WO2020196016A1 - Eddy current test probe and eddy current test system - Google Patents
Eddy current test probe and eddy current test system Download PDFInfo
- Publication number
- WO2020196016A1 WO2020196016A1 PCT/JP2020/011419 JP2020011419W WO2020196016A1 WO 2020196016 A1 WO2020196016 A1 WO 2020196016A1 JP 2020011419 W JP2020011419 W JP 2020011419W WO 2020196016 A1 WO2020196016 A1 WO 2020196016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- eddy current
- signal
- flaw detection
- current flaw
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
Definitions
- the present disclosure relates to eddy current testing probes and eddy current testing systems.
- This application claims priority based on Japanese Patent Application No. 2019-054488 filed in Japan on March 22, 2019, the contents of which are incorporated herein by reference.
- Patent Document 1 discloses an eddy current flaw detection device including a self-induction type flaw detection coil unit or a mutual induction type flaw detection coil unit.
- a flaw detector coil unit provided on the surface of the object to be measured is connected to the eddy current flaw detector and the load device via a connection cable. That is, this eddy current flaw detector utilizes the fact that the eddy current generated on the surface of the object to be measured changes according to the damage of the object to be measured based on the magnetic field of the exciting coil, and the detection coil is affected by the eddy current. Damage to the object to be measured is evaluated by amplifying the generated minute electromotive force with an amplifier.
- the detection coil (detection coil) of the flaw detector coil unit and the amplifier of the eddy current flaw detector are connected by a predetermined connection cable, and the change in the impedance of the connection cable determines the detection accuracy of the eddy current. It is a factor that lowers it. For example, a change in the length or shape of the connecting cable causes a change in the resistance value, inductance, or capacitance of the connecting cable, which lowers the accuracy of eddy current detection.
- the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to suppress a change in the transmission impedance of the detection coil output.
- a detection coil for detecting an eddy current and an output signal of the detection coil provided integrally with the detection coil are sampled.
- An eddy current flaw detection probe including a signal conversion unit that converts the digital detection signal into a digital detection signal, a probe communication unit that wirelessly transmits the digital detection signal to the outside, and a power supply unit that supplies power to the signal conversion unit and the probe communication unit. Is adopted.
- an engaging portion that engages with an external moving mechanism may be further provided in the first aspect.
- the eddy current flaw detection probe according to the second aspect and the moving device provided with the moving mechanism and moving the eddy current flaw detecting probe engaged with the moving mechanism. Controls the communication device that receives the digital detection signal from the probe communication unit, the eddy current flaw detection probe, and the mobile device, and stores the digital detection signal received by the communication device in association with the position of the eddy current flaw detection probe.
- the control device synchronizes the sampling cycle in the signal conversion unit with the sampling cycle of position acquisition of the eddy current flaw detection probe.
- the eddy current flaw detection probe and the moving device may be controlled.
- the probe communication unit confirms that the communication device or the signal processing device lacks the digital detection signal. Defect confirmation information for this purpose may be transmitted to the communication device.
- the signal conversion unit is provided integrally with the detection coil, it is possible to suppress a change in the transmission impedance of the detection coil output.
- the eddy current flaw detection system is an inspection system that non-destructively inspects the presence or absence and size of damage inside the work W by detecting the eddy current generated on the surface of the work W (inspection target). ..
- this eddy current flaw detection system includes a probe A, a machining center 1 (MC), a Wi-Fi station 2, a probe magazine 3, an inspection operation unit 4, and an inspection control unit 5. Is an eddy current flaw detection probe according to the present embodiment.
- the inspection control unit 5 includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
- CPU Central Processing Unit
- main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
- the probe A is an eddy current flaw detection probe that detects eddy current flaws in the work W based on a control signal (data acquisition control signal) input from the inspection control unit 5. That is, this probe A is an inspection device that generates an eddy current on the surface of the work W and detects the eddy current, and is damaged while moving on the surface of the work W by being mounted on the machining center 1 as shown in the figure. Is detected.
- a plurality of probes A having different shapes are prepared according to the shape and size of the work W, and the most suitable probe A is detachably attached to the machining center 1.
- the most suitable probe A is detachably attached to the machining center 1.
- a probe A having a shape different from that for inspecting the surface (inner surface) of the hole and the probe A for inspecting the outer surface is used.
- such a probe A includes a probe housing 6, an engaging portion 7, a flaw detection coil 8, a signal conversion unit 9, a battery 10, a communication unit 11, and a Wi-Fi antenna 12 as functional components. I have.
- the probe housing 6 has a cylindrical shape as a whole, an engaging portion 7 is provided at the rear end portion, a flaw detection coil 8 is provided at the tip portion, and a Wi-Fi antenna 12 is provided at the outer peripheral portion in a separated state. Has been done.
- a probe housing 6 is a metal housing made of a predetermined metal material such as stainless steel.
- the engaging portion 7 is a columnar portion mounted on the spindle shaft of the machining center 1.
- the engaging portion 7 is a reduced diameter portion provided at the rear end of the probe housing 6, and is detachably held by a holding mechanism inherently provided in the main shaft of the machining center 1. That is, the probe A is integrated with the machining center 1 by holding the engaging portion 7 by the holding mechanism.
- the flaw detection coil 8 is a coil unit in which an exciting coil 8a and a detection coil 8b are incorporated, and has a shape corresponding to the shape and size of the work W.
- the flaw detection coil 8 generates an exciting magnetic field by energizing the exciting coil 8a with an exciting current input from the signal conversion unit 9, and the detection coil 8b detects an eddy current generated on the surface of the work W by the exciting magnetic field. It is converted into (output signal) and output to the signal conversion unit 9.
- the flaw detection coil 8 When inspecting a work W having a complicated shape or a work W having a different shape, the flaw detection coil 8 is excited to a shape specialized for the surface shape of the work W, that is, a shape capable of appropriately generating an eddy current on the surface of the work W. It is necessary to set the shape of the coil 8a, and it is also necessary to set the shape of the detection coil 8b to a shape capable of accurately detecting the eddy current.
- the plurality of probes A described above have different shapes of the flaw detection coil 8.
- the signal conversion unit 9 is an electronic circuit operated by DC power supplied from the battery 10, outputs the above-mentioned exciting current to the flaw detection coil 8 and converts the detection signal into a digital signal. More specifically, the signal conversion unit 9 generates a sine wave having a frequency corresponding to the work W and supplies it to the exciting coil 8a as an exciting current. Further, the signal conversion unit 9 performs a predetermined analog process (filter process or the like) on the detection signal (analog signal) input from the detection coil 8b, and then samples using the sampling signal having a predetermined cycle (sampling cycle). By doing so, it is converted into a digital detection signal (digital signal).
- a predetermined analog process filter process or the like
- the signal conversion unit 9 converts the digital detection signal into a serial transmission signal in a predetermined format (packet structure) and outputs it to the communication unit 11.
- This serial transmission signal includes a digital detection signal as transmission data, and also includes defect confirmation information for confirming a defect of the digital detection signal, which is a time-series signal, on the receiving side (inspection control unit 5).
- the battery 10 is a rechargeable and dischargeable secondary battery, for example, a small lithium-ion battery having a relatively large capacity.
- the battery 10 discharges the DC power stored by itself and supplies it to the signal conversion unit 9 and the communication unit 11.
- the battery 10 constitutes the power supply unit of the present disclosure.
- the communication unit 11 converts the serial transmission signal input from the signal conversion unit 9 into a transmission signal conforming to the Wi-Fi standard and outputs it to the Wi-Fi antenna 12. Further, the communication unit 11 extracts a data acquisition control signal from a received signal (a signal conforming to the Wi-Fi standard) input from the Wi-Fi antenna 12 and outputs the data acquisition control signal to the signal conversion unit 9.
- the Wi-Fi antenna 12 converts the transmission signal into radio waves and wirelessly transmits them to the Wi-Fi station 2, receives the radio waves radiated from the Wi-Fi station 2, and transmits the received signal to the signal conversion unit 9. Output to.
- the communication unit 11 and the Wi-Fi antenna 12 constitute the probe communication unit of the present disclosure.
- the machining center 1 is a moving device that moves the probe A along the surface of the work W based on a control signal (movement control signal) input from the inspection control unit 5. That is, unlike a general machining center, this machining center 1 has a probe A mounted on a spindle (spindle shaft) instead of a tool, and functions as a moving device for moving the probe A three-dimensionally. As shown in the figure, such a machining center 1 includes a multi-axis moving mechanism 1a (moving mechanism) and an MC control unit 1b.
- the multi-axis movement mechanism 1a includes a spindle (spindle shaft) that holds the probe A detachably, and moves the probe A three-dimensionally. That is, the multi-axis moving mechanism 1a holds and moves the probe A by engaging the main shaft (spindle shaft) with the engaging portion 7 of the probe A.
- the multi-axis moving mechanism 1a is an actuator.
- Such a multi-axis moving mechanism 1a is, for example, a combination of an XY stage and another movable axis, and has three to six axes of freedom as a whole.
- the MC control unit 1b directly controls the multi-axis movement mechanism 1a based on the movement control signal. That is, the MC control unit 1b exclusively controls the multi-axis movement mechanism 1a, and moves the probe A mounted on the main shaft (spindle shaft) of the multi-axis movement mechanism 1a to the position indicated by the movement control signal.
- the MC control unit 1b includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
- the Wi-Fi station 2 is a communication device that performs wireless communication between the probe A and the Wi-Fi standard under the inspection control unit 5.
- the Wi-Fi station 2 receives a transmission signal from the communication unit 11 of the probe A described above via the Wi-Fi antenna 12, and transmits synchronization data input from the inspection control unit 5 in accordance with the Wi-Fi standard. It is converted into a signal and transmitted to the communication unit 11. That is, the Wi-Fi station 2 receives the digital detection signal included in the transmission signal and transmits the data acquisition control signal to the probe A.
- the probe magazine 3 is a storage device that stores a plurality of probes A.
- the probe magazine 3 accommodates probes A that are not used for inspection in a predetermined posture.
- the machining center 1 described above selects and holds one probe A from such a probe magazine 3.
- the inspection operation unit 4 is an operation device that receives an operation instruction of an operator and outputs it to the inspection control unit 5.
- the inspection operation unit 4 designates, for example, an inspection area (three-dimensional area) in the work W as the operation instruction.
- Such an inspection operation unit 4 is, for example, a touch panel or / and a keyboard.
- the inspection control unit 5 is a control device that comprehensively controls the eddy current flaw detection system. That is, the inspection control unit 5 moves the probe A along a predetermined inspection path by outputting a movement control signal regarding the movement of the probe A to the machining center 1. Further, the inspection control unit 5 outputs a data acquisition control signal related to the acquisition of the digital detection signal to the probe A via the Wi-Fi station 2, so that the digital detection signal corresponding to each position of the probe A is sequentially acquired. ..
- the inspection control unit 5 includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
- the sampling cycle of the detection signal in the signal conversion unit 9 and the position acquisition of the probe A in the MC control unit 1b can be obtained. Synchronize with the sampling cycle.
- the synchronization data is included in the data acquisition control signal output by the inspection control unit 5 to the probe A and the movement control signal output by the inspection control unit 5 to the machining center 1.
- the inspection control unit 5 outputs a movement control signal to the machining center 1 and a data acquisition control signal to the probe A, so that digital detection signals at a plurality of positions along the inspection path of the work W are detected.
- the MC control unit 1b controls the multi-axis movement mechanism 1a based on the movement control signal to move the probe A (fault detection coil 8) along the inspection path of the work W.
- the machining center 1 sequentially outputs the position data of the probe A (fault detection coil 8) acquired in synchronization with the synchronization signal of the movement control signal to the inspection control unit 5.
- the communication unit 11 receives the data acquisition control signal via the Wi-Fi station 2 and the Wi-Fi antenna 12 and outputs the data acquisition control signal to the signal conversion unit 9. Then, the signal conversion unit 9 sequentially acquires the digital detection signal in synchronization with the synchronization signal of the data acquisition control signal and sequentially outputs the digital detection signal to the communication unit 11.
- the signal conversion unit 9 exerts an exciting magnetic field on the work W by outputting an exciting signal to the exciting coil 8a of the flaw detection coil 8, thereby generating an eddy current in the work W. Then, the signal conversion unit 9 sequentially converts the detection signal continuously input from the detection coil 8b of the flaw detection coil 8 into a digital detection signal by sampling with a sampling signal synchronized with the synchronization signal.
- the communication unit 11 sequentially transmits the digital detection signal input from the signal conversion unit 9 to the inspection control unit 5 via the Wi-Fi antenna 12 and the Wi-Fi station 2.
- the inspection control unit 5 sequentially stores the inspection data of each position in the inspection path by associating the position data at the same time with the digital detection signal. That is, as the probe A moves from the start point to the end point of the inspection path, inspection data at a plurality of positions of the work W along the inspection path are acquired.
- the flaw detection coil 8, the signal conversion unit 9, the communication unit 11, and the Wi-Fi antenna 12 are integrated, and a digital detection signal is transmitted to the external inspection control unit 5. ..
- the transmission line of the detection signal supplied from the detection coil 8b to the signal conversion unit 9 is fixed. Therefore, according to such a probe A, it is possible to suppress a change in the transmission impedance of the detection coil output, that is, the detection signal output from the detection coil 8b to the signal conversion unit 9.
- the probe A includes an engaging portion 7. As a result, the probe A can be easily attached to the machining center 1.
- the machining center 1 is used as a moving device for moving the probe A along the inspection path.
- the probe A can be moved with high positional accuracy.
- the acquisition of position data and the acquisition of digital detection signals are synchronized in time by a synchronization signal. This makes it possible to acquire inspection data with excellent position accuracy.
- defect confirmation information is transmitted from the probe A to the signal conversion unit 9. This makes it possible for the signal conversion unit 9 to easily confirm the loss of the digital detection signal, which is a time-series signal. Further, according to the eddy current flaw detection system according to the present embodiment, the inspection operation unit 4 is provided. As a result, it is possible to easily set or modify the inspection route.
- the present disclosure is not limited to the above embodiment, and for example, the following modifications can be considered.
- the machining center 1 is adopted as the mobile device, but the present disclosure is not limited to this.
- a mobile device other than the machining center 1 may be used as long as it is a moving device capable of precisely positioning the probe A.
- the Wi-Fi station 2 is adopted as the communication device, but the present disclosure is not limited to this.
- a communication device based on a communication method other than Wi-Fi (registered trademark) may be adopted.
- the probe communication unit that is, the communication unit 11 and the Wi-Fi antenna 12, which conform to the communication method of the communication device.
- the battery 10 is used as the power supply unit, but the present disclosure is not limited to this. Since the probe A is held in the machining center 1, electric power may be supplied to the probe A from the machining center 1.
- the signal conversion unit is provided integrally with the detection coil, it is possible to suppress a change in the transmission impedance of the detection coil output.
- a probe eddy current flaw detection probe
- 1 Machining center 1a Multi-axis movement mechanism (movement mechanism) 1b
- MC control unit 2 Wi-Fi station (communication device) 3
- Probe magazine 4
- Inspection operation unit operation device
- Inspection control unit control device
- Probe housing 7
- Engagement part 8 Damage detection coil
- Excitation coil 8b
- Detection coil 9
- Signal conversion part 10
- Battery power supply part
- Communication section Probe communication section
- Wi-Fi antenna probe communication unit
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
The present invention relates to an eddy current test probe (A) provided with: a detection coil (8b) which detects an eddy current; a signal conversion unit (9) which is integrally provided with the detection coil (8b), samples an output signal from the detection coil (8b), and converts the sampled signal to a digital detection signal; a probe communication unit (11) which transmits the digital detection signal to the outside in a wireless manner; and a power supply unit (10) which supplies power to the signal conversion unit (9) and the probe communication unit (11).
Description
本開示は、渦流探傷プローブ及び渦流探傷システムに関する。本願は、2019年3月22日に日本に出願された日本国特願2019-054488号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to eddy current testing probes and eddy current testing systems. This application claims priority based on Japanese Patent Application No. 2019-054488 filed in Japan on March 22, 2019, the contents of which are incorporated herein by reference.
下記特許文献1には、自己誘導型の探傷コイルユニットあるいは相互誘導型の探傷コイルユニットを備える渦流探傷装置が開示されている。この渦流探傷装置は、特許文献1の第1図等に示されているように、被測定物の表面に設けられた探傷コイルユニットを接続ケーブルを介して渦流探傷器及び負荷装置に接続する。すなわち、この渦流探傷装置は、励磁コイルの磁界に基づいて被測定物の表面に発生する渦電流が被測定物の損傷に応じて変化することを利用するものであり、渦電流によって検知コイルに発生する微小な起電力をアンプで増幅することにより被測定物の損傷を評価するものである。
Patent Document 1 below discloses an eddy current flaw detection device including a self-induction type flaw detection coil unit or a mutual induction type flaw detection coil unit. In this eddy current flaw detector, as shown in FIG. 1 of Patent Document 1, a flaw detector coil unit provided on the surface of the object to be measured is connected to the eddy current flaw detector and the load device via a connection cable. That is, this eddy current flaw detector utilizes the fact that the eddy current generated on the surface of the object to be measured changes according to the damage of the object to be measured based on the magnetic field of the exciting coil, and the detection coil is affected by the eddy current. Damage to the object to be measured is evaluated by amplifying the generated minute electromotive force with an amplifier.
ところで、上記渦流探傷装置では、探傷コイルユニットの検知コイル(検出コイル)と渦流探傷器のアンプとが所定の接続ケーブルで接続されるが、接続ケーブルのインピーダンスの変化は、渦電流の検出精度を低下させる要因である。例えば、接続ケーブルの長さや形状の変化は、接続ケーブルの抵抗値やインダクタンスあるいは静電容量の変化を発生させるので、渦電流の検出精度を低下させる。
By the way, in the above-mentioned eddy current flaw detector, the detection coil (detection coil) of the flaw detector coil unit and the amplifier of the eddy current flaw detector are connected by a predetermined connection cable, and the change in the impedance of the connection cable determines the detection accuracy of the eddy current. It is a factor that lowers it. For example, a change in the length or shape of the connecting cable causes a change in the resistance value, inductance, or capacitance of the connecting cable, which lowers the accuracy of eddy current detection.
本開示は、上述した事情に鑑みてなされたものであり、検出コイル出力の伝送インピーダンス変化を抑制することを目的とするものである。
The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to suppress a change in the transmission impedance of the detection coil output.
上記目的を達成するために、本開示では、渦流探傷プローブに係る第1の態様として、渦電流を検出する検出コイルと、該検出コイルと一体に設けられ、当該検出コイルの出力信号をサンプリングしてデジタル検出信号に変換する信号変換部と、前記デジタル検出信号を外部に無線送信するプローブ通信部と、前記信号変換部及び前記プローブ通信部に電源を供給する電源部とを備える、渦流探傷プローブを採用する。
In order to achieve the above object, in the present disclosure, as a first aspect of the eddy current flaw detection probe, a detection coil for detecting an eddy current and an output signal of the detection coil provided integrally with the detection coil are sampled. An eddy current flaw detection probe including a signal conversion unit that converts the digital detection signal into a digital detection signal, a probe communication unit that wirelessly transmits the digital detection signal to the outside, and a power supply unit that supplies power to the signal conversion unit and the probe communication unit. Is adopted.
本開示では、渦流探傷プローブに係る第2の態様として、上記第1の態様において、外部の移動機構と係合する係合部をさらに備えてもよい。
In the present disclosure, as a second aspect of the eddy current flaw detection probe, an engaging portion that engages with an external moving mechanism may be further provided in the first aspect.
本開示では、渦流探傷システムに係る第1の態様として、上記第2の態様に係る渦流探傷プローブと、前記移動機構を備え、当該移動機構に係合した前記渦流探傷プローブを移動させる移動装置と、前記プローブ通信部から前記デジタル検出信号を受信する通信装置と、前記渦流探傷プローブ及び前記移動装置を制御すると共に前記通信装置が受信した前記デジタル検出信号を前記渦流探傷プローブの位置に関連付けて記憶する制御装置とを備える、渦流探傷システムを採用する。
In the present disclosure, as the first aspect of the eddy current flaw detection system, the eddy current flaw detection probe according to the second aspect and the moving device provided with the moving mechanism and moving the eddy current flaw detecting probe engaged with the moving mechanism. Controls the communication device that receives the digital detection signal from the probe communication unit, the eddy current flaw detection probe, and the mobile device, and stores the digital detection signal received by the communication device in association with the position of the eddy current flaw detection probe. Adopt an eddy current flaw detection system equipped with a control device.
本開示では、渦流探傷システムに係る第2の態様として、上記第1の態様において、前記制御装置は、前記信号変換部におけるサンプリング周期と前記渦流探傷プローブの位置取得のサンプリング周期とを同期させるように前記渦流探傷プローブ及び前記移動装置を制御してもよい。
In the present disclosure, as a second aspect of the eddy current flaw detection system, in the first aspect, the control device synchronizes the sampling cycle in the signal conversion unit with the sampling cycle of position acquisition of the eddy current flaw detection probe. The eddy current flaw detection probe and the moving device may be controlled.
また、本開示では、渦流探傷システムに係る第3の態様として、上記第1または第2の態様において、前記プローブ通信部は、前記通信装置あるいは前記信号処理装置が前記デジタル検出信号の欠損を確認するための欠損確認情報を前記通信装置に送信してもよい。
Further, in the present disclosure, as a third aspect of the eddy current flaw detection system, in the first or second aspect, the probe communication unit confirms that the communication device or the signal processing device lacks the digital detection signal. Defect confirmation information for this purpose may be transmitted to the communication device.
本開示によれば、信号変換部が検出コイルに対して一体に設けられているので、検出コイル出力の伝送インピーダンス変化を抑制することが可能である。
According to the present disclosure, since the signal conversion unit is provided integrally with the detection coil, it is possible to suppress a change in the transmission impedance of the detection coil output.
以下、図面を参照して、本開示の一実施形態について説明する。本実施形態に係る渦流探傷システムは、ワークW(検査対象)の表面に発生する渦電流を検出することにより、ワークWの内部における損傷の有無や大きさ等を非破壊検査する検査システムである。この渦流探傷システムは、図1に示すように、プローブA、マシニングセンタ1(MC)、Wi-Fiステーション2、プローブ・マガジン3、検査操作部4及び検査制御部5を備えており、上記プローブAは、本実施形態に係る渦流探傷プローブである。検査制御部5は、CPU(Central Processing Unit)と、RAM(Random Access Memory)、ROM(Read Only Memory)、等の主記憶装置と、SSD(Solid State Drive)、HDD(Hard Disc Drive)、等の補助記憶装置と、等から構成された一種のコンピュータである。
Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings. The eddy current flaw detection system according to the present embodiment is an inspection system that non-destructively inspects the presence or absence and size of damage inside the work W by detecting the eddy current generated on the surface of the work W (inspection target). .. As shown in FIG. 1, this eddy current flaw detection system includes a probe A, a machining center 1 (MC), a Wi-Fi station 2, a probe magazine 3, an inspection operation unit 4, and an inspection control unit 5. Is an eddy current flaw detection probe according to the present embodiment. The inspection control unit 5 includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
プローブAは、検査制御部5から入力される制御信号(データ取得制御信号)に基づいてワークWを渦流探傷する渦流探傷プローブである。すなわち、このプローブAは、ワークWの表面に渦電流を発生させると共に当該渦電流を検出する検査装置であり、図示するようにマシニングセンタ1に装着されることによりワークWの表面を移動しつつ損傷を検出する。
The probe A is an eddy current flaw detection probe that detects eddy current flaws in the work W based on a control signal (data acquisition control signal) input from the inspection control unit 5. That is, this probe A is an inspection device that generates an eddy current on the surface of the work W and detects the eddy current, and is damaged while moving on the surface of the work W by being mounted on the machining center 1 as shown in the figure. Is detected.
このプローブAは、ワークWの形状や大きさ等に応じて異なる形状のものが複数用意されており、ワークWに最適なものがマシニングセンタ1に着脱自在に装着される。例えば穴が形成されたワークWの場合、プローブAとしては、穴の表面(内表面)を検査するものと外表面を検査するものとは異なる形状のものが用いられる。
A plurality of probes A having different shapes are prepared according to the shape and size of the work W, and the most suitable probe A is detachably attached to the machining center 1. For example, in the case of a work W in which a hole is formed, a probe A having a shape different from that for inspecting the surface (inner surface) of the hole and the probe A for inspecting the outer surface is used.
このようなプローブAは、図2に示すように、プローブ筐体6、係合部7、探傷コイル8、信号変換部9、電池10、通信部11及びWi-Fiアンテナ12を機能構成要素として備えている。
As shown in FIG. 2, such a probe A includes a probe housing 6, an engaging portion 7, a flaw detection coil 8, a signal conversion unit 9, a battery 10, a communication unit 11, and a Wi-Fi antenna 12 as functional components. I have.
プローブ筐体6は、全体として円筒状であり、後端部に係合部7が設けられ、先端部に探傷コイル8が設けられ、外周部にはWi-Fiアンテナ12が離間した状態で設けられている。このようなプローブ筐体6は、所定の金属材料、例えばステンレス等から形成された金属筐体である。
The probe housing 6 has a cylindrical shape as a whole, an engaging portion 7 is provided at the rear end portion, a flaw detection coil 8 is provided at the tip portion, and a Wi-Fi antenna 12 is provided at the outer peripheral portion in a separated state. Has been done. Such a probe housing 6 is a metal housing made of a predetermined metal material such as stainless steel.
係合部7は、マシニングセンタ1の主軸(スピンドル軸)に装着される円柱状部位である。この係合部7は、プローブ筐体6の後端に設けられた縮径部であり、マシニングセンタ1の主軸が本来的に備えている保持機構によって着脱自在に保持される。すなわち、係合部7が保持機構によって保持されることによって、プローブAはマシニングセンタ1と一体化する。
The engaging portion 7 is a columnar portion mounted on the spindle shaft of the machining center 1. The engaging portion 7 is a reduced diameter portion provided at the rear end of the probe housing 6, and is detachably held by a holding mechanism inherently provided in the main shaft of the machining center 1. That is, the probe A is integrated with the machining center 1 by holding the engaging portion 7 by the holding mechanism.
探傷コイル8は、励磁コイル8aと検出コイル8bとが組み込まれたコイルユニットであり、ワークWの形状や大きさ等に応じた形状を有する。この探傷コイル8は、信号変換部9から入力される励磁電流を励磁コイル8aに通電することにより励磁磁界を発生させ、励磁磁界によってワークWの表面に発生する渦電流を検出コイル8bで検出信号(出力信号)に変換して信号変換部9に出力する。
The flaw detection coil 8 is a coil unit in which an exciting coil 8a and a detection coil 8b are incorporated, and has a shape corresponding to the shape and size of the work W. The flaw detection coil 8 generates an exciting magnetic field by energizing the exciting coil 8a with an exciting current input from the signal conversion unit 9, and the detection coil 8b detects an eddy current generated on the surface of the work W by the exciting magnetic field. It is converted into (output signal) and output to the signal conversion unit 9.
複雑な形状のワークWあるいは異なる形状のワークWを検査する場合、探傷コイル8は、ワークWの表面形状に特化した形状、つまりワークWの表面に渦電流を適切に発生させ得る形状に励磁コイル8aを形状設定する必要があると共に、渦電流を的確に検出し得る形状に検出コイル8bを形状設定する必要がある。上述した複数のプローブAは、探傷コイル8の形状が異なるものである。
When inspecting a work W having a complicated shape or a work W having a different shape, the flaw detection coil 8 is excited to a shape specialized for the surface shape of the work W, that is, a shape capable of appropriately generating an eddy current on the surface of the work W. It is necessary to set the shape of the coil 8a, and it is also necessary to set the shape of the detection coil 8b to a shape capable of accurately detecting the eddy current. The plurality of probes A described above have different shapes of the flaw detection coil 8.
信号変換部9は、電池10から供給される直流電力によって作動する電子回路であり、上述した励磁電流を探傷コイル8に出力すると共に検出信号をデジタル信号に変換する。より詳細には、信号変換部9は、ワークWに応じた周波数の正弦波を生成し励磁電流として励磁コイル8aに供給する。また、信号変換部9は、検出コイル8bから入力される検出信号(アナログ信号)に所定のアナログ処理(フィルタ処理等)を施した後に、所定周期(サンプリング周期)のサンプリング信号を用いてサンプリングすることによりデジタル検出信号(デジタル信号)に変換する。
The signal conversion unit 9 is an electronic circuit operated by DC power supplied from the battery 10, outputs the above-mentioned exciting current to the flaw detection coil 8 and converts the detection signal into a digital signal. More specifically, the signal conversion unit 9 generates a sine wave having a frequency corresponding to the work W and supplies it to the exciting coil 8a as an exciting current. Further, the signal conversion unit 9 performs a predetermined analog process (filter process or the like) on the detection signal (analog signal) input from the detection coil 8b, and then samples using the sampling signal having a predetermined cycle (sampling cycle). By doing so, it is converted into a digital detection signal (digital signal).
この信号変換部9は、上記デジタル検出信号を所定フォーマット(パケット構造)のシリアル伝送信号に変換して通信部11に出力する。このシリアル伝送信号は、デジタル検出信号を伝送データとして含むと共に、時系列信号であるデジタル検出信号の欠損を受信側(検査制御部5)で確認するための欠損確認情報を含んでいる。
The signal conversion unit 9 converts the digital detection signal into a serial transmission signal in a predetermined format (packet structure) and outputs it to the communication unit 11. This serial transmission signal includes a digital detection signal as transmission data, and also includes defect confirmation information for confirming a defect of the digital detection signal, which is a time-series signal, on the receiving side (inspection control unit 5).
電池10は、充放電可能な二次電池であり、例えば小型かつ容量が比較的大きなリチウムイオン電池である。この電池10は、自らが蓄電した直流電力を放電して信号変換部9及び通信部11に供給する。なお、この電池10は、本開示の電源部を構成している。
The battery 10 is a rechargeable and dischargeable secondary battery, for example, a small lithium-ion battery having a relatively large capacity. The battery 10 discharges the DC power stored by itself and supplies it to the signal conversion unit 9 and the communication unit 11. The battery 10 constitutes the power supply unit of the present disclosure.
通信部11は、信号変換部9から入力されるシリアル伝送信号をWi-Fi規格に準拠した送信信号に変換してWi-Fiアンテナ12に出力する。また、この通信部11は、Wi-Fiアンテナ12から入力される受信信号(Wi-Fi規格に準拠した信号)からデータ取得制御信号を抽出して信号変換部9に出力する。Wi-Fiアンテナ12は、上記送信信号を電波に変換してWi-Fiステーション2に向けて無線送信すると共に、Wi-Fiステーション2から放射された電波を受信して受信信号を信号変換部9に出力する。なお、通信部11及びWi-Fiアンテナ12は、本開示のプローブ通信部を構成している。
The communication unit 11 converts the serial transmission signal input from the signal conversion unit 9 into a transmission signal conforming to the Wi-Fi standard and outputs it to the Wi-Fi antenna 12. Further, the communication unit 11 extracts a data acquisition control signal from a received signal (a signal conforming to the Wi-Fi standard) input from the Wi-Fi antenna 12 and outputs the data acquisition control signal to the signal conversion unit 9. The Wi-Fi antenna 12 converts the transmission signal into radio waves and wirelessly transmits them to the Wi-Fi station 2, receives the radio waves radiated from the Wi-Fi station 2, and transmits the received signal to the signal conversion unit 9. Output to. The communication unit 11 and the Wi-Fi antenna 12 constitute the probe communication unit of the present disclosure.
マシニングセンタ1は、検査制御部5から入力される制御信号(移動制御信号)に基づいてプローブAをワークWの表面に沿って移動させる移動装置である。すなわち、このマシニングセンタ1は、一般的なマシニングセンタとは異なり、工具に代えてプローブAが主軸(スピンドル軸)に装着されるものであり、プローブAを三次元的に移動させる移動装置として機能する。このようなマシニングセンタ1は、図示するように多軸移動機構1a(移動機構)とMC制御部1bとを備える。
The machining center 1 is a moving device that moves the probe A along the surface of the work W based on a control signal (movement control signal) input from the inspection control unit 5. That is, unlike a general machining center, this machining center 1 has a probe A mounted on a spindle (spindle shaft) instead of a tool, and functions as a moving device for moving the probe A three-dimensionally. As shown in the figure, such a machining center 1 includes a multi-axis moving mechanism 1a (moving mechanism) and an MC control unit 1b.
多軸移動機構1aは、プローブAを着脱自在に保持する主軸(スピンドル軸)を備え、プローブAを三次元的に移動させる。すなわち、多軸移動機構1aは、主軸(スピンドル軸)をプローブAの係合部7に係合させることによりプローブAを保持かつ移動させる。多軸移動機構1aは、アクチュエータである。このような多軸移動機構1aは、例えばX-Yステージに他の可動軸を組み合わせたものであり、全体として三軸~六軸の自由度を有する。
The multi-axis movement mechanism 1a includes a spindle (spindle shaft) that holds the probe A detachably, and moves the probe A three-dimensionally. That is, the multi-axis moving mechanism 1a holds and moves the probe A by engaging the main shaft (spindle shaft) with the engaging portion 7 of the probe A. The multi-axis moving mechanism 1a is an actuator. Such a multi-axis moving mechanism 1a is, for example, a combination of an XY stage and another movable axis, and has three to six axes of freedom as a whole.
MC制御部1bは、上記移動制御信号に基づいて多軸移動機構1aを直接制御する。すなわち、MC制御部1bは、多軸移動機構1aを専ら制御対象とし、多軸移動機構1aの主軸(スピンドル軸)に装着されたプローブAを移動制御信号で指示された位置に移動させる。MC制御部1bは、CPU(Central Processing Unit)と、RAM(Random Access Memory)、ROM(Read Only Memory)、等の主記憶装置と、SSD(Solid State Drive)、HDD(Hard Disc Drive)、等の補助記憶装置と、等から構成された一種のコンピュータである。
The MC control unit 1b directly controls the multi-axis movement mechanism 1a based on the movement control signal. That is, the MC control unit 1b exclusively controls the multi-axis movement mechanism 1a, and moves the probe A mounted on the main shaft (spindle shaft) of the multi-axis movement mechanism 1a to the position indicated by the movement control signal. The MC control unit 1b includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
Wi-Fiステーション2は、検査制御部5の下でプローブAとWi-Fi規格に準拠した無線通信を行う通信装置である。このWi-Fiステーション2は、上述したプローブAの通信部11からWi-Fiアンテナ12を介して送信信号を受信し、検査制御部5から入力された同期データをWi-Fi規格に準拠した送信信号に変換して通信部11宛に送信する。すなわち、Wi-Fiステーション2は、送信信号に含まれるデジタル検出信号を受信すると共に、データ取得制御信号をプローブAに送信する。
The Wi-Fi station 2 is a communication device that performs wireless communication between the probe A and the Wi-Fi standard under the inspection control unit 5. The Wi-Fi station 2 receives a transmission signal from the communication unit 11 of the probe A described above via the Wi-Fi antenna 12, and transmits synchronization data input from the inspection control unit 5 in accordance with the Wi-Fi standard. It is converted into a signal and transmitted to the communication unit 11. That is, the Wi-Fi station 2 receives the digital detection signal included in the transmission signal and transmits the data acquisition control signal to the probe A.
プローブ・マガジン3は、複数のプローブAを収容する収容装置である。このプローブ・マガジン3は、検査に使用しないプローブAを所定姿勢で配列した状態で収容する。上述したマシニングセンタ1は、このようなプローブ・マガジン3から1つのプローブAを選択して保持する。
The probe magazine 3 is a storage device that stores a plurality of probes A. The probe magazine 3 accommodates probes A that are not used for inspection in a predetermined posture. The machining center 1 described above selects and holds one probe A from such a probe magazine 3.
検査操作部4は、作業者の操作指示を受け付けて検査制御部5に出力する操作装置である。この検査操作部4は、上記操作指示として、例えばワークWにおける検査領域(三次元領域)を指定する。このような検査操作部4は、例えばタッチパネルあるいは/及びキーボードである。
The inspection operation unit 4 is an operation device that receives an operation instruction of an operator and outputs it to the inspection control unit 5. The inspection operation unit 4 designates, for example, an inspection area (three-dimensional area) in the work W as the operation instruction. Such an inspection operation unit 4 is, for example, a touch panel or / and a keyboard.
検査制御部5は、渦流探傷システムを統括的に制御する制御装置である。すなわち、検査制御部5は、マシニングセンタ1に対してプローブAの移動に関する移動制御信号を出力することによりプローブAを所定の検査経路に沿って移動させる。また、検査制御部5は、Wi-Fiステーション2を介してプローブAにデジタル検出信号の取得に関するデータ取得制御信号を出力することにより、プローブAの各位置に応じたデジタル検出信号を順次取得させる。検査制御部5は、CPU(Central Processing Unit)と、RAM(Random Access Memory)、ROM(Read Only Memory)、等の主記憶装置と、SSD(Solid State Drive)、HDD(Hard Disc Drive)、等の補助記憶装置と、等から構成された一種のコンピュータである。
The inspection control unit 5 is a control device that comprehensively controls the eddy current flaw detection system. That is, the inspection control unit 5 moves the probe A along a predetermined inspection path by outputting a movement control signal regarding the movement of the probe A to the machining center 1. Further, the inspection control unit 5 outputs a data acquisition control signal related to the acquisition of the digital detection signal to the probe A via the Wi-Fi station 2, so that the digital detection signal corresponding to each position of the probe A is sequentially acquired. .. The inspection control unit 5 includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
また、このようなプローブA及びマシニングセンタ1の制御に際して、同期データをプローブA及びマシニングセンタ1に出力することにより、信号変換部9における検出信号のサンプリング周期とMC制御部1bにおけるプローブAの位置取得のサンプリング周期とを同期させる。なお、上記同期データは、検査制御部5がプローブAに出力するデータ取得制御信号及び検査制御部5がマシニングセンタ1に出力する移動制御信号に含まれる。
Further, when controlling the probe A and the machining center 1, by outputting the synchronization data to the probe A and the machining center 1, the sampling cycle of the detection signal in the signal conversion unit 9 and the position acquisition of the probe A in the MC control unit 1b can be obtained. Synchronize with the sampling cycle. The synchronization data is included in the data acquisition control signal output by the inspection control unit 5 to the probe A and the movement control signal output by the inspection control unit 5 to the machining center 1.
次に、本実施形態に係るプローブA(渦流探傷プローブ)及び渦流探傷システムの動作について詳しく説明する。
Next, the operations of the probe A (eddy current flaw detection probe) and the eddy current flaw detection system according to the present embodiment will be described in detail.
この渦流探傷システムでは、検査制御部5がマシニングセンタ1に移動制御信号を出力し、かつ、プローブAにデータ取得制御信号を出力することにより、ワークWの検査経路に沿った複数位置のデジタル検出信号が順次取得される。すなわち、マシニングセンタ1は、MC制御部1bが移動制御信号に基づいて多軸移動機構1aを制御することによりプローブA(探傷コイル8)をワークWの検査経路に沿って移動させる。また、マシニングセンタ1は、移動制御信号の同期信号に同期して取得したプローブA(探傷コイル8)の位置データを検査制御部5に順次出力する。
In this eddy current flaw detection system, the inspection control unit 5 outputs a movement control signal to the machining center 1 and a data acquisition control signal to the probe A, so that digital detection signals at a plurality of positions along the inspection path of the work W are detected. Are sequentially acquired. That is, in the machining center 1, the MC control unit 1b controls the multi-axis movement mechanism 1a based on the movement control signal to move the probe A (fault detection coil 8) along the inspection path of the work W. Further, the machining center 1 sequentially outputs the position data of the probe A (fault detection coil 8) acquired in synchronization with the synchronization signal of the movement control signal to the inspection control unit 5.
一方、プローブAでは、通信部11は、Wi-Fiステーション2及びWi-Fiアンテナ12を介してデータ取得制御信号を受信して信号変換部9に出力する。そして、信号変換部9は、データ取得制御信号の同期信号に同期してデジタル検出信号を順次取得して通信部11に順次出力する。
On the other hand, in the probe A, the communication unit 11 receives the data acquisition control signal via the Wi-Fi station 2 and the Wi-Fi antenna 12 and outputs the data acquisition control signal to the signal conversion unit 9. Then, the signal conversion unit 9 sequentially acquires the digital detection signal in synchronization with the synchronization signal of the data acquisition control signal and sequentially outputs the digital detection signal to the communication unit 11.
すなわち、信号変換部9は、励磁信号を探傷コイル8の励磁コイル8aに出力することによってワークWに励磁磁界を作用させ、以ってワークWに渦電流を発生させる。そして、信号変換部9は、探傷コイル8の検出コイル8bから連続的に入力される検出信号を同期信号に同期したサンプリング信号でサンプリングすることによりデジタル検出信号に順次変換する。
That is, the signal conversion unit 9 exerts an exciting magnetic field on the work W by outputting an exciting signal to the exciting coil 8a of the flaw detection coil 8, thereby generating an eddy current in the work W. Then, the signal conversion unit 9 sequentially converts the detection signal continuously input from the detection coil 8b of the flaw detection coil 8 into a digital detection signal by sampling with a sampling signal synchronized with the synchronization signal.
そして、通信部11は、信号変換部9から入力されるデジタル検出信号をWi-Fiアンテナ12及びWi-Fiステーション2を介して検査制御部5に順次送信する。そして、検査制御部5は、同一時刻の位置データとデジタル検出信号とを各々関連付けることにより、検査経路における各位置の検査データとして順次記憶する。すなわち、プローブAが検査経路の始点から終点まで移動することによって、検査経路に沿ったワークWの複数位置の検査データが取得される。
Then, the communication unit 11 sequentially transmits the digital detection signal input from the signal conversion unit 9 to the inspection control unit 5 via the Wi-Fi antenna 12 and the Wi-Fi station 2. Then, the inspection control unit 5 sequentially stores the inspection data of each position in the inspection path by associating the position data at the same time with the digital detection signal. That is, as the probe A moves from the start point to the end point of the inspection path, inspection data at a plurality of positions of the work W along the inspection path are acquired.
このような本実施形態に係るプローブAによれば、探傷コイル8、信号変換部9、通信部11及びWi-Fiアンテナ12が一体化され、デジタル検出信号を外部の検査制御部5に送信する。これにより、検出コイル8bから信号変換部9に供給される検出信号の伝送線路が固定化されている。したがって、このようなプローブAによれば、検出コイル出力つまり検出コイル8bから信号変換部9に出力される検出信号の伝送インピーダンス変化を抑制することが可能である。さらに、本実施形態に係るプローブAによれば、プローブAが係合部7を備えている。これにより、プローブAのマシニングセンタ1への装着が容易である。
According to the probe A according to the present embodiment, the flaw detection coil 8, the signal conversion unit 9, the communication unit 11, and the Wi-Fi antenna 12 are integrated, and a digital detection signal is transmitted to the external inspection control unit 5. .. As a result, the transmission line of the detection signal supplied from the detection coil 8b to the signal conversion unit 9 is fixed. Therefore, according to such a probe A, it is possible to suppress a change in the transmission impedance of the detection coil output, that is, the detection signal output from the detection coil 8b to the signal conversion unit 9. Further, according to the probe A according to the present embodiment, the probe A includes an engaging portion 7. As a result, the probe A can be easily attached to the machining center 1.
また、このようなプローブAを備える本実施形態に係る渦流探傷システムによれば、プローブAを検査経路に沿って移動させるための移動装置としてマシニングセンタ1を用いる。これにより、プローブAを位置精度良く移動させることが可能である。また、本実施形態に係る渦流探傷システムによれば、同期信号によって位置データの取得とデジタル検出信号の取得とを時間的に同期させる。これにより、位置精度に優れた検査データを取得することが可能である。
Further, according to the eddy current flaw detection system according to the present embodiment including such a probe A, the machining center 1 is used as a moving device for moving the probe A along the inspection path. As a result, the probe A can be moved with high positional accuracy. Further, according to the eddy current flaw detection system according to the present embodiment, the acquisition of position data and the acquisition of digital detection signals are synchronized in time by a synchronization signal. This makes it possible to acquire inspection data with excellent position accuracy.
また、本実施形態に係る渦流探傷システムによれば、プローブAから信号変換部9に欠損確認情報が送信される。これにより、信号変換部9において時系列信号であるデジタル検出信号の欠損を容易に確認することが可能である。さらに、本実施形態に係る渦流探傷システムによれば、検査操作部4を備える。これにより、検査経路の設定や修正等を容易に行うことができる。
Further, according to the eddy current flaw detection system according to the present embodiment, defect confirmation information is transmitted from the probe A to the signal conversion unit 9. This makes it possible for the signal conversion unit 9 to easily confirm the loss of the digital detection signal, which is a time-series signal. Further, according to the eddy current flaw detection system according to the present embodiment, the inspection operation unit 4 is provided. As a result, it is possible to easily set or modify the inspection route.
なお、本開示は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、移動装置としてマシニングセンタ1を採用したが、本開示はこれに限定されない。プローブAを精密に位置決めできる移動装置であれば、マシニングセンタ1以外のものを採用してもよい。 The present disclosure is not limited to the above embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, themachining center 1 is adopted as the mobile device, but the present disclosure is not limited to this. A mobile device other than the machining center 1 may be used as long as it is a moving device capable of precisely positioning the probe A.
(1)上記実施形態では、移動装置としてマシニングセンタ1を採用したが、本開示はこれに限定されない。プローブAを精密に位置決めできる移動装置であれば、マシニングセンタ1以外のものを採用してもよい。 The present disclosure is not limited to the above embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, the
(2)上記実施形態では、通信装置としてWi-Fiステーション2を採用したが、本開示はこれに限定されない。Wi-Fi(登録商標)以外の通信方式に基づく通信装置を採用してもよい。なお、この場合には、プローブ通信部つまり通信部11及びWi-Fiアンテナ12については、通信装置の通信方式に準拠したものを用いる必要がある。
(2) In the above embodiment, the Wi-Fi station 2 is adopted as the communication device, but the present disclosure is not limited to this. A communication device based on a communication method other than Wi-Fi (registered trademark) may be adopted. In this case, it is necessary to use the probe communication unit, that is, the communication unit 11 and the Wi-Fi antenna 12, which conform to the communication method of the communication device.
(3)上記実施形態では、電池10を電源部としたが、本開示はこれに限定されない。プローブAはマシニングセンタ1に保持されるので、マシニングセンタ1からプローブAに電力を供給してもよい。
(3) In the above embodiment, the battery 10 is used as the power supply unit, but the present disclosure is not limited to this. Since the probe A is held in the machining center 1, electric power may be supplied to the probe A from the machining center 1.
本開示によれば、信号変換部が検出コイルに対して一体に設けられているので、検出コイル出力の伝送インピーダンス変化を抑制することが可能である。
According to the present disclosure, since the signal conversion unit is provided integrally with the detection coil, it is possible to suppress a change in the transmission impedance of the detection coil output.
A プローブ(渦流探傷プローブ)
1 マシニングセンタ
1a 多軸移動機構(移動機構)
1b MC制御部
2 Wi-Fiステーション(通信装置)
3 プローブ・マガジン
4 検査操作部(操作装置)
5 検査制御部(制御装置)
6 プローブ筐体
7 係合部
8 探傷コイル
8a 励磁コイル
8b 検出コイル
9 信号変換部
10 電池(電源部)
11 通信部(プローブ通信部)
12 Wi-Fiアンテナ(プローブ通信部) A probe (eddy current flaw detection probe)
1Machining center 1a Multi-axis movement mechanism (movement mechanism)
1bMC control unit 2 Wi-Fi station (communication device)
3Probe magazine 4 Inspection operation unit (operation device)
5 Inspection control unit (control device)
6 Probehousing 7 Engagement part 8 Damage detection coil 8a Excitation coil 8b Detection coil 9 Signal conversion part 10 Battery (power supply part)
11 Communication section (probe communication section)
12 Wi-Fi antenna (probe communication unit)
1 マシニングセンタ
1a 多軸移動機構(移動機構)
1b MC制御部
2 Wi-Fiステーション(通信装置)
3 プローブ・マガジン
4 検査操作部(操作装置)
5 検査制御部(制御装置)
6 プローブ筐体
7 係合部
8 探傷コイル
8a 励磁コイル
8b 検出コイル
9 信号変換部
10 電池(電源部)
11 通信部(プローブ通信部)
12 Wi-Fiアンテナ(プローブ通信部) A probe (eddy current flaw detection probe)
1
1b
3
5 Inspection control unit (control device)
6 Probe
11 Communication section (probe communication section)
12 Wi-Fi antenna (probe communication unit)
Claims (5)
- 渦電流を検出する検出コイルと、
前記検出コイルと一体に設けられ、前記検出コイルの出力信号をサンプリングしてデジタル検出信号に変換する信号変換部と、
前記デジタル検出信号を外部に無線送信するプローブ通信部と、
前記信号変換部及び前記プローブ通信部に電源を供給する電源部と、
を備える渦流探傷プローブ。 A detection coil that detects eddy currents and
A signal conversion unit that is provided integrally with the detection coil and samples the output signal of the detection coil and converts it into a digital detection signal.
A probe communication unit that wirelessly transmits the digital detection signal to the outside,
A power supply unit that supplies power to the signal conversion unit and the probe communication unit,
Eddy current testing probe with. - 前記外部の移動機構と係合する係合部をさらに備える請求項1に記載の渦流探傷プローブ。 The eddy current flaw detection probe according to claim 1, further comprising an engaging portion that engages with the external moving mechanism.
- 請求項2に記載の渦流探傷プローブと、
前記移動機構を備え、前記移動機構に係合した前記渦流探傷プローブを移動させる移動装置と、
前記プローブ通信部から前記デジタル検出信号を受信する通信装置と、
前記渦流探傷プローブ及び前記移動装置を制御すると共に前記通信装置が受信した前記デジタル検出信号を前記渦流探傷プローブの位置に関連付けて記憶する制御装置と、
を備える渦流探傷システム。 The eddy current flaw detection probe according to claim 2,
A moving device provided with the moving mechanism and moving the eddy current flaw detection probe engaged with the moving mechanism.
A communication device that receives the digital detection signal from the probe communication unit, and
A control device that controls the eddy current flaw detection probe and the moving device and stores the digital detection signal received by the communication device in association with the position of the eddy current flaw detection probe.
Eddy current testing system with. - 前記制御装置は、前記信号変換部におけるサンプリング周期と前記渦流探傷プローブの位置取得のサンプリング周期とを同期させるように前記渦流探傷プローブ及び前記移動装置を制御する請求項3に記載の渦流探傷システム。 The eddy current flaw detection system according to claim 3, wherein the control device controls the eddy current flaw detection probe and the moving device so as to synchronize the sampling cycle in the signal conversion unit with the sampling cycle for acquiring the position of the eddy current flaw detection probe.
- 前記プローブ通信部は、前記制御装置が前記デジタル検出信号の欠損を確認するための欠損確認情報を前記通信装置に送信する請求項3または4に記載の渦流探傷システム。 The eddy current flaw detection system according to claim 3 or 4, wherein the probe communication unit transmits defect confirmation information for the control device to confirm the defect of the digital detection signal to the communication device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-054488 | 2019-03-22 | ||
JP2019054488 | 2019-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196016A1 true WO2020196016A1 (en) | 2020-10-01 |
Family
ID=72611473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/011419 WO2020196016A1 (en) | 2019-03-22 | 2020-03-16 | Eddy current test probe and eddy current test system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020196016A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10123098A (en) * | 1996-10-24 | 1998-05-15 | Mitsubishi Heavy Ind Ltd | Eddy current flaw detection probe |
US20020190682A1 (en) * | 2001-03-07 | 2002-12-19 | Hagen Schempf | Gas main robotic inspection system |
JP2006125923A (en) * | 2004-10-27 | 2006-05-18 | Kitami Institute Of Technology | Radio telediagnosis device |
JP2006284417A (en) * | 2005-04-01 | 2006-10-19 | Olympus Corp | Nondestructive inspection device |
JP2011013147A (en) * | 2009-07-03 | 2011-01-20 | Jtekt Corp | Affected layer detector |
JP2014077764A (en) * | 2012-10-12 | 2014-05-01 | Tokyo Rigaku Kensa Kk | Eddy current flaw detection device |
JP2014081860A (en) * | 2012-10-18 | 2014-05-08 | National Institute Of Advanced Industrial & Technology | Sensor network system |
US20170059527A1 (en) * | 2015-09-01 | 2017-03-02 | Corestar International Corporation | Hand-Held Eddy Current Test Instrument and Sensor |
-
2020
- 2020-03-16 WO PCT/JP2020/011419 patent/WO2020196016A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10123098A (en) * | 1996-10-24 | 1998-05-15 | Mitsubishi Heavy Ind Ltd | Eddy current flaw detection probe |
US20020190682A1 (en) * | 2001-03-07 | 2002-12-19 | Hagen Schempf | Gas main robotic inspection system |
JP2006125923A (en) * | 2004-10-27 | 2006-05-18 | Kitami Institute Of Technology | Radio telediagnosis device |
JP2006284417A (en) * | 2005-04-01 | 2006-10-19 | Olympus Corp | Nondestructive inspection device |
JP2011013147A (en) * | 2009-07-03 | 2011-01-20 | Jtekt Corp | Affected layer detector |
JP2014077764A (en) * | 2012-10-12 | 2014-05-01 | Tokyo Rigaku Kensa Kk | Eddy current flaw detection device |
JP2014081860A (en) * | 2012-10-18 | 2014-05-08 | National Institute Of Advanced Industrial & Technology | Sensor network system |
US20170059527A1 (en) * | 2015-09-01 | 2017-03-02 | Corestar International Corporation | Hand-Held Eddy Current Test Instrument and Sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3315987B2 (en) | Sensor system | |
CN102187233B (en) | Measuring system for determining scatter parameters | |
US7694583B2 (en) | Gripper gage assembly | |
EP1709438B1 (en) | Non-destructive inspection device for inspecting limited-acces features of a structure | |
US7997001B1 (en) | Telescopic ball bar gauge | |
US5821759A (en) | Method and apparatus for detecting shorts in a multi-layer electronic package | |
JP2019120694A (en) | Position measurement device, operation method of dimension measuring measurement system, and operation method of position measurement device | |
US20120060384A1 (en) | Machine tool and method for determining the position of a workpiece in a machine tool | |
WO2020196016A1 (en) | Eddy current test probe and eddy current test system | |
US20220276037A1 (en) | Surface shape measuring device and surface shape measuring method | |
JP2018151216A (en) | Workpiece centering device and roundness measuring device | |
CN211122663U (en) | Magnetization element for nondestructive testing sensor and sensor | |
JP6606654B1 (en) | Permeability measuring device | |
WO2020196014A1 (en) | Eddy current test probe and eddy current test system | |
WO2020196302A1 (en) | Eddy-current flaw detection system and eddy-current flaw detection method | |
WO2021070911A1 (en) | Eddy current flaw detection system | |
JPS61231406A (en) | Size measuring device | |
JP6137627B2 (en) | Measurement system, touch probe, and receiving unit | |
JPH028858B2 (en) | ||
KR102555548B1 (en) | Grinding and/or eroding machines and their measuring and datuming methods | |
CN113290390B (en) | Rotary ultrasonic machining amplitude control method and calibration platform | |
JP6425645B2 (en) | measuring device | |
CN103926316A (en) | External locking device flaw detector | |
US20160263711A1 (en) | Part orienter with removable rotating fixture | |
Poornima et al. | Challenges in the Automation of Eddy Current Evaluation for Aerospace‐Spacecraft Propellant Tanks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20778788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20778788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |