하이드로클로라이드를 함유하는 50 mM의 소듐 아세테이즈 버퍼(pH 6.8)를 가지고 탈복합 용액을 제조하였다. 혼합 30분 후, 100 μl의 각 샘플을 96-웰 플레이트로 옮겼다. 분광광도계(SpectraMax M2; Molecular Devices)를 이용하여 656 nm에서 흡광도를 측정하였다.DMMB analysis was performed to quantify the alginic acid / hyaluronic acid content in the alginic acid-binding hyaluronic acid reformer. That is, 16 mg of DMMB was dissolved in 25 ml of ethanol, filtered with filter paper, and 100 ml of 1 M guanidine hydrochloride containing 0.17 M of sodium formate and 1 ml of formic acid was mixed with the filtered DMMB. . The solution was mixed with deionized water to a total volume of 500 ml. Each sample was diluted with deionized water and 0.1% by weight solution was obtained. 1 ml of DMMB solution was added to 100 μl of each sample and mixed vigorously for 30 minutes. The cultured samples were centrifuged at 12000 g for 10 minutes to precipitate the complex. The supernatant was removed and dried at room temperature for 30 minutes. The pellet was dissolved in 1 ml of decomplexation solution. A decomplexed solution was prepared with 50 mM sodium acetate buffer (pH 6.8) containing 10% 1-propanol and 4 M guanidine hydrochloride. After 30 minutes of mixing, 100 μl of each sample was transferred to a 96-well plate. Absorbance was measured at 656 nm using a spectrophotometer (SpectraMax M2; Molecular Devices).
실시예 4: 효소 안정성 시험Example 4: Enzyme Stability Test
알긴산-결합 히알루론산 개질체(HGA1)를 PBS 내에서 용해시켰고, 1 mm 두께의 스페이서를 갖는 두 글래스 플레이트를 이용하여 칼슘 설페이트와 혼합하여 젤([폴리머]=2 중량%, [CaSO4]=29.7 mM)을 형성시켰다. 펀치(10 mm 직경)를 이용하여 젤 디스크를 얻었고, 0에서 100 μg/ml의 농도 범위의 히알루로니다아제(hyaluronidase)를 함유하는 PBS 용액 내로 투입하였고, 24시간 동안 37℃에서 배양하였다. 건조 중량을 측정하기 전에 젤 디스크를 냉동시키고 동결건조 시켰다. 또한 히알루론산 및 알긴산의 물리적 혼합물을 대조구([polymer]= 2 중량%, [CaSO4]=29.7 mM)로 사용하였다. 히알루로니다아제를 처리한 후, 스캐닝 전자 현미경(S-4800 UHR FE-SEM; Hitachi)를 이용하여 젤의 횡단면 이미지를 관찰하였다.Alginic acid-linked hyaluronic acid modifier (HGA1) was dissolved in PBS and mixed with calcium sulfate using two glass plates with 1 mm thick spacers to obtain gel ([polymer] = 2 wt%, [CaSO 4 ] = 29.7 mM). Gel discs were obtained using a punch (10 mm diameter), fed into a PBS solution containing hyaluronidase in a concentration range of 0 to 100 μg / ml and incubated at 37 ° C. for 24 hours. Gel discs were frozen and lyophilized before measuring dry weight. In addition, a physical mixture of hyaluronic acid and alginic acid was used as a control ([polymer] = 2 wt%, [CaSO4] = 29.7 mM). After treatment with hyaluronidase, a cross-sectional image of the gel was observed using a scanning electron microscope (S-4800 UHR FE-SEM; Hitachi).
실시예 5: 유동 측정(Rheological measurement)Example 5 Rheological Measurement
콘-앤-플레이트(20 mm 직경 플레이트, 4° 콘 각도) 픽스쳐(coneand-plate fixture)(Bohlin Gemini 150)를 갖는 회전 레오미터를 이용하여 이온 가교 알긴산-결합 히알루론산 젤의 점탄성 특성을 측정하였다. 150 μm 갭 오프닝을 콘 및 플레이트의 정점에 설정하였고, 작동 온도를 37±0.1℃로 일정하게 설정했다.Viscoelastic properties of ion-crosslinked alginic acid-linked hyaluronic acid gels were measured using a rotary rheometer with a cone-and-plate (20 mm diameter plate, 4 ° cone angle) coneand-plate fixture (Bohlin Gemini 150). . A 150 μm gap opening was set at the top of the cone and plate, and the operating temperature was set constant at 37 ± 0.1 ° C.
알긴산-결합 히알루론산 개질체를 PBS에 용해하였다. 2중량%의 폴리머 용액은 폴리머 용액의 알긴산 함량에 의존하는 양(알긴산 1g 당 0.42g의 CaSO4가 혼합될 수 있는 양)의 CaSO4 슬러리와 혼합했다. 이온 가교 된 하이드로젤의 기계적 특성은 회전 레오미터(Bohlin Gemini 150)를 이용하여 측정 하였다. 0.5 Hz로 측정하였고, 온도를 37±0.1℃로 일정하게 유지했다.Alginic acid-binding hyaluronic acid modifiers were dissolved in PBS. The 2 wt% polymer solution was mixed with a CaSO 4 slurry in an amount dependent on the alginic acid content of the polymer solution (0.42 g of CaSO 4 per 1 g of alginic acid could be mixed). Mechanical properties of ion-crosslinked hydrogels were measured using a rotary rheometer (Bohlin Gemini 150). Measurement was made at 0.5 Hz and the temperature was kept constant at 37 ± 0.1 ° C.
실시예 6: 통계 분석Example 6: Statistical Analysis
모든 데이터는 평균±표준편차(n = 6)로 제시된다. 통계 분석은 Student's t-검정을 이용하여 수행하였다. *P-값<0.05 및 **P<0.01는 통계학적으로 의미 있는 것으로 간주하였다.All data are presented as mean ± standard deviation (n = 6). Statistical analysis was performed using Student's t-test. * P-values <0.05 and ** P <0.01 were considered statistically significant.
실시예Example
7: 7:
이온가교성Ion crosslinking
알긴산-결합 히알루론산 Alginic acid-linked hyaluronic acid
개질체에On the reformer
사용된 히알루론산 분자량에 따른 하이드로젤 물성 비교 Comparison of Hydrogel Properties by Hyaluronic Acid Molecular Weight
분자량이 1000000 g/몰 또는 1500000 g/몰인 히알루론산을 이용하여 합성한 알긴산-결합 히알루론산 개질체를 PBS에 용해하였다. 2중량%의 폴리머용액은 폴리머 용액의 알긴산 함량에 의존하는 양(알긴산 1g 당 0.42g의 CaSO4가 혼합될 수 있는 양)의 CaSO4 슬러리와 혼합했다. 이온 가교 된 하이드로젤의 기계적 특성은 회전 레오미터(Bohlin Gemini 150)를 이용하여 측정 하였다. 0.5 Hz로 측정하였고, 온도를 37±0.1℃로 일정하게 유지했다.Alginic acid-bound hyaluronic acid modifiers synthesized using hyaluronic acid having a molecular weight of 1000000 g / mol or 1500000 g / mol were dissolved in PBS. 2 wt% of the polymer solution was mixed with a CaSO 4 slurry in an amount depending on the alginic acid content of the polymer solution (0.42 g of CaSO 4 per 1 g of alginic acid could be mixed). Mechanical properties of ion-crosslinked hydrogels were measured using a rotary rheometer (Bohlin Gemini 150). Measurement was made at 0.5 Hz and the temperature was kept constant at 37 ± 0.1 ° C.
실시예Example
8: 8:
화학가교Chemical crosslinking
히알루론산 Hyaluronic acid
필러와With filler
이온가교성Ion crosslinking
알긴산-결합 히알루론산 개질체를 혼합하였을 때의 물성 변화 Changes in Physical Properties of Alginate-Linked Hyaluronic Acid Modifiers
(1) 시판 성형용 필러인 ㈜한국비엔씨의 큐젤 Aqua S 또는 큐젤 S와 분자량이 1000000 g/몰 또는 1500000 g/몰인 히알루론산을 이용하여 합성한 알긴산-결합 히알루론산 개질체를 두 개의 주사기를 사용하여 혼합하였다. 2중량%의 폴리머 용액은 폴리머 용액의 알긴산 함량에 의존하는 양(알긴산 1g 당 0.42g의 CaSO4가 혼합될 수 있는 양)의 CaSO4 슬러리와 혼합했다. 이온 가교 된 하이드로젤의 기계적 특성은 회전 레오미터(Bohlin Gemini 150)를 이용하여 측정 하였다. 0.5 Hz로 측정하였고, 온도를 37±0.1℃로 일정하게 유지했다.(1) Two syringes were used to combine the alginate-linked hyaluronic acid reformer synthesized with commercial gelling filler CULEL Aqua S or Cugel S of Korea BNC Co., Ltd. and hyaluronic acid having a molecular weight of 1000000 g / mol or 1500000 g / mol. And mixed. The 2 wt% polymer solution was mixed with a CaSO 4 slurry in an amount dependent on the alginic acid content of the polymer solution (0.42 g of CaSO 4 per 1 g of alginic acid could be mixed). Mechanical properties of ion-crosslinked hydrogels were measured using a rotary rheometer (Bohlin Gemini 150). Measurement was made at 0.5 Hz and the temperature was kept constant at 37 ± 0.1 ° C.
(2) 또한, 시판 성형용 필러로 ㈜휴메딕스의 엘라비에와 이온가교성 알긴산-결합 히알루론산 하이드로젤의 혼합 중량비를 각각 9:1. 7:3, 5:5로 혼합 후 탄성계수를 측정하였다.(2) In addition, as a commercially available molding filler, the mixed weight ratios of Humidics' elavies and ion-crosslinkable alginic acid-bonded hyaluronic acid hydrogels were respectively set to 9: 1. The elastic modulus was measured after mixing at 7: 3 and 5: 5.
실시예Example
9: 9:
화학가교Chemical crosslinking
히알루론산 Hyaluronic acid
필러와With filler
이온가교성Ion crosslinking
알긴산-결합 히알루론산 개질체 혼합물의 세포독성 시험 Cytotoxicity Testing of Alginic Acid-Binding Hyaluronic Acid Modifier Mixtures
먼저, 알긴산-결합 히알루론산을 calcium sulfate (60mM)로 이온가교 후, ㈜화학가교 히알루론산 필러인 ㈜휴메딕스의 엘라비에와 다양한 혼합비로 혼합물을 제조하였다 (엘라비에:알긴산-결합 히알루론산 = 9:1, 7:3, 5:5).First, the alginic acid-bonded hyaluronic acid was ion-crosslinked with calcium sulfate (60 mM), and then a mixture was prepared at various mixing ratios with Elavier of Humedix, a chemical cross-linked hyaluronic acid filler (Elabie: Alginic acid-bonded hyaluronic acid). = 9: 1, 7: 3, 5: 5).
다음으로, ATDC5 mouse chondrogenic cell line(ECACC)을 10ug/ml human transferring (Sigma-Aldrich), 3 × 10-8M sodium selenite (Sigma-Aldrich), 5% FBS, 1% antibiotics가 포함된 DMEM/F-12 배양액을 이용해 세포를 배양하였다. 37 ℃, 5% CO2 조건에서 배양하였고, Transwell 0.4um polyester membrane 12-well plate (Costar)에 각 well 당 세포를 5000개씩 배양하였다. 300 ul 부피의 상기 제조된 다양한 혼합비의 화학가교 히알루론산 필러와 이온가교성 알긴산-결합 히알루론산 개질체의 혼합물을 membrane 위에 준비하고 배양액에 잠기게 한 후 EZ-cytox 검사를 실시하여 세포독성을 평가하였다.Next, DDC / F containing ATug5 mouse chondrogenic cell line (ECACC) 10ug / ml human transferring (Sigma-Aldrich), 3 × 10 -8 M sodium selenite (Sigma-Aldrich), 5% FBS, 1% antibiotics Cells were cultured using -12 culture. The cells were cultured at 37 ° C. and 5% CO 2 , and 5000 cells were cultured in each well in a Transwell 0.4um polyester membrane 12-well plate (Costar). A mixture of the chemically crosslinked hyaluronic acid fillers and the ionic crosslinked alginic acid-binding hyaluronic acid fillers prepared in various mixing ratios of 300 ul was prepared on the membrane, immersed in the culture medium, and subjected to EZ-cytox assay to evaluate cytotoxicity. .
실험결과Experiment result
1. 알긴산-결합 히알루론산의 특성화1. Characterization of Alginic Acid-Linked Hyaluronic Acid
알긴산-결합 히알루론산(HGA)을 디자인하였고, 이온 가교성 히알루론산의 제조로 합성하였다. 즉 처음으로 히알루론산(HA)을 에틸렌디아민(NH2-HA)으로 개질시켰고, 카보다이이미드에 의해 알긴산으로 컨쥬게이션시켰다(HA-g-AL)(참조: 도 1). 다양한 알긴산-결합 히알루론산 샘플을 합성하였다. 히알루론산과 알긴산의 중량비를 1:1, 2:1 및 4:1(이하 각각 HGA1, HGA2, 및 HGA4라 지칭함)로 하여 샘플을 합성하였다.Alginic acid-linked hyaluronic acid (HGA) was designed and synthesized by the preparation of ion crosslinkable hyaluronic acid. Ie, hyaluronic acid (HA) was first modified with ethylenediamine (NH 2 -HA) and conjugated with alginic acid with carbodiimide (HA-g-AL) (see Figure 1). Various alginic acid-bound hyaluronic acid samples were synthesized. Samples were synthesized with the weight ratios of hyaluronic acid and alginic acid being 1: 1, 2: 1 and 4: 1 (hereinafter referred to as HGA1, HGA2, and HGA4, respectively).
알긴산-결합 히알루론산(HGA)을 1H-NMR 분광기(참조: 도 4a)에 의해 확인하였다. 4.2-4.4의 δ피크 영역이 에틸렌디아민으로 개질 후 증가하였으며, 이는 히알루론산(NH2-HA)에 대한 에틸렌디아민의 성공적인 도입을 나타낸다. 알긴산의 NH2-히알루론산 개질 후, 알긴산 및 히알루론산의 구체적인 피크는 δ=4.2-4.7 및 δ=2.5-2.6(NCOCH3)에서의 스펙트럼 상에서 각각 볼 수 있다. HA-g-AL의 결합(graft) 효율을 스펙트럼으로부터의 폴리머 함량을 계산함으로써 측정하였다(HGA1-93.7%, HGA2=82.6%, HGA4=94.7%). 또한, 결합 효율을 다이메틸메틸렌블루(DMMB) 분석으로 측정하였다(참조: 도 4b). 히알루론산은 DMMB 염료에 부착되지 않았다; 그러므로 상기 분석으로부터 HA-g-AL의 알긴산의 함량만을 측정하였다(HGA1=90.4±4.9%, HGA2=86.0±7.9%, HGA4=83.6±9.0%). 상기 발견 된 결과가 1H-NMR 스펙트럼으로부터 수득 된 것과 상당히 일치하였다.Alginic acid-bound hyaluronic acid (HGA) was confirmed by 1 H-NMR spectroscopy (see FIG. 4A). The δ peak area of 4.2-4.4 increased after modification with ethylenediamine, indicating successful introduction of ethylenediamine to hyaluronic acid (NH 2 -HA). After NH 2 -hyaluronic acid modification of alginic acid, specific peaks of alginic acid and hyaluronic acid can be seen on the spectra at δ = 4.2-4.7 and δ = 2.5-2.6 (NCOCH 3 ), respectively. The graft efficiency of HA-g-AL was determined by calculating the polymer content from the spectrum (HGA1-93.7%, HGA2 = 82.6%, HGA4 = 94.7%). Binding efficiency was also measured by dimethylmethylene blue (DMMB) analysis (see Figure 4b). Hyaluronic acid was not attached to the DMMB dye; Therefore, only the alginic acid content of HA-g-AL was determined from the above analysis (HGA1 = 90.4 ± 4.9%, HGA2 = 86.0 ± 7.9%, HGA4 = 83.6 ± 9.0%). The results found above were in good agreement with those obtained from the 1 H-NMR spectrum.
2. 알긴산-결합 히알루론산의 하이드로젤 형성2. Hydrogel Formation of Alginic Acid-Linked Hyaluronic Acid
히알루론산 용액을 칼슘 이온과 혼합한 경우([히알루론산]=2 중량%, [CaSO4]=30 mM) 하이드로젤이 형성되지 않았다. 대조적으로 칼슘 이온의 존재하에서, 알긴산-결합 히알루론산은 젤을 형성할 수 있었다([HGA1]=2 중량%, [CaSO4]=30 mM)(참조: 도 2a). 히알루론산-기반의 하이드로젤에서의 대부분의 독성-관련 이슈들은 중합체와 연관된 이슈들로부터 발생하기보다는 화학적 가교제의 이용으로부터 유발된다[37, 38]. 체내 이식 후 화학적 가교 시약에 의해 발생되는 전형적인 히알루론산 젤에서의 독성-관련 이슈들은 이온 가교성 히알루론산-기반 하이드로젤의 사용에 의해 극복될 수 있다. 이온 가교 알긴산-결합 히알루론산 하이드로젤은 23-G 바늘을 갖는 실린더를 통해 주입될 수 있다(참조: 도 2b). 이는 신체에 대한 약물 및/또는 세포의 최소 침습 전달을 가능케 한다는 관점에서 또한 매력적이다.When the hyaluronic acid solution was mixed with calcium ions ([hyaluronic acid] = 2% by weight, [CaSO 4 ] = 30 mM), no hydrogel was formed. In contrast, in the presence of calcium ions, alginic acid-binding hyaluronic acid could form a gel ([HGA1] = 2 wt.%, [CaSO4] = 30 mM) (see FIG. 2A). Most of the toxicity-related issues in hyaluronic acid-based hydrogels arise from the use of chemical crosslinkers rather than from polymer-related issues [37, 38]. Toxicity-related issues in typical hyaluronic acid gels generated by chemical crosslinking reagents after implantation in vivo can be overcome by the use of ion crosslinkable hyaluronic acid-based hydrogels. Ion-crosslinked alginic acid-linked hyaluronic acid hydrogels can be injected through a cylinder with a 23-G needle (see FIG. 2B). This is also attractive in terms of enabling minimally invasive delivery of drugs and / or cells to the body.
3. 알긴산-결합 히알루론산 하이드로젤의 특성화3. Characterization of Alginic Acid-Linked Hyaluronic Acid Hydrogels
알긴산-결합 히알루론산 젤의 점탄성 및 젤화 거동을 회전식 레오미터를 이용하여 조사하였다(참조: 도 2c 내지 2g). HGA1 용액을 칼슘 이온과 혼합할 때, 다양한 주파수에서 저장 탄성률(G')은 손실 탄성률(G")보다 더욱 높았고(참조: 도 2c), 이는 혼합물이 이온 가교를 통해 하이드로젤 구조를 구축한다는 것을 나타낸다. 대조적으로 히알루론산 용액은 칼슘 첨가에 대하여 하이드로젤을 형성하지 않는다. 다음으로 이온 가교 알긴산-결합 히알루론산 젤의 기계적 특성에 대한 알긴산 함량의 효과를 조사하였다(참조: 도 2d). 시험한 모든 샘플에 대한 일정한(constant) 폴리머 및 칼슘 농도 상에서 하이드로젤을 제조하였다([폴리머]=2 중량%, [CaSO4]=30 mM). 히알루론산 및 알긴산 사이의 중량 비율은 다양했다. 알긴산에 대한 히알루론산의 중량비율이 1로부터 4로 증가함에 따라 젤의 기계적 특성은 2.5±0.2 kPa로부터 0.075±0.001 kPa까지 크게 변경되었다. 그리고나서 이온 가교 하이드로젤의 탄성의 변화가 칼슘 농도에 따라 어떻게 변화하는지 조사하였다(참조: 도 2e). 칼슘 설페이트 농도가 7.4 mM에서 30 mM까지 증가함에 따라, 알긴산-결합 히알루론산 젤의 G' 값은 0.3±0.1 kPa에서 2.7±0.6 kPa까지 증가하였다. 그러나 칼슘 설페이트 농도가 60 mM까지 증가할 때, 더 이상의 증가는 관찰할 수 없었다. 알긴산-결합 히알루론산 젤의 젤화 시간은 젤에서의 알긴산 함량에 의해 중요한 영향을 받지 않았다(참조: 도 2f). 알긴산-결합 히알루론산 젤의 전단 탄성계수는 알긴산 분자량에 의존한다(참조: 도 2g). 알긴산 분자량이 50000 g/mol에서 250000 g/mol까지 증가함에따라, 이온 가교 젤의 G' 또한 0.04±0.003에서 2.4±0.2 kPa까지 증가하였다. 50000 g/mol 또는 100000 g/mol의 알긴산으로 제조한 알긴산-결합 히알루론산 젤은 불량한 기계적 특성을 보였고, 심지어 칼슘 이온의 존재하에서도 그러했다. 세포 거동(예를 들어, 접착, 증식 및 이동)과 관련한 폴리머 스캐폴드의 기계적 특성들을 조절하는 것은 매우 중요하다[39-41]. 게다가 기계적 특성들은 또한 조직 재생에 즉각적인 영향을 갖는 줄기세포 분화의 조절에 중요하다[41-44]. 조직 공학에서의 사용에 매우 매력적일 수 있는 알긴산-결합 히알루론산 젤의 기계적 특성은 중합체 조성 및 칼슘 이온 농도의 조절을 통해 쉽게 조절가능하다.The viscoelastic and gelling behavior of the alginic acid-bound hyaluronic acid gels were investigated using a rotary rheometer (see FIGS. 2C-2G). When the HGA1 solution was mixed with calcium ions, the storage modulus (G ') was higher than the loss modulus (G ") at various frequencies (Fig. 2c), indicating that the mixture builds a hydrogel structure through ion crosslinking. In contrast, the hyaluronic acid solution does not form a hydrogel against calcium addition, and then examines the effect of the alginic acid content on the mechanical properties of the ion-crosslinked alginic acid-linked hyaluronic acid gel (see FIG. 2D). Hydrogels were prepared on constant polymer and calcium concentrations for all samples ([polymer] = 2 wt%, [CaSO 4 ] = 30 mM) The weight ratios between hyaluronic acid and alginic acid varied. As the weight ratio of hyaluronic acid to 1 increased from 1 to 4, the mechanical properties of the gel changed significantly from 2.5 ± 0.2 kPa to 0.075 ± 0.001 kPa. The change in the elasticity of the gel changes with calcium concentration (see Fig. 2e) As the calcium sulfate concentration increases from 7.4 mM to 30 mM, the G 'value of the alginic acid-bound hyaluronic acid gel is 0.3 ± 0.1. The kPa increased from 2.7 ± 0.6 kPa, but no further increase was observed when the calcium sulfate concentration increased to 60 mM.The gelation time of the alginic acid-linked hyaluronic acid gel was significantly affected by the alginic acid content in the gel. The shear modulus of the alginic acid-linked hyaluronic acid gel depends on the alginic acid molecular weight (see Fig. 2g), as the alginic acid molecular weight increases from 50000 g / mol to 250000 g / mol. The G 'of the ion crosslinked gel also increased from 0.04 ± 0.003 to 2.4 ± 0.2 kPa Alginate-linked hyaluronic acid gels made with 50000 g / mol or 100000 g / mol alginic acid showed poor mechanical properties, even calcium Even in the presence of ions, it is very important to control the mechanical properties of the polymer scaffold in relation to cellular behavior (eg adhesion, proliferation and migration) [39-41]. In addition, mechanical properties are also important for the regulation of stem cell differentiation, which has an immediate effect on tissue regeneration [41–44]. The mechanical properties of alginic acid-binding hyaluronic acid gels, which can be very attractive for use in tissue engineering, are readily controllable through control of polymer composition and calcium ion concentration.
4. 알긴산-결합 히알루론산 하이드로젤의 효소 안정성4. Enzyme Stability of Alginic Acid-Linked Hyaluronic Acid Hydrogels
알긴산-결합 히알루론산 하이드로젤을 in vitro 효소 반응에 대한 안정성을 시험하기 위해 히알루로니다아제로 처리하였다. 2주 배양 시간 상에 젤 중량의 약간의 감소가 관찰되었다. 젤 중량은 효소 농도에 의존하였다(참조: 도 3a). 하이드로젤은 효소가 없는 대조군 조건과 비교하여 2주 동안 100 μg/ml 히알루로니다아제로 처리한 후의 대략 80%의 그들의 초기 중량을 유지하였다. 알긴산-결합 히알루론산 젤은 효소 처리한 후 양호하게 팩킹된 다공성 구조를 유지하였다(참조: 도 3c). 대조적으로 히알루론산 및 알긴산의 단순 혼합물로부터 제조된 젤은 배양 동안 심지어 1 μg/ml의 히알루로니다아제의 존재하에서 젤 중량의 상당한 감소를 나타내었다. 히알루로니다아제 함량과 관련없이, 대략 40%의 중량 감소를 관찰하였다. 상기 중량 감소는 젤 상의 히알루론산 함량에 기반한 예상과 유사하다. 히알루로니다아제로 처리한 후의 히알루론산/알긴산 혼합 젤 횡단면 이미지는 효소 분해의 의해 상당한 젤 손실을 보였다(참조: 도 3b). 히알루론산은 히알루로니아다제의 작용에 의해 작은 올리고사카라이드 절편으로 절단되었다[45, 46]. 그러나 히알루론산은 in vitro의 내재성 히알루로니다아제(endogeneous hyaluronidase)에 의한 가교 또는 화학적 변형의 부재 하에서 빠르게 분해되었다[47]. 전달된 세포로부터의 새로운 ECM 발달 동안, 젤이 3-D 구조적 환경을 제공하고 스캐폴드로서의 그들의 완전성을 유지해야하기 때문에, 빠른 젤 분해는 많은 타입의 조직의 재생에 불리할 수 있다. 칼슘 이온을 첨가했을 때, 오직 혼합물 내의 알긴산 만이 젤 형성에 참여하기 때문에, 히알루론산/알긴산 혼합된 하이드로젤은 완전한 상호 관통 폴리머 네트워크 구조들을 형성하지 않는다. 혼합된 젤 내의 히알루론산은 히알루로니다아제의 작용에 의해 대부분 전체적으로 분해되었다(참조: 도 3). 반면에 알긴산-결합 히알루론산 내의 히알루론산의 분해는, 히알루로니다아제에 의한 느린 젤 분해를 이끄는 알긴산 체인의 공유결합성 컨쥬게이션에 의해 제한되었다. 이는 상기의 젤들이 in vivo 적용에 혼합 젤보다 더욱 적절하도록 만들 수 있다.Alginic acid-binding hyaluronic acid hydrogels were treated with hyaluronidase to test stability for in vitro enzymatic reactions. A slight decrease in gel weight was observed on the two week incubation time. Gel weight was dependent on enzyme concentration (see FIG. 3A). The hydrogels maintained their initial weight of approximately 80% after treatment with 100 μg / ml hyaluronidase for 2 weeks compared to control conditions without enzymes. Alginic acid-binding hyaluronic acid gels maintained a well packed porous structure after enzymatic treatment (see FIG. 3C). In contrast, gels prepared from a simple mixture of hyaluronic acid and alginic acid showed a significant reduction in gel weight during culturing even in the presence of 1 μg / ml hyaluronidase. Regardless of the hyaluronidase content, a weight loss of approximately 40% was observed. The weight loss is similar to that expected based on the hyaluronic acid content on the gel. Hyaluronic acid / alginic acid mixed gel cross-sectional images after treatment with hyaluronidase showed significant gel loss by enzymatic digestion (FIG. 3B). Hyaluronic acid was cleaved into small oligosaccharide fragments by the action of hyaluronidase [45, 46]. However, hyaluronic acid was rapidly degraded in the absence of crosslinking or chemical modification by endogenous hyaluronidase in vitro [47]. During the development of new ECMs from delivered cells, fast gel degradation can be detrimental to the regeneration of many types of tissues, as the gels must provide a 3-D structural environment and maintain their integrity as scaffolds. Hyaluronic acid / alginic acid mixed hydrogels do not form fully interpenetrating polymer network structures, since only alginic acid in the mixture participates in gel formation when calcium ions are added. Hyaluronic acid in the mixed gels was mostly degraded entirely by the action of hyaluronidase (see Figure 3). On the other hand, the degradation of hyaluronic acid in the alginic acid-binding hyaluronic acid was limited by the covalent conjugation of the alginic acid chain leading to slow gel degradation by hyaluronidase. This may make these gels more suitable than mixed gels for in vivo applications.
5. 5.
이온가교성Ion crosslinking
알긴산-결합 히알루론산 Alginic acid-linked hyaluronic acid
개질체에On the reformer
사용된 히알루론산 분자량에 따른 하이드로젤 물성 비교 결과 Comparison results of hydrogel properties according to the molecular weight of hyaluronic acid used
히알루론산 분자량이 다른 알긴산-결합 히알루론산 하이드로젤의 점탄성 거동을 회전식 레오미터를 이용하여 조사하였다(참조: 도 5a 내지 5b). HGA 용액을 칼슘 이온과 혼합할 때, 분자량이 큰 히알루론산으로부터 합성한 알긴산-결합 히알루론산 하이드로젤이 가장 높은 저장 탄성률(G')을 보였다. 예를 들어 동일한 폴리머 농도 2%에서 비교하면, 히알루론산 분자량이 1000000 g/mol에서 1500000 g/mol으로 증가하는 경우 알긴산-결합 히알루론산 젤의 G' 값은 480 Pa에서 600 Pa로 증가하였다. 시험한 모든 샘플은 일정한(constant) 알긴산/칼슘 농도 비율로 하이드로젤을 제조하였다. 이는 동일한 알긴산 분자량 및 칼슘이온 농도에서 히알루론산 분자량이 알긴산-결합 히알루론산 젤의 물성에 중요한 영향을 끼친다는 것을 의미한다. 또한 알긴산-결합 히알루론산 개질체의 농도가 감소하면 G' 값도 감소하였다.The viscoelastic behavior of alginic acid-linked hyaluronic acid hydrogels having different hyaluronic acid molecular weights was investigated using a rotary rheometer (see FIGS. 5A to 5B). When the HGA solution was mixed with calcium ions, the alginic acid-bonded hyaluronic acid hydrogel synthesized from the high molecular weight hyaluronic acid showed the highest storage modulus (G '). For example, when the hyaluronic acid molecular weight increased from 1000000 g / mol to 1500000 g / mol compared to the same polymer concentration of 2%, the G 'value of the alginic acid-linked hyaluronic acid gel increased from 480 Pa to 600 Pa. All samples tested produced hydrogels at a constant alginic acid / calcium concentration ratio. This means that at the same alginic acid molecular weight and calcium ion concentration, the hyaluronic acid molecular weight has an important effect on the physical properties of the alginic acid-linked hyaluronic acid gel. In addition, as the concentration of the alginic acid-bound hyaluronic acid reformer decreased, the G 'value also decreased.
6. 6.
화학가교Chemical crosslinking
히알루론산 Hyaluronic acid
필러에On filler
이온가교성Ion crosslinking
알긴산-결합 히알루론산 Alginic acid-linked hyaluronic acid
개질체를Modifying
혼합하였을 때의 물성 변화 관찰 결과 Observation results of physical property change when mixed
(1) 히알루론산 분자량이 다른 알긴산-결합 히알루론산 하이드로젤을 시판 성형용 필러 제품인 ㈜한국비엔씨의 큐젤 Aqua S와 혼합한 후 점탄성 거동의 변화를 회전식 레오미터를 이용하여 조사하였다(참조: 도 6a 내지 6b). 큐젤 Aqua S와 히알루론산 분자량이 1000000 g/mol인 알긴산-결합 히알루론산 젤을 50:50(중량비)으로 혼합한 경우(2% gel로 표시되었음), 기존 제품의 G' 값 보다 2 배 이상증가하였다. 히알루론산 분자량이 1500000 g/mol인 알긴산-결합 히알루론산 젤을 큐젤 Aqua S와 50:50(중량비)으로 혼합한 경우(2% gel로 표시되었음)는 3배 이상으로 물성이 증가함을 확인하였다. 또한 ㈜한국비엔씨의 큐젤 S와 알긴산-결합 히알루론산 젤을 혼합한 후 점탄성 거동의 변화를 회전식 레오미터를 이용하여 조사하였다(참조: 도 6c). 히알루론산 분자량이 1500000 g/mol인 알긴산-결합 히알루론산 젤을 큐젤 S와 50:50(중량비)으로 혼합한 경우(2% gel로 표시되었음)는 기존 제품 대비 약 1.5배의 물성이 증가함을 확인하였다. 이는 기존 성형용 필러 제품에 알긴산-결합 히알루론산 젤을 단순하게 혼합함으로써 기존 제품의 물성을 쉽게 향상시킬 수 있다는 것을 의미하고, 젤의 혼합비율뿐만 아니라 합성에 사용된 히알루론산 분자량 조절에 의해서도 물성 변화를 용이하게 할 수 있다는 것을 의미한다. 기존 제품의 경우 필러용 젤의 물성을 향상시키기 위해서는 화학가교제 사용량을 증가시켜야 하지만 이에 수반되는 잠재적인 독성이 우려된다. 그러나 알긴산-결합 히알루론산 개질체를 사용하는 경우 칼슘이온만으로 가교가 성립되어 젤이 형성되기 때문에 이러한 안전성의 우려없이 젤의 물성을 다양하게 조절할 수 있는 장점을 가진다.(1) After mixing alginic acid-bonded hyaluronic acid hydrogels having different hyaluronic acid molecular weights with Cugel Aqua S of BNC Korea Co., Ltd., a commercially available filler product, changes in viscoelastic behavior were investigated using a rotary rheometer (see FIG. 6A). To 6b). When Cue Gel Aqua S and Alginate-linked Hyaluronic Acid gel with a molecular weight of 1000000 g / mol are mixed at 50:50 (weight ratio) (expressed as a 2% gel), it is more than twice the G 'value of conventional products. It was. When the alginic acid-bonded hyaluronic acid gel having a hyaluronic acid molecular weight of 1500000 g / mol was mixed with the cugel Aqua S at 50:50 (weight ratio) (marked as a 2% gel), the physical properties increased by three times or more. . In addition, the change of viscoelastic behavior after mixing the gel gel and alginic acid-bonded hyaluronic acid gel of BNC Korea Co., Ltd. was investigated using a rotary rheometer (see FIG. 6C). When the alginic acid-bonded hyaluronic acid gel having a hyaluronic acid molecular weight of 1500000 g / mol is mixed with Cugel S at 50:50 (weight ratio) (marked as a 2% gel), the physical properties of about 1.5 times increase compared to conventional products. Confirmed. This means that by simply mixing the alginic acid-bonded hyaluronic acid gel with the existing molding filler product, the physical properties of the existing product can be easily improved, and the physical properties change not only by adjusting the mixing ratio of the gel but also by controlling the molecular weight of the hyaluronic acid used in the synthesis. Means that it can be facilitated. Existing products need to increase the amount of chemical crosslinking agent to improve the properties of the filler gel, but there is concern about the potential toxicity. However, when the alginic acid-bonded hyaluronic acid modifier is used, since the crosslinking is formed only with calcium ions, the gel is formed, and thus the physical properties of the gel can be variously controlled without concern for safety.
(2) 도 8은 기존의 화학가교 히알루론산 필러에 이온가교성 알긴산-결합 히알루론산 하이드로젤을 혼합하였을 때의 혼합 중량비에 따른 물성(탄성계수) 변화 시험 결과를 나타낸다. 이를 통해 엘라비에와 이온가교 알긴산-결합 히알루론산 하이드로젤 혼합물의 탄성계수는 이온가교 알긴산-결합 히알루론산 하이드로젤의 함량이 높아질수록 증가하는 경향을 보임을 확인하였고, 특히 엘라비에와 이온가교 알긴산-결합 히알루론산 하이드로젤을 5:5의 비율로 혼합하였을 경우 엘라비에를 단독으로 사용하였을 경우보다 약 35%가량 물성(탄성계수)이 증가하는 것을 확인하였다(도 8). (2) FIG. 8 shows the results of changes in the physical properties (elastic coefficient) according to the mixing weight ratio when the ion-crosslinkable alginic acid-bonded hyaluronic acid hydrogel is mixed with the conventional chemically crosslinked hyaluronic acid filler. It was confirmed that the modulus of elasticity of the ella crosslinked alginic acid-bonded hyaluronic acid hydrogel mixture tended to increase as the content of the ionic crosslinked alginic acid-bonded hyaluronic acid hydrogel increased. When the alginic acid-bonded hyaluronic acid hydrogel was mixed at a ratio of 5: 5, it was confirmed that the physical properties (elastic coefficient) increased by about 35% than when the elavie was used alone (FIG. 8).
7. 7.
화학가교Chemical crosslinking
히알루론산 Hyaluronic acid
필러와With filler
이온가교성Ion crosslinking
알긴산-결합 히알루론산 Alginic acid-linked hyaluronic acid
개질체Modifier
혼합물의 세포독성 시험 결과 Cytotoxicity test results of the mixture
도 7은 기존의 화학가교 히알루론산 필러에 이온가교성 알긴산-결합 히알루론산 하이드로젤을 혼합하였을 때의 혼합 중량비에 따른 세포독성 시험 결과를 나타낸다. Figure 7 shows the cytotoxicity test results according to the mixing weight ratio when the ion-crosslinked alginic acid-linked hyaluronic acid hydrogel is mixed with the conventional chemical cross-linked hyaluronic acid filler.
이를 통해 종래 화학가교 히알루론산 필러 제품인 엘라비에를 단독으로 사용한 경우 96% 이상의 세포가 생존하며, 화학가교제를 사용하지 않는 이온가교성 알긴산-결합 히알루론산 하이드로젤의 경우 100%에 가까운 세포가 생존함을 확인하였다. 또한, 엘라비에와 이온가교성 알긴산-결합 히알루론산 하이드로젤의 혼합물의 경우에도 91% 이상의 높은 세포 생존율을 보여주었는바, 이들의 혼합물이 세포 독성에 큰 영향을 미치지 않음을 확인하였다(도 7).This resulted in 96% or more cell survival when using elavie, a conventional chemical crosslinking hyaluronic acid filler product alone, and nearly 100% in the case of ionic crosslinking alginic acid-linked hyaluronic acid hydrogel without using a chemical crosslinking agent. It was confirmed. In addition, even in the case of a mixture of elavie and ionic crosslinked alginic acid-binding hyaluronic acid hydrogel showed a high cell viability of more than 91%, it was confirmed that the mixture does not significantly affect the cytotoxicity (Fig. 7) .
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
참고문헌references
[1] S.K. Hahn, S.J. Kim, M.J. Kim, D.H. Kim, Characterization and in vivo study of sustained-release formulation of human growth hormone using sodium hyaluronate, Pharm. Res.21 (2004) 1374-1381.[1] S.K. Hahn, S.J. Kim, M.J. Kim, D. H. Kim, Characterization and in vivo study of sustained-release formulation of human growth hormone using sodium hyaluronate, Pharm. Res. 21 (2004) 1374-1381.
[2] S.J. Kim, S.K. Hahn, M.J. Kim, D.H. Kim, Y.P. Lee, Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles, J. Control. Release104 (2005) 323-335.[2] S.J. Kim, S.K. Hahn, M.J. Kim, D. H. Kim, Y.P. Lee, Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles, J. Control. Release 104 (2005) 323-335.
[3] J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, R. Langer, Transdermal photopolymerization for minimally invasive implantation, Proc. Natl. Acad. Sci. U.S.A.96 (1999) 3104-3107.[3] J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, R. Langer, Transdermal photopolymerization for minimally invasive implantation, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 3104-3107.
[4] C. Chung, M. Beecham, R.L. Mauck, J.A. Burdick, The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells,Biomaterials30 (2009) 4287-4296.[4] C. Chung, M. Beecham, R. L. Mauck, J.A. Burdick, The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells, Biomaterials 30 (2009) 4287-4296.
[5] J.R.E. Fraser, T.C. Laurent,U.B.G. Laurent, Hyaluronan: Its nature, distribution, functions and turnover, J. Intern. Med.242 (1997) 27-33.[5] J.R.E. Fraser, T. C. Laurent, U.B.G. Laurent, Hyaluronan: Its nature, distribution, functions and turnover, J. Intern. Med. 242 (1997) 27-33.
[6] W.S. Toh, E.H. Lee, X.M. Guo, J.K.Y. Chan, C.H. Yeow, A.B. Choo AB, T. Cao, Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells,Biomaterials31 (2010) 6968-6680. 58[6] W.S. Toh, E. H. Lee, X.M. Guo, J.K.Y. Chan, C.H. Yeow, A.B. Choo AB, T. Cao, Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells, Biomaterials 31 (2010) 6968-6680. 58
[7] Y. Luo,K.R. Kirker, G.D. Prestwich, Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery, J. Control. Release69 (2000) 169-184.[7] Y. Luo, K.R. Kirker, G.D. Prestwich, Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery, J. Control. Release 69 (2000) 169-184.
[8] R. Barbucci,S. Lamponi, A. Borzacchiello, L. Ambrosio, M. Fini, P. Torricelli, R. Giardino, Hyaluronic acid hydrogel in the treatment of osteoarthritis,Biomaterials23 (2002) 4503-4513.[8] R. Barbucci, S. Lamponi, A. Borzacchiello, L. Ambrosio, M. Fini, P. Torricelli, R. Giardino, Hyaluronic acid hydrogel in the treatment of osteoarthritis, Biomaterials 23 (2002) 4503-4513.
[9] X.Z. Shu, Y.C. Liu, F. Palumbo, G.D. Prestwich, Disulfidecrosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth, Biomaterials24 (2003) 3825-3834.[9] X.Z. Shu, Y.C. Liu, F. Palumbo, G.D. Prestwich, Disulfidecrosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth, Biomaterials 24 (2003) 3825-3834.
[10] H.W. Sung,R.N. Huang, L.L.H. Huang, C.C. Tsai, C.T. Chiu,Feasibility study of a natural crosslinking reagent for biological tissue fixation, J. Biomed. Mater. Res.42 (1998) 560-567.[10] H.W. Sung, R. N. Huang, L.L.H. Huang, C.C. Tsai, C. T. Chiu, Feasibility study of a natural crosslinking reagent for biological tissue fixation, J. Biomed. Mater. Res. 42 (1998) 560-567.
[11] G. Wei, H. Xu, P.T. Ding, S.M. Li, J.M. Zheng, Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies,J. Control. Release83 (2002) 65-74.[11] G. Wei, H. Xu, P.T. Ding, S.M. Li, J.M. Zheng, Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies, J. Control. Release 83 (2002) 65-74.
[12] M.R. Kim, T.G. Park, Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone, J. Control. Release80 (2002) 69-77.[12] M.R. Kim, T.G. Park, Temperature-responsive and degradable hyaluronic acid / Pluronic composite hydrogels for controlled release of human growth hormone, J. Control. Release 80 (2002) 69-77.
[13] S.E. Burke, C.J. Barrett, pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces,Biomacromolecules4 (2003) 1773-1783.[13] S.E. Burke, C.J. Barrett, pH-responsive properties of multilayered poly (L-lysine) / hyaluronic acid surfaces, Biomacromolecules 4 (2003) 1773-1783.
[14] S.J. Kim, C.K. Lee, Y.M. Lee, I.Y. Kim, S.I. Kim, Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid-poly(vinyl alcohol) interpenetrating polymer networks, React. Funct. Polym.55 (2003) 291-298.[14] S.J. Kim, C.K. Lee, Y.M. Lee, I. Y. Kim, S.I. Kim, Electrical / pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid-poly (vinyl alcohol) interpenetrating polymer networks, React. Funct. Polym. 55 (2003) 291-298.
[15] C.W. Chung, J.Y. Kang, I.S. Yoon, H.D. Hwang, P. Balakrishnan, H.J. Cho, K.D. Chung, D.H. Kang, D.D. Kim, Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture,Colloid Surf. B-Biointerfaces88 (2011) 711-716.[15] C.W. Chung, J.Y. Kang, I.S. Yoon, H.D. Hwang, P. Balakrishnan, H.J. Cho, K.D. Chung, D.H. Kang, D.D. Kim, Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture, Colloid Surf. B-Biointerfaces 88 (2011) 711-716.
[16] G. D'Arrigo, C. Di Meo, E. Geissler, T. Coviello, F. Alhaique, P. Matricardi, Hyaluronic acid methacrylate derivatives and calcium alginate interpenetrated hydrogel networks for biomedical applications: physico-chemical characterization and protein release. Colloid Polym. Sci.290 (2012) 1575-1582.[16] G. D'Arrigo, C. Di Meo, E. Geissler, T. Coviello, F. Alhaique, P. Matricardi, Hyaluronic acid methacrylate derivatives and calcium alginate interpenetrated hydrogel networks for biomedical applications: physico-chemical characterization and protein release. Colloid Polym. Sci. 290 (2012) 1575-1582.
[17] A.L. Sieminski, C.E. Semino, H. Gong, R.D. Kamm, Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis, J. Biomed. Mater. Res.Part A87A (2008) 494-504.[17] A.L. Sieminski, C.E. Semino, H. Gong, R.D. Kamm, Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis, J. Biomed. Mater. Res. Part A87A (2008) 494-504.
[18] S.E. Paramonov, H.W. Jun, J.D. Hartgerink, Modulation of peptide-amphiphile nanofibers via phospholipid inclusions, Biomacromolecules 7 (2005) 24-26.[18] S.E. Paramonov, H.W. Jun, J.D. Hartgerink, Modulation of peptide-amphiphile nanofibers via phospholipid inclusions, Biomacromolecules 7 (2005) 24-26.
[19] A. Haug, B. Larsen, O. Smidsrod, A study of the constitution of alginic acid by partial acid hydrolysis, Acta Chem. Scand.20 (1966) 183-190.[19] A. Haug, B. Larsen, O. Smidsrod, A study of the constitution of alginic acid by partial acid hydrolysis, Acta Chem. Scand. 20 (1966) 183-190.
[20] E. Frei, R.D. Preston, Configuration of alginic acid in marine brown algae, Nature196 (1962) 130-134.[20] E. Frei, R.D. Preston, Configuration of alginic acid in marine brown algae, Nature 196 (1962) 130-134.
[21] J.A. Rowley, G. Madlambayan,D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials20 (1999) 45-53.[21] J.A. Rowley, G. Madlambayan, D. J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 20 (1999) 45-53.
[22] K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications, Prog. Polym. Sci.37 (2012) 106-126.[22] K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications, Prog. Polym. Sci. 37 (2012) 106-126.
[23] E. Alsberg, K.W. Anderson, A. Albeiruti, R.T. Franceschi, D.J. Mooney, Cell-interactive alginate hydrogels for bone tissue engineering, J. Dent. Res.80 (2001) 2025-2029.[23] E. Alsberg, K.W. Anderson, A. Albeiruti, R. T. Franceschi, D.J. Mooney, Cell-interactive alginate hydrogels for bone tissue engineering, J. Dent. Res. 80 (2001) 2025-2029.
[24] K.Y. Lee, E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff,D. Mooney, Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett.4 (2004) 1501-1506.[24] K.Y. Lee, E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff, D. Mooney, Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett. 4 (2004) 1501-1506.
[25] E.B. Hunziker, Articularcartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthr. Cartilage 10 (2002) 432-463.[25] E.B. Hunziker, Articularcartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthr. Cartilage 10 (2002) 432-463.
[26] J.A. Buckwalter, H.J. Mankin, Articular cartilage. part II: degeneration and osteoarthrosis, Repair, regeneration, and transplantation, J. Bone Joint Surg. Am.79 (1997) 612-632. [26] J.A. Buckwalter, H.J. Mankin, Articular cartilage. part II: degeneration and osteoarthrosis, Repair, regeneration, and transplantation, J. Bone Joint Surg. Am. 79 (1997) 612-632.
[27] K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering, Chem. Rev.101 (2001) 1869-1879.[27] K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering, Chem. Rev. 101 (2001) 1869-1879.
[28] R. Jin, L.S.M. Teixeira, P.J. Dijkstra, M. Karperien, C.A. van Blitterswijk, Z.Y. Zhong,J. Feijen, Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30 (2009) 2544-2551.[28] R. Jin, L.S.M. Teixeira, P. J. Dijkstra, M. Karperien, C.A. van Blitterswijk, Z.Y. Zhong, J. Feijen, Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30 (2009) 2544-2551.
[29] K.L. Spiller, S.A. Maher, A.M. Lowman, Hydrogels for the repair of articular cartilage defects, Tissue Eng. B17 (2011) 281-299.[29] K.L. Spiller, S.A. Maher, A.M. Lowman, Hydrogels for the repair of articular cartilage defects, Tissue Eng. B17 (2011) 281-299.
[30] J. Elisseeff, Injectable cartilage tissue engineering. Expert Opin. Biol. Ther. 4 (2004) 1849-1859.[30] J. Elisseeff, Injectable cartilage tissue engineering. Expert Opin. Biol. Ther. 4 (2004) 1849-1859.
[31] C.M. Isacke, H. Yarwood, The hyaluronan receptor, CD44, Int. J. Biochem. Cell Biol. 34 (2002) 718-721.[31] C.M. Isacke, H. Yarwood, The hyaluronan receptor, CD44, Int. J. Biochem. Cell Biol. 34 (2002) 718-721.
[32] C.B. Knudson, W. Knudson, Hyaluronan and CD44: modulators of chondrocyte metabolism, Clin. Orthop. Relat. Res. 427 (2004) S152-S162.[32] C.B. Knudson, W. Knudson, Hyaluronan and CD44: modulators of chondrocyte metabolism, Clin. Orthop. Relat. Res. 427 (2004) S152-S162.
[33] C.B. Knudson, Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly, Birth Defects Res. Part C-Embryo Today-Rev.69 (2003) 174-196.[33] C.B. Knudson, Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly, Birth Defects Res. Part C-Embryo Today-Rev. 69 (2003) 174-196.
[34] H.B. Fan, Y.Y. Hu, L. Qin, X.S. Li, H. Wu, R. Lv, Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair, J. Biomed. Mater. Res.Part A77A (2006)785-794.[34] H.B. Fan, Y.Y. Hu, L. Qin, X.S. Li, H. Wu, R. Lv, Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair, J. Biomed. Mater. Res. Part A77A (2006) 785-794.
[35] S.H. Hsu, S.W. Whu, S.C. Hsieh, C.L. Tsai, D.C. Chen, T.S. Tan, Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration, Artif. Organs 28 (2004) 693-703.[35] S.H. Hsu, S.W. Whu, S.C. Hsieh, C.L. Tsai, D.C. Chen, T.S. Tan, Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration, Artif. Organs 28 (2004) 693-703.
[36] H.B. Fan,Y.Y. Hu,C.L. Zhang,X.S. Li,R. Lv,L. Qin,R. Zhu, Cartilage regeneration using mesenchymal stem cells and a PLGAgelatin/chondroitin/hyaluronate hybrid scaffold, Biomaterials 27 (2006) 4573-4580.[36] H.B. Fan, Y.Y. Hu, C.L. Zhang, X.S. Li, R. Lv, L. Qin, R. Zhu, Cartilage regeneration using mesenchymal stem cells and a PLGAgelatin / chondroitin / hyaluronate hybrid scaffold, Biomaterials 27 (2006) 4573-4580.
[37] J.M. Lohre, L. Baclig, J. Sagartz, S. Guida, K. Thyagarajan, R. Tu, Evaluation of two epoxy ether compounds for biocompatible potential, Artif. Organs 16 (1992) 630-633.[37] J.M. Lohre, L. Baclig, J. Sagartz, S. Guida, K. Thyagarajan, R. Tu, Evaluation of two epoxy ether compounds for biocompatible potential, Artif. Organs 16 (1992) 630-633.
[38] T. Takigawa, Y. Endo, Effects of glutaraldehyde exposure on human health, J. Occup. Health 48 (2006) 75-87.[38] T. Takigawa, Y. Endo, Effects of glutaraldehyde exposure on human health, J. Occup. Health 48 (2006) 75-87.
[39] M.H. Zaman, L.M. Trapani, A. Sieminski, D. MacKellar, H.Y. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Migrationoftumorcells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proc. Natl. Acad. Sci. U.S.A.103 (2006) 10889-10894.[39] M.H. Zaman, L.M. Trapani, A. Sieminski, D. MacKellar, H.Y. Gong, R.D. Kamm, A. Wells, D. A. Lauffenburger, P. Matsudaira, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 10889-10894.
[40] C.R. Lee, A.J. Grodzinsky, M. Spector M, Theeffectsofcross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis, Biomaterials 22 (2001) 3145-3154.[40] C.R. Lee, A.J. Grodzinsky, M. Spector M, The effect of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis, Biomaterials 22 (2001) 3145-3154.
[41] D.E. Discher, P. Janmey, Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate, Science 310 (2005) 1139-1143.[41] D.E. Discher, P. Janmey, Y. L. Wang, Tissue cells feel and respond to the stiffness of their substrate, Science 310 (2005) 1139-1143.
[42] A.J. Engler, S. Sen,H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification, Cell 126 (2006) 677-689.[42] A.J. Engler, S. Sen, H. L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification, Cell 126 (2006) 677-689.
[43] I. Levental, P.C. Georges, P.A. Janmey, Soft biological materials and their impact on cell function, Soft Matter3 (2007) 299-306.[43] I. Levental, P.C. Georges, P. A. Janmey, Soft biological materials and their impact on cell function, Soft Matter 3 (2007) 299-306.
[44] S. Huang, D.E. Ingber, The structural and mechanical complexity of cell-growth control, Nat. Cell Biol.1 (1999) E131-E138.[44] S. Huang, D.E. Ingber, The structural and mechanical complexity of cell-growth control, Nat. Cell Biol. 1 (1999) E131-E138.
[45] J. Necas, L. Bartosikova,P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review, Vet. Med.53 (2008) 397-411.[45] J. Necas, L. Bartosikova, P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review, Vet. Med. 53 (2008) 397-411.
[46] R. Stern, M.J. Jedrzejas, Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action, Chem.Rev.106 (2006) 818-839.[46] R. Stern, M.J. Jedrzejas, Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action, Chem. Rev. 106 (2006) 818-839.
[47] X.Z. Shu, G.D. Prestwich, Chapter 22 Therapeutic Biomaterials from Chemically Modified Hyaluronan, In:H.G. Garg, C.A. Hales (Eds.),Chemistry and Biology of Hyaluronan, Elsevier, Boston,2004. pp. 485-504.[47] X.Z. Shu, G.D. Prestwich, Chapter 22 Therapeutic Biomaterials from Chemically Modified Hyaluronan, In: H.G. Garg, C. A. Hales (Eds.), Chemistry and Biology of Hyaluronan, Elsevier, Boston, 2004. pp. 485-504.
[48] C. Wiberg, A.R. Klatt, R. Wagener, M. Paulsson, J.F. Bateman, D. Heinegrd, M. Morgelin, Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan, J. Biol. Chem.278 (2003) 37698-37704.[48] C. Wiberg, A.R. Klatt, R. Wagener, M. Paulsson, J.F. Bateman, D. Heinegrd, M. Morgelin, Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan, J. Biol. Chem. 278 (2003) 37698-37704.
[49] T.W.R. Briggs, S. Mahroof, L.A. David, D.J. Flannelly, J. Pringle, M. Bayliss, Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee, J. Bone Joint Surg.-Br. Vol.85b (2003) 1077-1083.[49] T.W.R. Briggs, S. Mahroof, L.A. David, D.J. Flannelly, J. Pringle, M. Bayliss, Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee, J. Bone Joint Surg.-Br. Vol. 85b (2003) 1077-1083.
[50] D.A. Wolff, S. Stevenson, V.M. Goldberg.S-100 protein immune staining identifies cells expressing a chondrocytic phenotype during articular cartilage repair, J. Orthop. Res.10 (1992) 49-57.[50] D.A. Wolff, S. Stevenson, V.M. Goldberg. S-100 protein immune staining identifies cells expressing a chondrocytic phenotype during articular cartilage repair, J. Orthop. Res. 10 (1992) 49-57.
[51] S. Giovannini, J. Diaz-Romero, T. Aigner, P. Mainil-Varlet, D. Nesic, Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes, J. Cell Physiol.222 (2010) 411-420.[51] S. Giovannini, J. Diaz-Romero, T. Aigner, P. Mainil-Varlet, D. Nesic, Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes, J. Cell Physiol. 222 (2010) 411-420.
[52] C.C. Wang, K.C. Yang, K.H. Lin, Y.L. Liu, H.C. Liu, F.H. Lin, Cartilage regeneration in SCID mice using a highly organized threedimensional alginate scaffold,Biomaterials33 (2012) 120-127.[52] C.C. Wang, K.C. Yang, K.H. Lin, Y. L. Liu, H. C. Liu, F.H. Lin, Cartilage regeneration in SCID mice using a highly organized threedimensional alginate scaffold, Biomaterials 33 (2012) 120-127.
[53] H. Akiyama, M.C. Chaboissier, J.F. Martin, A. Schedl, B. de Crombrugghe, The transcrintion factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6, Gene Dev.16 (2002) 2813-2828.[53] H. Akiyama, M.C. Chaboissier, J.F. Martin, A. Schedl, B. de Crombrugghe, The transcrintion factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6, Gene Dev. 16 (2002) 2813-2828.
[54] H. Akiyama, Control of chondrogenesis by the transcription factor Sox9,Mod. Rheumatol.18 (2008) 213-219.[54] H. Akiyama, Control of chondrogenesis by the transcription factor Sox 9, Mod. Rheumatol. 18 (2008) 213-219.
[55] F. Barry, R.E. Boynton, B.S. Liu, J.M. Murphy, Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components, Exp. Cell Res.268 (2001) 189-200.[55] F. Barry, R.E. Boynton, B.S. Liu, J.M. Murphy, Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components, Exp. Cell Res. 268 (2001) 189-200.
[56] H. Park, S.W. Kang, B.S. Kim, D.J. Mooney, K.Y. Lee, Shear-reversibly crosslinked alginate hydrogels for tissue engineering, Macromol. Biosci.9 (2009) 895-901.[56] H. Park, S.W. Kang, B.S. Kim, D. J. Mooney, K.Y. Lee, Shear-reversibly crosslinked alginate hydrogels for tissue engineering, Macromol. Biosci. 9 (2009) 895-901.
[57] H. Park, K.Y. Lee, Facile control of RGDalginate/hyaluronate hydrogel formation for cartilage regeneration, Carbohyd. Polym.86 (2011) 1107-1112.[57] H. Park, K.Y. Lee, Facile control of RGDalginate / hyaluronate hydrogel formation for cartilage regeneration, Carbohyd. Polym. 86 (2011) 1107-1112.
본 발명에 따르면, 생체 독성이 있는 화학 가교제의 사용이 없이도 기계적 물성이 뛰어난 필러를 제공할 수 있는바, 종래 상용화된 히알루론산 필러를 대체할 수 있고, 높은 기계적 물성이 요구되는 신체 부위에 필러로 유용하게 적용할 수 있다.According to the present invention, it is possible to provide a filler having excellent mechanical properties without using a biotoxic chemical crosslinking agent, which can replace a commercially available hyaluronic acid filler, and as a filler to a body part requiring high mechanical properties. It can be usefully applied.
Claims (20)
- 히알루론산, 상기 히알루론산에 결합된 알긴산, 및 이온 가교제를 포함하는 이온 가교성 히알루론산 하이드로젤;을 포함하고,And an ion crosslinkable hyaluronic acid hydrogel comprising hyaluronic acid, alginic acid bound to the hyaluronic acid, and an ion crosslinking agent.상기 이온 가교제는 2가의 양이온 또는 이의 염인 진피 필러용 하이드로젤 조성물.The ion crosslinking agent is a divalent cation or a salt thereof dermal filler hydrogel composition.
- 제1항에 있어서,The method of claim 1,상기 조성물은 화학가교 히알루론산 필러를 더 포함하는 진피 필러용 하이드로젤 조성물.The composition is a hydrogel composition for dermal filler further comprising a chemical cross-linked hyaluronic acid filler.
- 제2항에 있어서,The method of claim 2,상기 이온 가교성 히알루론산 하이드로젤과 상기 화학가교 히알루론산 필러의 중량비는 1:1-9인 진피 필러용 하이드로젤 조성물.A weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinked hyaluronic acid filler is 1: 1-9.
- 제1항에 있어서,The method of claim 1,상기 2가 양이온은 칼슘, 바륨 또는 마그네슘 이온인 진피 필러용 하이드로젤 조성물.The divalent cation is calcium, barium or magnesium ions hydrogel composition for dermal filler.
- 제1항에 있어서,The method of claim 1,상기 조성물은 골격 보강용인 진피 필러용 하이드로젤 조성물.The composition is a hydrogel composition for dermal filler for skeletal reinforcement.
- 제1항에 있어서,The method of claim 1,상기 알긴산은 분자량이 10000-1000000 g/몰이고, 상기 히알루론산은 분자량이 10000-2500000 g/몰인 진피 필러용 하이드로젤 조성물.The alginic acid has a molecular weight of 10000-1000000 g / mole, the hyaluronic acid has a molecular weight of 10000-2500000 g / mole hydrogel composition for dermal fillers.
- 제1항에 있어서,The method of claim 1,상기 히알루론산과 알긴산의 중량비는 4:1 내지 1:2인 진피 필러용 하이드로젤 조성물.The weight ratio of the hyaluronic acid and alginic acid is 4: 1 to 1: 2 hydrogel composition for dermal filler.
- 제1항에 있어서,The method of claim 1,상기 2가 양이온 염은 5 mM 내지 100 mM의 칼슘 설페이트인 진피 필러용 하이드로젤 조성물.The divalent cation salt is 5 mM to 100 mM calcium sulfate hydrogel composition for dermal filler.
- 제1항에 있어서,The method of claim 1,상기 2가 양이온 염은 1 mM 내지 50 mM의 칼슘 클로라이드인 진피 필러용 하이드로젤 조성물.The divalent cation salt is 1 mM to 50 mM calcium chloride hydrogel composition for dermal filler.
- 제1항에 있어서,The method of claim 1,상기 결합은 알긴산의 카복실기 및 히알루론산의 카복실기와 공유결합-형성 가능한 링커를 통해 이루어진 공유결합인 진피 필러용 하이드로젤 조성물.The bond is a hydrogel composition for dermal filler is a covalent bond made through a covalent bond-formable linker with a carboxyl group of alginic acid and a carboxyl group of hyaluronic acid.
- 제10항에 있어서,The method of claim 10,상기 링커는 다이아민, 다이비닐설폰, 1,4-뷰테인다이올, 다이글리시딜 에테르(BDDE) 및 글루타르알데히드, 카보다이이미드, 하이드록시석신이미드, 이미도에스터, 말레이미드, 할로아세틸, 다이설파이드, 하이드로아자이드, 알콕시아민으로 구성된 군으로부터 선택되는 것인 진피 필러용 하이드로젤 조성물.The linker is diamine, divinylsulfone, 1,4-butanediol, diglycidyl ether (BDDE) and glutaraldehyde, carbodiimide, hydroxysuccinimide, imidoester, maleimide, haloacetyl Hydrogel composition for dermal filler that is selected from the group consisting of, disulfide, hydroazide, alkoxyamine.
- 제1항에 있어서,The method of claim 1,상기 조성물은 리도카인, 메피바카인, 부피바카인, 프로카인, 클로로프로카인, 에티도카인, 프릴로카인 다이클로닌, 헥실카인, 프로카인, 코카인, 케타민, 몰핀, 프라목신, 프로포폴, 페놀, 날록손, 메페리딘, 부토르판올, 펜타조신, 몰핀-6-글루쿠로나이드, 코데인, 다이하이드로코데인, 다이아몰핀, 덱스트로프로폭시펜, 페티딘, 펜타닐, 알펜타닐, 알파프로딘, 부프레노르핀, 덱스트로모라미드, 다이페녹실레이트, 다이피파논, 헤로인, 하이드로코돈, 하이드로몰폰, 레보파놀, 멥타지놀, 메타돈, 메토폰, 날부핀, 옥시코돈, 옥시몰폰, 페나독손, 페나조신, 레미펜타닐, 트라마돌, 테트라카인 및 이들의 약학적으로 허용가능한 염으로 이루어진 군으로부터 선택되는 어느 하나 이상의 진통제를 더 포함하는 진피 필러용 하이드로젤 조성물.The composition is lidocaine, mepivacaine, bupivacaine, procaine, chloroprocaine, ethidocaine, prilocaine diclonin, hexylcaine, procaine, cocaine, ketamine, morphine, pramoxin, propofol, phenol, Naloxone, meperidine, butorpanol, pentazosin, morphine-6-glucuronide, codeine, dihydrocodeine, diamorphine, dextrosepropoxyphene, pettidine, fentanyl, alfentanil, alphaprodine, butane Prenorphine, dextrosemoramid, diphenoxylate, dipipanone, heroin, hydrocodone, hydromolone, levophanol, meptazinol, methadone, methopone, nalbuphine, oxycodone, oxymolone, phenadoxone, phenazosin , Remifentanil, tramadol, tetracaine and any one or more analgesics selected from the group consisting of pharmaceutically acceptable salts thereof.
- (a) 제1 반응 물질인 알긴산 또는 히알루론산과 링커를 반응시켜 알긴산 또는 히알루론산의 카르복실기에 링커를 공유 결합시키는 단계;(a) reacting a linker with alginic acid or hyaluronic acid as a first reactant to covalently link the linker to a carboxyl group of alginic acid or hyaluronic acid;(b) 상기 단계 (a)의 반응 결과물에 제2 반응 물질인 히알루론산 또는 알긴산을 반응시켜, 링커를 통하여 연결된 알긴산-결합 히알루론산 개질체를 수득하는 단계; 및(b) reacting the reaction product of step (a) with a second reaction material, hyaluronic acid or alginic acid, to obtain an alginic acid-linked hyaluronic acid reformer linked through a linker; And(c) 생성된 알긴산-결합 히알루론산 개질체에 2가 양이온 또는 이의 염을 첨가하여 가교를 형성시켜 이온 가교성 히알루론산 하이드로젤을 수득하는 단계;를 포함하는 진피 필러용 하이드로젤 조성물의 제조방법.(c) adding a divalent cation or a salt thereof to the resulting alginic acid-linked hyaluronic acid reformer to form a crosslinking product to obtain an ionically crosslinkable hyaluronic acid hydrogel; .
- 제13항에 있어서,The method of claim 13,상기 (c) 단계 이후에, 상기 수득한 이온 가교성 히알루론산 하이드로젤을 화학가교 히알루론산 필러와 혼합하는 단계;를 더 포함하는 진피 필러용 하이드로젤 조성물의 제조방법.After the step (c), mixing the obtained ion-crosslinkable hyaluronic acid hydrogel with a chemical cross-linked hyaluronic acid filler; further comprising a method for producing a hydrogel composition for dermal filler.
- 제14항에 있어서,The method of claim 14,상기 이온 가교성 히알루론산 하이드로젤과 상기 화학가교 히알루론산 필러의 혼합 중량비는 1:1-9인 진피 필러용 하이드로젤 조성물의 제조방법.The ion-crosslinkable hyaluronic acid hydrogel and the chemically cross-linked hyaluronic acid filler mixing weight ratio of 1: 1-9 is a method for producing a hydrogel composition for dermal filler.
- 제13항에 있어서,The method of claim 13,상기 2가 양이온은 칼슘, 바륨 또는 마그네슘 이온인 진피 필러용 하이드로젤 조성물의 제조방법.The divalent cation is calcium, barium or magnesium ion method for producing a hydrogel composition for dermal filler.
- 제13항에 있어서,The method of claim 13,상기 2가 양이온은 칼슘 클로라이드 염의 형태로 첨가되는 진피 필러용 하이드로젤 조성물의 제조방법.The divalent cation is a method for producing a hydrogel composition for dermal filler is added in the form of calcium chloride salt.
- 제13항에 있어서,The method of claim 13,상기 (c) 단계 이후에, 상기 하이드로젤에 리도카인, 메피바카인, 부피바카인, 프로카인, 클로로프로카인, 에티도카인, 프릴로카인 다이클로닌, 헥실카인, 프로카인, 코카인, 케타민, 몰핀, 프라목신, 프로포폴, 페놀, 날록손, 메페리딘, 부토르판올, 펜타조신, 몰핀-6-글루쿠로나이드, 코데인, 다이하이드로코데인, 다이아몰핀, 덱스트로프로폭시펜, 페티딘, 펜타닐, 알펜타닐, 알파프로딘, 부프레노르핀, 덱스트로모라미드, 다이페녹실레이트, 다이피파논, 헤로인, 하이드로코돈, 하이드로몰폰, 레보파놀, 멥타지놀, 메타돈, 메토폰, 날부핀, 옥시코돈, 옥시몰폰, 페나독손, 페나조신, 레미펜타닐, 트라마돌, 테트라카인 및 이들의 약학적으로 허용가능한 염으로 이루어진 군으로부터 선택되는 어느 하나 이상의 진통제를 첨가하는 단계;를 더 포함하는 진피 필러용 하이드로젤 조성물의 제조방법.After the step (c), the hydrogel in lidocaine, mepivacaine, bupivacaine, procaine, chloroprocaine, ethidocaine, prilocaine diclonin, hexylcaine, procaine, cocaine, ketamine, Morphine, pramoxin, propofol, phenol, naloxone, meperidine, butorpanol, pentazosin, morphine-6-glucuronide, codeine, dihydrocodeine, diamorphine, dextropropoxyphene, pettidine, fentanyl , Alfentanil, alphaprodine, buprenorphine, dextromeramide, diphenoxylate, dipipanone, heroin, hydrocodone, hydromolphone, levopanol, meptazinol, methadone, methopone, nalbuphine, oxycodone , Addition of any one or more analgesics selected from the group consisting of oxymolphone, phenadoxone, phenazoxin, remifentanil, tramadol, tetracaine and their pharmaceutically acceptable salts; The method of reoyong hydrogel composition.
- 다음을 포함하는 이온 가교성 히알루론산 하이드로젤을 포함하는 화학가교-히알루론산 필러의 기계적 물성 보강용 조성물:A composition for reinforcing mechanical properties of a chemical crosslinked hyaluronic acid filler comprising an ion-crosslinkable hyaluronic acid hydrogel comprising:(a) 히알루론산;(a) hyaluronic acid;(b) 상기 히알루론산에 결합된 알긴산; 및(b) alginic acid bound to hyaluronic acid; And(c) 이온 가교제로서의 2가 양이온 또는 이의 염.(c) divalent cations or salts thereof as ionic crosslinkers.
- 제19항에 있어서,The method of claim 19,상기 이온 가교성 히알루론산 하이드로젤과 상기 화학가교-히알루론산 필러의 중량비는 1:1-9인 화학가교-히알루론산 필러의 기계적 물성 보강용 조성물.A composition for reinforcing mechanical properties of a chemical crosslinking hyaluronic acid filler having a weight ratio of the ion crosslinkable hyaluronic acid hydrogel and the chemical crosslinking hyaluronic acid filler is 1: 1-9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150104989 | 2015-07-24 | ||
KR10-2015-0104989 | 2015-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018717A1 true WO2017018717A1 (en) | 2017-02-02 |
Family
ID=57884806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/007945 WO2017018717A1 (en) | 2015-07-24 | 2016-07-21 | Dermal filler hydrogel composition |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101855878B1 (en) |
WO (1) | WO2017018717A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113164652A (en) * | 2018-12-20 | 2021-07-23 | 株式会社Lg化学 | Filler comprising hyaluronic acid hydrogel having excellent filler properties |
CN114177352A (en) * | 2021-12-22 | 2022-03-15 | 西安德诺海思医疗科技有限公司 | Gradient degradable skin filler and preparation method thereof |
CN114450040A (en) * | 2019-09-26 | 2022-05-06 | 株式会社再生生物链 | Hydrogel composition for tissue regeneration and support prepared using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100737954B1 (en) * | 2006-01-03 | 2007-07-13 | 고려대학교 산학협력단 | Injectable hydrogels based on hyaluonic acid for tissue regeneration |
KR20110084510A (en) * | 2008-11-07 | 2011-07-25 | 앙테이스 에스.아. | Heat sterilised injectable composition of hyaluronic acid or one of the salts thereof, polyols and lidocaine |
KR20140033337A (en) * | 2011-01-13 | 2014-03-18 | 알러간, 인코포레이티드 | Stable hydrogel compositions including additives |
KR20150028198A (en) * | 2013-09-04 | 2015-03-13 | 한양대학교 산학협력단 | Ionically Cross-Linkable Alginate-Grafted Hyaluronate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101142234B1 (en) | 2009-12-28 | 2012-07-09 | 한남대학교 산학협력단 | Injectable Porous Microparticle Filler System |
-
2016
- 2016-07-21 KR KR1020160092503A patent/KR101855878B1/en active IP Right Grant
- 2016-07-21 WO PCT/KR2016/007945 patent/WO2017018717A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100737954B1 (en) * | 2006-01-03 | 2007-07-13 | 고려대학교 산학협력단 | Injectable hydrogels based on hyaluonic acid for tissue regeneration |
KR20110084510A (en) * | 2008-11-07 | 2011-07-25 | 앙테이스 에스.아. | Heat sterilised injectable composition of hyaluronic acid or one of the salts thereof, polyols and lidocaine |
KR20140033337A (en) * | 2011-01-13 | 2014-03-18 | 알러간, 인코포레이티드 | Stable hydrogel compositions including additives |
KR20150028198A (en) * | 2013-09-04 | 2015-03-13 | 한양대학교 산학협력단 | Ionically Cross-Linkable Alginate-Grafted Hyaluronate |
Non-Patent Citations (2)
Title |
---|
GANESH, NITYA ET AL.: "Enzymatically Cross-linked Alginic-Hyaluronic Acid Composite Hydrogels as Cell Delivery Vehicles.", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES., vol. 55, 30 April 2013 (2013-04-30), pages 289 - 294, XP028999192 * |
PARK, HONGHYUN ET AL.: "Ionically Cross-linkable Hyaluronate-based Hydrogels for Injectable Cell Delivery.", JOURNAL OF CONTROLLED RELEASE., vol. 196, 28 December 2014 (2014-12-28), pages 146 - 153, XP029112408 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113164652A (en) * | 2018-12-20 | 2021-07-23 | 株式会社Lg化学 | Filler comprising hyaluronic acid hydrogel having excellent filler properties |
CN114450040A (en) * | 2019-09-26 | 2022-05-06 | 株式会社再生生物链 | Hydrogel composition for tissue regeneration and support prepared using the same |
CN114177352A (en) * | 2021-12-22 | 2022-03-15 | 西安德诺海思医疗科技有限公司 | Gradient degradable skin filler and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101855878B1 (en) | 2018-05-10 |
KR20170012095A (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation | |
WO2018143736A1 (en) | Hydrogel using, as substrate, hyaluronic acid derivative modified with gallol group and use thereof | |
Shu et al. | Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering | |
DE69922522T2 (en) | FUNCTIONALIZED HYALURONIC ACID DERIVATIVES, FORMATION OF HYDROGELES AND THEIR USE IN SITU | |
Jia et al. | Hybrid multicomponent hydrogels for tissue engineering | |
WO2021006426A1 (en) | Biomimetic tissue-adhesive hydrogel patch and use thereof | |
EP2552457B1 (en) | Biomaterial from wharton's jelly umbilical cord | |
EP3452579B1 (en) | Transglutaminase mediated high molecular weight hyaluronan hydrogels | |
WO2013077620A1 (en) | Water insoluble gel composition and method for preparing same | |
WO2012008722A2 (en) | Filler composition for tissue reinforcement | |
WO2017018717A1 (en) | Dermal filler hydrogel composition | |
KR101704363B1 (en) | Ionically Cross-Linkable Alginate-Grafted Hyaluronate | |
WO2018080221A1 (en) | Biocompatible hydrogel and method for producing same | |
EP3313944A1 (en) | Two-component bioink, 3d biomaterial comprising the same and method for preparing the same | |
WO2011059325A2 (en) | Dextran-hyaluronic acid based hydrogels | |
US20230040418A1 (en) | Compositions and methods for in situ-forming gels for wound healing and tissue regeneration | |
Gao et al. | Synergistic chondrogenesis promotion and arthroscopic articular cartilage restoration via injectable dual-drug-loaded sulfated hyaluronic acid hydrogel for stem cell therapy | |
CN101636181A (en) | Novel injectable chitosan mixtures forming hydrogels | |
US20150064143A1 (en) | Ionically cross-linkable alginate-grafted hyaluronate compound | |
EP2968417A1 (en) | Injectable composition for in-situ repair and regeneration of an injured ligament or tendon and methods of use | |
WO2021162529A1 (en) | Phenol derivative-functionalized chondroitin sulfate hydrogel and use of same | |
Zhang et al. | Dynamic protein hydrogel with supramolecularly enveloped kartogenin promotes cartilage regeneration through mitochondrial activation | |
Huang et al. | Antimicrobial peptides loaded collagen nanosheets with enhanced antibacterial activity, corneal wound healing and M1 macrophage polarization in bacterial keratitis | |
Dixit et al. | Thermoresponsive keratin-methylcellulose self-healing injectable hydrogel accelerating full-thickness wound healing by promoting rapid epithelialization | |
Chen et al. | Hydrogels with tunable modulus regulate chondrocyte microaggregates growth for cartilage repair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830750 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16830750 Country of ref document: EP Kind code of ref document: A1 |