WO2020196007A1 - Resin modifier - Google Patents

Resin modifier Download PDF

Info

Publication number
WO2020196007A1
WO2020196007A1 PCT/JP2020/011364 JP2020011364W WO2020196007A1 WO 2020196007 A1 WO2020196007 A1 WO 2020196007A1 JP 2020011364 W JP2020011364 W JP 2020011364W WO 2020196007 A1 WO2020196007 A1 WO 2020196007A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
acid
resin
resin modifier
olefin
Prior art date
Application number
PCT/JP2020/011364
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 中田
晋太郎 樋口
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72610512&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020196007(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN202080023722.2A priority Critical patent/CN113614122A/en
Priority to JP2021509080A priority patent/JP7137688B2/en
Publication of WO2020196007A1 publication Critical patent/WO2020196007A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a resin modifier.
  • Thermoplastic resins for example, polyolefin resins
  • polyolefin resins have excellent moldability, rigidity, heat resistance, chemical resistance, light weight, electrical insulation, etc., and are widely used as molded products of various shapes such as films, fibers, hollow fiber membranes, etc.
  • polyolefin resins have problems such as adhesiveness and paintability, and for example, they have poor adhesion to paints, printing inks, adhesives, etc., and cannot be applied without post-treatment surface treatment. It was.
  • a method for improving adhesion a method of applying corona treatment or plasma treatment to the surface of a thermoplastic resin, for example, a polyolefin resin molded product (see, for example, Patent Document 1) has been proposed.
  • An object of the present invention is to provide a resin modifier that gives a thermoplastic resin excellent adhesion to paints, printing inks, adhesives, and the like.
  • the present invention comprises an acid-modified polyolefin (X) containing a polyolefin (A) and an unsaturated carboxylic acid (B) as constituent units, and the ethylene which is a constituent monomer of the polyolefin (A).
  • the weight ratio [ethylene / ⁇ -olefin having 3 to 8 carbon atoms] to the ⁇ -olefin having 3 to 8 carbon atoms is 2/98 to 50/50, and the unsaturated carboxylic acid (B) is unsaturated.
  • a resin modifier (K) which is a monocarboxylic acid, an unsaturated polycarboxylic acid, and / or an unsaturated polycarboxylic acid anhydride, wherein the acid-modified polyolefin (X) satisfies all of the following requirements (1) to (3). ); Primer for plastic molded products containing the resin modifier (K); Thermoplastic resin composition (Y) containing the resin modifier (K) and the polyolefin resin (D). A molded product obtained by molding the thermoplastic resin composition (Y); and a molded product obtained by painting and / or printing the molded product.
  • Acid value is 1 to 100 mgKOH / g; (2) The number average molecular weight (Mn) is 1,000 to 60,000; (3) The isotacticity of the ⁇ -olefin moiety is 1 to 50%.
  • the resin modifier (K) of the present invention has the following effects. (1) Excellent substrate adhesion. (2) Excellent solvent solubility. (3) An excellent mechanical strength (impact resistance, bending elasticity, etc.) is imparted to a molded product of a resin composition containing a resin modifier (K). (4) A modifying effect (wetting property and its durability) is given to a molded product of a resin composition containing a resin modifier (K).
  • the polyolefin (A) in the resin modifier (K) of the present invention contains ethylene and an ⁇ -olefin having 3 to 8 carbon atoms as a constituent monomer.
  • ⁇ -olefin having 3 to 8 carbon atoms will be referred to as " ⁇ -olefin”.
  • Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene.
  • the ⁇ -olefin may be used in combination of 1 type, 2 types or more, but 1 type is preferable. Of the above ⁇ -olefins, propylene is preferable from the viewpoint of mechanical strength and industrial aspects of the molded product.
  • the weight ratio [ethylene / ⁇ -olefin] of ethylene, which is a constituent monomer of polyolefin (A), to ⁇ -olefin is 2/98 to 50/50, preferably 5/95 to 40/60. , More preferably 10/90 to 30/70.
  • the weight ratio [ethylene / ⁇ -olefin] is less than 2/98, the resin modifier (K) is inferior in substrate adhesion, and when it exceeds 50/50, the mechanical strength of the molded product is inferior.
  • the weight ratio [ethylene / ⁇ -olefin] can be calculated by, for example, 1 H-MNR (nuclear magnetic resonance spectroscopy).
  • the polyolefin (A) may be composed of other monomers in addition to ethylene and ⁇ -olefin.
  • the weight of the other monomers is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight.
  • the other monomer include 2-butene, isobutene, ⁇ -olefin having 9 to 30 carbon atoms (sometimes abbreviated as C) (1-decene, 1-dodecene, etc.), and ⁇ -olefin.
  • C4 to 30 unsaturated monomers for example, vinyl acetate.
  • the number average molecular weight (Mn) of the polyolefin (A) is preferably 800 to 50,000 from the viewpoint of the mechanical strength of the molded product, the adhesion of the resin modifier (K) to the substrate, and the solvent solubility. It is more preferably 1,500 to 40,000, still more preferably 2,000 to 30,000.
  • Mn of polyolefin (A) can be measured by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • the conditions for measuring Mn by GPC in the present invention are as follows. Equipment: High-temperature gel permeation chromatograph ["Alliance GPC V2000", manufactured by Waters Corp.] Detector: Refractive index detector Solvent: Ortodichlorobenzene reference material: Polystyrene sample concentration: 3 mg / ml Column stationary phase: PLgel 10 ⁇ m, MIXED-B 2 in series [Polymer Laboratories Co., Ltd.] Column temperature: 135 ° C
  • the number of double bonds per 1,000 carbon atoms of the polyolefin (A) [the number of carbon-carbon double bonds in the molecular terminal and / or the molecular chain of the polyolefin (A)] is an unsaturated carboxylic acid (described later). From the viewpoint of reactivity with B) and productivity, the number is preferably 0.5 to 20, more preferably 1.0 to 18, and even more preferably 1.5 to 15. Here, the number of double bonds can be determined from the 1 H-NMR spectrum of polyolefin (A).
  • the peak in the spectrum is assigned, and the number of double bonds of the polyolefin (A) is determined from the integrated value derived from the double bond and the integrated value derived from the polyolefin (A) at 4.5 to 6 ppm of the polyolefin (A).
  • the relative value of the carbon number of the polyolefin (A) is obtained, and the number of double bonds in the molecular end and / or the molecular chain per 1,000 carbons of the polyolefin (A) is calculated.
  • the isotacticity of the ⁇ -olefin portion of the polyolefin (A) is preferably 1 to 50%, more preferably 5 to 45, from the viewpoint of substrate adhesion and solvent solubility of the resin modifier (K). %, More preferably 10-40%.
  • the isotacticity of the ⁇ -olefin moiety of the polyolefin (A) tends to be directly reflected in the isotacticity of the ⁇ -olefin moiety of the acid-modified polyolefin (X) described later.
  • the isotacticity can be calculated using, for example, 13 C-NMR (nuclear magnetic resonance spectroscopy).
  • side chain methyl groups are on both sides (triplet, triad), on both sides of the triplet (quintuplet, pentad), and on both sides of the quintuplet (seven-strand, heptad). It is known that peaks are observed at different chemical shifts under the influence of the configuration (meso or racemo) with the methyl group. Therefore, the evaluation of stereoregularity is generally performed on the pentad, and the isotacticity in the present invention is also calculated based on the evaluation of the pentad.
  • the carbon peaks derived from the side chain methyl group in the propylene obtained by 13 C-NMR are the pentad peaks (H) of the ⁇ -olefin portion of the polyolefin (A), and the pentad is meso.
  • the isotacticity is calculated by the following formula when the peak (Ha) derived from the methyl group in the propylene of the isotactic formed only by the structure is used.
  • Isotacticity (%) [(Ha) / ⁇ (H)] x 100 (1)
  • Ha is the peak height of the isotactic (pentad is formed only by the meso structure) signal
  • H is the peak height of the pentad.
  • the isotacticity of the ⁇ -olefin portion of the acid-modified polyolefin (X) described later can also be measured in the same manner as described above.
  • polyolefin (A) in the present invention for example, a high molecular weight (preferably Mn of 60,000 to 400,000, more preferably Mn of 80,000 to 250,000) polyolefin (A0) is thermally reduced. There is a way to do it.
  • a high molecular weight (preferably Mn of 60,000 to 400,000, more preferably Mn of 80,000 to 250,000) polyolefin (A0) is thermally reduced. There is a way to do it.
  • the heat-reducing method includes (1) heating the high-molecular-weight polyolefin (A0) in the absence of an organic peroxide at 300 to 450 ° C. for 0.5 to 10 hours, and (2) organic peroxide.
  • a method of heating at 180 to 300 ° C. for 0.5 to 10 hours in the presence of a substance [for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane] is included.
  • the method (1) is preferable because it is easy to obtain one having a larger number of double bonds at the molecular terminal and / or the molecular chain. ..
  • the weight ratio [ethylene / ⁇ -olefin] of ethylene and ⁇ -olefin, which are the monomers constituting the polyolefin (A), is the weight ratio [ethylene / ⁇ -olefin] of these monomers in the high molecular weight polyolefin (A0).
  • ⁇ -olefin] tends to be maintained as it is. Further, the higher the heat decomposing temperature or the longer the heat decomposing time, the larger the number of double bonds per 1,000 carbon atoms tends to be. Further, the larger the Mn of the high molecular weight polyolefin (A0), the higher the heat decomposing temperature, or the longer the heat decomposing time, the smaller the Mn of the polyolefin (A) tends to be.
  • the polyolefin (A) may be used alone or in combination of two or more.
  • the unsaturated carboxylic acid (B) in the resin modifier (K) of the present invention means an unsaturated monocarboxylic acid, an unsaturated polycarboxylic acid and / or an unsaturated polycarboxylic acid anhydride.
  • the unsaturated carboxylic acid (B) is a monocarboxylic acid of C3 to 24 having one polymerizable unsaturated group, a polycarboxylic acid of C4 to 24 having one polymerizable unsaturated group, and / or a polymerizable unsaturated group. It is preferably a C4 to 24 polycarboxylic acid anhydride having one group.
  • the unsaturated monocarboxylic acids include aliphatic monocarboxylic acids (C3 to 24, for example, acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, crotonic acid, isocrotonic acid) and fats.
  • Ring-containing monocarboxylic acid C6 to 24, for example, cyclohexenecarboxylic acid
  • unsaturated poly (2 to 3 or more) carboxylic acid or acid anhydride thereof includes unsaturated dicarboxylic acid or acid anhydride thereof [aliphatic dicarboxylic acid].
  • Acids or their acid anhydrides (C4-24, such as maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, and their acid anhydrides), alicyclic-containing dicarboxylic acids or their acid anhydrides (C8-24, For example, cyclohexendicarboxylic acid, cycloheptenedicarboxylic acid, bicycloheptenedicarboxylic acid, methyltetrahydrophthalic acid, and acid anhydrides thereof)] and the like can be mentioned.
  • the unsaturated carboxylic acid (B) may be used alone or in combination of two or more.
  • unsaturated carboxylic acids (B) unsaturated dicarboxylic acid anhydrides are more preferable from the viewpoint of reactivity with polyolefin (A) and modification characteristics of the resin modifier (K) described later.
  • the acid-modified polyolefin (X) in the present invention contains the above-mentioned polyolefin (A) and unsaturated carboxylic acid (B) as constituent units.
  • the weight ratio [polyolefin (A) / unsaturated carboxylic acid (B)] of the polyolefin (A) to the unsaturated carboxylic acid (B) in the acid-modified polyolefin (X) is determined by the mechanical strength of the molded product and the resin modification described later. From the viewpoint of the balance between the modifying effect of the quality agent (K) and the adhesion to the substrate, it is preferably 80/20 to 99.5 / 0.5, and more preferably 90/10 to 99/1.
  • the acid-modified polyolefin (X) is formed by reacting the polyolefin (A) with the unsaturated carboxylic acid (B) in the absence or presence of the radical initiator (C).
  • the acid-modified polyolefin (X) is more preferably an organic solvent suitable for the polyolefin (A) and the unsaturated carboxylic acid (B) in the presence of the radical initiator (C) [for example, C3-18.
  • Hydrocarbons hexane, heptane, octane, dodecane, benzene, toluene, xylene, etc.
  • C3-18 halogenated hydrocarbons di-, tri-, or tetrachloroethane, dichlorobutane, etc.
  • C3-18 ketones acetone
  • Methyl ethyl ketone di-t-butyl ketone, etc.
  • C3-18 ether ethyl-n-propyl ether, di-n-butyl ether, di-t-butyl ether, dioxane, etc.
  • the radical initiator (C) is known, for example, an azo initiator (azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), etc.), a peroxide initiator. (Dicumyl peroxide, etc.) can be mentioned. Of the radical initiators (C), peroxide initiators are preferred.
  • the reaction temperature is preferably 100 to 270 ° C., more preferably 120 to 250 ° C., and even more preferably 130 to 240 ° C. from the viewpoint of reactivity and productivity of the polyolefin (A) and the unsaturated carboxylic acid (B).
  • the acid-modified polyolefin (X) satisfies all of the following requirements (1) to (3).
  • Acid value is 1 to 100 mgKOH / g
  • the number average molecular weight (Mn) is 1,000 to 60,000.
  • Isotacticity of ⁇ -olefin moiety is 1 to 50%
  • the acid value of the acid-modified polyolefin (X) is 1 to 100 mgKOH / g (hereinafter, only numerical values are shown), preferably 3 to 75, and more preferably 5 to 50.
  • the acid value here is a value measured according to JIS K0070. If the acid value is less than 1, the modifying property of the resin modifier (K) is inferior, and if it exceeds 100, the productivity of the acid-modified polyolefin (X) is inferior. Further, the acid value can be appropriately adjusted by the number of double bonds of the polyolefin (A), the weight of the polyolefin (A), the type and weight of the unsaturated carboxylic acid (B).
  • the Mn of the acid-modified polyolefin (X) is 1,000 to 60,000, preferably 2,000 to 50,000, and more preferably 3,000 to 40,000. If Mn is less than 1,000, the mechanical strength of the molded product is inferior, and if it exceeds 60,000, the modification characteristics of the resin modifier (K) are inferior.
  • the Mn of the acid-modified polyolefin (X) can be measured by GPC in the same manner as the Mn of the polyolefin (A) described above.
  • the Mn of the acid-modified polyolefin (X) is controlled by controlling the Mn of the polyolefin (A), the type and amount of the unsaturated carboxylic acid (B), and the reaction between the polyolefin (A) and the unsaturated carboxylic acid (B). , Can be adjusted as appropriate.
  • the isotacticity of the ⁇ -olefin moiety of the acid-modified polyolefin (X) is 1 to 50%, preferably 5 to 45%, and more preferably 10 to 40%. If the isotacticity is less than 1%, the substrate adhesion is poor, and if it exceeds 50%, the solvent solubility is poor. Further, the isotacticity of the ⁇ -olefin portion of the acid-modified polyolefin (X) can be appropriately adjusted by the isotacticity of the polyolefin (A) and the high molecular weight polyolefin (A0) as described above.
  • the resin modifier (K) of the present invention contains the acid-modified polyolefin (X).
  • the resin modifier (K) is preferably used as a modifier for various thermoplastic resins, particularly the polyolefin resin (D) described later. Since the resin modifier (K) is excellent in substrate adhesion and solvent solubility, it can be used for various purposes, such as a primer for a plastic molded product, a molded product of the thermoplastic resin composition (Y) described later, and the like. Gives excellent mechanical strength, modification effect, etc.
  • the resin modifier (K) may be used alone or in combination of two or more.
  • the content of the acid-modified polyolefin (X) in the resin modifier (K) is preferably 50 to 100% by weight, more preferably 90 to 100% by weight.
  • the primer for a plastic molded product of the present invention contains the above resin modifier (K).
  • the primer for a plastic molded product preferably contains the above resin modifier (K) and a solvent (S).
  • the solvent (S) include known solvents, but aromatic hydrocarbons (toluene, xylene, etc.) are preferable.
  • the weight ratio of the resin modifier (K) to the solvent (S) [resin modifier (K) / solvent (S)] is preferably 10/90 to 50. / 50, more preferably 20/80 to 40/60.
  • the content of the resin modifier (K) in the primer for plastic molded products is preferably 10 to 50% by weight. Further, if necessary, a resin other than the polyolefin resin (D) and the polyolefin resin (D) may be added to the primer.
  • the thermoplastic resin composition (Y) of the present invention contains the above resin modifier (K) and a polyolefin resin (D).
  • the polyolefin resin (D) includes, for example, an ethylene unit-containing (propylene unit-free) (co) polymer, a propylene unit-containing (ethylene unit-free) (co) polymer, an ethylene / propylene copolymer, and C4 or more. Includes (co) polymers of olefins and the like.
  • the constituent unit of the polyolefin resin (D) and the constituent unit of the polyolefin (A) constituting the resin modifier (K) are the same or similar. It is preferable from the viewpoint of compatibility between the polyolefin resin (D) and the resin modifier (K). Therefore, as the polyolefin resin (D), a propylene unit-containing (co) polymer is preferable, and an ethylene / propylene copolymer is particularly preferable.
  • the Mn of the polyolefin resin (D) is preferably 10,000 to 500,000, more preferably 20 from the viewpoint of the mechanical strength of the molded product of the present invention described later and the compatibility with the resin modifier (K). It is 000 to 400,000, more preferably 80,000 to 300,000.
  • the thermoplastic resin composition (Y) of the present invention may further contain various additives (F), if necessary, as long as the effects of the present invention are not impaired.
  • the additive (F) include a colorant (F1), a flame retardant (F2), a filler (F3), a lubricant (F4), an antistatic agent (F5), a dispersant (F6), and an antioxidant (F7).
  • Coloring agents (F1) include inorganic pigments [white pigments, cobalt compounds, iron compounds, sulfides, etc.], organic pigments [azo pigments, polycyclic pigments, etc.], dyes [azo-based, indigoid-based, sulfide-based, alizarin. System, aclysine system, thiazole system, nitro system, aniline system, etc.] and the like.
  • Examples of the flame retardant (F2) include halogen-containing flame retardants, nitrogen-containing flame retardants, sulfur-containing flame retardants, silicon-containing flame retardants, and phosphorus-containing flame retardants.
  • Examples of the filler (F3) include inorganic fillers (calcium carbonate, talc, clay, etc.) and organic fillers (urea, calcium stearate, etc.).
  • lubricant (F4) examples include calcium stearate, butyl stearate, oleic acid amide, polyolefin wax, paraffin wax and the like.
  • Nonionic surfactant alkylene oxide (AO) -added nonionics for example, active hydrogen atom-containing compounds having a hydrophobic group (C8 to 24 or more) [saturated and unsaturated, higher alcohols (C8 to more) 18), higher aliphatic amines (C8-24), higher fatty acids (C8-24), etc.]
  • AO alkylene oxide
  • polyoxyalkylene derivatives AO adducts and higher fatty acid mono- or diesters of polyalkylene glycols
  • Anionic surfactant Higher fatty acid (above) salt sodium laurate, etc.
  • ethercarboxylic acid [carboxymethylated product of EO (1-10 mol) adduct, etc.] and salts thereof
  • sulfate ester salt alkyl
  • sulfated oils sulfated fatty acid esters and sulfated olefins
  • sulfonates [alkylbenzene sulfonates, alkylnaphthalene sulfonates, sulfosuccinic acid dialkyl ester types, ⁇ -olefin (C12-18) sulfates Acid salts, N-acyl-N-methyltaurine (Igepon T type, etc.), etc.]
  • phosphate ester salts, etc. alkyl, alkyl ether, alkylphenyl ether phosphate, etc.
  • Amphoteric surfactant Carboxylic acid (salt) type amphoterix [Amino acid type amphoterix (laurylaminopropionic acid (salt) etc.) and betaine type amphoterix (alkyldimethylbetaine and alkyldihydroxyethylbetaine etc.)]; Sulfate ester (Salt) type amphoterics [laurylamine sulfate (salt), hydroxyethyl imidazoline sulfate (salt), etc.]; Sulfonic acid (salt) type amphoterix [pentadecylsulfotaurine and imidazoline sulfonic acid (salt) ) Etc.]; and phosphoric acid ester (salt) type amphoterix and the like [phosphate ester (salt) of glycerin lauryl acid ester, etc.].
  • the salts in the above anionic and amphoteric surfactants include metal salts such as alkali metals (lithium, sodium and potassium, etc.), alkaline earth metals (calcium and magnesium, etc.) and Group IIB metals (zinc, etc.); Ammonium salts; as well as amine salts and quaternary ammonium salts.
  • the dispersant (F6) is a polymer of Mn 1,000 to 20,000, for example, a vinyl resin, and a vinyl resin other than the above-mentioned polyolefin (A) [vinyl halide [polyvinyl chloride, polyvinyl bromide, etc.], Polyvinyl acetate, polyvinyl alcohol, polymethyl vinyl ether, poly (meth) acrylic acid, poly (meth) acrylic acid ester [poly (meth) methyl acrylate, etc.] and styrene resin [polystyrene, acrylonitrile / styrene (AS) resin, etc.] Etc.]; Polyester resin [polyethylene terephthalate, etc.], polyamide resin [6,6-nylon and 12-nylon, etc.], polyether resin [polyether sulfone, etc.], polycarbonate resin [polycondensate of bisphenol A and phosgen, etc.] And their block copolymers and the
  • antioxidant (F7) examples include phenol compounds [monocyclic phenol (2,6-di-t-butyl-p-cresol, etc.)) and bisphenol [2,2'-methylenebis (4-methyl-6-t-butylphenol). ) Etc.], Polycyclic phenol [1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, etc.], etc.], Sulfur compound (dilauryl 3) , 3'-thiodipropionate, etc.), phosphorus compounds (triphenylphosphite, etc.), amine compounds (octylated diphenylamine, etc.) and the like.
  • lower (C1-4) alcohol esters of fatty acids C8-24) (butyl stearate, etc.) and polyvalent (divalent to tetravalent or higher) fatty acids (C2-24).
  • examples thereof include alcohol esters (hardened castor oil and the like), glycol (C2 to 8) esters of fatty acids (C2 to 24) (ethylene glycol monostearate and the like), liquid paraffins and the like.
  • Antibacterial agents include benzoic acid, sorbic acid, phenol halides, organic iodine, nitriles (2,4,5,6-tetrachloroisophthalonitrile, etc.), thiocyano (methylenebisthianocyanate), N-halo.
  • Examples thereof include alkylthioimides, copper agents (8-oxyquinoline copper, etc.), benzimidazoles, benzothiazoles, trihaloallyl, triazoles, organic nitrogen sulfur compounds (suraoff 39, etc.), quaternary ammonium compounds, pyridine compounds and the like.
  • the compatibilizer (F10) includes a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group: for example.
  • polar group selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group: for example.
  • ultraviolet absorber (F11) examples include benzotriazole [2- (2'-hydroxy-5'-methylphenyl) benzotriazole, etc.], benzophenone [2-hydroxy-4-methoxybenzophenone, etc.], salicylate [phenylsalicylate, etc.] Etc.], acrylate [2-ethylhexyl-2-cyano-3,3-diphenylacrylate, etc.] and the like.
  • the total content of the additive (F) in the thermoplastic resin composition (Y) is preferably, for example, 20% by weight or less based on the total weight of the thermoplastic resin composition (Y), and each additive (F). ) Is more preferably 0.05 to 10% by weight, still more preferably 0.1 to 5% by weight from the viewpoint of functional expression and industry.
  • the amount of each additive used based on the total weight of the thermoplastic resin composition (Y) is, for example, 5% by weight or less, preferably 0.1 to 3% by weight of (F1); (F2) is, for example, 8.
  • % Weight or less preferably 1 to 3% by weight;
  • (F3) is, for example, 5% by weight or less, preferably 0.1 to 1% by weight;
  • (F4) is, for example, 8% by weight or less, preferably 1 to 5% by weight.
  • (F5) is, for example, 8% by weight or less, preferably 1 to 3% by weight;
  • (F6) is, for example, 1% by weight or less, preferably 0.1 to 0.5% by weight;
  • F7 is, for example. 2% by weight or less, preferably 0.05 to 0.5% by weight;
  • (F8) is, for example, 5% by weight or less, preferably 0.01 to 3% by weight;
  • (F9) is, for example, 25% by weight or less, preferably.
  • (F10) is, for example, 15% by weight or less, preferably 0.5 to 10% by weight;
  • (F11) is, for example, 2% by weight or less, preferably 0.05 to 0.5% by weight
  • the amount of each compound exerting the corresponding additive effect is not used as it is, but the effect as another additive can be obtained at the same time. In consideration of this, the amount used shall be adjusted according to the purpose of use.
  • thermoplastic resin composition (Y) of the present invention As a method for producing the thermoplastic resin composition (Y) of the present invention, (1) A method of collectively mixing the total amount of the polyolefin resin (D) and the resin modifier (K) and, if necessary, (F) to obtain a resin composition (collective method); (2) A part of the polyolefin resin (D), the whole amount of the resin modifier (K), and if necessary, a part or the whole amount of the additive (F) are mixed to obtain a high-concentration resin modifier (K). Examples thereof include a method (masterbatch method) in which a masterbatch resin composition to be contained is once prepared, and then the remaining polyolefin resin (D) and, if necessary, the rest of the additive (F) are added and mixed to obtain a resin composition. .. From the viewpoint of the mixing efficiency of the resin modifier (K), the method (2) is preferable.
  • the weight ratio [resin modifier (K) / polyolefin resin (D)] of the resin modifier (K) to the polyolefin resin (D) in the thermoplastic resin composition (Y) of the present invention is resin modification. From the viewpoint of the modifying characteristics of the agent (K) and the mechanical strength of the molded product described later, it is preferably 0.1 / 99.9 to 50/50, more preferably 1/99 to 40/60.
  • thermoplastic resin composition (Y), (I) For example, a powder mixer ["Henshell Mixer” [trade name “Henshell Mixer FM150L / B", Mitsui Mine Co., Ltd., after the company name change, manufactured by Nippon Coke Industries Co., Ltd.], " After mixing with "Nautamixa” [trade name “Nautamixa DBX3000RX”, manufactured by Hosokawa Micron Co., Ltd.], “Banbury Mixer” [trade name "MIXTRON BB-16MIXER”, manufactured by Kobe Steel Co., Ltd.], etc. A method of kneading at 120 to 220 ° C.
  • the molded product of the present invention is a molded product of the above-mentioned thermoplastic resin composition (Y). That is, the molded product of the present invention is a molded product of the above-mentioned thermoplastic resin composition (Y).
  • the molding method include injection molding, compression molding, calender molding, slush molding, rotary molding, extrusion molding, blow molding, film molding (casting method, tenter method, inflation method, etc.), and a single layer depending on the purpose. It can be molded by any method incorporating means such as molding, multi-layer molding or foam molding. Examples of the form of the molded product include plate-shaped, sheet-shaped, film, fiber (including non-woven fabric and the like) and the like. Since the molded product of the present invention contains the resin modifier (K) having the above-mentioned carboxyl group and the like, it has an excellent affinity with paints, inks and the like having relatively high polarity due to the modifying effect.
  • the molded product of the present invention has excellent mechanical strength, good paintability and printability, and a molded product can be obtained by painting and / or printing the molded product.
  • the method for coating the molded product include, but are not limited to, air spray coating, airless spray coating, electrostatic spray coating, immersion coating, roller coating, and brush coating.
  • the paint include paints generally used for painting plastics such as polyester melamine resin paint, epoxy melamine resin paint, acrylic melamine resin paint, and acrylic urethane resin paint, and even these so-called paints with relatively high polarity can be used. It can also be used with low-polarity paints (olefins, etc.).
  • the coating film thickness dry film thickness
  • any printing method generally used for printing plastics can be used, for example, gravure printing and flexo printing. Examples include printing, screen printing, pad printing, dry offset printing and offset printing.
  • the printing ink those usually used for printing plastics, for example, gravure ink, flexographic ink, screen ink, pad ink, dry offset ink and offset ink can be used.
  • the part in the embodiment represents a weight part.
  • Mn number average molecular weight
  • the number of double bonds of polyolefin the isotacticity
  • the acid value were measured by the above method.
  • Example 1 100 parts of polyolefin (A-1) and 2 parts of maleic anhydride (B-1) were charged in a reaction vessel, and after nitrogen substitution, the temperature was raised to 180 ° C. under nitrogen aeration to uniformly dissolve the mixture.
  • a radical initiator [Dicmil peroxide, trade name "Parkmill D", manufactured by Nichiyu Co., Ltd.]
  • the acid-modified polyolefin (X-1) had an acid value of 11, Mn of 7,000, and an isotacticity of 16%.
  • Example 2 100 parts of polyolefin (A-1) and 3 parts of maleic anhydride (B-1) were charged in a reaction vessel, heated to 200 ° C. under nitrogen aeration, and stirred for 10 hours. Then, unreacted maleic anhydride was distilled off under reduced pressure (1.5 kPa, the same applies hereinafter) to obtain a resin modifier (K-2) containing an acid-modified polyolefin (X-2). It was.
  • the acid-modified polyolefin (X-2) had an acid value of 16, Mn of 6,000, and an isotacticity of 18%.
  • Examples 3 to 13 Comparative Examples 1 to 2> According to Table 2, the reactions were carried out in the same manner as in Example 1 except that the raw materials used were used, and the resin modifiers (K-3) to (K-13) containing each acid-modified polyolefin (X) were contained. ), (Ratio K-1) to (Ratio K-2) were obtained. Each of the obtained resin modifiers was evaluated by the following method. The results are shown in Table 2.
  • ⁇ Evaluation method> ⁇ 1> Solvent solubility 30 g of each resin modifier obtained in Examples 1 to 13 and Comparative Examples 1 and 2 and 70 g of xylene are placed in a container, stirred at 40 ° C. for 3 hours, and then at room temperature (1). It was allowed to stand at 25 ° C. for 3 hours. Further, the properties of the contents of the container aged at 25 ° C. for 1 day were observed, and the solvent solubility was evaluated according to the following ⁇ evaluation criteria>.
  • ⁇ Evaluation criteria> ⁇ : The solution is transparent and has fluidity. ⁇ : The solution is slightly hazy and fluid. ⁇ : The solution is hazy and has no fluidity. X: Almost insoluble.
  • a polyurethane paint [trade name "U-coat UX-150” manufactured by Sanyo Chemical Industries, Ltd.] was spray-applied using a similar sprayer, dried at 80 ° C. for 10 minutes (urethane paint film thickness after drying).
  • An adhesion test (a grid test) was performed on a painted surface of 100 ⁇ m) by a grid tape method based on JIS K5400, and the adhesion was evaluated according to the following evaluation criteria.
  • the number of portions of the grid 100 where the coating film has not peeled off is represented by 0 to 100, and the larger the value, the better the adhesion between the base material and the coating film. In the above ⁇ 1>, those having an evaluation of ⁇ or ⁇ could not be sprayed, so the substrate adhesion was not evaluated.
  • A0-1 Polyolefin containing 85% propylene and 15% ethylene as constituent units, trade name "Vistamaxx6202", manufactured by ExxonMobil, Mn76,000, isotacticity 20%
  • A0-2 Polyolefin containing 91% propylene and 9% ethylene as constituent units, trade name "Vistamaxx3980", manufactured by ExxonMobil, Mn113,000, isotacticity 50%
  • A0-3 Polyolefin containing 84% propylene and 16% ethylene as constituent units, trade name "Vistamaxx6102", manufactured by ExxonMobil, Mn 70,000, isotacticity 29%
  • Ratio A0-1 Polyolefin containing 98% propylene and 2% ethylene as constituent units, trade name "SunAllomer PZA20A”, manufactured by SunAllomer Ltd., Mn100,000, isotacticity 90% Ratio A0
  • thermoplastic resin composition is blended for 3 minutes with a Henshell mixer according to the compounding composition (part) of 3 and then melt-kneaded with a twin-screw extruder with a vent at 180 ° C., 100 rpm, and a residence time of 5 minutes.
  • Each thermoplastic resin composition is molded at a cylinder temperature of 240 ° C. and a mold temperature of 60 ° C. using an injection molding machine [trade name “PS40E5ASE”, Nissei Resin Industry Co., Ltd.] to prepare a predetermined test piece, which will be described later. It was evaluated according to the evaluation method of. The results are shown in Table 3.
  • Impact resistance (unit: kJ / m 2 ) The Izod impact value was measured according to JIS K7110.
  • Flexural modulus (unit: MPa) The bending elasticity was evaluated by measuring according to JIS K7171.
  • Wetness (Unit: °) The wettability was evaluated by measuring the water contact angle in accordance with JIS R2357. The smaller the water contact angle, the better the wettability. 4.
  • Persistence of wettability (unit: °) The film was immersed in water, the surface was washed with a cotton cloth, and then dried under reduced pressure (1 kPa, 80 ° C., 1 hour). The temperature of this test piece was adjusted (23 ° C., 50 RH%, 24 hours), and the above 3. The water contact angle was measured in the same manner as in.
  • the resin modifier (K) of the present invention was superior in substrate adhesion and solvent solubility as compared with those of Comparative Examples. Further, it was found that the molded product of the thermoplastic resin composition was given excellent mechanical strength (impact resistance, bending elasticity, etc.) and a modifying effect (wetting property, its durability).
  • the resin modifier (K) of the present invention has various uses, preferably a resin modifier, a chlorinated polypropylene raw material, a polyurethane raw material, a cured resin raw material, an adhesive raw material, a pressure-sensitive adhesive raw material, an emulsion raw material, and an adhesive. It can be suitably used for chemical applications, and has excellent wettability (particularly persistent wettability), adhesiveness, and adhesion (painting) to the molded product without impairing the mechanical strength and good appearance of the molded product of the thermoplastic resin. Gender) and their persistence can be imparted. It is particularly useful as a primer for plastic molded products, a wettability modifier, and a coatability improver.
  • the wettability is improved, the wettability of PP for the battery separator is improved, the wettability of PE and PVDF of the water treatment film is improved, the wettability of the short fiber polyolefin for fiber reinforcement is improved, and the vinyl house (plastic). It is also suitable for improving the wettability of house) and the wettability of food packaging films.
  • thermoplastic resin composition (Y) of the present invention has good coatability and printability, various molding methods [injection molding, compression molding, calender molding, slush molding, rotary molding, extrusion molding, blow molding, foaming] Housing products (for home appliances / OA equipment, game equipment, office equipment, etc.) molded by molding and film molding (cast method, tenter method, inflation method, etc.), plastic container materials [Trays used in clean rooms (IC trays) Etc.) and other containers, etc.], various cushioning materials, covering materials (packaging materials, protective films, etc.), flooring sheets, artificial turf, mats, tape base materials (for semiconductor manufacturing processes, etc.) and various molded products (for semiconductor manufacturing processes, etc.) It can be widely used as a material for automobile parts, etc.) and is extremely useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The purpose of the present invention is to provide a resin modifier which imparts, to thermoplastic resins, excellent adhesion to coating materials, printing inks, adhesives, etc. The resin modifier (K) of the present invention comprises an acid-modified polyolefin (X) comprising, as constituent units, a polyolefin (A) and one or more unsaturated carboxylic acids (B), wherein the polyolefin (A) is one formed from, as constituent monomers, ethylene and an α-olefin having 3-8 carbon atoms, in an ethylene/(α-olefin having 3-8 carbon atoms) weight ratio of 2/98 to 50/50, the unsaturated carboxylic acids (B) comprise an unsaturated monocarboxylic acid, an unsaturated polycarboxylic acid, and/or an unsaturated polycarboxylic anhydride, and the acid-modified polyolefin (X) satisfies all of the following requirements (1) to (3): (1) to have an acid value of 1-100 mg-KOH/g; (2) to have a number-average molecular weight (Mn) of 1,000-60,000; and (3) to have an isotacticity in the α-olefin moieties of 1-50%.

Description

樹脂改質剤Resin modifier
 本発明は、樹脂改質剤に関する。 The present invention relates to a resin modifier.
 熱可塑性樹脂、例えば、ポリオレフィン樹脂は、成形性、剛性、耐熱性、耐薬品性、軽量性及び電気絶縁性等に優れ、フィルム、繊維、中空糸膜、その他さまざまな形状の成形品として幅広く使用されている。
 一方で、例えば、ポリオレフィン樹脂は、接着性や塗装性等に課題があり、例えば、塗料、印刷インキ及び接着剤等に対する密着性が悪く、後加工の表面処理無しでは適用できない等の問題があった。
 従来、密着性を向上する方法としては、熱可塑性樹脂、例えばポリオレフィン樹脂成形品の表面にコロナ処理又はプラズマ処理を施す方法(例えば特許文献1参照)が提案されている。
Thermoplastic resins, for example, polyolefin resins, have excellent moldability, rigidity, heat resistance, chemical resistance, light weight, electrical insulation, etc., and are widely used as molded products of various shapes such as films, fibers, hollow fiber membranes, etc. Has been done.
On the other hand, for example, polyolefin resins have problems such as adhesiveness and paintability, and for example, they have poor adhesion to paints, printing inks, adhesives, etc., and cannot be applied without post-treatment surface treatment. It was.
Conventionally, as a method for improving adhesion, a method of applying corona treatment or plasma treatment to the surface of a thermoplastic resin, for example, a polyolefin resin molded product (see, for example, Patent Document 1) has been proposed.
特開2000-319426号公報Japanese Unexamined Patent Publication No. 2000-319426
 しかしながら、上記技術では、処理が煩雑であり、密着性についても十分に満足できるとは言えなかった。
 本発明の目的は、熱可塑性樹脂に、塗料、印刷インキ及び接着剤等に対する優れた密着性を与える樹脂改質剤を提供することにある。
However, in the above technique, the processing is complicated, and it cannot be said that the adhesion is sufficiently satisfactory.
An object of the present invention is to provide a resin modifier that gives a thermoplastic resin excellent adhesion to paints, printing inks, adhesives, and the like.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は、ポリオレフィン(A)と不飽和カルボン酸(B)とを構成単位として含む酸変性ポリオレフィン(X)を含有してなり、前記ポリオレフィン(A)の構成単量体であるエチレンと炭素数3~8のα-オレフィンとの重量比[エチレン/炭素数3~8のα-オレフィン]が2/98~50/50であって、前記不飽和カルボン酸(B)は、不飽和モノカルボン酸、不飽和ポリカルボン酸、及び/又は不飽和ポリカルボン酸無水物であり、前記酸変性ポリオレフィン(X)が下記要件(1)~(3)のいずれも満たす樹脂改質剤(K);前記樹脂改質剤(K)を含有してなるプラスチック成形品用プライマー;前記樹脂改質剤(K)と、ポリオレフィン樹脂(D)とを含有してなる熱可塑性樹脂組成物(Y);前記熱可塑性樹脂組成物(Y)を成形してなる成形品;並びに前記成形品に塗装及び/又は印刷を施してなる成形物品である。
(1)酸価が、1~100mgKOH/g;
(2)数平均分子量(Mn)が1,000~60,000;
(3)α-オレフィン部分のアイソタクティシティーが1~50%。
The present inventors have arrived at the present invention as a result of diligent studies to solve the above problems. That is, the present invention comprises an acid-modified polyolefin (X) containing a polyolefin (A) and an unsaturated carboxylic acid (B) as constituent units, and the ethylene which is a constituent monomer of the polyolefin (A). The weight ratio [ethylene / α-olefin having 3 to 8 carbon atoms] to the α-olefin having 3 to 8 carbon atoms is 2/98 to 50/50, and the unsaturated carboxylic acid (B) is unsaturated. A resin modifier (K) which is a monocarboxylic acid, an unsaturated polycarboxylic acid, and / or an unsaturated polycarboxylic acid anhydride, wherein the acid-modified polyolefin (X) satisfies all of the following requirements (1) to (3). ); Primer for plastic molded products containing the resin modifier (K); Thermoplastic resin composition (Y) containing the resin modifier (K) and the polyolefin resin (D). A molded product obtained by molding the thermoplastic resin composition (Y); and a molded product obtained by painting and / or printing the molded product.
(1) Acid value is 1 to 100 mgKOH / g;
(2) The number average molecular weight (Mn) is 1,000 to 60,000;
(3) The isotacticity of the α-olefin moiety is 1 to 50%.
 本発明の樹脂改質剤(K)は、以下の効果を奏する。
(1)基材密着性に優れる。
(2)溶剤溶解性に優れる。
(3)樹脂改質剤(K)を含む樹脂組成物の成形品に、優れた機械的強度(耐衝撃性、曲げ弾性等)を与える。
(4)樹脂改質剤(K)を含む樹脂組成物の成形品に、改質効果(濡れ性と、その持続性)を与える。
The resin modifier (K) of the present invention has the following effects.
(1) Excellent substrate adhesion.
(2) Excellent solvent solubility.
(3) An excellent mechanical strength (impact resistance, bending elasticity, etc.) is imparted to a molded product of a resin composition containing a resin modifier (K).
(4) A modifying effect (wetting property and its durability) is given to a molded product of a resin composition containing a resin modifier (K).
<ポリオレフィン(A)>
 本発明の樹脂改質剤(K)におけるポリオレフィン(A)は、エチレンと炭素数3~8のα-オレフィンとを構成単量体として含む。以下では、「炭素数3~8のα-オレフィン」を「α-オレフィン」と記載する。
 上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテンが挙げられる。
 なお、α-オレフィンは1種、2種又はそれ以上を併用してもよいが、1種が好ましい。
 上記α-オレフィンのうち、成形品の機械的強度及び工業上の観点から、好ましいのはプロピレンである。
<Polyolefin (A)>
The polyolefin (A) in the resin modifier (K) of the present invention contains ethylene and an α-olefin having 3 to 8 carbon atoms as a constituent monomer. Hereinafter, "α-olefin having 3 to 8 carbon atoms" will be referred to as "α-olefin".
Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene.
The α-olefin may be used in combination of 1 type, 2 types or more, but 1 type is preferable.
Of the above α-olefins, propylene is preferable from the viewpoint of mechanical strength and industrial aspects of the molded product.
 ポリオレフィン(A)の構成単量体であるエチレンとα-オレフィンとの重量比[エチレン/α-オレフィン]は、2/98~50/50であり、好ましくは5/95~40/60であり、より好ましくは10/90~30/70である。
 重量比[エチレン/α-オレフィン]が、2/98未満の場合、樹脂改質剤(K)が基材密着性に劣り、50/50を超えると成形品の機械的強度が劣る。
 上記重量比[エチレン/α-オレフィン]は、例えば、H-MNR(核磁気共鳴分光法)により算出できる。
The weight ratio [ethylene / α-olefin] of ethylene, which is a constituent monomer of polyolefin (A), to α-olefin is 2/98 to 50/50, preferably 5/95 to 40/60. , More preferably 10/90 to 30/70.
When the weight ratio [ethylene / α-olefin] is less than 2/98, the resin modifier (K) is inferior in substrate adhesion, and when it exceeds 50/50, the mechanical strength of the molded product is inferior.
The weight ratio [ethylene / α-olefin] can be calculated by, for example, 1 H-MNR (nuclear magnetic resonance spectroscopy).
 上記ポリオレフィン(A)は、エチレン、α-オレフィン以外にその他の単量体を構成単量体としてもよい。その場合、ポリオレフィン(A)を構成する全単量体の重量に基づいて、その他の単量体の重量は、好ましくは10重量%以下、より好ましくは5重量%以下、さらに好ましくは1重量%以下である。
 上記その他の単量体としては、例えば、2-ブテン、イソブテン、炭素数(Cと略記することがある)9~30のα-オレフィン(1-デセン、1-ドデセン等)、α-オレフィン以外のC4~30の不飽和単量体(例えば、酢酸ビニル)が挙げられる。
The polyolefin (A) may be composed of other monomers in addition to ethylene and α-olefin. In that case, based on the weight of all the monomers constituting the polyolefin (A), the weight of the other monomers is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight. It is as follows.
Examples of the other monomer include 2-butene, isobutene, α-olefin having 9 to 30 carbon atoms (sometimes abbreviated as C) (1-decene, 1-dodecene, etc.), and α-olefin. Examples of C4 to 30 unsaturated monomers (for example, vinyl acetate).
 ポリオレフィン(A)の数平均分子量(Mn)は、成形品の機械的強度、樹脂改質剤(K)の基材密着性及び溶剤溶解性の観点から、好ましくは800~50,000であり、より好ましくは1,500~40,000、さらに好ましくは2,000~30,000である。 The number average molecular weight (Mn) of the polyolefin (A) is preferably 800 to 50,000 from the viewpoint of the mechanical strength of the molded product, the adhesion of the resin modifier (K) to the substrate, and the solvent solubility. It is more preferably 1,500 to 40,000, still more preferably 2,000 to 30,000.
 本発明において、ポリオレフィン(A)のMnは、GPC(ゲルパーミエイションクロマトグラフィー)で測定することができる。
 本発明におけるGPCによるMnの測定条件は以下のとおりである。
装置    :高温ゲルパーミエイションクロマトグラフ[「Alliance GPC V2000」、Waters(株)製]
検出装置  :屈折率検出器
溶媒    :オルトジクロロベンゼン
基準物質  :ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列[ポリマーラボラトリーズ(株)製]
カラム温度 :135℃
In the present invention, Mn of polyolefin (A) can be measured by GPC (gel permeation chromatography).
The conditions for measuring Mn by GPC in the present invention are as follows.
Equipment: High-temperature gel permeation chromatograph ["Alliance GPC V2000", manufactured by Waters Corp.]
Detector: Refractive index detector Solvent: Ortodichlorobenzene reference material: Polystyrene sample concentration: 3 mg / ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series [Polymer Laboratories Co., Ltd.]
Column temperature: 135 ° C
 ポリオレフィン(A)の炭素数1,000個当たりの二重結合数[ポリオレフィン(A)の分子末端及び/又は分子鎖中の炭素-炭素の二重結合数]は、後述の不飽和カルボン酸(B)との反応性及び生産性の観点から、好ましくは0.5~20個であり、より好ましくは1.0~18個であり、さらに好ましくは1.5~15個である。
 ここにおいて、該二重結合数は、ポリオレフィン(A)のH-NMRのスペクトルから求めることができる。すなわち、該スペクトル中のピークを帰属し、ポリオレフィン(A)の4.5~6ppmにおける二重結合由来の積分値及びポリオレフィン(A)由来の積分値から、ポリオレフィン(A)の二重結合数とポリオレフィン(A)の炭素数の相対値を求め、ポリオレフィン(A)の炭素1,000個当たりの該分子末端及び/又は分子鎖中の二重結合数を算出する。後述の実施例における二重結合数は該方法に従った。
The number of double bonds per 1,000 carbon atoms of the polyolefin (A) [the number of carbon-carbon double bonds in the molecular terminal and / or the molecular chain of the polyolefin (A)] is an unsaturated carboxylic acid (described later). From the viewpoint of reactivity with B) and productivity, the number is preferably 0.5 to 20, more preferably 1.0 to 18, and even more preferably 1.5 to 15.
Here, the number of double bonds can be determined from the 1 H-NMR spectrum of polyolefin (A). That is, the peak in the spectrum is assigned, and the number of double bonds of the polyolefin (A) is determined from the integrated value derived from the double bond and the integrated value derived from the polyolefin (A) at 4.5 to 6 ppm of the polyolefin (A). The relative value of the carbon number of the polyolefin (A) is obtained, and the number of double bonds in the molecular end and / or the molecular chain per 1,000 carbons of the polyolefin (A) is calculated. The number of double bonds in the examples described below followed the method.
 ポリオレフィン(A)のα-オレフィン部分のアイソタクティシティーは、樹脂改質剤(K)の基材密着性及び溶剤溶解性の観点から、好ましくは1~50%であり、より好ましくは5~45%であり、さらに好ましくは10~40%である。
 上記ポリオレフィン(A)のα-オレフィン部分のアイソタクティシティーは、後述の酸変性ポリオレフィン(X)のα-オレフィン部分のアイソタクティシティーに、そのまま反映される傾向がある。
The isotacticity of the α-olefin portion of the polyolefin (A) is preferably 1 to 50%, more preferably 5 to 45, from the viewpoint of substrate adhesion and solvent solubility of the resin modifier (K). %, More preferably 10-40%.
The isotacticity of the α-olefin moiety of the polyolefin (A) tends to be directly reflected in the isotacticity of the α-olefin moiety of the acid-modified polyolefin (X) described later.
 上記アイソタクティシティーは、例えば、13C-NMR(核磁気共鳴分光法)を用いて算出することができる。一般的に、側鎖メチル基は、両隣(三連子、トリアッド)、その三連子の両隣(五連子、ペンタッド)、更にその五連子の両隣(七連子、ヘプタッド)程度までのメチル基との立体配置(メソ又はラセモ)の影響を受け、異なる化学シフトにピークが観測されることが知られている。そのため、立体規則性の評価はペンタッドについて行うことが一般的であり、本発明におけるアイソタクティシティーも、ペンタッドの評価に基づいて算出する。
 即ち、α-オレフィンがプロピレンの場合、13C-NMRで得られるプロピレン中の側鎖メチル基由来の炭素ピークについて、ポリオレフィン(A)のα-オレフィン部分のペンタッド各ピーク(H)、ペンタッドがメソ構造のみで形成されるアイソタクティックのプロピレン中のメチル基由来のピーク(Ha)とした場合、アイソタクティシティーは、以下の式で算出される。
アイソタクティシティー(%)=[(Ha)/Σ(H)]×100 (1)
 但し、式中、Haはアイソタクティック(ペンタッドがメソ構造のみで形成される)の信号のピーク高さ、Hはペンタッドの各ピーク高さである。
 なお、後述の酸変性ポリオレフィン(X)のα-オレフィン部分のアイソタクティシティーについても上記同様に測定できる。
The isotacticity can be calculated using, for example, 13 C-NMR (nuclear magnetic resonance spectroscopy). In general, side chain methyl groups are on both sides (triplet, triad), on both sides of the triplet (quintuplet, pentad), and on both sides of the quintuplet (seven-strand, heptad). It is known that peaks are observed at different chemical shifts under the influence of the configuration (meso or racemo) with the methyl group. Therefore, the evaluation of stereoregularity is generally performed on the pentad, and the isotacticity in the present invention is also calculated based on the evaluation of the pentad.
That is, when the α-olefin is propylene, the carbon peaks derived from the side chain methyl group in the propylene obtained by 13 C-NMR are the pentad peaks (H) of the α-olefin portion of the polyolefin (A), and the pentad is meso. The isotacticity is calculated by the following formula when the peak (Ha) derived from the methyl group in the propylene of the isotactic formed only by the structure is used.
Isotacticity (%) = [(Ha) / Σ (H)] x 100 (1)
However, in the equation, Ha is the peak height of the isotactic (pentad is formed only by the meso structure) signal, and H is the peak height of the pentad.
The isotacticity of the α-olefin portion of the acid-modified polyolefin (X) described later can also be measured in the same manner as described above.
 本発明におけるポリオレフィン(A)の製造方法は、例えば、高分子量(好ましくはMnが60,000~400,000、より好ましくはMnが80,000~250,000)ポリオレフィン(A0)を熱減成する方法が挙げられる。 In the method for producing polyolefin (A) in the present invention, for example, a high molecular weight (preferably Mn of 60,000 to 400,000, more preferably Mn of 80,000 to 250,000) polyolefin (A0) is thermally reduced. There is a way to do it.
 熱減成法には、上記高分子量ポリオレフィン(A0)を(1)有機過酸化物不存在下、例えば300~450℃で0.5~10時間、加熱する方法、及び(2)有機過酸化物[例えば2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン]存在下、通常180~300℃で0.5~10時間、加熱する方法等が含まれる。
 これらのうち工業的な観点及び樹脂改質剤(K)の改質特性の観点から、分子末端及び/又は分子鎖中の二重結合数のより多いものが得やすい(1)の方法が好ましい。
The heat-reducing method includes (1) heating the high-molecular-weight polyolefin (A0) in the absence of an organic peroxide at 300 to 450 ° C. for 0.5 to 10 hours, and (2) organic peroxide. A method of heating at 180 to 300 ° C. for 0.5 to 10 hours in the presence of a substance [for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane] is included.
Of these, from the viewpoint of industrial viewpoints and the modification characteristics of the resin modifier (K), the method (1) is preferable because it is easy to obtain one having a larger number of double bonds at the molecular terminal and / or the molecular chain. ..
 上記ポリオレフィン(A)を構成する単量体であるエチレンとα-オレフィンとの重量比[エチレン/α-オレフィン]は、高分子量ポリオレフィン(A0)中のこれらの単量体の重量比[エチレン/α-オレフィン]が、そのまま維持される傾向がある。
 また、熱減成温度が高い、又は熱減成時間が長いほど、炭素数1,000個当たりの二重結合数は、多くなる傾向がある。
 さらに、高分子量ポリオレフィン(A0)のMnが大きい、熱減成温度が高い、又は熱減成時間が長いほど、ポリオレフィン(A)のMnは小さくなる傾向がある。
 また、高分子量ポリオレフィン(A0)のアイソタクティシティーが大きいほど、ポリオレフィン(A)のアイソタクティシティーが大きい傾向がある。
 ポリオレフィン(A)は、1種単独でも、2種以上併用してもよい。
The weight ratio [ethylene / α-olefin] of ethylene and α-olefin, which are the monomers constituting the polyolefin (A), is the weight ratio [ethylene / α-olefin] of these monomers in the high molecular weight polyolefin (A0). α-olefin] tends to be maintained as it is.
Further, the higher the heat decomposing temperature or the longer the heat decomposing time, the larger the number of double bonds per 1,000 carbon atoms tends to be.
Further, the larger the Mn of the high molecular weight polyolefin (A0), the higher the heat decomposing temperature, or the longer the heat decomposing time, the smaller the Mn of the polyolefin (A) tends to be.
Further, the larger the isotacticity of the high molecular weight polyolefin (A0), the larger the isotacticity of the polyolefin (A) tends to be.
The polyolefin (A) may be used alone or in combination of two or more.
<不飽和カルボン酸(B)>
 本発明の樹脂改質剤(K)における不飽和カルボン酸(B)は、不飽和モノカルボン酸、不飽和ポリカルボン酸及び/又は不飽和ポリカルボン酸無水物を意味する。
 上記不飽和カルボン酸(B)は、重合性不飽和基を1個有するC3~24のモノカルボン酸、重合性不飽和基を1個有するC4~24のポリカルボン酸及び/又は重合性不飽和基を1個有するC4~24のポリカルボン酸無水物であることが好ましい。
 該不飽和カルボン酸(B)のうち、不飽和モノカルボン酸としては、脂肪族モノカルボン酸(C3~24、例えばアクリル酸、メタクリル酸、α-エチルアクリル酸、クロトン酸、イソクロトン酸)、脂環含有モノカルボン酸(C6~24、例えばシクロヘキセンカルボン酸);不飽和ポリ(2~3又はそれ以上)カルボン酸又はその酸無水物としては、不飽和ジカルボン酸又はその酸無水物[脂肪族ジカルボン酸又はその酸無水物(C4~24、例えばマレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、及びこれらの酸無水物)、脂環含有ジカルボン酸又はその酸無水物(C8~24、例えばシクロへキセンジカルボン酸、シクロヘプテンジカルボン酸、ビシクロヘプテンジカルボン酸、メチルテトラヒドロフタル酸、及びこれらの酸無水物)等]等が挙げられる。不飽和カルボン酸(B)は1種単独でも、2種以上併用してもいずれでもよい。
 上記不飽和カルボン酸(B)のうち、ポリオレフィン(A)との反応性及び後述の樹脂改質剤(K)の改質特性の点から好ましいのは、不飽和ジカルボン酸無水物、より好ましいのは無水マレイン酸である。
<Unsaturated carboxylic acid (B)>
The unsaturated carboxylic acid (B) in the resin modifier (K) of the present invention means an unsaturated monocarboxylic acid, an unsaturated polycarboxylic acid and / or an unsaturated polycarboxylic acid anhydride.
The unsaturated carboxylic acid (B) is a monocarboxylic acid of C3 to 24 having one polymerizable unsaturated group, a polycarboxylic acid of C4 to 24 having one polymerizable unsaturated group, and / or a polymerizable unsaturated group. It is preferably a C4 to 24 polycarboxylic acid anhydride having one group.
Among the unsaturated carboxylic acids (B), the unsaturated monocarboxylic acids include aliphatic monocarboxylic acids (C3 to 24, for example, acrylic acid, methacrylic acid, α-ethylacrylic acid, crotonic acid, isocrotonic acid) and fats. Ring-containing monocarboxylic acid (C6 to 24, for example, cyclohexenecarboxylic acid); unsaturated poly (2 to 3 or more) carboxylic acid or acid anhydride thereof includes unsaturated dicarboxylic acid or acid anhydride thereof [aliphatic dicarboxylic acid]. Acids or their acid anhydrides (C4-24, such as maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, and their acid anhydrides), alicyclic-containing dicarboxylic acids or their acid anhydrides (C8-24, For example, cyclohexendicarboxylic acid, cycloheptenedicarboxylic acid, bicycloheptenedicarboxylic acid, methyltetrahydrophthalic acid, and acid anhydrides thereof)] and the like can be mentioned. The unsaturated carboxylic acid (B) may be used alone or in combination of two or more.
Of the unsaturated carboxylic acids (B), unsaturated dicarboxylic acid anhydrides are more preferable from the viewpoint of reactivity with polyolefin (A) and modification characteristics of the resin modifier (K) described later. Is maleic anhydride.
<酸変性ポリオレフィン(X)>
 本発明における酸変性ポリオレフィン(X)は、上記ポリオレフィン(A)と不飽和カルボン酸(B)とを構成単位として含む。
 酸変性ポリオレフィン(X)におけるポリオレフィン(A)と不飽和カルボン酸(B)との重量比[ポリオレフィン(A)/不飽和カルボン酸(B)]は、成形品の機械的強度及び後述の樹脂改質剤(K)の改質効果と基材密着性のバランスの観点から、好ましくは80/20~99.5/0.5、より好ましくは90/10~99/1である。
<Acid-modified polyolefin (X)>
The acid-modified polyolefin (X) in the present invention contains the above-mentioned polyolefin (A) and unsaturated carboxylic acid (B) as constituent units.
The weight ratio [polyolefin (A) / unsaturated carboxylic acid (B)] of the polyolefin (A) to the unsaturated carboxylic acid (B) in the acid-modified polyolefin (X) is determined by the mechanical strength of the molded product and the resin modification described later. From the viewpoint of the balance between the modifying effect of the quality agent (K) and the adhesion to the substrate, it is preferably 80/20 to 99.5 / 0.5, and more preferably 90/10 to 99/1.
 好ましくは、酸変性ポリオレフィン(X)は、上記ポリオレフィン(A)と不飽和カルボン酸(B)とを、ラジカル開始剤(C)の不存在下又は存在下で反応させてなる。
 酸変性ポリオレフィン(X)は、より好ましくは、ラジカル開始剤(C)の存在下で、上記ポリオレフィン(A)及び不飽和カルボン酸(B)に、必要により適当な有機溶媒[例えばC3~18の炭化水素(ヘキサン、ヘプタン、オクタン、ドデカン、ベンゼン、トルエン、キシレン等)、C3~18のハロゲン化炭化水素(ジ-、トリ-、又はテトラクロロエタン、ジクロロブタン等)、C3~18のケトン(アセトン、メチルエチルケトン、ジ-t-ブチルケトン等)、C3~18のエーテル(エチル-n-プロピルエーテル、ジ-n-ブチルエーテル、ジ-t-ブチルエーテル、ジオキサン等)]を加え反応させて製造することができる。
Preferably, the acid-modified polyolefin (X) is formed by reacting the polyolefin (A) with the unsaturated carboxylic acid (B) in the absence or presence of the radical initiator (C).
The acid-modified polyolefin (X) is more preferably an organic solvent suitable for the polyolefin (A) and the unsaturated carboxylic acid (B) in the presence of the radical initiator (C) [for example, C3-18. Hydrocarbons (hexane, heptane, octane, dodecane, benzene, toluene, xylene, etc.), C3-18 halogenated hydrocarbons (di-, tri-, or tetrachloroethane, dichlorobutane, etc.), C3-18 ketones (acetone) , Methyl ethyl ketone, di-t-butyl ketone, etc.), C3-18 ether (ethyl-n-propyl ether, di-n-butyl ether, di-t-butyl ether, dioxane, etc.)] and react to produce. ..
 なお、上記ラジカル開始剤(C)は、公知のもの、例えば、アゾ開始剤(アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等)、過酸化物開始剤(ジクミルパーオキサイド等)が挙げられる。
 上記ラジカル開始剤(C)のうち、過酸化物開始剤が好ましい。
The radical initiator (C) is known, for example, an azo initiator (azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), etc.), a peroxide initiator. (Dicumyl peroxide, etc.) can be mentioned.
Of the radical initiators (C), peroxide initiators are preferred.
 反応温度は、ポリオレフィン(A)、不飽和カルボン酸(B)の反応性及び生産性の観点から好ましくは100~270℃、より好ましくは120~250℃、さらに好ましくは130~240℃である。 The reaction temperature is preferably 100 to 270 ° C., more preferably 120 to 250 ° C., and even more preferably 130 to 240 ° C. from the viewpoint of reactivity and productivity of the polyolefin (A) and the unsaturated carboxylic acid (B).
 上記酸変性ポリオレフィン(X)は、下記要件(1)~(3)のいずれも満たす。
(1)酸価が、1~100mgKOH/g
(2)数平均分子量(Mn)が1,000~60,000
(3)α-オレフィン部分のアイソタクティシティーが1~50%
The acid-modified polyolefin (X) satisfies all of the following requirements (1) to (3).
(1) Acid value is 1 to 100 mgKOH / g
(2) The number average molecular weight (Mn) is 1,000 to 60,000.
(3) Isotacticity of α-olefin moiety is 1 to 50%
要件(1):
 酸変性ポリオレフィン(X)の酸価は、1~100mgKOH/g(以下数値のみを示す)、好ましくは3~75、より好ましくは5~50である。ここにおける酸価はJIS K0070に準じて測定される値である。酸価が1未満では樹脂改質剤(K)の改質特性が劣り、100を超えると酸変性ポリオレフィン(X)の生産性が劣る。
 また、上記酸価は、ポリオレフィン(A)の有する二重結合数、ポリオレフィン(A)の重量、不飽和カルボン酸(B)の種類、重量で適宜、調整可能である。
Requirement (1):
The acid value of the acid-modified polyolefin (X) is 1 to 100 mgKOH / g (hereinafter, only numerical values are shown), preferably 3 to 75, and more preferably 5 to 50. The acid value here is a value measured according to JIS K0070. If the acid value is less than 1, the modifying property of the resin modifier (K) is inferior, and if it exceeds 100, the productivity of the acid-modified polyolefin (X) is inferior.
Further, the acid value can be appropriately adjusted by the number of double bonds of the polyolefin (A), the weight of the polyolefin (A), the type and weight of the unsaturated carboxylic acid (B).
要件(2):
 酸変性ポリオレフィン(X)のMnは、1,000~60,000、好ましくは2,000~50,000、より好ましくは3,000~40,000である。Mnが1,000未満では成形品の機械的強度が劣り、60,000を超えると樹脂改質剤(K)の改質特性が劣る。酸変性ポリオレフィン(X)のMnは、上述のポリオレフィン(A)のMnと同様にGPCで測定することができる。
 また、上記酸変性ポリオレフィン(X)のMnは、ポリオレフィン(A)のMn、不飽和カルボン酸(B)の種類、量、ポリオレフィン(A)と不飽和カルボン酸(B)との反応の制御により、適宜、調整可能である。
Requirement (2):
The Mn of the acid-modified polyolefin (X) is 1,000 to 60,000, preferably 2,000 to 50,000, and more preferably 3,000 to 40,000. If Mn is less than 1,000, the mechanical strength of the molded product is inferior, and if it exceeds 60,000, the modification characteristics of the resin modifier (K) are inferior. The Mn of the acid-modified polyolefin (X) can be measured by GPC in the same manner as the Mn of the polyolefin (A) described above.
The Mn of the acid-modified polyolefin (X) is controlled by controlling the Mn of the polyolefin (A), the type and amount of the unsaturated carboxylic acid (B), and the reaction between the polyolefin (A) and the unsaturated carboxylic acid (B). , Can be adjusted as appropriate.
要件(3):
 酸変性ポリオレフィン(X)のα-オレフィン部分のアイソタクティシティーは、1~50%であり、好ましくは5~45%、より好ましくは10~40%である。アイソタクティシティーが1%未満では基材密着性が劣り、50%を超えると溶剤溶解性が劣る。
 また、酸変性ポリオレフィン(X)のα-オレフィン部分のアイソタクティシティーは、上記のとおり、ポリオレフィン(A)、高分子量ポリオレフィン(A0)のアイソタクティシティーにより、適宜、調整可能である。
Requirement (3):
The isotacticity of the α-olefin moiety of the acid-modified polyolefin (X) is 1 to 50%, preferably 5 to 45%, and more preferably 10 to 40%. If the isotacticity is less than 1%, the substrate adhesion is poor, and if it exceeds 50%, the solvent solubility is poor.
Further, the isotacticity of the α-olefin portion of the acid-modified polyolefin (X) can be appropriately adjusted by the isotacticity of the polyolefin (A) and the high molecular weight polyolefin (A0) as described above.
<樹脂改質剤(K)>
 本発明の樹脂改質剤(K)は、上記酸変性ポリオレフィン(X)を含有してなる。該樹脂改質剤(K)は、種々の熱可塑性樹脂、とりわけ後述するポリオレフィン樹脂(D)用の改質剤として、好適に用いられる。
 樹脂改質剤(K)は、基材密着性及び溶剤溶解性に優れるため、種々の用途に用いることができ、プラスチック成形品用プライマー、後述の熱可塑性樹脂組成物(Y)の成形品等に、優れた機械的強度、改質効果等を与える。樹脂改質剤(K)は、1種単独でも、2種以上併用してもよい。
 樹脂改質剤(K)における上記酸変性ポリオレフィン(X)の含有量は、好ましくは50~100重量%、より好ましくは90~100重量%である。
<Resin modifier (K)>
The resin modifier (K) of the present invention contains the acid-modified polyolefin (X). The resin modifier (K) is preferably used as a modifier for various thermoplastic resins, particularly the polyolefin resin (D) described later.
Since the resin modifier (K) is excellent in substrate adhesion and solvent solubility, it can be used for various purposes, such as a primer for a plastic molded product, a molded product of the thermoplastic resin composition (Y) described later, and the like. Gives excellent mechanical strength, modification effect, etc. The resin modifier (K) may be used alone or in combination of two or more.
The content of the acid-modified polyolefin (X) in the resin modifier (K) is preferably 50 to 100% by weight, more preferably 90 to 100% by weight.
<プラスチック成形品用プライマー>
 本発明のプラスチック成形品用プライマー[以下、プライマーと略記することがある]は、上記樹脂改質剤(K)を含有してなる。プラスチック成形品用プライマーは、好ましくは上記樹脂改質剤(K)と溶剤(S)とを含有してなる。溶剤(S)としては、公知の溶剤が挙げられるが、好ましくは芳香族炭化水素(トルエン、キシレン等)である。
 溶剤(S)を含有する場合、該樹脂改質剤(K)と該溶剤(S)との重量比[樹脂改質剤(K)/溶剤(S)]は、好ましくは10/90~50/50、より好ましくは20/80~40/60である。
 上記プラスチック成形品用プライマーにおける上記樹脂改質剤(K)の含有量は、好ましくは10~50重量%である。
 また、該プライマーには、必要により、ポリオレフィン樹脂(D)やポリオレフィン樹脂(D)以外の樹脂を加えてもよい。
<Primer for plastic molded products>
The primer for a plastic molded product of the present invention [hereinafter, may be abbreviated as a primer] contains the above resin modifier (K). The primer for a plastic molded product preferably contains the above resin modifier (K) and a solvent (S). Examples of the solvent (S) include known solvents, but aromatic hydrocarbons (toluene, xylene, etc.) are preferable.
When the solvent (S) is contained, the weight ratio of the resin modifier (K) to the solvent (S) [resin modifier (K) / solvent (S)] is preferably 10/90 to 50. / 50, more preferably 20/80 to 40/60.
The content of the resin modifier (K) in the primer for plastic molded products is preferably 10 to 50% by weight.
Further, if necessary, a resin other than the polyolefin resin (D) and the polyolefin resin (D) may be added to the primer.
<熱可塑性樹脂組成物(Y)>
 本発明の熱可塑性樹脂組成物(Y)は、上記樹脂改質剤(K)と、ポリオレフィン樹脂(D)とを含有してなる。
 ポリオレフィン樹脂(D)には、例えば、エチレン単位含有(プロピレン単位非含有)(共)重合体、プロピレン単位含有(エチレン単位非含有)(共)重合体、エチレン/プロピレン共重合体及びC4以上のオレフィンの(共)重合体等が含まれる。
<Thermoplastic resin composition (Y)>
The thermoplastic resin composition (Y) of the present invention contains the above resin modifier (K) and a polyolefin resin (D).
The polyolefin resin (D) includes, for example, an ethylene unit-containing (propylene unit-free) (co) polymer, a propylene unit-containing (ethylene unit-free) (co) polymer, an ethylene / propylene copolymer, and C4 or more. Includes (co) polymers of olefins and the like.
 ポリオレフィン樹脂(D)と樹脂改質剤(K)の組合せとしては、ポリオレフィン樹脂(D)の構成単位と樹脂改質剤(K)を構成するポリオレフィン(A)の構成単位が同じか類似していることが、ポリオレフィン樹脂(D)と樹脂改質剤(K)との相溶性の観点から好ましい。このため、ポリオレフィン樹脂(D)としてはプロピレン単位含有(共)重合体が好ましく、とくにエチレン/プロピレン共重合体が好ましい。 As for the combination of the polyolefin resin (D) and the resin modifier (K), the constituent unit of the polyolefin resin (D) and the constituent unit of the polyolefin (A) constituting the resin modifier (K) are the same or similar. It is preferable from the viewpoint of compatibility between the polyolefin resin (D) and the resin modifier (K). Therefore, as the polyolefin resin (D), a propylene unit-containing (co) polymer is preferable, and an ethylene / propylene copolymer is particularly preferable.
 ポリオレフィン樹脂(D)のMnは、後述する本発明の成形品の機械的強度及び上記樹脂改質剤(K)との相溶性の観点から好ましくは10,000~500,000、より好ましくは20,000~400,000、さらに好ましくは80,000~300,000である。 The Mn of the polyolefin resin (D) is preferably 10,000 to 500,000, more preferably 20 from the viewpoint of the mechanical strength of the molded product of the present invention described later and the compatibility with the resin modifier (K). It is 000 to 400,000, more preferably 80,000 to 300,000.
 本発明の熱可塑性樹脂組成物(Y)には、本発明の効果を阻害しない範囲で、必要によりさらに種々の添加剤(F)を含有させることができる。
 添加剤(F)としては、着色剤(F1)、難燃剤(F2)、充填剤(F3)、滑剤(F4)、帯電防止剤(F5)、分散剤(F6)、酸化防止剤(F7)、離型剤(F8)、抗菌剤(F9)、相溶化剤(F10)及び紫外線吸収剤(F11)からなる群から選ばれる1種又は2種以上が挙げられる。
The thermoplastic resin composition (Y) of the present invention may further contain various additives (F), if necessary, as long as the effects of the present invention are not impaired.
Examples of the additive (F) include a colorant (F1), a flame retardant (F2), a filler (F3), a lubricant (F4), an antistatic agent (F5), a dispersant (F6), and an antioxidant (F7). , One or more selected from the group consisting of a release agent (F8), an antibacterial agent (F9), a compatibilizer (F10) and an ultraviolet absorber (F11).
 着色剤(F1)としては、無機顔料[白色顔料、コバルト化合物、鉄化合物、硫化物等]、有機顔料[アゾ顔料、多環式顔料等]、染料[アゾ系、インジゴイド系、硫化系、アリザリン系、アクリジン系、チアゾール系、ニトロ系、アニリン系等]等が挙げられる。 Coloring agents (F1) include inorganic pigments [white pigments, cobalt compounds, iron compounds, sulfides, etc.], organic pigments [azo pigments, polycyclic pigments, etc.], dyes [azo-based, indigoid-based, sulfide-based, alizarin. System, aclysine system, thiazole system, nitro system, aniline system, etc.] and the like.
 難燃剤(F2)としては、ハロゲン含有難燃剤、窒素含有難燃剤、硫黄含有難燃剤、珪素含有難燃剤、リン含有難燃剤等が挙げられる。 Examples of the flame retardant (F2) include halogen-containing flame retardants, nitrogen-containing flame retardants, sulfur-containing flame retardants, silicon-containing flame retardants, and phosphorus-containing flame retardants.
 充填剤(F3)としては、例えば無機充填剤(炭酸カルシウム、タルク、クレイ等)及び有機充填剤(尿素、ステアリン酸カルシウム等)等が挙げられる。 Examples of the filler (F3) include inorganic fillers (calcium carbonate, talc, clay, etc.) and organic fillers (urea, calcium stearate, etc.).
 滑剤(F4)としては、例えばステアリン酸カルシウム、ステアリン酸ブチル、オレイン酸アミド、ポリオレフィンワックス、パラフィンワックス等が挙げられる。 Examples of the lubricant (F4) include calcium stearate, butyl stearate, oleic acid amide, polyolefin wax, paraffin wax and the like.
 帯電防止剤(F5)としては、下記並びに米国特許第3,929,678及び4,331,447号明細書に記載の、非イオン性、カチオン性、アニオン性又は両性の界面活性剤が挙げられる。
(1)非イオン性界面活性剤
 アルキレンオキサイド(AO)付加型ノニオニックス、例えば疎水性基(C8~24又はそれ以上)を有する活性水素原子含有化合物[飽和及び不飽和の、高級アルコール(C8~18)、高級脂肪族アミン(C8~24)及び高級脂肪酸(C8~24)等]の(ポリ)オキシアルキレン誘導体(AO付加物及びポリアルキレングリコールの高級脂肪酸モノ-又はジ-エステル);多価アルコール(C3~60)の高級脂肪酸(C8~24)エステルの(ポリ)オキシアルキレン誘導体(ツイーン型ノニオニックス等);高級脂肪酸(上記)の(アルカノール)アミドの(ポリ)オキシアルキレン誘導体;多価アルコール(上記)アルキル(C3~60)エーテルの(ポリ)オキシアルキレン誘導体;ポリオキシプロピレンポリオール[多価アルコール及びポリアミン(C2~10)のポリオキシプロピレン誘導体(プルロニック型及びテトロニック型ノニオニックス)];多価アルコール(上記)型ノニオニックス(例えば多価アルコールの脂肪酸エステル、多価アルコールアルキル(C3~60)エーテル及び脂肪酸アルカノールアミド);並びに、アミンオキシド型ノニオニックス[例えば(ヒドロキシ)アルキル(C10~18)ジ(ヒドロキシ)アルキル(C1~3)アミンオキシド]等。
Examples of the antistatic agent (F5) include nonionic, cationic, anionic or amphoteric surfactants described below and in US Pat. Nos. 3,929,678 and 4,331,447. ..
(1) Nonionic surfactant alkylene oxide (AO) -added nonionics, for example, active hydrogen atom-containing compounds having a hydrophobic group (C8 to 24 or more) [saturated and unsaturated, higher alcohols (C8 to more) 18), higher aliphatic amines (C8-24), higher fatty acids (C8-24), etc.] (poly) oxyalkylene derivatives (AO adducts and higher fatty acid mono- or diesters of polyalkylene glycols); (Poly) oxyalkylene derivative of higher fatty acid (C8-24) ester of alcohol (C3-60) (tween type nonionics, etc.); (poly) oxyalkylene derivative of (alkanol) amide of higher fatty acid (above); polyvalent (Poly) oxyalkylene derivative of alcohol (above) alkyl (C3-60) ether; polyoxypropylene polyol [polyoxypropylene derivative of polyhydric alcohol and polyamine (C2-10) (pluronic type and tetronic type nonionics)] Polyhydric alcohol (above) type nonionics (eg, fatty acid esters of polyhydric alcohols, polyhydric alcohol alkyl (C3-60) ethers and fatty acid alkanolamides); and amine oxide type nonionics [eg (hydroxy) alkyl (C10) ~ 18) Di (hydroxy) alkyl (C1 ~ 3) amine oxide] and the like.
(2)カチオン性界面活性剤
 第4級アンモニウム塩型カチオニックス[テトラアルキルアンモニウム塩(C11~100)、アルキル(C8~18)トリメチルアンモニウム塩及びジアルキル(C8~18)ジメチルアンモニウム塩等];トリアルキルベンジルアンモニウム塩(C17~80)(ラウリルジメチルベンジルアンモニウム塩等);アルキル(C8~60)ピリジニウム塩(セチルピリジニウム塩等);(ポリ)オキシアルキレン(C2~4)トリアルキルアンモニウム塩(C12~100)(ポリオキシエチレンラウリルジメチルアンモニウム塩等);及びアシル(C8~18)アミノアルキル(C2~4)若しくはアシル(C8~18)オキシアルキル(C2~4)トリ[(ヒドロキシ)アルキル(C1~4)]アンモニウム塩(サパミン型4級アンモニウム塩)[これらの塩としては、例えばハライド(クロライド及びブロマイド等)、アルキルサルフェート(メトサルフェート等)及び有機酸(C2~22)の塩が挙げられる];並びにアミン塩型カチオニックス:1~3級アミン〔例えば高級脂肪族アミン(C12~60)、脂肪族アミン(メチルアミン及びジエチルアミン等)のポリオキシアルキレン誘導体(EO[エチレンオキサイド]付加物等)及びアシルアミノアルキル若しくはアシルオキシアルキル(上記)ジ(ヒドロキシ)アルキル(上記)アミン(ステアロイロキシエチルジヒドロキシエチルアミン、ステアラミドエチルジエチルアミン等)〕の、無機酸(塩酸、硫酸、硝酸及びリン酸等)塩及び有機酸(上記)塩等。
(2) Cationic surfactant quaternary ammonium salt type Cationics [tetraalkylammonium salt (C11-100), alkyl (C8-18) trimethylammonium salt and dialkyl (C8-18) dimethylammonium salt, etc.]; Alkylbenzylammonium salt (C17-80) (lauryldimethylbenzylammonium salt, etc.); Alkyl (C8-60) pyridinium salt (cetylpyridinium salt, etc.); (Poly) oxyalkylene (C2-4) trialkylammonium salt (C12-) 100) (polyoxyethylene lauryldimethylammonium salt, etc.); and acyl (C8-18) aminoalkyl (C2-4) or acyl (C8-18) oxyalkyl (C2-4) tri [(hydroxy) alkyl (C1 ~) 4)] Ammonium salt (sapamine-type quaternary ammonium salt) [Examples of these salts include salts of halide (chloride, bromide, etc.), alkylsulfate (methosulfate, etc.) and organic acids (C2-22)] And amine salt type quaternaries: 1-3 tertiary amines (eg, higher aliphatic amines (C12-60), polyoxyalkylene derivatives of aliphatic amines (methylamine, diethylamine, etc.) (EO [ethylene oxide] adducts, etc.)) And acylaminoalkyl or acyloxyalkyl (above) di (hydroxy) alkyl (above) amines (stearoyloxyethyl dihydroxyethylamine, stearamide ethyldiethylamine, etc.)], inorganic acid (hydrochloride, sulfuric acid, nitrate, phosphoric acid, etc.) salts. And organic acid (above) salts, etc.
(3)アニオン性界面活性剤
 高級脂肪酸(上記)塩(ラウリル酸ナトリウム等)、エーテルカルボン酸[EO(1~10モル)付加物のカルボキシメチル化物等]及びそれらの塩;硫酸エステル塩(アルキル及びアルキルエーテルサルフェート等)、硫酸化油、硫酸化脂肪酸エステル及び硫酸化オレフィン;スルホン酸塩[アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸ジアルキルエステル型、α-オレフィン(C12~18)スルホン酸塩、N-アシル-N-メチルタウリン(イゲポンT型等)等];並びにリン酸エステル塩等(アルキル、アルキルエーテル及びアルキルフェニルエーテルホスフェート等)。
(3) Anionic surfactant Higher fatty acid (above) salt (sodium laurate, etc.), ethercarboxylic acid [carboxymethylated product of EO (1-10 mol) adduct, etc.] and salts thereof; sulfate ester salt (alkyl) And alkyl ether sulfate, etc.), sulfated oils, sulfated fatty acid esters and sulfated olefins; sulfonates [alkylbenzene sulfonates, alkylnaphthalene sulfonates, sulfosuccinic acid dialkyl ester types, α-olefin (C12-18) sulfates Acid salts, N-acyl-N-methyltaurine (Igepon T type, etc.), etc.]; and phosphate ester salts, etc. (alkyl, alkyl ether, alkylphenyl ether phosphate, etc.).
(4)両性界面活性剤:
 カルボン酸(塩)型アンフォテリックス[アミノ酸型アンフォテリックス(ラウリルアミノプロピオン酸(塩)等)及びベタイン型アンフォテリックス(アルキルジメチルベタイン及びアルキルジヒドロキシエチルベタイン等)等];硫酸エステル(塩)型アンフォテリックス[ラウリルアミンの硫酸エステル(塩)、ヒドロキシエチルイミダゾリン硫酸エステル(塩)等];スルホン酸(塩)型アンフォテリックス[ペンタデシルスルホタウリン及びイミダゾリンスルホン酸(塩)等];並びにリン酸エステル(塩)型アンフォテリックス等[グリセリンラウリル酸エステルのリン酸エステル(塩)等]。
(4) Amphoteric surfactant:
Carboxylic acid (salt) type amphoterix [Amino acid type amphoterix (laurylaminopropionic acid (salt) etc.) and betaine type amphoterix (alkyldimethylbetaine and alkyldihydroxyethylbetaine etc.)]; Sulfate ester (Salt) type amphoterics [laurylamine sulfate (salt), hydroxyethyl imidazoline sulfate (salt), etc.]; Sulfonic acid (salt) type amphoterix [pentadecylsulfotaurine and imidazoline sulfonic acid (salt) ) Etc.]; and phosphoric acid ester (salt) type amphoterix and the like [phosphate ester (salt) of glycerin lauryl acid ester, etc.].
 上記のアニオン性及び両性界面活性剤における塩としては、金属塩、例えばアルカリ金属(リチウム、ナトリウム及びカリウム等)、アルカリ土類金属(カルシウム及びマグネシウム等)及びIIB族金属(亜鉛等)の塩;アンモニウム塩;並びにアミン塩及び4級アンモニウム塩が挙げられる。 The salts in the above anionic and amphoteric surfactants include metal salts such as alkali metals (lithium, sodium and potassium, etc.), alkaline earth metals (calcium and magnesium, etc.) and Group IIB metals (zinc, etc.); Ammonium salts; as well as amine salts and quaternary ammonium salts.
 分散剤(F6)としては、Mn1,000~20,000のポリマー、例えばビニル樹脂であり、上記ポリオレフィン(A)以外のビニル樹脂〔ポリハロゲン化ビニル[ポリ塩化ビニル及びポリ臭化ビニル等]、ポリ酢酸ビニル、ポリビニルアルコール、ポリメチルビニルエーテル、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル[ポリ(メタ)アクリル酸メチル等]及びスチレン樹脂[ポリスチレン、アクリロニトリル/スチレン(AS)樹脂等〕等〕;ポリエステル樹脂[ポリエチレンテレフタレート等]、ポリアミド樹脂[6,6-ナイロン及び12-ナイロン等]、ポリエーテル樹脂[ポリエーテルサルフォン等]、ポリカーボネート樹脂[ビスフェノールAとホスゲンの重縮合物等]及びそれらのブロック共重合体等が挙げられる。 The dispersant (F6) is a polymer of Mn 1,000 to 20,000, for example, a vinyl resin, and a vinyl resin other than the above-mentioned polyolefin (A) [vinyl halide [polyvinyl chloride, polyvinyl bromide, etc.], Polyvinyl acetate, polyvinyl alcohol, polymethyl vinyl ether, poly (meth) acrylic acid, poly (meth) acrylic acid ester [poly (meth) methyl acrylate, etc.] and styrene resin [polystyrene, acrylonitrile / styrene (AS) resin, etc.] Etc.]; Polyester resin [polyethylene terephthalate, etc.], polyamide resin [6,6-nylon and 12-nylon, etc.], polyether resin [polyether sulfone, etc.], polycarbonate resin [polycondensate of bisphenol A and phosgen, etc.] And their block copolymers and the like.
 酸化防止剤(F7)としては、フェノール化合物〔単環フェノール(2,6-ジ-t-ブチル-p-クレゾール等)、ビスフェノール[2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等]、多環フェノール[1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等]等〕、硫黄化合物(ジラウリル3,3’-チオジプロピオネート等)、リン化合物(トリフェニルホスファイト等)、アミン化合物(オクチル化ジフェニルアミン等)等が挙げられる。 Examples of the antioxidant (F7) include phenol compounds [monocyclic phenol (2,6-di-t-butyl-p-cresol, etc.)) and bisphenol [2,2'-methylenebis (4-methyl-6-t-butylphenol). ) Etc.], Polycyclic phenol [1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, etc.], etc.], Sulfur compound (dilauryl 3) , 3'-thiodipropionate, etc.), phosphorus compounds (triphenylphosphite, etc.), amine compounds (octylated diphenylamine, etc.) and the like.
 離型剤(F8)としては、脂肪酸(C8~24)の低級(C1~4)アルコールエステル(ステアリン酸ブチル等)、脂肪酸(C2~24)の多価(2価~4価又はそれ以上)アルコールエステル(硬化ヒマシ油等)、脂肪酸(C2~24)のグリコール(C2~8)エステル(エチレングリコールモノステアレート等)、流動パラフィン等が挙げられる。 As the release agent (F8), lower (C1-4) alcohol esters of fatty acids (C8-24) (butyl stearate, etc.) and polyvalent (divalent to tetravalent or higher) fatty acids (C2-24). Examples thereof include alcohol esters (hardened castor oil and the like), glycol (C2 to 8) esters of fatty acids (C2 to 24) (ethylene glycol monostearate and the like), liquid paraffins and the like.
 抗菌剤(F9)としては、安息香酸、ソルビン酸、ハロゲン化フェノール、有機ヨウ素、ニトリル(2,4,5,6-テトラクロロイソフタロニトリル等)、チオシアノ(メチレンビスチアノシアネート)、N-ハロアルキルチオイミド、銅剤(8-オキシキノリン銅等)、ベンズイミダゾール、ベンゾチアゾール、トリハロアリル、トリアゾール、有機窒素硫黄化合物(スラオフ39等)、4級アンモニウム化合物、ピリジン系化合物等が挙げられる。 Antibacterial agents (F9) include benzoic acid, sorbic acid, phenol halides, organic iodine, nitriles (2,4,5,6-tetrachloroisophthalonitrile, etc.), thiocyano (methylenebisthianocyanate), N-halo. Examples thereof include alkylthioimides, copper agents (8-oxyquinoline copper, etc.), benzimidazoles, benzothiazoles, trihaloallyl, triazoles, organic nitrogen sulfur compounds (suraoff 39, etc.), quaternary ammonium compounds, pyridine compounds and the like.
 相溶化剤(F10)としては、カルボキシル基、エポキシ基、アミノ基、ヒドロキシル基及びポリオキシアルキレン基からなる群より選ばれる少なくとも1種の官能基(極性基)を有する変性ビニル重合体等:例えば、特開平3-258850号公報に記載の重合体、また、特開平6-345927号公報に記載のスルホン酸基を有する変性ビニル重合体、ポリオレフィン部分と芳香族ビニル重合体部分とを有するブロック重合体等が挙げられる。 The compatibilizer (F10) includes a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group and a polyoxyalkylene group: for example. , The polymer described in JP-A-3-258850, the modified vinyl polymer having a sulfonic acid group described in JP-A-6-345927, and the block weight having a polyolefin moiety and an aromatic vinyl polymer moiety. Coalescence and the like can be mentioned.
 紫外線吸収剤(F11)としては、ベンゾトリアゾール[2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール等]、ベンゾフェノン[2-ヒドロキシ-4-メトキシベンゾフェノン等]、サリチレート[フェニルサリチレート等]、アクリレート[2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート等]等が挙げられる。 Examples of the ultraviolet absorber (F11) include benzotriazole [2- (2'-hydroxy-5'-methylphenyl) benzotriazole, etc.], benzophenone [2-hydroxy-4-methoxybenzophenone, etc.], salicylate [phenylsalicylate, etc.] Etc.], acrylate [2-ethylhexyl-2-cyano-3,3-diphenylacrylate, etc.] and the like.
 熱可塑性樹脂組成物(Y)中の添加剤(F)全体の含有量は、該熱可塑性樹脂組成物(Y)の全重量に基づいて、例えば20重量%以下が好ましく、各添加剤(F)の機能発現及び工業上の観点からより好ましくは0.05~10重量%、さらに好ましくは0.1~5重量%である。
 該熱可塑性樹脂組成物(Y)の全重量に基づく各添加剤の使用量は、(F1)は、例えば5重量%以下、好ましくは0.1~3重量%;(F2)は、例えば8%重量以下、好ましくは1~3重量%;(F3)は、例えば5重量%以下、好ましくは0.1~1重量%;(F4)は、例えば8重量%以下、好ましくは1~5重量%;(F5)は、例えば8重量%以下、好ましくは1~3重量%;(F6)は、例えば1%重量以下、好ましくは0.1~0.5重量%;(F7)は、例えば2重量%以下、好ましくは0.05~0.5重量%;(F8)は、例えば5重量%以下、好ましくは0.01~3重量%;(F9)は、例えば25重量%以下、好ましくは0.5~20重量%;(F10)は、例えば15重量%以下、好ましくは0.5~10重量%;(F11)は、例えば2重量%以下、好ましくは0.05~0.5重量%である。
The total content of the additive (F) in the thermoplastic resin composition (Y) is preferably, for example, 20% by weight or less based on the total weight of the thermoplastic resin composition (Y), and each additive (F). ) Is more preferably 0.05 to 10% by weight, still more preferably 0.1 to 5% by weight from the viewpoint of functional expression and industry.
The amount of each additive used based on the total weight of the thermoplastic resin composition (Y) is, for example, 5% by weight or less, preferably 0.1 to 3% by weight of (F1); (F2) is, for example, 8. % Weight or less, preferably 1 to 3% by weight; (F3) is, for example, 5% by weight or less, preferably 0.1 to 1% by weight; (F4) is, for example, 8% by weight or less, preferably 1 to 5% by weight. %; (F5) is, for example, 8% by weight or less, preferably 1 to 3% by weight; (F6) is, for example, 1% by weight or less, preferably 0.1 to 0.5% by weight; (F7) is, for example. 2% by weight or less, preferably 0.05 to 0.5% by weight; (F8) is, for example, 5% by weight or less, preferably 0.01 to 3% by weight; (F9) is, for example, 25% by weight or less, preferably. Is 0.5 to 20% by weight; (F10) is, for example, 15% by weight or less, preferably 0.5 to 10% by weight; (F11) is, for example, 2% by weight or less, preferably 0.05 to 0.5% by weight. By weight%.
 上記(F1)~(F11)の間で化合物が同一で重複する場合は、それぞれの化合物が該当する添加効果を奏する量をそのまま使用するのではなく、他の添加剤としての効果も同時に得られることをも考慮し、使用目的に応じて使用量を調整するものとする。 When the compounds are the same and overlap between (F1) and (F11), the amount of each compound exerting the corresponding additive effect is not used as it is, but the effect as another additive can be obtained at the same time. In consideration of this, the amount used shall be adjusted according to the purpose of use.
 本発明の熱可塑性樹脂組成物(Y)の製造方法としては、
(1)上記ポリオレフィン樹脂(D)及び樹脂改質剤(K)の全量並びに必要により(F)を一括混合して樹脂組成物とする方法(一括法);
(2)ポリオレフィン樹脂(D)の一部、樹脂改質剤(K)の全量、及び必要により添加剤(F)の一部もしくは全量を混合して高濃度の樹脂改質剤(K)を含有するマスターバッチ樹脂組成物を一旦作成し、その後残りのポリオレフィン樹脂(D)及び必要により添加剤(F)の残りを加えて混合して樹脂組成物とする方法(マスターバッチ法)が挙げられる。
 樹脂改質剤(K)の混合効率の観点から、好ましいのは(2)の方法である。
As a method for producing the thermoplastic resin composition (Y) of the present invention,
(1) A method of collectively mixing the total amount of the polyolefin resin (D) and the resin modifier (K) and, if necessary, (F) to obtain a resin composition (collective method);
(2) A part of the polyolefin resin (D), the whole amount of the resin modifier (K), and if necessary, a part or the whole amount of the additive (F) are mixed to obtain a high-concentration resin modifier (K). Examples thereof include a method (masterbatch method) in which a masterbatch resin composition to be contained is once prepared, and then the remaining polyolefin resin (D) and, if necessary, the rest of the additive (F) are added and mixed to obtain a resin composition. ..
From the viewpoint of the mixing efficiency of the resin modifier (K), the method (2) is preferable.
 本発明の熱可塑性樹脂組成物(Y)中の樹脂改質剤(K)とポリオレフィン樹脂(D)との重量比[樹脂改質剤(K)/ポリオレフィン樹脂(D)]は、樹脂改質剤(K)の改質特性及び後述する成形品の機械的強度の観点から好ましくは0.1/99.9~50/50、より好ましくは1/99~40/60である。 The weight ratio [resin modifier (K) / polyolefin resin (D)] of the resin modifier (K) to the polyolefin resin (D) in the thermoplastic resin composition (Y) of the present invention is resin modification. From the viewpoint of the modifying characteristics of the agent (K) and the mechanical strength of the molded product described later, it is preferably 0.1 / 99.9 to 50/50, more preferably 1/99 to 40/60.
 上記の熱可塑性樹脂組成物(Y)の製造方法における具体的な混合方法としては、
(i)混合する各成分を、例えば粉体混合機〔「ヘンシェルミキサー」[商品名「ヘンシェルミキサーFM150L/B」、三井鉱山(株)、社名変更後は日本コークス工業(株)製]、「ナウタミキサ」[商品名「ナウタミキサDBX3000RX」、ホソカワミクロン(株)製]、「バンバリーミキサー」[商品名「MIXTRON BB-16MIXER」、神戸製鋼(株)製]等〕で混合した後、溶融混練装置[バッチ混練機、連続混練機(単軸混練機、二軸混練機等)等]を使用して通常120~220℃で2~30分間混練する方法;(ii)混合する各成分をあらかじめ粉体混合することなく、上記と同様の溶融混練装置を使用して同様の条件で直接混練する方法が挙げられる。
 これらの方法のうち混合効率の観点から(i)の方法が好ましい。
As a specific mixing method in the above-mentioned method for producing the thermoplastic resin composition (Y),
(I) For example, a powder mixer ["Henshell Mixer" [trade name "Henshell Mixer FM150L / B", Mitsui Mine Co., Ltd., after the company name change, manufactured by Nippon Coke Industries Co., Ltd.], " After mixing with "Nautamixa" [trade name "Nautamixa DBX3000RX", manufactured by Hosokawa Micron Co., Ltd.], "Banbury Mixer" [trade name "MIXTRON BB-16MIXER", manufactured by Kobe Steel Co., Ltd.], etc. A method of kneading at 120 to 220 ° C. for 2 to 30 minutes using a kneader, a continuous kneader (single-screw kneader, biaxial kneader, etc.); (ii) Powder mixing of each component to be mixed in advance. There is a method of directly kneading under the same conditions using the same melt-kneading apparatus as described above.
Of these methods, the method (i) is preferable from the viewpoint of mixing efficiency.
[成形品、成形物品]
 本発明の成形品は、上記熱可塑性樹脂組成物(Y)の成形物である。すなわち本発明の成形品は、上記熱可塑性樹脂組成物(Y)を成形したものである。
 成形方法としては、射出成形、圧縮成形、カレンダ成形、スラッシュ成形、回転成形、押出成形、ブロー成形、フィルム成形(キャスト法、テンター法、インフレーション法等)等が挙げられ、目的に応じて単層成形、多層成形あるいは発泡成形等の手段も取り入れた任意の方法で成形できる。成形品の形態としては、板状、シート状、フィルム、繊維(不織布等も含む)等が挙げられる。
 本発明の成形品は、上記カルボキシル基等を有する樹脂改質剤(K)を含有することから、改質効果により、極性の比較的高い塗料、インキ等との親和性にも優れる。
[Molded goods, molded goods]
The molded product of the present invention is a molded product of the above-mentioned thermoplastic resin composition (Y). That is, the molded product of the present invention is a molded product of the above-mentioned thermoplastic resin composition (Y).
Examples of the molding method include injection molding, compression molding, calender molding, slush molding, rotary molding, extrusion molding, blow molding, film molding (casting method, tenter method, inflation method, etc.), and a single layer depending on the purpose. It can be molded by any method incorporating means such as molding, multi-layer molding or foam molding. Examples of the form of the molded product include plate-shaped, sheet-shaped, film, fiber (including non-woven fabric and the like) and the like.
Since the molded product of the present invention contains the resin modifier (K) having the above-mentioned carboxyl group and the like, it has an excellent affinity with paints, inks and the like having relatively high polarity due to the modifying effect.
 本発明の成形品は、優れた機械的強度を有すると共に、良好な塗装性及び印刷性を有し、成形品に塗装及び/又は印刷を施すことにより成形物品が得られる。
 該成形品を塗装する方法としては、例えばエアスプレー塗装、エアレススプレー塗装、静電スプレー塗装、浸漬塗装、ローラー塗装、刷毛塗り等が挙げられるが、これらに限定されるものではない。
 塗料としては、例えば、ポリエステルメラミン樹脂塗料、エポキシメラミン樹脂塗料、アクリルメラミン樹脂塗料、アクリルウレタン樹脂塗料等のプラスチックの塗装に一般に用いられる塗料が挙げられ、これらのいわゆる極性の比較的高い塗料でも、また極性の低い塗料(オレフィン系等)でも使用することができる。
 塗装膜厚(乾燥膜厚)は、目的に応じて適宜選択することができるが、通常10~50μmである。
The molded product of the present invention has excellent mechanical strength, good paintability and printability, and a molded product can be obtained by painting and / or printing the molded product.
Examples of the method for coating the molded product include, but are not limited to, air spray coating, airless spray coating, electrostatic spray coating, immersion coating, roller coating, and brush coating.
Examples of the paint include paints generally used for painting plastics such as polyester melamine resin paint, epoxy melamine resin paint, acrylic melamine resin paint, and acrylic urethane resin paint, and even these so-called paints with relatively high polarity can be used. It can also be used with low-polarity paints (olefins, etc.).
The coating film thickness (dry film thickness) can be appropriately selected depending on the intended purpose, but is usually 10 to 50 μm.
 また、該成形品又は成形品に塗装を施した上にさらに印刷する方法としては、一般的にプラスチックの印刷に用いられている印刷法であればいずれも用いることができ、例えばグラビア印刷、フレキソ印刷、スクリーン印刷、パッド印刷、ドライオフセット印刷及びオフセット印刷等が挙げられる。
 印刷インキとしてはプラスチックの印刷に通常用いられるもの、例えばグラビアインキ、フレキソインキ、スクリーンインキ、パッドインキ、ドライオフセットインキ及びオフセットインキが使用できる。
Further, as a method of further printing after applying a coating to the molded product or the molded product, any printing method generally used for printing plastics can be used, for example, gravure printing and flexo printing. Examples include printing, screen printing, pad printing, dry offset printing and offset printing.
As the printing ink, those usually used for printing plastics, for example, gravure ink, flexographic ink, screen ink, pad ink, dry offset ink and offset ink can be used.
 以下実施例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。実施例中の部は重量部を表す。実施例において、数平均分子量(Mn)、ポリオレフィンの二重結合数、アイソタクティシティー、酸価は、上記の方法で測定した。 The present invention will be further described below with reference to Examples, but the present invention is not limited thereto. The part in the embodiment represents a weight part. In the examples, the number average molecular weight (Mn), the number of double bonds of polyolefin, the isotacticity, and the acid value were measured by the above method.
<製造例1>
 反応容器に、高分子量ポリオレフィン(A0-1)[商品名「Vistamaxx6202」、Exxonmobil社製、以下同じ。]1,000gを仕込み、液相に窒素通気しながら、マントルヒーターにて加熱溶融し、撹拌しながら380℃で40分間の条件で、熱減成を行い、ポリオレフィン(A-1)を得た。
 ポリオレフィン(A-1)のMnは5,800、炭素1,000個当たりの分子末端及び/又は分子鎖中の二重結合数は5.4個、アイソタクティシティーは18%であった。
<Manufacturing example 1>
In the reaction vessel, high molecular weight polyolefin (A0-1) [trade name "Vistamaxx6202", manufactured by ExxonMobil, the same applies hereinafter. ] 1,000 g was charged, heated and melted with a mantle heater while aerating nitrogen into the liquid phase, and heat-decomposed at 380 ° C. for 40 minutes while stirring to obtain polyolefin (A-1). ..
The Mn of the polyolefin (A-1) was 5,800, the number of double bonds in the molecular terminal and / or the molecular chain per 1,000 carbons was 5.4, and the isotacticity was 18%.
<製造例2~8、比較製造例1~2>
 表1に従って高分子量ポリオレフィン(A0)、温度、時間を変更した以外は、製造例1と同様に熱減成を行い、ポリオレフィン(A-2)~(A-8)、(比A-1)~(比A-2)を得た。結果を表1に示す。
<Production Examples 2 to 8, Comparative Production Examples 1 to 2>
Polyolefins (A-2) to (A-8) and (Ratio A-1) were subjected to heat reduction in the same manner as in Production Example 1 except that the high molecular weight polyolefin (A0), temperature, and time were changed according to Table 1. ~ (Ratio A-2) was obtained. The results are shown in Table 1.
<実施例1>
 反応容器にポリオレフィン(A-1)100部、無水マレイン酸(B-1)2部を仕込み、窒素置換後、窒素通気下に180℃まで加熱昇温して均一に溶解させた。ここにラジカル開始剤[ジクミルパーオキサイド、商品名「パークミルD」、日油(株)製](C-1)0.5部をキシレン5部に溶解させた溶液を5分間で滴下した後、キシレン還流下1時間撹拌を続けた。その後、減圧下(1.5kPa、以下同じ。)で未反応の無水マレイン酸を留去して、酸変性ポリオレフィン(X-1)を含有してなる樹脂改質剤(K-1)を得た。
 なお、酸変性ポリオレフィン(X-1)は、酸価は11、Mnは7,000、アイソタクティシティーは16%であった。
<Example 1>
100 parts of polyolefin (A-1) and 2 parts of maleic anhydride (B-1) were charged in a reaction vessel, and after nitrogen substitution, the temperature was raised to 180 ° C. under nitrogen aeration to uniformly dissolve the mixture. A solution prepared by dissolving 0.5 part of a radical initiator [Dicmil peroxide, trade name "Parkmill D", manufactured by Nichiyu Co., Ltd.] (C-1) in 5 parts of xylene was added dropwise thereto in 5 minutes. , Stirring was continued for 1 hour under reflux with xylene. Then, unreacted maleic anhydride was distilled off under reduced pressure (1.5 kPa, the same applies hereinafter) to obtain a resin modifier (K-1) containing an acid-modified polyolefin (X-1). It was.
The acid-modified polyolefin (X-1) had an acid value of 11, Mn of 7,000, and an isotacticity of 16%.
<実施例2>
 反応容器にポリオレフィン(A-1)100部と無水マレイン酸(B-1)3部を仕込み、窒素通気下、200℃まで加熱昇温して10時間撹拌を続けた。その後、減圧下(1.5kPa、以下同じ。)で未反応の無水マレイン酸を留去して、酸変性ポリオレフィン(X-2)を含有してなる樹脂改質剤(K-2)を得た。
 なお、酸変性ポリオレフィン(X-2)は、酸価は16、Mnは6,000、アイソタクティシティーは18%であった。
<Example 2>
100 parts of polyolefin (A-1) and 3 parts of maleic anhydride (B-1) were charged in a reaction vessel, heated to 200 ° C. under nitrogen aeration, and stirred for 10 hours. Then, unreacted maleic anhydride was distilled off under reduced pressure (1.5 kPa, the same applies hereinafter) to obtain a resin modifier (K-2) containing an acid-modified polyolefin (X-2). It was.
The acid-modified polyolefin (X-2) had an acid value of 16, Mn of 6,000, and an isotacticity of 18%.
<実施例3~13、比較例1~2>
 表2に従って、各使用原料を用いた以外は、実施例1と同様に反応を行い、各酸変性ポリオレフィン(X)を含有してなる各樹脂改質剤(K-3)~(K-13)、(比K-1)~(比K-2)を得た。
 得られた各樹脂改質剤について、下記の方法で評価を行った。結果を表2に示す。
<Examples 3 to 13, Comparative Examples 1 to 2>
According to Table 2, the reactions were carried out in the same manner as in Example 1 except that the raw materials used were used, and the resin modifiers (K-3) to (K-13) containing each acid-modified polyolefin (X) were contained. ), (Ratio K-1) to (Ratio K-2) were obtained.
Each of the obtained resin modifiers was evaluated by the following method. The results are shown in Table 2.
<評価方法>
<1>溶剤溶解性
 実施例1~13及び比較例1~2で得られた各樹脂改質剤30gと、キシレン70gとを各々容器に入れ、40℃で3時間、撹拌した後、常温(25℃)で3時間、静置した。さらに、25℃、1日経過させた容器の中身の性状を観察して、以下の<評価基準>にて溶剤溶解性を評価した。
<評価基準>
◎:溶液が透明であり、流動性がある。
○:溶液がわずかにかすみ、流動性がある。
△:溶液のかすみがあり、流動性がない。
×:ほとんど溶解しない。
<Evaluation method>
<1> Solvent solubility 30 g of each resin modifier obtained in Examples 1 to 13 and Comparative Examples 1 and 2 and 70 g of xylene are placed in a container, stirred at 40 ° C. for 3 hours, and then at room temperature (1). It was allowed to stand at 25 ° C. for 3 hours. Further, the properties of the contents of the container aged at 25 ° C. for 1 day were observed, and the solvent solubility was evaluated according to the following <evaluation criteria>.
<Evaluation criteria>
⊚: The solution is transparent and has fluidity.
◯: The solution is slightly hazy and fluid.
Δ: The solution is hazy and has no fluidity.
X: Almost insoluble.
<2>基材密着性
 上記<1>の評価後の試験液90部と、エポキシ溶液[商品名「デナコールEX-612」、ナガセケムテックス社製]10部を混合したプライマー溶液を、スプレー機[商品名「EBG-115EXB」、アネスト岩田(株)製]を用いて、ポリオレフィン樹脂基材[商品名「PP1300」、ポリプロピレン、タキン(株)製]表面にスプレー塗布し、80℃にて10分間乾燥(乾燥後膜厚80μm)した。
 次に、ポリウレタン塗料[商品名「ユーコートUX‐150」三洋化成工業(株)製]を同様のスプレー機を用いてスプレー塗布し、80℃にて10分間乾燥後(乾燥後のウレタン塗料膜厚100μm)の塗装面について、JIS K5400に準拠した碁盤目テープ法による付着性試験(碁盤目試験)を行い、以下の評価基準で、密着性を評価した。
 碁盤目100のうち、塗膜が剥離しなかった部分の数を0~100で表し、数値が大きいほど基材と塗膜との密着性が良好であることが示される。
 なお、上記<1>において評価が△又は×のものは、スプレーできないため、基材密着性の評価を行わなかった。
<2> Adhesion to substrate A primer solution obtained by mixing 90 parts of the test solution after the evaluation of <1> above and 10 parts of an epoxy solution [trade name "Denacol EX-612", manufactured by Nagase ChemteX Corporation] is sprayed with a sprayer. Using [trade name "EBG-115EXB", manufactured by Anest Iwata Co., Ltd.], spray-coat the surface of the polyolefin resin substrate [trade name "PP1300", polypropylene, manufactured by Takin Co., Ltd.] at 80 ° C. for 10 It was dried for a minute (after drying, the film thickness was 80 μm).
Next, a polyurethane paint [trade name "U-coat UX-150" manufactured by Sanyo Chemical Industries, Ltd.] was spray-applied using a similar sprayer, dried at 80 ° C. for 10 minutes (urethane paint film thickness after drying). An adhesion test (a grid test) was performed on a painted surface of 100 μm) by a grid tape method based on JIS K5400, and the adhesion was evaluated according to the following evaluation criteria.
The number of portions of the grid 100 where the coating film has not peeled off is represented by 0 to 100, and the larger the value, the better the adhesion between the base material and the coating film.
In the above <1>, those having an evaluation of Δ or × could not be sprayed, so the substrate adhesion was not evaluated.
<評価基準>
◎:99~100
〇:95~98
△:90~94
×:90未満
<Evaluation criteria>
⊚: 99-100
〇: 95-98
Δ: 90 to 94
×: Less than 90
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 製造例で使用した表1に記載の原料を以下に示す。
A0-1:プロピレン85%、エチレン15%を構成単位とするポリオレフィン、商品名「Vistamaxx6202」、Exxonmobil社製、Mn76,000、アイソタクティシティー20%
A0-2:プロピレン91%、エチレン9%を構成単位とするポリオレフィン、商品名「Vistamaxx3980」、Exxonmobil社製、Mn113,000、アイソタクティシティー50%
A0-3:プロピレン84%、エチレン16%を構成単位とするポリオレフィン、商品名「Vistamaxx6102」、Exxonmobil社製、Mn70,000、アイソタクティシティー29%
比A0-1:プロピレン98%、エチレン2%を構成単位とするポリオレフィン、商品名「サンアロマーPZA20A」、サンアロマー(株)製、Mn100,000、アイソタクティシティー90%
比A0-2:プロピレン27%、エチレン73%を構成単位とするポリオレフィン、商品名「タフマーP0280」、三井化学社製、Mn40,000、アイソタクティシティー3%
The raw materials shown in Table 1 used in the production example are shown below.
A0-1: Polyolefin containing 85% propylene and 15% ethylene as constituent units, trade name "Vistamaxx6202", manufactured by ExxonMobil, Mn76,000, isotacticity 20%
A0-2: Polyolefin containing 91% propylene and 9% ethylene as constituent units, trade name "Vistamaxx3980", manufactured by ExxonMobil, Mn113,000, isotacticity 50%
A0-3: Polyolefin containing 84% propylene and 16% ethylene as constituent units, trade name "Vistamaxx6102", manufactured by ExxonMobil, Mn 70,000, isotacticity 29%
Ratio A0-1: Polyolefin containing 98% propylene and 2% ethylene as constituent units, trade name "SunAllomer PZA20A", manufactured by SunAllomer Ltd., Mn100,000, isotacticity 90%
Ratio A0-2: Polyolefin containing 27% propylene and 73% ethylene as constituent units, trade name "Toughmer P0280", manufactured by Mitsui Chemicals, Mn 40,000, isotacticity 3%
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例で使用した表2に記載の原料を以下に示す。
B-1:無水マレイン酸
B-2:イタコン酸
C-1:ジクミルパーオキサイド
C-2:1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)[商品名「V-40」、富士フイルム和光純薬(株)製]
The raw materials shown in Table 2 used in the examples are shown below.
B-1: Maleic anhydride B-2: Itaconic acid C-1: Dicumyl peroxide C-2: 1,1'-azobis (cyclohexane-1-carbonitrile) [Product name "V-40", Fujifilm Wako Pure Chemical Industries, Ltd.]
<実施例14~33、比較例3~7>
 上記で得られた各樹脂改質剤、市販のポリプロピレン(D-1)[商品名「サンアロマーPL500A」、サンアロマー(株)製、Mn300,000]、市販のポリエチレン(D-2)[商品名「ノバテックHJ490」、日本ポリエチレン(株)製、Mn300,000]、市販のエチレン/プロピレン共重合体(D-3)[商品名「サンアロマーPB222A」、サンアロマー(株)製、Mn350,000]を、表3の配合組成(部)に従って、それぞれヘンシェルミキサーで3分間ブレンドした後、ベント付き2軸押出機にて、180℃、100rpm、滞留時間5分の条件で溶融混練して各熱可塑性樹脂組成物を得た。
 各熱可塑性樹脂組成物について射出成形機[商品名「PS40E5ASE」、日精樹脂工業(株)]を用い、シリンダー温度240℃、金型温度60℃で成形して所定の試験片を作成後、後述の評価方法に従って評価した。結果を表3に示す。
<Examples 14 to 33, Comparative Examples 3 to 7>
Each resin modifier obtained above, commercially available polypropylene (D-1) [trade name "SunAllomer PL500A", manufactured by SunAllomer Ltd., Mn300,000], commercially available polyethylene (D-2) [trade name " Novatec HJ490 ”, manufactured by Nippon Polyethylene Co., Ltd., Mn 300,000】, commercially available ethylene / propylene copolymer (D-3) [trade name“ SunAllomer PB222A ”, manufactured by SunAllomer Ltd., Mn350,000]. Each thermoplastic resin composition is blended for 3 minutes with a Henshell mixer according to the compounding composition (part) of 3 and then melt-kneaded with a twin-screw extruder with a vent at 180 ° C., 100 rpm, and a residence time of 5 minutes. Got
Each thermoplastic resin composition is molded at a cylinder temperature of 240 ° C. and a mold temperature of 60 ° C. using an injection molding machine [trade name “PS40E5ASE”, Nissei Resin Industry Co., Ltd.] to prepare a predetermined test piece, which will be described later. It was evaluated according to the evaluation method of. The results are shown in Table 3.
<評価方法>
1.耐衝撃性(単位:kJ/m
 アイゾット衝撃値をJIS K7110に準拠して測定した。
2.曲げ弾性率(単位:MPa)
 JIS K7171に準拠して測定し、曲げ弾性の評価を行った。
3.濡れ性(単位:°)
 濡れ性の評価をJIS R2357に準拠して水接触角の測定を行った。水接触角が小さいほど濡れ性が良好であることを示す。
4.濡れ性の持続性(単位:°)
 上記フィルムを水に浸し綿布で表面を洗った後、減圧乾燥(1kPa、80℃、1時間)した。
 この試験片を温調(23℃、50RH%、24時間)し、上記3.と同様に水接触角を測定した。
<Evaluation method>
1. 1. Impact resistance (unit: kJ / m 2 )
The Izod impact value was measured according to JIS K7110.
2. 2. Flexural modulus (unit: MPa)
The bending elasticity was evaluated by measuring according to JIS K7171.
3. 3. Wetness (Unit: °)
The wettability was evaluated by measuring the water contact angle in accordance with JIS R2357. The smaller the water contact angle, the better the wettability.
4. Persistence of wettability (unit: °)
The film was immersed in water, the surface was washed with a cotton cloth, and then dried under reduced pressure (1 kPa, 80 ° C., 1 hour).
The temperature of this test piece was adjusted (23 ° C., 50 RH%, 24 hours), and the above 3. The water contact angle was measured in the same manner as in.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3の結果から、本発明の樹脂改質剤(K)は、比較例のものと比べて、基材密着性、溶剤溶解性に優れていた。また、熱可塑性樹脂組成物の成形品に、優れた機械的強度(耐衝撃性、曲げ弾性等)、改質効果(濡れ性、その持続性)を与えることがわかった。 From the results in Tables 1 to 3, the resin modifier (K) of the present invention was superior in substrate adhesion and solvent solubility as compared with those of Comparative Examples. Further, it was found that the molded product of the thermoplastic resin composition was given excellent mechanical strength (impact resistance, bending elasticity, etc.) and a modifying effect (wetting property, its durability).
 本発明の樹脂改質剤(K)は、種々の用途、好ましくは樹脂用改質剤、塩素化ポリプロピレン用原料、ポリウレタン用原料、硬化樹脂原料、接着剤原料、粘着剤原料、エマルション原料、粘着剤用途に好適に使用でき、また、熱可塑性樹脂の成形品の機械強度や良好な外観を損なうことなく、成形品に優れた濡れ性(特に持続する濡れ性)、接着性、密着性(塗装性)及びこれらの持続性を付与できる。
 プラスチック成形品用プライマー、濡れ性改質剤、塗装性向上剤として特に有用である。また、濡れ性が向上することから、電池のセパレータ用PPの液濡れ性向上、水処理膜のPEやPVDFの液濡れ性向上、繊維強化用短繊維ポリオレフィンの液濡れ性向上、ビニールハウス(プラスチックハウス)の液濡れ性向上や食品包装フィルムの液濡れ性向上にも好適である。
 本発明の熱可塑性樹脂組成物(Y)は、良好な塗装性及び印刷性を有するため、各種成形法[射出成形、圧縮成形、カレンダ成形、スラッシュ成形、回転成形、押出成形、ブロー成形、発泡成形及びフィルム成形(キャスト法、テンター法及びインフレーション法)等]で成形されるハウジング製品(家電・OA機器、ゲーム機器及び事務機器用等)、プラスチック容器材[クリーンルームで使用されるトレー(ICトレー等)及びその他容器等]、各種緩衝材、被覆材(包材用フィルム及び保護フィルム等)、床材用シート、人工芝、マット、テープ基材(半導体製造プロセス用等)及び各種成形品(自動車部品等)用材料として幅広く用いることができ、極めて有用である。
The resin modifier (K) of the present invention has various uses, preferably a resin modifier, a chlorinated polypropylene raw material, a polyurethane raw material, a cured resin raw material, an adhesive raw material, a pressure-sensitive adhesive raw material, an emulsion raw material, and an adhesive. It can be suitably used for chemical applications, and has excellent wettability (particularly persistent wettability), adhesiveness, and adhesion (painting) to the molded product without impairing the mechanical strength and good appearance of the molded product of the thermoplastic resin. Gender) and their persistence can be imparted.
It is particularly useful as a primer for plastic molded products, a wettability modifier, and a coatability improver. In addition, since the wettability is improved, the wettability of PP for the battery separator is improved, the wettability of PE and PVDF of the water treatment film is improved, the wettability of the short fiber polyolefin for fiber reinforcement is improved, and the vinyl house (plastic). It is also suitable for improving the wettability of house) and the wettability of food packaging films.
Since the thermoplastic resin composition (Y) of the present invention has good coatability and printability, various molding methods [injection molding, compression molding, calender molding, slush molding, rotary molding, extrusion molding, blow molding, foaming] Housing products (for home appliances / OA equipment, game equipment, office equipment, etc.) molded by molding and film molding (cast method, tenter method, inflation method, etc.), plastic container materials [Trays used in clean rooms (IC trays) Etc.) and other containers, etc.], various cushioning materials, covering materials (packaging materials, protective films, etc.), flooring sheets, artificial turf, mats, tape base materials (for semiconductor manufacturing processes, etc.) and various molded products (for semiconductor manufacturing processes, etc.) It can be widely used as a material for automobile parts, etc.) and is extremely useful.

Claims (8)

  1.  ポリオレフィン(A)と不飽和カルボン酸(B)とを構成単位として含む酸変性ポリオレフィン(X)を含有してなり、前記ポリオレフィン(A)の構成単量体であるエチレンと炭素数3~8のα-オレフィンとの重量比[エチレン/炭素数3~8のα-オレフィン]が2/98~50/50であって、前記不飽和カルボン酸(B)は、不飽和モノカルボン酸、不飽和ポリカルボン酸、及び/又は不飽和ポリカルボン酸無水物であり、前記酸変性ポリオレフィン(X)が下記要件(1)~(3)のいずれも満たす樹脂改質剤(K):
    (1)酸価が、1~100mgKOH/g;
    (2)数平均分子量(Mn)が1,000~60,000;
    (3)α-オレフィン部分のアイソタクティシティーが1~50%。
    It contains an acid-modified polyolefin (X) containing a polyolefin (A) and an unsaturated carboxylic acid (B) as constituent units, and has ethylene and 3 to 8 carbon atoms which are constituent monomers of the polyolefin (A). The weight ratio with α-olefin [ethylene / α-olefin having 3 to 8 carbon atoms] is 2/98 to 50/50, and the unsaturated carboxylic acid (B) is an unsaturated monocarboxylic acid or unsaturated. A resin modifier (K) which is a polycarboxylic acid and / or an unsaturated polycarboxylic acid anhydride, and the acid-modified polyolefin (X) satisfies all of the following requirements (1) to (3):
    (1) Acid value is 1 to 100 mgKOH / g;
    (2) The number average molecular weight (Mn) is 1,000 to 60,000;
    (3) The isotacticity of the α-olefin moiety is 1 to 50%.
  2.  前記ポリオレフィン(A)の数平均分子量が800~50,000である請求項1記載の樹脂改質剤(K)。 The resin modifier (K) according to claim 1, wherein the polyolefin (A) has a number average molecular weight of 800 to 50,000.
  3.  前記ポリオレフィン(A)が、炭素数1,000個当たり0.5~20個の二重結合を有する請求項1又は2記載の樹脂改質剤(K)。 The resin modifier (K) according to claim 1 or 2, wherein the polyolefin (A) has 0.5 to 20 double bonds per 1,000 carbon atoms.
  4.  請求項1~3のいずれか1項に記載の樹脂改質剤(K)を含有してなるプラスチック成形品用プライマー。 A primer for plastic molded products containing the resin modifier (K) according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか1項に記載の樹脂改質剤(K)と、ポリオレフィン樹脂(D)とを含有してなる熱可塑性樹脂組成物(Y)。 A thermoplastic resin composition (Y) containing the resin modifier (K) according to any one of claims 1 to 3 and a polyolefin resin (D).
  6.  前記樹脂改質剤(K)とポリオレフィン樹脂(D)との重量比[樹脂改質剤(K)/ポリオレフィン樹脂(D)]が0.1/99.9~50/50である請求項5記載の熱可塑性樹脂組成物(Y)。 5. Claim 5 in which the weight ratio [resin modifier (K) / polyolefin resin (D)] of the resin modifier (K) to the polyolefin resin (D) is 0.1 / 99.9 to 50/50. The thermoplastic resin composition (Y) according to the above.
  7.  請求項5又は6記載の熱可塑性樹脂組成物(Y)を成形してなる成形品。 A molded product obtained by molding the thermoplastic resin composition (Y) according to claim 5 or 6.
  8.  請求項7記載の成形品に塗装及び/又は印刷を施してなる成形物品。 A molded article obtained by painting and / or printing the molded article according to claim 7.
PCT/JP2020/011364 2019-03-26 2020-03-16 Resin modifier WO2020196007A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080023722.2A CN113614122A (en) 2019-03-26 2020-03-16 Resin modifier
JP2021509080A JP7137688B2 (en) 2019-03-26 2020-03-16 Resin modifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057526 2019-03-26
JP2019-057526 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196007A1 true WO2020196007A1 (en) 2020-10-01

Family

ID=72610512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011364 WO2020196007A1 (en) 2019-03-26 2020-03-16 Resin modifier

Country Status (3)

Country Link
JP (1) JP7137688B2 (en)
CN (1) CN113614122A (en)
WO (1) WO2020196007A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466390B (en) * 2022-09-13 2023-07-25 中国人民解放军国防科技大学 Low-temperature rapid-curing cyanate resin containing imidazole structure and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201322A (en) * 2001-11-01 2003-07-18 Mitsubishi Chemicals Corp Polypropylene, composition containing the same and use
JP2004307675A (en) * 2003-04-08 2004-11-04 Tonen Chem Corp Dicarboxylic acid-modified polypropylene
JP2013507479A (en) * 2009-10-09 2013-03-04 ホナム ペトロケミカル コーポレイション Resin composition for paint and resin molded product produced from said composition
JP2014028941A (en) * 2012-07-04 2014-02-13 Sanyo Chem Ind Ltd Method for producing modified polyolefin
JP2015083662A (en) * 2013-09-20 2015-04-30 三洋化成工業株式会社 Manufacturing method of modified polyolefin
JP2015108128A (en) * 2013-10-25 2015-06-11 三洋化成工業株式会社 Method for producing modified polyolefin
JP2016117888A (en) * 2014-12-18 2016-06-30 三洋化成工業株式会社 Modifier for polyolefin resin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197651A (en) * 2016-04-27 2017-11-02 出光興産株式会社 Modified olefin-based polymer and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201322A (en) * 2001-11-01 2003-07-18 Mitsubishi Chemicals Corp Polypropylene, composition containing the same and use
JP2004307675A (en) * 2003-04-08 2004-11-04 Tonen Chem Corp Dicarboxylic acid-modified polypropylene
JP2013507479A (en) * 2009-10-09 2013-03-04 ホナム ペトロケミカル コーポレイション Resin composition for paint and resin molded product produced from said composition
JP2014028941A (en) * 2012-07-04 2014-02-13 Sanyo Chem Ind Ltd Method for producing modified polyolefin
JP2015083662A (en) * 2013-09-20 2015-04-30 三洋化成工業株式会社 Manufacturing method of modified polyolefin
JP2015108128A (en) * 2013-10-25 2015-06-11 三洋化成工業株式会社 Method for producing modified polyolefin
JP2016117888A (en) * 2014-12-18 2016-06-30 三洋化成工業株式会社 Modifier for polyolefin resin

Also Published As

Publication number Publication date
CN113614122A (en) 2021-11-05
JP7137688B2 (en) 2022-09-14
JPWO2020196007A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6161928B2 (en) Polyolefin resin modifier
JP5844126B2 (en) Polyolefin resin modifier
JPWO2018037849A1 (en) Modified polyolefin resin
JP4451646B2 (en) Antistatic resin composition
JP2009227982A (en) Compatibilizing agent for resin
JP7137688B2 (en) Resin modifier
JP6456725B2 (en) Polyolefin resin modifier
JP2018150482A (en) Modified polyolefin resin
JP2005097596A (en) Polyolefin resin composition
JP2020019934A (en) Resin modifier
JP6591810B2 (en) Polyolefin resin modifier
JP6588233B2 (en) Polyolefin resin modifier
KR20190063693A (en) A water-based coating composition for Automobile interior materials
JP2014185399A (en) Dyeability improver for polyolefin resin
JP2016121342A (en) Compatibilizer for resin
JP7352488B2 (en) low molecular weight polyolefin
JP6849354B2 (en) Hydrophilicity-imparting agent
CN114269801A (en) Modified polyolefin resin and dispersion composition
JP2018199760A (en) Modified polyolefin
US20210221926A1 (en) Modified polyolefin resin, and use and production method of same
WO2019146591A1 (en) Resin modifier, resin composition, molding, and molded article
JP2021183688A (en) Block polymer and adhesive containing block polymer, water dispersion and resin modifier
JP5727870B2 (en) Polyolefin resin modifier
JP6626627B2 (en) Modifier for thermoplastic resin and thermoplastic resin composition
JP5952205B2 (en) Polyolefin resin composition containing inorganic filler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777833

Country of ref document: EP

Kind code of ref document: A1