WO2020196855A1 - 強度評価装置及び強度評価方法 - Google Patents

強度評価装置及び強度評価方法 Download PDF

Info

Publication number
WO2020196855A1
WO2020196855A1 PCT/JP2020/014142 JP2020014142W WO2020196855A1 WO 2020196855 A1 WO2020196855 A1 WO 2020196855A1 JP 2020014142 W JP2020014142 W JP 2020014142W WO 2020196855 A1 WO2020196855 A1 WO 2020196855A1
Authority
WO
WIPO (PCT)
Prior art keywords
meandering
thickness
strength
fiber
fiber layers
Prior art date
Application number
PCT/JP2020/014142
Other languages
English (en)
French (fr)
Inventor
紗代 山羽
貴弘 福丸
山口 雄一
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US17/441,944 priority Critical patent/US12050188B2/en
Priority to EP20776666.8A priority patent/EP3951349A4/en
Priority to CA3134851A priority patent/CA3134851C/en
Priority to JP2021509651A priority patent/JP7176617B2/ja
Publication of WO2020196855A1 publication Critical patent/WO2020196855A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8444Fibrous material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/615Specific applications or type of materials composite materials, multilayer laminates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]

Definitions

  • the present disclosure relates to a strength evaluation device and a strength evaluation method.
  • the present application claims priority based on Japanese Patent Application No. 2019-061232 filed in Japan on March 27, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a method for quantitatively evaluating the meandering state of fibers in a fiber-reinforced composite material.
  • the meandering of fibers along such a fiber layer spreads to other fiber layers adjacent to each other in the stacking direction, and the same fiber meandering may occur at a plurality of positions of the laminated fiber layers.
  • the meandering state in the direction along the fiber layer is considered, and it may be difficult to appropriately evaluate the strength of the composite material from the meandering state.
  • the present disclosure is made in view of the above-mentioned problems, and an object of the present disclosure is to evaluate the strength of a composite material based on a meandering state.
  • the first aspect of the present disclosure is a method for evaluating the strength of a composite material in which a plurality of fiber layers are laminated, and a meandering state for measuring a meandering state of fibers in the plurality of fiber layers in a direction along the fiber layers.
  • the meandering thickness measuring step of measuring the meandering thickness which is the thickness in the stacking direction of the portion where the meandering of the fibers occurs in the plurality of fiber layers, and the meandering state and the meandering thickness. It is provided with a strength evaluation step for evaluating strength.
  • the meandering state measuring step the meandering amplitude of the fibers in each fiber layer is measured, and the maximum value of the meandering amplitude is set as the maximum amplitude, and the strength is described.
  • the evaluation step the strength is evaluated based on the maximum amplitude and the meandering thickness.
  • a third aspect of the present disclosure is, in the first or second aspect, the meandering thickness measuring step measures the number of layers of the meandering fibers in the composite material as the meandering thickness.
  • the reciprocal of the integrated value of the meandering state and the meandering thickness is used as an evaluation parameter. ..
  • a fifth aspect of the present disclosure is a strength evaluation device for a composite material in which a plurality of fiber layers are laminated, and a meandering state for calculating a meandering state of fibers in the plurality of fiber layers in a direction along the fiber layers.
  • the meandering thickness calculation unit that calculates the meandering thickness, which is the thickness in the stacking direction of the portion where the meandering of the fibers occurs in the plurality of fiber layers, and the meandering state and the meandering thickness. It is equipped with a strength evaluation unit that evaluates strength.
  • the meandering is evaluated in consideration of the meandering state in the direction along the fiber layer and the meandering ripple state in the stacking direction. It is possible. Therefore, in the present disclosure, it is possible to appropriately evaluate the strength of the composite material after considering the meandering state in both the direction along the fiber layer and the laminating direction.
  • the strength evaluation device 1 is a device that evaluates the strength of a composite material bonded with a resin in a state where a plurality of fiber layers are laminated.
  • the pressure is applied in a state of impregnating the resin, so that the fibers of each fiber layer may meander in the direction along the fiber layer.
  • the "direction along the fiber layer” means a direction orthogonal to the stacking direction (thickness direction) of the plurality of fiber layers. Further, it is known that meandering of the fibers of the composite material in the direction along the fiber layer occurs in parallel in a plurality of fiber layers adjacent to each other in the laminating direction.
  • the strength evaluation device 1 evaluates the strength based on the meandering of the fibers of such a composite material.
  • an intensity evaluation device 1 includes an imaging unit 2, an image analysis unit 3, an amplitude calculation unit 4 (meandering state calculation unit), and a thickness calculation unit 5 (meandering thickness calculation unit). ) And the strength evaluation unit 6.
  • the image analysis unit 3, the amplitude calculation unit 4, the thickness calculation unit 5, and the strength evaluation unit 6 are regarded as one function of the computer, and output devices such as a CPU (Central Processing Unit), a storage medium, and a monitor cooperate with each other. Works with.
  • CPU Central Processing Unit
  • the image analysis unit 3, the amplitude calculation unit 4, the thickness calculation unit 5, and the intensity evaluation unit 6 may be composed of a plurality of computers, or each may be composed of a single computer.
  • a computer includes a CPU, a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a storage device such as an SSD (Solid State Drive) and an HDD (Hard Disk Drive), and a device such as an image pickup unit 2 and a sensor. It may be composed of an input / output device that exchanges signals with and from.
  • the imaging unit 2 is a device that photographs a composite material by X-ray CT (Computed Tomography).
  • the imaging unit 2 scans the composite material with X-rays and non-destructively acquires the internal structure of the composite material as an captured image.
  • the imaging unit 2 includes an X-ray generator, an X-ray detector, and the like.
  • the image analysis unit 3 acquires a plurality of images of the composite material captured by the image pickup unit 2 and extracts the contour of the composite material and the contour of the fiber from the image in the three-dimensional direction. Then, the image analysis unit 3 arranges the fibers F (F1, F2) meandering in the fiber layer P of the composite material C as shown in FIG. 2, that is, the fibers F are curved instead of linear from the contour of the fibers. Detects the state that has been done.
  • FIG. 2 shows a plan view (viewed from the thickness direction) of a single fiber layer P
  • the composite material C is composed of a plurality of fiber layers P laminated in the thickness direction. ..
  • the amplitude calculation unit 4 calculates the amplitude of the meandering fiber (meandering amplitude) as shown in FIG. 2 based on the contour of the fiber analyzed by the image analysis unit 3 and the meandering state of the detected fiber. In the composite material, a plurality of meandering fibers may occur. At this time, the amplitude calculation unit 4 extracts the maximum value (maximum amplitude) of the meandering amplitude generated in the plurality of fiber layers, and stores the position (coordinates) of the fiber having the maximum meandering amplitude.
  • the thickness calculation unit 5 identifies the detected fiber layer of the composite material based on the contour of the composite material analyzed by the image analysis unit 3. Then, the thickness calculation unit 5 determines the number of fiber layers affected by the meandering portion having the maximum amplitude among the meandering fibers detected by the image analysis unit 3, that is, the same meandering in parallel. Calculate the number of fiber layers (thickness in the stacking direction) in which In addition, such a number of fiber layers may be referred to as "the number of laminated fibers" or "the meandering thickness”.
  • the strength evaluation unit 6 acquires the meandering amplitude (meandering state) and the number of fiber layers (meandering thickness) from the amplitude calculation unit 4 and the thickness calculation unit 5, and calculates the reciprocal of the integrated value of the meandering amplitude and the number of fiber layers. Store as an evaluation parameter. Further, the strength evaluation unit 6 stores a map based on the correlation (see FIG. 4) between the strength (for example, tensile strength) calculated in advance by an experiment or the like and the evaluation parameter. The strength evaluation unit 6 refers to such a map and estimates the strength of the composite material from the measured evaluation parameters.
  • the intensity evaluation device 1 first performs X-ray CT imaging of the composite material in the imaging unit 2 (step S1). At this time, the structure of the composite material, including the internal structure, is acquired three-dimensionally by the imaging unit 2. Then, the strength evaluation device 1 extracts the outline of the outer shape of the composite material and the outline of the fiber from the CT image in the image analysis unit 3 (step S2). The image analysis unit 3 digitizes the captured CT image, for example, and determines a portion exceeding a predetermined threshold value as the outline of the outer shape of the composite material and the outline of the fiber. Further, the strength evaluation device 1 detects the meandering state of the fiber from the contour of the fiber in the image analysis unit 3 (step S3).
  • the strength evaluation device 1 calculates the detected meandering fiber amplitude (meandering amplitude) based on the fiber contour in the amplitude calculation unit 4 as shown in FIG. 2 (step S4). Further, the intensity evaluation device 1 extracts the maximum value (maximum amplitude) of the calculated meandering amplitude in the amplitude calculation unit 4 (step S5). At this time, the amplitude calculation unit 4 stores the coordinates (three-dimensional position coordinates) of the fiber having the maximum meandering amplitude. In addition, steps S4 and S5 correspond to the meandering state measurement step in this disclosure. There are multiple methods for calculating the meandering amplitude. For example, as shown in FIG.
  • the meandering fiber F1 is formed from a virtual straight line L1 connecting both ends F1a and F1b in the imaging region of the imaging unit 2 of one fiber F1.
  • the distance D1 to the farthest portion may be defined as the meandering amplitude.
  • local fiber meandering is important for strength evaluation of composite material C, but for example, fiber curvature based on the shape of composite material C may be excluded from strength evaluation as a normally possible curvature.
  • An arc that best approximates the trajectory of one fiber in the imaging region of 2 and is represented by a single radius is derived, and the distance from this arc to the farthest part of the serpentine fiber is the meandering amplitude. May be. Further, as shown in FIG. 2, when meandering occurs in the plurality of fibers F1 and F2, the distances D1 and D2 indicating the meandering amplitude may be calculated, and the largest distance among them may be set as the maximum amplitude.
  • the strength evaluation device 1 calculates the number of fiber layers (meandering thickness) in which the meandering spreads in the thickness calculation unit 5 (step S6).
  • the thickness calculation unit 5 determines whether or not meandering is detected at the same position in each fiber layer (the same position in the two-dimensional direction along the fiber layer) at the fiber portion where the meandering amplitude is maximum. Is extracted.
  • meandering is detected at the same position of a plurality of fiber layers adjacent to each other, it is considered that the meandering of the fibers spreads in the stacking direction, and the number of fiber layers from which the meandering spread is extracted is calculated. calculate.
  • step S6 corresponds to the meandering thickness measuring step in the present disclosure.
  • the strength evaluation device 1 calculates the evaluation parameters in the strength evaluation unit 6 (step S7).
  • the strength evaluation unit 6 acquires the maximum value of the meandering amplitude calculated by the amplitude calculation unit 4 and the number of fiber layers calculated by the thickness calculation unit 5, and the above maximum value and the number of fiber layers. The reciprocal of the product with and is calculated as the evaluation parameter.
  • the strength evaluation device 1 evaluates the strength of the composite material in the strength evaluation unit 6 (step S8).
  • the strength evaluation unit 6 stores a map based on the correlation between the tensile strength and the evaluation parameter, and derives the tensile strength from the evaluation parameter calculated in step S7 based on the map.
  • steps S7 and S8 correspond to the strength evaluation step in this disclosure.
  • FIG. 5A is a graph showing the relationship between the meandering angle and the tensile strength
  • FIG. 5B is a graph showing the relationship between the meandering amplitude and the tensile strength
  • FIG. 5C is a ratio of the number of meandering fiber layers to the total number of layers. It is a graph which shows the relationship between and tensile strength.
  • the meandering angle means, for example, the maximum angle ⁇ 1 between the virtual straight line L1 and the meandering portion of the fiber F1 in FIG.
  • the graph of FIG. 5A it can be seen that there is no correlation between the tensile strength and the meandering angle (the angle between the meandering fiber and the non-meandering fiber). Similarly, looking at the graph of FIG. 5B, there is no correlation between tensile strength and meandering amplitude. Further, looking at the graph of FIG. 5C, no correlation can be seen between the tensile strength and the fiber layer number ratio. That is, it is difficult to evaluate the tensile strength from the meandering angle and the meandering amplitude, which are the parameters focusing only on the meandering state in the direction along the fiber layer. Similarly, it is difficult to evaluate the tensile strength from the layer number ratio, which is a parameter focusing only on the meandering state in the stacking direction.
  • the evaluation parameters in the present embodiment have a strong correlation with the tensile strength, and the tensile strength can be evaluated by calculating the evaluation parameters. Is. That is, the evaluation parameter in the present embodiment focuses on the meandering state in both the direction along the fiber layer and the laminating direction, and the tensile strength can be appropriately evaluated.
  • the evaluation parameter in the present embodiment is calculated using the amplitude of the maximum value among the meandering amplitudes. Therefore, it is possible to evaluate the fiber meandering that has the greatest effect on all fiber layers.
  • the thickness calculation unit 5 calculates the thickness of the meandering fiber layer, but the present disclosure is not limited to this.
  • the thickness calculation unit 5 calculates the fiber layer ratio obtained by dividing the thickness of the meandering fiber layer by the thickness of the entire fiber layer, and this fiber layer ratio may be referred to as the "meandering thickness" of the present disclosure.
  • the strength evaluation unit 6 calculates the evaluation parameter from the fiber layer ratio and the maximum amplitude. In this case, even when evaluating various composite materials in which the thickness of the entire fiber layer is significantly different, it is possible to evaluate the strength using one map without being affected by the thickness of the fiber layer.
  • the amplitude calculation unit 4 calculates the meandering amplitude, but the present disclosure is not limited to this.
  • the strength evaluation device 1 may not include the amplitude calculation unit 4 but may include a meandering angle calculation unit.
  • the meandering angle calculation unit calculates the meandering angle in the fiber layer.
  • the strength evaluation unit 6 calculates the evaluation parameter based on the meandering angle and the number of meandering fiber layers in the fiber layer. Similarly, in this case as well, the strength can be evaluated after paying attention to both the direction along the fiber layer and the laminating direction.
  • the meandering angle calculation unit sets the maximum angle among the plurality of meandering angles as the maximum meandering angle
  • the strength evaluation unit 6 determines the maximum meandering angle and the meandering thickness (the number of fiber layers and the fiber layer ratio). The strength of the composite material may be evaluated based on this. Further, the reciprocal of the integrated value of the maximum meandering angle and the meandering thickness may be used as an evaluation parameter.
  • the thickness calculation unit 5 calculates the number of layers of the fiber layer, but the present disclosure is not limited to this.
  • the thickness calculation unit 5 may calculate the thickness of the fiber layer in units of mm or ⁇ m.
  • the strength evaluation method is executed by the strength evaluation device 1, but the present disclosure is not limited to this.
  • an operator may calculate an evaluation parameter based on a meandering amplitude or a meandering angle and a meandering thickness manually measured, and further evaluate the strength from the evaluation parameter.
  • the strength may be evaluated by using an approximate expression derived from a graph of the strength and the evaluation parameter created by conducting an experiment in advance without using a map in the strength evaluation.
  • the intensity evaluation device 1 is provided with the image pickup unit 2, but the present disclosure is not limited to this.
  • the intensity evaluation device 1 may not include the imaging unit 2 and may acquire a CT image of the composite material imaged externally and analyze the image.
  • the tensile strength is evaluated, but the present disclosure is not limited to this.
  • a map or an approximate expression may be similarly derived for the bending strength, and the bending strength may be evaluated.
  • a sixth aspect of the present disclosure is a method for evaluating the strength of a composite material in which a plurality of fibers are laminated, that is, a meandering state measuring step for measuring a meandering state in a direction along a fiber layer of the fibers, and a meandering state measuring step in the fibers. It includes a meandering thickness measuring step for measuring the meandering thickness, which is the thickness of a portion where meandering is occurring in the stacking direction, and a strength evaluation step for evaluating the strength based on the meandering state and the meandering thickness.
  • a seventh aspect of the present disclosure is a strength evaluation device (1) for a composite material in which a plurality of fibers are laminated, and a meandering state calculation unit (4) for calculating a meandering state in a direction along the fiber layer of the fibers.
  • the meandering thickness calculation unit (5) that calculates the meandering thickness, which is the thickness in the stacking direction of the part where the meandering occurs in the fiber, and the strength is evaluated based on the meandering state and the meandering thickness. It is provided with a strength evaluation unit (6).
  • the present disclosure can be used for a strength evaluation device and a strength evaluation method for evaluating the strength of a composite material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

この強度評価方法は、複数の繊維層が積層された複合材料の強度評価方法であって、前記複数の繊維層における繊維の、繊維層に沿った方向における蛇行状態を測定する蛇行状態測定工程(S4,S5)と、前記複数の繊維層における繊維の蛇行が発生している部位の積層方向厚さである蛇行厚さを測定する蛇行厚さ測定工程(S6)と、前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価工程(S7,S8)とを備える。

Description

強度評価装置及び強度評価方法
 本開示は、強度評価装置及び強度評価方法に関する。
 本願は、2019年3月27日に日本に出願された特願2019-061232号に基づき優先権を主張し、その内容をここに援用する。
 繊維(繊維層)を積層して形成される複合材料においては、繊維層(プリプレグ)に沿って発生する繊維の蛇行が、複合材料の強度に影響を与えると考えられる。このような繊維の蛇行は、例えば製造段階における加圧成形時や、繊維の配置時等に発生すると考えられる。例えば、特許文献1には、繊維強化複合材料における繊維の蛇行状態を定量的に評価する手法が開示されている。
日本国特開2018-159691号公報
 ところで、このような繊維層に沿った繊維の蛇行は、積層方向に隣接する他の繊維層にも波及し、積層された繊維層の複数の位置において同様の繊維蛇行が発生する場合がある。しかしながら、現状においては、繊維層に沿った方向における蛇行状態のみが考慮されており、蛇行状態から複合材料の強度の適切な評価を行うことが難しい場合がある。
 本開示は、上述する問題点に鑑みてなされ、蛇行状態に基づいて複合材料の強度を評価することを目的とする。
 本開示の第1の態様は、複数の繊維層が積層された複合材料の強度評価方法であって、前記複数の繊維層における繊維の、繊維層に沿った方向における蛇行状態を測定する蛇行状態測定工程と、前記複数の繊維層における繊維の蛇行が発生している部位の積層方向厚さである蛇行厚さを測定する蛇行厚さ測定工程と、前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価工程とを備える。
 本開示の第2の態様は、前記第1の態様において、前記蛇行状態測定工程においては、各繊維層における前記繊維の蛇行振幅を測定すると共に前記蛇行振幅の最大値を最大振幅とし、前記強度評価工程においては、前記最大振幅と前記蛇行厚さとに基づいて強度を評価する。
 本開示の第3の態様は、前記第1または第2の態様において、前記蛇行厚さ測定工程は、前記複合材料における蛇行した前記繊維の積層数を前記蛇行厚さとして測定する。
 本開示の第4の態様は、前記第1~第3の態様のいずれか1つの態様において、前記強度評価工程においては、前記蛇行状態と前記蛇行厚さとの積算値の逆数を評価パラメータとする。
 本開示の第5の態様は、複数の繊維層が積層された複合材料の強度評価装置であって、前記複数の繊維層における繊維の、繊維層に沿った方向における蛇行状態を算出する蛇行状態算出部と、前記複数の繊維層における繊維の蛇行が発生している部位の積層方向厚さである蛇行厚さを算出する蛇行厚さ算出部と、前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価部とを備える。
 本開示によれば、蛇行状態と蛇行厚さとに基づいて強度を評価することにより、繊維層に沿った方向における蛇行状態と積層方向における蛇行の波及状態とを考慮した上で蛇行の評価を行うことが可能である。したがって、本開示は、繊維層に沿った方向と積層方向との双方の蛇行状態について考慮した上で、適切に複合材料の強度の評価が可能である。
本開示の一実施形態に係る強度評価装置の機能構成を示すブロック図である。 複合材料と繊維の蛇行を示す模式図である。 本開示の一実施形態に係る強度評価方法を示すフローチャートである。 本開示の一実施形態における評価パラメータと引張強度との相関を示すグラフである。 蛇行角度と引張強度との関係性を示すグラフである。 蛇行振幅と引張強度との関係性を示すグラフである。 蛇行した繊維層数の全体層数に対する比と引張強度との関係性を示すグラフである。
 以下、図面を参照して、本開示に係る強度評価方法及び強度評価装置の一実施形態について説明する。
 本実施形態に係る強度評価装置1は、繊維層が複数積層された状態で樹脂により接合された複合材料の強度を評価する装置である。このような複合材料においては、繊維層の積層後に、樹脂を含侵させた状態で加圧するため、各繊維層の繊維が繊維層に沿った方向において蛇行することがある。なお、「繊維層に沿った方向」とは、複数の繊維層の積層方向(厚さ方向)に直交する方向をいう。また、複合材料の繊維の繊維層に沿った方向における蛇行は、積層方向に隣接する複数の繊維層において並行に発生することが知られている。強度評価装置1は、このような複合材料の繊維の蛇行に基づいて、強度を評価する。このような強度評価装置1は、図1に示すように、撮像部2と、画像解析部3と、振幅算出部4(蛇行状態算出部)と、厚さ算出部5(蛇行厚さ算出部)と、強度評価部6とを備えている。なお、画像解析部3、振幅算出部4、厚さ算出部5及び強度評価部6は、コンピュータの一機能とされ、CPU(Central Processing Unit)、記憶媒体、モニタ等の出力装置が連携することにより機能する。
 なお、画像解析部3、振幅算出部4、厚さ算出部5及び強度評価部6が複数のコンピュータから構成されてもよいし、それぞれ単一のコンピュータから構成されてもよい。このようなコンピュータは、CPU、RAM(Random Access Memory)やROM(Read Only Memory)といったメモリ、SSD(Solid State Drive)やHDD(Hard Disk Drive)といった記憶装置、及び撮像部2やセンサ等の機器との信号のやり取りを行う入出力装置から構成されてもよい。
 撮像部2は、複合材料をX線CT(コンピュータ断層撮影法)により撮影する装置である。撮像部2は、X線により複合材料を走査し、複合材料の内部構造を非破壊的に撮像画像として取得する。撮像部2は、X線発生器及びX線検出器等を備える。
 画像解析部3は、撮像部2により撮像された複合材料の画像を複数取得し、画像から複合材料の3次元方向における輪郭及び繊維の輪郭を抽出する。そして、画像解析部3は、繊維の輪郭から、図2に示すような複合材料Cの繊維層Pにおける繊維F(F1,F2)の蛇行、すなわち、繊維Fが直線状ではなく湾曲して配置された状態を検出する。なお、図2は単一の繊維層Pの平面図(厚さ方向から見た図)を示しているが、複合材料Cは複数の繊維層Pが厚さ方向に積層されて構成されている。
 振幅算出部4は、画像解析部3により解析された繊維の輪郭と、検出された繊維の蛇行状態に基づいて、図2に示すように、蛇行した繊維の振幅(蛇行振幅)を算出する。なお、複合材料においては、繊維の蛇行が複数発生している場合がある。このとき、振幅算出部4は、複数の繊維層に発生している蛇行振幅の最大値(最大振幅)を抽出し、蛇行振幅が最大となった繊維の位置(座標)を記憶する。
 厚さ算出部5は、画像解析部3により解析された複合材料の輪郭に基づいて、検出された複合材料の繊維層を識別する。そして、厚さ算出部5は、画像解析部3により検出された繊維の蛇行のうち、振幅が最大とされた蛇行部位の影響を受けている繊維層の数、すなわち、並行して同様の蛇行が発生している繊維層数(積層方向厚さ)を算出する。なお、このような繊維層数を、「繊維の積層数」と称したり、「蛇行厚さ」と称したりする場合がある。
 強度評価部6は、振幅算出部4及び厚さ算出部5から、蛇行振幅(蛇行状態)と繊維層数(蛇行厚さ)を取得し、蛇行振幅と繊維層数との積算値の逆数を評価パラメータとして記憶する。また、強度評価部6は、予め実験等により算出された強度(例えば引張強度)と評価パラメータとの相関(図4参照)に基づくマップを記憶している。強度評価部6は、このようなマップを参照し、計測された評価パラメータから複合材料の強度を推定する。
 続いて、本実施形態に係る強度評価方法について、図3を参照して説明する。
 本実施形態に係る強度評価装置1は、まず、撮像部2において、複合材料のX線CT撮影を行う(ステップS1)。このとき、複合材料は、撮像部2により、内部の構造を含めて3次元的に構造が取得される。そして、強度評価装置1は、画像解析部3において、CT画像から複合材料の外形の輪郭及び繊維の輪郭を抽出する(ステップS2)。画像解析部3は、撮像されたCT画像を例えば二値化し、所定の閾値を超える部位を複合材料の外形の輪郭及び繊維の輪郭として判定する。さらに、強度評価装置1は、画像解析部3において、繊維の輪郭から繊維の蛇行状態を検出する(ステップS3)。
 そして、強度評価装置1は、振幅算出部4において、繊維の輪郭に基づいて、図2に示すように、検出された蛇行した繊維の振幅(蛇行振幅)を算出する(ステップS4)。さらに、強度評価装置1は、振幅算出部4において、算出された蛇行振幅の最大値(最大振幅)を抽出する(ステップS5)。また、このとき、振幅算出部4は、蛇行振幅が最大となった繊維の座標(3次元位置座標)を記憶する。なお、ステップS4及びS5は、本開示における蛇行状態測定工程に相当する。
 なお、蛇行振幅を算出する方法は複数考えられるが、例えば図2に示すように、一の繊維F1の、撮像部2の撮像領域における両端F1a,F1bを繋ぐ仮想直線L1から、蛇行した繊維F1のうち最も離れた部位までの距離D1(繊維層Pに沿い且つ直線L1に直交する方向の距離)を、蛇行振幅としてもよい。また、局所的な繊維の蛇行は複合材料Cの強度評価に重要であるが、例えば複合材料Cの形状に基づく繊維の湾曲は通常起こりうる湾曲として強度評価から除外できる場合があるため、撮像部2の撮像領域内の一の繊維の軌跡を最もよく近似し且つ単一の半径で表される円弧を導出し、この円弧から、蛇行した繊維のうち最も離れた部位までの距離を、蛇行振幅としてもよい。
 さらに、図2に示すように、複数の繊維F1,F2において蛇行が生じている場合は、蛇行振幅を示す距離D1,D2をそれぞれ算出し、このうち最も大きな距離を最大振幅としてもよい。
 次に、強度評価装置1は、厚さ算出部5において、蛇行が波及している繊維層数(蛇行厚さ)を算出する(ステップS6)。このとき、厚さ算出部5は、蛇行振幅が最大となった繊維の部位において、各繊維層における同位置(繊維層に沿う二次元方向での同位置)に蛇行が検出されているか否かを抽出する。そして、それぞれ互いに隣接する複数の繊維層の同位置において蛇行が検出されている場合には、繊維の蛇行が積層方向において波及しているとみなし、蛇行の波及が抽出された繊維層の数を算出する。なお、ステップS6は、本開示における蛇行厚さ測定工程に相当する。
 そして、強度評価装置1は、強度評価部6において、評価パラメータを算出する(ステップS7)。このとき、強度評価部6は、振幅算出部4により算出された蛇行振幅の最大値と、厚さ算出部5により算出された繊維層の数とを取得し、上記最大値と繊維層の数との積の逆数を評価パラメータとして算出する。
 さらに、強度評価装置1は、強度評価部6において、複合材料の強度を評価する(ステップS8)。このとき、強度評価部6は、引張強度と評価パラメータとの相関に基づくマップを記憶しており、ステップS7で算出された評価パラメータから、上記マップに基づいて引張強度を導出する。なお、ステップS7及びS8は、本開示における強度評価工程に相当する。
 このような本実施形態における評価パラメータと引張強度との相関性について説明する。図5Aは蛇行角度と引張強度との関係性を示すグラフであり、図5Bは蛇行振幅と引張強度との関係性を示すグラフであり、図5Cは蛇行した繊維層数の全体層数に対する比と引張強度との関係性を示すグラフである。
 なお、蛇行角度とは、例えば図2において、仮想直線L1と、繊維F1の蛇行している箇所との間の最大角度α1をいう。
 図5Aのグラフを見ると、引張強度と、蛇行角度(蛇行した繊維と、蛇行していない繊維とのなす角)との間には、相関性が見られないことが分かる。同様に、図5Bのグラフを見ると、引張強度と蛇行振幅との間には、相関性が見られない。また、図5Cのグラフを見ると、引張強度と繊維層数比との間にも、相関性が見られない。
 すなわち、繊維層に沿った方向の蛇行状態のみについて着目したパラメータである蛇行角度及び蛇行振幅から引張強度を評価することは難しい。同様に、積層方向の蛇行状態のみについて着目したパラメータである層数比から引張強度を評価することは難しい。
 これに対して、図4に示すように、本実施形態における評価パラメータは、引張強度との間に強い相関性を有しており、評価パラメータを算出することにより引張強度を評価することが可能である。すなわち、本実施形態における評価パラメータは、繊維層に沿った方向と積層方向との双方の蛇行状態について着目しており、適切に引張強度の評価が可能である。
 また、本実施形態における評価パラメータは、蛇行振幅のうち、最大値の振幅を用いて算出されている。したがって、全繊維層において最も大きな影響を与える繊維蛇行について評価を行うことが可能である。
 以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態には限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の範囲において設計要求等に基づき種々変更可能である。
 例えば、上記実施形態においては、厚さ算出部5において、蛇行した繊維層の厚さを算出しているが、本開示はこれに限定されない。厚さ算出部5は、蛇行した繊維層の厚さを繊維層全体の厚さで割った繊維層比を算出し、この繊維層比を本開示の「蛇行厚さ」としてもよい。そして、強度評価部6は、繊維層比と最大振幅とから評価パラメータを算出する。この場合、繊維層全体の厚さが大きく異なる様々な複合材料を評価する場合でも、繊維層の厚さに影響を受けることなく、1つのマップを用いて強度の評価が可能である。
 また、上記実施形態においては、振幅算出部4において蛇行振幅を算出するものとしたが、本開示はこれに限定されない。例えば、強度評価装置1は、振幅算出部4を備えず、蛇行角度算出部を備えてもよい。蛇行角度算出部は、繊維層における蛇行角度を算出する。このとき、強度評価部6は、蛇行角度と繊維層における蛇行繊維層の数とに基づいて評価パラメータを算出する。この場合においても、同様に、繊維層に沿った方向と積層方向との両方に着目した上で強度の評価が可能である。
 また、上記蛇行角度算出部が複数の蛇行角度のうち最大の角度を最大蛇行角度とし、強度評価部6が、この最大蛇行角度と蛇行厚さ(上記繊維層数や上記繊維層比)とに基づいて複合材料の強度を評価してもよい。さらに、最大蛇行角度と蛇行厚さとの積算値の逆数を評価パラメータとしてもよい。
 また、上記実施形態においては、厚さ算出部5は、繊維層の層数を算出するものとしたが、本開示はこれに限定されない。例えば、厚さ算出部5は、繊維層の厚さをmmまたはμm単位で算出してもよい。
 また、上記実施形態においては、強度評価装置1により、強度評価方法を実行するものとしたが、本開示はこれに限定されない。本開示に係る強度評価方法は、作業者が、手作業で測定した蛇行振幅または蛇行角度と蛇行厚さとに基づいて評価パラメータを算出し、さらに評価パラメータから強度を評価するものとしてもよい。なお、この際には、強度評価にあたってマップを用いず、予め実験を行うことにより作成された強度と評価パラメータとのグラフより導出される近似式を用いて強度を評価してもよい。
 また、上記実施形態においては、強度評価装置1は、撮像部2を備えるものとしたが、本開示はこれに限定されない。例えば、強度評価装置1は、撮像部2を備えず、外部において撮像された複合材料のCT画像を取得し、画像を解析してもよい。
 また、上記実施形態においては、引張強度を評価するものとしたが、本開示はこれに限定されない。例えば、曲げ強度について同様にマップまたは近似式を導出し、曲げ強度について評価するものとしてもよい。
 また、本開示は以下の態様を備えてもよい。
 本開示の第6の態様は、複数の繊維が積層された複合材料の強度評価方法であって、前記繊維の繊維層に沿った方向における蛇行状態を測定する蛇行状態測定工程と、前記繊維における蛇行が発生している部位の積層方向厚さである蛇行厚さを測定する蛇行厚さ測定工程と、前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価工程とを備える。
 本開示の第7の態様は、複数の繊維が積層された複合材料の強度評価装置(1)であって、前記繊維の繊維層に沿った方向における蛇行状態を算出する蛇行状態算出部(4)と、前記繊維における蛇行が発生している部位の積層方向厚さである蛇行厚さを算出する蛇行厚さ算出部(5)と、前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価部(6)とを備える。
 本開示は、複合材料の強度を評価する強度評価装置及び強度評価方法に利用することができる。
1 強度評価装置
2 撮像部
3 画像解析部
4 振幅算出部(蛇行状態算出部)
5 厚さ算出部(蛇行厚さ算出部)
6 強度評価部

Claims (5)

  1.  複数の繊維層が積層された複合材料の強度評価方法であって、
     前記複数の繊維層における繊維の、繊維層に沿った方向における蛇行状態を測定する蛇行状態測定工程と、
     前記複数の繊維層における繊維の蛇行が発生している部位の積層方向厚さである蛇行厚さを測定する蛇行厚さ測定工程と、
     前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価工程と
     を備える強度評価方法。
  2.  前記蛇行状態測定工程においては、各繊維層における前記繊維の蛇行振幅を測定すると共に前記蛇行振幅の最大値を最大振幅とし、
     前記強度評価工程においては、前記最大振幅と前記蛇行厚さとに基づいて強度を評価する請求項1記載の強度評価方法。
  3.  前記蛇行厚さ測定工程は、前記複合材料における蛇行した前記繊維の積層数を前記蛇行厚さとして測定する請求項1または2記載の強度評価方法。
  4.  前記強度評価工程においては、前記蛇行状態と前記蛇行厚さとの積算値の逆数を評価パラメータとする請求項1~3のいずれか一項に記載の強度評価方法。
  5.  複数の繊維層が積層された複合材料の強度評価装置であって、
     前記複数の繊維層における繊維の、繊維層に沿った方向における蛇行状態を算出する蛇行状態算出部と、
     前記複数の繊維層における繊維の蛇行が発生している部位の積層方向厚さである蛇行厚さを算出する蛇行厚さ算出部と、
     前記蛇行状態と前記蛇行厚さとに基づいて強度を評価する強度評価部と
     を備える強度評価装置。
PCT/JP2020/014142 2019-03-27 2020-03-27 強度評価装置及び強度評価方法 WO2020196855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/441,944 US12050188B2 (en) 2019-03-27 2020-03-27 Strength evaluation device and strength evaluation method
EP20776666.8A EP3951349A4 (en) 2019-03-27 2020-03-27 LIGHTING RATING DEVICE, AND LIGHTING RATING METHOD
CA3134851A CA3134851C (en) 2019-03-27 2020-03-27 Strength evaluation device and strength evaluation method
JP2021509651A JP7176617B2 (ja) 2019-03-27 2020-03-27 強度評価装置及び強度評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061232 2019-03-27
JP2019061232 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196855A1 true WO2020196855A1 (ja) 2020-10-01

Family

ID=72608456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014142 WO2020196855A1 (ja) 2019-03-27 2020-03-27 強度評価装置及び強度評価方法

Country Status (5)

Country Link
US (1) US12050188B2 (ja)
EP (1) EP3951349A4 (ja)
JP (1) JP7176617B2 (ja)
CA (1) CA3134851C (ja)
WO (1) WO2020196855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145091A1 (ja) * 2020-12-28 2022-07-07 株式会社Ihi 繊維強化材における繊維層を識別する、識別装置、識別方法、及び、識別プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122178A (ja) * 2006-11-10 2008-05-29 Toray Ind Inc 積層体の積層状態の検査方法
US20110135872A1 (en) * 2010-05-26 2011-06-09 General Electric Company In-line inspection methods and closed loop processes for the manufacture of prepregs and/or laminates comprising the same
WO2015046534A1 (ja) * 2013-09-30 2015-04-02 株式会社Ihi 画像解析装置及びプログラム
JP2017507327A (ja) * 2014-01-15 2017-03-16 ボリュームグラフィックス ゲーエムベーハーVolume Graphics Gmbh 不織繊維複合布又は織繊維複合布を含む部材の検査装置及び方法
JP2018159691A (ja) 2017-03-24 2018-10-11 三菱ケミカル株式会社 繊維強化複合材料の繊維蛇行状態の評価方法
JP2019061232A (ja) 2011-12-08 2019-04-18 エシロール アテルナジオナール 眼科用フィルタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114741B2 (ja) * 1991-04-03 2000-12-04 三菱レイヨン株式会社 プリプレグ
JP4306240B2 (ja) 2002-05-14 2009-07-29 ダイキン工業株式会社 ロータリ式膨張機及び流体機械
JPWO2010147231A1 (ja) * 2009-06-19 2012-12-06 株式会社Shindo 強化繊維シート材
DE102011083160A1 (de) 2011-09-21 2013-03-21 Leichtbau-Zentrum Sachsen Gmbh Textilverstärkter Faserverbund sowie Verfahren zur zerstörungsfreien Prüfung von Faserorientierung und Lagenaufbau in Bauteilen aus textilverstärkten Verbundwerkstoffen
EP3263332B1 (en) * 2015-02-27 2022-06-08 Toray Industries, Inc. Resin supply material, preform, and method for producing fiber-reinforced resin
DE102015216015A1 (de) 2015-08-21 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Bauteil, Verfahren zur Herstellung und Verfahren zur Prüfung eines Bauteils aus einem Faserverbundwerkstoff
RU2696339C1 (ru) 2016-03-16 2019-08-01 АйЭйчАй КОРПОРЕЙШН Способ проверки электропроводного композиционного материала и устройство для проверки электропроводного композиционного материала
WO2018181983A1 (ja) 2017-03-31 2018-10-04 三菱ケミカル株式会社 プリプレグシート、その製造方法、表皮材付き単位層、繊維強化複合材料成形品の製造方法、及び繊維強化複合材料成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122178A (ja) * 2006-11-10 2008-05-29 Toray Ind Inc 積層体の積層状態の検査方法
US20110135872A1 (en) * 2010-05-26 2011-06-09 General Electric Company In-line inspection methods and closed loop processes for the manufacture of prepregs and/or laminates comprising the same
JP2019061232A (ja) 2011-12-08 2019-04-18 エシロール アテルナジオナール 眼科用フィルタ
WO2015046534A1 (ja) * 2013-09-30 2015-04-02 株式会社Ihi 画像解析装置及びプログラム
JP2017507327A (ja) * 2014-01-15 2017-03-16 ボリュームグラフィックス ゲーエムベーハーVolume Graphics Gmbh 不織繊維複合布又は織繊維複合布を含む部材の検査装置及び方法
JP2018159691A (ja) 2017-03-24 2018-10-11 三菱ケミカル株式会社 繊維強化複合材料の繊維蛇行状態の評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951349A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145091A1 (ja) * 2020-12-28 2022-07-07 株式会社Ihi 繊維強化材における繊維層を識別する、識別装置、識別方法、及び、識別プログラム
JP7464150B2 (ja) 2020-12-28 2024-04-09 株式会社Ihi 繊維強化材における繊維層を識別する、識別装置、識別方法、及び、識別プログラム

Also Published As

Publication number Publication date
CA3134851C (en) 2023-06-27
US20220163434A1 (en) 2022-05-26
US12050188B2 (en) 2024-07-30
EP3951349A1 (en) 2022-02-09
JP7176617B2 (ja) 2022-11-22
CA3134851A1 (en) 2020-10-01
EP3951349A4 (en) 2023-01-11
JPWO2020196855A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
US9042516B2 (en) Nondestructive examination of structures having embedded particles
US10139353B2 (en) Apparatus and method for examining components comprising laid fiber composite fabrics or woven fiber composite fabrics
ES2946745T3 (es) Método y sistema para ensayos no destructivos de compuestos
Baranowski et al. Local fiber orientation from X-ray region-of-interest computed tomography of large fiber reinforced composite components
JP6091507B2 (ja) 画像に基づく圧縮素子のたわみの決定
JP4585815B2 (ja) 情報処理装置、撮影システム、吸収係数補正方法、及びコンピュータプログラム
Schladitz et al. Non-destructive characterization of fiber orientation in reinforced SMC as input for simulation based design
WO2020196855A1 (ja) 強度評価装置及び強度評価方法
KR20220123531A (ko) 복합재료의 3d 단층합성 이미지 생성 방법
Schöttl et al. A novel approach for segmenting and mapping of local fiber orientation of continuous fiber-reinforced composite laminates based on volumetric images
Solav et al. Duodic: 3d digital image correlation in Matlab
JP2019158403A (ja) 評価方法及び評価システム
Siddiqui et al. A projected finite element update method for inverse identification of material constitutive parameters in transversely isotropic laminates
US8897534B2 (en) Method and evaluation device for determining the position of a structure located in an object to be examined by means of X-ray computer tomography
EP3128290B1 (en) Methods and system for determining shear angle
Kiziltaş et al. Challenges in Micro-CT characterization of composites
JP2018063119A (ja) 繊維強化型複合材の破壊強度評価方法
US8348508B2 (en) Wave ramp test method and apparatus
JP6500016B2 (ja) 試験対象物とx線検査システムとの間の危険領域を決定する方法
JP7433597B2 (ja) 繊維間距離測定装置、繊維間距離測定方法及びプログラム
Hwang et al. Shape reconstruction and inspection using multi-planar X-ray images
JP7424567B2 (ja) 繊維系材料評価装置、繊維系材料評価方法及びプログラム
Goyal Investigation of Composite Materials Using Digital Volume Correlation
KR101700287B1 (ko) 단층촬영에서의 양자검출효율 측정용 팬텀 및 이를 이용한 양자검출효율 측정방법
Wimmer Advanced Wood and Polymer Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509651

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3134851

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776666

Country of ref document: EP

Effective date: 20211027