WO2020195966A1 - 撮像システム及び撮像システムの制御方法、並びに、物体認識システム - Google Patents

撮像システム及び撮像システムの制御方法、並びに、物体認識システム Download PDF

Info

Publication number
WO2020195966A1
WO2020195966A1 PCT/JP2020/011163 JP2020011163W WO2020195966A1 WO 2020195966 A1 WO2020195966 A1 WO 2020195966A1 JP 2020011163 W JP2020011163 W JP 2020011163W WO 2020195966 A1 WO2020195966 A1 WO 2020195966A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
unit
control unit
event detection
detection device
Prior art date
Application number
PCT/JP2020/011163
Other languages
English (en)
French (fr)
Inventor
星野 和弘
将嗣 福永
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/430,835 priority Critical patent/US11863911B2/en
Publication of WO2020195966A1 publication Critical patent/WO2020195966A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/443Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/188Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position

Definitions

  • the present disclosure relates to an imaging system, a control method of the imaging system, and an object recognition system.
  • an asynchronous imaging device As one of the event-driven imaging devices, there is an asynchronous imaging device called DVS (Dynamic Vision Sensor).
  • the asynchronous imaging device can detect as an event that the change in the brightness of the pixel that photoelectrically converts the incident light exceeds a predetermined threshold value. Therefore, this kind of asynchronous imaging device can be called an event detection device.
  • an event detection device is mounted on a vehicle and used as an event-based visual sensor for monitoring a traveling road surface (see, for example, Patent Document 1).
  • the event detection device mounted on the vehicle it is possible to recognize an object such as a road surface while the vehicle is running.
  • the event detection device for example, since a pixel configuration having an event detection unit is taken for each pixel, the pixel size has to be larger than that of the synchronous image pickup device, and the resolution is low. Therefore, even if the event detection device can detect the existence of an object (occurrence of an event), the event detection device cannot accurately recognize the object because of its low resolution.
  • the present disclosure provides a control method of an imaging system and an imaging system capable of detecting an event and recognizing an object of the event more accurately, and an object recognition system using the imaging system. The purpose.
  • the imaging system of the present disclosure for achieving the above object is An event detection device that detects as an event that the change in brightness of a pixel that photoelectrically converts incident light exceeds a predetermined threshold value.
  • An imaging device that captures images at a fixed frame rate, and Equipped with a control unit that controls the event detection device and imaging device Used by being mounted on a moving body, In response to the event detection device detecting the event, the control unit controls the image information of the area including the event to be acquired by the image pickup device. It is composed.
  • An event detection device that detects as an event that the change in brightness of a pixel that photoelectrically converts incident light exceeds a predetermined threshold value, and Equipped with an imaging device that captures images at a fixed frame rate In an imaging system mounted on a moving body and used When the event detection device detects an event, the image information of the area including the event is acquired by the image pickup device.
  • the object recognition system of the present disclosure for achieving the above object is An event detection device that detects as an event that the change in brightness of a pixel that photoelectrically converts incident light exceeds a predetermined threshold value.
  • An imaging device that captures images at a fixed frame rate, and Equipped with a control unit that controls the event detection device and imaging device Used by being mounted on a moving body, Under the control of the control unit, the event is detected by the event detection device, the image information of the area including the event is acquired by the image pickup device, and the object recognition is performed based on the acquired image information. It is composed.
  • FIG. 1 is a block diagram showing an example of the system configuration of the imaging system of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the configuration of the event detection device in the imaging system of the present disclosure.
  • FIG. 3 is a block diagram showing an example of the configuration of the pixel array unit in the event detection device.
  • FIG. 4 is a circuit diagram showing an example of a pixel circuit configuration in the event detection device.
  • FIG. 5 is a block diagram showing an example of the circuit configuration of the event detection unit in the pixels of the event detection device.
  • FIG. 6 is a circuit diagram showing an example of the configuration of the current-voltage conversion unit in the event detection unit.
  • FIG. 7 is a circuit diagram showing an example of the configuration of the subtraction unit and the quantization unit in the event detection unit.
  • FIG. 1 is a block diagram showing an example of the system configuration of the imaging system of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the configuration of the event detection device in the imaging system of the
  • FIG. 8 is an exploded perspective view showing an outline of a laminated chip structure of the event detection device.
  • FIG. 9 is a block diagram showing an outline of the configuration of a CMOS image sensor which is an example of an imaging device in the imaging system of the present disclosure.
  • FIG. 10 is a circuit diagram showing an example of a pixel circuit configuration in an imaging device.
  • FIG. 11 is a plan view showing an outline of the horizontal chip structure of the image pickup apparatus.
  • FIG. 12A is a plan view showing an outline of a stacked chip structure of an imaging device, and
  • FIG. 12B is a flowchart showing an example of processing of a control method of the imaging system of the present disclosure.
  • FIG. 13 is a block diagram showing an example of the system configuration of the object recognition system of the present disclosure.
  • FIG. 14 is a flowchart showing the flow of the object recognition process according to the first embodiment.
  • FIG. 15 is a schematic view showing textures such as white lines, destination indications, and arrows drawn on the road, and damaged parts such as holes, large grooves, cracks, irregularities, and depressions existing on the road surface.
  • FIG. 16 is a flowchart showing the flow of the DVS photographing process according to the second embodiment.
  • FIG. 17 is a block diagram showing an example of a system configuration of an object recognition system to which DVS imaging according to the third embodiment is applied.
  • FIG. 18 is a flowchart showing the flow of the DVS photographing process according to the third embodiment.
  • FIG. 19 is a flowchart showing an example of control of the imaging device and the event detection device according to the fourth embodiment.
  • FIG. 20 is a block diagram showing an example of the system configuration of the object recognition system according to the fifth embodiment.
  • 21A, 21B, 21C, 21D, and 21E are diagrams showing an example of a pixel array having sensitivity to infrared light (IR light).
  • FIG. 22 is a flowchart showing the flow of a specific example 1 of the event detection process at the time of projecting IR light in the object recognition system according to the fifth embodiment.
  • FIG. 23 is a flowchart showing the flow of a specific example 2 of the event detection process at the time of projecting IR light in the object recognition system according to the fifth embodiment.
  • FIG. 24 is a characteristic diagram showing the relationship between the brightness around the vehicle and the amount of IR light projected.
  • FIG. 25 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a moving body control system to which the technique according to the present disclosure can be applied.
  • FIG. 26 is a diagram showing an example of an installation position of an imaging unit in a vehicle control system.
  • Imaging system of the present disclosure 2-1.
  • Configuration example of imaging system 2-2 Configuration example of event detection device 2-2-1.
  • Configuration example of subtraction part and quantization part 2-2-4 Configuration example of chip structure 2-3.
  • Configuration example of imaging device 2-3-1 Configuration example of CMOS image sensor 2-3-2.
  • Pixel configuration example 2-3-3 Configuration example of chip structure 2-3-3-1.
  • Flat-mounted chip structure (so-called flat-mounted structure) 2-3-3-2.
  • Laminated chip structure (so-called laminated structure) 3. 3.
  • Object recognition system of the present disclosure 3-1.
  • Example 1 Example of basic processing of object recognition based on event detection
  • Example 2 Example of detecting a damaged part of a road as an event
  • Example 3 Example of changing the event detection threshold according to the situation outside the vehicle
  • Example 4 (Example of recognizing the surroundings of the own vehicle by the image pickup device during normal driving) 3-6.
  • Example 5 Example of self-luminous infrared light in the dark to detect the presence or absence of obstacles with an event detection device) 4.
  • Modification example 5 Application example of the technology according to the present disclosure 5-1.
  • the image acquired by the event detection device is divided into regions for the control unit, and the unit area obtained from the region-divided images is per united.
  • the road surface condition can be detected based on the amount of state change.
  • the control unit when the number of regions in which the amount of state change per unit area is equal to or greater than a predetermined threshold value is equal to or greater than a predetermined set value, it is determined that there is a damaged portion on the road surface, and the determination result is used as the control system for the moving body. It can be configured to notify to.
  • the control unit is controlled to dynamically change the threshold value in order to determine the state of the road surface according to the external situation of the moving body.
  • the control unit can be configured to determine the external situation of the moving body based on the information given from the environmental sensor mounted on the moving body.
  • the vehicle speed of the own vehicle and the vehicle speed of the control unit are measured in a state where the surroundings are monitored based on the image acquired by the imaging device.
  • a predetermined threshold value it is possible to switch from shooting with the imaging device to shooting with the event detection device and monitor the surroundings based on the image acquired by the event detection device. it can.
  • the difference between the vehicle speed of the own vehicle and the vehicle speed of the vehicle to be monitored becomes less than a predetermined threshold value in the state where the control unit monitors the surroundings based on the image acquired by the event detection device. It is possible to switch from shooting with the image pickup device to shooting with the event detection device to shooting with the image pickup device.
  • the imaging system and the object recognition system of the present disclosure including the above-mentioned preferable configuration can be configured to include an infrared light projecting unit that projects infrared light.
  • the control unit may be provided with a sunshine sensor, and the infrared light projection unit may be turned on by using the information given from the sunshine sensor as a trigger.
  • the event detection device can be configured to have pixels having sensitivity to infrared light. Then, the event detection device is configured to detect an event based on a change in the brightness of a pixel having sensitivity to infrared light in an environment where infrared light is projected by the infrared light projecting unit. it can.
  • the detection result is used as the control system for the moving body. It can be configured to notify to. Then, the control unit can be configured to turn off the infrared light projection unit when the event detection device does not detect an event that does not change for a certain period of time when the infrared light projection unit is in the off state. ..
  • the infrared light projection amount of the infrared light projection unit of the control unit is according to the brightness information given from the sunshine sensor. Can be configured to set. Then, the control unit can be configured to adjust the amount of infrared light projected by the infrared light projecting unit in multiple stages according to the brightness information given by the sunshine sensor.
  • FIG. 1 is a block diagram showing an example of the system configuration of the imaging system of the present disclosure.
  • the imaging system 1 of the present disclosure has a configuration including an event detection device 10, an imaging device 20, a control unit 30, a data processing unit 40, and an image recording unit 50.
  • an asynchronous imaging device called DVS that detects that the change in brightness of the pixel that photoelectrically converts the incident light exceeds a predetermined threshold value can be used.
  • the asynchronous imaging device is an imaging device that detects an event asynchronously with a vertical synchronization signal, as opposed to a synchronous imaging device that performs imaging in synchronization with a vertical synchronization signal. Details of the event detection device 10 including the asynchronous image pickup device will be described later.
  • a synchronous image pickup device that captures images at a fixed frame rate in synchronization with a vertical synchronization signal and outputs image data in a frame format
  • Examples of the synchronous imaging device include a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, a CCD (Charge Coupled Device) type image sensor, and the like. Details of the imaging device 20 including the synchronous imaging device will be described later.
  • the control unit 30 is composed of, for example, a processor (CPU), and controls the event detection device 10, the image pickup device 20, and the data processing unit 40. More specifically, the control unit 30 controls the image pickup device 20 to acquire the image information of the region including the event in response to the event detection device 10 detecting the event.
  • a processor CPU
  • the data processing unit 40 performs predetermined data processing on the event data indicating the occurrence of an event output from the event detection device 10 and the image data output from the image pickup device 20. Do.
  • the control unit 30 can know that the event detection device 10 has detected an event through the data processing unit 40.
  • the image recording unit 50 records the image data processed by the data processing unit 40.
  • the event detection device 10 composed of the asynchronous imaging device generally has to have a larger pixel size than the synchronous imaging device 20, and therefore has a fixed frame rate.
  • the resolution is lower than that of the image pickup apparatus 20 that performs imaging in.
  • the image pickup device 20 composed of the synchronous type image pickup device is superior in resolution to the asynchronous type image pickup device.
  • FIG. 2 is a block diagram showing an example of the configuration of the event detection device 10 in the imaging system 1 of the present disclosure having the above configuration.
  • the event detection device 10 has a pixel array unit 12 in which a plurality of pixels 11 are two-dimensionally arranged in a matrix (array).
  • Each of the plurality of pixels 11 generates an analog signal having a voltage corresponding to the photocurrent as an electric signal generated by the photoelectric conversion as a pixel signal.
  • each of the plurality of pixels 11 detects the presence or absence of an event depending on whether or not a change exceeding a predetermined threshold value has occurred in the photocurrent corresponding to the brightness of the incident light. In other words, each of the plurality of pixels 11 detects that the change in luminance exceeds a predetermined threshold value as an event.
  • the event detection device 10 includes a drive unit 13, an arbiter unit (arbitration unit) 14, a column processing unit 15, and a signal processing unit 16 as peripheral circuit units of the pixel array unit 12. There is.
  • each of the plurality of pixels 11 When an event is detected, each of the plurality of pixels 11 outputs a request for outputting event data indicating the occurrence of the event to the arbiter unit 14. Then, when each of the plurality of pixels 11 receives a response indicating permission for output of the event data from the arbiter unit 14, the event data is output to the drive unit 13 and the signal processing unit 16. Further, the pixel 11 that has detected the event outputs an analog pixel signal generated by photoelectric conversion to the column processing unit 15.
  • the drive unit 13 drives each pixel 11 of the pixel array unit 12. For example, the drive unit 13 drives the pixel 11 that detects the event and outputs the event data, and outputs the analog pixel signal of the pixel 11 to the column processing unit 15.
  • the arbiter unit 14 arbitrates a request for output of event data supplied from each of the plurality of pixels 11, responds based on the arbitration result (permission / disapproval of output of event data), and detects an event.
  • a reset signal to be reset is transmitted to the pixel 11.
  • the column processing unit 15 has, for example, an analog-to-digital conversion unit composed of a set of analog-to-digital converters provided for each pixel row of the pixel array unit 12.
  • an analog-to-digital converter for example, a single slope type analog-to-digital converter can be exemplified.
  • the column processing unit 15 performs a process of converting an analog pixel signal output from the pixel 11 of the pixel array unit 12 into a digital signal for each pixel array of the pixel array unit 12.
  • the column processing unit 15 can also perform CDS (Correlated Double Sampling) processing on the digitized pixel signal.
  • the signal processing unit 16 executes predetermined signal processing on the digitized pixel signal supplied from the column processing unit 15 and the event data output from the pixel array unit 12, and the event data after signal processing and the event data Output a pixel signal.
  • the change in the photocurrent generated by the pixel 11 can also be regarded as the change in the amount of light (change in brightness) of the light incident on the pixel 11. Therefore, it can be said that the event is a change in the amount of light (change in brightness) of the pixel 11 that exceeds a predetermined threshold value.
  • the event data representing the occurrence of the event includes at least position information such as coordinates representing the position of the pixel 11 in which the change in the amount of light as an event has occurred. In addition to the position information, the event data can include the polarity of the light intensity change.
  • the event data will be the relative time when the event occurred. It can be said that the time information to be represented is implicitly included. However, if the interval between the event data is not maintained as it was when the event occurred due to the event data being stored in the memory or the like, the time information implicitly included in the event data is lost. Therefore, the signal processing unit 16 includes time information such as a time stamp, which represents a relative time when the event has occurred, in the event data before the interval between the event data is not maintained as it was when the event occurred.
  • FIG. 3 is a block diagram showing an example of the configuration of the pixel array unit 12 in the event detection device 10.
  • each of the plurality of pixels 11 has a light receiving unit 61, a pixel signal generation unit 62, and an event detection unit 63. There is.
  • the light receiving unit 61 photoelectrically converts the incident light to generate a photocurrent. Then, the light receiving unit 61 has a voltage corresponding to the photocurrent generated by photoelectric conversion of the incident light into either the pixel signal generation unit 62 or the event detection unit 63 under the control of the drive unit 13 (see FIG. 2). Supply a signal.
  • the pixel signal generation unit 62 generates a signal having a voltage corresponding to the photocurrent supplied from the light receiving unit 61 as an analog pixel signal SIG. Then, the pixel signal generation unit 62 supplies the generated analog pixel signal SIG to the column processing unit 15 (see FIG. 2) via the vertical signal line VSL wired for each pixel row of the pixel array unit 12.
  • the event detection unit 63 detects the presence or absence of an event depending on whether or not the amount of change in the photocurrent from each of the light receiving units 61 exceeds a predetermined threshold value.
  • the event includes, for example, an on-event indicating that the amount of change in the photocurrent exceeds the upper limit threshold value and an off-event indicating that the amount of change has fallen below the lower limit threshold value.
  • the event data indicating the occurrence of an event is composed of, for example, one bit indicating an on-event detection result and one bit indicating an off-event detection result.
  • the event detection unit 63 may be configured to detect only on-events.
  • the event detection unit 63 When an event occurs, the event detection unit 63 outputs a request for outputting event data indicating the occurrence of the event to the arbiter unit 14 (see FIG. 2). Then, when the event detection unit 63 receives the response to the request from the arbiter unit 14, the event detection unit 63 outputs the event data to the drive unit 13 and the signal processing unit 16.
  • FIG. 4 is a circuit diagram showing an example of the circuit configuration of the pixel 11 of the pixel array unit 12 in the event detection device 10.
  • each of the plurality of pixels 11 has a light receiving unit 61, a pixel signal generation unit 62, and an event detection unit 63.
  • the light receiving unit 61 has a light receiving element (photoelectric conversion element) 611, a transfer transistor 612, and a transfer transistor 613.
  • a light receiving element photoelectric conversion element
  • a transfer transistor 612 for example, an N-type MOS (Metal Oxide Semiconductor) transistor can be used.
  • the transfer transistor 612 and the transfer transistor 613 are connected in series with each other.
  • the light receiving element 611 is connected between the common connection node N 1 of the transfer transistor 612 and the transfer transistor 613 and the ground, and photoelectrically converts the incident light to generate a charge amount corresponding to the amount of the incident light. To do.
  • a transfer signal TRG is supplied from the drive unit 13 shown in FIG. 2 to the gate electrode of the transfer transistor 612.
  • the transfer transistor 612 is turned on in response to the transfer signal TRG, so that the electric signal generated by photoelectric conversion by the light receiving element 611 is supplied to the pixel signal generation unit 62.
  • the control signal OFG is supplied from the drive unit 13 to the gate electrode of the transfer transistor 613.
  • the transfer transistor 613 is turned on in response to the control signal OFG, so that the electric signal generated by photoelectric conversion by the light receiving element 611 is supplied to the event detection unit 63.
  • the electric signal supplied to the event detection unit 63 is a photocurrent composed of electric charges.
  • the pixel signal generation unit 62 has a configuration including a reset transistor 621, an amplification transistor 622, a selection transistor 623, and a floating diffusion layer 624.
  • a reset transistor 621 for example, an N-type MOS transistor can be used.
  • the electric charge converted photoelectric by the light receiving element 611 of the light receiving unit 61 is supplied to the pixel signal generation unit 62 by the transfer transistor 612.
  • the electric charge supplied from the light receiving unit 61 is accumulated in the floating diffusion layer 624.
  • the floating diffusion layer 624 generates a voltage signal having a voltage value corresponding to the amount of the accumulated electric charge. That is, the floating diffusion layer 624 is a charge-voltage conversion unit that converts electric charge into voltage.
  • the reset transistor 621 is connected between the power supply line of the power supply voltage V DD and the stray diffusion layer 624.
  • a reset signal RST is supplied from the drive unit 13 to the gate electrode of the reset transistor 621.
  • the reset transistor 621 is turned on in response to the reset signal RST to initialize (reset) the floating diffusion layer 624.
  • the amplification transistor 622 is connected in series with the selection transistor 623 between the power supply line of the power supply voltage V DD and the vertical signal line VSL.
  • the amplification transistor 622 amplifies the charge-voltage-converted voltage signal in the floating diffusion layer 624.
  • a selection signal SEL is supplied from the drive unit 13 to the gate electrode of the selection transistor 623.
  • the selection transistor 623 is turned on in response to the selection signal SEL, so that the voltage signal amplified by the amplification transistor 622 is used as an analog pixel signal SIG via the vertical signal line VSL to the column processing unit 15 (FIG. 2). Output to).
  • the drive unit 13 is instructed by the control unit 30 shown in FIG. 1 to start event detection. Then, when the start of event detection is instructed, the drive unit 13 drives the transfer transistor 613 by supplying the control signal OFG to the transfer transistor 613 of the light receiving unit 61, and the electric charge generated by the light receiving element 611 is used. The corresponding photocurrent is supplied to the event detection unit 63.
  • the drive unit 13 turns off the transfer transistor 613 of the pixel 11 and stops the supply of the photocurrent to the event detection unit 63.
  • the drive unit 13 drives the transfer transistor 612 by supplying the transfer signal TRG to the transfer transistor 612, and transfers the charge photoelectrically converted by the light receiving element 611 to the floating diffusion layer 624.
  • the power consumption of the event detection device 10 and the amount of image processing can be reduced as compared with the case where the pixel signals of all pixels are output regardless of the presence or absence of an event.
  • the configuration of the pixel 11 illustrated here is an example, and is not limited to this configuration example.
  • a pixel configuration that does not include the pixel signal generation unit 62 may be used.
  • the transfer transistor 612 may be omitted in the light receiving unit 61.
  • the column processing unit 15 of FIG. 2 can be configured not to have an analog-to-digital conversion function. By adopting a pixel configuration that does not output a pixel signal, the scale of the event detection device 10 can be suppressed.
  • FIG. 5 is a block diagram showing an example of the circuit configuration of the event detection unit 63 in the pixel 11 of the event detection device 10.
  • the event detection unit 63 has a configuration including a current-voltage conversion unit 631, a buffer 632, a subtraction unit 633, a quantization unit 634, and a transfer unit 635.
  • the current-voltage conversion unit 631 converts the photocurrent supplied from the light-receiving unit 63 of the pixel 11 into a voltage signal (hereinafter, may be referred to as “optical voltage”) that is the logarithm of the photocurrent, and converts it into the buffer 632. Supply.
  • the buffer 632 buffers the optical voltage supplied from the current-voltage conversion unit 631 and supplies it to the subtraction unit 633.
  • the subtraction unit 633 calculates the difference between the current optical voltage and the optical voltage that differs from the current one for a minute time, and supplies the difference signal corresponding to the difference to the quantization unit 634.
  • the quantization unit 634 quantizes the difference signal supplied from the subtraction unit 633 into a digital signal, and supplies the digital value of the difference signal to the transfer unit 635.
  • the transfer unit 635 supplies a request for transmission of event data to the arbiter unit 14. Then, when the transfer unit 635 receives the response to the request, that is, the response to allow the output of the event data from the arbiter unit 14, the event data is according to the digital value of the difference signal supplied from the quantization unit 634. Is supplied to the drive unit 13 and the signal processing unit 16.
  • FIG. 6 is a circuit diagram showing an example of the configuration of the current-voltage conversion unit 631 in the event detection unit 63.
  • the current-voltage conversion unit 631 has a circuit configuration including a transistor 6311, a transistor 6312, and a transistor 6313.
  • a transistor 6311 and the transistor 6313 an N-type MOS transistor can be used, and as the transistor 6312, a P-type MOS transistor can be used.
  • the transistor 6311 is connected between the power supply line of the power supply voltage V DD and the signal input line 6314.
  • the transistor 6312 and the transistor 6313 are connected in series between the power supply line of the power supply voltage V DD and the ground.
  • the gate electrode of the transistor 6311 and the input terminal of the buffer 632 shown in FIG. 5 are connected to the common connection node N 2 of the transistor 6312 and the transistor 6313.
  • a predetermined bias voltage V bias is applied to the gate electrode of the transistor 6312.
  • the transistor 6312 supplies a constant current to the transistor 6313.
  • a photocurrent is input from the light receiving unit 61 to the gate electrode of the transistor 6313 through the signal input line 6314.
  • the drain electrode of the transistor 6311 is connected to the power supply line of the power supply voltage V DD , and has a source follower configuration.
  • the gate electrode of transistor 6313 is connected to the source electrode of transistor 6311. Then, the light current from the light receiving unit 61 is converted into an optical voltage corresponding to the logarithm of the photocurrent by the transistor 6311 and the transistor 6313 having a source follower configuration.
  • FIG. 7 is a circuit diagram showing an example of the configuration of the subtraction unit 633 and the quantization unit 634 in the event detection unit 63.
  • the subtraction unit 633 has a configuration including a capacitance element 6331, an operational amplifier 6332, a capacitance element 6333, and a switch element 6334.
  • One end of the capacitance element 6331 is connected to the output terminal of the buffer 632 shown in FIG. 5, and the other end of the capacitance element 6331 is connected to the input terminal of the operational amplifier 6332.
  • the optical voltage supplied from the buffer 632 is input to the input terminal of the operational amplifier 6332 via the capacitive element 6331.
  • the capacitance element 6333 is connected in parallel to the operational amplifier 6332.
  • the switch element 6334 is connected between both ends of the capacitance element 6333.
  • a reset signal is supplied to the switch element 6334 from the arbiter unit 14 shown in FIG. 2 as a control signal for opening and closing the switch element 6334.
  • the switch element 6334 opens and closes a path connecting both ends of the capacitance element 6333 in response to a reset signal.
  • the optical voltage input to the buffer 632 side terminal of the capacitor 6331 and V init upon the switching element 6334 on the (closed) state, the optical voltage input to the buffer 632 side terminal of the capacitor 6331 and V init.
  • the terminal on the opposite side becomes a virtual ground terminal.
  • the potential of this virtual ground terminal is set to zero for convenience.
  • the capacitance value of the capacitance element 6331 is C 1
  • the charge Q init stored in the capacitance element 6331 is expressed by the following equation (1).
  • Q init C 1 x V init ... (1)
  • the subtraction unit 633 subtraction of the optical voltage V init and photovoltage V after, i.e., corresponding to the difference between the optical voltage V init and photovoltage V after (V init -V after)
  • the difference signal V out is calculated.
  • the subtraction gain of the subtraction unit 633 is C 1 / C 2 .
  • the capacitance value C 1 of the capacitance element 6331 it is preferable to design the capacitance value C 1 of the capacitance element 6331 to be large and the capacitance value C 2 of the capacitance element 6333 to be small.
  • the capacitance value C 2 of the capacitance element 6333 is too small, kTC noise may increase and the noise characteristics may deteriorate. Therefore, the capacitance reduction of the capacitance value C 2 of the capacitance element 6333 may allow noise. Limited to the range that can be done. Further, since the event detection unit 63 including the subtraction unit 633 is mounted on each pixel 11, the capacitance element 6331 and the capacitance element 6333 have an area limitation. Considering these, the capacitance value C 2 of the capacitance value C 1 and the capacitor 6333 of the capacitor 6331 is determined.
  • the quantization unit 634 has a configuration including a comparator 6341.
  • the comparator 6341 uses the difference signal from the subtraction unit 430 (that is, the output signal of the operational amplifier 6332) as a non-inverting (+) input, and the predetermined threshold voltage V th as an inverting ( ⁇ ) input. Then, the comparator 6341 compares the difference signal V out from the subtraction unit 430 with the predetermined threshold voltage V th, and sets the high level or the low level representing the comparison result as the quantized value of the difference signal V out . It is output to the transfer unit 635 shown in 5.
  • the transfer unit 635 recognizes that a light amount change (luminance change) as an event has occurred from the quantization value of the difference signal V out from the quantization unit 634, that is, the difference signal V out has a predetermined threshold voltage V.
  • the threshold voltage V th is a threshold for detecting an event based on a change in the amount of light (change in brightness) of the pixel 11.
  • the signal processing unit 16 includes position information of the pixel 11 that has detected the event represented by the event data, time information indicating the time when the event occurred, and further, if necessary. Then, the polarity information of the change in the amount of light as an event is included and output.
  • the data format of event data including the position information of the pixel 11 that detected the event, the time information indicating the time when the event occurred, and the polarity information of the change in the amount of light as the event is called, for example, AER (Address Event Representation).
  • AER Address Event Representation
  • the pixel 11 can receive arbitrary light as incident light by providing an optical filter such as a color filter that transmits a predetermined light.
  • the event data represents the occurrence of a change in the pixel value in an image in which a visible subject appears.
  • the event data represents the occurrence of a change in the distance to the subject.
  • the event data represents the occurrence of a change in the temperature of the subject.
  • the pixel 11 receives visible light as incident light.
  • FIG. 8 is an exploded perspective view showing an outline of the stacked chip structure of the event detection device 10.
  • the laminated chip structure is a structure in which at least two chips of the light receiving chip 101, which is the first chip, and the detection chip 102, which is the second chip, are laminated. It has become. Then, in the circuit configuration of the pixel 11 shown in FIG. 4, each of the light receiving elements 611 is arranged on the light receiving chip 101, and all the elements other than the light receiving element 611, the elements of the other circuit parts of the pixel 11 and the like are detected chips. It is placed on 102.
  • the light receiving chip 101 and the detection chip 102 are electrically connected via a connecting portion such as a via (VIA), a Cu—Cu junction, or a bump.
  • each element of the light receiving unit 61 is arranged on the light receiving chip 101, and elements other than the light receiving unit 61, elements of other circuit parts of the pixel 11 and the like are arranged on the detection chip 102. It can be configured to be. Further, each element of the light receiving unit 61, the reset transistor 621 of the pixel signal generation unit 62, and the floating diffusion layer 624 can be arranged on the light receiving chip 101, and the other elements can be arranged on the detection chip 102. .. Further, a part of the elements constituting the event detection unit 63 can be arranged on the light receiving chip 101 together with the elements of the light receiving unit 61 and the like.
  • CMOS image sensor which is a kind of XY address type image pickup device
  • a CMOS type image sensor is an image sensor manufactured by applying or partially using a CMOS process.
  • the image pickup device 20 is not limited to the CMOS image sensor.
  • FIG. 9 is a block diagram showing an outline of the configuration of a CMOS image sensor which is an example of the imaging device 20 in the imaging system 1 of the present disclosure.
  • the image pickup apparatus 20 includes a pixel array unit 22 in which pixels 21 including a light receiving unit (photoelectric conversion unit) are two-dimensionally arranged in a row direction and a column direction, that is, in a matrix, and the pixel array unit. It has a configuration having 22 peripheral circuit units.
  • the row direction refers to the arrangement direction of the pixels 21 in the pixel row
  • the column direction refers to the arrangement direction of the pixels 21 in the pixel row.
  • the image pickup apparatus 20 is an RGB sensor in which, for example, R (red), G (green), and B (blue) color filters are incorporated in each pixel 21 of the pixel array unit 22.
  • the image pickup apparatus 20 is not limited to the RGB sensor.
  • the peripheral circuit unit of the pixel array unit 22 is composed of, for example, a row selection unit 23, a constant current source unit 24, an analog-digital conversion unit 25, a horizontal transfer scanning unit 26, a signal processing unit 27, a timing control unit 28, and the like. Has been done.
  • pixel drive lines 31 1 to 31 m are aligned along the row direction for each pixel row with respect to the matrix-like pixel array. Is wired.
  • vertical signal lines 32 1 to 32 n (hereinafter, may be collectively referred to as “vertical signal line 32”) are wired along the column direction for each pixel row.
  • the pixel drive line 31 transmits a drive signal for driving when reading a signal from the pixel 21.
  • the pixel drive line 31 is shown as one wiring, but the wiring is not limited to one.
  • One end of the pixel drive line 31 is connected to the output end corresponding to each line of the line selection unit 23.
  • the control unit 28 will be described.
  • the row selection unit 23 is composed of a shift register, an address decoder, and the like, and controls the scanning of pixel rows and the address of pixel rows when selecting each pixel 21 of the pixel array unit 22. Although the specific configuration of the row selection unit 23 is not shown, it generally has two scanning systems, a read scanning system and a sweep scanning system.
  • the read-out scanning system selectively scans each pixel 21 of the pixel array unit 22 row by row in order to read a pixel signal from the pixel 21.
  • the pixel signal read from the pixel 21 is an analog signal.
  • the sweep scanning system performs sweep scanning in advance of the read scan performed by the read scan system by the time of the shutter speed.
  • the so-called electronic shutter operation is performed by sweeping out (resetting) unnecessary charges by the sweeping scanning system.
  • the electronic shutter operation refers to an operation of discarding the light charge of the light receiving portion and starting a new exposure (starting the accumulation of the light charge).
  • the constant current source unit 24 includes a plurality of current sources I (see FIG. 10) connected to each of the vertical signal lines 32 1 to 32 n for each pixel row, for example, composed of MOS transistors, and the row selection unit 23.
  • a bias current is supplied to each pixel 21 of the pixel row selectively scanned by the above through each of the vertical signal lines 32 1 to 32 n .
  • the analog-to-digital converter 25 is composed of a set of a plurality of analog-to-digital converters provided (for example, provided for each pixel sequence) corresponding to the pixel array of the pixel array unit 22.
  • the analog-to-digital conversion unit 25 is a column-parallel type analog-to-digital conversion unit that converts an analog pixel signal output through each of the vertical signal lines 32 1 to 32 n for each pixel string into a digital signal.
  • analog-to-digital converter in the column-parallel analog-to-digital converter 25 for example, a single slope type analog-to-digital converter which is an example of a reference signal comparison type analog-to-digital converter can be used.
  • analog-to-digital converter is not limited to the single slope type analog-digital converter, but is not limited to the serial comparison type analog-digital converter and the delta-sigma modulation type ( ⁇ modulation type) analog-digital.
  • a converter or the like can be used.
  • analog-to-digital converter in the column-parallel analog-to-digital conversion unit 25 the analog-to-digital converter in the analog-to-digital conversion unit constituting the column processing unit 15 (see FIG. 2) of the event detection device 10 described above. The same applies to.
  • the horizontal transfer scanning unit 26 is composed of a shift register, an address decoder, and the like, and controls the scanning of the pixel string and the address of the pixel string when reading the signal of each pixel 21 of the pixel array unit 22. Under the control of the horizontal transfer scanning unit 26, the pixel signal converted into a digital signal by the analog-digital conversion unit 25 is read out to the horizontal transfer line (horizontal output line) 29 in pixel sequence units.
  • the signal processing unit 27 performs predetermined signal processing on the digital pixel signal supplied through the horizontal transfer line 29 to generate two-dimensional image data. For example, the signal processing unit 27 corrects vertical line defects and point defects, clamps signals, and performs digital signal processing such as parallel-serial conversion, compression, coding, addition, averaging, and intermittent operation. Or something.
  • the signal processing unit 27 outputs the generated image data as an output signal of the present imaging device 20 to a subsequent device.
  • the timing control unit 28 is based on a vertical synchronization signal VD, a horizontal synchronization signal HD, a master clock MCK (not shown), etc. supplied from the outside, and various timing signals, clock signals, control signals, etc. To generate. Then, the timing control unit 28 drives and controls the row selection unit 23, the constant current source unit 24, the analog-digital conversion unit 25, the horizontal transfer scanning unit 26, the signal processing unit 27, and the like based on these generated signals. I do.
  • the image pickup apparatus 20 Under the control of the timing control unit 28, the image pickup apparatus 20 performs imaging in synchronization with a synchronization signal such as a vertical synchronization signal VD. That is, the present imaging device 20 is a synchronous imaging device that performs imaging at a fixed frame rate.
  • FIG. 10 is a circuit diagram showing an example of the circuit configuration of the pixels 21 of the pixel array unit 22 in the image pickup apparatus 20.
  • the pixel 21 has, for example, a photodiode 211 as a light receiving unit (photoelectric conversion unit).
  • the pixel 21 has a pixel configuration having a transfer transistor 212, a reset transistor 213, an amplification transistor 214, and a selection transistor 215 in addition to the photodiode 211.
  • an N-type MOS transistor is used as the four transistors of the transfer transistor 212, the reset transistor 213, the amplification transistor 214, and the selection transistor 215, but the four transistors 212 to 215 exemplified here are used.
  • the combination of conductive types is only an example, and is not limited to these combinations.
  • a plurality of pixel drive lines are commonly wired to each pixel 21 in the same pixel row as the pixel drive line 31 described above. These plurality of pixel drive lines are connected to the output end corresponding to each pixel row of the row selection unit 23 in pixel row units.
  • the row selection unit 23 appropriately outputs the transfer signal TRG, the reset signal RST, and the selection signal SEL to the plurality of pixel drive lines.
  • the anode electrode is connected to a low-potential side power supply (for example, ground), and the received light is photoelectrically converted into an electric charge (here, photoelectrons) having an electric charge corresponding to the amount of the light, and the light thereof. Accumulates electric charge.
  • the cathode electrode of the photodiode 211 is electrically connected to the gate electrode of the amplification transistor 214 via the transfer transistor 212.
  • the region where the gate electrodes of the amplification transistor 214 are electrically connected is a floating diffusion (floating diffusion region / impurity diffusion region) FD.
  • the floating diffusion FD is a charge-voltage converter that converts an electric charge into a voltage.
  • a transfer signal TRG in which a high level (for example, V DD level) is active is given to the gate electrode of the transfer transistor 212 from the row selection unit 23.
  • a high level for example, V DD level
  • the transfer transistor 212 is turned on in response to the transfer signal TRG, it is photoelectrically converted by the photodiode 211, and the optical charge accumulated in the photodiode 211 is transferred to the floating diffusion FD.
  • the reset transistor 213 is connected between the power supply line of the power supply voltage V DD and the floating diffusion FD.
  • a reset signal RST that activates a high level is given to the gate electrode of the reset transistor 213 by the row selection unit 23.
  • the reset transistor 213 is turned on in response to the reset signal RST, and resets the floating diffusion FD by discarding the charge of the floating diffusion FD to the node of the power supply voltage V DD .
  • the gate electrode is connected to the floating diffusion FD, and the drain electrode is connected to the power supply line of the power supply voltage V DD .
  • the amplification transistor 214 serves as an input unit of a source follower that reads out a signal obtained by photoelectric conversion in the photodiode 211.
  • the source electrode is connected to the vertical signal line 32 via the selection transistor 215.
  • the amplification transistor 214 and the current source I connected to one end of the vertical signal line 32 form a source follower that converts the voltage of the floating diffusion FD into the potential of the vertical signal line 32.
  • the drain electrode is connected to the source electrode of the amplification transistor 214, and the source electrode is connected to the vertical signal line 32.
  • a selection signal SEL that activates a high level is given to the gate electrode of the selection transistor 215 from the row selection unit 23.
  • the selection transistor 215 is turned on in response to the selection signal SEL, so that the signal output from the amplification transistor 214 is transmitted to the vertical signal line 32 with the pixel 21 in the selection state.
  • a 4Tr configuration including a transfer transistor 212, a reset transistor 213, an amplification transistor 214, and a selection transistor 215, that is, a 4Tr configuration consisting of four transistors (Tr) has been described as an example. It is not limited to this.
  • the selection transistor 215 may be omitted, and the amplification transistor 214 may have a 3Tr configuration in which the function of the selection transistor 25 is provided, or the configuration may be 5Tr or more by increasing the number of transistors, if necessary. ..
  • chip structure configuration As the chip (semiconductor integrated circuit) structure of the image pickup apparatus 20 having the above configuration, a flat chip structure and a laminated chip structure can be exemplified.
  • the substrate surface on the side where the wiring layer is arranged is the surface (front surface) of the pixel 21, the light emitted from the surface side is used. It is possible to have a front-illuminated pixel structure that captures light, or a back-illuminated pixel structure that captures light emitted from the back surface on the opposite side.
  • the horizontal chip structure and the laminated chip structure will be described below.
  • FIG. 11 is a plan view showing an outline of a horizontal chip structure of the image pickup apparatus 20.
  • the horizontal chip structure (so-called horizontal structure) is formed on the same semiconductor substrate 201 as the pixel array unit 22 in which the pixels 21 are arranged in a matrix, and is around the pixel array unit 22. It has a structure in which a circuit part is formed. Specifically, on the same semiconductor substrate 201 as the pixel array unit 22, the row selection unit 23, the constant current source unit 24, the analog-digital conversion unit 25, the horizontal transfer scanning unit 26, the signal processing unit 27, and the timing control Part 28 and the like are formed.
  • FIG. 12A is an exploded perspective view showing an outline of the stacked chip structure of the image pickup apparatus 20.
  • the laminated chip structure has a structure in which at least two semiconductor substrates of the first semiconductor substrate 202 and the second semiconductor substrate 203 are laminated.
  • the pixel array portion 22 is formed on the first semiconductor substrate 202 of the first layer.
  • the circuit parts such as the row selection unit 23, the constant current source unit 24, the analog-digital conversion unit 25, the horizontal transfer scanning unit 26, the signal processing unit 27, and the timing control unit 28 are the second semiconductors of the second layer. It is formed on the substrate 203.
  • the first semiconductor substrate 202 of the first layer and the second semiconductor substrate 203 of the second layer are electrically connected through connecting portions 33A and 33B such as vias (VIA) and Cu—Cu bonding.
  • a process suitable for manufacturing the pixels 21 can be applied to the first semiconductor substrate 202 of the first layer, and a circuit portion can be manufactured on the second semiconductor substrate 203 of the second layer. Since a suitable process can be applied, the process can be optimized in manufacturing the image pickup apparatus 20. In particular, advanced processes can be applied to the fabrication of circuit parts.
  • a laminated structure having a two-layer structure in which the first semiconductor substrate 202 and the second semiconductor substrate 203 are laminated is illustrated, but the laminated structure is not limited to the two-layer structure and has three or more layers. It can also be a structure of.
  • the circuit parts such as the row selection unit 23, the constant current source unit 24, the analog-digital conversion unit 25, the horizontal transfer scanning unit 26, and the signal processing unit 27 have two layers. It can be dispersed and formed on the semiconductor substrate after the eyes.
  • the imaging system 1 of the present disclosure including the event detection device 10 composed of the asynchronous imaging device and the imaging device 20 composed of the synchronous imaging device described above can be mounted on a moving body such as a vehicle. it can. Taking the case of mounting on a vehicle as an example, a predetermined position of the vehicle, for example, at least one position of the front nose, side mirror, rear bumper, back door of the vehicle, and the upper part of the windshield in the vehicle interior.
  • the image pickup system 1 will be arranged and used. Details of application examples of the technology according to the present disclosure (that is, the imaging system 1 of the present disclosure) will be described later.
  • the control unit 30 controls the event detection device 10 composed of the asynchronous imaging device and the imaging device 20 composed of the synchronous imaging device. Specifically, when the vehicle is traveling, the event detection device 10 first detects an event under the control of the control unit 30.
  • the event detection unit 63 shown in FIG. 3 detects that the light amount change (luminance change) exceeds a predetermined threshold value for each pixel 11 as an event. Is not limited to the detection for each pixel 11 by the event detection unit 63.
  • the event detection device 10 includes a pixel signal generation unit 62 for each pixel 11, and can acquire an image. Then, based on the image captured and acquired by the event detection device 10, the condition of the road surface, specifically, a damaged part (for example, a hole, a large groove, a crack, an unevenness, a depression, etc.) or a falling object is detected as an event. can do.
  • each pixel 11 has a pixel configuration having a light receiving unit 61, a pixel signal generation unit 62, and an event detection unit 63, so that the pixel size is larger than that of the synchronous image pickup device 20.
  • the resolution is low. Therefore, in the case of the event detection device 10, even if, for example, a damaged part of the road surface or a falling object can be detected as an event based on the captured image, the resolution is lower than that of the synchronous image pickup device 20. Therefore, the object recognition of the event cannot be performed accurately.
  • the control unit 30 controls so that the image information of the area including the event is acquired by the image pickup device 20.
  • An example of processing of the control method of the imaging system 1 of the present disclosure is shown in the flowchart of FIG. 12B.
  • the control unit 30 takes a picture with the event detection device 10 (step S1), and then determines whether or not the event detection device 10 has detected an event (step S2). A specific example of the process of step S1 will be described later.
  • the control unit 30 determines that the event detection device 10 has detected an event (YES in S2)
  • the control unit 30 switches from shooting by the event detection device 10 to shooting by the imaging device 20 (step S3).
  • a specific example of the process in step S3 will be described later.
  • the image pickup device 20 composed of a synchronous image pickup device is superior in resolution to the event detection device 10 composed of an asynchronous image pickup device. Therefore, according to the imaging system 1 of the present disclosure, after the event is detected by the event detection device 10, the image information of the region including the event is acquired by the image pickup device 20 at a resolution higher than that of the event detection device 10. Can be done. As a result, it becomes possible to more accurately recognize the object of the event based on the image information of the region including the event captured and acquired by the image pickup apparatus 20.
  • the object recognition system of the present disclosure which recognizes an object using the imaging system 1 of the present disclosure having the above configuration, will be described. Similar to the imaging system 1 of the present disclosure, the object recognition system of the present disclosure can be mounted on a moving body such as a vehicle and used for object recognition of an event.
  • FIG. 13 is a block diagram showing an example of a system configuration of the object recognition system of the present disclosure using the imaging system 1 of the present disclosure.
  • the object recognition system 2 of the present disclosure includes an event detection device 10, an image pickup device 20, a control unit 30, a data processing unit 40, and an image recording in the image pickup system 1 of the present disclosure shown in FIG.
  • the recognition processing unit 60 is included. The details of the event detection device 10, the image pickup device 20, the control unit 30, the data processing unit 40, and the image recording unit 50 are as described above.
  • event data and image data are output from the event detection device 10 and supplied to the data processing unit 40 under the control of the control unit 30, and the image pickup device 20 includes the event.
  • the image data of the area is output and supplied to the data processing unit 40.
  • the event data and image data processed by the data processing unit 40 are supplied to the recognition processing unit 60.
  • the control unit 30 learns that the event detection device 10 has detected an event via the data processing unit 40, the control unit 30 controls the image pickup device 20 so as to image a region including the event detected by the event detection device 10.
  • the recognition processing unit 60 processes the object recognition of the event based on the event data and the image data supplied from the data processing unit 40.
  • a well-known pattern recognition technique for example, a technique for performing image recognition by comparing the feature points of an image given as teacher data with the feature points of a captured subject image is used. be able to.
  • the object recognition process described below is basically executed under the control of the control unit 30 of the imaging system 1.
  • the first embodiment is an example of the basic processing of object recognition based on event detection.
  • An example of the flow of the object recognition process according to the first embodiment is shown in the flowchart of FIG.
  • the event detection is performed based on the image captured and acquired by the event detection device 10. This point is the same in Example 2 and Example 3 described later.
  • the control unit 30 first performs shooting by the event detection device 10 (hereinafter, referred to as “DVS shooting”) (step S11), and then determines whether or not the event detection device 10 has detected an event (step). S12).
  • step S11 shooting by the event detection device 10
  • step S12 determines whether or not the event detection device 10 has detected an event.
  • step S12 when the control unit 30 determines that the event detection device 10 has detected an event (YES in S12), the control unit 30 switches from DVS shooting (shooting by the event detection device 10) to shooting by the imaging device 20 (step S13). A specific example of the process in step S13 will be described later. If the event detection device 10 does not detect an event (NO in S12), the control unit 30 returns to step S11 and continuously executes DVS imaging until the event detection device 10 detects the event.
  • control unit 30 acquires the image data captured by the image pickup device 20 (step S14), and executes the object recognition process for the event based on the acquired image data (step S15). As described above, a series of processes for recognizing the object of the event based on the detection of the event is completed.
  • the second embodiment is a specific example of DVS photography (photographing by the event detection device 10), and is an example of detecting a damaged part of the road as an event.
  • DVS photography photographing by the event detection device 10
  • FIG. 15 on the road defined by the road edges 81A and 81B, textures such as white lines 82, destination indications, and arrows are drawn, and holes 83, large grooves, cracks, irregularities, and depressions are drawn. There may be damaged parts such as. It is preferable that the hole 83 and the damaged portion such as a crack, unevenness, and depression can be detected as an event in advance because it may be an obstacle to the moving vehicle.
  • Example 2 is an example in which a damaged part such as a hole 83 is identified from a texture such as a white line 82 drawn on a road, and the damaged part of the road is detected as an event.
  • An example of the flow of the DVS photographing process according to the second embodiment is shown in the flowchart of FIG.
  • This DVS photographing process is a process executed by the data processing unit 40 under the control of the control unit 30 of FIG. Further, it is assumed that the event detection device 10 can acquire an image although the resolution is lower than that of the image pickup device 20.
  • the control unit 30 recognizes the road range from the image in front of the vehicle (for example, a binary image) acquired by the event detection device 10 (step S21).
  • the road range can be recognized by detecting the center point in the traveling direction of the vehicle and the road edges 81A and 81B.
  • control unit 30 divides the image (for example, a binary image) acquired by the event detection device 10 into a mesh-like region (block division) in the recognized road range, and per unit area from the region-divided image.
  • the amount of change in the state of is obtained by calculation (step S22).
  • the amount of change of state per unit area is large, it can be determined that the road surface is rough, that is, there are holes 83, large grooves, cracks, irregularities, depressions, and other damaged parts.
  • the control unit 30 determines whether or not the amount of state change per unit area is equal to or greater than a predetermined threshold value in units of the mesh-divided area (step S23). In the determination process of step S23, the control unit 30 returns to step S21 if there is no region in which the amount of state change per unit area is equal to or greater than a predetermined threshold value (NO in S23).
  • control unit 30 determines whether or not the number of regions equal to or greater than the threshold value is equal to or greater than a predetermined set value (step S24). ). When the number of state change amounts equal to or greater than the threshold value in the adjacent divided regions is equal to or greater than the set value, the presence of holes 83 and damaged portions such as large grooves, cracks, irregularities, and depressions can be detected.
  • step S24 the control unit 30 returns to step S21 if the number of regions equal to or greater than the threshold value does not meet the predetermined set value (NO in S24), and returns to step S21 if it is equal to or greater than the predetermined set value (YES in S24). ), The event detected by the event detection device 10 is determined to be a damaged part of the road surface such as the hole 83 (step S25).
  • the control unit 30 notifies the vehicle control system 7000 via a communication unit (not shown) that the event detected by the event detection device 10 is a damaged part of the road surface.
  • the microcomputer 7610 of the vehicle control system 7000 can perform control such as reducing the traveling speed or avoiding the damaged portion.
  • the damaged part of the road surface detected by the event detection device 10 as an event for example, a clear image of the damaged part is taken by the image pickup device 30, the image data is recorded in the image recording unit 50, and then the road maintenance is performed. It can also be used to detect rough road surfaces. As a result, even if the road corporation does not monitor the road surface condition, the information from the traveling vehicle, that is, the information of the damaged part of the road surface detected as an event by the event detection device 10 can be statistically processed. Highly accurate real-time data can be obtained. Furthermore, based on highly accurate real-time data, it is possible to provide the driver of the following vehicle with information such as a damaged part of the road surface or a fall of a dangerous object.
  • the control unit 30 After the event detection device 10 detects the damaged part of the road surface as an event, the control unit 30 recognizes the textures such as the white line 82, the destination display, and the arrow drawn on the road by the event detection device 10. It is excluded from the target and is the target of recognition by the imaging device 20.
  • the damaged part of the road surface and the texture drawn on the road are identified each time the process is performed.
  • the characteristics of the texture drawn on the road are learned. , It can also be distinguished from the damaged part of the road surface.
  • the image acquired by the event detection device 10 has been described as a binary image, but a monochrome image (for example, 256 gradations) may be used.
  • a monochrome image for example, 256 gradations
  • the white region of the binary image can be detected, and it can be determined as a damaged portion of the road surface such as the hole 83 depending on whether or not the change in the white region is equal to or greater than the threshold value. ..
  • the third embodiment is a specific example of DVS photography (photographing by the event detection device 10), and is a threshold value for event detection, for example, a threshold value for determining a road surface condition (in step S23 of FIG. 16) according to the situation outside the vehicle.
  • a threshold value for event detection for example, a threshold value for determining a road surface condition (in step S23 of FIG. 16) according to the situation outside the vehicle.
  • This is an example of dynamically changing the processing threshold value).
  • the conditions outside the vehicle can be exemplified by brightness, weather, road surface conditions such as wet road surface, and the like.
  • FIG. 17 is a block diagram showing an example of the system configuration of the object recognition system to which the DVS imaging according to the third embodiment is applied.
  • the object recognition system to which the DVS imaging according to the third embodiment is applied is mounted on a moving body such as an automobile and used.
  • the object recognition system 2 has an event detection device 10, an image pickup device 20, a control unit 30, a data processing unit 40, an image recording unit 50, and a recognition processing unit 60 in FIG. It is configured to include a part 80.
  • the vehicle outside information acquisition unit 80 acquires the vehicle outside information indicating the situation outside the vehicle.
  • the vehicle exterior information acquisition unit 80 includes, for example, the current weather or an environmental sensor for detecting the weather.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the vehicle exterior information acquisition unit 80 is provided at at least one of the front nose, side mirrors, rear bumper, back door, and the upper part of the windshield in the vehicle interior, for example.
  • the outside information acquired by the outside information acquisition unit 80 is given to the control unit 30.
  • the control unit 30 controls to dynamically change the event detection threshold value based on the vehicle exterior information given by the vehicle exterior information acquisition unit 80.
  • the event detection threshold value is, for example, a threshold value in the process of step S23 of FIG. 16, that is, a threshold value for determining the state of the road surface.
  • the control unit 30 controls to dynamically change the threshold value in order to determine the state of the road surface based on the vehicle outside information given from the vehicle outside information acquisition unit 80.
  • This DVS photographing process is a process executed by the data processing unit 40 under the control of the control unit 30 of FIG.
  • the control unit 30 acquires the vehicle outside information from the vehicle outside information acquisition unit 80 (step S31), and then determines whether or not it is necessary to change the threshold value for detecting the event based on the acquired vehicle outside information (step S31). S32). Then, if it is necessary to change the threshold value (YES in S32), the control unit 30 updates the threshold value for detecting the event (step S33), and then starts DVS imaging (step S34).
  • control unit 30 recognizes the road range from the image in front of the vehicle (for example, a binary image) acquired by the event detection device 10 (step S35), and then detects an event in the recognized road range.
  • the image acquired by the apparatus 10 is divided into regions in a mesh shape, and the amount of state change per unit area is calculated from the image divided into regions (step S36).
  • the control unit 30 determines whether or not the amount of state change per unit area is equal to or greater than a predetermined threshold value in units of the mesh-divided area (step S37). Then, the control unit 30 returns to step S35 if there is no region in which the amount of state change per unit area is equal to or greater than a predetermined threshold value (NO in S37), and if it exists (YES in S37), the region is equal to or greater than the threshold value. It is determined whether or not the number of is equal to or greater than a predetermined set value (step S38).
  • step S38 the control unit 30 returns to step S35 if the number of regions equal to or greater than the threshold value does not meet the predetermined set value (NO in S38), and returns to step S35 if the number of regions exceeds the predetermined set value (YES in S38). ),
  • the event detected by the event detection device 10 is determined to be a damaged part of the road surface such as the hole 83 (step S39).
  • the control unit 30 notifies the recognition processing unit 60 that the event detected by the event detection device 10 is a damaged part of the road surface (step S40). Subsequent processing is the same as in the second embodiment.
  • the fourth embodiment is a specific example of the image pickup by the image pickup device 20 in step S13 of FIG. 4, and is an example in which the image pickup device 20 recognizes (monitors) the surroundings of the own vehicle during normal driving.
  • the image pickup device 20 has an excellent resolution as compared with the event detection device 10, and is suitable for an application of recording an image.
  • the event detection device 10 can capture a high-speed moving object without distortion, although the resolution is lower than that of the image pickup device 20.
  • the CMOS image sensor used as the image pickup apparatus 20 in the case of the rolling shutter method, the pixel signal is read out for each line, so that the time is different in reading out the next line, and if one pixel is used, in principle. , A moving body distortion called focal plane distortion occurs. It is possible to reduce the focal plane distortion by increasing the frame rate, but as an adverse effect, the exposure time is shortened, so that sufficient brightness as a recognition image cannot be obtained.
  • the global shutter method can be one solution to the problem of focal plane distortion, but it requires a dedicated capacitive element to temporarily store the photoelectrically converted charge, which increases the chip area and increases the chip area. It is disadvantageous in terms of cost.
  • the characteristics of the image pickup device 20 and the event detection device 10 are utilized to seamlessly perform the recognition process around the own vehicle during normal driving.
  • An example of control of the image pickup apparatus 20 and the event detection apparatus 10 according to the fourth embodiment is shown in the flowchart of FIG. The control of the image pickup apparatus 20 and the event detection apparatus 10 is executed under the control of the control unit 30 of FIG.
  • the control unit 30 takes a picture with the image pickup device 20 and monitors the surroundings of the own vehicle, for example, a vehicle approaching the own vehicle from behind at high speed based on the image acquired by the image pickup device 20 (step S41). .. During this normal traveling, the control unit 30 monitors whether or not the difference between the vehicle speed of the own vehicle and the vehicle speed of the vehicle to be monitored is equal to or greater than a predetermined threshold value (step S42).
  • the control unit 30 When the difference between the vehicle speed of the own vehicle and the vehicle speed of the vehicle to be monitored is equal to or greater than the threshold value (YES in S42), the control unit 30 causes focal plane distortion in the image acquired by the image pickup device 20, and the recognition performance is improved. Judge that it will decrease. Then, the control unit 30 switches from shooting by the imaging device 20 to shooting by the event detection device 10 that does not generate focal plane distortion (step S43), and based on the image acquired by the event detection device 10, the surroundings of the own vehicle. Monitor (step S45). If the vehicle speed difference from the vehicle to be monitored is less than the threshold value (NO in S42), the control unit 30 returns to step S41 and continues photographing / monitoring by the imaging device 20.
  • control unit 30 monitors whether or not the vehicle speed difference between the own vehicle and the vehicle to be monitored is less than a predetermined threshold value (step S45), and if it is less than the threshold value (YES in S45). , The shooting by the event detection device 10 is switched to the shooting by the imaging device 20 (step S46). If the vehicle speed difference from the vehicle to be monitored is equal to or greater than a predetermined threshold value (NO in S45), the control unit 30 returns to step S44 and continues shooting / monitoring by the event detection device 10.
  • the surroundings of the own vehicle are monitored by the image pickup by the image pickup device 20 having a resolution superior to that of the event detection device 10 during normal driving. , Image recording, recognition / tracking processing. Then, when a high-speed moving object approaches, for example, from behind at high speed, the image is switched to imaging by the event detection device 10 to continue recognizing and tracking the high-speed moving object.
  • the resolution of the event detection device 10 is inferior to that of the image pickup device 20, it is possible to capture an object moving at high speed without distortion. Therefore, since it is possible to recognize an object moving at high speed (for example, a vehicle approaching at high speed from behind) with a distortion-free image, the recognition accuracy is higher than that of the image pickup device 20 in which focal plane distortion occurs. Can be improved. Then, by passing the recognized result to the imaging system 1 or the in-vehicle system, various controls become possible.
  • the recognition target (monitoring target) is an example of a vehicle approaching the own vehicle at high speed from behind, but the recognition target is not limited to this, and relates to the fourth embodiment.
  • the technique is more effective for fast moving objects.
  • shooting by the imaging device 20 and shooting by the event detection device 10 are switched, but intersections, map information, blinker operation, etc. It is also possible to switch from shooting by the imaging device 20 to shooting by the event detection device 10 using the information as a trigger. As a result, it is possible to prioritize the recognition / confirmation of the surrounding situation by taking a picture with the event detection device 10 when changing the course or merging.
  • the fifth embodiment is an example in which infrared light (IR) is self-luminous in the dark and the event detection device 10 detects the presence or absence of an obstacle.
  • IR infrared light
  • An example of the system configuration of the object recognition system according to the fifth embodiment is shown in the block diagram of FIG.
  • the object recognition system 2 has an IR projection in addition to the event detection device 10, the image pickup device 20, the control unit 30, the data processing unit 40, the image recording unit 50, and the recognition processing unit 60 in FIG. It is configured to include a unit 91, an IR floodlight unit driver 92, and a sunshine sensor 93.
  • the IR floodlight unit 91 is composed of, for example, a light emitting diode (LED) that emits infrared light having a wavelength of 850 nm, but is not limited thereto.
  • the IR floodlight driver 92 drives the IR floodlight 91 under the control of the control unit 30.
  • the sunshine sensor 93 is a sensor that detects the degree of sunshine, and in particular, detects a dark environment (state) in which visibility tends to deteriorate.
  • the sunshine sensor 93 is also one of the environmental sensors in the vehicle control system 7000 (see FIG. 25), which will be described later.
  • the event detection device 10 In order for the event detection device 10 to detect an event such as an obstacle while the IR light projecting unit 91 emits IR light in a dark environment, the event detection device 10 is provided with pixels having sensitivity to IR light. Need to be placed. Examples of pixel arrangements that are sensitive to IR light are shown in FIGS. 21A, 21B, 21C, 21D, and 21E.
  • the example of FIG. 21A is a pixel array in which IR pixels are combined with an RGB Bayer array.
  • the example of FIGS. 21B and 21C is a pixel array composed of a combination of monochrome (W: white) pixels and IR pixels.
  • the example of FIG. 21D is a pixel array composed of a combination of monochrome pixels, IR pixels, and R pixels so that the red of the traffic light can be detected.
  • the pixel array including the IR pixels illustrated here is an example, and is not limited to these pixel arrays. For example, the ratio of the IR pixel to another pixel can be changed.
  • the W pixel has sensitivity including the wavelength of IR light, as shown in FIG. 21E, it is composed of a combination of R pixel, B pixel, and W pixel without using IR pixel. It can also be a pixel array.
  • the IR light projecting unit 91 is driven under the control of the control unit 30 to emit IR light in a dark surrounding place, for example, when the vehicle turns left or right or when the vehicle reverses.
  • the event detection device 10 having pixels that emit light and have sensitivity to IR light detects the presence of pedestrians and unlit bicycles, or the presence or absence of obstacles such as walls and poles as events.
  • the event is detected when the change in brightness exceeds a predetermined threshold value in the IR pixel.
  • the object recognition system 2 provided with the IR floodlight unit 91 in the side mirror portion, the rear bumper portion, or the back door portion of the vehicle.
  • the traveling direction of the vehicle since it is usually brightly illuminated by the headlight, it is basically less necessary to emit IR light and detect the event with the event detection device 10, but the front of the vehicle
  • An object recognition system 2 including an IR floodlight unit 91 may be provided in the nose portion.
  • the following is a specific example of the event detection process under the projection of IR light in the object recognition system 2 according to the fifth embodiment.
  • FIG. 22 is a flowchart showing the flow of a specific example 1 of the event detection process at the time of projecting IR light in the object recognition system 2 according to the fifth embodiment. This process is a process executed under the control of the control unit 30 of FIG. This point is the same in Specific Example 2 described later.
  • control unit 30 When the control unit 30 receives information from the sunshine sensor 93 that the environment around the vehicle has become a predetermined darkness (step S51), the control unit 30 turns on the event detection device 10 and turns on the IR floodlight unit 91. Is turned on with a predetermined amount of light projected (step S52).
  • the control unit 30 determines whether or not the event detection device 10 has detected an object (event) that has not changed for a certain period of time (step S53), and if it detects an object that has not changed for a certain period of time (S53). YES), for example, notifying the vehicle control system 7000, which will be described later (step S54).
  • an object (event) that does not change for a certain period of time detected by the event detection device 10 a pedestrian in the dark, an obstacle such as a wall or a pole, or the like can be exemplified.
  • the vehicle control system 7000 which has received the notification of object detection from the control unit 30, notifies the driver that an object (event) exists in the dark, and calls attention to the driver. After notifying the vehicle control system 7000, the control unit 30 turns off the event detection device 10 and the IR projection unit 91 (step S55), emits IR light, and detects an event in a dark environment. Ends a series of processes.
  • step S55 the process proceeds to step S55 to turn off the event detection device 10 and the IR floodlight unit 91.
  • wasteful power consumption due to the continuous ON state of the event detection device 10 and the IR floodlight unit 91 can be eliminated.
  • the object recognition system 2 is provided with the sunshine sensor 93, and the information given from the sunshine sensor 93 is used as a trigger to start the event detection process in a dark environment, but the present invention is limited to this. is not.
  • the event detection process can be started by using the information received from the vehicle control system 7000, for example, the turn signal on information or the steering wheel operation amount information as a trigger, or the event detection process by using the image pickup information of the image pickup apparatus 20 as a trigger. You can also start.
  • the amount of light projected by the IR floodlight unit 91 is set as a predetermined amount of light projected, but in Specific Example 2, the amount of light projected by the IR floodlight unit 91 is adjusted according to the brightness of the surroundings of the vehicle. To do so. By doing so, it is possible to eliminate wasteful power consumption in the IR floodlight unit 91 as compared with the case where the light projection amount is constant regardless of the ambient brightness.
  • FIG. 23 is a flowchart showing the flow of a specific example 1 of the event detection process at the time of projecting IR light in the object recognition system 2 according to the fifth embodiment. Further, FIG. 24 shows the relationship between the brightness around the vehicle and the amount of IR light projected.
  • control unit 30 When the control unit 30 receives the brightness information of the surrounding environment of the own vehicle from the sunshine sensor 93 (step S61), the control unit 30 turns on the event detection device 10 and the IR projection unit 91 (step S62), and the IR projection unit 91 The amount of light projected from the above is set to the amount of light projected according to the brightness information received from the sunshine sensor 93 (step S63).
  • the control unit 30 determines whether or not the event detection device 10 has detected an object (event) that has not changed for a certain period of time (step S64), and if it detects an object that has not changed for a certain period of time (S64). YES), for example, notifying the vehicle control system 7000, which will be described later (step S65).
  • an object (event) that does not change for a certain period of time detected by the event detection device 10 a pedestrian in the dark, an obstacle such as a wall or a pole, or the like can be exemplified.
  • the vehicle control system 7000 which has received the notification of object detection from the control unit 30, notifies the driver that an object (event) exists in the dark, and calls attention to the driver. After notifying the vehicle control system 7000, the control unit 30 turns off the event detection device 10 and the IR light projecting unit 91 (step S66), projects IR light, and detects an event in a dark environment. Ends a series of processes.
  • step S66 the control unit 30 proceeds to step S66 to turn off the event detection device 10 and the IR floodlight unit 91.
  • wasteful power consumption due to the continuous ON state of the event detection device 10 and the IR floodlight unit 91 can be eliminated.
  • the amount of light projected by the IR floodlight unit 91 is adjusted in one step according to the brightness information received from the sunshine sensor 93, but it can also be adjusted in multiple steps. For example, when the brightness of the surrounding environment of the own vehicle is a little bright, the amount of light projected by the IR floodlight unit 91 is adjusted conservatively, and when it is pitch black, the amount of light projected by the IR floodlight unit 91 is adjusted. Control such as adjusting to the maximum may be performed.
  • the technique according to the present disclosure has been described above based on the preferred embodiment, the technique according to the present disclosure is not limited to the embodiment.
  • the configurations and structures of the imaging system and the object recognition system described in the above embodiments are examples and can be changed.
  • the pixel signal generation unit 62 is provided for each light receiving unit 61 to form the pixel 11, but a plurality of light receiving units 31 are blocked as a unit, and the pixel signal generation unit 62 is provided in each pixel block. It is also possible to provide one by one and share the pixel signal generation unit 62 among a plurality of light receiving units 61 in the pixel block.
  • the technology according to the present disclosure can be applied to various products. A more specific application example will be described below.
  • the technology according to the present disclosure includes any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), and the like. It may be realized as an image pickup system or an object recognition system mounted on a body.
  • FIG. 25 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a moving body control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via the communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an external information detection unit 7400, an in-vehicle information detection unit 7500, and an integrated control unit 7600. ..
  • the communication network 7010 connecting these plurality of control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores a program executed by the microcomputer or parameters used for various arithmetic, and a drive circuit that drives various control target devices. To be equipped.
  • Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and is connected to devices or sensors inside or outside the vehicle by wired communication or wireless communication. A communication I / F for performing communication is provided. In FIG.
  • the microcomputer 7610 As the functional configuration of the integrated control unit 7600, the microcomputer 7610, general-purpose communication I / F 7620, dedicated communication I / F 7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F 7660, audio image output unit 7670, The vehicle-mounted network I / F 7680 and the storage unit 7690 are shown.
  • Other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • the vehicle condition detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 may include, for example, a gyro sensor that detects the angular velocity of the axial rotation of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or steering wheel steering. Includes at least one of the sensors for detecting angular velocity, engine speed, wheel speed, and the like.
  • the drive system control unit 7100 performs arithmetic processing using signals input from the vehicle state detection unit 7110 to control an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 7200 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 7200 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source of the drive motor, according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature control of the secondary battery 7310 or the cooling device provided in the battery device.
  • the vehicle outside information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000.
  • the image pickup unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400.
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle exterior information detection unit 7420 is used to detect, for example, the current weather or an environmental sensor for detecting the weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the surrounding information detection sensors is included.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the imaging unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 26 shows an example of the installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420.
  • the imaging units 7910, 7912, 7914, 7916, 7918 are provided, for example, at at least one of the front nose, side mirrors, rear bumpers, back door, and upper part of the windshield of the vehicle interior of the vehicle 7900.
  • the image pickup unit 7910 provided on the front nose and the image pickup section 7918 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • the imaging units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900.
  • the imaging unit 7916 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900.
  • the imaging unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 26 shows an example of the photographing range of each of the imaging units 7910, 7912, 7914, 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors, respectively
  • the imaging range d indicates the imaging range d.
  • the imaging range of the imaging unit 7916 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, 7916, a bird's-eye view image of the vehicle 7900 as viewed from above can be obtained.
  • the vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, side, corners and the upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, an ultrasonic sensor or a radar device.
  • the vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, a lidar device.
  • These out-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, or the like.
  • the vehicle exterior information detection unit 7400 causes the image pickup unit 7410 to capture an image of the vehicle exterior and receives the captured image data. Further, the vehicle exterior information detection unit 7400 receives detection information from the connected vehicle exterior information detection unit 7420. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives the received reflected wave information.
  • the vehicle outside information detection unit 7400 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on a road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform an environment recognition process for recognizing rainfall, fog, road surface conditions, etc. based on the received information.
  • the vehicle exterior information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
  • the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a vehicle, an obstacle, a sign, a character on the road surface, or the like based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes the image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. May be good.
  • the vehicle exterior information detection unit 7400 may perform the viewpoint conversion process using the image data captured by different imaging units 7410.
  • the in-vehicle information detection unit 7500 detects the in-vehicle information.
  • a driver state detection unit 7510 that detects the driver's state is connected to the in-vehicle information detection unit 7500.
  • the driver state detection unit 7510 may include a camera that captures the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like.
  • the biosensor is provided on, for example, the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and may determine whether the driver is dozing or not. You may.
  • the in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
  • the integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device such as a touch panel, a button, a microphone, a switch or a lever, which can be input-operated by a passenger. Data obtained by recognizing the voice input by the microphone may be input to the integrated control unit 7600.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an externally connected device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. You may.
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Further, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. By operating the input unit 7800, the passenger or the like inputs various data to the vehicle control system 7000 and instructs the processing operation.
  • the storage unit 7690 may include a ROM (Read Only Memory) for storing various programs executed by the microcomputer, and a RAM (Random Access Memory) for storing various parameters, calculation results, sensor values, and the like. Further, the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750.
  • General-purpose communication I / F7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or wireless LAN (Wi-Fi).
  • GSM Global System of Mobile communications
  • WiMAX Wireless F
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • Wi-Fi wireless LAN
  • Other wireless communication protocols such as (also referred to as (registered trademark)) and Bluetooth (registered trademark) may be implemented.
  • the general-purpose communication I / F7620 connects to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point, for example. You may. Further, the general-purpose communication I / F7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a terminal of a driver, a pedestrian or a store, or an MTC (Machine Type Communication) terminal). You may connect with.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I / F 7630 is a communication I / F that supports a communication protocol designed for use in a vehicle.
  • the dedicated communication I / F7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or cellular communication protocol, which is a combination of IEEE802.11p in the lower layer and IEEE1609 in the upper layer. May be implemented.
  • the dedicated communication I / F7630 typically includes vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-home (Vehicle to Home) communication, and pedestrian-to-pedestrian (Vehicle to Pedestrian) communication. ) Carry out V2X communication, a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), executes positioning, and executes positioning, and the latitude, longitude, and altitude of the vehicle. Generate location information including.
  • the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
  • the beacon receiving unit 7650 receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and acquires information such as the current position, traffic congestion, road closure, or required time.
  • the function of the beacon receiving unit 7650 may be included in the above-mentioned dedicated communication I / F 7630.
  • the in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle.
  • the in-vehicle device I / F7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • the in-vehicle device I / F7660 is connected via a connection terminal (and a cable if necessary) (not shown), USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL (Mobile).
  • a wired connection such as High-definition Link may be established.
  • the in-vehicle device 7760 may include, for example, at least one of a passenger's mobile device or wearable device, or an information device carried or attached to the vehicle. In-vehicle device 7760 may also include a navigation device that searches for a route to an arbitrary destination.
  • the in-vehicle device I / F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
  • the in-vehicle network I / F7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the vehicle-mounted network I / F7680 transmits / receives signals and the like according to a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 is via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680.
  • the vehicle control system 7000 is controlled according to various programs based on the information acquired. For example, the microcomputer 7610 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. May be good.
  • the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. Cooperative control may be performed for the purpose of. Further, the microcomputer 7610 automatically travels autonomously without relying on the driver's operation by controlling the driving force generator, steering mechanism, braking device, etc. based on the acquired information on the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving or the like.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 7610 has information acquired via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict a danger such as a vehicle collision, a pedestrian or the like approaching or entering a closed road based on the acquired information, and may generate a warning signal.
  • the warning signal may be, for example, a signal for generating a warning sound or turning on a warning lamp.
  • the audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are exemplified as output devices.
  • the display unit 7720 may include, for example, at least one of an onboard display and a head-up display.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be other devices such as headphones, wearable devices such as eyeglass-type displays worn by passengers, projectors or lamps other than these devices.
  • the display device displays the results obtained by various processes performed by the microcomputer 7610 or the information received from other control units in various formats such as texts, images, tables, and graphs. Display visually.
  • the audio output device converts an audio signal composed of reproduced audio data or acoustic data into an analog signal and outputs it audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be composed of a plurality of control units.
  • the vehicle control system 7000 may include another control unit (not shown).
  • the other control unit may have a part or all of the functions carried out by any of the control units. That is, as long as information is transmitted and received via the communication network 7010, predetermined arithmetic processing may be performed by any control unit.
  • a sensor or device connected to any control unit may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. .
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging units 7910, 7912, 7914, 7916, 7918 and the like among the configurations described above.
  • the imaging system of the present disclosure can be applied to these imaging units.
  • the imaging system of the present disclosure includes an event detection device composed of an asynchronous image pickup device called DVS and a synchronous image pickup device, and after detecting an event by the event detection device, image information of an area including the event is obtained. Acquired by an image pickup device.
  • the object recognition of the event can be performed more accurately based on the image information acquired by the imaging device, which makes it possible to contribute to the realization of safe vehicle running.
  • the present disclosure may also have the following configuration.
  • A. Imaging system An event detection device that detects as an event that the change in brightness of a pixel that photoelectrically converts incident light exceeds a predetermined threshold value.
  • An imaging device that captures images at a fixed frame rate, and Equipped with a control unit that controls the event detection device and imaging device In response to the event detection device detecting the event, the control unit controls the image information of the area including the event to be acquired by the image pickup device.
  • the event detection device can acquire images and can acquire images.
  • the control unit detects the condition of the road surface based on the image acquired by the event detection device.
  • the imaging system according to the above [A-1].
  • the control unit divides the image acquired by the event detection device into areas, and detects the state of the road surface based on the amount of state change per unit area obtained from the image obtained by dividing the areas.
  • [A-4] When the number of regions where the amount of state change per unit area is equal to or greater than a predetermined threshold value is equal to or greater than a predetermined set value, the control unit determines that there is a damaged portion on the road surface.
  • [A-5] When the control unit determines that there is a damaged part on the road surface, the control unit notifies the control system of the moving body of the determination result.
  • the control unit dynamically changes the threshold value in order to determine the state of the road surface according to the external condition of the moving body.
  • the imaging system according to any one of the above [A-2] to the above [A-5].
  • the control unit determines the external situation of the moving body based on the information given from the environmental sensor mounted on the moving body.
  • the imaging system according to the above [A-6].
  • [A-8] When the difference between the vehicle speed of the own vehicle and the vehicle speed of the vehicle to be monitored is equal to or greater than a predetermined threshold value in a state where the control unit monitors the surroundings based on the image acquired by the image pickup device. Switch from shooting with an imaging device to shooting with an event detection device, and monitor the surroundings based on the image acquired by the event detection device.
  • [A-9] In a state where the control unit monitors the surroundings based on the image acquired by the event detection device, the difference between the vehicle speed of the own vehicle and the vehicle speed of the monitored vehicle becomes less than a predetermined threshold value. In that case, switch from shooting with the imaging device to shooting with the event detection device to shooting with the imaging device.
  • [A-10] An infrared light projecting unit for projecting infrared light is provided.
  • [A-11] Equipped with a sunshine sensor
  • the control unit turns on the infrared light projection unit by using the information given by the sunshine sensor as a trigger.
  • the event detection device has pixels that are sensitive to infrared light.
  • [A-13] The event detection device detects an event based on a change in the brightness of a pixel having sensitivity to infrared light in an environment where infrared light is projected by the infrared light projecting unit.
  • [A-14] When the event detection device detects an event that does not change for a certain period of time, the control unit notifies the control system of the moving body of the detection result.
  • the control unit turns off the infrared light projecting unit when the event detecting device does not detect an event that does not change for a certain period of time when the infrared light projecting unit is off.
  • the imaging system according to the above [A-13].
  • the control unit sets the amount of infrared light projected by the infrared light projecting unit according to the brightness information given by the sunshine sensor.
  • the imaging system according to any one of the above [A-10] to the above [A-15].
  • the control unit adjusts the amount of infrared light projected by the infrared light projecting unit in multiple stages according to the brightness information given by the sunshine sensor.
  • Object recognition system An event detection device that detects as an event that the change in brightness of a pixel that photoelectrically converts incident light exceeds a predetermined threshold value.
  • An imaging device that captures images at a fixed frame rate, and Equipped with a control unit that controls the event detection device and imaging device Under the control of the control unit, the event is detected by the event detection device, the image information of the area including the event is acquired by the image pickup device, and the object recognition is performed based on the acquired image information.
  • An object recognition system mounted on a moving body.
  • the event detection device can acquire images and can acquire images.
  • the control unit detects the condition of the road surface based on the image acquired by the event detection device.
  • the object recognition system according to the above [B-1].
  • the control unit divides the image acquired by the event detection device into regions, and detects the road surface condition based on the amount of state change per unit area obtained from the region-divided image.
  • the object recognition system according to the above [B-2].
  • [B-4] When the number of regions where the amount of state change per unit area is equal to or greater than a predetermined threshold value is equal to or greater than a predetermined set value, the control unit determines that there is a damaged portion on the road surface.
  • [B-5] When the control unit determines that there is a damaged part on the road surface, the control unit notifies the control system of the moving body of the determination result.
  • the control unit dynamically changes the threshold value in order to determine the state of the road surface according to the external condition of the moving body.
  • the object recognition system according to any one of the above [B-2] to the above [B-5].
  • the control unit determines the external situation of the moving body based on the information given from the environmental sensor mounted on the moving body.
  • the object recognition system according to the above [B-6].
  • [B-8] When the difference between the vehicle speed of the own vehicle and the vehicle speed of the vehicle to be monitored is equal to or greater than a predetermined threshold value in a state where the control unit monitors the surroundings based on the image acquired by the image pickup device. Switch from shooting with an imaging device to shooting with an event detection device, and monitor the surroundings based on the image acquired by the event detection device.
  • the event detection device has pixels that are sensitive to infrared light.
  • [B-13] The event detection device detects an event based on a change in the brightness of a pixel having sensitivity to infrared light in an environment in which infrared light is projected by the infrared light projecting unit.
  • [B-14] When the event detection device detects an event that does not change for a certain period of time, the control unit notifies the control system of the moving body of the detection result.
  • the control unit turns off the infrared light projecting unit when the event detecting device does not detect an event that does not change for a certain period of time when the infrared light projecting unit is off.
  • the object recognition system according to the above [B-13].
  • the control unit sets the amount of infrared light projected by the infrared light projecting unit according to the brightness information given by the sunshine sensor.
  • the object recognition system according to any one of the above [B-10] to the above [B-15].
  • the control unit adjusts the amount of infrared light projected by the infrared light projecting unit in multiple stages according to the brightness information given by the sunshine sensor.
  • the object recognition system according to the above [B-16].

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本開示の撮像システムは、入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、固定のフレームレートで撮像を行う撮像装置、並びに、イベント検出装置及び撮像装置の制御を行う制御部を備え、移動体に搭載されて用いられる。そして、制御部は、イベント検出装置がイベントを検出したことを受けて、イベントを含む領域の画像情報を、撮像装置によって取得する制御を行う。また、本開示の物体認識システムは、制御部による制御の下に、イベント検出装置によってイベントを検出した上で、イベントを含む領域の画像情報を撮像装置によって取得し、この取得した画像情報を基に物体認識を行う。

Description

撮像システム及び撮像システムの制御方法、並びに、物体認識システム
 本開示は、撮像システム及び撮像システムの制御方法、並びに、物体認識システムに関する。
 イベントドリブン方式の撮像装置の一つとして、DVS(Dynamic Vision Sensor)と呼ばれる非同期型の撮像装置がある。非同期型の撮像装置は、入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出することができる。従って、この種の非同期型の撮像装置については、イベント検出装置と言うこともできる。従来、イベント検出装置は、車両に搭載されて、走行路面をモニタリングするイベントベース視覚センサとして用いられている(例えば、特許文献1参照)。
特開2013-79937号公報
 車両に搭載されたイベント検出装置によれば、車両の走行中に路面等の物体認識を行うことができる。しかし、イベント検出装置の場合、例えば画素毎に、イベントの検出部を有する画素構成がとられるため、同期型の撮像装置に比べて画素サイズが大きくならざるを得なく、解像度が低い。従って、イベント検出装置は、物体の存在(イベントの発生)を検出できたとしても、解像度が低いが故に、イベントの物体認識を精度よく行うことができない。
 そこで、本開示は、イベントを検出した上で、そのイベントの物体認識をより精度よく行うことができる撮像システム及び撮像システムの制御方法、並びに、当該撮像システムを用いる物体認識システムを提供することを目的とする。
 上記の目的を達成するための本開示の撮像システムは、
 入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、
 固定のフレームレートで撮像を行う撮像装置、並びに、
 イベント検出装置及び撮像装置の制御を行う制御部を備え、
 移動体に搭載されて用いられ、
 制御部は、イベント検出装置がイベントを検出したことを受けて、イベントを含む領域の画像情報を、撮像装置によって取得する制御を行う、
 構成となっている。
 また、上記の目的を達成するための本開示の撮像システムの制御方法は、
 入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、及び、
 固定のフレームレートで撮像を行う撮像装置を備え、
 移動体に搭載されて用いられる撮像システムにおいて、
 イベント検出装置がイベントを検出したとき、イベントを含む領域の画像情報を、撮像装置によって取得する。
 また、上記の目的を達成するための本開示の物体認識システムは、
 入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、
 固定のフレームレートで撮像を行う撮像装置、並びに、
 イベント検出装置及び撮像装置の制御を行う制御部を備え、
 移動体に搭載されて用いられ、
 制御部による制御の下に、イベント検出装置によってイベントを検出した上で、イベントを含む領域の画像情報を撮像装置によって取得し、この取得した画像情報を基に物体認識を行う、
 構成となっている。
図1は、本開示の撮像システムのシステム構成の一例を示すブロック図である。 図2は、本開示の撮像システムにおけるイベント検出装置の構成の一例を示すブロック図である。 図3は、イベント検出装置における画素アレイ部の構成の一例を示すブロック図である。 図4は、イベント検出装置における画素の回路構成の一例を示す回路図である。 図5は、イベント検出装置の画素におけるイベント検出部の回路構成の一例を示すブロック図である。 図6は、イベント検出部における電流電圧変換部の構成の一例を示す回路図である。 図7は、イベント検出部における減算部及び量子化部の構成の一例を示す回路図である。 図8は、イベント検出装置の積層型のチップ構造の概略を示す分解斜視図である。 図9は、本開示の撮像システムにおける撮像装置の一例であるCMOS型イメージセンサの構成の概略を示すブロック図である。 図10は、撮像装置における画素の回路構成の一例を示す回路図である。 図11は、撮像装置の平置型のチップ構造の概略を示す平面図である。 図12Aは、撮像装置の積層型のチップ構造の概略を示す平面図であり、図12Bは、本開示の撮像システムの制御方法の処理の一例を示すフローチャートである。 図13は、本開示の物体認識システムのシステム構成の一例を示すブロック図である。 図14は、実施例1に係る物体認識処理の流れを示すフローチャートである。 図15は、道路に描かれている、白線、行き先表示、矢印等のテクスチャ、及び、路面に存在する穴、大きな溝、ひび割れ、凹凸、陥没等の損傷箇所を示す概略図である。 図16は、実施例2に係るDVS撮影の処理の流れを示すフローチャートである。 図17は、実施例3に係るDVS撮影が適用される物体認識システムのシステム構成の一例を示すブロック図である。 図18は、実施例3に係るDVS撮影の処理の流れを示すフローチャートである。 図19は、実施例4に係る撮像装置及びイベント検出装置の制御の一例を示すフローチャートである。 図20は、実施例5に係る物体認識システムのシステム構成の一例を示すブロック図である。 図21A、図21B、図21C、図21D、及び、図21Eは、赤外光(IR光)に感度を持つ画素配列の例を示す図である。 図22は、実施例5に係る物体認識システムにおけるIR光の投光時のイベント検出処理の具体例1の流れを示すフローチャートである。 図23は、実施例5に係る物体認識システムにおけるIR光の投光時のイベント検出処理の具体例2の流れを示すフローチャートである。 図24は、自車の周囲の明るさとIR投光量との関係を示す特性図である。 図25は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 図26は、車両制御システムにおける撮像部の設置位置の例を示す図である。
 以下、本開示に係る技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示に係る技術は実施形態に限定されるものではない。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
 1.本開示の撮像システム及び物体認識システム、全般に関する説明
 2.本開示の撮像システム
  2-1.撮像システムの構成例
  2-2.イベント検出装置の構成例
   2-2-1.画素アレイ部の構成例
   2-2-2.画素の構成例
   2-2-3.イベント検出部の構成例
    2-2-3-1.電流電圧変換部の構成例
    2-2-3-2.減算部及び量子化部の構成例
   2-2-4.チップ構造の構成例
  2-3.撮像装置の構成例
   2-3-1.CMOS型イメージセンサの構成例
   2-3-2.画素の構成例
   2-3-3.チップ構造の構成例
    2-3-3-1.平置型のチップ構造(所謂、平置構造)
    2-3-3-2.積層型のチップ構造(所謂、積層構造)
 3.本開示の物体認識システム
  3-1.物体認識システムの構成例
  3-2.実施例1(イベント検出に基づく物体認識の基本処理の例)
  3-3.実施例2(道路の損傷箇所をイベントとして検出する例)
  3-4.実施例3(車外の状況に応じて、イベント検出の閾値を変える例)
  3-5.実施例4(通常走行時、撮像装置によって自車の周囲を認識する例)
  3-6.実施例5(暗闇において赤外光を自発光してイベント検出装置で障害物の有無を検知する例)
 4.変形例
 5.本開示に係る技術の適用例
  5-1.移動体への応用例
 6.本開示がとることができる構成
≪本開示の撮像システム及び物体認識システム、全般に関する説明≫
 本開示の撮像システム及び物体認識システムにあっては、イベント検出装置について、画像の取得が可能であり、制御部について、イベント検出装置が取得した画像を基に路面の状態を検出する構成とすることができる。
 更に、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、制御部について、イベント検出装置が取得した画像を領域分割し、この領域分割した画像から求めた単位面積当たりの状態変化量を基に路面の状態を検出する構成とすることができる。そして、制御部について、単位面積当たりの状態変化量が所定の閾値以上の領域の数が所定の設定値以上の場合、路面に損傷箇所が存在すると判断し、その判断結果を移動体の制御システムに通知する構成とすることができる。
 更に、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、制御部について、移動体の外部の状況に応じて、路面の状態を判断するため閾値を動的に変える制御を行う構成とすることができる。そして、制御部について、移動体に装着された環境センサから与えられる情報に基づいて移動体の外部の状況を判断する構成とすることができる。
 また、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、制御部について、撮像装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値以上の場合、撮像装置による撮影からイベント検出装置による撮影に切り替え、イベント検出装置によって取得される画像を基に周囲を監視する構成とすることができる。そして、制御部について、イベント検出装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値未満になった場合、撮像装置による撮影からイベント検出装置による撮影から撮像装置による撮影に切り替える構成とすることができる。
 また、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、赤外光を投光する赤外光投光部を備える構成とすることができる。また、日照センサを備え、制御部について、日照センサから与えられる情報をトリガーとして、赤外光投光部をオン状態とする構成とすることができる。
 更に、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、イベント検出装置について、赤外光に感度を持つ画素を有している構成とすることができる。そして、イベント検出装置について、赤外光投光部によって赤外光が投光された環境下において、赤外光に感度を持つ画素の輝度変化に基づいてイベントの検出を行う構成とすることができる。
 更に、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、制御部について、イベント検出装置によって一定時間変化のないイベントを検出した場合、その検出結果を移動体の制御システムに通知する構成とすることができる。そして、制御部について、赤外光投光部がオフ状態のとき、イベント検出装置によって一定時間変化のないイベントを検出しない場合、赤外光投光部をオフ状態とする構成とすることができる。
 更に、上述した好ましい構成を含む本開示の撮像システム及び物体認識システムにあっては、制御部について、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を設定する構成とすることができる。そして、制御部について、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を多段階に調整する構成とすることができる。
≪本開示の撮像システム≫
<撮像システムの構成例>
 図1は、本開示の撮像システムのシステム構成の一例を示すブロック図である。
 図1に示すように、本開示の撮像システム1は、イベント検出装置10、撮像装置20、制御部30、データ処理部40、及び、画像記録部50を有する構成となっている。
 イベント検出装置10としては、入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するDVSと呼ばれる非同期型の撮像装置を用いることができる。非同期型の撮像装置は、垂直同期信号に同期して撮像を行う同期型の撮像装置に対して、垂直同期信号に非同期でイベントを検出する撮像装置である。非同期型の撮像装置から成るイベント検出装置10の詳細については後述する。
 撮像装置20は、垂直同期信号に同期して固定のフレームレートで撮像を行い、フレーム形式の画像データを出力する同期型の撮像装置を用いることができる。同期型の撮像装置としては、CMOS(Complementary Metal Oxide Semiconductor)型イメージセンサや、CCD(Charge Coupled Device)型イメージセンサ等を例示することができる。同期型の撮像装置から成る撮像装置20の詳細については後述する。
 制御部30は、例えばプロセッサ(CPU)によって構成され、イベント検出装置10、撮像装置20、及び、データ処理部40の制御を行う。より具体的には、制御部30は、イベント検出装置10がイベントを検出したことを受けて、イベントを含む領域の画像情報を、撮像装置20によって取得する制御を行う。
 データ処理部40は、制御部30による制御の下に、イベント検出装置10から出力される、イベントの発生を表すイベントデータや、撮像装置20から出力される画像データに対して所定のデータ処理を行う。制御部30は、このデータ処理部40を通して、イベント検出装置10がイベントを検出したことを知ることができる。画像記録部50は、データ処理部40で処理された画像データを記録する。
 上記の構成の撮像システム1において、非同期型の撮像装置から成るイベント検出装置10は、一般的に、同期型の撮像装置20に比べて画素サイズが大きくならざるを得ないため、固定のフレームレートで撮像を行う撮像装置20に比べて解像度が低い。一方、同期型の撮像装置から成る撮像装置20は、非同期型の撮像装置に比べて解像度に優れている。
 以下に、イベント検出装置10及び撮像装置20の詳細について説明する。
<イベント検出装置の構成例>
 図2は、上記の構成の本開示の撮像システム1におけるイベント検出装置10の構成の一例を示すブロック図である。
 図2に示すように、イベント検出装置10は、複数の画素11が行列状(アレイ状)に2次元配列されて成る画素アレイ部12を有する。複数の画素11のそれぞれは、光電変換によって生成される電気信号としての光電流に応じた電圧のアナログ信号を画素信号として生成する。また、複数の画素11のそれぞれは、入射光の輝度に応じた光電流に、所定の閾値を超える変化が生じたか否かによって、イベントの有無を検出する。換言すれば、複数の画素11のそれぞれは、輝度変化が所定の閾値を超えたことをイベントとして検出する。
 イベント検出装置10は、画素アレイ部12の他に、画素アレイ部12の周辺回路部として、駆動部13、アービタ部(調停部)14、カラム処理部15、及び、信号処理部16を備えている。
 複数の画素11のそれぞれは、イベントを検出した際に、イベントの発生を表すイベントデータの出力を要求するリクエストをアービタ部14に出力する。そして、複数の画素11のそれぞれは、イベントデータの出力の許可を表す応答をアービタ部14から受け取った場合、駆動部13及び信号処理部16に対してイベントデータを出力する。また、イベントを検出した画素11は、光電変換によって生成されるアナログの画素信号をカラム処理部15に対して出力する。
 駆動部13は、画素アレイ部12の各画素11を駆動する。例えば、駆動部13は、イベントを検出し、イベントデータを出力した画素11を駆動し、当該画素11のアナログの画素信号を、カラム処理部15へ出力させる。
 アービタ部14は、複数の画素11のそれぞれから供給されるイベントデータの出力を要求するリクエストを調停し、その調停結果(イベントデータの出力の許可/不許可)に基づく応答、及び、イベント検出をリセットするリセット信号を画素11に送信する。
 カラム処理部15は、例えば、画素アレイ部12の画素列毎に設けられたアナログ-デジタル変換器の集合から成るアナログ-デジタル変換部を有する。アナログ-デジタル変換器としては、例えば、シングルスロープ型のアナログ-デジタル変換器を例示することができる。
 カラム処理部15では、画素アレイ部12の画素列毎に、その列の画素11から出力されるアナログの画素信号をデジタル信号に変換する処理が行われる。カラム処理部15では、デジタル化した画素信号に対して、CDS(Correlated Double Sampling)処理を行うこともできる。
 信号処理部16は、カラム処理部15から供給されるデジタル化された画素信号や、画素アレイ部12から出力されるイベントデータに対して所定の信号処理を実行し、信号処理後のイベントデータ及び画素信号を出力する。
 上述したように、画素11で生成される光電流の変化は、画素11に入射する光の光量変化(輝度変化)とも捉えることができる。従って、イベントは、所定の閾値を超える画素11の光量変化(輝度変化)であるとも言うことができる。イベントの発生を表すイベントデータには、少なくとも、イベントとしての光量変化が発生した画素11の位置を表す座標等の位置情報が含まれる。イベントデータには、位置情報の他、光量変化の極性を含ませることができる。
 画素11からイベントが発生したタイミングで出力されるイベントデータの系列については、イベントデータどうしの間隔がイベントの発生時のまま維持されている限り、イベントデータは、イベントが発生した相対的な時刻を表す時刻情報を暗示的に含んでいるということができる。但し、イベントデータがメモリに記憶されること等により、イベントデータどうしの間隔がイベントの発生時のまま維持されなくなると、イベントデータに暗示的に含まれる時刻情報が失われる。そのため、信号処理部16は、イベントデータどうしの間隔がイベントの発生時のまま維持されなくなる前に、イベントデータに、タイムスタンプ等の、イベントが発生した相対的な時刻を表す時刻情報を含める。
[画素アレイ部の構成例]
 図3は、イベント検出装置10における画素アレイ部12の構成の一例を示すブロック図である。
 複数の画素11が行列状に2次元配列されて成る画素アレイ部12において、複数の画素11のそれぞれは、受光部61、画素信号生成部62、及び、イベント検出部63を有する構成となっている。
 上記の構成の画素11において、受光部61は、入射光を光電変換して光電流を生成する。そして、受光部61は、駆動部13(図2参照)の制御に従って、画素信号生成部62及びイベント検出部63のいずれかに、入射光を光電変換して生成した光電流に応じた電圧の信号を供給する。
 画素信号生成部62は、受光部61から供給される光電流に応じた電圧の信号を、アナログの画素信号SIGとして生成する。そして、画素信号生成部62は、生成したアナログの画素信号SIGを、画素アレイ部12の画素列毎に配線された垂直信号線VSLを介してカラム処理部15(図2参照)に供給する。
 イベント検出部63は、受光部61のそれぞれからの光電流の変化量が所定の閾値を超えたか否かにより、イベントの発生の有無を検出する。イベントは、例えば、光電流の変化量が上限の閾値を超えた旨を示すオンイベント、及び、その変化量が下限の閾値を下回った旨を示すオフイベントから成る。また、イベントの発生を表すイベントデータは、例えば、オンイベントの検出結果を示す1ビット、及び、オフイベントの検出結果を示す1ビットから成る。尚、イベント検出部63については、オンイベントのみを検出する構成とすることもできる。
 イベント検出部63は、イベントが発生した際に、イベントの発生を表すイベントデータの出力を要求するリクエストをアービタ部14(図2参照)に出力する。そして、イベント検出部63は、リクエストに対する応答をアービタ部14から受け取った場合、駆動部13及び信号処理部16に対してイベントデータを出力する。
[画素の回路構成例]
 図4は、イベント検出装置10における画素アレイ部12の画素11の回路構成の一例を示す回路図である。
 上述したように、複数の画素11のそれぞれは、受光部61、画素信号生成部62、及び、イベント検出部63を有する構成となっている。
 上記の構成の画素11において、受光部61は、受光素子(光電変換素子)611、転送トランジスタ612、及び、転送トランジスタ613を有する構成となっている。転送トランジスタ612及び転送トランジスタ613としては、例えば、N型のMOS(Metal Oxide Semiconductor)トランジスタを用いることができる。転送トランジスタ612及び転送トランジスタ613は、互いに直列に接続されている。
 受光素子611は、転送トランジスタ612と転送トランジスタ613との共通接続ノードN1とグランドとの間に接続されており、入射光を光電変換して入射光の光量に応じた電荷量の電荷を生成する。
 転送トランジスタ612のゲート電極には、図2に示す駆動部13から転送信号TRGが供給される。転送トランジスタ612は、転送信号TRGに応答してオン状態になることにより、受光素子611で光電変換されて生成された電気信号を画素信号生成部62に供給する。
 転送トランジスタ613のゲート電極には、駆動部13から制御信号OFGが供給される。転送トランジスタ613は、制御信号OFGに応答してオン状態になることにより、受光素子611で光電変換されて生成された電気信号をイベント検出部63に供給する。イベント検出部63に供給される電気信号は、電荷からなる光電流である。
 画素信号生成部62は、リセットトランジスタ621、増幅トランジスタ622、選択トランジスタ623、及び、浮遊拡散層624を有する構成となっている。リセットトランジスタ621、増幅トランジスタ622、及び、選択トランジスタ623としては、例えば、N型のMOSトランジスタを用いることができる。
 画素信号生成部62には、受光部61の受光素子611で光電変換された電荷が、転送トランジスタ612によって供給される。受光部61から供給される電荷は、浮遊拡散層624に蓄積される。浮遊拡散層624は、蓄積した電荷を、その電荷量に応じた電圧値の電圧信号を生成する。すなわち、浮遊拡散層624は、電荷を電圧に変換する電荷電圧変換部である。
 リセットトランジスタ621は、電源電圧VDDの電源ラインと浮遊拡散層624との間に接続されている。リセットトランジスタ621のゲート電極には、駆動部13からリセット信号RSTが供給される。リセットトランジスタ621は、リセット信号RSTに応答してオン状態になることにより、浮遊拡散層624の初期化(リセット)を行う。
 増幅トランジスタ622は、電源電圧VDDの電源ラインと垂直信号線VSLとの間に、選択トランジスタ623と直列に接続されている。増幅トランジスタ622は、浮遊拡散層624で電荷電圧変換された電圧信号を増幅する。
 選択トランジスタ623のゲート電極には、駆動部13から選択信号SELが供給される。選択トランジスタ623は、選択信号SELに応答してオン状態になることにより、増幅トランジスタ622によって増幅された電圧信号を、アナログの画素信号SIGとして垂直信号線VSLを介してカラム処理部15(図2参照)へ出力する。
 上記の構成の画素11が2次元配置されて成る画素アレイ部12を有するイベント検出装置10において、駆動部13は、図1に示す制御部30によって、イベント検出の開始が指示される。そして、イベント検出の開始が指示されると、駆動部13は、受光部61の転送トランジスタ613に制御信号OFGを供給することによって当該転送トランジスタ613を駆動し、受光素子611で生成された電荷に応じた光電流をイベント検出部63に供給させる。
 そして、ある画素11においてイベントが検出されると、駆動部13は、その画素11の転送トランジスタ613をオフ状態にしてイベント検出部63への光電流の供給を停止させる。次いで、駆動部13は、転送トランジスタ612に転送信号TRGを供給することによって当該転送トランジスタ612を駆動して、受光素子611で光電変換された電荷を浮遊拡散層624に転送させる。
 このようにして、上記の構成の画素11が2次元配置されて成る画素アレイ部12を有するイベント検出装置10は、イベントが検出された画素11の画素信号のみをカラム処理部15に出力する。これにより、イベントの有無に関わらず、全画素の画素信号を出力する場合と比較して、イベント検出装置10の消費電力や、画像処理の処理量を低減することができる。
 尚、ここで例示した画素11の構成は一例であって、この構成例に限定されるものではない。例えば、画素信号を出力する必要がない場合には、画素信号生成部62を備えない画素構成とすることもできる。この画素構成の場合は、受光部61において、転送トランジスタ612を省略すればよい。また、図2のカラム処理部15がアナログ-デジタル変換機能の持たない構成とすることができる。画素信号を出力しない画素構成とすることにより、イベント検出装置10の規模の抑制を図ることができる。
[イベント検出部の構成例]
 図5は、イベント検出装置10の画素11におけるイベント検出部63の回路構成の一例を示すブロック図である。
 図5に示すように、本例に係るイベント検出部63は、電流電圧変換部631、バッファ632、減算部633、量子化部634、及び、転送部635を有する構成となっている。
 電流電圧変換部631は、画素11の受光部63から供給される光電流を、当該光電流の対数の電圧信号(以下、「光電圧」と記述する場合がある)に変換し、バッファ632に供給する。バッファ632は、電流電圧変換部631から供給される光電圧をバッファリングして減算部633に供給する。
 減算部633は、現在の光電圧と、現在と微小時間だけ異なる光電圧との差を演算し、その差に対応する差信号を量子化部634に供給する。量子化部634は、減算部633から供給される差信号をデジタル信号に量子化し、差信号のデジタル値を転送部635に供給する。
 転送部635は、量子化部634から差信号のデジタル値が供給されると、イベントデータの送信を要求するリクエストをアービタ部14に供給する。そして、転送部635は、リクエストに対する応答、即ち、イベントデータの出力を許可する旨の応答をアービタ部14から受け取ると、量子化部634から供給される差信号のデジタル値に応じて、イベントデータを、駆動部13及び信号処理部16に供給する。
 続いて、イベント検出部63における電流電圧変換部631、減算部633、及び、量子化部634の構成例について説明する。
(電流電圧変換部の構成例)
 図6は、イベント検出部63における電流電圧変換部631の構成の一例を示す回路図である。
 図6に示すように、本例に係る電流電圧変換部631は、トランジスタ6311、トランジスタ6312、及び、トランジスタ6313を有する回路構成となっている。トランジスタ6311及びトランジスタ6313としては、N型のMOSトランジスタを用いることができ、トランジスタ6312としては、P型のMOSトランジスタを用いることができる。
 トランジスタ6311は、電源電圧VDDの電源ラインと信号入力線6314との間に接続されている。トランジスタ6312及びトランジスタ6313は、電源電圧VDDの電源ラインとグランドとの間に直列に接続されている。そして、トランジスタ6312及びトランジスタ6313の共通接続ノードN2には、トランジスタ6311のゲート電極と、図5に示すバッファ632の入力端子とが接続されている。
 トランジスタ6312のゲート電極には、所定のバイアス電圧Vbiasが印加される。これにより、トランジスタ6312は、一定の電流をトランジスタ6313に供給する。トランジスタ6313のゲート電極には、信号入力線6314を通して、受光部61から光電流が入力される。
 トランジスタ6311のドレイン電極は、電源電圧VDDの電源ラインに接続されており、ソースフォロワ構成となっている。トランジスタ6313のゲート電極は、トランジスタ6311のソース電極に接続されている。そして、ソースフォロワ構成のトランジスタ6311及びトランジスタ6313により、受光部61からの光電流は、当該光電流の対数に対応する光電圧に変換される。
(減算部及び量子化部の構成例)
 図7は、イベント検出部63における減算部633及び量子化部634の構成の一例を示す回路図である。
 本例に係る減算部633は、容量素子6331、オペアンプ6332、容量素子6333、及び、スイッチ素子6334を有する構成となっている。
 容量素子6331の一端は、図5に示すバッファ632の出力端子に接続され、容量素子6331の他端は、オペアンプ6332の入力端子に接続されている。これにより、オペアンプ6332の入力端子に、バッファ632から供給される光電圧が、容量素子6331を介して入力される。
 容量素子6333は、オペアンプ6332に対して並列に接続されている。スイッチ素子6334は、容量素子6333の両端間に接続されている。スイッチ素子6334には当該スイッチ素子6334を開閉する制御信号として、図2に示すアービタ部14からリセット信号が供給される。スイッチ素子6334は、リセット信号に応じて、容量素子6333の両端を接続する経路を開閉する。
 上記の構成の減算部633において、スイッチ素子6334をオン(閉)状態とした際に、容量素子6331のバッファ632側の端子に入力される光電圧をVinitとする。容量素子6331のバッファ632側の端子に光電圧Vinitが入力されたとき、その逆側の端子は仮想接地端子となる。この仮想接地端子の電位を、便宜上、ゼロとする。このとき、容量素子6331の容量値をC1とすると、容量素子6331に蓄積されている電荷Qinitは、次式(1)により表される。
  Qinit=C1×Vinit             ・・・(1)
 また、スイッチ素子6334をオン状態である場合には、容量素子6333の両端は短絡されているため、容量素子6333に蓄積される電荷はゼロとなる。その後、スイッチ素子6334がオフ(開)状態となる。スイッチ素子6334がオフ状態の場合の、容量素子6331のバッファ632側の端子の光電圧をVafterと表すこととする。スイッチ素子6334がオフ状態になった場合に容量素子6331に蓄積される電荷Qafterは、次式(2)により表される。
  Qafter=C1×Vafter             ・・・(2)
 容量素子6333の容量値をC2と表すとともに、オペアンプ6332の出力電圧をVoutと表すこととすると、容量素子6333に蓄積される電荷Q2は、次式(3)により表される。
  Q2=-C2×Vout              ・・・(3)
 スイッチ素子6334がオフする前後で、容量素子6331の電荷量と容量素子6333の電荷量とを合わせた総電荷量は変化しないため、次の式(4)が成立する。
  Qinit=Qafter+Q2              ・・・(4)
 式(4)に式(1)乃至式(3)を代入すると、次式(5)が得られる。
  Vout=-(C1/C2)×(Vafter-Vinit)  ・・・(5)
 式(5)によれば、減算部633では、光電圧Vinitと光電圧Vafterとの減算、即ち、光電圧Vinitと光電圧Vafterとの差(Vinit-Vafter)に対応する差信号Voutの算出が行われる。また、式(5)によれば、減算部633の減算の利得はC1/C2となる。通常、減算部633の減算の利得を最大化することが望まれるため、容量素子6331の容量値C1を大きく、容量素子6333の容量値C2を小さく設計することが好ましい。
 一方、容量素子6333の容量値C2が小さすぎると、kTCノイズが増大し、ノイズ特性が悪化するおそれがあるため、容量素子6333の容量値C2の容量削減は、ノイズを許容することができる範囲に制限される。また、画素11毎に減算部633を含むイベント検出部63が搭載されるため、容量素子6331や容量素子6333には、面積上の制約がある。これらを考慮して、容量素子6331の容量値C1及び容量素子6333の容量値C2が決定される。
 図7において、量子化部634は、コンパレータ6341を有する構成となっている。コンパレータ6341は、減算部430からの差信号(即ち、オペアンプ6332の出力信号)を非反転(+)入力とし、所定の閾値電圧Vthを反転(-)入力としている。そして、コンパレータ6341は、減算部430からの差信号Voutと所定の閾値電圧Vthとを比較し、比較結果を表す、高レベル又は低レベルを、差信号Voutの量子化値として、図5に示す転送部635に出力する。
 転送部635は、量子化部634からの差信号Voutの量子化値から、イベントとしての光量変化(輝度変化)が発生したと認められる場合、即ち、差信号Voutが所定の閾値電圧Vthよりも大きい(又は、小さい)場合に、イベントの発生を表す、例えば高レベルのイベントデータを、図2の信号処理部16に出力する。すなわち、閾値電圧Vthは、画素11の光量変化(輝度変化)に基づいてイベントを検出する閾値である。
 信号処理部16は、転送部635から供給されるイベントデータに、そのイベントデータが表すイベントを検出した画素11の位置情報、及び、イベントが発生した時刻を表す時刻情報、更には、必要に応じて、イベントとしての光量変化の極性情報を含めて出力する。
 イベントを検出した画素11の位置情報、イベントが発生した時刻を表す時刻情報、及び、イベントとしての光量変化の極性情報を含むイベントデータのデータ形式としては、例えば、AER(Address Event Representation)と呼ばれるデータ形式を採用することができる。
 尚、画素11では、カラーフィルタ等の所定の光を透過する光学フィルタを設けること等によって、入射光として、任意の光を受光することができる。例えば、画素11において、入射光として、可視光を受光する場合、イベントデータは、視認することができる被写体が映る画像における画素値の変化の発生を表す。また、例えば、画素11において、入射光として、測距のための赤外線やミリ波等を受光する場合、イベントデータは、被写体までの距離の変化の発生を表す。更に、例えば、画素11において、入射光として、温度の測定のための赤外線を受光する場合、イベントデータは、被写体の温度の変化の発生を表す。本実施形態では、画素11において、入射光として、可視光を受光することとする。
[チップ構造の構成例]
 以上説明したイベント検出装置10のチップ(半導体集積回路)構造としては、例えば、積層型のチップ構造を採ることができる。図8は、イベント検出装置10の積層型のチップ構造の概略を示す分解斜視図である。
 図8に示すように、積層型のチップ構造、所謂、積層構造は、第1のチップである受光チップ101、及び、第2のチップである検出チップ102の少なくとも2つのチップが積層された構造となっている。そして、図4に示す画素11の回路構成において、受光素子611のそれぞれが受光チップ101上に配置され、受光素子611以外の素子の全てや、画素11の他の回路部分の素子などが検出チップ102上に配置される。受光チップ101と検出チップ102とは、ビア(VIA)、Cu-Cu接合、バンプなどの接続部を介して電気的に接続される。
 尚、ここでは、受光素子611を受光チップ101に配置し、受光素子611以外の素子や画素11の他の回路部分の素子などを検出チップ102に配置する構成例を例示したが、この構成例に限られるものではない。
 例えば、図4に示す画素11の回路構成において、受光部61の各素子を受光チップ101に配置し、受光部61以外の素子や画素11の他の回路部分の素子などを検出チップ102に配置する構成とすることができる。また、受光部61の各素子、及び、画素信号生成部62のリセットトランジスタ621、浮遊拡散層624を受光チップ101に配置し、それ以外の素子を検出チップ102に配置する構成とすることができる。更には、イベント検出部63を構成する素子の一部を、受光部61の各素子などと共に受光チップ101に配置する構成とすることができる。
<撮像装置の構成例>
 本開示の撮像システム1における撮像装置20の基本的な構成について説明する。ここでは、撮像装置20として、X-Yアドレス方式の撮像装置の一種であるCMOS型イメージセンサを例に挙げて説明する。CMOS型イメージセンサは、CMOSプロセスを応用して、又は、部分的に使用して作製されたイメージセンサである。但し、撮像装置20としては、CMOS型イメージセンサに限られるものではない。
[CMOS型イメージセンサの構成例]
 図9は、本開示の撮像システム1における撮像装置20の一例であるCMOS型イメージセンサの構成の概略を示すブロック図である。
 本例に係る撮像装置20は、受光部(光電変換部)を含む画素21が行方向及び列方向に、即ち、行列状に2次元配置されて成る画素アレイ部22、及び、当該画素アレイ部22の周辺回路部を有する構成となっている。ここで、行方向とは、画素行の画素21の配列方向を言い、列方向とは、画素列の画素21の配列方向を言う。画素21は、光電変換を行うことにより、受光した光量に応じた光電荷を生成し、蓄積する。
 本例に係る撮像装置20は、画素アレイ部22の各画素21に、例えば、R(赤色)、G(緑色)、B(青色)の各色フィルタが組み込まれたRGBセンサである。但し、撮像装置20は、RGBセンサに限られるものではない。
 画素アレイ部22の周辺回路部は、例えば、行選択部23、定電流源部24、アナログ-デジタル変換部25、水平転送走査部26、信号処理部27、及び、タイミング制御部28等によって構成されている。
 画素アレイ部22において、行列状の画素配列に対し、画素行毎に画素駆動線311~31m(以下、総称して「画素駆動線31」と記述する場合がある)が行方向に沿って配線されている。また、画素列毎に垂直信号線321~32n(以下、総称して「垂直信号線32」と記述する場合がある)が列方向に沿って配線されている。画素駆動線31は、画素21から信号を読み出す際の駆動を行うための駆動信号を伝送する。図1では、画素駆動線31について1本の配線として図示しているが、1本に限られるものではない。画素駆動線31の一端は、行選択部23の各行に対応した出力端に接続されている。
 以下に、画素アレイ部22の周辺回路部の各回路部、即ち、行選択部23、定電流源部24、アナログ-デジタル変換部25、水平転送走査部26、信号処理部27、及び、タイミング制御部28について説明する。
 行選択部23は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部22の各画素21の選択に際して、画素行の走査や画素行のアドレスを制御する。この行選択部23は、その具体的な構成については図示を省略するが、一般的に、読出し走査系と掃出し走査系の2つの走査系を有する構成となっている。
 読出し走査系は、画素21から画素信号を読み出すために、画素アレイ部22の各画素21を行単位で順に選択走査する。画素21から読み出される画素信号はアナログ信号である。掃出し走査系は、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査を行う。
 この掃出し走査系による掃出し走査により、読出し行の画素21の受光部(光電変換部)から不要な電荷が掃き出されることによって当該受光部がリセットされる。そして、この掃出し走査系による不要電荷の掃き出す(リセットする)ことにより、所謂、電子シャッタ動作が行われる。ここで、電子シャッタ動作とは、受光部の光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことを言う。
 定電流源部24は、画素列毎に垂直信号線321~32nの各々に接続された、例えばMOSトランジスタから成る複数の電流源I(図10参照)を備えており、行選択部23によって選択走査された画素行の各画素21に対し、垂直信号線321~32nの各々を通してバイアス電流を供給する。
 アナログ-デジタル変換部25は、画素アレイ部22の画素列に対応して設けられた(例えば、画素列毎に設けられた)複数のアナログ-デジタル変換器の集合から成る。アナログ-デジタル変換部25は、画素列毎に垂直信号線321~32nの各々を通して出力されるアナログの画素信号を、デジタル信号に変換する列並列型のアナログ-デジタル変換部である。
 列並列アナログ-デジタル変換部25におけるアナログ-デジタル変換器としては、例えば、参照信号比較型のアナログ-デジタル変換器の一例であるシングルスロープ型のアナログ-デジタル変換器を用いることができる。但し、アナログ-デジタル変換器としては、シングルスロープ型のアナログ-デジタル変換器に限られるものではなく、逐次比較型のアナログ-デジタル変換器やデルタ-シグマ変調型(ΔΣ変調型)のアナログ-デジタル変換器などを用いることができる。
 この列並列アナログ-デジタル変換部25におけるアナログ-デジタル変換器の例については、先述したイベント検出装置10のカラム処理部15(図2参照)を構成するアナログ-デジタル変換部におけるアナログ-デジタル変換器においても同様である。
 水平転送走査部26は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部22の各画素21の信号の読出しに際して、画素列の走査や画素列のアドレスを制御する。この水平転送走査部26による制御の下に、アナログ-デジタル変換部25でデジタル信号に変換された画素信号が画素列単位で水平転送線(水平出力線)29に読み出される。
 信号処理部27は、水平転送線29を通して供給されるデジタルの画素信号に対して、所定の信号処理を行い、2次元の画像データを生成する。例えば、信号処理部27は、縦線欠陥、点欠陥の補正、又は、信号のクランプを行ったり、パラレル-シリアル変換、圧縮、符号化、加算、平均、及び、間欠動作などデジタル信号処理を行ったりする。信号処理部27は、生成した画像データを、本撮像装置20の出力信号として後段の装置に出力する。
 タイミング制御部28は、外部から供給される垂直同期信号VDや水平同期信号HD、更には、マスタークロックMCK(図示せず)等に基づいて、各種のタイミング信号、クロック信号、及び、制御信号等を生成する。そして、タイミング制御部28は、これら生成した信号を基に、行選択部23、定電流源部24、アナログ-デジタル変換部25、水平転送走査部26、及び、信号処理部27等の駆動制御を行う。
 このタイミング制御部28による制御の下に、本撮像装置20では、垂直同期信号VD等の同期信号に同期して撮像が行われる。すなわち、本撮像装置20は、固定のフレームレートで撮像を行う同期型の撮像装置である。
[画素の回路構成例]
 図10は、撮像装置20における画素アレイ部22の画素21の回路構成の一例を示す回路図である。
 画素21は、受光部(光電変換部)として、例えば、フォトダイオード211を有している。画素21は、フォトダイオード211の他に、転送トランジスタ212、リセットトランジスタ213、増幅トランジスタ214、及び、選択トランジスタ215を有する画素構成となっている。
 尚、ここでは、転送トランジスタ212、リセットトランジスタ213、増幅トランジスタ214、及び、選択トランジスタ215の4つのトランジスタとして、例えばN型のMOSトランジスタを用いているが、ここで例示した4つのトランジスタ212~215の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。
 この画素21に対して、先述した画素駆動線31として、複数の画素駆動線が同一画素行の各画素21に対して共通に配線されている。これら複数の画素駆動線は、行選択部23の各画素行に対応した出力端に画素行単位で接続されている。行選択部23は、複数の画素駆動線に対して転送信号TRG、リセット信号RST、及び、選択信号SELを適宜出力する。
 フォトダイオード211は、アノード電極が低電位側電源(例えば、グランド)に接続されており、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード211のカソード電極は、転送トランジスタ212を介して増幅トランジスタ214のゲート電極と電気的に接続されている。ここで、増幅トランジスタ214のゲート電極が電気的に繋がった領域は、フローティングディフュージョン(浮遊拡散領域/不純物拡散領域)FDである。フローティングディフュージョンFDは、電荷を電圧に変換する電荷電圧変換部である。
 転送トランジスタ212のゲート電極には、高レベル(例えば、VDDレベル)がアクティブとなる転送信号TRGが行選択部23から与えられる。転送トランジスタ212は、転送信号TRGに応答してオン状態となることにより、フォトダイオード211で光電変換され、当該フォトダイオード211に蓄積された光電荷をフローティングディフュージョンFDに転送する。
 リセットトランジスタ213は、電源電圧VDDの電源ラインとフローティングディフュージョンFDとの間に接続されている。リセットトランジスタ213のゲート電極には、高レベルがアクティブとなるリセット信号RSTが行選択部23から与えられる。リセットトランジスタ213は、リセット信号RSTに応答してオン状態となり、フローティングディフュージョンFDの電荷を電源電圧VDDのノードに捨てることによってフローティングディフュージョンFDをリセットする。
 増幅トランジスタ214は、ゲート電極がフローティングディフュージョンFDに接続され、ドレイン電極が電源電圧VDDの電源ラインに接続されている。増幅トランジスタ214は、フォトダイオード211での光電変換によって得られる信号を読み出すソースフォロワの入力部となる。増幅トランジスタ214は、ソース電極が選択トランジスタ215を介して垂直信号線32に接続される。そして、増幅トランジスタ214と、垂直信号線32の一端に接続される電流源Iとは、フローティングディフュージョンFDの電圧を垂直信号線32の電位に変換するソースフォロワを構成している。
 選択トランジスタ215は、ドレイン電極が増幅トランジスタ214のソース電極に接続され、ソース電極が垂直信号線32に接続されている。選択トランジスタ215のゲート電極には、高レベルがアクティブとなる選択信号SELが行選択部23から与えられる。選択トランジスタ215は、選択信号SELに応答してオン状態となることにより、画素21を選択状態として増幅トランジスタ214から出力される信号を垂直信号線32に伝達する。
 尚、ここでは、画素21の画素回路として、転送トランジスタ212、リセットトランジスタ213、増幅トランジスタ214、及び、選択トランジスタ215から成る、即ち4つのトランジスタ(Tr)から成る4Tr構成を例に挙げたが、これに限られるものではない。例えば、選択トランジスタ215を省略し、増幅トランジスタ214に選択トランジスタ25の機能を持たせる3Tr構成とすることもできるし、必要に応じて、トランジスタの数を増やした5Tr以上の構成とすることもできる。
[チップ構造の構成例]
 上記の構成の撮像装置20のチップ(半導体集積回路)構造としては、平置型のチップ構造及び積層型のチップ構造を例示することができる。平置型のチップ構造及び積層型のチップ構造のいずれの撮像装置20においても、画素21について、配線層が配される側の基板面を表面(正面)とするとき、表面側から照射される光を取り込む表面照射型の画素構造とすることもできるし、その反対側の裏面側から照射される光を取り込む裏面照射型の画素構造とすることができる。以下に、平置型のチップ構造及び積層型のチップ構造について説明する。
(平置型のチップ構造)
 図11は、撮像装置20の平置型のチップ構造の概略を示す平面図である。
 図11に示すように、平置型のチップ構造(所謂、平置構造)は、画素21が行列状に配置されて成る画素アレイ部22と同じ半導体基板201上に、画素アレイ部22の周辺の回路部分を形成した構造となっている。具体的には、画素アレイ部22と同じ半導体基板201上に、行選択部23、定電流源部24、アナログ-デジタル変換部25、水平転送走査部26、信号処理部27、及び、タイミング制御部28等が形成されている。
(積層型のチップ構造)
 図12Aは、撮像装置20の積層型のチップ構造の概略を示す分解斜視図である。
 図12Aに示すように、積層型のチップ構造(所謂、積層構造)は、第1半導体基板202及び第2半導体基板203の少なくとも2つの半導体基板が積層された構造となっている。この積層構造において、画素アレイ部22は、1層目の第1半導体基板202に形成される。また、行選択部23、定電流源部24、アナログ-デジタル変換部25、水平転送走査部26、信号処理部27、及び、タイミング制御部28等の回路部分は、2層目の第2半導体基板203に形成される。そして、1層目の第1半導体基板202と2層目の第2半導体基板203とは、ビア(VIA)やCu-Cu接合などの接続部33A,33Bを通して電気的に接続される。
 この積層構造の撮像装置20によれば、1層目の第1半導体基板202には画素21の作製に適したプロセスを適用でき、2層目の第2半導体基板203には回路部分の作製に適したプロセスを適用できるため、撮像装置20の製造に当たって、プロセスの最適化を図ることができる。特に、回路部分の作製に当たっては、先端プロセスの適用が可能になる。
 尚、ここでは、第1半導体基板202及び第2半導体基板203が積層されて成る2層構造の積層構造を例示したが、積層構造としては、2層構造に限られるものではなく、3層以上の構造とすることもできる。そして、3層以上の積層構造の場合、行選択部23、定電流源部24、アナログ-デジタル変換部25、水平転送走査部26、及び、信号処理部27等の回路部分については、2層目以降の半導体基板に分散して形成することができる。
 以上説明した、非同期型の撮像装置から成るイベント検出装置10、及び、同期型の撮像装置から成る撮像装置20を備える本開示の撮像システム1は、車両等の移動体に搭載して用いることができる。車両に搭載して用いる場合を例に挙げると、車両の所定の位置、例えば、車両のフロントノーズ、サイドミラー、リアバンパ、バックドア、及び、車室内のフロントガラスの上部のうちの少なくとも一つの位置に、撮像システム1を配置して用いることになる。本開示に係る技術(即ち、本開示の撮像システム1)の適用例の詳細については後述する。
 本開示の撮像システム1において、非同期型の撮像装置から成るイベント検出装置10、及び、同期型の撮像装置から成る撮像装置20の制御は、制御部30によって行われる。具体的には、車両の走行時に、制御部30による制御の下に、先ず、イベント検出装置10によってイベントの検出が行われる。
 先述したイベント検出装置10の説明では、図3に示すイベント検出部63によって、画素11毎に、光量変化(輝度変化)が所定の閾値を超えたことをイベントとして検出するとしたが、イベントの検出は、イベント検出部63による画素11毎の検出に限られるものではない。具体的には、イベント検出装置10は、図3及び図4に示すように、画素信号生成部62を画素11毎に備えており、画像の取得も可能である。そして、イベント検出装置10が撮影して取得した画像を基に路面の状態、具体的には、損傷箇所(例えば、穴、大きな溝、ひび割れ、凹凸、陥没等)や落下物などをイベントとして検出することができる。
 イベント検出装置10では、例えば画素11毎に、受光部61、画素信号生成部62、及び、イベント検出部63を有する画素構成がとられるため、同期型の撮像装置20に比べて画素サイズが大きくならざるを得なく、解像度が低い。従って、イベント検出装置10の場合、撮影して取得した画像を基に、例えば路面の損傷箇所や落下物などをイベントとして検出できたとしても、同期型の撮像装置20に比べて解像度が低いが故に、イベントの物体認識を精度よく行うことができない。
 そこで、制御部30は、イベント検出装置10がイベントを検出したことを受けて、そのイベントを含む領域の画像情報を、撮像装置20によって取得するように制御を行う。本開示の撮像システム1の制御方法の処理の一例を図12Bのフローチャートに示す。制御部30は、イベント検出装置10による撮影を行い(ステップS1)、次いで、イベント検出装置10がイベントを検出したか否かを判定する(ステップS2)。ステップS1の処理の具体例については後述する。次に、制御部30は、イベント検出装置10がイベントを検出したと判定すると(S2のYES)、イベント検出装置10による撮影から、撮像装置20による撮影に切り替える(ステップS3)。ステップS3の処理の具体例については後述する。同期型の撮像装置から成る撮像装置20は、非同期型の撮像装置から成るイベント検出装置10に比べて解像度に優れている。従って、本開示の撮像システム1によれば、イベント検出装置10によってイベントを検出した上で、撮像装置20によって、イベントを含む領域の画像情報を、イベント検出装置10よりも高い解像度で取得することができる。その結果、撮像装置20が撮影して取得したイベントを含む領域の画像情報に基づいて、イベントの物体認識をより精度よく行うことが可能になる。
≪本開示の物体認識システム≫
 次に、上記の構成の本開示の撮像システム1を用いて物体認識を行う、本開示の物体認識システムについて説明する。本開示の物体認識システムは、本開示の撮像システム1と同様に、車両等の移動体に搭載されてイベントの物体認識に用いることができる。
<物体認識システムの構成例>
 図13は、本開示の撮像システム1を用いる、本開示の物体認識システムのシステム構成の一例を示すブロック図である。
 図13に示すように、本開示の物体認識システム2は、図1に示した本開示の撮像システム1におけるイベント検出装置10、撮像装置20、制御部30、データ処理部40、及び、画像記録部50に加えて、認識処理部60を有する構成となっている。イベント検出装置10、撮像装置20、制御部30、データ処理部40、及び、画像記録部50の詳細については、前述した通りである。
 上記の構成の物体認識システム2では、制御部30による制御によって、イベント検出装置10からは、イベントデータ及び画像データが出力され、データ処理部40に供給され、撮像装置20からは、イベントを含む領域の画像データが出力され、データ処理部40に供給される。
 データ処理部40で処理されたイベントデータ及び画像データは、認識処理部60に供給される。制御部30は、データ処理部40を介して、イベント検出装置10がイベントを検出したことを知ると、イベント検出装置10が検出したイベントを含む領域を撮像するように撮像装置20を制御する。
 認識処理部60は、データ処理部40から供給されるイベントデータ及び画像データに基づいて、イベントの物体認識の処理を行う。認識処理部60での物体認識には、周知のパターン認識技術、例えば、教師データとして与えられる画像の特徴点と、撮影した被写体画像の特徴点とを比較することによって画像認識を行う技術を用いることができる。
 以下に、上記の構成の物体認識システム2において実行される、イベント検出に基づく物体認識の具体的な処理の実施例について説明する。以下で説明する物体認識処理は、基本的に、撮像システム1の制御部30による制御の下に実行されることとする。
<実施例1>
 実施例1は、イベント検出に基づく物体認識の基本処理の例である。実施例1に係る物体認識処理の流れの一例を図14のフローチャートに示す。
 以下に説明する処理では、イベントの検出は、イベント検出装置10が撮影して取得した画像を基に行われることとする。この点については、後述する実施例2及び実施例3においても同様である。
 制御部30は、先ず、イベント検出装置10による撮影(以下、「DVS撮影」と記述する)を行い(ステップS11)、次いで、イベント検出装置10がイベントを検出したか否かを判定する(ステップS12)。ステップS11の処理(DVS撮影)の具体例については後述する。
 次に、制御部30は、イベント検出装置10がイベントを検出したと判定すると(S12のYES)、DVS撮影(イベント検出装置10による撮影)から、撮像装置20による撮影に切り替える(ステップS13)。ステップS13の処理の具体例については後述する。イベント検出装置10がイベントを検出しない場合(S12のNO)、制御部30は、ステップS11に戻ってDVS撮影を、イベント検出装置10がイベントを検出するまで継続して実行する。
 次に、制御部30は、撮像装置20によって撮影した画像データを取得し(ステップS14)、この取得した画像データに基づいて、イベントについての物体認識の処理を実行する(ステップS15)。以上により、イベントの検出に基づく、イベントの物体認識のための一連の処理を終了する。
<実施例2>
 実施例2は、DVS撮影(イベント検出装置10による撮影)の具体例であり、道路の損傷箇所をイベントとして検出する例である。図15に示すように、道路端81A,81Bで画定される道路には、白線82や、行き先表示、矢印等のテクスチャが描かれているとともに、穴83や、大きな溝、ひび割れ、凹凸、陥没等の損傷箇所が存在する場合がある。穴83や、ひび割れ、凹凸、陥没等の損傷箇所は、走行中の車両にとって障害となる場合があるため、事前にイベントと検出できることが好ましい。
 実施例2は、穴83等の損傷箇所を、道路に描かれている白線82等のテクスチャと識別し、道路の損傷箇所をイベントとして検出する例である。実施例2に係るDVS撮影の処理の流れの一例を図16のフローチャートに示す。このDVS撮影の処理は、図13の制御部30による制御の下に、データ処理部40において実行される処理である。また、イベント検出装置10は、撮像装置20に比べて解像度が低いものの、画像を取得することができるものとする。
 制御部30は、イベント検出装置10が取得した、車両の前方の画像(例えば、二値画像)から、道路範囲を認識する(ステップS21)。道路範囲は、車両の進行方向の中心点、及び、道路端81A,81Bを検知することによって認識することが可能である。
 次に、制御部30は、認識した道路範囲において、イベント検出装置10が取得した画像(例えば、二値画像)をメッシュ状に領域分割(ブロック分割)し、この領域分割した画像から単位面積当たりの状態変化量を計算により求める(ステップS22)。単位面積当たりの状態変化量が大きい場合、路面の荒れが大きい、即ち、穴83や、大きな溝、ひび割れ、凹凸、陥没等の損傷箇所が存在すると判断することができる。
 次に、制御部30は、路面の状態を判断するために、単位面積当たりの状態変化量が所定の閾値以上か否かを、メッシュ分割した領域の単位で判断する(ステップS23)。ステップS23の判断処理において、制御部30は、単位面積当たりの状態変化量が所定の閾値以上の領域が存在しなければ(S23のNO)、ステップS21に戻る。
 制御部30は、単位面積当たりの状態変化量が所定の閾値以上の領域が存在すれば(S23のYES)、閾値以上の領域の数が所定の設定値以上か否かを判断する(ステップS24)。隣り合う分割領域で状態変化量が閾値以上の数が設定値以上の場合、穴83や、大きな溝、ひび割れ、凹凸、陥没等の損傷箇所の存在を検出することができる。
 ステップS24の判断処理において、制御部30は、閾値以上の領域の数が所定の設定値に満たなければ(S24のNO)、ステップS21に戻り、所定の設定値以上であれば(S24のYES)、イベント検出装置10が検出したイベントが、穴83等の路面の損傷箇所と判定する(ステップS25)。
 以上により、DVS撮影(イベント検出装置10による撮影)に基づく、道路の損傷箇所を検出するための一連の処理を終了し、図13のフローに戻り、ステップS12の処理に移行する。
 ここで、本開示の物体認識システム2を、後述する車両制御システム7000(図25参照)に適用し、自動運転やADAS(Advanced Driver Assistance System)に利用する場合を想定する。この場合、制御部30は、イベント検出装置10が検出したイベントが路面の損傷箇所であることを、図示せぬ通信部を介して、車両制御システム7000に通知することになる。この通知を受けて、車両制御システム7000のマイクロコンピュータ7610は、走行速度を減速する、あるいは、損傷箇所を回避するなどの制御を行うことができる。
 また、イベント検出装置10がイベントとして検出した路面の損傷箇所については、例えば、損傷箇所の鮮明な画像を撮像装置30で撮影し、その画像データを画像記録部50に記録した上で、道路整備のための路面荒れ箇所の検出にも利用することができる。これにより、道路公団が道路の路面状況を監視しなくても、走行する車両からの情報、即ち、イベント検出装置10がイベントとして検出した路面の損傷箇所の情報を統計的に処理することで、精度の高いリアルタイムなデータを得ることができる。更に、精度の高いリアルタイムなデータを基に、後続車両の運転者に対して、路面の損傷箇所や危険物の落下などの情報を提供することもできる。
 イベント検出装置10が、路面の損傷箇所をイベントとして検出した後は、制御部30は、道路に描かれている白線82や、行き先表示、矢印等のテクスチャについては、イベント検出装置10による認識の対象外とし、撮像装置20による認識の対象とする。
 尚、実施例2に係るDVS撮影の処理では、処理の都度、路面の損傷箇所と、道路に描かれているテクスチャとを識別するとしたが、道路に描かれているテクスチャの特徴を学習して、路面の損傷箇所と区別するようにすることもできる。
 また、実施例2に係るDVS撮影の処理では、イベント検出装置10が取得した画像を二値画像として説明したが、モノクロ画像(例えば、256階調)でもよい。モノクロ画像の場合、二値画像の場合よりも細かな設定、例えば、輝度50以上、100以下というような設定が可能になる。
 二値画像の場合、白か黒かの表示になり、白色領域は、ある閾値以上の状態変化を検知した場合の領域となる。従って、ステップS21の処理で道路範囲を認識した後、二値画像の白色領域を検知し、白色領域の変化が閾値以上か否かにより、穴83等の路面の損傷箇所と判定することもできる。
<実施例3>
 実施例3は、DVS撮影(イベント検出装置10による撮影)の具体例であり、車外の状況に応じて、イベント検出の閾値、例えば、路面の状態を判断するため閾値(図16のステップS23の処理の閾値)を動的に変える例である。ここで、車外の状況とは、明るさ、天候、路面が濡れているなどの路面の状態等を例示することができる。
 図17は、実施例3に係るDVS撮影が適用される物体認識システムのシステム構成の一例を示すブロック図である。実施例3に係るDVS撮影が適用される物体認識システムは、自動車等の移動体に搭載されて用いられる。
 実施例3に係る物体認識システム2は、図13のイベント検出装置10、撮像装置20、制御部30、データ処理部40、画像記録部50、及び、認識処理部60の他に、車外情報取得部80を備えた構成となっている。車外情報取得部80は、車外の状況を表す車外情報を取得する。
 車外情報取得部80は、例えば、現在の天候又は気象を検出するための環境センサから成る。環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び、降雪を検出する雪センサのうちの少なくとも一つであってよい。車外情報取得部80は、例えば、車両のフロントノーズ、サイドミラー、リアバンパ、バックドア、及び、車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。
 車外情報取得部80が取得した車外情報は、制御部30に与えられる。制御部30は、車外情報取得部80から与えられる車外情報に基づいて、イベント検出の閾値を動的に変える制御を行う。イベント検出の閾値は、例えば、図16のステップS23の処理における閾値、即ち、路面の状態を判断するため閾値である。制御部30は、車外情報取得部80から与えられる車外情報に基づいて、路面の状態を判断するため閾値を動的に変える制御を行う。
 実施例3に係るDVS撮影の処理の流れの一例を図18のフローチャートに示す。このDVS撮影の処理は、図13の制御部30による制御の下に、データ処理部40において実行される処理である。
 制御部30は、車外情報取得部80から車外情報を取得し(ステップS31)、次いで、取得した車外情報を基に、イベントを検出する閾値を変更する必要があるか否かを判断する(ステップS32)。そして、制御部30は、閾値を変更する必要があれば(S32のYES)、イベントを検出する閾値を更新し(ステップS33)、次いで、DVS撮影を開始する(ステップS34)。
 次に、制御部30は、イベント検出装置10が取得した、車両の前方の画像(例えば、二値画像)から、道路範囲を認識し(ステップS35)、次いで、認識した道路範囲において、イベント検出装置10が取得した画像をメッシュ状に領域分割し、この領域分割した画像から単位面積当たりの状態変化量を計算により求める(ステップS36)。
 次に、制御部30は、路面の状態を判断するために、単位面積当たりの状態変化量が所定の閾値以上か否かを、メッシュ分割した領域の単位で判断する(ステップS37)。そして、制御部30は、単位面積当たりの状態変化量が所定の閾値以上の領域が存在しなければ(S37のNO)、ステップS35に戻り、存在すれば(S37のYES)、閾値以上の領域の数が所定の設定値以上か否かを判断する(ステップS38)。
 ステップS38の判断処理において、制御部30は、閾値以上の領域の数が所定の設定値に満たなければ(S38のNO)、ステップS35に戻り、所定の設定値以上であれば(S38のYES)、イベント検出装置10が検出したイベントが、穴83等の路面の損傷箇所と判定する(ステップS39)。そして、制御部30は、イベント検出装置10が検出したイベントが路面の損傷箇所である旨を認識処理部60に通知する(ステップS40)。それ以降の処理については、実施例2の場合と同様である。
<実施例4>
 実施例4は、図4のステップS13の撮像装置20による撮像の具体例であり、通常走行時、撮像装置20によって自車の周囲を認識(監視)する例である。撮像装置20は、イベント検出装置10に比べて解像度に優れ、画像を記録するという用途に向いている。一方、イベント検出装置10は、撮像装置20に比べて解像度は低いものの、高速移動物体を歪なく撮影することができる。
 また、撮像装置20として用いるCMOS型イメージセンサでは、ローリングシャッター方式の場合、一行毎に画素信号の読み出しが行われるため、次行の読み出しでは時間がずれ、一枚の画素にすると、原理的に、フォーカルプレーン歪と呼ばれる動体歪が発生する。フレームレートを上げることにより、フォーカルプレーン歪を軽減することが可能であるが、その弊害として、露光時間が短くなるため認識画像としての十分な輝度が得られなくなる。
 グローバルシャッター方式は、フォーカルプレーン歪の問題に対する一つの解決方法になり得るが、光電変換された電荷を一時的に蓄えておくための専用の容量素子が必要になるため、チップ面積が増大し、コスト的には不利益となる。
 一方、非同期型の撮像装置から成るイベント検出装置10の場合、基本的に、フレームという概念が無いため、フォーカルプレーン歪は発生しない。
 実施例4では、上記の撮像装置20及びイベント検出装置10のそれぞれの特徴を活かし、通常走行時、自車の周囲の認識処理をシームレスに行うようにする。実施例4に係る撮像装置20及びイベント検出装置10の制御の一例を図19のフローチャートに示す。撮像装置20及びイベント検出装置10の制御は、図13の制御部30による制御の下に実行される。
 制御部30は、撮像装置20で撮影し、撮像装置20によって取得される画像を基に自車の周囲、例えば、自車に後方から高速で接近してくる車両等を監視する(ステップS41)。この通常走行時において、制御部30は、自車の車速と監視対象の車両の車速との差が所定の閾値以上であるか否かを監視する(ステップS42)。
 制御部30は、自車の車速と監視対象の車両の車速との差が閾値以上の場合は(S42のYES)、撮像装置20によって取得される画像にフォーカルプレーン歪が発生し、認識性能が低下すると判断する。そして、制御部30は、撮像装置20による撮影から、フォーカルプレーン歪が発生しないイベント検出装置10による撮影に切り替え(ステップS43)、イベント検出装置10で取得される画像を基に自車の周囲を監視する(ステップS45)。制御部30は、監視対象の車両との車速差が閾値未満であれば(S42のNO)、ステップS41に戻って撮像装置20による撮影・監視を継続する。
 次に、制御部30は、自車と監視対象の車両との車速差が所定の閾値未満になったか否かを監視し(ステップS45)、閾値未満になったのであれば(S45のYES)、イベント検出装置10による撮影から、撮像装置20による撮影に切り替える(ステップS46)。制御部30は、監視対象の車両との車速差が所定の閾値以上であれば(S45のNO)、ステップS44に戻ってイベント検出装置10による撮影・監視を継続する。
 以上により、撮像装置20及びイベント検出装置10のそれぞれの特徴を活かし、通常走行時、自車の周囲の認識処理をシームレスに行うための一連の処理を終了し、図13のフローに戻り、ステップS14の処理に移行する。
 上述したように、実施例4に係る撮像装置20及びイベント検出装置10の制御において、通常走行時、イベント検出装置10よりも解像度が優れている撮像装置20による撮像によって自車の周囲を監視し、画像記録、認識・追尾の処理を行う。そして、高速な移動物体が、例えば後方から高速で近付いてきた場合に、イベント検出装置10による撮像に切り替えて、その高速な移動物体の認識・追尾を継続する。
 イベント検出装置10は、撮像装置20に比べて解像度は劣るものの、高速に移動する物体を歪なく撮影することができる。従って、高速に移動する物体(例えば、後方から高速で近付いてくる車両)について、歪の無い画像で認識を行うことができるために、フォーカルプレーン歪が発生する撮像装置20の場合よりも認識精度の向上を図ることができる。そして、認識した結果を、撮像システム1や車載システムに渡すことで、各種の制御が可能になる。
 尚、実施例4では、図4のステップS13の撮像装置20による撮像の具体例として説明したが、図4のステップS13の処理とは別に、一般的に、撮像装置20による撮像の場合の処理として実行することもできる。
 また、実施例4では、認識対象(監視対象)を、後方から高速で自車に接近してくる車両を例に挙げたが、認識対象はこれに限られるものではなく、実施例4に係る技術は、高速に動いている物体に対してより効果的である。
 また、実施例4では、自車と監視対象の車両との車速差パラメータとして、撮像装置20による撮影と、イベント検出装置10による撮影とを切り替えるとしたが、交差点、地図情報、ウィンカー操作などの情報をトリガーとして、撮像装置20による撮影から、イベント検出装置10による撮影に切り替えるようにすることもできる。これにより、進路変更する場合や合流する場合等で、イベント検出装置10による撮影により、周囲の状況の認識・確認を優先させることができる。
<実施例5>
 実施例5は、暗闇において赤外光(IR)を自発光してイベント検出装置10で障害物の有無を検出する例である。実施例5に係る物体認識システムのシステム構成の一例を図20のブロック図に示す。
 実施例5に係る物体認識システム2は、図13のイベント検出装置10、撮像装置20、制御部30、データ処理部40、画像記録部50、及び、認識処理部60の他に、IR投光部91、IR投光部ドライバ92、及び、日照センサ93を備えた構成となっている。
 IR投光部91は、例えば、波長850nmの赤外光を発光する発光ダイオード(LED)から成るが、これに限られるものではない。IR投光部ドライバ92は、制御部30による制御の下に、IR投光部91を駆動する。日照センサ93は、日照度合いを検出するセンサであり、特に、視認性が悪くなり易い暗闇の環境(状態)を検出する。日照センサ93は、後述する車両制御システム7000(図25参照)における環境センサの一つでもある。
 暗闇の環境下において、IR投光部91がIR光を発光した状態で、イベント検出装置10が障害物等のイベントを検出するには、イベント検出装置10に、IR光に感度を持つ画素を配置する必要がある。IR光に感度を持つ画素配列の例を図21A、図21B、図21C、図21D、及び、図21Eに示す。
 図21Aの例は、RGBベイヤー配列にIR画素をの組み合わせた画素配列である。図21B及び図21Cの例は、モノクロ(W:白色)の画素及びIR画素の組み合わせから成る画素配列である。図21Dの例は、信号機の赤を検知可能なように、モノクロの画素、IR画素、及び、R画素の組み合わせから成る画素配列である。尚、ここで例示したIR画素を含む画素配列は一例であって、これらの画素配列に限られるものではなく、例えば、IR画素と他の画素との割合を変えるようにすることもできる。あるいは又、W画素はIR光の波長を含めて感度を有していることから、図21Eに示すように、IR画素を用いずに、R画素、B画素、及び、W画素の組み合わせから成る画素配列とすることもできる。
 実施例5では、周囲が暗い場所において、例えば、車両の右左折の際、あるいは、車両の後退の際に、制御部30による制御の下に、IR投光部91を駆動してIR光を発光させ、IR光に感度を持つ画素を有するイベント検出装置10で、歩行者や無灯火自転車の存在、あるいは、壁やポール等の障害物の有無をイベントとして検出する。実施例5の場合、IR画素において、輝度変化が所定の閾値を超えたことをもってイベントの検出が行われる。
 暗闇では視認性が悪く、自車の特に側方や後方の視認性が悪く、歩行者や無灯火自転車の存在、あるいは、壁やポール等の障害物の有無に気づき難い。この観点から、IR投光部91を備える物体認識システム2については、特に、車両のサイドミラー部分、リアバンパ部分、あるいは、バックドア部分に配置することが好ましい。尚、車両の進行方向については、通常、ヘッドライトで明るく照らされているため、基本的には、IR光を発光させ、イベント検出装置10でイベントを検出する必要性は低いが、車両のフロントノーズ部分に、IR投光部91を備える物体認識システム2を設けるようにしてもよい。
 以下に、実施例5に係る物体認識システム2におけるIR光の投光下におけるイベント検出処理の具体例を示す。
(具体例1)
 図22は、実施例5に係る物体認識システム2におけるIR光の投光時のイベント検出処理の具体例1の流れを示すフローチャートである。この処理は、図13の制御部30による制御の下に実行される処理である。この点については、後述する具体例2においても同様である。
 制御部30は、自車の周囲の環境が所定の暗さになった旨の情報を日照センサ93から受信すると(ステップS51)、イベント検出装置10をオン状態にするとともに、IR投光部91を所定の投光量でオン状態にする(ステップS52)。
 次に、制御部30は、イベント検出装置10によって一定時間変化のない物体(イベント)を検出したか否かを判断し(ステップS53)、一定時間変化のない物体を検出した場合は(S53のYES)、例えば、後述する車両制御システム7000に通知する(ステップS54)。ここで、イベント検出装置10が検出する一定時間変化のない物体(イベント)としては、暗闇における歩行者や、壁、ポール等の障害物などを例示することができる。
 制御部30から物体検出の通知を受けた車両制御システム7000は、例えば、暗闇に物体(イベント)が存在する旨を運転者に知らせ、注意を喚起する。制御部30は、車両制御システム7000への通知後、イベント検出装置10及びIR投光部91をオフ状態にし(ステップS55)、IR光を投光し、暗闇の環境下におけるイベント検出のための一連の処理を終了する。
 制御部30は、物体を検出しない場合は(S53のNO)、ステップS55に移行してイベント検出装置10及びIR投光部91をオフ状態にする。これにより、イベント検出装置10及びIR投光部91のオン状態を継続することによる無駄な電力消費を省くことができる。
 尚、実施例5に係る物体認識システム2では、日照センサ93を備え、当該日照センサ93から与えられる情報をトリガーとして、暗闇の環境下におけるイベント検出処理を開始するとしたが、これに限られるものではない。例えば、車両制御システム7000から受信する情報、例えば、ウィンカーのオン情報や、ハンドル操作量の情報をトリガーとしてイベント検出処理を開始することもできるし、撮像装置20の撮像情報をトリガーとしてイベント検出処理を開始することもできる。
(具体例2)
 具体例1では、IR投光部91の投光量を所定の投光量とするとしているが、具体例2では、自車の周囲の明るさに応じてIR投光部91の投光量を調整するようにする。このようにすることで、周囲の明るさに関係なく一定の投光量とする場合よりも、IR投光部91での無駄な電力消費を省くことができる。
 図23は、実施例5に係る物体認識システム2におけるIR光の投光時のイベント検出処理の具体例1の流れを示すフローチャートである。また、図24に、自車の周囲の明るさとIR投光量との関係を示す。
 制御部30は、自車の周囲環境の明るさ情報を日照センサ93から受信すると(ステップS61)、イベント検出装置10及びIR投光部91をオン状態にし(ステップS62)、IR投光部91の投光量を、日照センサ93から受信した明るさ情報に応じた投光量に設定する(ステップS63)。
 次に、制御部30は、イベント検出装置10によって一定時間変化のない物体(イベント)を検出したか否かを判断し(ステップS64)、一定時間変化のない物体を検出した場合は(S64のYES)、例えば、後述する車両制御システム7000に通知する(ステップS65)。ここで、イベント検出装置10が検出する一定時間変化のない物体(イベント)としては、暗闇における歩行者や、壁、ポール等の障害物などを例示することができる。
 制御部30から物体検出の通知を受けた車両制御システム7000は、例えば、暗闇に物体(イベント)が存在する旨を運転者に知らせ、注意を喚起する。制御部30は、車両制御システム7000への通知後、イベント検出装置10及びIR投光部91をオフ状態にし(ステップS66)、IR光を投光し、暗闇の環境下におけるイベント検出のための一連の処理を終了する。
 制御部30は、イベント検出装置10によって一定時間変化のない物体を検出しない場合は(S64のNO)、ステップS66に移行してイベント検出装置10及びIR投光部91をオフ状態にする。これにより、イベント検出装置10及びIR投光部91のオン状態を継続することによる無駄な電力消費を省くことができる。
 尚、具体例2では、IR投光部91の投光量を、日照センサ93から受信した明るさ情報に応じて一段階調整としたが、多段階調整とすることもできる。例えば、自車の周囲環境の明るさが多少明るい状況の場合には、IR投光部91の投光量を控え目に調整し、真っ暗な状況の場合には、IR投光部91の投光量を最大に調整するといった制御を行うようにしてもよい。
≪変形例≫
 以上、本開示に係る技術について、好ましい実施形態に基づき説明したが、本開示に係る技術は当該実施形態に限定されるものではない。上記の実施形態において説明した撮像システム及び物体認識システムの構成、構造は例示であっ、変更することができる。例えば、上記の実施形態では、受光部61毎に画素信号生成部62を設けて画素11を構成するとしたが、複数の受光部31を単位としてブロック化し、各画素ブロックに画素信号生成部62を1つずつ設けて、当該画素信号生成部62を画素ブロック内の複数の受光部61間で共有する構成とすることもできる。
≪本開示に係る技術の適用例≫
 本開示に係る技術は、様々な製品に適用することができる。以下に、より具体的な適用例について説明する。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される撮像システムや物体認識システムとして実現されてもよい。
<移動体>
 図25は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図25に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図25では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。
 ここで、図26は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 尚、図26には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。
 図25に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX、LTE(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。尚、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。尚、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図25の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。
 尚、図25に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部7910,7912,7914,7916,7918等に適用され得る。具体的には、これらの撮像部に対して、本開示の撮像システムを適用することができる。本開示の撮像システムは、DVSと呼ばれる非同期型の撮像装置から成るイベント検出装置、及び、同期型の撮像装置を備え、イベント検出装置によってイベントを検出した上で、イベントを含む領域の画像情報を撮像装置によって取得する。これにより、イベントを検出した上で、撮像装置によって取得した画像情報を基に、イベントの物体認識をより精度よく行うことができるため、安全な車両走行の実現に寄与することが可能となる。
≪本開示がとることができる構成≫
 尚、本開示は、以下のような構成をとることもできる。
<A.撮像システム>
[A-1]入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、
 固定のフレームレートで撮像を行う撮像装置、並びに、
 イベント検出装置及び撮像装置の制御を行う制御部を備え、
 制御部は、イベント検出装置がイベントを検出したことを受けて、イベントを含む領域の画像情報を、撮像装置によって取得する制御を行う、
 移動体に搭載されて用いられる撮像システム。
[A-2]イベント検出装置は、画像の取得が可能であり、
 制御部は、イベント検出装置が取得した画像を基に路面の状態を検出する、
 上記[A-1]に記載の撮像システム。
[A-3]制御部は、イベント検出装置が取得した画像を領域分割し、この領域分割した画像から求めた単位面積当たりの状態変化量を基に路面の状態を検出する、
 上記[A-2]に記載の撮像システム。
[A-4]制御部は、単位面積当たりの状態変化量が所定の閾値以上の領域の数が所定の設定値以上の場合、路面に損傷箇所が存在すると判断する、
 上記[A-3]に記載の撮像システム。
[A-5]制御部は、路面に損傷箇所が存在すると判断したとき、その判断結果を移動体の制御システムに通知する、
 上記[A-4]に記載の撮像システム。
[A-6]制御部は、移動体の外部の状況に応じて、路面の状態を判断するため閾値を動的に変える制御を行う、
 上記[A-2]乃至上記[A-5]のいずれかに記載の撮像システム。
[A-7]制御部は、移動体に装着された環境センサから与えられる情報に基づいて移動体の外部の状況を判断する、
 上記[A-6]に記載の撮像システム。
[A-8]制御部は、撮像装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値以上の場合、撮像装置による撮影からイベント検出装置による撮影に切り替え、イベント検出装置によって取得される画像を基に周囲を監視する、
 上記[A-1]に記載の撮像システム。
[A-9]制御部は、イベント検出装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値未満になった場合、撮像装置による撮影からイベント検出装置による撮影から撮像装置による撮影に切り替える、
 上記[A-8]に記載の撮像システム。
[A-10]赤外光を投光する赤外光投光部を備える、
 上記[A-1]に記載の撮像システム。
[A-11]日照センサを備え、
 制御部は、日照センサから与えられる情報をトリガーとして、赤外光投光部をオン状態とする、
 上記[A-10]に記載の撮像システム。
[A-12]イベント検出装置は、赤外光に感度を持つ画素を有している、
 上記[A-11]に記載の撮像システム。
[A-13]イベント検出装置は、赤外光投光部によって赤外光が投光された環境下において、赤外光に感度を持つ画素の輝度変化に基づいてイベントの検出を行う、
 上記[A-12]に記載の撮像システム。
[A-14]制御部は、イベント検出装置によって一定時間変化のないイベントを検出した場合、その検出結果を移動体の制御システムに通知する、
 上記[A-13]に記載の撮像システム。
[A-15]制御部は、赤外光投光部がオフ状態のとき、イベント検出装置によって一定時間変化のないイベントを検出しない場合、赤外光投光部をオフ状態とする、
 上記[A-13]に記載の撮像システム。
[A-16]制御部は、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を設定する、
 上記[A-10]乃至上記[A-15]のいずれかに記載の撮像システム。
[A-17]制御部は、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を多段階に調整する、
 上記[A-16]に記載の撮像システム。
<B.物体認識システム>
[B-1]入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、
 固定のフレームレートで撮像を行う撮像装置、並びに、
 イベント検出装置及び撮像装置の制御を行う制御部を備え、
 制御部による制御の下に、イベント検出装置によってイベントを検出した上で、イベントを含む領域の画像情報を撮像装置によって取得し、この取得した画像情報を基に物体認識を行う、
 移動体に搭載されて用いられる物体認識システム。
[B-2]イベント検出装置は、画像の取得が可能であり、
 制御部は、イベント検出装置が取得した画像を基に路面の状態を検出する、
 上記[B-1]に記載の物体認識システム。
[B-3]制御部は、イベント検出装置が取得した画像を領域分割し、この領域分割した画像から求めた単位面積当たりの状態変化量を基に路面の状態を検出する、
 上記[B-2]に記載の物体認識システム。
[B-4]制御部は、単位面積当たりの状態変化量が所定の閾値以上の領域の数が所定の設定値以上の場合、路面に損傷箇所が存在すると判断する、
 上記[B-3]に記載の物体認識システム。
[B-5]制御部は、路面に損傷箇所が存在すると判断したとき、その判断結果を移動体の制御システムに通知する、
 上記[B-4]に記載の物体認識システム。
[B-6]制御部は、移動体の外部の状況に応じて、路面の状態を判断するため閾値を動的に変える制御を行う、
 上記[B-2]乃至上記[B-5]のいずれかに記載の物体認識システム。
[B-7]制御部は、移動体に装着された環境センサから与えられる情報に基づいて移動体の外部の状況を判断する、
 上記[B-6]に記載の物体認識システム。
[B-8]制御部は、撮像装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値以上の場合、撮像装置による撮影からイベント検出装置による撮影に切り替え、イベント検出装置によって取得される画像を基に周囲を監視する、
 上記[B-1]に記載の物体認識システム。
[B-9]制御部は、イベント検出装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値未満になった場合、撮像装置による撮影からイベント検出装置による撮影から撮像装置による撮影に切り替える、
 上記[B-8]に記載の物体認識システム。
[B-10]赤外光を投光する赤外光投光部を備える、
 上記[B-1]に記載の物体認識システム。
[B-11]日照センサを備え、
 制御部は、日照センサから与えられる情報をトリガーとして、赤外光投光部をオン状態とする、
 上記[B-10]に記載の物体認識システム。
[B-12]イベント検出装置は、赤外光に感度を持つ画素を有している、
 上記[B-11]に記載の物体認識システム。
[B-13]イベント検出装置は、赤外光投光部によって赤外光が投光された環境下において、赤外光に感度を持つ画素の輝度変化に基づいてイベントの検出を行う、
 上記[B-12]に記載の物体認識システム。
[B-14]制御部は、イベント検出装置によって一定時間変化のないイベントを検出した場合、その検出結果を移動体の制御システムに通知する、
 上記[B-13]に記載の物体認識システム。
[B-15]制御部は、赤外光投光部がオフ状態のとき、イベント検出装置によって一定時間変化のないイベントを検出しない場合、赤外光投光部をオフ状態とする、
 上記[B-13]に記載の物体認識システム。
[B-16]制御部は、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を設定する、
 上記[B-10]乃至上記[B-15]のいずれかに記載の物体認識システム。
[B-17]制御部は、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を多段階に調整する、
 上記[B-16]に記載の物体認識システム。
 1・・・撮像システム、2・・・物体認識システム、10・・・イベント検出装置、11・・・画素、12・・・画素アレイ部、13・・・駆動部、14・・・アービタ部(調停部)、15・・・カラム処理部、16・・・信号処理部、20・・・撮像装置、21・・・画素、22・・・画素アレイ部、23・・・行選択部、24・・・定電流源部、25・・・アナログ-デジタル変換部、26・・・水平転送走査部、27・・・信号処理部、28・・・タイミング制御部、30・・・制御部、40・・・データ処理部、50・・・画像記録部、60・・・認識処理部、61・・・受光部、62・・・画素信号生成部、63・・・イベント検出部、80・・・車外情報取得部、91・・・IR投光部、92・・・IR投光部ドライバ、93・・・日照センサ

Claims (19)

  1.  入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、
     固定のフレームレートで撮像を行う撮像装置、並びに、
     イベント検出装置及び撮像装置の制御を行う制御部を備え、
     制御部は、イベント検出装置がイベントを検出したことを受けて、イベントを含む領域の画像情報を、撮像装置によって取得する制御を行う、
     移動体に搭載されて用いられる撮像システム。
  2.  イベント検出装置は、画像の取得が可能であり、
     制御部は、イベント検出装置が取得した画像を基に路面の状態を検出する、
     請求項1に記載の撮像システム。
  3.  制御部は、イベント検出装置が取得した画像を領域分割し、この領域分割した画像から求めた単位面積当たりの状態変化量を基に路面の状態を検出する、
     請求項2に記載の撮像システム。
  4.  制御部は、単位面積当たりの状態変化量が所定の閾値以上の領域の数が所定の設定値以上の場合、路面に損傷箇所が存在すると判断する、
     請求項3に記載の撮像システム。
  5.  制御部は、路面に損傷箇所が存在すると判断したとき、その判断結果を移動体の制御システムに通知する、
     請求項4に記載の撮像システム。
  6.  制御部は、移動体の外部の状況に応じて、路面の状態を判断するため閾値を動的に変える制御を行う、
     請求項2に記載の撮像システム。
  7.  制御部は、移動体に装着された環境センサから与えられる情報に基づいて移動体の外部の状況を判断する、
     請求項6に記載の撮像システム。
  8.  制御部は、撮像装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値以上の場合、撮像装置による撮影からイベント検出装置による撮影に切り替え、イベント検出装置によって取得される画像を基に周囲を監視する、
     請求項1に記載の撮像システム。
  9.  制御部は、イベント検出装置によって取得される画像を基に周囲を監視している状態において、自車の車速と監視対象の車両の車速との差が所定の閾値未満になった場合、撮像装置による撮影からイベント検出装置による撮影から撮像装置による撮影に切り替える、
     請求項8に記載の撮像システム。
  10.  赤外光を投光する赤外光投光部を備える、
     請求項1に記載の撮像システム。
  11.  日照センサを備え、
     制御部は、日照センサから与えられる情報をトリガーとして、赤外光投光部をオン状態とする、
     請求項10に記載の撮像システム。
  12.  イベント検出装置は、赤外光に感度を持つ画素を有している、
     請求項11に記載の撮像システム。
  13.  イベント検出装置は、赤外光投光部によって赤外光が投光された環境下において、赤外光に感度を持つ画素の輝度変化に基づいてイベントの検出を行う、
     請求項12に記載の撮像システム。
  14.  制御部は、イベント検出装置によって一定時間変化のないイベントを検出した場合、その検出結果を移動体の制御システムに通知する、
     請求項13に記載の撮像システム。
  15.  制御部は、赤外光投光部がオフ状態のとき、イベント検出装置によって一定時間変化のないイベントを検出しない場合、赤外光投光部をオフ状態とする、
     請求項13に記載の撮像システム。
  16.  制御部は、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を設定する、
     請求項10に記載の撮像システム。
  17.  制御部は、日照センサから与えられる明るさ情報に応じて、赤外光投光部の赤外光投光量を多段階に調整する、
     請求項16に記載の撮像システム。
  18.  入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、及び、
     固定のフレームレートで撮像を行う撮像装置を備え、
     移動体に搭載されて用いられる撮像システムの制御に当たって、
     イベント検出装置がイベントを検出したとき、イベントを含む領域の画像情報を、撮像装置によって取得する、
     撮像システムの制御方法。
  19.  入射光を光電変換する画素の輝度変化が所定の閾値を超えたことをイベントとして検出するイベント検出装置、
     固定のフレームレートで撮像を行う撮像装置、並びに、
     イベント検出装置及び撮像装置の制御を行う制御部を備え、
     制御部による制御の下に、イベント検出装置によってイベントを検出した上で、イベントを含む領域の画像情報を撮像装置によって取得し、この取得した画像情報を基に物体認識を行う、
     移動体に搭載されて用いられる物体認識システム。
PCT/JP2020/011163 2019-03-27 2020-03-13 撮像システム及び撮像システムの制御方法、並びに、物体認識システム WO2020195966A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/430,835 US11863911B2 (en) 2019-03-27 2020-03-13 Imaging system, method of controlling imaging system, and object recognition system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-059695 2019-03-27
JP2019059695A JP2020161992A (ja) 2019-03-27 2019-03-27 撮像システム及び物体認識システム

Publications (1)

Publication Number Publication Date
WO2020195966A1 true WO2020195966A1 (ja) 2020-10-01

Family

ID=72611458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011163 WO2020195966A1 (ja) 2019-03-27 2020-03-13 撮像システム及び撮像システムの制御方法、並びに、物体認識システム

Country Status (3)

Country Link
US (1) US11863911B2 (ja)
JP (1) JP2020161992A (ja)
WO (1) WO2020195966A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827450A (zh) * 2021-01-18 2022-07-29 原相科技股份有限公司 模拟图像传感器电路、图像传感器装置及方法
WO2022190598A1 (ja) * 2021-03-09 2022-09-15 ソニーグループ株式会社 情報処理装置と情報処理方法とプログラムおよび撮像システム
WO2022252937A1 (zh) * 2021-06-04 2022-12-08 北京顺造科技有限公司 清洁设备及用于清洁设备的光触发事件识别方法
US11651579B2 (en) 2021-08-05 2023-05-16 Omnivision Technologies, Inc. Imaging system for detecting human-object interaction and a method for detecting human-object interaction
US11871140B2 (en) 2017-12-26 2024-01-09 Pixart Imaging Inc. Motion detection methods and image sensor devices capable of generating ranking list of regions of interest and pre-recording monitoring images

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11863369B2 (en) * 2020-06-26 2024-01-02 Sony Group Corporation Network control method and data processing system
WO2022249593A1 (ja) * 2021-05-27 2022-12-01 ソニーグループ株式会社 情報処理装置、情報処理システム及び情報処理方法
KR20220166109A (ko) 2021-06-09 2022-12-16 에스케이하이닉스 주식회사 배경광 억제를 위한 아이-티오에프 픽셀 회로
WO2023058670A1 (ja) * 2021-10-08 2023-04-13 ソニーセミコンダクタソリューションズ株式会社 画像センサ、データ処理装置、および画像センサシステム
WO2023106232A1 (ja) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、電子機器、および測距システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510732A (ja) * 2006-11-23 2010-04-02 エーアイティー オーストリアン インスティテュート オブ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子形式の画像を生成する方法、画像生成用画像センサのための画像素子ならびに画像センサ
US20160096477A1 (en) * 2014-10-07 2016-04-07 Magna Electronics Inc. Vehicle vision system with gray level transition sensitive pixels
US20170084044A1 (en) * 2015-09-22 2017-03-23 Samsung Electronics Co., Ltd Method for performing image process and electronic device thereof
JP2018186478A (ja) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2019023794A (ja) * 2017-07-24 2019-02-14 株式会社デンソーテン 画像処理装置及び画像処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574511B1 (en) 2011-09-30 2016-03-16 Honda Research Institute Europe GmbH Analyzing road surfaces
KR102418462B1 (ko) 2014-07-08 2022-07-08 코르테바 애그리사이언스 엘엘씨 3―히드록시피콜린산 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510732A (ja) * 2006-11-23 2010-04-02 エーアイティー オーストリアン インスティテュート オブ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子形式の画像を生成する方法、画像生成用画像センサのための画像素子ならびに画像センサ
US20160096477A1 (en) * 2014-10-07 2016-04-07 Magna Electronics Inc. Vehicle vision system with gray level transition sensitive pixels
US20170084044A1 (en) * 2015-09-22 2017-03-23 Samsung Electronics Co., Ltd Method for performing image process and electronic device thereof
JP2018186478A (ja) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2019023794A (ja) * 2017-07-24 2019-02-14 株式会社デンソーテン 画像処理装置及び画像処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871140B2 (en) 2017-12-26 2024-01-09 Pixart Imaging Inc. Motion detection methods and image sensor devices capable of generating ranking list of regions of interest and pre-recording monitoring images
CN114827450A (zh) * 2021-01-18 2022-07-29 原相科技股份有限公司 模拟图像传感器电路、图像传感器装置及方法
CN114827450B (zh) * 2021-01-18 2024-02-20 原相科技股份有限公司 模拟图像传感器电路、图像传感器装置及方法
WO2022190598A1 (ja) * 2021-03-09 2022-09-15 ソニーグループ株式会社 情報処理装置と情報処理方法とプログラムおよび撮像システム
WO2022252937A1 (zh) * 2021-06-04 2022-12-08 北京顺造科技有限公司 清洁设备及用于清洁设备的光触发事件识别方法
US11651579B2 (en) 2021-08-05 2023-05-16 Omnivision Technologies, Inc. Imaging system for detecting human-object interaction and a method for detecting human-object interaction

Also Published As

Publication number Publication date
JP2020161992A (ja) 2020-10-01
US20220166958A1 (en) 2022-05-26
US11863911B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2020195966A1 (ja) 撮像システム及び撮像システムの制御方法、並びに、物体認識システム
WO2020196092A1 (ja) 撮像システム及び撮像システムの制御方法、並びに、物体認識システム
TW202408217A (zh) 光檢測裝置及車輛控制系統
WO2020105314A1 (ja) 固体撮像素子、および、撮像装置
WO2020195700A1 (ja) 撮像装置及び撮像システム
TWI788818B (zh) 攝像裝置及攝像方法
US11683606B2 (en) Imaging device and electronic equipment
WO2021161712A1 (ja) 撮像装置及び車両制御システム
WO2020195822A1 (ja) 撮像システム
WO2019073726A1 (ja) 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器
WO2020246186A1 (ja) 撮像システム
WO2021153428A1 (ja) 撮像装置、電子機器及び撮像方法
WO2021235323A1 (ja) 撮像装置及び撮像方法
WO2021256095A1 (ja) 撮像装置及び撮像方法
CN113615152B (zh) 成像设备和成像系统
WO2023032298A1 (ja) 固体撮像装置
WO2021200523A1 (ja) 撮像装置及び撮像方法
WO2024106169A1 (ja) 光検出素子及び電子機器
WO2024042946A1 (ja) 光検出素子
WO2023136093A1 (ja) 撮像素子、および電子機器
WO2022065032A1 (ja) 撮像装置及び撮像方法
WO2022239345A1 (ja) 撮像素子、撮像装置及び撮像素子の制御方法
WO2022209256A1 (ja) 撮像素子、撮像装置及び撮像素子の制御方法
JP2024071188A (ja) 光検出素子及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778194

Country of ref document: EP

Kind code of ref document: A1