WO2020196427A1 - Method for manufacturing ultrasonic probe, and ultrasonic probe - Google Patents

Method for manufacturing ultrasonic probe, and ultrasonic probe Download PDF

Info

Publication number
WO2020196427A1
WO2020196427A1 PCT/JP2020/012776 JP2020012776W WO2020196427A1 WO 2020196427 A1 WO2020196427 A1 WO 2020196427A1 JP 2020012776 W JP2020012776 W JP 2020012776W WO 2020196427 A1 WO2020196427 A1 WO 2020196427A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric signal
ultrasonic probe
signal lines
piezoelectric element
holding body
Prior art date
Application number
PCT/JP2020/012776
Other languages
French (fr)
Japanese (ja)
Inventor
雄紀 坂口
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2021509402A priority Critical patent/JP7405833B2/en
Publication of WO2020196427A1 publication Critical patent/WO2020196427A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present disclosure relates to a method for manufacturing an ultrasonic probe and an ultrasonic probe.
  • the ultrasonic probe is used as an ultrasonic transmitter / receiver for medical ultrasonic diagnostic equipment.
  • the ultrasonic probe is also used for ultrasonic diagnosis performed with the catheter inserted in the body by being loaded into the catheter.
  • Patent Document 1 describes an active transducer element having a top main surface and a bottom main surface, a top electrode formed on the top main surface, a bottom electrode formed on the bottom main surface, and conductivity covering the low electrode.
  • An ultrasonic probe comprising a sex backing element, a first lead electrically connected to a top electrode, and a second lead electrically connected to a conductive backing element is disclosed.
  • the miniaturization of the ultrasonic probe can be realized by miniaturizing the ultrasonic vibrator including the piezoelectric element and the piezoelectric element composed of a pair of electrodes.
  • the piezoelectric element is also miniaturized. Therefore, the electrode of the piezoelectric element also becomes small, and it becomes difficult to connect the electric signal line connecting the piezoelectric element and the external power source to the electrode of the piezoelectric element.
  • the method for manufacturing an ultrasonic probe as the first aspect of the present disclosure is a method for manufacturing an ultrasonic probe, wherein at least two electric signal lines are opposed to at least two electric signal lines.
  • At least two electric signal lines are held at positions on both sides of a holding position held by the holding body before the mounting step. Includes a pinching step.
  • the at least two electric signal lines are sandwiched so that the at least two electric signal lines extend along one direction at the holding position.
  • a method of manufacturing an ultrasonic probe as one embodiment of the present disclosure is a coating that removes the coating material of at least two electric signal lines after the sandwiching step and before the connecting step. Includes removal step.
  • connection position of the piezoelectric element and the connection position of at least two electric signal lines are aligned before the connection step. Includes an alignment step adjusted by a jig.
  • the ultrasonic probe as the second aspect of the present disclosure is attached to the piezoelectric element, at least two electric signal lines connected to the piezoelectric element, and at least the two electric signal lines, and is described. It includes a holding body that holds a relative positional relationship between a part of at least two electric signal lines, and a housing that houses the piezoelectric element and the holding body.
  • the ultrasonic probe as one embodiment of the present disclosure includes a fixing member for fixing the position of the holder in the housing.
  • the fixing member is an adhesive body that is interposed between the holding body and the housing and adheres the holding body to the housing.
  • the adhesive and the retainer contain rubber or resin as a main component, and the rubber material or resin material as the main component of the adhesive is rubber which is the main component of the retainer. Different from material or resin material.
  • an ultrasonic probe that facilitates the work of connecting an electric signal line to a piezoelectric element. Further, according to the present disclosure, it is possible to provide an ultrasonic probe having a configuration that facilitates connection of an electric signal line to a piezoelectric element.
  • FIG. 1 It is a figure which shows the state which the image diagnostic catheter including the ultrasonic probe as one Embodiment of this disclosure, and the external device are connected.
  • FIG. 1 It is sectional drawing which shows the cross section parallel to the longitudinal direction in the tip part of the diagnostic imaging catheter shown in FIG.
  • FIG. 1 It is a cross-sectional view which shows the cross section orthogonal to the longitudinal direction in the tip part of the diagnostic imaging catheter shown in FIG. 1, and is the cross-sectional view at the position of line I-I of FIG.
  • FIG. 1 It is a figure which shows the ultrasonic transducer of the ultrasonic probe shown in FIG.
  • FIG. 1 It is a flowchart which shows an example of the manufacturing method of the ultrasonic probe shown in FIG. It is a figure which shows the outline of the pinching step S1.
  • FIG. 5 is a cross-sectional view showing a part of a diagnostic imaging catheter including an ultrasonic probe as an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing an image diagnostic apparatus 100 including an ultrasonic probe 10 as an embodiment.
  • the diagnostic imaging device 100 includes a diagnostic imaging catheter 110 and an external device 120.
  • FIG. 1 shows a state in which the diagnostic imaging catheter 110 is connected to the external device 120.
  • FIG. 2 is a cross-sectional view showing a cross section parallel to the longitudinal direction A at the tip of the diagnostic imaging catheter 110.
  • FIG. 3 is a cross-sectional view showing a cross section of the tip of the diagnostic imaging catheter 110 perpendicular to the longitudinal direction A.
  • FIG. 3 shows a cross section at the position of the I-I line of FIG.
  • FIG. 4 is a diagram showing an ultrasonic transducer 11. In FIG. 4, for convenience of explanation, the position of the electric signal line 14 connected to the ultrasonic vibrator 11 is shown by a chain double-dashed line.
  • the diagnostic imaging catheter 110 is applied to an intravascular ultrasound (abbreviated as "IVUS"). As shown in FIG. 1, the diagnostic imaging catheter 110 is driven by being connected to an external device 120. More specifically, the diagnostic imaging catheter 110 of the present embodiment is connected to the drive unit 120a of the external device 120.
  • IVUS intravascular ultrasound
  • the side inserted into the living body in the longitudinal direction A of the diagnostic imaging catheter 110 is described as the "tip side", and the opposite side is described as the "base end side”. To do. Further, the direction from the proximal end side to the distal end side of the diagnostic imaging catheter 110 may be simply described as "insertion direction A1". Further, the direction from the distal end side to the proximal end side of the diagnostic imaging catheter 110 may be simply described as "removal direction A2".
  • the diagnostic imaging catheter 110 includes an insertion portion 110a and an operation portion 110b.
  • the insertion portion 110a is a portion of the diagnostic imaging catheter 110 that is inserted into the living body and used.
  • the operation unit 110b is a portion of the diagnostic imaging catheter 110 that is operated in vitro with the insertion unit 110a inserted into the living body.
  • the portion on the distal end side of the distal end side connector 42 (see FIG. 1) described later is the insertion portion 110a
  • the portion on the proximal end side from the distal end side connector 42 is the operation portion 110b. is there.
  • the insertion portion 110a includes an ultrasonic probe 10 and a sheath 20.
  • the operation unit 110b includes an inner pipe member 30 and an outer pipe member 40.
  • the inner tube member 30 holds an end portion of the ultrasonic probe 10 on the proximal end side.
  • the outer tube member 40 holds an end portion of the sheath 20 on the base end side.
  • the ultrasonic probe 10 can move in the sheath 20 in the longitudinal direction A by moving the inner tube member 30 in the outer tube member 40 in the central axis direction.
  • the drive shaft 13 and the electric signal line 14 which are a part of the ultrasonic probe 10 pass through the inside of the inner tube member 30 and the outer tube member 40, and the insertion portion 110a is inserted in the longitudinal direction A. It extends not only to the region of the above but also to the region of the operation unit 110b. That is, the operation unit 110b of the present embodiment is partially composed of the ultrasonic probe 10 in addition to the inner tube member 30 and the outer tube member 40.
  • the ultrasonic probe 10 includes an ultrasonic transducer 11, a housing 12, a drive shaft 13, an electric signal line 14, a holding body 15, and a fixing member 16.
  • the ultrasonic transducer 11 includes a piezoelectric element 1, a support member 2, and an acoustic matching member 3.
  • the piezoelectric element 1 includes a flat piezoelectric body 4, a first electrode 5 laminated on at least one side of the piezoelectric body 4 in the thickness direction B, and at least the other of the piezoelectric body 4 in the thickness direction B. It is composed of a second electrode 6 laminated on the side.
  • the surface side of the piezoelectric element 1 one side of the thickness direction B of the piezoelectric body 4 in which at least a part of the first electrode 5 is provided.
  • the other side of the piezoelectric body 4 in the thickness direction B in which at least a part of the second electrode 6 is provided is described as "the back surface side of the piezoelectric element 1".
  • the surface side of the piezoelectric element 1 is a side that transmits and receives ultrasonic waves. Further, the back surface side of the piezoelectric element 1 is the side opposite to the side that transmits and receives ultrasonic waves.
  • the piezoelectric body 4 of the piezoelectric element 1 is composed of, for example, a piezoelectric ceramic sheet.
  • Examples of the material of the piezoelectric ceramic sheet include piezoelectric ceramic materials such as lead titanate (PZT) and lithium niobate.
  • the piezoelectric body 4 may be made of crystal instead of the piezoelectric ceramic material.
  • the first electrode 5 and the second electrode 6 of the piezoelectric element 1 are laminated as electrode layers on both sides of the piezoelectric body 4 in the thickness direction B by, for example, an ion plating method using a mask material, a vapor deposition method, or a sputtering method.
  • an ion plating method using a mask material e.g., aluminum, copper, nickel, and gold.
  • the material of the first electrode 5 and the second electrode 6 include metals such as silver, chromium, copper, nickel, and gold, and laminates of these metals.
  • the first electrode 5 of this embodiment is formed only on the surface side of the piezoelectric element 1.
  • the second electrode 6 of the present embodiment is composed of a folded electrode.
  • the second electrode 6 of the present embodiment includes a back surface electrode layer 6a, a front surface electrode layer 6b, and a connecting conductive portion 6c.
  • the back surface electrode layer 6a is located on the back surface side of the piezoelectric element 1.
  • the surface electrode layer 6b is located on the surface side of the piezoelectric element 1.
  • the connecting conductive portion 6c connects the back surface electrode layer 6a and the front surface electrode layer 6b.
  • the second electrode 6 of the present embodiment is formed from the back surface side to the front surface side of the piezoelectric element 1.
  • the first electrode 5 and the surface electrode layer 6b of the second electrode 6 can be arranged together on the surface side of the piezoelectric element 1.
  • the connection work between the electric signal line 14, the first electrode 5, and the second electrode 6 is made piezoelectric as compared with the case where each of the first electrode and the second electrode is arranged only on separate surfaces of the piezoelectric element. This can be done only on one side of the element 1.
  • the second electrode 6 is composed of the folded electrode, but instead of the second electrode 6, the first electrode 5 may be composed of the folded electrode.
  • the support member 2 supports the piezoelectric element 1 from the back surface side of the piezoelectric element 1. Specifically, the support member 2 is laminated on the piezoelectric element 1 so as to cover the back surface side of the piezoelectric element 1. As a result, it is possible to absorb the ultrasonic waves from the piezoelectric element 1 that become noise. That is, the support member 2 of the present embodiment constitutes a sound absorbing layer that absorbs the ultrasonic waves of the piezoelectric element 1.
  • the sound absorbing layer as the support member 2 can be formed by a method in which a sheet material forming the sound absorbing layer is attached to the piezoelectric element 1, a method in which a liquid sound absorbing material forming the sound absorbing layer is applied and cured, and the like. ..
  • Examples of the material of the support member 2 include rubber and an epoxy resin in which a metal powder such as tungsten powder is dispersed.
  • the acoustic matching member 3 is laminated so as to cover a part of the surface side of the piezoelectric element 1. More specifically, in the acoustic matching member 3 of the present embodiment, the position where the electric signal line 14 is connected in the first electrode 5 and the electric signal line 14 in the surface electrode layer 6b of the second electrode 6 are connected. It is laminated so as to cover the entire surface side of the piezoelectric element 1 except for the position where it is formed.
  • the acoustic matching member 3 of the present embodiment constitutes an acoustic matching layer that enhances the propagation efficiency of ultrasonic waves.
  • the acoustic matching layer as the acoustic matching member 3 is formed by a method in which a sheet material forming the acoustic matching layer is attached to the piezoelectric element 1, a method in which a liquid acoustic matching material forming the acoustic matching layer is applied and cured, and the like. Can be formed.
  • the material of the acoustic matching member 3 include a resin material such as an epoxy resin.
  • the acoustic matching member 3 may be composed of a laminate of resin layers made of a resin material.
  • the housing 12 houses the ultrasonic oscillator 11 inside.
  • the base end side of the housing 12 is connected to the drive shaft 13.
  • the housing 12 has a shape in which an opening 12a is provided in a part of the peripheral wall of a cylindrical metal pipe, and is formed by carving from a metal block, MIM (metal powder injection molding), or the like.
  • the housing 12 may be formed by ceramics formed by firing zirconia or the like or by molding a resin material such as polycarbonate.
  • the housing 12 of the present embodiment includes a tip wall portion 12b located on the tip side of the above-mentioned opening 12a and a base end-side tubular portion 12c located on the base end side of the above-mentioned opening 12a. , Equipped with.
  • at least a part of the holding body 15 and the fixing member 16 is housed in the proximal end side tubular portion 12c.
  • the tip end side and the base end side of the housing 12 of the present embodiment are closed.
  • a tip wall portion 12b is provided at a position on the housing 12 on the tip side of the ultrasonic vibrator 11.
  • a holding body 15 and a fixing member 16 are arranged at a position on the base end side of the housing 12 with respect to the ultrasonic vibrator 11, and close the base end side tubular portion 12c of the housing 12. are doing. By doing so, the accuracy of diagnostic imaging can be improved.
  • the drive shaft 13 is made of a flexible tubular body. Inside the drive shaft 13, an electric signal line 14 connected to the ultrasonic transducer 11 is arranged.
  • the drive shaft 13 is composed of, for example, a multi-layer coil having different winding directions around the shaft. Examples of the coil material include stainless steel and Ni—Ti (nickel / titanium) alloy.
  • the drive shaft 13 passes through the inside of the inner pipe member 30 and the outer pipe member 40 and extends to the hub 32 described later located at the base end portion of the inner pipe member 30. That is, the drive shaft 13 extends from the tip end portion of the insertion portion 110a to the base end portion of the operation portion 110b in the longitudinal direction A.
  • the electric signal line 14 extends in the drive shaft 13 and electrically connects the ultrasonic vibrator 11 and the external device 120. That is, like the drive shaft 13, the electric signal line 14 extends from the tip end portion of the insertion portion 110a to the base end portion of the operation portion 110b in the longitudinal direction A.
  • a plurality of electric signal lines 14 (two in this embodiment) are provided, and are connected to the first electrode 5 and the second electrode 6 described above, respectively.
  • the plurality of electric signal lines 14 are composed of, for example, a twisted pair cable in which two electric signal lines 14 are twisted together.
  • Each electric signal line 14 can be a flexible thin wire member having an outer diameter of more than 0 mm and 0.2 mm or less.
  • Each electric signal line 14 can be composed of, for example, a lead wire larger than 0 mm and 0.2 mm or less, and a covering material formed of an insulating material and covering the periphery of the lead wire. Such an electric signal line 14 is connected to the piezoelectric element 1 by a connecting portion 14a (see FIG. 4) formed of a conducting wire whose covering material is removed and exposed.
  • the holding body 15 is attached to a plurality of (two in this embodiment) electric signal lines 14.
  • the holding body 15 holds a relative positional relationship between a part of each electric signal line 14.
  • the two electric signal lines 14 of the present embodiment are held at a position where the holding body 15 is attached in a state where the positional relationship with each other is separated from each other. In other words, the holder 15 holds a gap between a part of each electric signal line 14.
  • the portion of the two electric signal lines 14 adjacent to the holding body 15 is connected to the piezoelectric element 1 by using solder, a conductive adhesive, or the like. More specifically, the portion of the two electric signal lines 14 adjacent to the tip end side of the holding body 15 is connected to the piezoelectric element 1.
  • the electric signal line 14 of the present embodiment is composed of a conducting wire and a covering material. Therefore, the two electric signal lines 14 of the present embodiment are connected to the first electrode 5 and the second electrode 6 of the piezoelectric element 1 in a state where the covering material is removed and the lead wires are exposed.
  • the holding body 15 is located in the housing 12. More specifically, at least a part (all in this embodiment) of the holding body 15 of the present embodiment is located in the proximal end side tubular portion 12c. In other words, the maximum length of the holder 15 orthogonal to the longitudinal direction A is smaller than the inner diameter of the housing 12. As a result, the holding body 15 can be accommodated in the proximal end side tubular portion 12c of the housing 12. Further, the holding body 15 is not in contact with the inner surface of the base end side tubular portion 12c of the housing 12 at least in a part in the circumferential direction of the housing 12. In the present embodiment, the fixing member 16 is interposed between the holding body 15 and the inner surface of the base end side tubular portion 12c of the housing 12.
  • the retainer 15 may be made of ceramic or the like, but is preferably made of a material containing rubber or resin as a main component.
  • a material containing rubber or resin for example, silicone rubber can be mentioned.
  • examples of the resin material of the holding body 15 include silicone resin and epoxy resin.
  • the holding body 15 is formed of, for example, a silicone rubber-based adhesive, a silicone resin-based adhesive, an epoxy resin-based adhesive, or the like.
  • the holding body 15 can be formed by, for example, a UV curable adhesive.
  • a material having X-ray contrast property such as tungsten may be mixed with the holder 15.
  • the fixing member 16 fixes the position of the holding body 15 in the housing 12.
  • the structure of the fixing member 16 is not particularly limited as long as the position of the holding body 15 in the housing 12 can be fixed.
  • the fixing member 16 is preferably an adhesive body that is interposed between the holding body 15 and the housing 12 and adheres the holding body 15 to the housing 12. In this way, the gap between the holding body 15 and the housing 12 can be filled, and the ultrasonic waves from the ultrasonic transducer 11 pass between the holding body 15 and the housing 12 and are outside the housing 12. It can be suppressed from leaking to. As a result, the ultrasonic waves reflected at the site to be diagnosed can be efficiently received. Therefore, the accuracy of diagnostic imaging can be improved.
  • the adhesive body as the fixing member 16 is preferably arranged so as not to form a gap between the holding body 15 and the inner surface of the housing 12 in the entire circumferential direction of the housing 12.
  • the inside of the housing 12 is closed by the electric signal line 14, the holding body 15, and the adhesive body as the fixing member 16 on the proximal end side of the ultrasonic vibrator 11.
  • the adhesive body as the fixing member 16 is preferably composed of a material containing rubber or resin as a main component.
  • the adhesive body as the fixing member 16 is formed of, for example, a silicone rubber-based adhesive, an epoxy resin-based adhesive, or the like.
  • the rubber material or resin material which is the main component of the adhesive body as the fixing member 16 is It can be different from the rubber material or resin material that is the main component of the holder 15.
  • the adhesive forming the holding body 15 is made of a material having a higher viscosity than the adhesive forming the fixing member 16. It is preferable to do so.
  • the highly viscous adhesive constituting the holding body 15 makes it easy to secure the position holding performance between the plurality of electric signal lines 14.
  • the low-viscosity adhesive constituting the fixing member 16 improves the work efficiency of filling the gap between the holding body 15 and the housing 12. Even if the main components of the holding body 15 and the adhesive body as the fixing member 16 are different in rubber or resin, if they are both formed by an adhesive, for the same reason as described above, It is preferable to adopt the same viscosity relationship as described above.
  • the sheath 20 partitions the first hollow portion 21a and the second hollow portion 21b.
  • the ultrasonic probe 10 is housed in the first hollow portion 21a.
  • the ultrasonic probe 10 can move back and forth in the longitudinal direction A in the first hollow portion 21a.
  • a guide wire W can be inserted into the second hollow portion 21b.
  • the tubular guide wire insertion portion 20b that partitions the second hollow portion 21b is parallel to the tip of the tubular main body portion 20a that partitions the first hollow portion 21a. Is located in.
  • the main body portion 20a and the guide wire insertion portion 20b can be formed by joining different pipe members by heat fusion or the like, but the forming method is not limited to this.
  • the main body 20a is provided with a marker 22 having X-ray contrast property, which is formed of a material that is opaque to X-rays. Further, the guide wire insertion portion 20b is also provided with a marker 23 having X-ray contrast property.
  • the markers 22 and 23 can be configured by, for example, a metal coil or a metal pipe having high X-ray opacity such as platinum, gold, iridium, and tungsten.
  • a window portion 24 formed in which the transparency of ultrasonic waves is higher than that of other parts is formed. More specifically, the window portion 24 of the present embodiment is formed on the main body portion 20a of the sheath 20.
  • the window portion 24 of the main body portion 20a and the guide wire insertion portion 20b are formed of a flexible material, and the material is not particularly limited.
  • the constituent material include various thermoplastic elastomers such as polyethylene, styrene, polyolefin, polyurethane, polyester, polyamide, polyimide, polybutadiene, transpolyisoprene, fluororubber, and chlorinated polyethylene, and one of them.
  • a polymer alloy, a polymer blend, a laminate, or the like in which two or more kinds are combined can also be used.
  • the base end side of the main body portion 20a with respect to the window portion 24 has a reinforcing portion reinforced with a material having a higher rigidity than the window portion 24.
  • the reinforcing portion is formed, for example, by disposing a reinforcing material in which a metal wire such as stainless steel is braided in a mesh shape on a flexible tubular member such as resin.
  • the tubular member is made of the same material as the window portion 24.
  • hydrophilic lubricating coating layer that exhibits lubricity when wet on the outer surface of the sheath 20.
  • a communication hole 26 for communicating the inside and the outside of the first hollow portion 21a is formed. At the time of priming, the gas in the main body 20a can be discharged through the communication hole 26.
  • the inner pipe member 30 includes an inner pipe 31 and a hub 32.
  • the inner pipe 31 is inserted so as to be movable back and forth in the outer pipe member 40.
  • the hub 32 is provided on the base end side of the inner pipe 31.
  • the outer tube member 40 includes an outer tube 41, a tip end side connector 42, and a proximal end side connector 43.
  • the outer pipe 41 is located on the outer side in the radial direction of the inner pipe 31, and the inner pipe 31 moves back and forth inside the outer pipe 41.
  • the tip-side connector 42 connects the base end of the main body 20a of the sheath 20 and the tip of the outer tube 41.
  • the base end side connector 43 is provided at the base end portion of the outer pipe 41, and is configured to receive the inner pipe 31 in the outer pipe 41.
  • the drive shaft 13 and the electric signal line 14 of the ultrasonic probe 10 described above are the main body 20a of the sheath 20, the outer tube member 40 connected to the proximal end side of the main body 20a, and the outer tube member 40. It extends to the hub 32 located at the base end of the inner pipe member 30 in which a part of the inner pipe member 30 is inserted.
  • the ultrasonic probe 10 and the inner tube member 30 described above are connected to each other so as to move back and forth in the longitudinal direction A integrally. Therefore, for example, when the inner pipe member 30 is pushed in the insertion direction A1, the inner pipe member 30 is pushed into the outer pipe member 40 in the insertion direction A1. When the inner tube member 30 is pushed into the outer tube member 40 toward the insertion direction A1, the ultrasonic probe 10 connected to the inner tube member 30 moves in the main body 20a of the sheath 20 in the insertion direction A1. To do. On the contrary, when the inner pipe member 30 is pulled in the pulling direction A2, the inner pipe member 30 is pulled out from the outer pipe member 40 in the pulling direction A2. When the inner tube member 30 is pulled out from the inside of the outer tube member 40 in the removal direction A2, the ultrasonic probe 10 connected to the inner tube member 30 moves in the main body 20a of the sheath 20 in the removal direction A2.
  • the tip portion of the inner pipe member 30 reaches the vicinity of the tip side connector 42 of the outer pipe member 40.
  • the ultrasonic transducer 11 of the ultrasonic probe 10 is located near the tip of the main body 20a of the sheath 20.
  • the inner pipe member 30 is prevented from popping out toward the tip side of the outer pipe member 40, and the outer pipe member 40 is pulled to the most proximal side when the inner pipe member 30 is pulled to the most proximal side.
  • a stopper is provided on the base end side of the tube to prevent it from falling off.
  • the stopper portion is not particularly limited as long as it can realize the above function, and may be configured by, for example, a wall portion that abuts the outer pipe member 40 at a predetermined position in the longitudinal direction A.
  • a connector portion that is mechanically and electrically connected to the external device 120 is provided at the base end of the hub 32 of the inner pipe member 30. That is, the diagnostic imaging catheter 110 is mechanically and electrically connected to the external device 120 by a connector portion provided on the hub 32 of the inner tube member 30. More specifically, the electric signal line 14 of the ultrasonic probe 10 extends from the ultrasonic transducer 11 to the connector portion of the hub 32, and the connector portion of the hub 32 is connected to the external device 120. Then, the ultrasonic vibrator 11 and the external device 120 are electrically connected. The received signal in the ultrasonic vibrator 11 is transmitted to the external device 120 via the connector portion of the hub 32, is subjected to predetermined processing, and is displayed as an image.
  • the external device 120 has a motor 121 which is a power source for rotating the drive shaft 13 and a motor 122 which is a power source for moving the drive shaft 13 in the longitudinal direction A. ..
  • the rotational motion of the motor 122 is converted into axial motion by the ball screw 123 connected to the motor 122.
  • the external device 120 of the present embodiment includes a drive unit 120a, a control device 120b electrically connected to the drive unit 120a by wire or wirelessly, and the control device 120b is a diagnostic imaging catheter 110.
  • a monitor 120c capable of displaying an image generated based on a received signal received from is provided.
  • the above-mentioned motor 121, motor 122 and ball screw 123 of the present embodiment are provided in the drive unit 120a.
  • the operation of the drive unit 120a is controlled by the control device 120b.
  • the control device 120b can be configured by a processor including a CPU and a memory.
  • the external device 120 is not limited to the configuration shown in the present embodiment, and may be further provided with an external input unit such as a keyboard, for example.
  • FIG. 5 is a flowchart showing an example of a method for manufacturing the ultrasonic probe 10.
  • the method for manufacturing the ultrasonic probe 10 shown in FIG. 5 includes a sandwiching step S1, a mounting step S2, a coating removing step S3, a cutting step S4, an alignment step S5, and a connecting step S6.
  • FIG. 6A is a diagram showing an outline of the sandwiching step S1.
  • FIG. 6B is a diagram showing an outline of the mounting process S2.
  • FIG. 6C is a diagram showing an outline of the coating removal step S3.
  • FIG. 6D is a diagram showing an outline of the cutting step S4.
  • FIG. 6E is a diagram showing an outline of the alignment step S5.
  • FIG. 6F is a diagram showing an outline of the connection step S6.
  • each process S1 to S6 will be described in detail with reference to FIGS. 5 and 6A to 6F.
  • a plurality of electric signal lines 14 are sandwiched at positions on both sides of the holding position P3 described later, which is held by the holding body 15.
  • the two electric signal lines 14 formed of the twisted pair cable are sandwiched at two places by using the first clamp member 201a and the second clamp member 201b. More specifically, at the first position P1 in which the first clamp member 201a sandwiches the two electric signal lines 14, the second clamp member 201b holds the two electric signal lines 14 in the extending direction C of the twist pair cable. It is different from the second position P2 to be sandwiched.
  • a holding position P3, which will be described later, to which the holding body 15 is attached is located between the first position P1 and the second position P2.
  • the sandwiching step S1 can improve the workability of the mounting step S2, which will be described later.
  • Each of the first clamp member 201a and the second clamp member 201b can be configured such that two electric signal lines 14 are sandwiched by, for example, a sponge material.
  • one of the first clamp member 201a and the second clamp member 201b is rotated with respect to the other in a state where a predetermined tension is applied to the extending direction C, and 2
  • the twist of the electric signal line 14 of the book is eliminated.
  • a plurality of (two in this embodiment) electric signal lines 14 extend along one direction (extending direction C in this embodiment) at the holding position P3 described later.
  • a plurality of electric signal lines 14 can be sandwiched. More specifically, in the present embodiment, of the two electric signal lines 14, the portion between the first position P1 and the second position P2 extends so as to be substantially parallel to the extending direction C. The state can be realized.
  • the distance in the extending direction C between the first position P1 and the second position P2 is preferably 3 cm or more in consideration of workability such as the mounting step S2 described later.
  • a holder 15 capable of maintaining a relative positional relationship between a part of the electric signal lines 14 is attached to the plurality of electric signal lines 14. More specifically, at the holding position P3 between the first position P1 and the second position P2 in the extending direction C, the two electric signal lines 14 substantially parallel to the extending direction C are separated from each other. A holder 15 that keeps the distance constant is attached.
  • the retainer 15 can be, for example, a UV curable adhesive.
  • a split mold formed of a UV permeable material may be used. In this way, the UV curable adhesive is filled in the split molds arranged so as to sandwich the plurality of electric signal lines 14, and UV is irradiated from the outside. As a result, the adhesive can be cured to form the holding body 15.
  • the distance between the plurality of electric signal lines 14 separated by the holding body 15 may be appropriately determined according to the separation distance between the locations where the electric signal lines 14 are connected in the piezoelectric element 1.
  • the shape of the holding body 15 is not particularly limited, but since it is housed in the housing 12 (see FIGS. 2 and 3) as described above, it is molded in a size and shape that can be housed in the housing 12.
  • the coating material of at least two electric signal lines 14 out of the plurality of electric signal lines 14 is removed by laser irradiation. This exposes the lead wire of the electric signal line 14.
  • the covering material of the two electric signal lines 14 is applied at either a position between the first position P1 and the holding position P3 or between the second position P2 and the holding position P3. Remove.
  • the portion adjacent to the holding body 15 even if the first clamp member 201a and the second clamp member 201b are removed from the electric signal line 14, the separation distance between the two electric signal lines 14 is relatively easy to be maintained. Therefore, of the two electric signal lines 14, the portion adjacent to the holding body 15 can be easily used as a portion to be connected to the piezoelectric element 1 in the connection step S6 described later, and the workability of the connection step S6 can be improved. ..
  • portion adjacent to the holding body means the holding body 15 in the extending direction C with respect to the minimum separation distance at the holding position P3 in which the two electric signal lines 14 are held by the holding body 15. It means a portion located closer to the holder 15 than a position separated by a distance of 5 times from.
  • the cutting step S4 of the two electric signal lines 14 the portion from which the coating material has been removed by the coating removing step S3 is cut and connected to the piezoelectric element 1 (see FIG. 4). Part 14a is formed.
  • This cutting step S4 is executed in a state where the two electric signal lines 14 are sandwiched between the first clamp member 201a and the second clamp member 201b.
  • the connection position between the piezoelectric element 1 and the connection portion 14a of the two electric signal lines 14 is adjusted by the alignment jig 203.
  • the alignment jig 203 of the present embodiment includes a vibrator fixing portion 203a in which the ultrasonic vibrator 11 including the piezoelectric element 1 is fixed in position, and a holding body fixing portion 203b in which the holding body 15 is fixed in position.
  • FIG. 6E only the piezoelectric element 1 of the ultrasonic oscillator 11 is shown for convenience of explanation.
  • the holding body fixing portion 203b is slidably attached to the vibrator fixing portion 203a so as to be close to and separated from the thickness direction B in a direction orthogonal to the thickness direction B.
  • the position of the ultrasonic vibrator 11 fixed to the vibrator fixing portion 203a and the holding body 15 fixed to the holding body fixing portion 203b are different in the thickness direction B so as not to interfere with each other when sliding. There is.
  • the holder fixing portion 203b with respect to the vibrator fixing portion 203a by sliding the holder fixing portion 203b with respect to the vibrator fixing portion 203a, at least a part of the piezoelectric element 1 of the ultrasonic vibrator 11 and two electric wires are used. It can be aligned so that it overlaps with the connecting portion 14a of the signal line 14 in the thickness direction B. In this way, by using the alignment jig 203, the connection operation in the connection step S6 described later can be executed more reliably and easily.
  • connection step S6 a portion of the plurality of electric signal lines 14 adjacent to the holding body 15 of at least two electric signal lines 14 is connected to the piezoelectric element 1 of the ultrasonic vibrator 11. ..
  • both of the two electric signal lines 14 are connected to the piezoelectric element 1.
  • one of the two electric signal lines 14 is connected to the first electrode 5 (see FIG. 4) of the piezoelectric element 1
  • the other of the two electric signal lines 14 is connected to the second electrode of the piezoelectric element 1.
  • Connect to 6 see FIG. 4).
  • the connection of the electric signal line 14 to the piezoelectric element 1 can be realized by, for example, the preliminary solder 204 in the molten state and the solder paste 205.
  • Preliminary solder 204 is applied to the first electrode 5 and the second electrode 6 of the piezoelectric element 1 in advance, and after arranging the electric signal line 14, the solder paste 205 is applied to apply the electric signal line 14 to the preliminary solder 204 and It is sandwiched between solder paste 205.
  • the solder paste 205 is melted, integrated with the preliminary solder 204 in the melted state, and the electric signal line 14 is joined.
  • the solder paste 205 is integrated with each electric signal line 14 by being heated by hot air. It separates into the part to be soldered. In this way, the electric signal line 14 can be connected to the piezoelectric element 1 by using the preliminary solder 204 and the solder paste 205.
  • the preliminary solder 204 is applied to the piezoelectric element 1 in advance, and the solder paste 205 is applied later so as to sandwich the electric signal line 14, but the reverse is also possible. That is, the solder paste 205 may be applied to the piezoelectric element 1 in advance, and the preliminary solder 204 may be applied later so as to sandwich the electric signal line 14. Further, when the preliminary solder 204 or the solder paste 205 is applied to the piezoelectric element 1 in advance, it is preferable to quantify the applied amount by using a metal mask.
  • a UV curable adhesive may be used for connection.
  • the two electric signal lines 14 are held by the holder 15. Therefore, of the two electric signal lines 14, the portions located within a predetermined distance from the holding body 15 can maintain a state of being separated from each other by a predetermined distance. Therefore, in the connection step S6 described above, there is a case where two electric signal lines 14 having flexibility, for example, an outer diameter of about 0.1 mm, are connected to a small piezoelectric element 1 of 0.5 mm square, for example. However, since the two electric signal lines 14 can be maintained at a predetermined distance (the distance between the points where the two electric signal lines 14 are connected in the piezoelectric element 1), the piezoelectric element 1 can be relatively easily separated. Can make a connection to.
  • a manufacturing apparatus capable of executing one or more of the above steps S1 to S6 may be used. In this way, it is possible to suppress manual failures and further improve production efficiency.
  • the method for manufacturing the ultrasonic probe 10 shown in FIG. 4 further includes a housing step of housing the holder 15 in the housing 12 (see FIGS. 2 and 3). After the holding body 15 is housed in the housing 12 by this housing step, the connection step S6 described above may be executed. Further, the method for manufacturing the ultrasonic probe 10 shown in FIG. 4 further includes a fixing step of fixing the position of the holding body 15 in the housing 12 by using the fixing member 16 (see FIGS. 2 and 3). In the fixing step, for example, an adhesive forming the fixing member 16 is filled between the housing 12 and the holding body 15 to fix the position of the holding body 15 with respect to the housing 12.
  • the electric signal line is increased by the volume of the holding body 15 as compared with the case where only the electric signal line 14 is housed in the housing 12.
  • the gap between the 14 and the housing 12 can be reduced. Therefore, when a liquid adhesive is used as the fixing member 16, the filling amount of the adhesive as the fixing member 16 can be reduced. As a result, the amount of wasted adhesive that flows out of the housing 12 during filling can also be reduced.
  • the method for manufacturing an ultrasonic probe and the ultrasonic probe according to the present disclosure are not limited to the specific configuration / process specified in the above-described embodiment, and are not limited to the description of the scope of the claim. , Various modifications and changes are possible.
  • the method for manufacturing the ultrasonic probe 10 shown in FIG. 4 may include, for example, the above-mentioned accommodating step in addition to the steps S1 to S6. Further, in the method for manufacturing the ultrasonic probe 10 shown in FIG. 4, for example, the mounting step S2 is executed before the coating removing step S3, but the coating removing step S3 may be executed first.
  • the method for manufacturing the ultrasonic probe according to the present disclosure is not limited to the steps S1 to S6 shown in the above-described embodiment and the order thereof. Therefore, the method for manufacturing the ultrasonic probe according to the present disclosure may include, for example, a step of dissolving the holding body 15 with a solvent or the like after connecting the electric signal line 14 and the piezoelectric element 1.
  • the connected piezoelectric element 1 and the electric signal line 14 may be fixed to the housing 12 by another fixing method that does not use an adhesive as the fixing member 16.
  • the ultrasonic probe 10 of the above-described embodiment has only two electric signal lines 14, and the two electric signal lines 14 are held by the holding body 15, but three of them.
  • the above electric signal line 14 may be held by the holding body 15. In such a case, at least two electric signal lines 14 of three or more electric signal lines 14 may be connected to the piezoelectric element 1.
  • the ultrasonic probe 10 of the above-described embodiment is configured to include only an ultrasonic transducer 11 capable of intravascular ultrasonic diagnosis as an imaging core, but is not limited to this configuration, for example, light. It may be configured to further include an optical transmission / reception unit that enables interference fault diagnosis (Optical Coherence Tomography, abbreviated as “OCT”).
  • FIG. 7 is a cross-sectional view showing a part of an image diagnostic catheter 410 including an ultrasonic transducer 11 and an ultrasonic probe 310 including an optical transmission / reception unit 301.
  • the ultrasonic probe 310 shown in FIG. 7 is different from the above-mentioned ultrasonic probe 10 in that a configuration that enables optical interference tomographic diagnosis is added.
  • an optical transmitter / receiver 301 is arranged in the housing 12 in addition to the ultrasonic oscillator 11.
  • the optical transmission / reception unit 301 continuously transmits light (measurement light) transmitted from the optical fiber cable as the optical signal line 302 extending in the drive shaft 13 into the biological lumen, and also in the biological lumen. Continuously receives reflected light from the living body tissue of.
  • the optical transmission / reception unit 301 transmits the received reflected light to the external device 120 (see FIG. 1) through the optical signal line 302.
  • the control device 120b (see FIG. 1) of the external device 120 generates interference light data by interfering the reflected light obtained by the measurement with the reference light obtained by separating the light from the light source. Further, the control device 120b of the external device 120 generates an optical tomographic image based on the generated interference light data and displays it on the monitor 120c (see FIG. 1).
  • the plurality of electric signal lines 14 are spirally wound around the optical signal lines 302, and the plurality of electric signal lines 14 extend in parallel with each other. .. More specifically, the two electric signal lines 14 shown in FIG. 7 extend around the optical fiber cable as the optical signal line 302 extending in the longitudinal direction A in a double spiral shape.
  • the method for manufacturing an ultrasonic probe according to the present disclosure can be applied even to an ultrasonic probe 310 having a configuration capable of diagnosing an optical interference fault as shown in FIG. 7.
  • the present disclosure relates to a method for manufacturing an ultrasonic probe and an ultrasonic probe.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The method for manufacturing an ultrasonic probe pertaining to the present invention includes: an attachment step for attaching, to at least two electrical signal lines, a retaining body capable of retaining a relative positional relationship between portions of each of the at least two electrical signal lines; and a connection step for connecting portions of the at least two electrical signal lines that are adjacent to the retaining body to a piezoelectric element.

Description

超音波探触子の製造方法、及び、超音波探触子Manufacturing method of ultrasonic probe and ultrasonic probe
 本開示は、超音波探触子の製造方法、及び、超音波探触子、に関する。 The present disclosure relates to a method for manufacturing an ultrasonic probe and an ultrasonic probe.
 超音波探触子は、医療用超音波診断装置の超音波の送受信器として利用されている。超音波探触子は、カテーテル内に装填されることで、このカテーテルを体内に挿入した状態で行われる超音波診断にも用いられている。 The ultrasonic probe is used as an ultrasonic transmitter / receiver for medical ultrasonic diagnostic equipment. The ultrasonic probe is also used for ultrasonic diagnosis performed with the catheter inserted in the body by being loaded into the catheter.
 特許文献1には、頂部主表面及び底部主表面を有するアクティブトランスジューサエレメントと、頂部主表面上に形成される頂部電極と、底部主表面上に形成される底部電極と、低部電極を覆う導電性バッキングエレメントと、頂部電極に電気的に接続されている第1リードと、導電性バッキングエレメントに電気的に接続される第2リードと、を備える超音波探触子が開示されている。 Patent Document 1 describes an active transducer element having a top main surface and a bottom main surface, a top electrode formed on the top main surface, a bottom electrode formed on the bottom main surface, and conductivity covering the low electrode. An ultrasonic probe comprising a sex backing element, a first lead electrically connected to a top electrode, and a second lead electrically connected to a conductive backing element is disclosed.
特開2006-198425号公報Japanese Unexamined Patent Publication No. 2006-198425
 カテーテルに装填される超音波探触子では、患者負担を軽減するため、及び、血管深部などのより細径な体腔への挿入性を高めるため、小型化の要求が高い。 There is a high demand for miniaturization of the ultrasonic probe loaded in the catheter in order to reduce the burden on the patient and to improve the insertability into a smaller diameter body cavity such as a deep blood vessel.
 超音波探触子の小型化は、圧電体及び一対の電極からなる圧電素子を含む超音波振動子を小型化することで実現できる。しかしながら、超音波振動子を小型化すると、圧電素子も小さくなる。そのため、圧電素子の電極も小さくなり、圧電素子と外部電源とを接続する電気信号線を、圧電素子の電極に接続する作業が困難になる。 The miniaturization of the ultrasonic probe can be realized by miniaturizing the ultrasonic vibrator including the piezoelectric element and the piezoelectric element composed of a pair of electrodes. However, when the ultrasonic oscillator is miniaturized, the piezoelectric element is also miniaturized. Therefore, the electrode of the piezoelectric element also becomes small, and it becomes difficult to connect the electric signal line connecting the piezoelectric element and the external power source to the electrode of the piezoelectric element.
 本開示は、圧電素子に対して電気信号線を接続する作業を容易にする、超音波探触子の製造方法を提供することを目的とする。また、本開示は、圧電素子に対して電気信号線を接続することが容易となる構成を備える超音波探触子を提供することを目的とする。 An object of the present disclosure is to provide a method for manufacturing an ultrasonic probe that facilitates the work of connecting an electric signal line to a piezoelectric element. Another object of the present disclosure is to provide an ultrasonic probe having a configuration that facilitates connection of an electric signal line to a piezoelectric element.
 本開示の第1の態様としての超音波探触子の製造方法は、超音波探触子の製造方法であって、少なくとも2本の電気信号線に対して、前記少なくとも2本の電気信号線の一部同士の相対的な位置関係を保持可能な保持体を取り付ける取付工程と、前記少なくとも2本の電気信号線のうち前記保持体と隣接する部分を、圧電素子に接続する接続工程と、を含む。 The method for manufacturing an ultrasonic probe as the first aspect of the present disclosure is a method for manufacturing an ultrasonic probe, wherein at least two electric signal lines are opposed to at least two electric signal lines. A mounting step of attaching a holding body capable of maintaining a relative positional relationship between a part of the above, and a connecting step of connecting a portion of the at least two electric signal lines adjacent to the holding body to a piezoelectric element. including.
 本開示の1つの実施形態としての超音波探触子の製造方法は、前記取付工程の前に、前記少なくとも2本の電気信号線を、前記保持体により保持される保持位置の両側の位置で挟持する挟持工程を含む。 In a method of manufacturing an ultrasonic probe as one embodiment of the present disclosure, at least two electric signal lines are held at positions on both sides of a holding position held by the holding body before the mounting step. Includes a pinching step.
 本開示の1つの実施形態として、前記挟持工程では、前記少なくとも2本の電気信号線が前記保持位置において一方向に沿って延在するように、前記少なくとも2本の電気信号線を挟持する。 As one embodiment of the present disclosure, in the sandwiching step, the at least two electric signal lines are sandwiched so that the at least two electric signal lines extend along one direction at the holding position.
 本開示の1つの実施形態としての超音波探触子の製造方法は、前記挟持工程の後で、かつ、前記接続工程の前に、前記少なくとも2本の電気信号線の被覆材を除去する被覆除去工程を含む。 A method of manufacturing an ultrasonic probe as one embodiment of the present disclosure is a coating that removes the coating material of at least two electric signal lines after the sandwiching step and before the connecting step. Includes removal step.
 本開示の1つの実施形態としての超音波探触子の製造方法は、前記接続工程の前に、前記圧電素子の接続位置と、前記少なくとも2本の電気信号線の接続位置と、を位置合わせ冶具により調整する位置合わせ工程を含む。 In the method for manufacturing an ultrasonic probe as one embodiment of the present disclosure, the connection position of the piezoelectric element and the connection position of at least two electric signal lines are aligned before the connection step. Includes an alignment step adjusted by a jig.
 本開示の第2の態様としての超音波探触子は、圧電素子と、前記圧電素子に接続されている少なくとも2本の電気信号線と、前記少なくとも2本の電気信号線に取り付けられ、前記少なくとも2本の電気信号線の一部同士の相対的な位置関係を保持する保持体と、前記圧電素子及び前記保持体を収容するハウジングと、を備える。 The ultrasonic probe as the second aspect of the present disclosure is attached to the piezoelectric element, at least two electric signal lines connected to the piezoelectric element, and at least the two electric signal lines, and is described. It includes a holding body that holds a relative positional relationship between a part of at least two electric signal lines, and a housing that houses the piezoelectric element and the holding body.
 本開示の1つの実施形態としての超音波探触子は、前記保持体の前記ハウジング内での位置を固定する固定部材を備える。 The ultrasonic probe as one embodiment of the present disclosure includes a fixing member for fixing the position of the holder in the housing.
 本開示の1つの実施形態として、前記固定部材は、前記保持体と前記ハウジングとの間に介在し、前記保持体を前記ハウジングに対して接着する接着体である。 As one embodiment of the present disclosure, the fixing member is an adhesive body that is interposed between the holding body and the housing and adheres the holding body to the housing.
 本開示の1つの実施形態として、前記接着体及び前記保持体は主成分としてゴム又は樹脂を含み、前記接着体の主成分となるゴム材料又は樹脂材料は、前記保持体の主成分となるゴム材料又は樹脂材料と異なる。 In one embodiment of the present disclosure, the adhesive and the retainer contain rubber or resin as a main component, and the rubber material or resin material as the main component of the adhesive is rubber which is the main component of the retainer. Different from material or resin material.
 本開示によれば、圧電素子に対して電気信号線を接続する作業を容易にする、超音波探触子の製造方法を提供することができる。また、本開示によれば、圧電素子に対して電気信号線を接続することが容易となる構成を備える超音波探触子を提供することができる。 According to the present disclosure, it is possible to provide a method for manufacturing an ultrasonic probe that facilitates the work of connecting an electric signal line to a piezoelectric element. Further, according to the present disclosure, it is possible to provide an ultrasonic probe having a configuration that facilitates connection of an electric signal line to a piezoelectric element.
本開示の一実施形態としての超音波探触子を含む画像診断用カテーテルと、外部装置と、が接続された状態を示す図である。It is a figure which shows the state which the image diagnostic catheter including the ultrasonic probe as one Embodiment of this disclosure, and the external device are connected. 図1に示す画像診断用カテーテルの先端部における長手方向に平行な断面を示す断面図である。It is sectional drawing which shows the cross section parallel to the longitudinal direction in the tip part of the diagnostic imaging catheter shown in FIG. 図1に示す画像診断用カテーテルの先端部における長手方向に直交する断面を示す断面図であり、図2のI-I線の位置での断面図である。It is a cross-sectional view which shows the cross section orthogonal to the longitudinal direction in the tip part of the diagnostic imaging catheter shown in FIG. 1, and is the cross-sectional view at the position of line I-I of FIG. 図1に示す超音波探触子の超音波振動子を示す図である。It is a figure which shows the ultrasonic transducer of the ultrasonic probe shown in FIG. 図1に示す超音波探触子の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the ultrasonic probe shown in FIG. 挟持工程S1の概要を示す図である。It is a figure which shows the outline of the pinching step S1. 取付工程S2の概要を示す図である。It is a figure which shows the outline of the mounting process S2. 被覆除去工程S3の概要を示す図である。It is a figure which shows the outline of the coating removal step S3. 切断工程S4の概要を示す図である。It is a figure which shows the outline of the cutting process S4. 位置合わせ工程S5の概要を示す図である。It is a figure which shows the outline of the alignment process S5. 接続工程S6の概要を示す図である。It is a figure which shows the outline of the connection process S6. 本開示の一実施形態としての超音波探触子を含む画像診断用カテーテルの一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a diagnostic imaging catheter including an ultrasonic probe as an embodiment of the present disclosure.
 以下、本開示に係る超音波探触子の製造方法の実施形態、及び、本開示に係る超音波探触子の実施形態、について図面を参照して説明する。各図において共通する部材・部位には同一の符号を付している。 Hereinafter, an embodiment of the method for manufacturing an ultrasonic probe according to the present disclosure and an embodiment of the ultrasonic probe according to the present disclosure will be described with reference to the drawings. The same reference numerals are given to common members and parts in each figure.
 まず、本開示に係る超音波探触子を適用可能な画像診断装置の一例を説明する。図1は、一実施形態としての超音波探触子10を備える画像診断装置100を示す図である。 First, an example of an diagnostic imaging apparatus to which the ultrasonic probe according to the present disclosure can be applied will be described. FIG. 1 is a diagram showing an image diagnostic apparatus 100 including an ultrasonic probe 10 as an embodiment.
 画像診断装置100は、画像診断用カテーテル110と、外部装置120と、を備える。図1では、画像診断用カテーテル110が外部装置120に接続されている状態を示している。図2は、画像診断用カテーテル110の先端部における長手方向Aに平行な断面を示す断面図である。図3は、画像診断用カテーテル110の先端部における長手方向Aに直交する断面を示す断面図である。図3では、図2のI-I線の位置での断面を示している。図4は、超音波振動子11を示す図である。図4では、説明の便宜上、超音波振動子11に接続される電気信号線14の位置を二点鎖線により示している。 The diagnostic imaging device 100 includes a diagnostic imaging catheter 110 and an external device 120. FIG. 1 shows a state in which the diagnostic imaging catheter 110 is connected to the external device 120. FIG. 2 is a cross-sectional view showing a cross section parallel to the longitudinal direction A at the tip of the diagnostic imaging catheter 110. FIG. 3 is a cross-sectional view showing a cross section of the tip of the diagnostic imaging catheter 110 perpendicular to the longitudinal direction A. FIG. 3 shows a cross section at the position of the I-I line of FIG. FIG. 4 is a diagram showing an ultrasonic transducer 11. In FIG. 4, for convenience of explanation, the position of the electric signal line 14 connected to the ultrasonic vibrator 11 is shown by a chain double-dashed line.
<画像診断用カテーテル110>
 画像診断用カテーテル110は、血管内超音波診断法(Intravascular Ultrasound、略称「IVUS」)に適用される。図1に示すように、画像診断用カテーテル110は、外部装置120に接続されることによって駆動される。より具体的に、本実施形態の画像診断用カテーテル110は、外部装置120の駆動ユニット120aに接続されている。
<Catalog for diagnostic imaging 110>
The diagnostic imaging catheter 110 is applied to an intravascular ultrasound (abbreviated as "IVUS"). As shown in FIG. 1, the diagnostic imaging catheter 110 is driven by being connected to an external device 120. More specifically, the diagnostic imaging catheter 110 of the present embodiment is connected to the drive unit 120a of the external device 120.
 以下、説明の便宜上、画像診断用カテーテル110において、画像診断用カテーテル110の長手方向Aで生体内に挿入される側を「先端側」と記載し、その反対側を「基端側」と記載する。また、画像診断用カテーテル110の基端側から先端側に向かう方向を単に「挿入方向A1」と記載する場合がある。また、画像診断用カテーテル110の先端側から基端側に向かう方向を単に「抜去方向A2」と記載する場合がある。 Hereinafter, for convenience of explanation, in the diagnostic imaging catheter 110, the side inserted into the living body in the longitudinal direction A of the diagnostic imaging catheter 110 is described as the "tip side", and the opposite side is described as the "base end side". To do. Further, the direction from the proximal end side to the distal end side of the diagnostic imaging catheter 110 may be simply described as "insertion direction A1". Further, the direction from the distal end side to the proximal end side of the diagnostic imaging catheter 110 may be simply described as "removal direction A2".
 図1に示すように、画像診断用カテーテル110は、挿入部110aと、操作部110bと、を備える。挿入部110aは、画像診断用カテーテル110のうち、生体内に挿入されて使用される部位である。操作部110bは、画像診断用カテーテル110のうち、挿入部110aが生体内に挿入されている状態で、生体外で操作される部位である。本実施形態の画像診断用カテーテル110では、後述する先端側コネクタ42(図1参照)よりも先端側の部分が挿入部110aであり、先端側コネクタ42から基端側の部分が操作部110bである。 As shown in FIG. 1, the diagnostic imaging catheter 110 includes an insertion portion 110a and an operation portion 110b. The insertion portion 110a is a portion of the diagnostic imaging catheter 110 that is inserted into the living body and used. The operation unit 110b is a portion of the diagnostic imaging catheter 110 that is operated in vitro with the insertion unit 110a inserted into the living body. In the diagnostic imaging catheter 110 of the present embodiment, the portion on the distal end side of the distal end side connector 42 (see FIG. 1) described later is the insertion portion 110a, and the portion on the proximal end side from the distal end side connector 42 is the operation portion 110b. is there.
 図1、図2に示すように、挿入部110aは、超音波探触子10と、シース20と、を備える。 As shown in FIGS. 1 and 2, the insertion portion 110a includes an ultrasonic probe 10 and a sheath 20.
 図1に示すように、操作部110bは、内管部材30と、外管部材40と、を備える。内管部材30は、超音波探触子10の基端側の端部を保持している。外管部材40は、シース20の基端側の端部を保持している。詳細は後述するが、内管部材30が外管部材40内を中心軸方向に移動することで、超音波探触子10がシース20内を長手方向Aに移動することができる。また、詳細は後述するが、超音波探触子10の一部である駆動シャフト13及び電気信号線14は、内管部材30及び外管部材40の内部を通じて、長手方向Aにおいて、挿入部110aの領域のみならず、操作部110bの領域に亘って延在している。つまり、本実施形態の操作部110bは、内管部材30及び外管部材40に加えて、超音波探触子10により一部が構成されている。 As shown in FIG. 1, the operation unit 110b includes an inner pipe member 30 and an outer pipe member 40. The inner tube member 30 holds an end portion of the ultrasonic probe 10 on the proximal end side. The outer tube member 40 holds an end portion of the sheath 20 on the base end side. Although the details will be described later, the ultrasonic probe 10 can move in the sheath 20 in the longitudinal direction A by moving the inner tube member 30 in the outer tube member 40 in the central axis direction. Further, as will be described in detail later, the drive shaft 13 and the electric signal line 14 which are a part of the ultrasonic probe 10 pass through the inside of the inner tube member 30 and the outer tube member 40, and the insertion portion 110a is inserted in the longitudinal direction A. It extends not only to the region of the above but also to the region of the operation unit 110b. That is, the operation unit 110b of the present embodiment is partially composed of the ultrasonic probe 10 in addition to the inner tube member 30 and the outer tube member 40.
[超音波探触子10]
 図2に示すように、超音波探触子10は、超音波振動子11と、ハウジング12と、駆動シャフト13と、電気信号線14と、保持体15と、固定部材16と、を備える。
[Ultrasonic probe 10]
As shown in FIG. 2, the ultrasonic probe 10 includes an ultrasonic transducer 11, a housing 12, a drive shaft 13, an electric signal line 14, a holding body 15, and a fixing member 16.
 図4に示すように、超音波振動子11は、圧電素子1と、支持部材2と、音響整合部材3と、を備える。具体的に、圧電素子1は、扁平状の圧電体4と、この圧電体4の厚み方向Bの少なくとも一方側に積層されている第1電極5と、圧電体4の厚み方向Bの少なくとも他方側に積層されている第2電極6と、からなる。以下、説明の便宜上、少なくとも第1電極5の一部が設けられている、圧電体4の厚み方向Bの一方側を「圧電素子1の表面側」と記載する。また、説明の便宜上、少なくとも第2電極6の一部が設けられている、圧電体4の厚み方向Bの他方側を「圧電素子1の裏面側」と記載する。圧電素子1の表面側とは、超音波の送受信を行う側である。また、圧電素子1の裏面側とは、超音波の送受信を行う側とは反対側である。 As shown in FIG. 4, the ultrasonic transducer 11 includes a piezoelectric element 1, a support member 2, and an acoustic matching member 3. Specifically, the piezoelectric element 1 includes a flat piezoelectric body 4, a first electrode 5 laminated on at least one side of the piezoelectric body 4 in the thickness direction B, and at least the other of the piezoelectric body 4 in the thickness direction B. It is composed of a second electrode 6 laminated on the side. Hereinafter, for convenience of explanation, one side of the thickness direction B of the piezoelectric body 4 in which at least a part of the first electrode 5 is provided will be referred to as “the surface side of the piezoelectric element 1”. Further, for convenience of explanation, the other side of the piezoelectric body 4 in the thickness direction B in which at least a part of the second electrode 6 is provided is described as "the back surface side of the piezoelectric element 1". The surface side of the piezoelectric element 1 is a side that transmits and receives ultrasonic waves. Further, the back surface side of the piezoelectric element 1 is the side opposite to the side that transmits and receives ultrasonic waves.
 圧電素子1の圧電体4は、例えば、圧電セラミックシートにより構成される。圧電セラミックシートの材料としては、例えば、チタン酸ジルコニウム酸鉛(PZT)、ニオブ酸リチウムなどの圧電セラミック材料が挙げられる。圧電体4は、圧電セラミック材料ではなく、水晶により形成されていてもよい。 The piezoelectric body 4 of the piezoelectric element 1 is composed of, for example, a piezoelectric ceramic sheet. Examples of the material of the piezoelectric ceramic sheet include piezoelectric ceramic materials such as lead titanate (PZT) and lithium niobate. The piezoelectric body 4 may be made of crystal instead of the piezoelectric ceramic material.
 圧電素子1の第1電極5及び第2電極6は、例えば、マスク材を用いたイオンプレーティング法、蒸着法、スパッタ法により、圧電体4の厚み方向Bの両面それぞれに電極層として積層させることで形成できる。第1電極5及び第2電極6の材料としては、例えば、銀、クロム、銅、ニッケル、金などの金属や、これら金属の積層体などが挙げられる。 The first electrode 5 and the second electrode 6 of the piezoelectric element 1 are laminated as electrode layers on both sides of the piezoelectric body 4 in the thickness direction B by, for example, an ion plating method using a mask material, a vapor deposition method, or a sputtering method. Can be formed by Examples of the material of the first electrode 5 and the second electrode 6 include metals such as silver, chromium, copper, nickel, and gold, and laminates of these metals.
 本実施形態の第1電極5は、圧電素子1の表面側のみに形成されている。 The first electrode 5 of this embodiment is formed only on the surface side of the piezoelectric element 1.
 これに対して、本実施形態の第2電極6は折返し電極により構成されている。具体的に、本実施形態の第2電極6は、裏面電極層6aと、表面電極層6bと、連結導電部6cと、を備える。裏面電極層6aは、圧電素子1の裏面側に位置する。表面電極層6bは、圧電素子1の表面側に位置する。連結導電部6cは、裏面電極層6a及び表面電極層6bを連結している。換言すれば、本実施形態の第2電極6は、圧電素子1の裏面側から表面側に亘って形成されている。第2電極6を折返し電極とすることで、圧電素子1の表面側に、第1電極5、及び、第2電極6の表面電極層6b、を共に配置できる。これにより、第1電極及び第2電極それぞれが圧電素子の別々の面のみに配置されている場合と比較して、電気信号線14と第1電極5及び第2電極6との接続作業を圧電素子1の片面側のみで行うことができる。 On the other hand, the second electrode 6 of the present embodiment is composed of a folded electrode. Specifically, the second electrode 6 of the present embodiment includes a back surface electrode layer 6a, a front surface electrode layer 6b, and a connecting conductive portion 6c. The back surface electrode layer 6a is located on the back surface side of the piezoelectric element 1. The surface electrode layer 6b is located on the surface side of the piezoelectric element 1. The connecting conductive portion 6c connects the back surface electrode layer 6a and the front surface electrode layer 6b. In other words, the second electrode 6 of the present embodiment is formed from the back surface side to the front surface side of the piezoelectric element 1. By using the second electrode 6 as a folded electrode, the first electrode 5 and the surface electrode layer 6b of the second electrode 6 can be arranged together on the surface side of the piezoelectric element 1. As a result, the connection work between the electric signal line 14, the first electrode 5, and the second electrode 6 is made piezoelectric as compared with the case where each of the first electrode and the second electrode is arranged only on separate surfaces of the piezoelectric element. This can be done only on one side of the element 1.
 本実施形態では第2電極6が折返し電極により構成されているが、第2電極6に代えて、第1電極5が折返し電極により構成されていてもよい。 In the present embodiment, the second electrode 6 is composed of the folded electrode, but instead of the second electrode 6, the first electrode 5 may be composed of the folded electrode.
 図4に示すように、支持部材2は、圧電素子1の裏面側から圧電素子1を支持している。具体的に、支持部材2は、圧電素子1の裏面側を覆うように、圧電素子1に積層されている。これにより、ノイズとなる圧電素子1からの超音波を吸収することができる。つまり、本実施形態の支持部材2は、圧電素子1の超音波を吸収する吸音層を構成している。 As shown in FIG. 4, the support member 2 supports the piezoelectric element 1 from the back surface side of the piezoelectric element 1. Specifically, the support member 2 is laminated on the piezoelectric element 1 so as to cover the back surface side of the piezoelectric element 1. As a result, it is possible to absorb the ultrasonic waves from the piezoelectric element 1 that become noise. That is, the support member 2 of the present embodiment constitutes a sound absorbing layer that absorbs the ultrasonic waves of the piezoelectric element 1.
 支持部材2としての吸音層は、吸音層を形成するシート材を圧電素子1に張り合わせる方法、吸音層を形成する液状の吸音性材料を塗布して硬化させる方法、などによって形成することができる。支持部材2の材料としては、例えば、ゴムや、タングステン粉末などの金属粉末を分散させたエポキシ樹脂など、が挙げられる。 The sound absorbing layer as the support member 2 can be formed by a method in which a sheet material forming the sound absorbing layer is attached to the piezoelectric element 1, a method in which a liquid sound absorbing material forming the sound absorbing layer is applied and cured, and the like. .. Examples of the material of the support member 2 include rubber and an epoxy resin in which a metal powder such as tungsten powder is dispersed.
 図4に示すように、音響整合部材3は、圧電素子1の表面側の一部を覆うように積層されている。より具体的に、本実施形態の音響整合部材3は、第1電極5のうち電気信号線14が接続される位置、及び、第2電極6の表面電極層6bのうち電気信号線14が接続される位置、を除き、圧電素子1の表面側の全域を覆うように積層されている。音響整合部材3を設けることにより、被検体への超音波の伝播効率を高めることができる。つまり、本実施形態の音響整合部材3は、超音波の伝播効率を高める音響整合層を構成している。 As shown in FIG. 4, the acoustic matching member 3 is laminated so as to cover a part of the surface side of the piezoelectric element 1. More specifically, in the acoustic matching member 3 of the present embodiment, the position where the electric signal line 14 is connected in the first electrode 5 and the electric signal line 14 in the surface electrode layer 6b of the second electrode 6 are connected. It is laminated so as to cover the entire surface side of the piezoelectric element 1 except for the position where it is formed. By providing the acoustic matching member 3, it is possible to improve the propagation efficiency of ultrasonic waves to the subject. That is, the acoustic matching member 3 of the present embodiment constitutes an acoustic matching layer that enhances the propagation efficiency of ultrasonic waves.
 音響整合部材3としての音響整合層は、音響整合層を形成するシート材を圧電素子1に張り合わせる方法、音響整合層を形成する液状の音響整合性材料を塗布して硬化させる方法、などによって形成することができる。音響整合部材3の材料としては、例えば、エポキシ樹脂などの樹脂材料が挙げられる。また、音響整合部材3は、樹脂材料から構成された樹脂層の積層体により構成されていてもよい。 The acoustic matching layer as the acoustic matching member 3 is formed by a method in which a sheet material forming the acoustic matching layer is attached to the piezoelectric element 1, a method in which a liquid acoustic matching material forming the acoustic matching layer is applied and cured, and the like. Can be formed. Examples of the material of the acoustic matching member 3 include a resin material such as an epoxy resin. Further, the acoustic matching member 3 may be composed of a laminate of resin layers made of a resin material.
 図2に示すように、ハウジング12は、超音波振動子11を内部に収容している。ハウジング12の基端側は、駆動シャフト13に接続されている。ハウジング12は、円筒状の金属パイプの周壁の一部に開口部12aが設けられた形状をしており、金属塊からの削り出しやMIM(金属粉末射出成形)等により形成される。また、ハウジング12はジルコニア等を焼成して作成するセラミクスや、ポリカーボネート等の樹脂材料を成形することで形成してもよい。 As shown in FIG. 2, the housing 12 houses the ultrasonic oscillator 11 inside. The base end side of the housing 12 is connected to the drive shaft 13. The housing 12 has a shape in which an opening 12a is provided in a part of the peripheral wall of a cylindrical metal pipe, and is formed by carving from a metal block, MIM (metal powder injection molding), or the like. Further, the housing 12 may be formed by ceramics formed by firing zirconia or the like or by molding a resin material such as polycarbonate.
 また、図2、図3に示すように、ハウジング12は、保持体15及び固定部材16の少なくとも一部(本実施形態では全部)を内部に収容している。より具体的に、本実施形態のハウジング12は、上述した開口部12aの先端側に位置する先端壁部12bと、上述した開口部12aの基端側に位置する基端側筒状部12cと、を備える。本実施形態において、保持体15及び固定部材16の少なくとも一部は、基端側筒状部12c内に収容されている。 Further, as shown in FIGS. 2 and 3, at least a part (all in the present embodiment) of the holding body 15 and the fixing member 16 is housed inside the housing 12. More specifically, the housing 12 of the present embodiment includes a tip wall portion 12b located on the tip side of the above-mentioned opening 12a and a base end-side tubular portion 12c located on the base end side of the above-mentioned opening 12a. , Equipped with. In the present embodiment, at least a part of the holding body 15 and the fixing member 16 is housed in the proximal end side tubular portion 12c.
 本実施形態のハウジング12の先端側及び基端側は閉鎖されている。図2に示すように、ハウジング12における超音波振動子11よりも先端側の位置には先端壁部12bが設けられている。また、図2に示すように、ハウジング12における超音波振動子11よりも基端側の位置には、保持体15及び固定部材16が配置され、ハウジング12の基端側筒状部12cを閉塞している。このようにすることで、画像診断の精度を向上させることができる。 The tip end side and the base end side of the housing 12 of the present embodiment are closed. As shown in FIG. 2, a tip wall portion 12b is provided at a position on the housing 12 on the tip side of the ultrasonic vibrator 11. Further, as shown in FIG. 2, a holding body 15 and a fixing member 16 are arranged at a position on the base end side of the housing 12 with respect to the ultrasonic vibrator 11, and close the base end side tubular portion 12c of the housing 12. are doing. By doing so, the accuracy of diagnostic imaging can be improved.
 駆動シャフト13は、可撓性を有する管体により構成されている。駆動シャフト13の内部には、超音波振動子11に接続される電気信号線14が配置されている。駆動シャフト13は、例えば、軸まわりの巻き方向が異なる多層のコイルによって構成される。コイルの材料としては、例えば、ステンレス、Ni-Ti(ニッケル・チタン)合金などが挙げられる。このような駆動シャフト13にすることで、2本の電気信号線14を二重らせん状のツイストペアケーブルにより構成しても、シールド性を高めて電気信号線14から発生するノイズによる影響を軽減することができる。 The drive shaft 13 is made of a flexible tubular body. Inside the drive shaft 13, an electric signal line 14 connected to the ultrasonic transducer 11 is arranged. The drive shaft 13 is composed of, for example, a multi-layer coil having different winding directions around the shaft. Examples of the coil material include stainless steel and Ni—Ti (nickel / titanium) alloy. By using such a drive shaft 13, even if the two electric signal lines 14 are composed of a double spiral twist pair cable, the shielding property is improved and the influence of noise generated from the electric signal lines 14 is reduced. be able to.
 駆動シャフト13は、内管部材30及び外管部材40の内部を通って、内管部材30の基端部に位置する後述のハブ32まで延在している。つまり、駆動シャフト13は、長手方向Aにおいて、挿入部110aの先端部から操作部110bの基端部まで延在している。 The drive shaft 13 passes through the inside of the inner pipe member 30 and the outer pipe member 40 and extends to the hub 32 described later located at the base end portion of the inner pipe member 30. That is, the drive shaft 13 extends from the tip end portion of the insertion portion 110a to the base end portion of the operation portion 110b in the longitudinal direction A.
 図2に示すように、電気信号線14は、駆動シャフト13内に延在しており、超音波振動子11と外部装置120とを電気的に接続している。つまり、電気信号線14は、駆動シャフト13と同様、長手方向Aにおいて、挿入部110aの先端部から操作部110bの基端部まで延在している。電気信号線14は複数(本実施形態では2本)設けられており、上述した第1電極5及び第2電極6にそれぞれ接続されている。複数の電気信号線14は、例えば、2本の電気信号線14が撚り合わされたツイストペアケーブルにより構成される。各電気信号線14は、外径が0mmより大きく0.2mm以下の、可撓性を有する柔軟な細線部材とすることができる。各電気信号線14は、例えば、0mmより大きく0.2mm以下の導線と、絶縁材料により形成され、導線の周囲を被覆する被覆材と、により構成可能である。このような電気信号線14は、被覆材が除去されて露出した導線により構成される接続部14a(図4参照)で、圧電素子1と接続される。 As shown in FIG. 2, the electric signal line 14 extends in the drive shaft 13 and electrically connects the ultrasonic vibrator 11 and the external device 120. That is, like the drive shaft 13, the electric signal line 14 extends from the tip end portion of the insertion portion 110a to the base end portion of the operation portion 110b in the longitudinal direction A. A plurality of electric signal lines 14 (two in this embodiment) are provided, and are connected to the first electrode 5 and the second electrode 6 described above, respectively. The plurality of electric signal lines 14 are composed of, for example, a twisted pair cable in which two electric signal lines 14 are twisted together. Each electric signal line 14 can be a flexible thin wire member having an outer diameter of more than 0 mm and 0.2 mm or less. Each electric signal line 14 can be composed of, for example, a lead wire larger than 0 mm and 0.2 mm or less, and a covering material formed of an insulating material and covering the periphery of the lead wire. Such an electric signal line 14 is connected to the piezoelectric element 1 by a connecting portion 14a (see FIG. 4) formed of a conducting wire whose covering material is removed and exposed.
 図2、図3に示すように、保持体15は、複数(本実施形態では2本)の電気信号線14に対して取り付けられている。保持体15は、各電気信号線14の一部同士の相対的な位置関係を保持している。本実施形態の2本の電気信号線14は、保持体15が取り付けられた位置において、互いの位置関係が離間した状態で保持されている。換言すれば、保持体15は、各電気信号線14の一部同士の間のギャップを保持している。 As shown in FIGS. 2 and 3, the holding body 15 is attached to a plurality of (two in this embodiment) electric signal lines 14. The holding body 15 holds a relative positional relationship between a part of each electric signal line 14. The two electric signal lines 14 of the present embodiment are held at a position where the holding body 15 is attached in a state where the positional relationship with each other is separated from each other. In other words, the holder 15 holds a gap between a part of each electric signal line 14.
 本実施形態において、2本の電気信号線14のうち保持体15と隣接する部分は、はんだ、導電性接着剤などを用いて圧電素子1に接続されている。より具体的に、2本の電気信号線14のうち保持体15の先端側に隣接する部分が、圧電素子1に接続されている。本実施形態の電気信号線14は、上述したように、導線及び被覆材により構成されている。そのため、本実施形態の2本の電気信号線14は、被覆材が除去されて導線が露出した状態で、圧電素子1の第1電極5及び第2電極6に接続されている。 In the present embodiment, the portion of the two electric signal lines 14 adjacent to the holding body 15 is connected to the piezoelectric element 1 by using solder, a conductive adhesive, or the like. More specifically, the portion of the two electric signal lines 14 adjacent to the tip end side of the holding body 15 is connected to the piezoelectric element 1. As described above, the electric signal line 14 of the present embodiment is composed of a conducting wire and a covering material. Therefore, the two electric signal lines 14 of the present embodiment are connected to the first electrode 5 and the second electrode 6 of the piezoelectric element 1 in a state where the covering material is removed and the lead wires are exposed.
 上述したように、保持体15は、ハウジング12内に位置している。より具体的に、本実施形態の保持体15の少なくとも一部(本実施形態では全部)は、基端側筒状部12c内に位置している。換言すれば、長手方向Aに直交する保持体15の最大長さは、ハウジング12の内径よりも小さい。これにより、保持体15は、ハウジング12の基端側筒状部12c内に収容可能となる。また、保持体15は、ハウジング12の周方向の少なくとも一部において、ハウジング12の基端側筒状部12cの内面と接触していない。本実施形態では、保持体15とハウジング12の基端側筒状部12cの内面との間に、固定部材16が介在している。 As described above, the holding body 15 is located in the housing 12. More specifically, at least a part (all in this embodiment) of the holding body 15 of the present embodiment is located in the proximal end side tubular portion 12c. In other words, the maximum length of the holder 15 orthogonal to the longitudinal direction A is smaller than the inner diameter of the housing 12. As a result, the holding body 15 can be accommodated in the proximal end side tubular portion 12c of the housing 12. Further, the holding body 15 is not in contact with the inner surface of the base end side tubular portion 12c of the housing 12 at least in a part in the circumferential direction of the housing 12. In the present embodiment, the fixing member 16 is interposed between the holding body 15 and the inner surface of the base end side tubular portion 12c of the housing 12.
 保持体15は、セラミック等で構成されてもよいが、主成分としてゴム又は樹脂を含む材料で構成されることが好ましい。具体的に、保持体15のゴム材料としては、例えば、シリコーンゴムが挙げられる。また、保持体15の樹脂材料としては、例えば、シリコーン樹脂、エポキシ樹脂等が挙げられる。より具体的に、保持体15は、例えば、シリコーンゴム系の接着剤、シリコーン樹脂系の接着剤、エポキシ樹脂系の接着剤、等により形成される。また、保持体15は、例えば、UV硬化型の接着剤により形成することができる。更に、保持体15にタングステン等のX線造影性を有する材料を混ぜ合わせてもよい。 The retainer 15 may be made of ceramic or the like, but is preferably made of a material containing rubber or resin as a main component. Specifically, as the rubber material of the holding body 15, for example, silicone rubber can be mentioned. Further, examples of the resin material of the holding body 15 include silicone resin and epoxy resin. More specifically, the holding body 15 is formed of, for example, a silicone rubber-based adhesive, a silicone resin-based adhesive, an epoxy resin-based adhesive, or the like. Further, the holding body 15 can be formed by, for example, a UV curable adhesive. Further, a material having X-ray contrast property such as tungsten may be mixed with the holder 15.
 図2、図3に示すように、固定部材16は、保持体15のハウジング12内での位置を固定する。固定部材16は、保持体15のハウジング12内での位置を固定できれば、その構成は特に限定されない。しかしながら、本実施形態のように、固定部材16は、保持体15とハウジング12との間に介在し、保持体15をハウジング12に対して接着する接着体であることが好ましい。このようにすれば、保持体15とハウジング12との間の空隙を埋めることができ、超音波振動子11からの超音波が、保持体15とハウジング12との間を通ってハウジング12の外側へと漏れ出ることを抑制できる。これにより、診断対象となる部位で反射する超音波を効率的に受信できる。そのため、画像診断の精度を向上させることができる。 As shown in FIGS. 2 and 3, the fixing member 16 fixes the position of the holding body 15 in the housing 12. The structure of the fixing member 16 is not particularly limited as long as the position of the holding body 15 in the housing 12 can be fixed. However, as in the present embodiment, the fixing member 16 is preferably an adhesive body that is interposed between the holding body 15 and the housing 12 and adheres the holding body 15 to the housing 12. In this way, the gap between the holding body 15 and the housing 12 can be filled, and the ultrasonic waves from the ultrasonic transducer 11 pass between the holding body 15 and the housing 12 and are outside the housing 12. It can be suppressed from leaking to. As a result, the ultrasonic waves reflected at the site to be diagnosed can be efficiently received. Therefore, the accuracy of diagnostic imaging can be improved.
 特に、固定部材16としての接着体は、保持体15とハウジング12の内面との間の空隙を、ハウジング12の周方向全域で形成しないように、配置されていることが好ましい。換言すれば、ハウジング12の内部が、超音波振動子11の基端側で、電気信号線14と、保持体15と、固定部材16としての接着体と、により閉塞されていることが好ましい。このようにすることで、超音波振動子11からの超音波が、保持体15とハウジング12との間を通ってハウジング12の外側へと漏れ出ることを、より抑制できる。 In particular, the adhesive body as the fixing member 16 is preferably arranged so as not to form a gap between the holding body 15 and the inner surface of the housing 12 in the entire circumferential direction of the housing 12. In other words, it is preferable that the inside of the housing 12 is closed by the electric signal line 14, the holding body 15, and the adhesive body as the fixing member 16 on the proximal end side of the ultrasonic vibrator 11. By doing so, it is possible to further prevent the ultrasonic waves from the ultrasonic transducer 11 from leaking to the outside of the housing 12 through between the holding body 15 and the housing 12.
 固定部材16としての接着体は、主成分としてゴム又は樹脂を含む材料で構成されることが好ましい。具体的に、固定部材16としての接着体は、例えば、シリコーンゴム系の接着剤、エポキシ樹脂系の接着剤、等により形成される。 The adhesive body as the fixing member 16 is preferably composed of a material containing rubber or resin as a main component. Specifically, the adhesive body as the fixing member 16 is formed of, for example, a silicone rubber-based adhesive, an epoxy resin-based adhesive, or the like.
 上述した保持体15、及び、固定部材16としての接着体、それぞれの主成分がゴム又は樹脂で同一である場合に、固定部材16としての接着体の主成分となるゴム材料又は樹脂材料は、保持体15の主成分となるゴム材料又は樹脂材料と異ならせることができる。上述したように、保持体15及び固定部材16をいずれも接着剤により形成する場合には、保持体15を形成する接着剤を、固定部材16を形成する接着剤よりも、粘度の高い材料とすることが好ましい。保持体15を構成する粘度の高い接着剤により、複数の電気信号線14同士の位置保持性能を確保し易い。また、固定部材16を構成する粘度の低い接着剤により、保持体15とハウジング12との間の空隙を充填する作業効率が向上する。上述した保持体15、及び、固定部材16としての接着体、それぞれの主成分がゴム又は樹脂で異なる場合であっても、いずれも接着剤により形成される場合には、上記同様の理由で、上記同様の粘度の関係を採用することが好ましい。 When the main components of the holding body 15 and the adhesive body as the fixing member 16 are the same as rubber or resin, the rubber material or resin material which is the main component of the adhesive body as the fixing member 16 is It can be different from the rubber material or resin material that is the main component of the holder 15. As described above, when both the holding body 15 and the fixing member 16 are formed by an adhesive, the adhesive forming the holding body 15 is made of a material having a higher viscosity than the adhesive forming the fixing member 16. It is preferable to do so. The highly viscous adhesive constituting the holding body 15 makes it easy to secure the position holding performance between the plurality of electric signal lines 14. Further, the low-viscosity adhesive constituting the fixing member 16 improves the work efficiency of filling the gap between the holding body 15 and the housing 12. Even if the main components of the holding body 15 and the adhesive body as the fixing member 16 are different in rubber or resin, if they are both formed by an adhesive, for the same reason as described above, It is preferable to adopt the same viscosity relationship as described above.
[シース20]
 図2に示すように、シース20は、第1中空部21a及び第2中空部21bを区画している。第1中空部21aには、超音波探触子10が収容されている。超音波探触子10は、第1中空部21a内において、長手方向Aに進退移動することができる。第2中空部21bには、ガイドワイヤWが挿通可能である。本実施形態では、第2中空部21bを区画する管状のガイドワイヤ挿通部20bが、第1中空部21aを区画する管状の本体部20aの先端部に対して、互いが平行な状態になるように位置している。本体部20a及びガイドワイヤ挿通部20bは、互いに異なる管部材を熱融着等によって接合することで形成可能であるが、このような形成方法に限られない。
[Sheath 20]
As shown in FIG. 2, the sheath 20 partitions the first hollow portion 21a and the second hollow portion 21b. The ultrasonic probe 10 is housed in the first hollow portion 21a. The ultrasonic probe 10 can move back and forth in the longitudinal direction A in the first hollow portion 21a. A guide wire W can be inserted into the second hollow portion 21b. In the present embodiment, the tubular guide wire insertion portion 20b that partitions the second hollow portion 21b is parallel to the tip of the tubular main body portion 20a that partitions the first hollow portion 21a. Is located in. The main body portion 20a and the guide wire insertion portion 20b can be formed by joining different pipe members by heat fusion or the like, but the forming method is not limited to this.
 本体部20aには、X線が不透過な材料で形成されるX線造影性を有するマーカ22が設けられている。また、ガイドワイヤ挿通部20bにおいても、X線造影性を有するマーカ23が設けられている。マーカ22及び23は、例えば、白金、金、イリジウム、タングステン等のX線不透過性の高い金属コイルまたは金属パイプにより構成可能である。 The main body 20a is provided with a marker 22 having X-ray contrast property, which is formed of a material that is opaque to X-rays. Further, the guide wire insertion portion 20b is also provided with a marker 23 having X-ray contrast property. The markers 22 and 23 can be configured by, for example, a metal coil or a metal pipe having high X-ray opacity such as platinum, gold, iridium, and tungsten.
 シース20の長手方向Aにおいて超音波振動子11が移動する範囲には、超音波の透過性が他の部位に比べて高く形成された窓部24が形成されている。より具体的に、本実施形態の窓部24は、シース20のうち本体部20aに形成されている。 In the range in which the ultrasonic vibrator 11 moves in the longitudinal direction A of the sheath 20, a window portion 24 formed in which the transparency of ultrasonic waves is higher than that of other parts is formed. More specifically, the window portion 24 of the present embodiment is formed on the main body portion 20a of the sheath 20.
 本体部20aの窓部24、及び、ガイドワイヤ挿通部20bは、可撓性を有する材料で形成され、その材料は特に限定されない。構成材料としては、例えば、ポリエチレン、スチレン、ポリオレフィン、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリブタジエン、トランスポリイソプレン、フッ素ゴム、塩素化ポリエチレン等の各種熱可塑性エラストマー等が挙げられ、これらのうちの1種または2種以上を組合せたポリマーアロイ、ポリマーブレンド、積層体等も使用することができる。 The window portion 24 of the main body portion 20a and the guide wire insertion portion 20b are formed of a flexible material, and the material is not particularly limited. Examples of the constituent material include various thermoplastic elastomers such as polyethylene, styrene, polyolefin, polyurethane, polyester, polyamide, polyimide, polybutadiene, transpolyisoprene, fluororubber, and chlorinated polyethylene, and one of them. Alternatively, a polymer alloy, a polymer blend, a laminate, or the like in which two or more kinds are combined can also be used.
 本体部20aの窓部24よりも基端側は、窓部24よりも剛性が高い材料によって補強された補強部を有する。補強部は、例えば、樹脂等の可撓性を有する管状部材に、ステンレス製などの金属素線を網目状に編組した補強材が配設されて形成される。上記管状部材は、窓部24と同様の材料によって形成される。 The base end side of the main body portion 20a with respect to the window portion 24 has a reinforcing portion reinforced with a material having a higher rigidity than the window portion 24. The reinforcing portion is formed, for example, by disposing a reinforcing material in which a metal wire such as stainless steel is braided in a mesh shape on a flexible tubular member such as resin. The tubular member is made of the same material as the window portion 24.
 シース20の外表面には、湿潤時に潤滑性を示す親水性潤滑被覆層を配置することが好ましい。 It is preferable to arrange a hydrophilic lubricating coating layer that exhibits lubricity when wet on the outer surface of the sheath 20.
 シース20の本体部20aの先端部には、第1中空部21aの内部と外部とを連通する連通孔26が形成されている。プライミング時には、この連通孔26を通じて、本体部20a内の気体を排出することができる。 At the tip of the main body 20a of the sheath 20, a communication hole 26 for communicating the inside and the outside of the first hollow portion 21a is formed. At the time of priming, the gas in the main body 20a can be discharged through the communication hole 26.
[内管部材30及び外管部材40]
 図1に示すように、内管部材30は、内管31と、ハブ32と、を備える。内管31は、外管部材40内で進退移動可能に挿入されている。ハブ32は、内管31の基端側に設けられている。
[Inner tube member 30 and outer tube member 40]
As shown in FIG. 1, the inner pipe member 30 includes an inner pipe 31 and a hub 32. The inner pipe 31 is inserted so as to be movable back and forth in the outer pipe member 40. The hub 32 is provided on the base end side of the inner pipe 31.
 図1に示すように、外管部材40は、外管41と、先端側コネクタ42と、基端側コネクタ43と、を備える。外管41は、内管31の径方向外側に位置し、外管41内を内管31が進退移動する。先端側コネクタ42は、シース20の本体部20aの基端部と、外管41の先端部と、を接続している。基端側コネクタ43は、外管41の基端部に設けられ、内管31を外管41内に受容するように構成されている。 As shown in FIG. 1, the outer tube member 40 includes an outer tube 41, a tip end side connector 42, and a proximal end side connector 43. The outer pipe 41 is located on the outer side in the radial direction of the inner pipe 31, and the inner pipe 31 moves back and forth inside the outer pipe 41. The tip-side connector 42 connects the base end of the main body 20a of the sheath 20 and the tip of the outer tube 41. The base end side connector 43 is provided at the base end portion of the outer pipe 41, and is configured to receive the inner pipe 31 in the outer pipe 41.
 上述した超音波探触子10の駆動シャフト13及び電気信号線14は、シース20の本体部20a、この本体部20aの基端側に接続された外管部材40、及び、この外管部材40に一部が挿入されている内管部材30の基端部に位置するハブ32まで、延在している。 The drive shaft 13 and the electric signal line 14 of the ultrasonic probe 10 described above are the main body 20a of the sheath 20, the outer tube member 40 connected to the proximal end side of the main body 20a, and the outer tube member 40. It extends to the hub 32 located at the base end of the inner pipe member 30 in which a part of the inner pipe member 30 is inserted.
 上述した超音波探触子10及び内管部材30は、それぞれが一体的に長手方向Aに進退移動するように互いに接続されている。そのため、例えば、内管部材30が、挿入方向A1に向かって押される操作がなされると、内管部材30は、挿入方向A1に向かって、外管部材40内に押し込まれる。内管部材30が挿入方向A1に向かって外管部材40内に押し込まれると、内管部材30に接続されている超音波探触子10がシース20の本体部20a内を挿入方向A1に移動する。逆に、内管部材30が、抜去方向A2に向かって引かれる操作がなされると、内管部材30は、外管部材40内から抜去方向A2に引き出される。内管部材30が外管部材40内から抜去方向A2に引き出されると、内管部材30に接続されている超音波探触子10はシース20の本体部20a内を抜去方向A2に移動する。 The ultrasonic probe 10 and the inner tube member 30 described above are connected to each other so as to move back and forth in the longitudinal direction A integrally. Therefore, for example, when the inner pipe member 30 is pushed in the insertion direction A1, the inner pipe member 30 is pushed into the outer pipe member 40 in the insertion direction A1. When the inner tube member 30 is pushed into the outer tube member 40 toward the insertion direction A1, the ultrasonic probe 10 connected to the inner tube member 30 moves in the main body 20a of the sheath 20 in the insertion direction A1. To do. On the contrary, when the inner pipe member 30 is pulled in the pulling direction A2, the inner pipe member 30 is pulled out from the outer pipe member 40 in the pulling direction A2. When the inner tube member 30 is pulled out from the inside of the outer tube member 40 in the removal direction A2, the ultrasonic probe 10 connected to the inner tube member 30 moves in the main body 20a of the sheath 20 in the removal direction A2.
 内管部材30が挿入方向A1へ最も押し込まれたときには、内管部材30の先端部は、外管部材40の先端側コネクタ42付近まで到達する。この際、超音波探触子10の超音波振動子11は、シース20の本体部20aの先端付近に位置する。 When the inner pipe member 30 is pushed most in the insertion direction A1, the tip portion of the inner pipe member 30 reaches the vicinity of the tip side connector 42 of the outer pipe member 40. At this time, the ultrasonic transducer 11 of the ultrasonic probe 10 is located near the tip of the main body 20a of the sheath 20.
 内管部材30の先端部には、内管部材30が外管部材40よりも先端側に飛び出すことを防止すると共に、内管部材30が最も基端側に引かれたときに外管部材40の基端側に抜け落ちることを防止するストッパ部が設けられている。ストッパ部は、上記機能を実現できる構成であれば特に限定されず、例えば、所定の位置で外管部材40と長手方向Aにおいて突き当たる壁部などにより構成すればよい。 At the tip of the inner pipe member 30, the inner pipe member 30 is prevented from popping out toward the tip side of the outer pipe member 40, and the outer pipe member 40 is pulled to the most proximal side when the inner pipe member 30 is pulled to the most proximal side. A stopper is provided on the base end side of the tube to prevent it from falling off. The stopper portion is not particularly limited as long as it can realize the above function, and may be configured by, for example, a wall portion that abuts the outer pipe member 40 at a predetermined position in the longitudinal direction A.
 内管部材30のハブ32の基端には、外部装置120と機械的および電気的に接続されるコネクタ部が設けられている。つまり、画像診断用カテーテル110は、内管部材30のハブ32に設けられたコネクタ部により、外部装置120と機械的および電気的に接続される。より具体的に、超音波探触子10の電気信号線14は、超音波振動子11からハブ32のコネクタ部まで延在しており、ハブ32のコネクタ部が外部装置120に接続された状態で、超音波振動子11と外部装置120とを電気的に接続する。超音波振動子11における受信信号は、ハブ32のコネクタ部を介して外部装置120に送信され、所定の処理を施されて画像として表示される。 A connector portion that is mechanically and electrically connected to the external device 120 is provided at the base end of the hub 32 of the inner pipe member 30. That is, the diagnostic imaging catheter 110 is mechanically and electrically connected to the external device 120 by a connector portion provided on the hub 32 of the inner tube member 30. More specifically, the electric signal line 14 of the ultrasonic probe 10 extends from the ultrasonic transducer 11 to the connector portion of the hub 32, and the connector portion of the hub 32 is connected to the external device 120. Then, the ultrasonic vibrator 11 and the external device 120 are electrically connected. The received signal in the ultrasonic vibrator 11 is transmitted to the external device 120 via the connector portion of the hub 32, is subjected to predetermined processing, and is displayed as an image.
<外部装置120>
 図1に示すように、外部装置120は、駆動シャフト13を回転させるための動力源であるモータ121と、駆動シャフト13を長手方向Aに移動させるための動力源であるモータ122と、を有する。モータ122の回転運動は、モータ122に接続したボールネジ123によって軸方向の運動に変換される。
<External device 120>
As shown in FIG. 1, the external device 120 has a motor 121 which is a power source for rotating the drive shaft 13 and a motor 122 which is a power source for moving the drive shaft 13 in the longitudinal direction A. .. The rotational motion of the motor 122 is converted into axial motion by the ball screw 123 connected to the motor 122.
 より具体的に、本実施形態の外部装置120は、駆動ユニット120aと、この駆動ユニット120aに有線又は無線で電気的に接続されている制御装置120bと、この制御装置120bが画像診断用カテーテル110から受信した受信信号に基づいて生成した画像を表示可能なモニタ120cと、を備える。本実施形態の上述したモータ121、モータ122及びボールネジ123は、駆動ユニット120aに設けられている。この駆動ユニット120aの動作は、制御装置120bによって制御される。制御装置120bは、CPU及びメモリを含むプロセッサにより構成することができる。 More specifically, the external device 120 of the present embodiment includes a drive unit 120a, a control device 120b electrically connected to the drive unit 120a by wire or wirelessly, and the control device 120b is a diagnostic imaging catheter 110. A monitor 120c capable of displaying an image generated based on a received signal received from is provided. The above-mentioned motor 121, motor 122 and ball screw 123 of the present embodiment are provided in the drive unit 120a. The operation of the drive unit 120a is controlled by the control device 120b. The control device 120b can be configured by a processor including a CPU and a memory.
 外部装置120は、本実施形態で示す構成に限られず、例えば、キーボード等の外部入力部を更に備える構成であってもよい。 The external device 120 is not limited to the configuration shown in the present embodiment, and may be further provided with an external input unit such as a keyboard, for example.
<超音波探触子10の製造方法>
 次に、本開示に係る超音波探触子の製造方法の一例について説明する。ここでは、本開示に係る超音波探触子の一実施形態としての超音波探触子10の製造方法について説明する。
<Manufacturing method of ultrasonic probe 10>
Next, an example of a method for manufacturing an ultrasonic probe according to the present disclosure will be described. Here, a method for manufacturing the ultrasonic probe 10 as an embodiment of the ultrasonic probe according to the present disclosure will be described.
 図5は、超音波探触子10の製造方法の一例を示すフローチャートである。図5に示す超音波探触子10の製造方法は、挟持工程S1と、取付工程S2と、被覆除去工程S3と、切断工程S4と、位置合わせ工程S5と、接続工程S6と、を含む。図6Aは、挟持工程S1の概要を示す図である。図6Bは、取付工程S2の概要を示す図である。図6Cは、被覆除去工程S3の概要を示す図である。図6Dは、切断工程S4の概要を示す図である。図6Eは、位置合わせ工程S5の概要を示す図である。図6Fは、接続工程S6の概要を示す図である。以下、図5、図6A~図6Fを参照して、各工程S1~S6について詳細に説明する。 FIG. 5 is a flowchart showing an example of a method for manufacturing the ultrasonic probe 10. The method for manufacturing the ultrasonic probe 10 shown in FIG. 5 includes a sandwiching step S1, a mounting step S2, a coating removing step S3, a cutting step S4, an alignment step S5, and a connecting step S6. FIG. 6A is a diagram showing an outline of the sandwiching step S1. FIG. 6B is a diagram showing an outline of the mounting process S2. FIG. 6C is a diagram showing an outline of the coating removal step S3. FIG. 6D is a diagram showing an outline of the cutting step S4. FIG. 6E is a diagram showing an outline of the alignment step S5. FIG. 6F is a diagram showing an outline of the connection step S6. Hereinafter, each process S1 to S6 will be described in detail with reference to FIGS. 5 and 6A to 6F.
 図6Aに示すように、挟持工程S1では、複数の電気信号線14を、保持体15により保持される後述の保持位置P3の両側の位置で挟持する。本実施形態ではツイストペアケーブルにより構成されている2本の電気信号線14を、第1クランプ部材201aと第2クランプ部材201bを用いて、2箇所で挟持する。より具体的に、第1クランプ部材201aが2本の電気信号線14を挟持する第1位置P1は、ツイストペアケーブルの延在方向Cにおいて、第2クランプ部材201bが2本の電気信号線14を挟持する第2位置P2と異なる。延在方向Cにおいて、第1位置P1と第2位置P2との間に、保持体15が取り付けられる後述の保持位置P3が位置する。挟持工程S1により、後述する取付工程S2の作業性を向上させることができる。第1クランプ部材201a及び第2クランプ部材201bそれぞれは、例えば、スポンジ材により2本の電気信号線14を挟み込む構成とすることができる。 As shown in FIG. 6A, in the sandwiching step S1, a plurality of electric signal lines 14 are sandwiched at positions on both sides of the holding position P3 described later, which is held by the holding body 15. In the present embodiment, the two electric signal lines 14 formed of the twisted pair cable are sandwiched at two places by using the first clamp member 201a and the second clamp member 201b. More specifically, at the first position P1 in which the first clamp member 201a sandwiches the two electric signal lines 14, the second clamp member 201b holds the two electric signal lines 14 in the extending direction C of the twist pair cable. It is different from the second position P2 to be sandwiched. In the extending direction C, a holding position P3, which will be described later, to which the holding body 15 is attached is located between the first position P1 and the second position P2. The sandwiching step S1 can improve the workability of the mounting step S2, which will be described later. Each of the first clamp member 201a and the second clamp member 201b can be configured such that two electric signal lines 14 are sandwiched by, for example, a sponge material.
 また、本実施形態では、挟持工程S1において、延在方向Cに所定の張力を付加した状態で、第1クランプ部材201a及び第2クランプ部材201bの一方を他方に対して回動させて、2本の電気信号線14の捩れを解消する。このようにすることで、挟持工程S1において、複数(本実施形態では2本)の電気信号線14が後述する保持位置P3において一方向(本実施形態では延在方向C)に沿って延在するように、複数の電気信号線14を挟持することができる。より具体的に、本実施形態では、2本の電気信号線14のうち、第1位置P1と第2位置P2との間の部分が、延在方向Cに略平行になるように延在した状態を実現できる。これにより、後述する取付工程S2の作業性を、より向上させることができる。第1位置P1と第2位置P2との間の延在方向Cの距離は、後述の取付工程S2等の作業性を考慮すると、3cm以上確保することが好ましい。 Further, in the present embodiment, in the sandwiching step S1, one of the first clamp member 201a and the second clamp member 201b is rotated with respect to the other in a state where a predetermined tension is applied to the extending direction C, and 2 The twist of the electric signal line 14 of the book is eliminated. By doing so, in the pinching step S1, a plurality of (two in this embodiment) electric signal lines 14 extend along one direction (extending direction C in this embodiment) at the holding position P3 described later. As such, a plurality of electric signal lines 14 can be sandwiched. More specifically, in the present embodiment, of the two electric signal lines 14, the portion between the first position P1 and the second position P2 extends so as to be substantially parallel to the extending direction C. The state can be realized. As a result, the workability of the mounting step S2, which will be described later, can be further improved. The distance in the extending direction C between the first position P1 and the second position P2 is preferably 3 cm or more in consideration of workability such as the mounting step S2 described later.
 図6Bに示すように、取付工程S2では、複数の電気信号線14に対して、電気信号線14の一部同士の相対的な位置関係を保持可能な保持体15を取り付ける。より具体的に、延在方向Cの第1位置P1と第2位置P2との間の保持位置P3で、延在方向Cに略平行する2本の電気信号線14に対して、互いの離間距離を一定に保つ保持体15を取り付ける。保持体15は、例えば、UV硬化型の接着剤とすることができる。このようなUV硬化型の接着剤で保持体15を形成する場合は、例えば、UV透過性材料で形成された割型を利用すればよい。このようにすれば、複数の電気信号線14の挟み込むように配置された割型内にUV硬化型の接着剤を充填し、外部からUVを照射する。これにより、接着剤を硬化させて、保持体15を形成することができる。 As shown in FIG. 6B, in the attachment step S2, a holder 15 capable of maintaining a relative positional relationship between a part of the electric signal lines 14 is attached to the plurality of electric signal lines 14. More specifically, at the holding position P3 between the first position P1 and the second position P2 in the extending direction C, the two electric signal lines 14 substantially parallel to the extending direction C are separated from each other. A holder 15 that keeps the distance constant is attached. The retainer 15 can be, for example, a UV curable adhesive. When the retainer 15 is formed of such a UV curable adhesive, for example, a split mold formed of a UV permeable material may be used. In this way, the UV curable adhesive is filled in the split molds arranged so as to sandwich the plurality of electric signal lines 14, and UV is irradiated from the outside. As a result, the adhesive can be cured to form the holding body 15.
 保持体15により離間させる複数の電気信号線14の間の距離は、圧電素子1において電気信号線14が接続される箇所同士の離間距離に応じて、適宜決定すればよい。 The distance between the plurality of electric signal lines 14 separated by the holding body 15 may be appropriately determined according to the separation distance between the locations where the electric signal lines 14 are connected in the piezoelectric element 1.
 保持体15の形状は特に限定されないが、上述したようにハウジング12(図2、図3参照)内に収容されるため、ハウジング12内に収容可能な大きさ、形状で成形される。 The shape of the holding body 15 is not particularly limited, but since it is housed in the housing 12 (see FIGS. 2 and 3) as described above, it is molded in a size and shape that can be housed in the housing 12.
 図6Cに示すように、被覆除去工程S3では、例えばレーザー照射により、複数の電気信号線14のうち少なくとも2本の電気信号線14の被覆材を除去する。これにより電気信号線14の導線を露出させる。被覆除去工程S3では、第1位置P1と保持位置P3との間、又は、第2位置P2と保持位置P3との間、のいずれかの位置で、2本の電気信号線14の被覆材を除去する。特に、被覆除去工程S3では、2本の電気信号線14の保持体15と隣接する部分に位置する被覆材を少なくとも除去することが好ましい。保持体15に隣接する部分は、第1クランプ部材201a及び第2クランプ部材201bを電気信号線14から取り外しても、2本の電気信号線14の離間距離が比較的に維持され易い。そのため、2本の電気信号線14のうち、保持体15に隣接する部分は、後述する接続工程S6において圧電素子1に接続する部位として利用し易く、接続工程S6の作業性を高めることができる。 As shown in FIG. 6C, in the coating removal step S3, for example, the coating material of at least two electric signal lines 14 out of the plurality of electric signal lines 14 is removed by laser irradiation. This exposes the lead wire of the electric signal line 14. In the coating removal step S3, the covering material of the two electric signal lines 14 is applied at either a position between the first position P1 and the holding position P3 or between the second position P2 and the holding position P3. Remove. In particular, in the coating removal step S3, it is preferable to at least remove the coating material located at a portion adjacent to the holding body 15 of the two electric signal lines 14. In the portion adjacent to the holding body 15, even if the first clamp member 201a and the second clamp member 201b are removed from the electric signal line 14, the separation distance between the two electric signal lines 14 is relatively easy to be maintained. Therefore, of the two electric signal lines 14, the portion adjacent to the holding body 15 can be easily used as a portion to be connected to the piezoelectric element 1 in the connection step S6 described later, and the workability of the connection step S6 can be improved. ..
 ここで、「保持体に隣接する部分」とは、2本の電気信号線14が保持体15により保持されている保持位置P3での最小離間距離に対して、延在方向Cにおいて保持体15から5倍となる距離だけ離れた位置よりも保持体15側に位置する部分を意味する。 Here, the "portion adjacent to the holding body" means the holding body 15 in the extending direction C with respect to the minimum separation distance at the holding position P3 in which the two electric signal lines 14 are held by the holding body 15. It means a portion located closer to the holder 15 than a position separated by a distance of 5 times from.
 図6Dに示すように、切断工程S4では、2本の電気信号線14のうち、被覆除去工程S3により被覆材が除去された部分を切断し、圧電素子1(図4参照)に接続する接続部14aを形成する。この切断工程S4は、第1クランプ部材201a及び第2クランプ部材201bにより2本の電気信号線14を挟持した状態で実行される。 As shown in FIG. 6D, in the cutting step S4, of the two electric signal lines 14, the portion from which the coating material has been removed by the coating removing step S3 is cut and connected to the piezoelectric element 1 (see FIG. 4). Part 14a is formed. This cutting step S4 is executed in a state where the two electric signal lines 14 are sandwiched between the first clamp member 201a and the second clamp member 201b.
 図6Eに示すように、位置合わせ工程S5では、圧電素子1と、2本の電気信号線14の接続部14aと、の接続位置を、位置合わせ冶具203により調整する。本実施形態の位置合わせ冶具203は、圧電素子1を含む超音波振動子11が位置固定される振動子固定部203aと、保持体15が位置固定される保持体固定部203bと、を備える。図6Eでは、説明の便宜上、超音波振動子11の圧電素子1のみを示している。位置合わせ冶具203において、保持体固定部203bは、振動子固定部203aに対して、厚み方向Bと直交する方向に近接・離間できるようにスライド可能に取り付けられている。振動子固定部203aに位置固定された超音波振動子11と、保持体固定部203bに固定された保持体15と、はスライド移動する際に干渉しないように、厚み方向Bの位置が異なっている。このような位置合わせ冶具203を用いれば、保持体固定部203bを振動子固定部203aに対してスライド移動させることで、超音波振動子11の圧電素子1の少なくとも一部と、2本の電気信号線14の接続部14aと、が厚み方向Bで重なるように、位置合わせすることができる。このように、位置合わせ冶具203を用いることで、後述の接続工程S6の接続作業を、より確実かつ容易に実行することができる。 As shown in FIG. 6E, in the alignment step S5, the connection position between the piezoelectric element 1 and the connection portion 14a of the two electric signal lines 14 is adjusted by the alignment jig 203. The alignment jig 203 of the present embodiment includes a vibrator fixing portion 203a in which the ultrasonic vibrator 11 including the piezoelectric element 1 is fixed in position, and a holding body fixing portion 203b in which the holding body 15 is fixed in position. In FIG. 6E, only the piezoelectric element 1 of the ultrasonic oscillator 11 is shown for convenience of explanation. In the alignment jig 203, the holding body fixing portion 203b is slidably attached to the vibrator fixing portion 203a so as to be close to and separated from the thickness direction B in a direction orthogonal to the thickness direction B. The position of the ultrasonic vibrator 11 fixed to the vibrator fixing portion 203a and the holding body 15 fixed to the holding body fixing portion 203b are different in the thickness direction B so as not to interfere with each other when sliding. There is. When such an alignment jig 203 is used, by sliding the holder fixing portion 203b with respect to the vibrator fixing portion 203a, at least a part of the piezoelectric element 1 of the ultrasonic vibrator 11 and two electric wires are used. It can be aligned so that it overlaps with the connecting portion 14a of the signal line 14 in the thickness direction B. In this way, by using the alignment jig 203, the connection operation in the connection step S6 described later can be executed more reliably and easily.
 図6Fに示すように、接続工程S6では、複数の電気信号線14のうち少なくとも2本の電気信号線14の保持体15と隣接する部分を、超音波振動子11の圧電素子1に接続する。本実施形態では、2本の電気信号線14の両方を、圧電素子1に接続する。具体的に、2本の電気信号線14の一方を、圧電素子1の第1電極5(図4参照)に接続し、2本の電気信号線14の他方を、圧電素子1の第2電極6(図4参照)に接続する。電気信号線14の圧電素子1に対する接続は、例えば、溶融状態の予備はんだ204と、はんだペースト205と、により実現できる。圧電素子1の第1電極5及び第2電極6に予め予備はんだ204を塗布しておき、電気信号線14を配置した後にはんだペースト205を塗布することで、電気信号線14を予備はんだ204及びはんだペースト205で挟み込む。この状態で熱風により加熱することで、はんだペースト205が溶融し、溶融状態の予備はんだ204と一体化し、電気信号線14が接合される。また、塗布された状態のはんだペースト205が、2本の電気信号線14に跨るように付着していても、はんだペースト205は、熱風で加熱されることで、各電気信号線14に一体化する部分へと分離していく。このように、予備はんだ204及びはんだペースト205を利用することで、電気信号線14を圧電素子1に接続することができる。 As shown in FIG. 6F, in the connection step S6, a portion of the plurality of electric signal lines 14 adjacent to the holding body 15 of at least two electric signal lines 14 is connected to the piezoelectric element 1 of the ultrasonic vibrator 11. .. In this embodiment, both of the two electric signal lines 14 are connected to the piezoelectric element 1. Specifically, one of the two electric signal lines 14 is connected to the first electrode 5 (see FIG. 4) of the piezoelectric element 1, and the other of the two electric signal lines 14 is connected to the second electrode of the piezoelectric element 1. Connect to 6 (see FIG. 4). The connection of the electric signal line 14 to the piezoelectric element 1 can be realized by, for example, the preliminary solder 204 in the molten state and the solder paste 205. Preliminary solder 204 is applied to the first electrode 5 and the second electrode 6 of the piezoelectric element 1 in advance, and after arranging the electric signal line 14, the solder paste 205 is applied to apply the electric signal line 14 to the preliminary solder 204 and It is sandwiched between solder paste 205. By heating with hot air in this state, the solder paste 205 is melted, integrated with the preliminary solder 204 in the melted state, and the electric signal line 14 is joined. Further, even if the applied solder paste 205 adheres so as to straddle the two electric signal lines 14, the solder paste 205 is integrated with each electric signal line 14 by being heated by hot air. It separates into the part to be soldered. In this way, the electric signal line 14 can be connected to the piezoelectric element 1 by using the preliminary solder 204 and the solder paste 205.
 本実施形態では、圧電素子1に予め予備はんだ204を塗布し、電気信号線14を挟み込むように、後からはんだペースト205を塗布しているが、逆であってもよい。つまり、圧電素子1に予めはんだペースト205を塗布し、電気信号線14を挟み込むように、後から予備はんだ204を塗布してもよい。また、圧電素子1に予め予備はんだ204又ははんだペースト205を塗布する場合には、メタルマスクを利用して、塗布量を定量化することが好ましい。 In the present embodiment, the preliminary solder 204 is applied to the piezoelectric element 1 in advance, and the solder paste 205 is applied later so as to sandwich the electric signal line 14, but the reverse is also possible. That is, the solder paste 205 may be applied to the piezoelectric element 1 in advance, and the preliminary solder 204 may be applied later so as to sandwich the electric signal line 14. Further, when the preliminary solder 204 or the solder paste 205 is applied to the piezoelectric element 1 in advance, it is preferable to quantify the applied amount by using a metal mask.
 更に、予備はんだ204及びはんだペースト205を利用しない方法として、UV硬化型の接着剤を利用して接続してもよい。 Further, as a method of not using the preliminary solder 204 and the solder paste 205, a UV curable adhesive may be used for connection.
 上述したように、2本の電気信号線14は、保持体15により保持される。そのため、2本の電気信号線14のうち、保持体15から所定距離の範囲に位置する部分は、互いに所定距離離間した状態を維持できる。そのため、上述した接続工程S6において、例えば0.5mm四方の小型の圧電素子1に対して、例えば外径0.1mm程度の可撓性を有する2本の電気信号線14を接続する場合であっても、2本の電気信号線14が所定距離(圧電素子1において2本の電気信号線14が接続される箇所の離間距離)に離間した状態を維持できるため、比較的容易に圧電素子1に対する接続を実行することができる。 As described above, the two electric signal lines 14 are held by the holder 15. Therefore, of the two electric signal lines 14, the portions located within a predetermined distance from the holding body 15 can maintain a state of being separated from each other by a predetermined distance. Therefore, in the connection step S6 described above, there is a case where two electric signal lines 14 having flexibility, for example, an outer diameter of about 0.1 mm, are connected to a small piezoelectric element 1 of 0.5 mm square, for example. However, since the two electric signal lines 14 can be maintained at a predetermined distance (the distance between the points where the two electric signal lines 14 are connected in the piezoelectric element 1), the piezoelectric element 1 can be relatively easily separated. Can make a connection to.
 また、上記工程S1~S6の1つ又は複数を実行可能な製造装置を用いてもよい。このようにすれば、手作業による失敗を抑制でき、生産効率をより高めることができる。 Further, a manufacturing apparatus capable of executing one or more of the above steps S1 to S6 may be used. In this way, it is possible to suppress manual failures and further improve production efficiency.
 特に、圧電素子1の第1電極5及び第2電極6の一方が折返し電極により構成され、圧電素子1の表面側又は裏面側の一方のみに、2本の電気信号線14が接続される箇所がある場合には、圧電素子1において2本の電気信号線14が接続される箇所同士の離間距離が非常に小さくなる。そのため、2本の電気信号線14を圧電素子1の別々の位置に接続する作業が特に難しい。このような折返し電極を有する圧電素子1の場合には、保持体15を利用した上述の製造方法を用いることが特に好ましい。 In particular, a place where one of the first electrode 5 and the second electrode 6 of the piezoelectric element 1 is composed of a folded electrode, and two electric signal lines 14 are connected to only one of the front surface side or the back surface side of the piezoelectric element 1. If there is, the separation distance between the points where the two electric signal lines 14 are connected in the piezoelectric element 1 becomes very small. Therefore, it is particularly difficult to connect the two electric signal lines 14 to different positions of the piezoelectric element 1. In the case of the piezoelectric element 1 having such a folded electrode, it is particularly preferable to use the above-mentioned manufacturing method using the holding body 15.
 また、図4に示す超音波探触子10の製造方法では、保持体15を、ハウジング12(図2、図3参照)内に収容する収容工程を更に含む。この収容工程により保持体15をハウジング12に収容した状態とした後で、上述した接続工程S6を実行してもよい。また、図4に示す超音波探触子10の製造方法では、ハウジング12内の保持体15の位置を、固定部材16(図2、図3参照)を用いて固定する固定工程を更に含む。固定工程では、例えば、固定部材16を形成する接着剤を、ハウジング12と保持体15との間に充填し、保持体15のハウジング12に対する位置を固定する。このように、電気信号線14を保持する保持体15をハウジング12に収容することで、電気信号線14のみをハウジング12に収容する場合と比較して、保持体15の体積だけ、電気信号線14とハウジング12との間の空隙を減らすことができる。そのため、固定部材16として液状の接着剤を用いる場合には、この固定部材16としての接着剤の充填量を減らすことができる。その結果、充填時にハウジング12外に流出してしまう無駄な接着剤の量についても減らすことができる。 Further, the method for manufacturing the ultrasonic probe 10 shown in FIG. 4 further includes a housing step of housing the holder 15 in the housing 12 (see FIGS. 2 and 3). After the holding body 15 is housed in the housing 12 by this housing step, the connection step S6 described above may be executed. Further, the method for manufacturing the ultrasonic probe 10 shown in FIG. 4 further includes a fixing step of fixing the position of the holding body 15 in the housing 12 by using the fixing member 16 (see FIGS. 2 and 3). In the fixing step, for example, an adhesive forming the fixing member 16 is filled between the housing 12 and the holding body 15 to fix the position of the holding body 15 with respect to the housing 12. In this way, by accommodating the holding body 15 for holding the electric signal line 14 in the housing 12, the electric signal line is increased by the volume of the holding body 15 as compared with the case where only the electric signal line 14 is housed in the housing 12. The gap between the 14 and the housing 12 can be reduced. Therefore, when a liquid adhesive is used as the fixing member 16, the filling amount of the adhesive as the fixing member 16 can be reduced. As a result, the amount of wasted adhesive that flows out of the housing 12 during filling can also be reduced.
 本開示に係る、超音波探触子の製造方法、及び、超音波探触子、は上述した実施形態で特定される具体的な構成・工程に限られず、請求の範囲の記載を逸脱しない限り、種々の変形・変更が可能である。図4に示す超音波探触子10の製造方法は、上述したように、工程S1~S6の他に、例えば上記収容工程などを含んでいてもよい。更に、図4に示す超音波探触子10の製造方法では、例えば、取付工程S2を被覆除去工程S3の前に実行しているが、先に被覆除去工程S3を実行してもよい。このように、本開示に係る超音波探触子の製造方法は、上述した実施形態において示す工程S1~S6及びその順序に限られない。したがって、本開示に係る超音波探触子の製造方法は、例えば、電気信号線14と圧電素子1との接続後に、保持体15を溶剤等により溶かす工程があってもよい。保持体15を溶かすことで、例えば、接続された圧電素子1及び電気信号線14を、固定部材16としての接着剤を使用しない別の固定方法で、ハウジング12に固定してもよい。また、上述した実施形態の超音波探触子10では、2本の電気信号線14のみを有し、この2本の電気信号線14が保持体15により保持される構成であるが、3本以上の電気信号線14を保持体15により保持する構成としてもよい。かかる場合には、3本以上の電気信号線14の少なくとも2本の電気信号線14を、圧電素子1に接続すればよい。 The method for manufacturing an ultrasonic probe and the ultrasonic probe according to the present disclosure are not limited to the specific configuration / process specified in the above-described embodiment, and are not limited to the description of the scope of the claim. , Various modifications and changes are possible. As described above, the method for manufacturing the ultrasonic probe 10 shown in FIG. 4 may include, for example, the above-mentioned accommodating step in addition to the steps S1 to S6. Further, in the method for manufacturing the ultrasonic probe 10 shown in FIG. 4, for example, the mounting step S2 is executed before the coating removing step S3, but the coating removing step S3 may be executed first. As described above, the method for manufacturing the ultrasonic probe according to the present disclosure is not limited to the steps S1 to S6 shown in the above-described embodiment and the order thereof. Therefore, the method for manufacturing the ultrasonic probe according to the present disclosure may include, for example, a step of dissolving the holding body 15 with a solvent or the like after connecting the electric signal line 14 and the piezoelectric element 1. By melting the holding body 15, for example, the connected piezoelectric element 1 and the electric signal line 14 may be fixed to the housing 12 by another fixing method that does not use an adhesive as the fixing member 16. Further, the ultrasonic probe 10 of the above-described embodiment has only two electric signal lines 14, and the two electric signal lines 14 are held by the holding body 15, but three of them. The above electric signal line 14 may be held by the holding body 15. In such a case, at least two electric signal lines 14 of three or more electric signal lines 14 may be connected to the piezoelectric element 1.
 更に、上述した実施形態の超音波探触子10は、イメージングコアとして、血管内超音波診断を可能とする超音波振動子11のみを備える構成であるが、この構成に限られず、例えば、光干渉断層診断(Optical Coherence Tomography、略称「OCT」)を可能とする光送受信部を更に備える構成であってもよい。図7は、超音波振動子11及び光送受信部301を備える超音波探触子310、を備える画像診断用カテーテル410の一部を示す断面図である。図7に示す超音波探触子310は、上述の超音波探触子10と比較して、光干渉断層診断を可能とする構成が付加されている点で異なっている。 Further, the ultrasonic probe 10 of the above-described embodiment is configured to include only an ultrasonic transducer 11 capable of intravascular ultrasonic diagnosis as an imaging core, but is not limited to this configuration, for example, light. It may be configured to further include an optical transmission / reception unit that enables interference fault diagnosis (Optical Coherence Tomography, abbreviated as “OCT”). FIG. 7 is a cross-sectional view showing a part of an image diagnostic catheter 410 including an ultrasonic transducer 11 and an ultrasonic probe 310 including an optical transmission / reception unit 301. The ultrasonic probe 310 shown in FIG. 7 is different from the above-mentioned ultrasonic probe 10 in that a configuration that enables optical interference tomographic diagnosis is added.
 具体的に、図7に示す超音波探触子310では、ハウジング12内に超音波振動子11に加えて光送受信部301が配置されている。この光送受信部301は、駆動シャフト13内に延在する光信号線302としての光ファイバケーブルから伝送される光(測定光)を連続的に生体管腔内に送信すると共に、生体管腔内の生体組織からの反射光を連続的に受信する。光送受信部301は、受信した反射光を、光信号線302を通じて外部装置120(図1参照)に送信する。外部装置120の制御装置120b(図1参照)は、測定により得られた反射光と、光源からの光を分離することで得られた参照光とを干渉させることで干渉光データを生成する。また、外部装置120の制御装置120bは、生成された干渉光データに基づいて光断層画像を生成し、モニタ120c(図1参照)に表示させる。 Specifically, in the ultrasonic probe 310 shown in FIG. 7, an optical transmitter / receiver 301 is arranged in the housing 12 in addition to the ultrasonic oscillator 11. The optical transmission / reception unit 301 continuously transmits light (measurement light) transmitted from the optical fiber cable as the optical signal line 302 extending in the drive shaft 13 into the biological lumen, and also in the biological lumen. Continuously receives reflected light from the living body tissue of. The optical transmission / reception unit 301 transmits the received reflected light to the external device 120 (see FIG. 1) through the optical signal line 302. The control device 120b (see FIG. 1) of the external device 120 generates interference light data by interfering the reflected light obtained by the measurement with the reference light obtained by separating the light from the light source. Further, the control device 120b of the external device 120 generates an optical tomographic image based on the generated interference light data and displays it on the monitor 120c (see FIG. 1).
 図7に示すように、駆動シャフト13内において、複数の電気信号線14は、光信号線302の周りに螺旋状に巻き付いており、複数の電気信号線14同士は平行に延在している。より具体的に、図7に示す2本の電気信号線14は、長手方向Aに延在する光信号線302としての光ファイバケーブルの周囲を二重らせん状に延在している。 As shown in FIG. 7, in the drive shaft 13, the plurality of electric signal lines 14 are spirally wound around the optical signal lines 302, and the plurality of electric signal lines 14 extend in parallel with each other. .. More specifically, the two electric signal lines 14 shown in FIG. 7 extend around the optical fiber cable as the optical signal line 302 extending in the longitudinal direction A in a double spiral shape.
 また、本開示に係る超音波探触子の製造方法は、図7に示すような、光干渉断層診断が可能な構成を備える超音波探触子310であっても適用可能である。 Further, the method for manufacturing an ultrasonic probe according to the present disclosure can be applied even to an ultrasonic probe 310 having a configuration capable of diagnosing an optical interference fault as shown in FIG. 7.
 本開示は、超音波探触子の製造方法、及び、超音波探触子、に関する。 The present disclosure relates to a method for manufacturing an ultrasonic probe and an ultrasonic probe.
1:圧電素子
2:支持部材
3:音響整合部材
4:圧電体
5:第1電極
6:第2電極
6a:裏面電極層
6b:表面電極層
6c:連結導電部
10、310:超音波探触子
11:超音波振動子
12:ハウジング
12a:開口部
12b:先端側壁部
12c:基端側筒状部
13:駆動シャフト
14:電気信号線
14a:接続部
15:保持体
16:固定部材
20:シース
20a:本体部
20b:ガイドワイヤ挿通部
21a:第1中空部
21b:第2中空部
22、23:マーカ
24:窓部
26:連通孔
30:内管部材
31:内管
32:ハブ
40:外管部材
41:外管
42:先端側コネクタ
43:基端側コネクタ
100:画像診断装置
110、410:画像診断用カテーテル
110a:挿入部
110b:操作部
120:外部装置
120a:駆動ユニット
120b:制御装置
120c:モニタ
121:モータ
122:モータ
123:ボールネジ
201a:第1クランプ部材
201b:第2クランプ部材
203:位置合わせ冶具
203a:振動子固定部
203b:保持体固定部
301:光送受信部
302:光信号線
A:画像診断用カテーテルの長手方向
B:圧電素子の厚み方向
C:電気信号線の延在方向
P1:第1クランプ部材に挟持される第1位置
P2:第2クランプ部材に挟持される第2位置
P3:保持体により保持される保持位置
W:ガイドワイヤ
1: piezoelectric element 2: support member 3: acoustic matching member 4: piezoelectric body 5: first electrode 6: second electrode 6a: back surface electrode layer 6b: front surface electrode layer 6c: connected conductive part 10, 310: ultrasonic probe Child 11: Ultrasonic transducer 12: Housing 12a: Opening 12b: Tip side wall 12c: Base end side tubular part 13: Drive shaft 14: Electric signal line 14a: Connection part 15: Holder 16: Fixing member 20: Sheath 20a: Main body 20b: Guide wire insertion part 21a: First hollow part 21b: Second hollow part 22, 23: Marker 24: Window part 26: Communication hole 30: Inner pipe member 31: Inner pipe 32: Hub 40: Outer tube member 41: Outer tube 42: Tip side connector 43: Base end side connector 100: Diagnostic imaging device 110, 410: Diagnostic imaging catheter 110a: Insertion unit 110b: Operation unit 120: External device 120a: Drive unit 120b: Control Device 120c: Monitor 121: Motor 122: Motor 123: Ball screw 201a: First clamp member 201b: Second clamp member 203: Alignment jig 203a: Transducer fixing part 203b: Holder fixing part 301: Optical transmission / reception part 302: Optical Signal line A: Longitudinal direction of diagnostic imaging catheter B: Thickness direction of piezoelectric element C: Extension direction of electric signal line P1: First position sandwiched by first clamp member P2: Sandwiched by second clamp member Second position P3: Holding position W held by the holding body: Guide wire

Claims (9)

  1.  超音波探触子の製造方法であって、
     少なくとも2本の電気信号線に対して、前記少なくとも2本の電気信号線の一部同士の相対的な位置関係を保持可能な保持体を取り付ける取付工程と、
     前記少なくとも2本の電気信号線のうち前記保持体と隣接する部分を、圧電素子に接続する接続工程と、を含む、超音波探触子の製造方法。
    It is a method of manufacturing an ultrasonic probe.
    An attachment step of attaching a holder capable of maintaining a relative positional relationship between a part of the at least two electric signal lines to at least two electric signal lines,
    A method for manufacturing an ultrasonic probe, which comprises a connection step of connecting a portion of at least two electric signal lines adjacent to the holding body to a piezoelectric element.
  2.  前記取付工程の前に、前記少なくとも2本の電気信号線を、前記保持体により保持される保持位置の両側の位置で挟持する挟持工程を含む、請求項1に記載の超音波探触子の製造方法。 The ultrasonic probe according to claim 1, further comprising a sandwiching step of sandwiching at least two electric signal lines at positions on both sides of a holding position held by the holding body before the mounting step. Production method.
  3.  前記挟持工程では、前記少なくとも2本の電気信号線が前記保持位置において一方向に沿って延在するように、前記少なくとも2本の電気信号線を挟持する、請求項2に記載の超音波探触子の製造方法。 The ultrasonic probe according to claim 2, wherein in the sandwiching step, the at least two electric signal lines are sandwiched so that the at least two electric signal lines extend along one direction at the holding position. How to make a tentacle.
  4.  前記挟持工程の後で、かつ、前記接続工程の前に、前記少なくとも2本の電気信号線の被覆材を除去する被覆除去工程を含む、請求項2又は3に記載の超音波探触子の製造方法。 The ultrasonic probe according to claim 2 or 3, further comprising a coating removing step of removing the coating material of at least two electric signal lines after the sandwiching step and before the connecting step. Production method.
  5.  前記接続工程の前に、前記圧電素子の接続位置と、前記少なくとも2本の電気信号線の接続位置と、を位置合わせ冶具により調整する位置合わせ工程を含む、請求項1から4のいずれか1つに記載の超音波探触子の製造方法。 Any one of claims 1 to 4, further comprising an alignment step of adjusting the connection position of the piezoelectric element and the connection position of at least two electric signal lines by an alignment jig before the connection step. The method for manufacturing an ultrasonic probe described in 1.
  6.  圧電素子と、
     前記圧電素子に接続されている少なくとも2本の電気信号線と、
     前記少なくとも2本の電気信号線に取り付けられ、前記少なくとも2本の電気信号線の一部同士の相対的な位置関係を保持する保持体と、
     前記圧電素子及び前記保持体を収容するハウジングと、を備える超音波探触子。
    With a piezoelectric element
    At least two electric signal lines connected to the piezoelectric element,
    A holder attached to the at least two electric signal lines and maintaining a relative positional relationship between a part of the at least two electric signal lines.
    An ultrasonic probe comprising the piezoelectric element and a housing for accommodating the holder.
  7.  前記保持体の前記ハウジング内での位置を固定する固定部材を備える、請求項6に記載の超音波探触子。 The ultrasonic probe according to claim 6, further comprising a fixing member for fixing the position of the holder in the housing.
  8.  前記固定部材は、前記保持体と前記ハウジングとの間に介在し、前記保持体を前記ハウジングに対して接着する接着体である、請求項7に記載の超音波探触子。 The ultrasonic probe according to claim 7, wherein the fixing member is an adhesive body that is interposed between the holding body and the housing and adheres the holding body to the housing.
  9.  前記接着体及び前記保持体は主成分としてゴム又は樹脂を含み、
     前記接着体の主成分となるゴム材料又は樹脂材料は、前記保持体の主成分となるゴム材料又は樹脂材料と異なる、請求項8に記載の超音波探触子。
    The adhesive and the holder contain rubber or resin as a main component and contain rubber or resin.
    The ultrasonic probe according to claim 8, wherein the rubber material or resin material as the main component of the adhesive is different from the rubber material or resin material as the main component of the holder.
PCT/JP2020/012776 2019-03-26 2020-03-23 Method for manufacturing ultrasonic probe, and ultrasonic probe WO2020196427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509402A JP7405833B2 (en) 2019-03-26 2020-03-23 Ultrasonic probe manufacturing method and ultrasonic probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059153 2019-03-26
JP2019-059153 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196427A1 true WO2020196427A1 (en) 2020-10-01

Family

ID=72610984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012776 WO2020196427A1 (en) 2019-03-26 2020-03-23 Method for manufacturing ultrasonic probe, and ultrasonic probe

Country Status (2)

Country Link
JP (1) JP7405833B2 (en)
WO (1) WO2020196427A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194269A1 (en) * 2022-04-07 2023-10-12 Koninklijke Philips N.V. Multi-component housing for sensor in intraluminal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126136A (en) * 1989-11-21 1992-04-27 Olympus Optical Co Ltd Ultrasonic probe
JP2002095090A (en) * 2000-09-14 2002-03-29 Aloka Co Ltd Ultrasonic probe and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126136A (en) * 1989-11-21 1992-04-27 Olympus Optical Co Ltd Ultrasonic probe
JP2002095090A (en) * 2000-09-14 2002-03-29 Aloka Co Ltd Ultrasonic probe and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194269A1 (en) * 2022-04-07 2023-10-12 Koninklijke Philips N.V. Multi-component housing for sensor in intraluminal device

Also Published As

Publication number Publication date
JPWO2020196427A1 (en) 2020-10-01
JP7405833B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
JP6378787B2 (en) Design and method for an intravascular catheter
US10299757B2 (en) Medical tube, catheter, and method for producing medical tube
JP7414939B2 (en) Diagnostic imaging catheter
WO2020196427A1 (en) Method for manufacturing ultrasonic probe, and ultrasonic probe
US11596310B2 (en) Image diagnosis catheter
JP7403532B2 (en) ultrasonic transducer
US20180214670A1 (en) Diagnostic imaging catheter
US11406356B2 (en) Image diagnosis catheter
EP3932325A1 (en) Image diagnosis catheter
WO2021187251A1 (en) Ultrasonic probe
JP7403358B2 (en) ultrasonic probe
JP2020162844A (en) Cutting device
JP4530774B2 (en) Ultrasonic probe
WO2023282237A1 (en) Catheter for diagnostic imaging
JP2023144742A (en) Catheter for diagnostic imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778345

Country of ref document: EP

Kind code of ref document: A1