WO2020196292A1 - 地震推定方法、地震推定プログラム、及び、地震推定装置 - Google Patents
地震推定方法、地震推定プログラム、及び、地震推定装置 Download PDFInfo
- Publication number
- WO2020196292A1 WO2020196292A1 PCT/JP2020/012370 JP2020012370W WO2020196292A1 WO 2020196292 A1 WO2020196292 A1 WO 2020196292A1 JP 2020012370 W JP2020012370 W JP 2020012370W WO 2020196292 A1 WO2020196292 A1 WO 2020196292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- earthquake
- observation
- earthquakes
- parameters
- simulated
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004088 simulation Methods 0.000 claims abstract description 43
- 238000010801 machine learning Methods 0.000 claims description 14
- 238000006073 displacement reaction Methods 0.000 description 43
- 238000004364 calculation method Methods 0.000 description 26
- 238000010276 construction Methods 0.000 description 15
- 230000010365 information processing Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 13
- 238000013136 deep learning model Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000000547 structure data Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/01—Measuring or predicting earthquakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/307—Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Definitions
- the present invention relates to an earthquake estimation method, an earthquake estimation program, and an earthquake estimation device.
- Estimating the magnitude of an earthquake is the most important piece of basic information that should be obtained after an earthquake occurs.
- the arrival times of P (Primary) and S (Secondary) waves of seismic waves are read, and the position of the epicenter of the earthquake (the position of the epicenter and the depth of the epicenter) is determined using these, and then the respective ground surfaces.
- the magnitude has been estimated by an empirical formula from the maximum amplitude of the seismic wave at the observation point and the distance to the epicenter.
- Mw moment magnitude
- the method using the moment magnitude (Mw) can physically estimate the magnitude of the earthquake, so that the magnitude value increases in proportion to the magnitude of the earthquake. Therefore, it is recommended to use Mw to estimate the magnitude of the earthquake.
- An object of the present invention is to provide an earthquake estimation method for estimating an earthquake faster based on observation data.
- the disclosed technology employs the following means in order to solve the above problems. That is, the first aspect is The computer An observation image showing the spatial distribution of seismic wave propagation is generated based on the observation results of seismic waves at multiple observation points on the surface of the earth. At the very least, we will use an earthquake estimation model that associates earthquake parameters including the location and scale of the earthquake with simulated observation images showing the spatial distribution of seismic wave propagation on the ground surface obtained from the results of numerical simulations of the earthquake performed using these parameters. Therefore, the seismic estimation method is to estimate the seismic parameters for the observed image.
- earthquake parameters are estimated from the spatial distribution of seismic wave propagation using an earthquake estimation model based on numerical simulation of earthquakes.
- the second aspect further
- the earthquake estimation model is constructed so as to estimate each parameter of an earthquake by machine learning using a set of the parameters of the earthquake and the simulated observation image as teacher data. Use the earthquake estimation method.
- an earthquake estimation model is constructed by machine learning using the earthquake parameters and simulated observation images as teacher data.
- the third aspect further
- the simulated observation image is an image showing the spatial distribution of seismic wave propagation on the ground surface obtained from the results of numerical simulations of parameters of one or more earthquakes.
- the earthquake estimation model estimates the number of earthquakes by machine learning using a set of the simulated observation image and the number of the earthquakes used in generating the simulated observation image as teacher data.
- the computer estimates the number of earthquakes for the observed image using the earthquake estimation model. Let's do this as an earthquake estimation method.
- the number of earthquakes in the observed image is estimated based on the earthquake estimation model that estimates the number of earthquakes.
- the aspect of disclosure may be realized by executing the program by the information processing device. That is, the structure of the disclosure can be specified as a program for causing the information processing apparatus to execute the process executed by each means in the above-described embodiment, or as a computer-readable recording medium on which the program is recorded. Further, the structure of the disclosure may be specified by a method in which the information processing apparatus executes the processing executed by each of the above means. The configuration of the disclosure may be specified as a system including an information processing device that performs processing executed by each of the above means.
- FIG. 1 is a diagram showing a configuration example of a functional block of the earthquake estimation device of the embodiment.
- FIG. 2 is a diagram showing a hardware configuration example of the information processing device.
- FIG. 3 is a diagram showing an example of an operation flow of a numerical simulation of an earthquake by an earthquake estimation device.
- FIG. 4 is a diagram showing an example of a simulated observation image generated by the seismic estimation device.
- FIG. 5 is a diagram showing an example of an operation flow for constructing an earthquake estimation model for the number of earthquakes by the earthquake estimation device.
- FIG. 6 is a diagram showing an example of an operation flow of constructing an earthquake estimation model of earthquake parameters by an earthquake estimation device.
- FIG. 7 is a diagram showing an example of an operation flow of earthquake estimation by the earthquake estimation device.
- FIG. 1 is a diagram showing a configuration example of a functional block of the earthquake estimation device of the present embodiment.
- the earthquake estimation device 100 includes a data acquisition unit 102, an earthquake calculation unit 104, an estimation model construction unit 106, an earthquake estimation unit 108, an output unit 110, and a storage unit 112.
- the data acquisition unit 102 stores data used in numerical simulation of an earthquake in the earthquake calculation unit 104, construction of an earthquake estimation model in the estimation model construction unit 106, earthquake estimation in the earthquake estimation unit 108, and the like in another device or a storage unit. Obtained from 112.
- the data acquisition unit 102 obtains seismic wave observation data (observation point position, observation time, displacement, velocity, acceleration, etc.) by a seismograph installed at an observation point in a predetermined area via a network or the like. ,get.
- the data acquisition unit 102 generates an observation image showing the displacement of each point in a predetermined region based on the acquired actual seismic wave observation data.
- the observed image includes an observed still image and an observed moving image.
- the displacement of the ground at each point is converted into color and shown on the map.
- the displacement of a point without an observation point is determined by interpolating the displacement of surrounding observation points, for example.
- the data acquisition unit 102 observes still images at predetermined time intervals from the time of the earthquake (or after the first predetermined time has elapsed since the earthquake occurred) to the second predetermined time (> the first predetermined time). May be generated. Further, the data acquisition unit 102 may generate an observation moving image by arranging the observed still images generated at predetermined time intervals in chronological order. By using a moving image including a plurality of still images, the accuracy of earthquake estimation and earthquake number estimation is further improved.
- the observation image showing the displacement of each point in the predetermined area is an example of the image showing the spatial distribution of seismic wave propagation in the predetermined area.
- the data acquisition unit 102 stores the generated observation image in the storage unit 112. Further, the data acquisition unit 102 may generate two-dimensional array data of the displacement of the ground instead of the observation image. In the two-dimensional array data, each subscript corresponds to the position of the ground and each element corresponds to the displacement. Further, the data acquisition unit 102 acquires the underground structure data indicating the underground structure used in the calculation of the earthquake, the simulated earthquake data, and the like from the storage unit 112 and the like. Velocity or acceleration may be used instead of displacement at each point.
- the earthquake calculation unit 104 performs a numerical simulation of an earthquake based on the underground structure, earthquake data of the earthquake, and the like.
- the earthquake calculation unit 104 calculates the displacement of the ground at each point in a predetermined area from the occurrence of the earthquake to the elapse of a predetermined time by numerical simulation of the earthquake, converts the displacement of each point into a color, and shows it on a map.
- Generate a simulated observation image For example, the color of the displacement indicates that the value of the displacement increases as it changes from black to white.
- the simulated observation image is an image that simulates the observed image.
- the simulated observation image includes a simulated observation still image and a simulated observation moving image. The displacement of the ground at each point changes with time.
- the earthquake calculation unit 104 generates simulated observation still images at one or more times in the time range (from the occurrence of the earthquake to the elapse of a predetermined time) for performing the numerical simulation of the earthquake.
- the earthquake calculation unit 104 may generate simulated observation still images at predetermined time intervals in the time range.
- the earthquake calculation unit 104 may generate simulated observation moving images by arranging simulated observation still images generated at predetermined time intervals in chronological order.
- the earthquake calculation unit 104 may generate two-dimensional array data of the displacement of the ground instead of the simulated observation image. In the two-dimensional array data, each subscript corresponds to the position of the ground and each element corresponds to the displacement.
- the earthquake calculation unit 104 performs a simulation when a plurality of earthquakes occur at substantially the same time, and generates simulated observation images for the plurality of earthquakes.
- the estimation model construction unit 106 uses a set of the simulated observation image generated by the earthquake calculation unit 104 and each parameter of the earthquake data used when generating the simulated observation image as teacher data, and sets each parameter from the observed image. Build an estimated earthquake estimation model.
- the seismic estimation model is constructed for each seismic parameter.
- the earthquake estimation unit 108 estimates the number of earthquakes and each parameter of the earthquake for the observed image by using the earthquake estimation model such as each parameter constructed by the estimation model construction unit 106 based on the observation image based on the observation. To do.
- the output unit 110 outputs the calculation results and the like calculated by each component unit to the display device and the like.
- the storage unit 112 stores data indicating an underground structure, seismic data of a simulated earthquake, etc., such as observation data of seismic waves acquired from observation points and the like, calculation results calculated by each component unit, and the like.
- the earthquake estimation device 100 is a dedicated or general-purpose computer such as a workstation (WS, WorkStation), a PC (Personal Computer), a smartphone, a mobile phone, a tablet terminal, a car navigation device, a PDA (Personal Digital Assistant), or , It can be realized by using an electronic device equipped with a computer.
- the earthquake estimation device 100 can be realized by using a computer (server device) that provides a service through a network.
- the earthquake estimation device 100 can be realized by a computer that executes parallelization by MPI (Message Passing Interface) in which CPUs or GPUs are arranged in parallel on a large scale.
- MPI Message Passing Interface
- FIG. 2 is a diagram showing a hardware configuration example of the information processing device.
- the information processing device 90 shown in FIG. 2 has a general computer configuration.
- the earthquake estimation device 100 is realized by using the information processing device 90 as shown in FIG.
- the information processing device 90 of FIG. 2 includes a processor 91, a memory 92, a storage unit 93, an input unit 94, an output unit 95, and a communication control unit 96. These are connected to each other by a bus.
- the memory 92 and the storage unit 93 are computer-readable recording media.
- the hardware configuration of the information processing device is not limited to the example shown in FIG. 2, and components may be omitted, replaced, or added as appropriate.
- the information processing device 90 meets a predetermined purpose by having the processor 91 load the program stored in the recording medium into the work area of the memory 92 and execute the program, and each component or the like is controlled through the execution of the program.
- the function can be realized.
- the processor 91 is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or a GPGPU (General-Purpose computing on Graphics Processing Units).
- a CPU Central Processing Unit
- DSP Digital Signal Processor
- GPGPU General-Purpose computing on Graphics Processing Units
- the memory 92 includes, for example, a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory).
- the memory 92 is also called a main storage device.
- the storage unit 93 is, for example, an EPROM (Erasable Programmable ROM) or a hard disk drive (HDD, Hard Disk Drive). Further, the storage unit 93 can include a removable medium, that is, a portable recording medium.
- the removable medium is, for example, a USB (Universal Serial Bus) memory or a disc recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
- the storage unit 93 is also called a secondary storage device.
- the storage unit 93 stores various programs, various data, and various tables used in the information processing device 90 in a readable and writable recording medium.
- the storage unit 93 stores an operating system (Operating System: OS), various programs, various tables, and the like.
- OS Operating System
- the information stored in the storage unit 93 may be stored in the memory 92. Further, the information stored in the memory 92 may be stored in the storage unit 93.
- the operating system is software that mediates between software and hardware, manages memory space, manages files, manages processes and tasks, and so on.
- the operating system includes a communication interface.
- the communication interface is a program that exchanges data with other external devices and the like connected via the communication control unit 96.
- External devices and the like include, for example, other information processing devices, external storage devices, and the like.
- the input unit 94 includes a keyboard, a pointing device, a wireless remote controller, a touch panel, and the like. Further, the input unit 94 can include an image or image input device such as a camera and an audio input device such as a microphone.
- the output unit 95 includes a display device such as an LCD (Liquid Crystal Display), an EL (Electroluminescence) panel, a CRT (Cathode Ray Tube) display, a PDP (Plasma Display Panel), and an output device such as a printer. Further, the output unit 95 can include an audio output device such as a speaker.
- a display device such as an LCD (Liquid Crystal Display), an EL (Electroluminescence) panel, a CRT (Cathode Ray Tube) display, a PDP (Plasma Display Panel), and an output device such as a printer.
- the output unit 95 can include an audio output device such as a speaker.
- the communication control unit 96 connects to another device and controls communication between the information processing device 90 and the other device.
- the communication control unit 96 is, for example, a LAN (Local Area Network) interface board, a wireless communication circuit for wireless communication, and a communication circuit for wired communication.
- the LAN interface board and wireless communication circuit are connected to a network such as the Internet.
- the steps for writing a program include not only processes performed in chronological order in the order described, but also processes executed in parallel or individually even if they are not necessarily processed in chronological order. Some of the steps to write the program may be omitted.
- Hardware components are hardware circuits, such as FPGAs (Field Programmable Gate Arrays), application-specific integrated circuits (ASICs), gate arrays, logic gate combinations, and analog circuits. ..
- FIG. 3 is a diagram showing an example of an operation flow of a numerical simulation of an earthquake by an earthquake estimation device.
- the earthquake estimation device 100 assumes various earthquakes, performs numerical simulation of the earthquake, and generates a simulated observation image showing the spatial distribution (for example, displacement of the ground surface) of the seismic wave propagation in a predetermined region.
- the earthquake estimation device 100 generates simulated observation images of a plurality of earthquakes, assuming a plurality of earthquakes that occur at substantially the same time.
- a plurality of earthquakes will be described as two earthquakes, but may be three or more earthquakes.
- the data acquisition unit 102 of the earthquake estimation device 100 acquires the data used in the earthquake simulation.
- the data acquisition unit 102 acquires each data of the density, the P wave velocity, and the S wave velocity (spatial distribution of the underground structure) of each underground region indicating the underground structure of the earth, which is stored in the storage unit 112.
- the data acquisition unit 102 acquires data indicating the topography of the ground surface and data indicating the damping structure underground, which are stored in the storage unit 112.
- the data acquisition unit 102 may acquire these data from another device via a network or the like.
- the data acquisition unit 102 acquires the earthquake data of the assumed earthquake stored in the storage unit 112.
- Seismic data is a moment tensor that indicates the position (latitude, longitude) of the epicenter of an earthquake, the depth of the epicenter, the scale (moment magnitude), the direction of fault motion, and the like.
- the position of the epicenter and the depth of the epicenter are also called the position of the epicenter.
- Earthquakes can be identified by each parameter of the seismic data.
- the data acquisition unit 102 may acquire these data from another device via a network or the like.
- the earthquake calculation unit 104 uses a well-known elastic wave equation of motion to perform numerical simulation (numerical calculation) of an earthquake using the underground structure data acquired in S101 and the earthquake data acquired in S102 as initial values.
- the equation of motion of elastic waves can calculate the temporal change of displacement at each point on the ground surface from the data of the underground structure, the seismic data showing the earthquake, the data showing the topography of the ground surface, and the data showing the damping structure of the ground. It is an equation.
- Underground structure data is represented by parameters of density, P-wave velocity, and S-wave velocity at each underground point.
- seismic data is represented by parameters such as scale, epicenter position, epicenter depth, and moment tensor. Other parameters equivalent to these parameters may be used in place of these parameters.
- each data of the point where there is no data showing the underground structure data, the data showing the topography of the ground surface, and the data showing the underground decay structure is each data of the point where the data exists around the point. It may be interpolated by interpolating.
- the time interval for discretely calculating the displacement is set according to the accuracy of the simulation.
- the direction of displacement here is, for example, the vertical direction.
- the direction of displacement is not limited to the vertical direction, but may be the horizontal direction. Vertical displacement is generally considered to be less noisy when observing seismic waves. Therefore, the vertical displacement is suitable for comparison between the numerical simulation of the earthquake and the observed data.
- the earthquake calculation unit 104 stores the calculated numerical simulation result in the storage unit 112.
- the earthquake calculation unit 104 performs a simulated observation stillness in which the displacement of each point is represented by a color on the map of a predetermined area at each time from the occurrence of the earthquake to the predetermined time for the earthquake calculated in S103. Generates a simulated observation moving image in which images or simulated observation still images are continuously connected. The time interval for generating the simulated observation still image is set according to the accuracy of the simulation. Simulated observation still images and simulated observation moving images are collectively called simulated observation images. For example, the color of the displacement indicates that the value of the displacement increases from black to white.
- the earthquake calculation unit 104 stores the generated simulated observation image in the storage unit 112 in association with the earthquake data and the elapsed time from the occurrence of the earthquake. When the seismic calculation unit 104 generates a simulated observation image, for a position where there is no numerical simulation result, the result may be interpolated by interpolating the result of the position where the numerical simulation result exists around the position. Good.
- the earthquake estimation device 100 performs a numerical simulation of two earthquakes that occur almost at the same time
- the data acquisition unit 102 acquires earthquake data for the two earthquakes in S101.
- An earthquake that occurs almost at the same time means, for example, an earthquake with a time difference of 30 seconds or less.
- the time difference can be changed, for example, by the size of a predetermined region for generating a simulated observation image.
- the earthquake calculation unit 104 determines the difference between the occurrence times (earthquake times) of the two earthquakes (the first earthquake and the second earthquake) (the occurrence time of the first earthquake-the occurrence time of the second earthquake). For example, numerical simulations of earthquakes are performed by changing from ⁇ 30 seconds to +30 seconds in 1-second units. Further, in S104, the earthquake calculation unit 104 generates a simulated observation image for the numerical simulation of each earthquake and stores it in the storage unit 112.
- the simulated observation image is associated with the number of earthquakes (1) and stored in the storage unit 112. Further, when the earthquake calculation unit 104 generates simulated observation images for two earthquakes that occur almost at the same time, the simulated observation images are associated with the number of earthquakes (two) and stored in the storage unit 112. ..
- the earthquake estimation device 100 performs a numerical simulation of an earthquake based on the operation flow of FIG. 3 for an earthquake that can occur in a predetermined area based on the observation results of past seismic waves and the underground geological structure. Do. In addition, the earthquake estimation device 100 performs a numerical simulation of earthquakes when any two earthquakes occur at substantially the same time.
- FIG. 4 is a diagram showing an example of a simulated observation still image generated by the seismic estimation device.
- (A) and (B) of FIG. 4 show simulated observation still images generated for one earthquake, respectively.
- (C) and (D) of FIG. 4 show simulated observation still images generated for two earthquakes that occurred at almost the same time, respectively.
- Each simulated observation still image of FIG. 4 shows the displacement of each position on the ground surface in a predetermined area. Here, it is assumed that the displacement value increases as the color changes from black to white in each image. Further, in each image, the gray part indicates that the displacement is 0.
- the epicenter of the earthquake set in the numerical simulation is shown.
- the two epicenters of the two earthquakes (first earthquake and second earthquake) set in the numerical simulation are shown.
- FIG. 5 is a diagram showing an example of an operation flow for constructing an earthquake estimation model for the number of earthquakes by the earthquake estimation device.
- the earthquake estimation device 100 uses a set of a simulated observation image generated based on a numerical simulation of an earthquake and the number of earthquakes as training data, and uses a deep learning model of machine learning to obtain the number of earthquakes from the observed image. Build an estimated earthquake estimation model.
- the data acquisition unit 102 of the earthquake estimation device 100 acquires the simulated observation image stored in the storage unit 112 and the number of earthquakes associated with the simulated observation image from the storage unit 112.
- the estimation model construction unit 106 uses a machine learning deep learning model to use the set of the simulated observation image acquired in S201 and the number of earthquakes as teacher data, and from the simulated observation image (observed image) to the earthquake. Build an earthquake estimation model to estimate the number. Any model may be used as the deep learning model used here.
- the estimation model construction unit 106 stores an earthquake estimation model for estimating the number of constructed earthquakes in the storage unit 112. For the construction of the model, a method using a learning space such as deep learning by a neural network, multiple regression analysis, Look Up Table, etc. can be used. A method other than machine learning may be used when constructing the seismic estimation model.
- FIG. 6 is a diagram showing an example of an operation flow of constructing an earthquake estimation model of earthquake parameters by an earthquake estimation device.
- the earthquake estimation device 100 uses a set of a simulated observation image generated based on an earthquake simulation and each parameter of the earthquake data used when generating the simulated observation image as teacher data, and deep learning of machine learning. Using the model, we build an earthquake estimation model that estimates each parameter of the earthquake from the observed images.
- the data acquisition unit 102 of the earthquake estimation device 100 acquires the simulated observation image stored in the storage unit 112 and each parameter of the earthquake used when generating the simulated observation image from the storage unit 112. To do.
- the data acquisition unit 102 also acquires the elapsed time from the occurrence of the earthquake and the number of earthquakes associated with the simulated observation image.
- the elapsed time from the occurrence of the earthquake is also one of the parameters of the earthquake.
- the estimation model construction unit 106 uses a deep learning model of machine learning, and uses a set of the simulated observation image acquired in S301 and each parameter of the earthquake as teacher data, and uses the simulated observation image (observed image) to generate an earthquake.
- the estimation model building unit 106 builds an earthquake estimation model for each earthquake parameter and each number of earthquakes.
- the parameters of the earthquake are the scale (moment magnitude), the position of the epicenter (latitude, longitude), the depth of the epicenter, the elapsed time since the occurrence of the earthquake, and the moment tensor (6 components).
- the estimation model construction unit 106 constructs an earthquake estimation model that estimates the magnitude of an earthquake from an observation image of one earthquake, for example.
- the estimation model construction unit 106 stores an earthquake estimation model for estimating each parameter of the constructed earthquake in the storage unit 112.
- a method using a learning space such as deep learning by a neural network, multiple regression analysis, Look Up Table, etc. can be used.
- a method other than machine learning may be used when constructing the seismic estimation model.
- FIG. 7 is a diagram showing an example of an operation flow of earthquake estimation by the earthquake estimation device.
- the earthquake estimation device 100 acquires the observation data of earthquakes from each observation point and estimates the number of earthquakes and each parameter of the earthquake by using the constructed earthquake estimation model.
- the data acquisition unit 102 of the seismic estimation device 100 acquires seismic wave observation data (displacement, velocity, acceleration) and the like by a seismograph installed at an observation point in a predetermined region via a network or the like. .. Based on the acquired actual seismic wave observation data, the data acquisition unit 102 continuously connects observed still images or observed still images showing the displacement in a predetermined region at each time (observation time) when the displacement is observed. Generates observed moving images. Observation still images and observation moving images are collectively called observation images. The observation image includes information on the time (observation time) at which the displacement was observed. The observation time is recorded, for example, as a date and the cumulative number of seconds since midnight on that date.
- the data acquisition unit 102 may interpolate the observation data by interpolating the observation data of the position where the observation data exists around the position where the observation data does not exist.
- the data acquisition unit 102 stores the generated observation image in the storage unit 112.
- the data acquisition unit 102 may generate an observation image when a displacement of a predetermined value or more is observed at a predetermined number or more observation points. If the displacement is observed only at a small number of observation points, or if the displacement is less than a predetermined value, there is a high possibility of noise rather than displacement due to an earthquake, so the data acquisition unit 102 generates an observation image. It does not have to be.
- the data acquisition unit 102 may or may not match the time interval for generating the observed still image with the time interval for generating the simulated observed still image.
- the earthquake estimation unit 108 uses an earthquake estimation model that estimates the number of earthquakes constructed using simulated observation images, and based on the observation image generated in S401, the earthquake included in the observation image. Estimate the number.
- the earthquake estimation unit 108 stores the estimated number of earthquakes in the storage unit 112 in association with the observed image.
- the earthquake estimation unit 108 uses an earthquake estimation model that estimates each parameter of the earthquake constructed using the simulated observation image, and based on the observation image generated in S401, the earthquake corresponding to the observation image. Estimate each parameter of.
- the earthquake estimation unit 108 estimates each parameter of the earthquake based on the observation image generated in S401 by using the earthquake estimation model that estimates each parameter corresponding to the number of earthquakes estimated in S402. As a result, the earthquake estimation unit 108 can estimate the magnitude of the earthquake, the position of the epicenter, the depth of the epicenter, the time of occurrence, and the moment tensor corresponding to the observed image.
- the time of occurrence of an earthquake is calculated by subtracting the estimated elapsed time from the occurrence of the earthquake from the observed time of displacement in the observed image.
- the earthquake estimation unit 108 stores the estimated magnitude of the earthquake, the position of the epicenter, the depth of the epicenter, the time of occurrence, and the moment tensor in the storage unit 112. When multiple earthquakes are included in the observation image, the earthquake estimation unit 108 estimates the earthquake data (scale, epicenter position, epicenter depth, occurrence time, moment tensor) for each earthquake. It is stored in the storage unit 112.
- the output unit 110 outputs the earthquake data stored in the storage unit 112 to a display device or the like.
- the earthquake estimation unit 108 uses, for example, an earthquake estimation model that estimates each parameter of an earthquake constructed by one earthquake when the number of earthquakes is estimated to be one. By using an earthquake estimation model for each number of earthquakes, the accuracy of earthquake estimation is improved.
- the earthquake estimation unit 108 estimates each parameter of the earthquake for the observed still images at a plurality of consecutive times, and assumes that these are of the same earthquake, and calculates each parameter of the earthquake at the estimated multiple times. Each parameter of the earthquake may be calculated on average.
- the earthquake estimation device 100 estimates the number of earthquakes and each parameter of the earthquake by using the observation still image.
- the earthquake estimating device 100 estimates the number of earthquakes and each parameter of the earthquake by using the observed moving image.
- the seismic estimation device 100 uses observation still images and simulated observation still images as observation images and simulated observation images used when constructing each earthquake estimation model, estimating the number of earthquakes, and estimating each parameter of the earthquake.
- an observed moving image and a simulated observed moving image may be used.
- an earthquake estimation model for estimating the number of earthquakes is constructed, and an earthquake estimation model for estimating each parameter of the earthquake is constructed for each number of earthquakes.
- an earthquake estimation model may be constructed using a simulated observation image of one earthquake and a simulated observation image of a plurality of earthquakes.
- the earthquake estimation device 100 does not have to first estimate the number of earthquakes when estimating an earthquake from the observed image, and each of the number of earthquakes included in the observed image and the earthquake data of the earthquake. By estimating together with the parameters, it is possible to estimate the seismic data of an earthquake more quickly.
- the numerical simulation of the earthquake may be performed by a device other than the earthquake estimation device 100.
- the data acquisition unit 102 of the earthquake estimation device 100 acquires the simulated observation image from the other device that generated the simulated observation image by the numerical simulation of the earthquake via a network or the like.
- the earthquake estimation device 100 performs a numerical simulation of an earthquake based on the data of the underground structure and the earthquake data of the assumed earthquake, and generates a simulated observation image showing the displacement of a predetermined region.
- the earthquake estimation device 100 performs a numerical simulation of an earthquake when one or more earthquakes occur.
- the earthquake estimation device 100 stores the generated simulated observation image, the earthquake data, the number of earthquakes included in the simulated observation image, and the earthquake data of the earthquake in association with each other.
- the earthquake estimation device 100 constructs an earthquake estimation model that estimates the number of earthquakes by using a set of a simulated observation image and the number of earthquakes as teacher data. Further, the earthquake estimation device 100 constructs an earthquake estimation model that estimates each parameter of an earthquake for each number of earthquakes by using a set of a simulated observation image and earthquake data as teacher data.
- the seismic estimation device 100 generates an observation image showing the displacement of the ground surface at each point in a predetermined region from the observation data of the seismic wave.
- the earthquake estimation device 100 estimates the number of earthquakes included in the observation image by using an earthquake estimation model that estimates the number of earthquakes based on the observation image.
- the earthquake estimation device 100 estimates each parameter of an earthquake by using an earthquake estimation model that estimates each parameter of an earthquake for each number of earthquakes based on the estimated number of earthquakes and observed images. According to the earthquake estimation device 100, the number of earthquakes is estimated based on the observation image generated from the observation data of the seismic wave, and each parameter of the earthquake data of the earthquake is estimated, so that the scale of the earthquake, the position of the epicenter, etc. Can be obtained quickly.
- the earthquake estimation device 100 by estimating the number of earthquakes in advance and then estimating the earthquake data of the earthquakes, it is possible to suppress the estimation of a plurality of earthquakes occurring at almost the same time as one large earthquake. According to the earthquake estimation device 100, it is possible to estimate the scale of the earthquake, the position of the epicenter, etc. more quickly than the method of estimating the scale after estimating the position of the epicenter of the earthquake as in the conventional technique. it can. According to the earthquake estimation device 100, it is possible to speed up the issuance of a tsunami warning by estimating the scale of an earthquake, the position of an epicenter, and the like more quickly.
- Computer readable recording medium A program that enables a computer or other machine or device (hereinafter, computer or the like) to realize any of the above functions can be recorded on a recording medium that can be read by the computer or the like. Then, the function can be provided by causing a computer or the like to read and execute the program of this recording medium.
- a recording medium that can be read by a computer or the like is a recording medium that can be read from a computer or the like by accumulating information such as data or programs by electrical, magnetic, optical, mechanical, or chemical action.
- elements constituting a computer such as a CPU and a memory may be provided, and the CPU may execute a program.
- recording media those that can be removed from a computer or the like include, for example, flexible disks, magneto-optical disks, CD-ROMs, CD-R / Ws, DVDs, DATs, 8 mm tapes, memory cards, and the like.
- Earthquake estimation device 100 Earthquake estimation device 102 Data acquisition unit 104 Earthquake calculation unit 106 Estimation model construction unit 108 Earthquake estimation unit 110 Output unit 112 Storage unit 90 Information processing device 91 Processor 92 Memory 93 Storage unit 94 Input unit 95 Output unit 96 Communication control unit
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Acoustics & Sound (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
Abstract
観測データに基づいてより早く地震を推定する地震推定方法を提供する。コンピュータが、地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った前記地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震のパラメータを推定することを実行する地震推定方法とする。
Description
本発明は、地震推定方法、地震推定プログラム、及び、地震推定装置に関する。
地震の規模(マグニチュード)の推定は、地震発生後に取得すべき基本的情報の最重要なものである。従来は、地震波のP(Primary)波およびS(Secondary)波の到着時刻を読み取り、これらを用いて地震の震源の位置(震央の位置及び震源の深さ)を決定してから、それぞれの地表の観測点における地震波の最大振幅と震源までの距離から経験式によりマグニチュードを推定することが行われてきた。この技術では、複数の観測点における地震波の到着時を正確に読み取ることが必要であり、また地震波の最大振幅をどこの時刻でどの地震波から読み取るかによって、どの種類のマグニチュードを用いるか様々な経験式が存在している。その中でも、モーメントマグニチュード(Mw)を用いる手法は、地震の規模を物理的に推定することができるので、地震の規模に比例してマグニチュードの値が大きくなる。このため、地震の規模の推定にはMwを使うことが推奨されている。
地震のモーメントマグニチュード(Mw)の推定には地震の表面波が使用されるため、Mwを迅速に推定することは難しい。また、従来の手法では、地震発生後に地表の観測点で読み取る地震波は1つの地震から発生したものであることを仮定しており、同時に2つ以上の地震が発生した場合は扱うことが難しい。実際、このような手法に基づいて気象庁が運用している緊急地震速報では、例えば平成30年1月5日にほぼ同時刻に茨城県沖と富山県西部で起きた2つの地震を同一の大きな地震と誤って処理したために、関東地方や福島県に緊急地震速報が誤って発表される事態が起きている。このように同時に2つ以上の地震が発生した場合にも、迅速かつ正確に地震の数、及び地震の規模等を推定することが求められている。
本発明は、観測データに基づいてより早く地震を推定する地震推定方法を提供することを目的とする。
開示の技術は、上記課題を解決するために、以下の手段を採用する。
即ち、第1の態様は、
コンピュータが、
地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った前記地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震のパラメータを推定する
ことを実行する地震推定方法とする。
即ち、第1の態様は、
コンピュータが、
地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った前記地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震のパラメータを推定する
ことを実行する地震推定方法とする。
第1の態様によると、地震の数値シミュレーションによる地震推定モデルを使用して地震波伝播の空間分布から地震のパラメータが推定される。
第2の態様は、さらに、
前記地震推定モデルは、前記地震のパラメータと前記模擬観測画像との組を教師データとして利用して機械学習をして地震の各パラメータを推定するものとして構築される、
地震推定方法とする。
前記地震推定モデルは、前記地震のパラメータと前記模擬観測画像との組を教師データとして利用して機械学習をして地震の各パラメータを推定するものとして構築される、
地震推定方法とする。
第2の態様によると、地震パラメータと模擬観測画像とを教師データとして機械学習により地震推定モデルが構築される。
第3の態様は、さらに、
前記模擬観測画像は、1または複数の地震のパラメータの数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す画像であり、
前記地震推定モデルは、前記模擬観測画像と当該模擬観測画像の生成の際に使用された前記地震の数との組を教師データとして利用して機械学習をして地震の数を推定するものとして構築され、
前記コンピュータが、前記地震推定モデルを使用して、前記観測画像に対する地震の数を推定する、
ことを実行する地震推定方法とする。
前記模擬観測画像は、1または複数の地震のパラメータの数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す画像であり、
前記地震推定モデルは、前記模擬観測画像と当該模擬観測画像の生成の際に使用された前記地震の数との組を教師データとして利用して機械学習をして地震の数を推定するものとして構築され、
前記コンピュータが、前記地震推定モデルを使用して、前記観測画像に対する地震の数を推定する、
ことを実行する地震推定方法とする。
第3の態様によると、地震の数を推定する地震推定モデルに基づいて観測画像における地震の数が推定される。
開示の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、開示の構成は、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、開示の構成は、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。開示の構成は、上記した各手段が実行する処理を行う情報処理装置を含むシステムとして特定されてもよい。
本発明によれば、観測データに基づいてより早く地震を推定する地震推定方法を提供することができる。
以下、図面を参照して実施形態について説明する。実施形態の構成は例示であり、開示の構成は、開示の実施形態の具体的構成に限定されない。開示の構成の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
〔実施形態〕
(構成例)
図1は、本実施形態の地震推定装置の機能ブロックの構成例を示す図である。地震推定装置100は、データ取得部102、地震算出部104、推定モデル構築部106、地震推定部108、出力部110、記憶部112を含む。
(構成例)
図1は、本実施形態の地震推定装置の機能ブロックの構成例を示す図である。地震推定装置100は、データ取得部102、地震算出部104、推定モデル構築部106、地震推定部108、出力部110、記憶部112を含む。
データ取得部102は、地震算出部104における地震の数値シミュレーション、推定モデル構築部106における地震推定モデルの構築、地震推定部108における地震の推定等で使用されるデータを、他の装置や記憶部112から取得する。データ取得部102は、例えば、所定の地域内の観測点に設置される地震計による地震波の観測データ(観測点の位置、観測時刻、変位、速度、加速度など)等を、ネットワーク等を介して、取得する。データ取得部102は、取得された実際の地震波の観測データに基づいて、所定の領域内の各地点の変位を示す観測画像を生成する。観測画像には、観測静止画像及び観測動画像が含まれる。観測静止画像では、各地点の地面の変位が色に変換されて地図で示される。観測静止画像では、観測点のない地点の変位は、例えば、周囲の観測点の変位を内挿して決定される。データ取得部102は、地震の発震時(もしくは地震の発震から第1所定時間経過後)から第2所定時間(>第1所定時間)経過までの間で、所定の時間間隔で、観測静止画像を生成してもよい。また、データ取得部102は、所定時間間隔で生成された観測静止画像を時刻順に並べて、観測動画像を生成してもよい。複数の静止画像を含む動画像を使用することで、地震推定、地震数推定の精度がより向上する。所定の領域内の各地点の変位を示す観測画像は、所定の領域内の地震波伝播の空間分布を示す画像の一例である。データ取得部102は、生成した観測画像を記憶部112に格納する。また、データ取得部102は、観測画像の代わりに、地面の変位の2次元配列データを生成してもよい。2次元配列データにおいて、各添字は地面の位置に対応し、各要素は変位に対応する。また、データ取得部102は、地震の算出で使用する地下構造を示す地下構造のデータ、模擬する地震のデータ等を、記憶部112等から取得する。各地点の変位の代わりに速度や加速度が使用されてもよい。
地震算出部104は、地下構造、地震の地震データ等に基づいて、地震の数値シミュレーションを行う。地震算出部104は、地震の数値シミュレーションによって、地震の発震から所定時間経過までの所定の地域の各地点の地面の変位等を算出し、当該各地点の変位を色に変換して地図で示す模擬観測画像を生成する。例えば、変位の色は、黒から白に変化するにつれて、変位の値が大きくなることを示す。模擬観測画像は、観測画像を模擬した画像である。模擬観測画像には、模擬観測静止画像及び模擬観測動画像が含まれる。各地点の地面の変位は、時間変化する。地震算出部104は、地震の数値シミュレーションを行う時間範囲(地震発生から所定時間経過まで)において、1以上の時刻における模擬観測静止画像を生成する。模擬観測静止画像では、各地点の地面の変位が表される。地震算出部104は、当該時間範囲において、所定の時間間隔で、模擬観測静止画像を生成してもよい。地震算出部104は、所定時間間隔で生成された模擬観測静止画像を時刻順に並べて、模擬観測動画像を生成してもよい。また、地震算出部104は、模擬観測画像の代わりに、地面の変位の2次元配列データを生成してもよい。2次元配列データにおいて、各添字は地面の位置に対応し、各要素は変位に対応する。また、地震算出部104は、複数の地震がほぼ同時に発生した場合のシミュレーションを行い、複数の地震についての模擬観測画像を生成する。
推定モデル構築部106は、地震算出部104で生成された模擬観測画像と当該模擬観測画像を生成する際に使用された地震データの各パラメータとの組を教師データとして、観測画像から各パラメータを推定する地震推定モデルを構築する。地震推定モデルは、地震のパラメータ毎に構築される。
地震推定部108は、観測に基づく観測画像に基づいて、推定モデル構築部106で構築した各パラメータ等の地震推定モデルを使用して、当該観測画像についての地震の数や地震の各パラメータを推定する。
出力部110は、各構成部で算出される算出結果等を、表示装置等に出力する。
記憶部112は、観測点等から取得された地震波の観測データ、各構成部で算出される算出結果等、地下構造を示すデータ、模擬する地震の地震データ等を格納する。
地震推定装置100は、ワークステーション(WS、Work Station)のような専用または汎用のコンピュータ、PC(Personal Computer)、スマートフォン、携帯電話、タブレット型端末、カーナビゲーション装置、PDA(Personal Digital Assistant)、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。地震推定装置100は、ネットワークを通じてサービスを提供するコンピュータ(サーバ機器)を使用して、実現可能である。地震推定装置100は、CPUまたはGPUを大規模に並列させたMPI(Message Passing Interface)による並列を実行する計算機によって実現可能である。
図2は、情報処理装置のハードウェア構成例を示す図である。図2に示す情報処理装置90は、一般的なコンピュータの構成を有している。地震推定装置100は、図2に示すような情報処理装置90を用いることによって、実現される。図2の情報処理装置90は、プロセッサ91、メモリ92、記憶部93、入力部94、出力部95、通信制御部96を有する。これらは、互いにバスによって接続される。メモリ92及び記憶部93は、コンピュータ読み取り可能な記録媒体である。情報処理装置のハードウェア構成は、図2に示される例に限らず、適宜構成要素の省略、置換、追加が行われてもよい。
情報処理装置90は、プロセッサ91が記録媒体に記憶されたプログラムをメモリ92の作業領域にロードして実行し、プログラムの実行を通じて各構成部等が制御されることによって、所定の目的に合致した機能を実現することができる。
プロセッサ91は、例えば、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、GPGPU(General-Purpose computing on Graphics Processing Units)である。
メモリ92は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)を含む。メモリ92は、主記憶装置とも呼ばれる。
記憶部93は、例えば、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)である。また、記憶部93は、リムーバブルメディア、即ち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、あるいは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。記憶部93は、二次記憶装置とも呼ばれる。
記憶部93は、情報処理装置90で使用される、各種のプログラム、各種のデータ及び各種のテーブルを読み書き自在に記録媒体に格納する。記憶部93には、オペレーティングシステム(Operating System :OS)、各種プログラム、各種テーブル等が格納される。記憶部93に格納される情報は、メモリ92に格納されてもよい。また、メモリ92に格納される情報は、記憶部93に格納されてもよい。
オペレーティングシステムは、ソフトウェアとハードウェアとの仲介、メモリ空間の管理、ファイル管理、プロセスやタスクの管理等を行うソフトウェアである。オペレーティングシステムは、通信インタフェースを含む。通信インタフェースは、通信制御部96を介して接続される他の外部装置等とデータのやり取りを行うプログラムである。外部装置等には、例えば、他の情報処理装置、外部記憶装置等が含まれる。
入力部94は、キーボード、ポインティングデバイス、ワイヤレスリモコン、タッチパネル等を含む。また、入力部94は、カメラのような映像や画像の入力装置や、マイクロフォンのような音声の入力装置を含むことができる。
出力部95は、LCD(Liquid Crystal Display)、EL(Electroluminescence)パネル、CRT(Cathode Ray Tube)ディスプレイ、PDP(Plasma Display Panel)等の表示装置、プリンタ等の出力装置を含む。また、出力部95は、スピーカのような音声の出力装置を含むことができる。
通信制御部96は、他の装置と接続し、情報処理装置90と他の装置との間の通信を制御する。通信制御部96は、例えば、LAN(Local Area Network)インタフェースボード、無線通信のための無線通信回路、有線通信のための通信回路である。LANインタフェースボードや無線通信回路は、インターネット等のネットワークに接続される。
プログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくても、並列的または個別に実行される処理を含む。プログラムを記述するステップの一部が省略されてもよい。
一連の処理は、ハードウェアにより実行させることも、ソフトウェアにより実行させることもできる。ハードウェアの構成要素は、ハードウェア回路であり、例えば、FPGA(Field Programmable Gate Array)、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)、ゲートアレイ、論理ゲートの組み合わせ、アナログ回路等がある。
(動作例)
〈地震の数値シミュレーション〉
図3は、地震推定装置による地震の数値シミュレーションの動作フローの例を示す図である。地震推定装置100は、様々な地震を想定して、地震の数値シミュレーションを行い、所定の領域の地震波伝播の空間分布(例えば、地表面の変位)を示す模擬観測画像を生成する。地震推定装置100は、ほぼ同時に発生する複数の地震も想定して、複数の地震による模擬観測画像を生成する。ここでは、複数の地震は2つの地震として説明するが、3つ以上の地震であってもよい。
〈地震の数値シミュレーション〉
図3は、地震推定装置による地震の数値シミュレーションの動作フローの例を示す図である。地震推定装置100は、様々な地震を想定して、地震の数値シミュレーションを行い、所定の領域の地震波伝播の空間分布(例えば、地表面の変位)を示す模擬観測画像を生成する。地震推定装置100は、ほぼ同時に発生する複数の地震も想定して、複数の地震による模擬観測画像を生成する。ここでは、複数の地震は2つの地震として説明するが、3つ以上の地震であってもよい。
S101では、地震推定装置100のデータ取得部102は、地震のシミュレーションで使用するデータを取得する。データ取得部102は、記憶部112に格納される、地球の地下構造を示す地下の各領域の密度、P波速度、S波速度(地下構造の空間分布)の各データを取得する。また、データ取得部102は、記憶部112に格納される、地表の地形を示すデータ、地下の減衰構造を示すデータを取得する。データ取得部102は、これらのデータをネットワーク等を介して、他の装置から取得してもよい。
S102では、データ取得部102は、記憶部112に格納される、想定する地震の地震データを、取得する。地震データは、地震の震央の位置(緯度、経度)、震源の深さ、規模(モーメントマグニチュード)、断層運動の方向等を示すモーメントテンソルである。震央の位置及び震源の深さを合わせて、震源の位置ともいう。地震は、地震データの各パラメータによって、特定されうる。データ取得部102は、これらのデータをネットワーク等を介して、他の装置から取得してもよい。
S103では、地震算出部104は、周知の弾性波の運動方程式を使用して、S101で取得した地下構造のデータ、S102で取得した地震データを初期値として、地震の数値シミュレーション(数値計算)を行う。弾性波の運動方程式は、地下構造のデータ、地震を示す地震データ、地表の地形を示すデータ、地下の減衰構造を示すデータから、地表面の各地点の変位の時間変化を算出することができる式である。地下構造のデータは、地下の各地点の密度、P波速度、S波速度の各パラメータで表される。また、地震データは、規模、震央の位置、震源の深さ、モーメントテンソルの各パラメータで表される。これらのパラメータの代わりにこれらのパラメータと等価な他のパラメータが使用されてもよい。数値シミュレーションを行う計算領域において、地下構造のデータ、地表の地形を示すデータ、地下の減衰構造を示すデータが存在しない地点の各データは、当該地点の周囲においてデータが存在する地点の各データを内挿することにより補間されてもよい。地震算出部104は、地震の発生時刻(発震時刻)を時刻t=0として、所定時間後までの所定の領域の地表面の各地点の変位を算出する。変位の計算を離散的に行う時間間隔は、シミュレーションの精度に応じて設定される。ここでの変位の方向は、例えば、上下方向とする。変位の方向は、上下方向に限定されるものではなく、水平方向であってもよい。上下方向の変位は、一般に、地震波の観測においてノイズが少ないとされる。このため、上下方向の変位は、地震の数値シミュレーションと観測データとで比較するのに適している。地震算出部104は、算出した数値シミュレーション結果を、記憶部112に格納する。
S104では、地震算出部104は、S103で算出した地震について、地震の発生から所定時刻までの間の、各時刻における、所定の領域の地図において、各地点の変位を色で表した模擬観測静止画像または模擬観測静止画像を連続してつなげた模擬観測動画像を生成する。模擬観測静止画像を生成する時間間隔は、シミュレーションの精度に応じて設定される。模擬観測静止画像、模擬観測動画像を総称して模擬観測画像という。例えば、変位の色は、黒から白になるにつれて、変位の値が大きくなることを示す。地震算出部104は、生成した模擬観測画像を、地震データ、地震の発生からの経過時間と対応づけて、記憶部112に格納する。地震算出部104は、模擬観測画像を生成する際、数値シミュレーションの結果がない位置については、当該位置の周辺の、数値シミュレーションの結果が存在する位置の結果を内挿して結果を補間してもよい。
また、地震推定装置100がほぼ同時に発生する2つの地震の数値シミュレーションを行う場合、S101においてデータ取得部102は、2つの地震についての地震データを取得する。ほぼ同時に発生する地震とは、例えば、地震発生時刻の時間差が30秒以内のものをいう。当該時間差は、例えば、模擬観測画像を生成する所定の領域の大きさ等によって変更され得る。また、S103では、地震算出部104は、2つの地震(第1地震、第2地震とする)の発生時刻(発震時刻)の差(第1地震の発生時刻-第2地震の発生時刻)を、例えば、-30秒から+30秒まで1秒単位で変化させて、それぞれ、地震の数値シミュレーションを行う。また、S104では、地震算出部104は、各地震の数値シミュレーションに対して、模擬観測画像を生成し、記憶部112に格納する。
地震算出部104は、1つの地震について模擬観測画像を生成した場合には、当該模擬観測画像と地震の数(1つ)とを対応づけて、記憶部112に格納する。また、地震算出部104は、ほぼ同時に発生する2つの地震について模擬観測画像を生成した場合には、当該模擬観測画像と地震の数(2つ)とを対応づけて、記憶部112に格納する。
地震推定装置100は、過去の地震波の観測結果や地下の地質構造などから、発生しうる地震であって、所定の領域内で観測しうる地震について、図3の動作フローによる地震の数値シミュレーションを行う。また、地震推定装置100は、当該地震のうち、任意の2つの地震がほぼ同時に発生した場合について、地震の数値シミュレーションを行う。
図4は、地震推定装置が生成する模擬観測静止画像の例を示す図である。図4の(A)及び(B)は、それぞれ、1つの地震について生成した模擬観測静止画像を示す。図4の(C)及び(D)は、それぞれ、ほぼ同時に発生した2つの地震について生成した模擬観測静止画像を示す。図4の各模擬観測静止画像は、所定の領域の地表面の各位置の変位を示す。ここでは、各画像において、色が黒から白に変化するのに連れて、変位の値が大きくなるとする。また各画像において、灰色の部分は変位が0であることを示す。図4の(A)及び(B)の各画像において、数値シミュレーションにおいて設定された地震の震央が表されている。図4の(C)及び(D)の各画像において、数値シミュレーションにおいて設定された2つの地震(第1地震、第2地震)の2つの震央が表されている。図4の各模擬観測静止画像において、各地震の震央を中心として同心円状に変位の高低が広がっていることがわかる。
〈地震の数の地震推定モデルの構築〉
図5は、地震推定装置による地震の数の地震推定モデルの構築の動作フローの例を示す図である。地震推定装置100は、地震の数値シミュレーションに基づいて生成された模擬観測画像と、地震の数との組を教師データとして、機械学習の深層学習モデルを使用して、観測画像から地震の数を推定する地震推定モデルを構築する。
図5は、地震推定装置による地震の数の地震推定モデルの構築の動作フローの例を示す図である。地震推定装置100は、地震の数値シミュレーションに基づいて生成された模擬観測画像と、地震の数との組を教師データとして、機械学習の深層学習モデルを使用して、観測画像から地震の数を推定する地震推定モデルを構築する。
S201では、地震推定装置100のデータ取得部102は、記憶部112に格納される模擬観測画像と、当該模擬観測画像に対応づけられた地震の数とを、記憶部112から取得する。
S202では、推定モデル構築部106は、機械学習の深層学習モデルを使用して、S201で取得した模擬観測画像と地震の数との組を教師データとして、模擬観測画像(観測画像)から地震の数を推定する地震推定モデルを構築する。ここで使用される深層学習モデルは、どのようなモデルが使用されてもよい。推定モデル構築部106は、構築した地震の数を推定する地震推定モデルを記憶部112に格納する。モデルの構築には、ニューラルネットワークによるディープラーニング、多重回帰分析、Look Up Table等の学習空間を利用する手法等が使用され得る。地震推定モデルの構築の際に、機械学習以外の方法が使用されてもよい。
〈地震のパラメータの推定モデルの構築〉
図6は、地震推定装置による地震のパラメータの地震推定モデルの構築の動作フローの例を示す図である。地震推定装置100は、地震のシミュレーションに基づいて生成された模擬観測画像と、当該模擬観測画像の生成の際に使用された地震データの各パラメータとの組を教師データとして、機械学習の深層学習モデルを使用して、観測画像から地震の各パラメータを推定する地震推定モデルを構築する。
図6は、地震推定装置による地震のパラメータの地震推定モデルの構築の動作フローの例を示す図である。地震推定装置100は、地震のシミュレーションに基づいて生成された模擬観測画像と、当該模擬観測画像の生成の際に使用された地震データの各パラメータとの組を教師データとして、機械学習の深層学習モデルを使用して、観測画像から地震の各パラメータを推定する地震推定モデルを構築する。
S301では、地震推定装置100のデータ取得部102は、記憶部112に格納される模擬観測画像と、当該模擬観測画像の生成の際に使用された地震の各パラメータとを、記憶部112から取得する。また、データ取得部102は、当該模擬観測画像に対応づけられた地震発生からの経過時間及び地震の数も取得する。ここでは、地震発生からの経過時間も地震のパラメータの1つとする。
S302では、推定モデル構築部106は、機械学習の深層学習モデルを使用して、S301で取得した模擬観測画像と地震の各パラメータとの組を教師データとして、模擬観測画像(観測画像)から地震の各パラメータを推定する地震推定モデルを構築する。ここでは、推定モデル構築部106は、地震のパラメータ毎及び地震の数毎に、地震推定モデルを構築する。地震のパラメータは、規模(モーメントマグニチュード)、震央の位置(緯度、経度)、震源の深さ、地震発生から経過時間、モーメントテンソル(6成分)である。推定モデル構築部106は、例えば、地震の数が1つについての観測画像から地震の規模を推定する地震推定モデルを構築する。地震のパラメータとして他のパラメータが使用されてもよい。ここで使用される深層学習モデルは、どのようなモデルが使用されてもよい。推定モデル構築部106は、構築した地震の各パラメータを推定する地震推定モデルを記憶部112に格納する。モデルの構築には、ニューラルネットワークによるディープラーニング、多重回帰分析、Look Up Table等の学習空間を利用する手法等が使用され得る。地震推定モデルの構築の際に、機械学習以外の方法が使用されてもよい。
〈地震の推定〉
図7は、地震推定装置による地震の推定の動作フローの例を示す図である。地震推定装置100は、各観測点からの地震の観測データを取得して、地震の数や地震の各パラメータの推定を、構築した地震推定モデルを使用して行う。
図7は、地震推定装置による地震の推定の動作フローの例を示す図である。地震推定装置100は、各観測点からの地震の観測データを取得して、地震の数や地震の各パラメータの推定を、構築した地震推定モデルを使用して行う。
S401では、地震推定装置100のデータ取得部102は、所定の領域内の観測点に設置される地震計による地震波の観測データ(変位、速度、加速度)等を、ネットワーク等を介して、取得する。データ取得部102は、取得された実際の地震波の観測データに基づいて、変位を観測した時刻(観測時刻)毎に、所定の領域の変位を示す観測静止画像または観測静止画像を連続してつなげた観測動画像を生成する。観測静止画像、観測動画像を総称して観測画像という。観測画像には、当該変位を観測した時刻(観測時刻)の情報が含まれる。観測時刻は、例えば、日付と当該日付の午前0時からの積算秒数とで記録される。データ取得部102は、観測画像を生成する際、観測データがない位置については、当該位置の周辺の、観測データが存在する位置の観測データを内挿して観測データを補間してもよい。データ取得部102は、生成した観測画像を記憶部112に格納する。データ取得部102は、観測画像を、所定数以上の観測点において、所定値以上の変位が観測された場合に、生成してもよい。少数の観測点でしか変位が観測されない場合や、所定値以下の変位しかない場合には、地震による変位ではなく、ノイズの可能性が高いため、データ取得部102は、観測画像の生成を行わなくてもよい。データ取得部102は、観測静止画像を生成する時間間隔を、模擬観測静止画像を生成する時間間隔と合わせても、合わせなくてもよい。
S402では、地震推定部108は、模擬観測画像を使用して構築された地震の数を推定する地震推定モデルを使用して、S401で生成した観測画像に基づいて、観測画像に含まれる地震の数を推定する。地震推定部108は、推定した地震の数を観測画像に対応づけて、記憶部112に格納する。
S403では、地震推定部108は、模擬観測画像を使用して構築された地震の各パラメータを推定する地震推定モデルを使用して、S401で生成した観測画像に基づいて、観測画像に対応する地震の各パラメータを推定する。地震推定部108は、S402で推定した地震の数に対応する各パラメータを推定する地震推定モデルを使用して、S401で生成した観測画像に基づいて、地震の各パラメータを推定する。これにより、地震推定部108は、観測画像に対応する地震の規模、震央の位置、震源の深さ、発生時刻、モーメントテンソルを推定することができる。地震の発生時刻は、観測画像における変位の観測時刻から、推定された地震発生からの経過時間を引くことで、算出される。地震推定部108は、推定した地震の規模、震央の位置、震源の深さ、発生時刻、モーメントテンソルを記憶部112に格納する。地震推定部108は、観測画像に複数の地震が含まれている場合には、それぞれの地震についての地震データ(規模、震央の位置、震源の深さ、発生時刻、モーメントテンソル)を推定し、記憶部112に格納する。出力部110は、記憶部112に格納される地震データを表示装置等に出力する。地震推定部108は、例えば、地震の数が1つと推定されるときに、1つの地震で構築された地震の各パラメータを推定する地震推定モデルを使用する。地震の数毎の地震推定モデルを使用することで、地震の推定の精度が向上する。地震推定部108は、連続した複数の時刻における観測静止画像について、地震の各パラメータをそれぞれ推定し、これらが同じ地震のものであると仮定して、推定した複数の時刻における地震の各パラメータをそれぞれ平均して、地震の各パラメータを算出してもよい。地震推定装置100は、模擬観測静止画像を用いて地震推定モデルを構築した場合、観測静止画像を使用して、地震の数や地震の各パラメータを推定する。地震推定装置100は、模擬観測動画像を用いて地震推定モデルを構築した場合、観測動画像を使用して、地震の数や地震の各パラメータを推定する。地震推定装置100は、各地震推定モデルの構築、地震の数の推定、地震の各パラメータの推定の際に使用する、観測画像、模擬観測画像として、観測静止画像及び模擬観測静止画像を使用しても、観測動画像及び模擬観測動画像を使用してもよい。
〈その他〉
上記の例では、地震の数を推定する地震推定モデルを構築し、地震の数ごとに地震の各パラメータを推定する地震推定モデルを構築している。地震の各パラメータを推定する地震推定モデルを構築する際に、1つの地震による模擬観測画像及び複数の地震による模擬観測画像とを用いて地震推定モデルを構築してもよい。この場合、地震推定装置100は、観測画像から地震を推定する際に、最初に地震の数を推定するステップを行わなくてもよく、観測画像に含まれる地震の数と地震の地震データの各パラメータとを一緒に推定することで、地震の地震データの推定をより迅速にできる。
上記の例では、地震の数を推定する地震推定モデルを構築し、地震の数ごとに地震の各パラメータを推定する地震推定モデルを構築している。地震の各パラメータを推定する地震推定モデルを構築する際に、1つの地震による模擬観測画像及び複数の地震による模擬観測画像とを用いて地震推定モデルを構築してもよい。この場合、地震推定装置100は、観測画像から地震を推定する際に、最初に地震の数を推定するステップを行わなくてもよく、観測画像に含まれる地震の数と地震の地震データの各パラメータとを一緒に推定することで、地震の地震データの推定をより迅速にできる。
地震の数値シミュレーションは、地震推定装置100以外の他の装置で行われてもよい。このとき、地震推定装置100のデータ取得部102は、地震の数値シミュレーションによって模擬観測画像を生成した当該他の装置から、ネットワーク等を介して、模擬観測画像を取得する。
(実施形態の作用、効果)
地震推定装置100は、地下構造のデータ、想定される地震の地震データに基づいて、地震の数値シミュレーションを行い、所定の領域の変位を示す模擬観測画像の生成を生成する。地震推定装置100は、1または複数の地震が発生した場合の地震の数値シミュレーションを行う。地震推定装置100は、生成した模擬観測画像と、地震データ及び模擬観測画像に含まれる地震の数、地震の地震データとを、対応付けて格納する。地震推定装置100は、模擬観測画像と地震の数との組を教師データとして、地震の数を推定する地震推定モデルを構築する。また、地震推定装置100は、模擬観測画像と地震データとの組とを教師データとして、地震の数ごとに地震の各パラメータを推定する地震推定モデルを構築する。
地震推定装置100は、地下構造のデータ、想定される地震の地震データに基づいて、地震の数値シミュレーションを行い、所定の領域の変位を示す模擬観測画像の生成を生成する。地震推定装置100は、1または複数の地震が発生した場合の地震の数値シミュレーションを行う。地震推定装置100は、生成した模擬観測画像と、地震データ及び模擬観測画像に含まれる地震の数、地震の地震データとを、対応付けて格納する。地震推定装置100は、模擬観測画像と地震の数との組を教師データとして、地震の数を推定する地震推定モデルを構築する。また、地震推定装置100は、模擬観測画像と地震データとの組とを教師データとして、地震の数ごとに地震の各パラメータを推定する地震推定モデルを構築する。
また、地震推定装置100は、地震波の観測データから所定領域の各地点の地表面の変位を示す観測画像を生成する。地震推定装置100は、観測画像に基づいて、地震の数を推定する地震推定モデルを使用して、観測画像に含まれる地震の数を推定する。地震推定装置100は、推定した地震の数、観測画像に基づいて、地震の数毎に地震の各パラメータを推定する地震推定モデルを使用して、地震の各パラメータを推定する。地震推定装置100によれば、地震波の観測データにより生成される観測画像に基づいて、地震の数を推定し、地震の地震データの各パラメータを推定することで、地震の規模や震源の位置等を迅速に求めることができる。地震推定装置100によれば、あらかじめ地震の数を推定してから地震の地震データを推定することで、ほぼ同時に発生する複数の地震を大きな1つの地震として推定することを抑制することができる。地震推定装置100によれば、従来の技術のように、地震の震源の位置を推定してから規模を推定する方法に比べて、より迅速に地震の規模、震源の位置等を推定することができる。地震推定装置100によれば、より迅速に地震の規模、震源の位置等を推定することで、津波警報の発令の迅速化等を図ることができる。
以上、本発明の実施形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。また、各構成例等は、可能な限りにおいて、組み合わされて実施され得る。
〈コンピュータ読み取り可能な記録媒体〉
コンピュータその他の機械、装置(以下、コンピュータ等)に上記いずれかの機能を実現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。
コンピュータその他の機械、装置(以下、コンピュータ等)に上記いずれかの機能を実現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。
ここで、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。このような記録媒体内には、CPU、メモリ等のコンピュータを構成する要素を設け、そのCPUにプログラムを実行させてもよい。
また、このような記録媒体のうちコンピュータ等から取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD、DAT、8mmテープ、メモリカード等がある。
また、コンピュータ等に固定された記録媒体としてハードディスクやROM等がある。
100 地震推定装置
102 データ取得部
104 地震算出部
106 推定モデル構築部
108 地震推定部
110 出力部
112 記憶部
90 情報処理装置
91 プロセッサ
92 メモリ
93 記憶部
94 入力部
95 出力部
96 通信制御部
102 データ取得部
104 地震算出部
106 推定モデル構築部
108 地震推定部
110 出力部
112 記憶部
90 情報処理装置
91 プロセッサ
92 メモリ
93 記憶部
94 入力部
95 出力部
96 通信制御部
Claims (8)
- コンピュータが、
地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った前記地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震のパラメータを推定する、
ことを実行する地震推定方法。 - 前記地震推定モデルは、前記地震のパラメータと前記模擬観測画像との組を教師データとして利用して機械学習をして地震の各パラメータを推定するものとして構築される、
請求項1に記載の地震推定方法。 - 前記模擬観測画像は、1または複数の地震のパラメータの数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す画像であり、
前記地震推定モデルは、前記模擬観測画像と当該模擬観測画像の生成の際に使用された前記地震の数との組を教師データとして利用して機械学習をして地震の数を推定するものとして構築され、
前記コンピュータが、前記地震推定モデルを使用して、前記観測画像に対する地震の数を推定する、
ことを実行する請求項1または2に記載の地震推定方法。 - コンピュータが、
地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った1または複数の地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震の数を推定することを実行し、
前記地震推定モデルは、前記模擬観測画像と当該模擬観測画像の生成の際に使用された前記地震の数との組を教師データとして利用して機械学習をして地震の数を推定するものとして構築される、
地震推定方法。 - コンピュータが、
地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った前記地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震のパラメータを推定する、
ことを実行するための地震推定プログラム。 - コンピュータが、
地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成し、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った1または複数の地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震の数を推定することを実行し、
前記地震推定モデルは、前記模擬観測画像と当該模擬観測画像の生成の際に使用された前記地震の数との組を教師データとして利用して機械学習をして地震の数を推定するものとして構築される、
ことを実行するための地震推定プログラム。 - 地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成するデータ取得部と、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った前記地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震のパラメータを推定する地震推定部とを備える、
地震推定装置。 - 地表の複数の観測点における地震波の観測結果に基づいて地震波伝播の空間分布を示す観測画像を生成するデータ取得部と、
少なくとも、震源位置、規模を含む地震のパラメータと該パラメータを用いて行った1または複数の地震の数値シミュレーションの結果から得られる地表における地震波伝播の空間分布を示す模擬観測画像とを対応付ける地震推定モデルを利用して、前記観測画像に対する地震の数を推定する地震推定部とを備え、
前記地震推定モデルは、前記模擬観測画像と当該模擬観測画像の生成の際に使用された前記地震の数との組を教師データとして利用して機械学習をして地震の数を推定するものとして構築される、
地震推定装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/442,190 US11686868B2 (en) | 2019-03-26 | 2020-03-19 | Earthquake estimation method, non-transitory computer readable medium, and earthquake estimation device |
JP2021509322A JP7406828B2 (ja) | 2019-03-26 | 2020-03-19 | 地震推定方法、地震推定プログラム、及び、地震推定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-058318 | 2019-03-26 | ||
JP2019058318 | 2019-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196292A1 true WO2020196292A1 (ja) | 2020-10-01 |
Family
ID=72609369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/012370 WO2020196292A1 (ja) | 2019-03-26 | 2020-03-19 | 地震推定方法、地震推定プログラム、及び、地震推定装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11686868B2 (ja) |
JP (1) | JP7406828B2 (ja) |
WO (1) | WO2020196292A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115903035A (zh) * | 2022-11-17 | 2023-04-04 | 中国地震局地震预测研究所 | 基于地质参数和库仑应力的地震触发概率确定方法及系统 |
CN116699691A (zh) * | 2023-06-14 | 2023-09-05 | 中国石油大学(华东) | 一种基于强震动pgv的震级快速估算方法、系统及终端 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0895950A (ja) * | 1994-09-28 | 1996-04-12 | Fujitsu Ltd | シミュレーション装置 |
JP2002122675A (ja) * | 2000-10-13 | 2002-04-26 | Crc Solutions Corp | 地質波動伝播シミュレーションシステム及びその記録媒体 |
JP2006105862A (ja) * | 2004-10-07 | 2006-04-20 | Real Time Jishin Joho Riyo Kyogikai | リアルタイム地震危険度予測の方法 |
WO2018008708A1 (ja) * | 2016-07-08 | 2018-01-11 | 日本電気株式会社 | 震央距離推定装置、震央距離推定方法、及びコンピュータ読み取り可能な記録媒体 |
JP2018136247A (ja) * | 2017-02-23 | 2018-08-30 | 大成建設株式会社 | 地震動強さ分布の推定方法および推定システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1164553A (ja) | 1997-08-27 | 1999-03-05 | Citizen Watch Co Ltd | 時計装置 |
US7277797B1 (en) * | 2005-03-29 | 2007-10-02 | Kunitsyn Viatcheslav E | Prediction system and method |
US8699298B1 (en) * | 2008-06-26 | 2014-04-15 | Westerngeco L.L.C. | 3D multiple prediction and removal using diplets |
US10163218B2 (en) * | 2013-09-18 | 2018-12-25 | Nikon Corporation | Image analysis device, image analysis method, image analysis program, cell manufacturing method, cell culturing method, and cell manufacturing device |
-
2020
- 2020-03-19 WO PCT/JP2020/012370 patent/WO2020196292A1/ja active Application Filing
- 2020-03-19 JP JP2021509322A patent/JP7406828B2/ja active Active
- 2020-03-19 US US17/442,190 patent/US11686868B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0895950A (ja) * | 1994-09-28 | 1996-04-12 | Fujitsu Ltd | シミュレーション装置 |
JP2002122675A (ja) * | 2000-10-13 | 2002-04-26 | Crc Solutions Corp | 地質波動伝播シミュレーションシステム及びその記録媒体 |
JP2006105862A (ja) * | 2004-10-07 | 2006-04-20 | Real Time Jishin Joho Riyo Kyogikai | リアルタイム地震危険度予測の方法 |
WO2018008708A1 (ja) * | 2016-07-08 | 2018-01-11 | 日本電気株式会社 | 震央距離推定装置、震央距離推定方法、及びコンピュータ読み取り可能な記録媒体 |
JP2018136247A (ja) * | 2017-02-23 | 2018-08-30 | 大成建設株式会社 | 地震動強さ分布の推定方法および推定システム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115903035A (zh) * | 2022-11-17 | 2023-04-04 | 中国地震局地震预测研究所 | 基于地质参数和库仑应力的地震触发概率确定方法及系统 |
CN115903035B (zh) * | 2022-11-17 | 2023-08-29 | 中国地震局地震预测研究所 | 基于地质参数和库仑应力的地震触发概率确定方法及系统 |
CN116699691A (zh) * | 2023-06-14 | 2023-09-05 | 中国石油大学(华东) | 一种基于强震动pgv的震级快速估算方法、系统及终端 |
Also Published As
Publication number | Publication date |
---|---|
JP7406828B2 (ja) | 2023-12-28 |
JPWO2020196292A1 (ja) | 2020-10-01 |
US20220187483A1 (en) | 2022-06-16 |
US11686868B2 (en) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Diao et al. | Overlapping post-seismic deformation processes: Afterslip and viscoelastic relaxation following the 2011 M w 9.0 Tohoku (Japan) earthquake | |
Iervolino et al. | Engineering design earthquakes from multimodal hazard disaggregation | |
Taflanidis et al. | A simulation‐based framework for risk assessment and probabilistic sensitivity analysis of base‐isolated structures | |
WO2020196292A1 (ja) | 地震推定方法、地震推定プログラム、及び、地震推定装置 | |
Irikura et al. | Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake | |
Rupakhety et al. | Can simple pulses adequately represent near-fault ground motions? | |
JP6671607B2 (ja) | 構造物の影響予測システム | |
Yang et al. | Effect of ground motion filtering on the dynamic response of a seismically isolated bridge with and without fault crossing considerations | |
Nicgorski et al. | Experimental issues related to frequency response function measurements for frequency-based substructuring | |
Maeda et al. | Seismic‐hazard analysis of long‐period ground motion of megathrust earthquakes in the Nankai trough based on 3D finite‐difference simulation | |
CN111159928A (zh) | 一种基于多线声源模型的变压器噪声计算方法及系统 | |
JP6755026B2 (ja) | 地震観測・出力システム | |
Picozzi | An attempt of real-time structural response assessment by an interferometric approach: A tailor-made earthquake early warning for buildings | |
Riaño et al. | Integration of 3D large‐scale earthquake simulations into the assessment of the seismic risk of Bogota, Colombia | |
JP2018194497A (ja) | 気象予測システム、気象予測方法、気象予測プログラム | |
Lee et al. | Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes | |
US20220187486A1 (en) | Computer system and data processing method | |
Conte | Influence of the earthquake ground motion process and structural properties on response characteristics of simple structures | |
JP2006194619A (ja) | リアルタイム地震情報を利用したリアルタイム地震応答波形推定方法 | |
Yamada et al. | Statistical features of short-period and long-period near-source ground motions | |
Enokida et al. | Simple piecewise linearisation in time series for time‐domain inversion to estimate physical parameters of nonlinear structures | |
Zhang et al. | A frequency‐domain noniterative algorithm for structural parameter identification of shear buildings subjected to frequent earthquakes | |
JP2003296396A (ja) | 建物の期待ライフサイクルコスト評価システムおよび期待ライフサイクルコスト評価プログラムを記録した記録媒体 | |
Alexander | Multi-support excitation of single span bridges, using real seismic ground motion recorded at the SMART-1 array | |
Benson et al. | On the powerful use of simulations in the Quake-Catcher Network to efficiently position low-cost earthquake sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20778935 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021509322 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20778935 Country of ref document: EP Kind code of ref document: A1 |