WO2020195798A1 - Thermoplastic resin composition and molded article - Google Patents

Thermoplastic resin composition and molded article Download PDF

Info

Publication number
WO2020195798A1
WO2020195798A1 PCT/JP2020/010321 JP2020010321W WO2020195798A1 WO 2020195798 A1 WO2020195798 A1 WO 2020195798A1 JP 2020010321 W JP2020010321 W JP 2020010321W WO 2020195798 A1 WO2020195798 A1 WO 2020195798A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
seed
resin composition
core layer
thermoplastic resin
Prior art date
Application number
PCT/JP2020/010321
Other languages
French (fr)
Japanese (ja)
Inventor
亜里紗 園山
友也 真部
大輝 芳村
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202080022580.8A priority Critical patent/CN113614178B/en
Priority to JP2021508987A priority patent/JP7509750B2/en
Publication of WO2020195798A1 publication Critical patent/WO2020195798A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded product.
  • thermoplastic resin a method of blending a graft copolymer containing a rubber component into the thermoplastic resin has been known.
  • the color tone of the molded product may change depending on the graft copolymer, resulting in a decrease in color development.
  • MBS Methyl methacrylate-butadiene-styrene resin
  • a graft copolymer containing acrylic rubber is also known instead of butadiene rubber having such restrictions.
  • Patent Document 1 discloses an ASA (acrylonitrile-acrylate-styrene) -based graft copolymer, which is a graft copolymer containing acrylic rubber, and a resin composition containing a matrix resin.
  • ASA acrylonitrile-acrylate-styrene
  • the difference between the refractive index of the seed and shell layer of the graft copolymer composed of the seed, core layer and shell layer and the refractive index of the matrix resin is small so as to be less than 0.035. It is described that the color development is improved by reducing the thickness (r2-r1) of the core having a large difference in refractive index from the matrix resin while selecting the monomer composition of the layer.
  • thermoplastic resin used for a molded product used for automobile interior / exterior applications.
  • the monomer composition of the seed is limited.
  • the seed composition described in Patent Document 1 has a drawback that the polymerization rate is slow and the productivity is lowered particularly when a seed having a large particle size is to be produced.
  • the impact resistance tends to decrease.
  • the present invention has excellent impact resistance in a thermoplastic resin composition containing a graft copolymer and a matrix resin without reducing the difference in refractive index between the seed of the graft copolymer and the matrix resin. It is an object of the present invention to provide a thermoplastic resin composition exhibiting color development.
  • the present inventors are graft copolymers capable of exhibiting excellent impact resistance and color development by blending with a matrix resin containing a styrene-acrylonitrile copolymer widely used in automobile interior / exterior applications. It was investigated. As a result, in the graft copolymer composed of the seed, the core layer and the shell layer, the diameter of the particles composed of the seed and the core layer and the thickness of the core layer are set in specific ranges to set the seed and the matrix. It has been found that excellent impact resistance and color development can be exhibited without adopting a seed monomer composition that reduces the difference in refractive index of the resin.
  • the present invention contains heat containing a seed, a particulate graft copolymer composed of a core layer formed on the surface of the seed, and a shell layer formed on the surface of the core layer, and a matrix resin.
  • a plastic resin composition wherein the matrix resin contains an acrylonitrile-styrene resin, and the seed is at least one selected from the group consisting of (meth) acrylic acid esters, aromatic vinyl compounds, and vinyl cyanide compounds. It is composed of a polymer of a monomer component containing a seed, the difference between the refractive index of the seed and the refractive index of the matrix resin is 0.07 or more, and the core layer is a monomer component containing at least one acrylonitrile ester.
  • the shell layer is a polymer containing at least one selected from the group consisting of a (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyanide compound.
  • the graft copolymer which comprises a polymer of components, relates to a thermoplastic resin composition satisfying the following formulas (1) and (2). 300 ⁇ 2xr2 ⁇ 700 (1) 40 ⁇ r2-r1 ⁇ 210 (2) (In the formula, r1 represents the radius (nm) of the seed, and r2 represents the radius (nm) of the particles composed of the seed and the core layer.)
  • the weight ratio of the core layer in the graft copolymer is 83% by weight or less.
  • the seed comprises a polymer obtained by polymerizing 80 to 100% by weight of a (meth) acrylic acid ester and 0 to 20% by weight of an aromatic vinyl compound.
  • the (meth) acrylic acid ester in the seed comprises an alkyl methacrylate ester.
  • the polymer constituting the seed has a crosslinked structure.
  • the core layer is composed of two or more different layers.
  • the shell layer comprises a polymer obtained by polymerizing at least an aromatic vinyl compound and a vinyl cyanide compound.
  • the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is 3 to 50% by weight.
  • the matrix resin further contains a polycarbonate resin.
  • the weight ratio of the acrylonitrile-styrene resin to the polycarbonate resin is 25:75 to 5:95.
  • the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is 3 to 15% by weight.
  • the present invention also relates to a molded product obtained by molding the thermoplastic resin composition.
  • thermoplastic resin composition containing a graft copolymer and a matrix resin
  • excellent impact resistance and color development can be obtained without reducing the difference in refractive index between the seed of the graft copolymer and the matrix resin.
  • the thermoplastic resin composition shown can be provided.
  • the thermoplastic resin composition according to the preferred embodiment of the present invention is excellent in fluidity at the time of melting, and therefore can be easily used for thin-wall molding and large-sized molded products.
  • the thermoplastic resin composition of the present invention contains a matrix resin and a graft copolymer as an impact resistance improving agent.
  • the ratio of the matrix resin and the graft copolymer used is not particularly limited, and can be appropriately set according to the composition of the matrix resin. From the viewpoint of ensuring good color development while exhibiting excellent impact resistance, the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is usually 1 to 60% by weight. It may be a range. More specifically, when the matrix resin is composed only of acrylonitrile-styrene resin, the weight ratio is preferably 5 to 55% by weight, more preferably 10 to 50% by weight, and further preferably 15 to 45% by weight.
  • the weight ratio is preferably 2 to 20% by weight, more preferably 3 to 19% by weight, still more preferably 4 to 18% by weight. 5 to 17% by weight is particularly preferable.
  • the matrix resin in the present invention contains at least an acrylonitrile-styrene resin.
  • the acrylonitrile-styrene resin (abbreviated as AS resin, also known as SAN plastic) is a copolymer of acrylonitrile and styrene, and is a resin known as a thermoplastic resin having excellent transparency and heat resistance.
  • the matrix resin in the present invention may consist only of acrylonitrile-styrene resin, or may further contain a thermoplastic resin other than acrylonitrile-styrene resin.
  • thermoplastic resin other than the acrylonitrile-styrene resin is not particularly limited, and examples thereof include polycarbonate resin, polyamide resin, acrylic resin, styrene resin, and polyphenylene ether resin. Only one kind of these may be used, or two or more kinds may be used in combination.
  • polycarbonate resin is preferable.
  • the polycarbonate resin is preferably obtained by reacting a divalent or higher phenolic compound with a carbonic acid diester compound such as phosgene or diphenyl carbonate.
  • the divalent or higher valent phenolic compound is not particularly limited, but for example, 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), bis (4-hydroxyphenyl) methane, and bis (4-hydroxyphenyl).
  • Dihydroxydiarylsulfides dihydroxydiaryl sulfoxides such as bis (4-hydroxyphenyl) sulfoxides, dihydroxydiphenyls such as 4,4'-dihydroxydiphenyl, dihydroxyaryls such as 9,9-bis (4-hydroxyphenyl) fluorene.
  • dihydroxybenzenes such as hydroquinone, resorcinol and methylhydroquinone, and dihydroxynaphthalene such as 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are used as divalent phenolic compounds. it can.
  • Phenolic compounds of trivalent or higher can also be used as long as the obtained polycarbonate resin maintains thermoplasticity.
  • the trivalent or higher valent phenolic compound include 2,4,4'-trihydroxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,4,4'-trihydroxyphenyl ether, 2,2', 4,4'-tetrahydroxyphenyl ether, 2,4,4'-trihydroxydiphenyl-2-propane, 2,2'-bis (2,4-dihydroxy) propane, 2,2', 4,4'-Tetrahydroxydiphenylmethane, 2,4,4'-trihydroxydiphenylmethane, 1- [ ⁇ -methyl- ⁇ - (4'-dihydroxyphenyl) ethyl] -3- [ ⁇ ', ⁇ '-bis ( 4 "-Hydroxyphenyl) ethyl] benzene, 1- [ ⁇ -methyl- ⁇ - (4'-dihydroxyphenyl) ethyl]
  • divalent or higher valent phenolic compounds may be used alone or in combination of two or more.
  • the polycarbonate resin can contain, if necessary, a component for making a branched polycarbonate resin in addition to a phenolic compound having a valence of 3 or more, as long as the thermoplasticity is not impaired.
  • a component for making a branched polycarbonate resin in addition to a phenolic compound having a valence of 3 or more, as long as the thermoplasticity is not impaired.
  • the component (branching agent) other than the trivalent or higher valent phenolic compound used to obtain the branched polycarbonate resin include fluoroglucin, merit acid, trimellitic acid, trimellitic acid chloride, trimellitic anhydride, and erosion.
  • Acid n-propyl gallate, protocatechuic acid, pyromellitic acid, pyromellitic dianhydride, ⁇ -resorcinic acid, ⁇ -resorcinic acid, resorcinaldehyde, trimethyl chloride, isatinbis (o-cresol), trimethyltrichloride, 4 -Chloroformylphthalic anhydride, benzophenone tetracarboxylic acid and the like can be mentioned.
  • a linear aliphatic divalent carboxylic acid such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and decandicarboxylic acid may be used.
  • various known substances used as a terminal terminator during polymerization can be used, if necessary, as long as the effects of the present invention are not impaired.
  • Specific examples thereof include monovalent phenolic compounds such as phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, bromophenol, tribromophenol and nonylphenol.
  • Examples of the carbonic acid diester compound used as a raw material for the polycarbonate resin include diaryl carbonates such as diphenyl carbonate and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
  • polycarbonate resin examples include, for example, a polycarbonate resin obtained by an interfacial polycondensation method in which bisphenol A and phosgene are reacted, a polycarbonate resin obtained by a melt polymerization method in which bisphenol A and diphenyl carbonate are reacted, and the like. ..
  • a particularly preferable matrix resin in the present invention is a mixture of acrylonitrile-styrene resin and polycarbonate resin.
  • the ratio of the acrylonitrile-styrene resin to the polycarbonate resin in the mixture is not particularly limited and can be appropriately set by those skilled in the art, but the weight ratio of the acrylonitrile-styrene resin: polycarbonate resin is 50:50 to 1:99. It is preferable, 40:60 to 2:98 is more preferable, and 30:70 to 3:97 is even more preferable. In particular, 25:75 to 5:95 is most preferable because excellent impact resistance can be obtained.
  • the graft copolymer in the present invention is in the form of particles composed of a seed, a core layer formed on the surface of the seed, and a shell layer formed on the surface of the core layer.
  • the seed is a small particle existing inside the particles constituting the graft copolymer, and at least one selected from the group consisting of a (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyanide compound. It is composed of a polymer of the monomer components contained.
  • the (meth) acrylic acid ester is not particularly limited, and for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic.
  • (Meta) acrylic acid alkyl esters such as octyl acid, dodecyl (meth) acrylic acid, stearyl (meth) acrylic acid, behenyl (meth) acrylic acid; phenoxyethyl (meth) acrylic acid, benzyl (meth) acrylic acid, etc.
  • Arocyclic ring-containing (meth) acrylates hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; glycidyl such as glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate.
  • (Meta) acrylates examples thereof include alkoxyalkyl (meth) acrylates.
  • (meth) acrylic is a collective description of acrylic and methacrylic.
  • the aromatic vinyl compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, monochlorostyrene, and dichlorostyrene.
  • the vinyl cyanide compound is not particularly limited, and examples thereof include acrylonitrile and methacrylonitrile.
  • vinyl carboxylic acids such as acrylic acid and methacrylic acid
  • vinyl halides such as vinyl chloride, vinyl bromide and chloroprene
  • vinyl acetate vinyl acetate
  • alkenes such as ethylene, propylene, butylene and isobutylene are used in combination. May be good.
  • the present invention can exhibit good color development in a thermoplastic resin containing a graft copolymer, but it is not necessary to adjust so that the difference between the refractive index of the seed and the refractive index of the matrix resin becomes small.
  • the difference in refractive index is 0.07 or more. Therefore, as described in Patent Document 1, it is not necessary to select the monomer composition of the seed so that the difference in refractive index is less than 0.035.
  • the styrene-based monomer composition disclosed in Patent Document 1 has a problem that the polymerization rate for forming seeds is slow and the productivity is lowered.
  • the difference in refractive index is less than 0.07, the impact resistance, particularly the impact resistance at a low temperature, is not sufficient.
  • the difference in refractive index is preferably 0.08 or more, more preferably 0.085 or more, and further preferably 0.09 or more.
  • the upper limit of the refractive index difference is not particularly limited, but may be, for example, 0.15 or less, 0.13 or less, or 0.11 or less.
  • the refractive index of the seed is the refractive index of the monomer forming the seed.
  • the refractive index of the seed is calculated from the refractive index of each monomer and the weight ratio of each monomer to the whole seed.
  • the refractive index of the matrix resin was measured according to the JIS K7142 standard.
  • the matrix resin is a mixture, the refractive index of the matrix resin is calculated from the refractive index of each resin and the weight ratio of each resin in the entire matrix resin.
  • the polymer constituting the seed is a polymer mainly composed of (meth) acrylic acid ester, and specifically, 80 to 100% by weight of (meth) acrylic acid ester and It is a polymer obtained by polymerizing 0 to 20% by weight of an aromatic vinyl compound.
  • a seed composed of a polymer having such a monomer composition can easily achieve a refractive index difference of 0.07 or more between the seed and the matrix resin described above, and has impact resistance, particularly impact resistance at low temperatures. Can be improved. Further, since the seed can be polymerized at a higher speed than the styrene-based seed described in Patent Document 1, productivity can be improved.
  • the ratio of each of the monomers is the weight ratio of each monomer to the total polymer constituting the seed. From the viewpoint of higher impact resistance and productivity, preferably (meth) acrylic acid ester is 85% by weight or more, aromatic vinyl compound is 15% by weight or less, and more preferably (meth) acrylic acid ester is 90% by weight. % Or more, the aromatic vinyl compound is 10% by weight or less, more preferably the (meth) acrylic acid ester is 95% by weight or more, and the aromatic vinyl compound is 5% by weight or less. The proportion of the aromatic vinyl compound may be 0% by weight.
  • the (meth) acrylic acid ester used in the seed it is preferable to use an alkyl methacrylate ester.
  • the seed can be composed of a hard polymer, which is advantageous for improving the color development property.
  • methyl methacrylate is particularly preferable.
  • the (meth) acrylic acid ester used in the seed may be only one or more kinds of methacrylic acid alkyl esters, or one or more kinds of methacrylic acid alkyl esters and one or more kinds.
  • Acrylic acid alkyl ester of the above may be used in combination. The latter is preferable from the viewpoint of thermal stability described later. It is particularly preferable to use butyl acrylate as the acrylic acid alkyl ester.
  • the monomer composition of the polymer constituting the seed is 40 to 100% by weight of the methacrylic acid alkyl ester, 0 to 35% by weight of the acrylic acid alkyl ester, and 0 to 10% by weight of the aromatic vinyl compound. % And 0 to 15% of other monomers having a copolymerizable double bond, preferably 40 to 99.9% by weight of alkyl methacrylate ester and 0.1 to 35% by weight of alkyl acrylate ester.
  • the thermal stability of the graft copolymer can be increased, and it can withstand high-temperature molding.
  • the methacrylic acid alkyl ester which is the main component, easily undergoes zip depolymerization during high-temperature molding and is easily thermally decomposed.
  • zipping is performed. Depolymerization can be easily suppressed and thermal stability can be improved.
  • the seed may be composed of a polymer having no crosslinked structure introduced therein, but is preferably composed of a polymer having a crosslinked structure.
  • the seed can be composed of a hard polymer, which is advantageous for improving the color development property.
  • the method for introducing the crosslinked structure is not particularly limited, but for example, when the monomer component is polymerized to synthesize a seed, a crosslinked monomer such as a polyfunctional monomer or a mercapto group-containing compound may be used.
  • polyfunctional monomer examples include allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth) acrylate; allyloxyalkyl (meth) acrylates; (poly) ethylene glycol di (meth) acrylate.
  • Polyfunctional (meth) having two or more (meth) acrylic groups such as butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate.
  • Acrylate examples thereof include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene. Allyl methacrylate, triallyl isocyanurate, butanediol di (meth) acrylate, and divinylbenzene are preferable, and allyl methacrylate is particularly preferable.
  • the ratio of the polyfunctional monomer used is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the total of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the seed. It is more preferably 0.1 to 8 parts by weight, still more preferably 0.5 to 6 parts by weight.
  • the weight ratio of the seed in the graft copolymer is preferably 3 to 40% by weight, more preferably 4 to 30% by weight, still more preferably 5 to 25% by weight, from the viewpoint of color development. Further, from the viewpoint of imparting impact resistance, 20% by weight or less is more preferable, 15% by weight or less is more preferable, and 10% by weight or less is particularly preferable.
  • the core layer is a polymer layer formed on the surface of seed particles, is a polymer of a monomer component containing at least one acrylic acid ester, and is composed of a polymer having a crosslinked structure. Is.
  • This core layer mainly has a function of imparting impact resistance to the matrix resin.
  • the polymer constituting the core layer is preferably grafted to the polymer constituting the seed.
  • the core layer does not cover the entire surface of the seed particles, but may cover at least a part of the surface of the seed particles.
  • the polymer constituting the core layer is a polymer of monomer components containing an acrylic acid ester.
  • acrylic acid esters include those listed with respect to seeds.
  • an acrylic acid alkyl ester is preferable, and butyl acrylate is more preferable.
  • a monomer other than the acrylic acid ester may be used in combination, or may not be used in combination.
  • the weight ratio of the acrylic acid ester to the entire monomer component of the core layer is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably 90% by weight or more.
  • the polymer constituting the core layer has a crosslinked structure.
  • the method for introducing the crosslinked structure and specific examples of the polyfunctional monomer are the same as those described above for the seed.
  • the total usage ratio of the polyfunctional monomer in the core layer is preferably 0.01 to 10% by weight with respect to a total of 100 parts by weight of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the core layer. It is, more preferably 0.05 to 5 parts by weight, still more preferably 0.1 to 3 parts by weight.
  • the core layer may be a single layer, but may be a layer composed of two or more layers.
  • the core layer is composed of two or more layers having different compositions from each other.
  • the core layer is composed of a first core layer formed on the surface of the seed and a second core layer formed on the surface of the first core layer.
  • the composition of the first core layer and the second core layer can be appropriately selected from the above.
  • the weight ratio of the second core layer to the entire core layer is preferably 1 to 50% by weight, more preferably 2 to 30% by weight, still more preferably 3 to 10% by weight, and the second.
  • the usage ratio of the polyfunctional monomer in the core layer is set higher than the usage ratio of the polyfunctional monomer in the first core layer (that is, the cross-linking density of the second core layer is higher than the cross-linking density of the first core layer. Set high).
  • impact resistance is mainly imparted by the first core layer located inside.
  • the second core layer which is located on the outside and is harder than the first core layer, regulates the formation of the free polymer, thereby suppressing the aggregation of the particles of the graft copolymer and the matrix resin and the graft co-weight.
  • the compatibility of coalescence can be improved.
  • the dispersibility of the graft copolymer in the matrix resin is improved, and as a result, the color development property and the impact resistance can be further improved.
  • the ratio of the polyfunctional monomer used in the first core layer is preferably 100 parts by weight in total of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the first core layer. Is 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, still more preferably 0.1 to 1 part by weight, and the ratio of the polyfunctional monomer used in the second core layer is , It is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on a total of 100 parts by weight of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the second core layer. It is a part, more preferably 1.5 to 4 parts by weight.
  • the weight ratio of the entire core layer to the graft copolymer is preferably 83% by weight or less from the viewpoint of color development. In this range, the color development property is more likely to be improved. It is more preferably 73% by weight or less, further preferably 63% by weight or less, still more preferably 53% by weight or less, and particularly preferably 50% by weight or less. From the viewpoint of imparting impact resistance, the lower limit of the weight ratio is preferably 20% by weight or more, more preferably 30% by weight or more, further preferably 35% by weight or more, still more preferably 40% by weight or more.
  • the graft copolymer of the present invention is characterized in that the diameter of the particles composed of the seed and the core layer and the thickness of the core layer each satisfy specific conditions.
  • the diameter of the particles composed of the seed and the core layer is represented by the following formula (1)
  • the thickness of the core layer is represented by the following formula (2).
  • r1 represents the radius (nm) of the seed.
  • r2 represents the radius (nm) of the particles composed of the seed and the core layer (that is, the particles before the seed and the core layer are formed and the shell layer is formed).
  • 2 ⁇ r1 and 2 ⁇ r2 are the latex states of the seeds or the latex states of the particles before the seed and core layers are formed and the shell layer is formed, respectively, and MICROTRAC manufactured by Nikkiso Co., Ltd. It can be measured as a volume average particle size (nm) using UPA150.
  • the above formula (1) defines that the diameter of the particles composed of the seed and the core layer (hereinafter, also referred to as the particle diameter) is 300 to 700 nm. If the diameter is less than 300 nm, the impact resistance, particularly the impact resistance at a low temperature, is not sufficient.
  • the particle size is preferably 320 nm or more, more preferably 340 nm or more, further preferably 360 nm or more, particularly preferably 380 nm or more, and most preferably 400 nm or more.
  • the particle diameter to the core layer relatively large in this way, the light scattering mechanism is changed from Rayleigh scattering to Mie scattering, and therefore, good color development is achieved despite the large particles. It was realized.
  • the upper limit of the particle size is not particularly limited, but from the viewpoint of productivity, it is preferably 650 nm or less, preferably 600 nm or less, further preferably 550 nm or less, and even more preferably 500 nm or less.
  • the above formula (2) defines that the thickness of the core layer is 40 to 210 nm. With this relatively thick core layer, an excellent balance between impact resistance and color development can be achieved.
  • the thickness of the core layer is preferably 45 to 200 nm, more preferably 50 to 180 nm, further preferably 55 to 160 nm, further preferably 60 to 140 nm, and particularly preferably 65 to 130 nm.
  • the shell layer is a polymer layer formed on the surface of the core layer, and is a layer located on the outermost side of the graft copolymer particles.
  • the shell layer improves the compatibility between the graft copolymer and the matrix resin, and enables the graft copolymer to be dispersed in the state of primary particles in the resin composition or a molded product made of the same.
  • the polymer constituting the shell layer is preferably grafted on the polymer constituting the core layer. Further, a part of the polymer constituting the shell layer may be grafted on the polymer constituting the seed.
  • the shell layer does not cover the entire surface of the core layer, but may cover at least a part of the surface of the core layer.
  • the shell layer is composed of a polymer of a monomer component containing at least one selected from the group consisting of (meth) acrylic acid ester, aromatic vinyl compound, and vinyl cyanide compound. These monomers can be appropriately selected from the specific examples of the monomers described above for the seed.
  • the polymer constituting the shell layer is preferably composed of at least a polymer obtained by polymerizing an aromatic vinyl compound and a vinyl cyanide compound.
  • (meth) acrylic acid ester may be further used.
  • Styrene is preferable as the aromatic vinyl compound
  • acrylonitrile is preferable as the vinyl cyanide compound.
  • the weight ratio of the aromatic vinyl compound to the entire polymer constituting the shell layer is preferably 30 to 95% by weight, more preferably 50 to 90% by weight, and 60 to 85% by weight. Is even more preferable.
  • the weight ratio of the vinyl cyanide compound is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, still more preferably 15 to 40% by weight.
  • the weight ratio of the shell layer in the graft copolymer can be appropriately determined in consideration of the weight ratio of the seed and core layer described above, but compatibility with the matrix resin is achieved while securing the ratio of the seed and core layer. From the viewpoint, for example, it may be 5 to 75% by weight, preferably 10 to 70% by weight, more preferably 20 to 65% by weight, further preferably 30 to 60% by weight, and particularly preferably 40 to 60% by weight.
  • the shell layer may be formed of a polymer having a crosslinked structure, but is preferably formed of a polymer having no crosslinked structure introduced therein. That is, the shell layer is preferably formed from a polymer synthesized without using a crosslinkable monomer such as a polyfunctional monomer. By not using a crosslinkable monomer in the shell layer, a free polymer can be produced, and the compatibility between the matrix resin and the graft copolymer can be improved.
  • the method for producing the graft copolymer of the present invention can be carried out by a conventional method, and specific examples will be described below.
  • a seed is formed.
  • the seed can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization or the like, and for example, the method described in WO 2005/028546 can be used.
  • the core layer is formed.
  • the core layer can be formed by polymerizing the monomer component for the core layer by a known radical polymerization in the presence of a seed.
  • the seed is obtained as an emulsion, it is preferable that the monomer component for the core layer is polymerized by an emulsion polymerization method.
  • the core layer is composed of the first core layer and the second core layer, the monomer component for the first core layer may be polymerized, and then the monomer component for the second core layer may be polymerized.
  • a shell layer is formed.
  • the shell layer can be formed by polymerizing the monomer component for the shell layer by a known radical polymerization in the presence of particles composed of a seed and a core layer.
  • the polymerization of the monomer components for the shell layer is preferably carried out by an emulsion polymerization method.
  • International Publication No. 2005 It can be produced according to the method described in 028546.
  • the emulsifier (dispersant) that can be used in emulsion polymerization is not particularly limited, and anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants and the like can be used. Further, a dispersant such as polyvinyl alcohol, alkyl-substituted cellulose, polyvinylpyrrolidone, and a polyacrylic acid derivative may be used.
  • the anionic surfactant is not particularly limited, and examples thereof include the following compounds: potassium laurate, potassium coconut fatty acid, potassium myristate, potassium oleate, potassium diethanolamine oleate, sodium oleate.
  • sodium dialkyl sulfosuccinate such as sodium di-2-ethylhexyl s
  • the nonionic surfactant among the above emulsifiers is not particularly limited, and examples thereof include the following compounds: polyoxy such as polyoxyethylene nonylphenyl ether, polyoxyethylene oleyl ether, and polyoxyethylene lauryl ether.
  • Polyoxyethylene sorbitan esters such as ethylene alkyl allyl ethers or polyoxyethylene alkyl ethers, polyoxyethylene sorbitan monolaurates, polyoxyethylene sorbitan monostearates, polyethylene glucol monolaurates, polyethylene glucol monostearates, Polyoxyethylene fatty acid esters such as polyethylene glucol monooleate, oxyethylene / oxypropylene block copolymers, etc.
  • the cationic surfactant among the above emulsifiers is not particularly limited, and examples thereof include the following compounds: alkylamine salts such as coconatamine acetate, stearylamine acetate, octadecylamine acetate, and tetradecylamine acetate; Tertiary ammonium salts such as lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, distearyldimethylammonium chloride, alkylbenzyldimethylammonium chloride, hexadecyltrimethylammonium chloride, and behenyltrimethylammonium chloride.
  • alkylamine salts such as coconatamine acetate, stearylamine acetate, octadecylamine acetate, and tetradecylamine acetate
  • Tertiary ammonium salts such as lauryltrimethyl
  • amphoteric surfactant among the above emulsifiers is not particularly limited, and examples thereof include the following compounds: alkyl betaines such as lauryl betaine, stearyl betaine, and dimethyl lauryl betaine; sodium lauryl diaminoethylglycine; amide betaine; imidazoline. Lauryl carboxymethyl hydroxyethyl imidazolinium betaine, etc.
  • emulsifiers may be used alone or in combination of two or more. By adjusting the amount of the emulsifier used, the above-mentioned r1 and r2 can be controlled.
  • emulsifier dispersant
  • a small amount of emulsifier (dispersant) as long as it does not interfere with the dispersion stability of the aqueous latex of the polymer particles.
  • the emulsifier (dispersant) can be easily removed by washing with water, and adverse effects on the finally obtained resin composition or molded product can be easily prevented.
  • a known initiator that is, 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, ammonium persulfate and the like can be used as the pyrolytic initiator. ..
  • organic compounds such as t-butyl peroxyisopropyl carbonate, paramentan hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t-hexyl peroxide.
  • Oxides; peroxides such as inorganic peroxides such as hydrogen peroxide, potassium persulfate, ammonium persulfate, and optionally sodium formaldehyde sulfoxylates, reducing agents such as glucose, and optionally iron sulfate (II).
  • a chelating agent such as disodium ethylenediamine tetraacetate
  • a phosphorus-containing compound such as sodium pyrophosphate can be used in combination with a redox-type initiator.
  • a redox-type initiator system When a redox-type initiator system is used, polymerization can be carried out even at a low temperature at which the peroxide does not substantially undergo thermal decomposition, and the polymerization temperature can be set in a wide range, which is preferable. Of these, it is preferable to use organic peroxides such as cumene hydroperoxide, dicumyl peroxide, and t-butyl hydroperoxide as the redox-type initiator.
  • the amount of the initiator used, and when the redox-type initiator is used, the amount of the reducing agent, transition metal salt, chelating agent, etc. used can be used within a known range. Further, when polymerizing a monomer having two or more radically polymerizable double bonds, a known chain transfer agent can be used in a known range. Surfactants can be additionally used, but this is also in the known range.
  • Conditions such as polymerization temperature, pressure, and deoxygenation at the time of polymerization can be applied within a known range.
  • the radical copolymer used in the present invention preferably satisfies any one or more of the following properties (i)-(iii). Further, it is more preferable to satisfy any two or more, and it is further preferable to satisfy all three.
  • the Izod impact strength measured according to the following measurement conditions is obtained for the test piece 1 having a length of 63.5 mm, a width of 12.7 mm, a thickness of 3.2 mm, and a v-notch manufactured according to the following test piece preparation conditions. , 30 kJ / m 2 or more. It is preferably 35 kJ / m 2 or more, more preferably 40 kJ / m 2 or more, and further preferably 45 kJ / m 2 or more.
  • a twin-screw extruder heated to a barrel temperature of 200 to 250 ° C. (TEX44SS manufactured by Nippon Steel Co., Ltd.) is kneaded under the condition of a screw rotation speed of 100 rpm to obtain extruded pellets.
  • the pellets are dried at 80 ° C. for 5 hours in a hot air dryer, and a test piece is prepared in an injection molding machine (FAS100B manufactured by FANUC Co., Ltd.) under the conditions of a molding temperature of 250 ° C. and a mold temperature of 70 ° C.
  • FAS100B manufactured by FANUC Co., Ltd.
  • the L value measured according to the following measurement conditions is 20 or less. is there. It is preferably 15 or less, more preferably 13 or less, still more preferably 11 or less, and particularly preferably 10 or less.
  • Measurement condition According to JIS K8722 standard, the reflected L value is measured with a color difference meter (model: SE-2000) manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the MFR value measured according to the following measurement conditions is 21 or more for the extruded pellets produced according to the procedure in the test piece preparation conditions in (i) above. It is preferably 23 or more, more preferably 24 or more, and even more preferably 25 or more.
  • Measurement condition According to the JIS K7210 A method, the extruded pellets are dried at 80 ° C. for 5 hours in a hot air dryer, and then the MFR value is measured under the conditions of a measurement temperature of 260 ° C. and a load of 5 kg.
  • thermoplastic resin composition of the present invention contains flame retardants, lubricants, antibacterial agents, mold release agents, nucleating agents, plasticizers, heat stabilizers, antioxidants, light stabilizers, ultraviolet stabilizers, as required. Any additive such as a compatibilizer, a pigment, a dye and an inorganic substance additive can be blended. Those skilled in the art can appropriately set the blending amount of each additive.
  • the method for producing the thermoplastic resin composition of the present invention is not particularly limited, and a Henschel mixer, a tumbler mixer, or the like can be used for mixing the raw materials, and a single-screw or twin-screw extruder, a Banbury mixer, or the addition is used for melt kneading.
  • a kneader such as a pressure kneader or a mixing roll can be used.
  • thermoplastic resin composition of the present invention can be produced for various purposes and can be used for construction applications, electrical / electronic applications, vehicle applications, etc., for example, personal computers, liquid crystal displays, projectors, PDAs, printers, copiers, fax machines, etc. , Video cameras, digital cameras, mobile phones (smartphones), portable audio equipment, game machines, DVD recorders, microwave ovens, rice cookers, and other electrical and electronic applications; road light-transmitting plates, light-collecting windows, carports, lighting lenses, etc.
  • the refractive index of the seed was calculated based on the refractive index of each monomer used at the time of forming the seed and the ratio of its use. Specifically, it is as follows.
  • the refractive index of methyl methacrylate (hereinafter referred to as MMA) is 1.494
  • the refractive index of butyl acrylate (hereinafter referred to as BA)
  • the refractive index of styrene (hereinafter referred to as ST) is 1.595
  • acrylonitrile hereinafter referred to as AN).
  • the weight ratio of each monomer shall be the weight ratio of each monomer to the total amount of seeds.
  • Refractive index of seed (MMA refractive index XMMA weight ratio / 100) + (BA refractive index XBA weight ratio / 100) + (ST refractive index XST weight ratio / 100) + (AN refractive index XAN Weight ratio / 100)
  • volume average particle size The volume average particle size was measured in the latex state of the seed or in the latex state of the particles before the seed and the core layer were formed and the shell layer was formed.
  • MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd. was used.
  • the mixture of each example and comparative example is kneaded with a twin-screw extruder (TEX44SS manufactured by Japan Steel Works, Ltd.) heated to a barrel temperature of 200 to 250 ° C. under the condition of a screw rotation speed of 100 rpm to obtain extruded pellets. It was.
  • the pellets were dried at 80 ° C. for 5 hours in a hot air dryer, and the length was 63.5 mm under the conditions of an injection molding machine (FAS100B manufactured by FANUC Corporation) at a molding temperature of 250 ° C. and a mold temperature of 70 ° C.
  • a test piece 1 having a width of 12.7 mm, a thickness of 3.2 mm, and a v-notch was prepared.
  • the Izod impact strength of the obtained test piece 1 was measured at ⁇ 30 ° C., 0 ° C., 10 ° C., and 23 ° C. by a method conforming to the ASTM D256 standard.
  • Examples 1 to 20 and Comparative Examples 1 to 7 A graft copolymer composed of a seed, a core layer, and a shell layer was prepared based on the weight ratios shown in each table.
  • the volume average particle diameter (2 ⁇ r1) of the seed and the volume average particle diameter (2 ⁇ r2) of the particles before the seed and the core layer are formed and the shell layer is formed are measured.
  • the obtained 2 ⁇ r2 numerical value and the calculated r2-r1 numerical value are shown in each table.
  • Example 6 The specific procedure for producing and acquiring the graft copolymer in Example 6 as a typical graft copolymer is shown below.
  • the procedure for producing the graft copolymer of Comparative Example 1 will also be described later.
  • the procedure for producing and obtaining the graft copolymer in Examples other than Example 6 or Comparative Examples other than Comparative Example 1 conforms to the following description regarding Example 6, but the amount of the emulsifier used is the particle size of the seed. It was changed as appropriate according to the thickness of the core layer and the amount of monomer used.
  • the weight ratios of the seed, core layer (first core layer and second core layer), and shell layer in the graft copolymer are as shown in each table, but the monomer species used in each layer are Examples. It is the same as No. 6, and the usage ratio of the monomer in each layer is the same as the usage ratio of the monomer in Example 6. However, with respect to Example 19 and Comparative Examples 6 and 7, the monomer species used in the seed and the usage ratio
  • MMA methyl methacrylate
  • BA butyl acrylate
  • allyl methacrylate 0.25 parts by weight of cumene hydroperoxide.
  • 0.04 parts by weight of sodium formaldehyde sulfoxylate at a% concentration was charged. In that state, the mixture was stirred for 60 minutes to form seed particles with a polymerization conversion rate of 97%.
  • 0.005 part by weight of cumene hydroperoxide was charged therein, and a mixture of 42.5 part by weight of BA and 0.2 part by weight of allyl methacrylate was added over 120 minutes. During the addition, 0.005 parts by weight of cumene hydroperoxide was added according to the progress of polymerization. After the addition, the mixture was stirred for 60 minutes while raising the temperature to 65 ° C. to form a first core layer with a polymerization conversion rate of 98%.
  • a mixture of disodium ethylenediamine tetraacetate and ferrous sulfate at a mixing ratio of 4: 1 and dissolved in deionized water so as to have a concentration of 0.5% by weight was charged therein in an amount of 0.0027 parts by weight.
  • a mixture of 2.5 parts by weight, 0.06 parts by weight of allyl methacrylate, and 0.0063 parts by weight of cumene hydroperoxide was added over 10 minutes. After the addition, the mixture was stirred for 60 minutes to form a second core layer with a polymerization conversion rate of 99%.
  • AN acrylonitrile
  • ST styrene
  • a mixture of 76.5 parts by weight of BA, 0.38 parts by weight of allyl methacrylate, 0.025 parts by weight of t-butyl hydroperoxide, and 0.765 parts by weight of polyoxyethylene lauryl ether phosphoric acid was added thereto over 220 minutes. did. During the addition, 0.02 part by weight of a 2% by weight aqueous sodium hydroxide solution was appropriately added. After adding the mixture, 0.015 parts by weight of t-butyl hydroperoxide was added and stirred for 45 minutes to form a core layer with a polymerization conversion rate of 98.5%.
  • a mixture of 13.5 parts by weight of MMA, 1.5 parts by weight of BA, 0.007 parts by weight of t-butyl hydroperoxide, and 0.14 parts by weight of polyoxyethylene lauryl ether phosphoric acid was added thereto over 50 minutes.
  • 0.01 part by weight of a 2% by weight aqueous sodium hydroxide solution was appropriately added.
  • the mixture was stirred for 15 minutes, and 0.015 parts by weight of t-butyl hydroperoxide was added.
  • the mixture was stirred for 15 minutes, 0.03 part by weight of t-butyl hydroperoxide was added, and the mixture was further stirred for 30 minutes to form a shell layer having a polymerization conversion rate of 100%. From the above, a latex of a graft copolymer composed of only a core layer and a shell layer was obtained.
  • thermoplastic resin composition Manufacturing of thermoplastic resin composition
  • an aromatic polycarbonate resin having a viscosity average molecular weight of 19,000 Panlite L-1225WX manufactured by Teijin Co., Ltd.
  • an acrylonitrile-styrene resin STYLAC T8701 manufactured by Asahi Kasei Co., Ltd.
  • a polycarbonate resin masterbatch containing 30% by weight of carbon black was mixed in the number of parts listed in each table, and the mixture was obtained according to the above-mentioned conditions.
  • the MFR and L values were measured and the results are shown in each table.
  • thermoplastic resin composition obtained in each Example in Table 1 Izod impact strength measured at 10 ° C. is 30 kJ / m 2 or more, at -30 Izod impact strength measured at ° C. is 14 kJ / m 2 or more, and Since the L value was 20 or less, it can be seen that both impact resistance and color development are excellent. On the other hand, it can be seen that the thermoplastic resin composition obtained in Comparative Example 1 using the graft copolymer having no seed has an L value of 21 and is inferior in color development.
  • thermoplastic resin compositions obtained in Comparative Examples 2 to 4 using a graft copolymer having a core layer thickness of r2-r1 of less than 40 nm had an Izod impact strength of 30 kJ / m measured at 10 ° C. If it is less than 2 , it can be seen that the impact resistance is inferior. Further, the thermoplastic resin composition obtained in Comparative Example 5 using a graft copolymer having a diameter of 2xr2 of less than 300 nm, which is the diameter of the particles composed of the seed and the core layer, had an Izod impact strength measured at ⁇ 30 ° C. It can be seen that the impact resistance at low temperature is inferior.
  • Examples 13 to 16 in Table 2 the number of copies of the graft copolymer was changed, but all of them showed good impact resistance and color development. Further, in Examples 17 and 18, although the resin composition in the matrix resin was changed, both showed good impact resistance and color development.
  • Example 19 of Table 3 the difference between the refractive index of the seed and the refractive index of the matrix resin was 0.07, which showed good impact resistance and color development, whereas Comparative Example 6 had the refractive index. It can be seen that the difference between the two is 0.06, the Izod impact strength measured at ⁇ 30 ° C. is low, and the impact resistance at low temperature is inferior.
  • Example 20 and Comparative Example 7 in Table 4 the resin composition of the matrix resin was changed.
  • the difference between the refractive index of the seed and the refractive index of the matrix resin was 0.073
  • Comparative Example 7 the difference in the refractive index was 0.03, but in Example 20, comparison was made.
  • the impact resistance was better than that of Example 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A thermoplastic resin composition that contains: a particulate graft copolymer that is formed from a seed, a core layer, and a shell layer; and a matrix resin. The matrix resin includes an acrylonitrile-styrene resin. The difference between the refractive index of the seed and the refractive index of the matrix resin is at least 0.07. The core layer comprises a polymer that has a cross-linked structure and is a polymer of a monomer component that includes an acrylic acid ester. The graft copolymer satisfies the following expressions. In the expressions, r1 is the radius (nm) of the seed, and r2 is the radius (nm) of a particle formed from the seed and the core layer. 300≤2×r2≤700; 40≤r2-r1≤210.

Description

熱可塑性樹脂組成物及び成形体Thermoplastic resin composition and molded article
 本発明は、熱可塑性樹脂組成物及び成形体に関する。 The present invention relates to a thermoplastic resin composition and a molded product.
 従来、熱可塑性樹脂の耐衝撃性を改良する技術として、ゴム成分を含むグラフト共重合体を熱可塑性樹脂に配合する方法が知られている。 Conventionally, as a technique for improving the impact resistance of a thermoplastic resin, a method of blending a graft copolymer containing a rubber component into the thermoplastic resin has been known.
 しかし、このようなゴム含有グラフト共重合体を配合した熱可塑性樹脂組成物から成形体を作製すると、グラフト共重合体によって成形体の色合いが変化して、発色性が低下する場合があった。 However, when a molded product is produced from a thermoplastic resin composition containing such a rubber-containing graft copolymer, the color tone of the molded product may change depending on the graft copolymer, resulting in a decrease in color development.
 耐衝撃性を改善しつつ、良好な発色性を有する熱可塑性樹脂組成物を得るためには、マトリクス樹脂とグラフト共重合体の屈折率差を低減する方法が一般的である。その場合に好適なグラフト共重合体として、メタクリル酸メチル-ブタジエン-スチレン樹脂(MBS)が広く使用されている。しかし、MBSはブタジエンゴムを含むものであるため、紫外線劣化等を受けやすく、それによる耐衝撃性や発色性の悪化が課題となって、用途が屋内でのものに制限される傾向がある。 In order to obtain a thermoplastic resin composition having good color development while improving impact resistance, a method of reducing the difference in refractive index between the matrix resin and the graft copolymer is common. Methyl methacrylate-butadiene-styrene resin (MBS) is widely used as a suitable graft copolymer in that case. However, since MBS contains butadiene rubber, it is susceptible to deterioration by ultraviolet rays and the like, resulting in deterioration of impact resistance and color development, and its use tends to be limited to indoor use.
 このような制限を有するブタジエンゴムではなく、アクリルゴムを含むグラフト共重合体も知られている。 A graft copolymer containing acrylic rubber is also known instead of butadiene rubber having such restrictions.
 特許文献1では、アクリルゴムを含むグラフト共重合体であるASA(アクリロニトリル-アクリレート-スチレン)系グラフト共重合体と、マトリクス樹脂を含有する樹脂組成物が開示されている。ここでは、シード、コア層及びシェル層から構成されるグラフト共重合体のシード及びシェル層の屈折率と、マトリクス樹脂の屈折率の差を小さく、0.035未満になるように、シードとシェル層のモノマー組成を選択する一方、マトリクス樹脂との屈折率差が大きいコアの厚み(r2-r1)を薄くすることで、発色性を改善したことが記載されている。 Patent Document 1 discloses an ASA (acrylonitrile-acrylate-styrene) -based graft copolymer, which is a graft copolymer containing acrylic rubber, and a resin composition containing a matrix resin. Here, the difference between the refractive index of the seed and shell layer of the graft copolymer composed of the seed, core layer and shell layer and the refractive index of the matrix resin is small so as to be less than 0.035. It is described that the color development is improved by reducing the thickness (r2-r1) of the core having a large difference in refractive index from the matrix resin while selecting the monomer composition of the layer.
 一方、自動車内外装用途などで使用される成形体に用いる熱可塑性樹脂として、スチレン-アクリロニトリル共重合体や、これとポリカーボネート樹脂のアロイを用いることが知られている。 On the other hand, it is known that a styrene-acrylonitrile copolymer or an alloy of this and a polycarbonate resin is used as a thermoplastic resin used for a molded product used for automobile interior / exterior applications.
特表2014-527570号公報Special Table 2014-527570
 特許文献1に記載の方法によると、シードとマトリクス樹脂の屈折率差を小さくする必要があるため、シードのモノマー組成が限定されることになる。しかし、特許文献1に記載のシードの組成では重合速度が遅く、特に大粒径のシードを製造しようとすると生産性が低下するという欠点があった。加えて、耐衝撃性を確保する機能を有するコア層の厚みを薄くする必要があるため、耐衝撃性が低下する傾向があった。 According to the method described in Patent Document 1, since it is necessary to reduce the difference in refractive index between the seed and the matrix resin, the monomer composition of the seed is limited. However, the seed composition described in Patent Document 1 has a drawback that the polymerization rate is slow and the productivity is lowered particularly when a seed having a large particle size is to be produced. In addition, since it is necessary to reduce the thickness of the core layer having a function of ensuring impact resistance, the impact resistance tends to decrease.
 本発明は、上記現状に鑑み、グラフト共重合体とマトリクス樹脂を含む熱可塑性樹脂組成物において、グラフト共重合体のシードとマトリクス樹脂の屈折率差を低減することなく、優れた耐衝撃性と発色性を示す熱可塑性樹脂組成物を提供することを目的とする。 In view of the above situation, the present invention has excellent impact resistance in a thermoplastic resin composition containing a graft copolymer and a matrix resin without reducing the difference in refractive index between the seed of the graft copolymer and the matrix resin. It is an object of the present invention to provide a thermoplastic resin composition exhibiting color development.
 本発明者らは、自動車内外装用途などで幅広く使用されているスチレン-アクリロニトリル共重合体を含むマトリクス樹脂に対し配合することで、優れた耐衝撃性と発色性を発揮し得るグラフト共重合体を検討した。その結果、シード、コア層及びシェル層から構成されるグラフト共重合体において、シードとコア層から構成される粒子の直径と、コア層の厚みをそれぞれ特定範囲に設定することで、シードとマトリクス樹脂の屈折率差を低減するようなシードのモノマー組成を採用しなくとも、優れた耐衝撃性と発色性を発揮し得ることを見出した。 The present inventors are graft copolymers capable of exhibiting excellent impact resistance and color development by blending with a matrix resin containing a styrene-acrylonitrile copolymer widely used in automobile interior / exterior applications. It was investigated. As a result, in the graft copolymer composed of the seed, the core layer and the shell layer, the diameter of the particles composed of the seed and the core layer and the thickness of the core layer are set in specific ranges to set the seed and the matrix. It has been found that excellent impact resistance and color development can be exhibited without adopting a seed monomer composition that reduces the difference in refractive index of the resin.
 すなわち、本発明は、シード、前記シード表面に形成されたコア層、及び、前記コア層表面に形成されたシェル層から構成される粒子状のグラフト共重合体、及び、マトリクス樹脂を含有する熱可塑性樹脂組成物であって、前記マトリクス樹脂は、アクリロニトリル-スチレン樹脂を含み、前記シードは、(メタ)アクリル酸エステル、芳香族ビニル化合物、及びシアン化ビニル化合物からなる群より選択される少なくとも1種を含むモノマー成分の重合体からなり、前記シードの屈折率と、前記マトリクス樹脂の屈折率の差が0.07以上であり、前記コア層は、少なくとも1種のアクリル酸エステルを含むモノマー成分の重合体であって架橋構造を有する重合体からなり、前記シェル層は、(メタ)アクリル酸エステル、芳香族ビニル化合物、及びシアン化ビニル化合物からなる群より選択される少なくとも1種を含むモノマー成分の重合体からなり、前記グラフト共重合体は、下記式(1)及び式(2)を満足する、熱可塑性樹脂組成物に関する。
300≦2xr2≦700   (1)
40≦r2-r1≦210   (2)
(式中、r1は前記シードの半径(nm)を表し、r2は前記シードと前記コア層から構成される粒子の半径(nm)を表す。)
That is, the present invention contains heat containing a seed, a particulate graft copolymer composed of a core layer formed on the surface of the seed, and a shell layer formed on the surface of the core layer, and a matrix resin. A plastic resin composition, wherein the matrix resin contains an acrylonitrile-styrene resin, and the seed is at least one selected from the group consisting of (meth) acrylic acid esters, aromatic vinyl compounds, and vinyl cyanide compounds. It is composed of a polymer of a monomer component containing a seed, the difference between the refractive index of the seed and the refractive index of the matrix resin is 0.07 or more, and the core layer is a monomer component containing at least one acrylonitrile ester. The shell layer is a polymer containing at least one selected from the group consisting of a (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyanide compound. The graft copolymer, which comprises a polymer of components, relates to a thermoplastic resin composition satisfying the following formulas (1) and (2).
300 ≦ 2xr2 ≦ 700 (1)
40 ≦ r2-r1 ≦ 210 (2)
(In the formula, r1 represents the radius (nm) of the seed, and r2 represents the radius (nm) of the particles composed of the seed and the core layer.)
 好ましくは、前記コア層が、前記グラフト共重合体中に占める重量割合が83重量%以下である。好ましくは、前記シードが、(メタ)アクリル酸エステル80~100重量%及び芳香族ビニル化合物0~20重量%を重合してなる重合体からなる。好ましくは、前記シードにおける前記(メタ)アクリル酸エステルが、メタクリル酸アルキルエステルを含む。好ましくは、前記シードを構成する重合体が、架橋構造を有する。好ましくは、前記コア層が、互いに異なる2種以上の層から構成される。好ましくは、前記シェル層が、少なくとも芳香族ビニル化合物及びシアン化ビニル化合物を重合してなる重合体からなる。好ましくは、前記グラフト共重合体が、前記マトリクス樹脂と前記グラフト共重合体の合計に対して占める重量割合が3~50重量%である。 Preferably, the weight ratio of the core layer in the graft copolymer is 83% by weight or less. Preferably, the seed comprises a polymer obtained by polymerizing 80 to 100% by weight of a (meth) acrylic acid ester and 0 to 20% by weight of an aromatic vinyl compound. Preferably, the (meth) acrylic acid ester in the seed comprises an alkyl methacrylate ester. Preferably, the polymer constituting the seed has a crosslinked structure. Preferably, the core layer is composed of two or more different layers. Preferably, the shell layer comprises a polymer obtained by polymerizing at least an aromatic vinyl compound and a vinyl cyanide compound. Preferably, the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is 3 to 50% by weight.
 好ましくは、前記マトリクス樹脂が、ポリカーボネート樹脂をさらに含む。好ましくは、前記アクリロニトリル-スチレン樹脂と前記ポリカーボネート樹脂の重量比が、25:75~5:95である。好ましくは、前記グラフト共重合体が、前記マトリクス樹脂と前記グラフト共重合体の合計に対して占める重量割合が3~15重量%である。 Preferably, the matrix resin further contains a polycarbonate resin. Preferably, the weight ratio of the acrylonitrile-styrene resin to the polycarbonate resin is 25:75 to 5:95. Preferably, the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is 3 to 15% by weight.
 また本発明は、前記熱可塑性樹脂組成物が成形されてなる成形体にも関する。 The present invention also relates to a molded product obtained by molding the thermoplastic resin composition.
 本発明によれば、グラフト共重合体とマトリクス樹脂を含む熱可塑性樹脂組成物において、グラフト共重合体のシードとマトリクス樹脂の屈折率差を低減することなく、優れた耐衝撃性と発色性を示す熱可塑性樹脂組成物を提供することができる。また、本発明の好適な実施形態に係る熱可塑性樹脂組成物は、溶融時の流動性に優れており、そのため、薄肉成形や大型の成形体にも容易に対応することができる。 According to the present invention, in a thermoplastic resin composition containing a graft copolymer and a matrix resin, excellent impact resistance and color development can be obtained without reducing the difference in refractive index between the seed of the graft copolymer and the matrix resin. The thermoplastic resin composition shown can be provided. In addition, the thermoplastic resin composition according to the preferred embodiment of the present invention is excellent in fluidity at the time of melting, and therefore can be easily used for thin-wall molding and large-sized molded products.
 以下に本発明の実施形態を詳細に説明する。 An embodiment of the present invention will be described in detail below.
 (熱可塑性樹脂組成物)
 本発明の熱可塑性樹脂組成物は、マトリクス樹脂と、耐衝撃性改良剤としてグラフト共重合体を含有するものである。マトリクス樹脂とグラフト共重合体の使用比率は特に限定されず、マトリクス樹脂の組成に応じて適宜設定することができる。優れた耐衝撃性を発揮しながら、良好な発色性も確保する観点から、マトリクス樹脂とグラフト共重合体の合計に対して占めるグラフト共重合体の重量割合は、通常、1~60重量%の範囲であって良い。より具体的に述べると、マトリクス樹脂がアクリロニトリル-スチレン樹脂のみからなる場合には、前記重量割合は、5~55重量%が好ましく、10~50重量%がより好ましく、15~45重量%が更に好ましい。また、マトリクス樹脂がアクリロニトリル-スチレン樹脂とポリカーボネート樹脂の混合物からなる場合には、前記重量割合は、2~20重量%が好ましく、3~19重量%がより好ましく、4~18重量%が更に好ましく、5~17重量%が特に好ましい。
(Thermoplastic resin composition)
The thermoplastic resin composition of the present invention contains a matrix resin and a graft copolymer as an impact resistance improving agent. The ratio of the matrix resin and the graft copolymer used is not particularly limited, and can be appropriately set according to the composition of the matrix resin. From the viewpoint of ensuring good color development while exhibiting excellent impact resistance, the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is usually 1 to 60% by weight. It may be a range. More specifically, when the matrix resin is composed only of acrylonitrile-styrene resin, the weight ratio is preferably 5 to 55% by weight, more preferably 10 to 50% by weight, and further preferably 15 to 45% by weight. preferable. When the matrix resin is composed of a mixture of acrylonitrile-styrene resin and polycarbonate resin, the weight ratio is preferably 2 to 20% by weight, more preferably 3 to 19% by weight, still more preferably 4 to 18% by weight. 5 to 17% by weight is particularly preferable.
 (マトリクス樹脂)
 本発明におけるマトリクス樹脂は、少なくとも、アクリロニトリル-スチレン樹脂を含む。該アクリロニトリル-スチレン樹脂(略称AS樹脂、別名SANプラスチック)は、アクリロニトリルとスチレンの共重合体であり、透明性や耐熱性に優れた熱可塑性樹脂として知られている樹脂である。
(Matrix resin)
The matrix resin in the present invention contains at least an acrylonitrile-styrene resin. The acrylonitrile-styrene resin (abbreviated as AS resin, also known as SAN plastic) is a copolymer of acrylonitrile and styrene, and is a resin known as a thermoplastic resin having excellent transparency and heat resistance.
 本発明におけるマトリクス樹脂は、アクリロニトリル-スチレン樹脂のみからなるものであってもよいし、アクリロニトリル-スチレン樹脂以外の熱可塑性樹脂をさらに含有するものであっても良い。 The matrix resin in the present invention may consist only of acrylonitrile-styrene resin, or may further contain a thermoplastic resin other than acrylonitrile-styrene resin.
 アクリロニトリル-スチレン樹脂以外の熱可塑性樹脂としては特に限定されないが、例えば、ポリカーボネート樹脂、ポリアミド樹脂、アクリル樹脂、スチレン系樹脂、ポリフェニレンエーテル樹脂等が挙げられる。これらは1種のみを用いても良いし、2種以上を併用しても良い。 The thermoplastic resin other than the acrylonitrile-styrene resin is not particularly limited, and examples thereof include polycarbonate resin, polyamide resin, acrylic resin, styrene resin, and polyphenylene ether resin. Only one kind of these may be used, or two or more kinds may be used in combination.
 なかでも、ポリカーボネート樹脂が好ましい。ポリカーボネート樹脂は、2価以上のフェノール系化合物と、ホスゲンまたはジフェニルカーボネート等の炭酸ジエステル化合物とを反応させて得られるものが好ましい。 Of these, polycarbonate resin is preferable. The polycarbonate resin is preferably obtained by reacting a divalent or higher phenolic compound with a carbonic acid diester compound such as phosgene or diphenyl carbonate.
 前記2価以上のフェノール系化合物としては特に限定されないが、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン、ビス(4-ヒドロキシフェニル)-(4-イソプロピルフェニル)メタン、ビス(3,5-ジクロロ-4-ヒドロキシフェニル)メタン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1-ナフチル-1,1-ビス(4-ヒドロキシフェニル)エタン、1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、2-メチル-1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1-エチル-1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,4-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4-メチル-2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、1,10-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのジヒドロキシジアリールアルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロデカンなどのジヒドロキシジアリールシクロアルカン類、ビス(4-ヒドロキシフェニル)スルホン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルホン、ビス(3-クロロ-4-ヒドロキシフェニル)スルホンなどのジヒドロキシジアリールスルホン類、ビス(4-ヒドロキシフェニル)エーテル、ビス(3,5-ジメチル-4-ヒドロキシフェニル)エーテルなどのジヒドロキシアリールエーテル類、4,4’-ジヒドロキシベンゾフェノン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシベンゾフェノンなどのジヒドロキシジアリールケトン類、ビス(4-ヒドロキシフェニル)スルフィド、ビス(3-メチル-4-ヒドロキシフェニル)スルフィド、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルフィドなどのジヒドロキシジアリールスルフィド類、ビス(4-ヒドロキシフェニル)スルホキシドなどのジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルなどのジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレンなどのジヒドロキシアリールフルオレン類などが挙げられる。また、上記2価フェノール化合物以外に、ヒドロキノン、レゾルシノール、メチルヒドロキノンなどのジヒドロキシベンゼン類、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレンなどのジヒドロキシナフタレン類などが2価のフェノール系化合物として使用できる。 The divalent or higher valent phenolic compound is not particularly limited, but for example, 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), bis (4-hydroxyphenyl) methane, and bis (4-hydroxyphenyl). ) Phenylmethane, bis (4-hydroxyphenyl) naphthylmethane, bis (4-hydroxyphenyl)-(4-isopropylphenyl) methane, bis (3,5-dichloro-4-hydroxyphenyl) methane, bis (3,5) -Dimethyl-4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1-naphthyl-1,1-bis (4-hydroxyphenyl) ethane, 1-phenyl-1,1-bis ( 4-Hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, 2-methyl-1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4) -Hydroxyphenyl) propane, 1-ethyl-1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3, 5-Dibromo-4-hydroxyphenyl) propane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-Fluoro-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) butane, 1,4-bis (4-hydroxyphenyl) butane , 2,2-bis (4-hydroxyphenyl) pentane, 4-methyl-2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) hexane, 4,4-bis ( 4-Hydroxyphenyl) heptane, 2,2-bis (4-hydroxyphenyl) nonane, 1,10-bis (4-hydroxyphenyl) decane, 1,1-bis (4-hydroxyphenyl) -3,3,5 -Trimethylcyclohexane, dihydroxydiarylalkanes such as 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-bis (4-hydroxyphenyl) cyclohexane , 1,1-bis (3,5-dichloro-4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclodecane and other dihydroxydi Arylcycloalkans, dihydroxydiarylsulfones such as bis (4-hydroxyphenyl) sulfone, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, bis (3-chloro-4-hydroxyphenyl) sulfone, bis ( Dihydroxyaryl ethers such as 4-hydroxyphenyl) ether, bis (3,5-dimethyl-4-hydroxyphenyl) ether, 4,4'-dihydroxybenzophenone, 3,3', 5,5'-tetramethyl-4 , Dihydroxydiarylketones such as 4'-dihydroxybenzophenone, bis (4-hydroxyphenyl) sulfide, bis (3-methyl-4-hydroxyphenyl) sulfide, bis (3,5-dimethyl-4-hydroxyphenyl) sulfide, etc. Dihydroxydiarylsulfides, dihydroxydiaryl sulfoxides such as bis (4-hydroxyphenyl) sulfoxides, dihydroxydiphenyls such as 4,4'-dihydroxydiphenyl, dihydroxyaryls such as 9,9-bis (4-hydroxyphenyl) fluorene. Examples include sulfones. In addition to the above dihydric phenol compounds, dihydroxybenzenes such as hydroquinone, resorcinol and methylhydroquinone, and dihydroxynaphthalene such as 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are used as divalent phenolic compounds. it can.
 3価以上のフェノール系化合物も、得られるポリカーボネート樹脂が熱可塑性を維持する範囲で使用できる。前記3価以上のフェノール系化合物の例としては、2,4,4’-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシフェニルエーテル、2,2’,4,4’-テトラヒドロキシフェニルエーテル、2,4,4’-トリヒドロキシジフェニル-2-プロパン、2,2’-ビス(2,4-ジヒドロキシ)プロパン、2,2’,4,4’-テトラヒドロキシジフェニルメタン、2,4,4’-トリヒドロキシジフェニルメタン、1-[α-メチル-α-(4’-ジヒドロキシフェニル)エチル]-3-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(4’-ジヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、2,6-ビス(2-ヒドロキシ-5’-メチルベンジル)-4-メチルフェノール、4,6-ジメチル-2,4,6-トリス(4’-ヒドロキシフェニル)-2-ヘプテン、4,6-ジメチル-2,4,6-トリス(4’-ヒドロキシフェニル)-2-ヘプタン、1,3,5-トリス(4’-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、2,2-ビス[4,4-ビス(4’-ヒドロキシフェニル)シクロヘキシル]プロパン、2,6-ビス(2’-ヒドロキシ-5’-イソプロピルベンジル)-4-イソプロピルフェノール、ビス[2-ヒドロキシ-3-(2’-ヒドロキシ-5’-メチルベンジル)-5-メチルフェニル]メタン、ビス[2-ヒドロキシ-3-(2’-ヒドロキシ-5’-イソプロピルベンジル)-5-メチルフェニル]メタン、テトラキス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)フェニルメタン、2’,4’,7-トリヒドロキシフラバン、2,4,4-トリメチル-2’,4’,7-トリヒドロキシフラバン、1,3-ビス(2’,4’-ジヒドロキシフェニルイソプロピル)ベンゼン、トリス(4’-ヒドロキシフェニル)-アミル-s-トリアジンなどが挙げられる。 Phenolic compounds of trivalent or higher can also be used as long as the obtained polycarbonate resin maintains thermoplasticity. Examples of the trivalent or higher valent phenolic compound include 2,4,4'-trihydroxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,4,4'-trihydroxyphenyl ether, 2,2', 4,4'-tetrahydroxyphenyl ether, 2,4,4'-trihydroxydiphenyl-2-propane, 2,2'-bis (2,4-dihydroxy) propane, 2,2', 4,4'-Tetrahydroxydiphenylmethane, 2,4,4'-trihydroxydiphenylmethane, 1- [α-methyl-α- (4'-dihydroxyphenyl) ethyl] -3- [α', α'-bis ( 4 "-Hydroxyphenyl) ethyl] benzene, 1- [α-methyl-α- (4'-dihydroxyphenyl) ethyl] -4- [α', α'-bis (4" -hydroxyphenyl) ethyl] benzene, α, α', α "-tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 2,6-bis (2-hydroxy-5'-methylbenzyl) -4-methylphenol, 4, 6-dimethyl-2,4,6-tris (4'-hydroxyphenyl) -2-heptene, 4,6-dimethyl-2,4,6-tris (4'-hydroxyphenyl) -2-heptane, 1, 3,5-Tris (4'-hydroxyphenyl) benzene, 1,1,1-Tris (4-hydroxyphenyl) ethane, 2,2-bis [4,4-bis (4'-hydroxyphenyl) cyclohexyl] propane , 2,6-bis (2'-hydroxy-5'-isopropylbenzyl) -4-isopropylphenol, bis [2-hydroxy-3- (2'-hydroxy-5'-methylbenzyl) -5-methylphenyl] Methan, bis [2-hydroxy-3- (2'-hydroxy-5'-isopropylbenzyl) -5-methylphenyl] methane, tetrakis (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) phenylmethane, 2 ', 4', 7-trihydroxyflaban, 2,4,4-trimethyl-2', 4', 7-trihydroxyflavan, 1,3-bis (2', 4'-dihydroxyphenylisopropyl) benzene, tris Examples thereof include (4'-hydroxyphenyl) -amyl-s-triazine.
 これらの2価以上のフェノール系化合物は、それぞれ単独で用いても良く、2種以上を組み合わせても良い。 These divalent or higher valent phenolic compounds may be used alone or in combination of two or more.
 ポリカーボネート樹脂には、必要に応じて、3価以上のフェノール系化合物以外にも、分岐ポリカーボネート系樹脂にするための成分を、熱可塑性を損なわない範囲で含有させることができる。前記分岐ポリカーボネート系樹脂を得るために用いられる3価以上のフェノール系化合物以外の成分(分岐剤)としては、例えば、フロログルシン、メリット酸、トリメリット酸、トリメリット酸クロリド、無水トリメリット酸、没食子酸、没食子酸n-プロピル、プロトカテク酸、ピロメリット酸、ピロメリット酸二無水物、α-レゾルシン酸、β-レゾルシン酸、レゾルシンアルデヒド、トリメチルクロリド、イサチンビス(o-クレゾール)、トリメチルトリクロリド、4-クロロホルミルフタル酸無水物、ベンゾフェノンテトラカルボン酸などが挙げられる。 If necessary, the polycarbonate resin can contain, if necessary, a component for making a branched polycarbonate resin in addition to a phenolic compound having a valence of 3 or more, as long as the thermoplasticity is not impaired. Examples of the component (branching agent) other than the trivalent or higher valent phenolic compound used to obtain the branched polycarbonate resin include fluoroglucin, merit acid, trimellitic acid, trimellitic acid chloride, trimellitic anhydride, and erosion. Acid, n-propyl gallate, protocatechuic acid, pyromellitic acid, pyromellitic dianhydride, α-resorcinic acid, β-resorcinic acid, resorcinaldehyde, trimethyl chloride, isatinbis (o-cresol), trimethyltrichloride, 4 -Chloroformylphthalic anhydride, benzophenone tetracarboxylic acid and the like can be mentioned.
 ポリカーボネート樹脂の共重合成分として、この他に、例えば、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの直鎖状脂肪族2価カルボン酸を用いても良い。 In addition to this, as the copolymerization component of the polycarbonate resin, a linear aliphatic divalent carboxylic acid such as adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and decandicarboxylic acid may be used.
 ポリカーボネート樹脂の成分として、必要に応じて、重合時の末端停止剤として使用される公知の各種のものを、本発明の効果を損なわない範囲で用いることができる。具体的には、1価フェノール系化合物である、フェノール、p-クレゾール、p-t-ブチルフェノール、p-t-オクチルフェノール、p-クミルフェノール、ブロモフェノール、トリブロモフェノール、ノニルフェノールなどが挙げられる。 As a component of the polycarbonate resin, various known substances used as a terminal terminator during polymerization can be used, if necessary, as long as the effects of the present invention are not impaired. Specific examples thereof include monovalent phenolic compounds such as phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, bromophenol, tribromophenol and nonylphenol.
 ポリカーボネート樹脂の原料として使用する炭酸ジエステル化合物としては、ジフェニルカーボネートなどのジアリールカーボネートや、ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネートが挙げられる。 Examples of the carbonic acid diester compound used as a raw material for the polycarbonate resin include diaryl carbonates such as diphenyl carbonate and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
 ポリカーボネート樹脂の好ましい具体例としては、例えば、ビスフェノールAとホスゲンとを反応させる界面重縮合法により得られるポリカーボネート樹脂、ビスフェノールAとジフェニルカーボネートとを反応させる溶融重合法により得られるポリカーボネート樹脂などが挙げられる。 Preferred specific examples of the polycarbonate resin include, for example, a polycarbonate resin obtained by an interfacial polycondensation method in which bisphenol A and phosgene are reacted, a polycarbonate resin obtained by a melt polymerization method in which bisphenol A and diphenyl carbonate are reacted, and the like. ..
 本発明において特に好ましいマトリクス樹脂は、アクリロニトリル-スチレン樹脂とポリカーボネート樹脂の混合物である。当該混合物におけるアクリロニトリル-スチレン樹脂とポリカーボネート樹脂の比率は特に限定されず、当業者が適宜設定することができるが、アクリロニトリル-スチレン樹脂:ポリカーボネート樹脂の重量比率が、50:50~1:99であることが好ましく、40:60~2:98がより好ましく、30:70~3:97がさらに好ましい。特に、優れた耐衝撃性が得られるため、25:75~5:95が最も好ましい。 A particularly preferable matrix resin in the present invention is a mixture of acrylonitrile-styrene resin and polycarbonate resin. The ratio of the acrylonitrile-styrene resin to the polycarbonate resin in the mixture is not particularly limited and can be appropriately set by those skilled in the art, but the weight ratio of the acrylonitrile-styrene resin: polycarbonate resin is 50:50 to 1:99. It is preferable, 40:60 to 2:98 is more preferable, and 30:70 to 3:97 is even more preferable. In particular, 25:75 to 5:95 is most preferable because excellent impact resistance can be obtained.
 (グラフト共重合体)
 本発明におけるグラフト共重合体は、シード、前記シード表面に形成されたコア層、及び、前記コア層表面に形成されたシェル層から構成される粒子状のものである。
(Graft copolymer)
The graft copolymer in the present invention is in the form of particles composed of a seed, a core layer formed on the surface of the seed, and a shell layer formed on the surface of the core layer.
 (シード)
 シードは、グラフト共重合体を構成する粒子の最も内側に存在する小粒子であり、(メタ)アクリル酸エステル、芳香族ビニル化合物、及びシアン化ビニル化合物からなる群より選択される少なくとも1種を含むモノマー成分の重合体から構成される。
(seed)
The seed is a small particle existing inside the particles constituting the graft copolymer, and at least one selected from the group consisting of a (meth) acrylic acid ester, an aromatic vinyl compound, and a vinyl cyanide compound. It is composed of a polymer of the monomer components contained.
 前記(メタ)アクリル酸エステルとしては特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニルなどの(メタ)アクリル酸アルキルエステル類;(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ベンジルなどの芳香環含有(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;アルコキシアルキル(メタ)アクリレート類等が挙げられる。なお本願において、(メタ)アクリルとは、アクリルとメタクリルをまとめて表記したものである。 The (meth) acrylic acid ester is not particularly limited, and for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic. (Meta) acrylic acid alkyl esters such as octyl acid, dodecyl (meth) acrylic acid, stearyl (meth) acrylic acid, behenyl (meth) acrylic acid; phenoxyethyl (meth) acrylic acid, benzyl (meth) acrylic acid, etc. Arocyclic ring-containing (meth) acrylates; hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; glycidyl such as glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate. (Meta) acrylates; Examples thereof include alkoxyalkyl (meth) acrylates. In the present application, (meth) acrylic is a collective description of acrylic and methacrylic.
 前記芳香族ビニル化合物としては特に限定されないが、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等が挙げられる。 The aromatic vinyl compound is not particularly limited, and examples thereof include styrene, α-methylstyrene, monochlorostyrene, and dichlorostyrene.
 シアン化ビニル化合物としては特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。 The vinyl cyanide compound is not particularly limited, and examples thereof include acrylonitrile and methacrylonitrile.
 これらに加えて、アクリル酸、メタクリル酸などのビニルカルボン酸類;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類などを併用してもよい。 In addition to these, vinyl carboxylic acids such as acrylic acid and methacrylic acid; vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; vinyl acetate; alkenes such as ethylene, propylene, butylene and isobutylene are used in combination. May be good.
 本発明は、グラフト共重合体を含む熱可塑性樹脂において良好な発色性を発揮することができるが、前記シードの屈折率と前記マトリクス樹脂の屈折率の差が小さくなるように調節する必要がなく、前記屈折率の差は0.07以上である。よって、特許文献1に記載のように、前記屈折率差が0.035未満になるようにシードのモノマー組成を選択する必要がない。特に、特許文献1で開示されているスチレンを主体とするモノマー組成では、シードを形成するための重合速度が遅く、生産性が低下する問題がある。しかし、本発明では特許文献1で開示されているシードのモノマー組成を選択する必要がなく、そのような生産性低下の問題を回避することができる。また、前記屈折率差が0.07未満であると、耐衝撃性、特に低温での耐衝撃性が十分でない。前記屈折率差は、好ましくは0.08以上であり、より好ましくは0.085以上、さらに好ましくは0.09以上である。前記屈折率差の上限値については特に限定されないが、例えば0.15以下であってもよいし、0.13以下であってもよいし、0.11以下であってもよい。 The present invention can exhibit good color development in a thermoplastic resin containing a graft copolymer, but it is not necessary to adjust so that the difference between the refractive index of the seed and the refractive index of the matrix resin becomes small. , The difference in refractive index is 0.07 or more. Therefore, as described in Patent Document 1, it is not necessary to select the monomer composition of the seed so that the difference in refractive index is less than 0.035. In particular, the styrene-based monomer composition disclosed in Patent Document 1 has a problem that the polymerization rate for forming seeds is slow and the productivity is lowered. However, in the present invention, it is not necessary to select the monomer composition of the seed disclosed in Patent Document 1, and the problem of such a decrease in productivity can be avoided. Further, if the difference in refractive index is less than 0.07, the impact resistance, particularly the impact resistance at a low temperature, is not sufficient. The difference in refractive index is preferably 0.08 or more, more preferably 0.085 or more, and further preferably 0.09 or more. The upper limit of the refractive index difference is not particularly limited, but may be, for example, 0.15 or less, 0.13 or less, or 0.11 or less.
 なお、前記シードの屈折率は、シードを形成するモノマーの屈折率である。シードが2種以上のモノマーから形成される場合、シードの屈折率は、各モノマーの屈折率と、シード全体に占める各モノマーの重量割合から算出する。また、マトリクス樹脂の屈折率はJIS K7142規格に準じて測定されたものである。マトリクス樹脂が混合物である場合、マトリクス樹脂の屈折率は、各樹脂の屈折率と、マトリクス樹脂全体中の各樹脂の重量割合から算出する。 The refractive index of the seed is the refractive index of the monomer forming the seed. When the seed is formed from two or more kinds of monomers, the refractive index of the seed is calculated from the refractive index of each monomer and the weight ratio of each monomer to the whole seed. The refractive index of the matrix resin was measured according to the JIS K7142 standard. When the matrix resin is a mixture, the refractive index of the matrix resin is calculated from the refractive index of each resin and the weight ratio of each resin in the entire matrix resin.
 本発明の好適な実施形態によると、シードを構成する重合体は、(メタ)アクリル酸エステルを主体とする重合体であり、具体的には、(メタ)アクリル酸エステル80~100重量%及び芳香族ビニル化合物0~20重量%を重合してなる重合体である。このようなモノマー組成を有する重合体から構成されるシードは、前述したシードとマトリクス樹脂の屈折率差0.07以上を達成することが容易であり、耐衝撃性、特に低温での耐衝撃性を改善することができる。また、前記シードは、特許文献1に記載のスチレンを主体とするシードと比較して、速い速度で重合できるため、生産性を高めることができる。なお、前記各モノマーの割合は、シードを構成する重合体全体に占める各モノマーの重量割合である。より高い耐衝撃性と生産性の観点から、好ましくは(メタ)アクリル酸エステルが85重量%以上、芳香族ビニル化合物が15重量%以下であり、より好ましくは(メタ)アクリル酸エステルが90重量%以上、芳香族ビニル化合物が10重量%以下であり、さらに好ましくは(メタ)アクリル酸エステルが95重量%以上、芳香族ビニル化合物が5重量%以下である。芳香族ビニル化合物が占める割合は0重量%であってもよい。 According to a preferred embodiment of the present invention, the polymer constituting the seed is a polymer mainly composed of (meth) acrylic acid ester, and specifically, 80 to 100% by weight of (meth) acrylic acid ester and It is a polymer obtained by polymerizing 0 to 20% by weight of an aromatic vinyl compound. A seed composed of a polymer having such a monomer composition can easily achieve a refractive index difference of 0.07 or more between the seed and the matrix resin described above, and has impact resistance, particularly impact resistance at low temperatures. Can be improved. Further, since the seed can be polymerized at a higher speed than the styrene-based seed described in Patent Document 1, productivity can be improved. The ratio of each of the monomers is the weight ratio of each monomer to the total polymer constituting the seed. From the viewpoint of higher impact resistance and productivity, preferably (meth) acrylic acid ester is 85% by weight or more, aromatic vinyl compound is 15% by weight or less, and more preferably (meth) acrylic acid ester is 90% by weight. % Or more, the aromatic vinyl compound is 10% by weight or less, more preferably the (meth) acrylic acid ester is 95% by weight or more, and the aromatic vinyl compound is 5% by weight or less. The proportion of the aromatic vinyl compound may be 0% by weight.
 シードにおいて用いる(メタ)アクリル酸エステルとしては、メタクリル酸アルキルエステルを用いることが好ましい。シードでメタクリル酸アルキルエステルを用いることにより、シードを硬質の重合体から構成することができ、発色性の改善に有利となる。なかでも、メタクリル酸メチルが特に好ましい。 As the (meth) acrylic acid ester used in the seed, it is preferable to use an alkyl methacrylate ester. By using the methacrylic acid alkyl ester in the seed, the seed can be composed of a hard polymer, which is advantageous for improving the color development property. Of these, methyl methacrylate is particularly preferable.
 シードにおいて用いる(メタ)アクリル酸エステルとしては、1種又は2種以上のメタクリル酸アルキルエステルのみであってもよいし、1種又は2種以上のメタクリル酸アルキルエステルと、1種又は2種以上のアクリル酸アルキルエステルの併用であってもよい。後者は、後述する熱安定性の観点から好ましい。アクリル酸アルキルエステルとしては、アクリル酸ブチルを使用することが特に好ましい。 The (meth) acrylic acid ester used in the seed may be only one or more kinds of methacrylic acid alkyl esters, or one or more kinds of methacrylic acid alkyl esters and one or more kinds. Acrylic acid alkyl ester of the above may be used in combination. The latter is preferable from the viewpoint of thermal stability described later. It is particularly preferable to use butyl acrylate as the acrylic acid alkyl ester.
 本発明の特に好適な実施形態によると、シードを構成する重合体のモノマー組成は、メタクリル酸アルキルエステル40~100重量%、アクリル酸アルキルエステル0~35重量%、芳香族ビニル化合物0~10重量%、及び、共重合可能な二重結合を有する他のモノマー0~15重合%であることが好ましく、メタクリル酸アルキルエステル40~99.9重量%、アクリル酸アルキルエステル0.1~35重量%、芳香族ビニル化合物0~10重量%、及び、共重合可能な二重結合を有する他のモノマー0~15重合%であることがより好ましく、メタクリル酸アルキルエステル40~99.8重量%、アクリル酸アルキルエステル0.1~35重量%、芳香族ビニル化合物0.1~10重量%、及び、共重合可能な二重結合を有する他のモノマー0~15重合%であることがさらに好ましく、メタクリル酸アルキルエステル51~96.9重量%、アクリル酸アルキルエステル3.1~29重量%、芳香族ビニル化合物0~10重量%、及び、共重合可能な二重結合を有する他のモノマー0~10重量%であることがより更に好ましい。この範囲であれば、グラフト共重合体の熱安定性を高くでき、高温成形にも耐え得るものとなる。具体的には、主成分であるメタクリル酸アルキルエステルは高温成形時にジッピング解重合を起こしやすく、熱分解しやすいが、アクリル酸アルキルエステル、及び芳香族ビニル化合物を上記範囲で含有することにより、ジッピング解重合を抑制しやすく、熱安定性を高くすることが可能となる。 According to a particularly preferred embodiment of the present invention, the monomer composition of the polymer constituting the seed is 40 to 100% by weight of the methacrylic acid alkyl ester, 0 to 35% by weight of the acrylic acid alkyl ester, and 0 to 10% by weight of the aromatic vinyl compound. % And 0 to 15% of other monomers having a copolymerizable double bond, preferably 40 to 99.9% by weight of alkyl methacrylate ester and 0.1 to 35% by weight of alkyl acrylate ester. , 0 to 10% by weight of the aromatic vinyl compound, and 0 to 15% by weight of the other monomer having a copolymerizable double bond, more preferably 40 to 99.8% by weight of the alkyl methacrylate ester, acrylic. More preferably, it is 0.1 to 35% by weight of an acid alkyl ester, 0.1 to 10% by weight of an aromatic vinyl compound, and 0 to 15% by weight of another monomer having a copolymerizable double bond. Acid alkyl ester 51-96.9% by weight, acrylic acid alkyl ester 3.1-29% by weight, aromatic vinyl compound 0-10% by weight, and 0-10% of other monomers having copolymerizable double bonds. It is even more preferably by weight%. Within this range, the thermal stability of the graft copolymer can be increased, and it can withstand high-temperature molding. Specifically, the methacrylic acid alkyl ester, which is the main component, easily undergoes zip depolymerization during high-temperature molding and is easily thermally decomposed. However, by containing the acrylic acid alkyl ester and the aromatic vinyl compound in the above range, zipping is performed. Depolymerization can be easily suppressed and thermal stability can be improved.
 シードは、架橋構造が導入されていない重合体から構成されていてもよいが、架橋構造を有する重合体から構成されていることが好ましい。これによって、シードを硬質の重合体から構成することができ、発色性の改善に有利となる。架橋構造を導入する方法としては特に限定されないが、例えば、モノマー成分を重合してシードを合成する際に、多官能性モノマー又はメルカプト基含有化合物等の架橋性モノマーを使用すればよい。 The seed may be composed of a polymer having no crosslinked structure introduced therein, but is preferably composed of a polymer having a crosslinked structure. As a result, the seed can be composed of a hard polymer, which is advantageous for improving the color development property. The method for introducing the crosslinked structure is not particularly limited, but for example, when the monomer component is polymerized to synthesize a seed, a crosslinked monomer such as a polyfunctional monomer or a mercapto group-containing compound may be used.
 前記多官能性モノマーとしては、アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレート等のアリルアルキル(メタ)アクリレート類;アリルオキシアルキル(メタ)アクリレート類;(ポリ)エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等の(メタ)アクリル基を2個以上有する多官能(メタ)アクリレート類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等が挙げられる。好ましくはアリルメタクリレート、トリアリルイソシアヌレート、ブタンジオールジ(メタ)アクリレート、ジビニルベンゼンであり、特に好ましくはアリルメタクリレートである。 Examples of the polyfunctional monomer include allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth) acrylate; allyloxyalkyl (meth) acrylates; (poly) ethylene glycol di (meth) acrylate. Polyfunctional (meth) having two or more (meth) acrylic groups such as butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate. Acrylate; Examples thereof include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene. Allyl methacrylate, triallyl isocyanurate, butanediol di (meth) acrylate, and divinylbenzene are preferable, and allyl methacrylate is particularly preferable.
 前記多官能性モノマーの使用比率としては、シードの重合体を構成するモノマー成分(多官能性モノマー以外のモノマー)の合計100重量部に対して、好ましくは0.01~10重量部であり、より好ましくは0.1~8重量部であり、さらに好ましくは0.5~6重量部である。 The ratio of the polyfunctional monomer used is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the total of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the seed. It is more preferably 0.1 to 8 parts by weight, still more preferably 0.5 to 6 parts by weight.
 シードがグラフト共重合体中に占める重量割合は、発色性の観点から、3~40重量%が好ましく、4~30重量%がより好ましく、5~25重量%がさらに好ましい。また、耐衝撃性付与の観点から、20重量%以下がより好ましく、15重量%以下がより好ましく、10重量%以下が特に好ましい。 The weight ratio of the seed in the graft copolymer is preferably 3 to 40% by weight, more preferably 4 to 30% by weight, still more preferably 5 to 25% by weight, from the viewpoint of color development. Further, from the viewpoint of imparting impact resistance, 20% by weight or less is more preferable, 15% by weight or less is more preferable, and 10% by weight or less is particularly preferable.
 (コア層)
 前記コア層は、シード粒子の表面に形成された重合体層であり、少なくとも1種のアクリル酸エステルを含むモノマー成分の重合体であって、かつ、架橋構造を有する重合体から構成される層である。このコア層が、主に、マトリクス樹脂に対して耐衝撃性を付与する機能を有する。コア層を構成する重合体は、シードを構成する重合体に対しグラフトしていることが好ましい。コア層は、シード粒子の表面の全体を被覆するものではなく、シード粒子の表面の少なくとも一部を被覆していればよい。
(Core layer)
The core layer is a polymer layer formed on the surface of seed particles, is a polymer of a monomer component containing at least one acrylic acid ester, and is composed of a polymer having a crosslinked structure. Is. This core layer mainly has a function of imparting impact resistance to the matrix resin. The polymer constituting the core layer is preferably grafted to the polymer constituting the seed. The core layer does not cover the entire surface of the seed particles, but may cover at least a part of the surface of the seed particles.
 コア層を構成する重合体は、アクリル酸エステルを含むモノマー成分の重合体である。アクリル酸エステルの具体例としては、シードに関して列挙したものが挙げられる。特に、アクリル酸アルキルエステルが好ましく、アクリル酸ブチルがより好ましい。また、アクリル酸エステル以外のモノマーを併用してもよいし、併用しなくともよい。他のモノマーとしては、シードに関して列挙したモノマーの中から適宜選択できる。コア層のモノマー成分全体に対してアクリル酸エステルの重量割合は50重量%以上であることが好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上が特に好ましい。 The polymer constituting the core layer is a polymer of monomer components containing an acrylic acid ester. Specific examples of acrylic acid esters include those listed with respect to seeds. In particular, an acrylic acid alkyl ester is preferable, and butyl acrylate is more preferable. Further, a monomer other than the acrylic acid ester may be used in combination, or may not be used in combination. As the other monomer, it can be appropriately selected from the monomers listed for the seed. The weight ratio of the acrylic acid ester to the entire monomer component of the core layer is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably 90% by weight or more.
 コア層を構成する重合体は架橋構造を有するものである。架橋構造を導入する方法や、多官能性モノマーの具体例に関しては、シードに関して前述したものと同様である。コア層における多官能性モノマーの総使用比率としては、コア層の重合体を構成するモノマー成分(多官能性モノマー以外のモノマー)の合計100重量部に対して、好ましくは0.01~10重量部であり、より好ましくは0.05~5重量部であり、さらに好ましくは0.1~3重量部である。 The polymer constituting the core layer has a crosslinked structure. The method for introducing the crosslinked structure and specific examples of the polyfunctional monomer are the same as those described above for the seed. The total usage ratio of the polyfunctional monomer in the core layer is preferably 0.01 to 10% by weight with respect to a total of 100 parts by weight of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the core layer. It is, more preferably 0.05 to 5 parts by weight, still more preferably 0.1 to 3 parts by weight.
 また、前記コア層は、単層であってもよいが、2層以上から構成される層であってもよい。本発明の好ましい実施形態によると、コア層は、互いに組成が異なる2種以上の層から構成される。この場合、コア層は、シードの表面に形成された第一コア層と、第一コア層の表面に形成された第二コア層から構成される。第一コア層及び第二コア層の組成は上述のなかから適宜選択することができる。 Further, the core layer may be a single layer, but may be a layer composed of two or more layers. According to a preferred embodiment of the present invention, the core layer is composed of two or more layers having different compositions from each other. In this case, the core layer is composed of a first core layer formed on the surface of the seed and a second core layer formed on the surface of the first core layer. The composition of the first core layer and the second core layer can be appropriately selected from the above.
 好適な態様によると、コア層全体に占める第二コア層の重量割合は、好ましくは1~50重量%、より好ましくは2~30重量%、さらに好ましくは3~10重量%であり、第二コア層における多官能性モノマーの使用比率を、第一コア層における多官能性モノマーの使用比率よりも高く設定する(即ち、第二コア層の架橋密度を、第一コア層の架橋密度よりも高く設定する)。このような二層構造のコア層においては、内側に位置する第一コア層によって、主に耐衝撃性を付与する。一方、外側に位置し且つ第一コア層よりも硬質の第二コア層によって、フリーポリマーの生成を調整し、これによりグラフト共重合体の粒子同士の凝集を抑制し、マトリクス樹脂とグラフト共重合体の相溶性を向上させることができる。これによって、マトリクス樹脂中でのグラフト共重合体の分散性が向上する結果、発色性と耐衝撃性をより向上させることが可能になる。 According to a preferred embodiment, the weight ratio of the second core layer to the entire core layer is preferably 1 to 50% by weight, more preferably 2 to 30% by weight, still more preferably 3 to 10% by weight, and the second. The usage ratio of the polyfunctional monomer in the core layer is set higher than the usage ratio of the polyfunctional monomer in the first core layer (that is, the cross-linking density of the second core layer is higher than the cross-linking density of the first core layer. Set high). In such a core layer having a two-layer structure, impact resistance is mainly imparted by the first core layer located inside. On the other hand, the second core layer, which is located on the outside and is harder than the first core layer, regulates the formation of the free polymer, thereby suppressing the aggregation of the particles of the graft copolymer and the matrix resin and the graft co-weight. The compatibility of coalescence can be improved. As a result, the dispersibility of the graft copolymer in the matrix resin is improved, and as a result, the color development property and the impact resistance can be further improved.
 具体的には、第一コア層における多官能性モノマーの使用比率は、第一コア層の重合体を構成するモノマー成分(多官能性モノマー以外のモノマー)の合計100重量部に対して、好ましくは0.01~5重量部であり、より好ましくは0.05~3重量部であり、さらに好ましくは0.1~1重量部であり、第二コア層における多官能性モノマーの使用比率は、第二コア層の重合体を構成するモノマー成分(多官能性モノマー以外のモノマー)の合計100重量部に対して、好ましくは0.5~10重量部であり、より好ましくは1~5重量部であり、さらに好ましくは1.5~4重量部である。 Specifically, the ratio of the polyfunctional monomer used in the first core layer is preferably 100 parts by weight in total of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the first core layer. Is 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, still more preferably 0.1 to 1 part by weight, and the ratio of the polyfunctional monomer used in the second core layer is , It is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on a total of 100 parts by weight of the monomer components (monomers other than the polyfunctional monomer) constituting the polymer of the second core layer. It is a part, more preferably 1.5 to 4 parts by weight.
 コア層全体がグラフト共重合体中に占める重量割合は、発色性の観点から、83重量%以下であることが好ましい。この範囲において、発色性がより改善されやすくなる。より好ましくは73重量%以下であり、さらに好ましくは63重量%以下であり、より更に好ましくは53重量%以下であり、特に好ましくは50重量%以下である。前記重量割合の下限値は、耐衝撃性付与の観点から、20重量%以上が好ましく、30重量%以上がより好ましく、35重量%以上がさらに好ましく、40重量%以上がより更に好ましい。 The weight ratio of the entire core layer to the graft copolymer is preferably 83% by weight or less from the viewpoint of color development. In this range, the color development property is more likely to be improved. It is more preferably 73% by weight or less, further preferably 63% by weight or less, still more preferably 53% by weight or less, and particularly preferably 50% by weight or less. From the viewpoint of imparting impact resistance, the lower limit of the weight ratio is preferably 20% by weight or more, more preferably 30% by weight or more, further preferably 35% by weight or more, still more preferably 40% by weight or more.
 本発明のグラフト共重合体においては、シードとコア層から構成される粒子の直径と、コア層の厚みがそれぞれ特定条件を満足することが特徴である。シードとコア層から構成される粒子の直径に関しては下記式(1)で表され、コア層の厚みに関しては下記式(2)で表される。
300≦2xr2≦700   (1)
40≦r2-r1≦210   (2)
The graft copolymer of the present invention is characterized in that the diameter of the particles composed of the seed and the core layer and the thickness of the core layer each satisfy specific conditions. The diameter of the particles composed of the seed and the core layer is represented by the following formula (1), and the thickness of the core layer is represented by the following formula (2).
300 ≦ 2xr2 ≦ 700 (1)
40 ≦ r2-r1 ≦ 210 (2)
 各式中、r1は前記シードの半径(nm)を表す。r2は、前記シードと前記コア層から構成される粒子(即ち、シードとコア層が形成されてシェル層が形成される前の粒子)の半径(nm)を表す。なお、2×r1及び2×r2は、それぞれ、シードのラテックスの状態、又は、シードとコア層が形成されてシェル層が形成される前の粒子のラテックスの状態で、日機装株式会社製のMICROTRAC UPA150を用いて体積平均粒子径(nm)として測定することができる。 In each formula, r1 represents the radius (nm) of the seed. r2 represents the radius (nm) of the particles composed of the seed and the core layer (that is, the particles before the seed and the core layer are formed and the shell layer is formed). 2 × r1 and 2 × r2 are the latex states of the seeds or the latex states of the particles before the seed and core layers are formed and the shell layer is formed, respectively, and MICROTRAC manufactured by Nikkiso Co., Ltd. It can be measured as a volume average particle size (nm) using UPA150.
 前記式(1)は、シードとコア層から構成される粒子の直径(以下、粒子径ともいう)が300~700nmであることを規定している。該直径が300nm未満であると、耐衝撃性、特に低温での耐衝撃性が十分でない。該粒子径は、好ましくは320nm以上であり、より好ましくは340nm以上であり、さらに好ましくは360nm以上であり、特に好ましくは380nm以上であり、最も好ましくは400nm以上である。本発明ではこのようにコア層までの粒子径を比較的大きくすることによって、光の散乱機構をレイリー散乱からミー散乱に変更し、そのため、大粒子であるにも関わらず、良好な発色性を実現したものである。このように散乱機構をミー散乱に変更して良好な発色性を実現しているため、シードとマトリクス樹脂との屈折率差が発色性に与える影響が緩和され、特許文献1に記載のように前記屈性率差を低減しないにも関わらず、良好な発色性を実現できると推測される。前記粒子径の上限値は特に限定されないが、生産性の観点から、650nm以下が好ましく、600nm以下が好ましく、550nm以下がさらに好ましく、500nm以下がより更に好ましい。 The above formula (1) defines that the diameter of the particles composed of the seed and the core layer (hereinafter, also referred to as the particle diameter) is 300 to 700 nm. If the diameter is less than 300 nm, the impact resistance, particularly the impact resistance at a low temperature, is not sufficient. The particle size is preferably 320 nm or more, more preferably 340 nm or more, further preferably 360 nm or more, particularly preferably 380 nm or more, and most preferably 400 nm or more. In the present invention, by making the particle diameter to the core layer relatively large in this way, the light scattering mechanism is changed from Rayleigh scattering to Mie scattering, and therefore, good color development is achieved despite the large particles. It was realized. Since the scattering mechanism is changed to Mie scattering in this way to achieve good color development, the influence of the difference in refractive index between the seed and the matrix resin on the color development is alleviated, and as described in Patent Document 1. It is presumed that good color development can be achieved even though the difference in the refractive index is not reduced. The upper limit of the particle size is not particularly limited, but from the viewpoint of productivity, it is preferably 650 nm or less, preferably 600 nm or less, further preferably 550 nm or less, and even more preferably 500 nm or less.
 前記式(2)は、コア層の厚みが40~210nmであることを規定している。この比較的厚みのあるコア層によって、優れた耐衝撃性と発色性のバランスを達成することができる。前記コア層の厚みは、45~200nmが好ましく、50~180nmがより好ましく、55~160nmがさらに好ましく、60~140nmがより更に好ましく、65~130nmが特に好ましい。 The above formula (2) defines that the thickness of the core layer is 40 to 210 nm. With this relatively thick core layer, an excellent balance between impact resistance and color development can be achieved. The thickness of the core layer is preferably 45 to 200 nm, more preferably 50 to 180 nm, further preferably 55 to 160 nm, further preferably 60 to 140 nm, and particularly preferably 65 to 130 nm.
 (シェル層)
 シェル層は、前記コア層の表面に形成された重合体層であって、グラフト共重合体粒子の最も外側に位置する層である。該シェル層によって、グラフト共重合体とマトリクス樹脂との相溶性が向上し、樹脂組成物又はそれよりなる成形体中において、グラフト共重合体が一次粒子の状態で分散することが可能になる。シェル層を構成する重合体は、コア層を構成する重合体にグラフトしていることが好ましい。また、シェル層を構成する重合体の一部は、シードを構成する重合体にグラフトしていてもよい。シェル層は、コア層の表面の全体を被覆するものではなく、コア層の表面の少なくとも一部を被覆していればよい。
(Shell layer)
The shell layer is a polymer layer formed on the surface of the core layer, and is a layer located on the outermost side of the graft copolymer particles. The shell layer improves the compatibility between the graft copolymer and the matrix resin, and enables the graft copolymer to be dispersed in the state of primary particles in the resin composition or a molded product made of the same. The polymer constituting the shell layer is preferably grafted on the polymer constituting the core layer. Further, a part of the polymer constituting the shell layer may be grafted on the polymer constituting the seed. The shell layer does not cover the entire surface of the core layer, but may cover at least a part of the surface of the core layer.
 シェル層は、(メタ)アクリル酸エステル、芳香族ビニル化合物、及びシアン化ビニル化合物からなる群より選択される少なくとも1種を含むモノマー成分の重合体から構成される。これらモノマーは、シードについて上述したモノマーの具体例から適宜選択することができる。 The shell layer is composed of a polymer of a monomer component containing at least one selected from the group consisting of (meth) acrylic acid ester, aromatic vinyl compound, and vinyl cyanide compound. These monomers can be appropriately selected from the specific examples of the monomers described above for the seed.
 アクリロニトリル-スチレン樹脂を含むマトリクス樹脂との相溶性を向上する観点から、シェル層を構成する重合体は、少なくとも芳香族ビニル化合物及びシアン化ビニル化合物を重合してなる重合体からなることが好ましい。これら2種に加えて、さらに(メタ)アクリル酸エステルを用いてもよい。芳香族ビニル化合物としてはスチレンが好ましく、シアン化ビニル化合物としてはアクリロニトリルが好ましい。 From the viewpoint of improving compatibility with the matrix resin containing acrylonitrile-styrene resin, the polymer constituting the shell layer is preferably composed of at least a polymer obtained by polymerizing an aromatic vinyl compound and a vinyl cyanide compound. In addition to these two types, (meth) acrylic acid ester may be further used. Styrene is preferable as the aromatic vinyl compound, and acrylonitrile is preferable as the vinyl cyanide compound.
 マトリクス樹脂との相溶性の観点から、シェル層を構成する重合体全体に占める芳香族ビニル化合物の重量割合は30~95重量%が好ましく、50~90重量%がより好ましく、60~85重量%がさらに好ましい。また、シアン化ビニル化合物の重量割合は、5~70重量%が好ましく、10~50重量%がより好ましく、15~40重量%がさらに好ましい。 From the viewpoint of compatibility with the matrix resin, the weight ratio of the aromatic vinyl compound to the entire polymer constituting the shell layer is preferably 30 to 95% by weight, more preferably 50 to 90% by weight, and 60 to 85% by weight. Is even more preferable. The weight ratio of the vinyl cyanide compound is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, still more preferably 15 to 40% by weight.
 シェル層がグラフト共重合体中に占める重量割合は、上述したシード及びコア層の重量割合を考慮して適宜決定できるが、シード及びコア層の割合を確保しつつマトリクス樹脂との相溶性を達成する観点から、例えば5~75重量%であってよく、10~70重量%が好ましく、20~65重量%がより好ましく、30~60重量%がさらに好ましく、40~60重量%が特に好ましい。 The weight ratio of the shell layer in the graft copolymer can be appropriately determined in consideration of the weight ratio of the seed and core layer described above, but compatibility with the matrix resin is achieved while securing the ratio of the seed and core layer. From the viewpoint, for example, it may be 5 to 75% by weight, preferably 10 to 70% by weight, more preferably 20 to 65% by weight, further preferably 30 to 60% by weight, and particularly preferably 40 to 60% by weight.
 シェル層は、架橋構造を有する重合体から形成されていてもよいが、架橋構造が導入されていない重合体から形成されていることが好ましい。即ち、シェル層は、多官能性モノマー等の架橋性モノマーを使用せずに合成された重合体から形成されていることが好ましい。シェル層で架橋性モノマーを使用しないことで、フリーポリマーを生成することが可能になり、マトリクス樹脂とグラフト共重合体の相溶性を向上させることができる。 The shell layer may be formed of a polymer having a crosslinked structure, but is preferably formed of a polymer having no crosslinked structure introduced therein. That is, the shell layer is preferably formed from a polymer synthesized without using a crosslinkable monomer such as a polyfunctional monomer. By not using a crosslinkable monomer in the shell layer, a free polymer can be produced, and the compatibility between the matrix resin and the graft copolymer can be improved.
 (グラフト共重合体の製造方法)
 本発明のグラフト共重合体の製造方法は常法によることができるが、具体例を以下に記載する。グラフト共重合体を製造するにあたっては、まず、シードを形成する。シードは、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などによって製造することができ、例えば国際公開第2005/028546号に記載の方法を用いることができる。
(Method for producing graft copolymer)
The method for producing the graft copolymer of the present invention can be carried out by a conventional method, and specific examples will be described below. In producing the graft copolymer, first, a seed is formed. The seed can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization or the like, and for example, the method described in WO 2005/028546 can be used.
 次いで、コア層を形成する。コア層は、シードの存在下で、コア層用のモノマー成分を公知のラジカル重合により重合することによって形成することができる。シードをエマルジョンとして得た場合には、コア層用のモノマー成分の重合は乳化重合法により行うことが好ましい。コア層が第一コア層と第二コア層から構成される場合、第一コア層用のモノマー成分を重合した後、第二コア層用のモノマー成分を重合すればよい。 Next, the core layer is formed. The core layer can be formed by polymerizing the monomer component for the core layer by a known radical polymerization in the presence of a seed. When the seed is obtained as an emulsion, it is preferable that the monomer component for the core layer is polymerized by an emulsion polymerization method. When the core layer is composed of the first core layer and the second core layer, the monomer component for the first core layer may be polymerized, and then the monomer component for the second core layer may be polymerized.
 さらに、シェル層を形成する。シェル層は、シードとコア層からなる粒子の存在下で、シェル層用のモノマー成分を公知のラジカル重合により重合することによって形成することができる。シードとコア層が形成されてシェル層が形成される前の粒子をエマルジョンとして得た場合には、シェル層用のモノマー成分の重合は乳化重合法により行うことが好ましく、例えば、国際公開第2005/028546号に記載の方法に従って製造することができる。 Furthermore, a shell layer is formed. The shell layer can be formed by polymerizing the monomer component for the shell layer by a known radical polymerization in the presence of particles composed of a seed and a core layer. When the particles before the seed and core layers are formed and the shell layer is formed are obtained as an emulsion, the polymerization of the monomer components for the shell layer is preferably carried out by an emulsion polymerization method. For example, International Publication No. 2005 It can be produced according to the method described in 028546.
 乳化重合において用いることができる乳化剤(分散剤)としては、特に限定されず、アニオン性界面活性剤、非イオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤などを使用可能である。また、ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、ポリアクリル酸誘導体などの分散剤を使用してもよい。上記乳化剤のうちアニオン性界面活性剤としては特に限定されないが、例えば、次の化合物が挙げられる:ラウリン酸カリウム、ヤシ脂肪酸カリウム、ミリスチン酸カリウム、オレイン酸カリウム、オレイン酸カリウムジエタノールアミン塩、オレイン酸ナトリウム、パルミチン酸カリウム、ステアリン酸カリウム、ステアリン酸ナトリウム、混合脂肪酸ソーダ石けん、半硬化牛脂脂肪酸ソーダ石けん、ヒマシ油カリ石けんなどの脂肪酸石鹸;ドデシル硫酸ナトリウム、高級アルコール硫酸ナトリウム、ドデシル硫酸トリエタノールアミン、ドデシル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、2-エチルヘキシル硫酸ナトリウムなどのアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸ナトリウム;ジ-2-エチルヘキシルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸ナトリウム;アルキルナフタレンスルホン酸ナトリウム;アルキルジフェニルエーテルジスルホン酸ナトリウム;アルキルリン酸カリウム塩;ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩;ポリカルボン酸型高分子アニオン;アシル(牛脂)メチルタウリン酸ナトリウム;アシル(ヤシ)メチルタウリン酸ナトリウム;ココイルイセチオン酸ナトリウム;α-スルホ脂肪酸エステルナトリウム塩;アミドエーテルスルホン酸ナトリウム;オレイルザルコシン;ラウロイルザルコシンナトリウム;ロジン酸石けんなど。 The emulsifier (dispersant) that can be used in emulsion polymerization is not particularly limited, and anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants and the like can be used. Further, a dispersant such as polyvinyl alcohol, alkyl-substituted cellulose, polyvinylpyrrolidone, and a polyacrylic acid derivative may be used. Among the above emulsifiers, the anionic surfactant is not particularly limited, and examples thereof include the following compounds: potassium laurate, potassium coconut fatty acid, potassium myristate, potassium oleate, potassium diethanolamine oleate, sodium oleate. , Sodium palmitate, potassium stearate, sodium stearate, mixed fatty acid soda soap, semi-hardened beef fat fatty acid soda soap, castor oil potassium soap and other fatty acid soaps; sodium dodecyl sulfate, higher alcohol sodium sulfate, triethanolamine dodecyl sulfate, dodecyl Alkyl sulfate esters such as ammonium sulfate, sodium polyoxyethylene alkyl ether sulfate, triethanolamine polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, and sodium 2-ethylhexyl sulfate; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate. Sodium acid; sodium dialkyl sulfosuccinate such as sodium di-2-ethylhexyl sulfosuccinate; sodium alkylnaphthalene sulfonate; sodium alkyldiphenyl ether disulfonate; potassium alkyl phosphate; phosphate ester salt such as polyoxyethylene lauryl ether sodium phosphate Sodium salt of sodium phthalene sulfonic acid formalin condensate; polycarboxylic acid type polymer anion; sodium acyl (beef fat) methyl taurate; sodium acyl (palm) methyl taurate; sodium cocoyl acetylate; sodium α-sulfo fatty acid ester Sodium amide ether sulfonate; oleyl sarcosin; sodium lauroyl sarcosin; soap logate, etc.
 また、上記乳化剤のうち非イオン性界面活性剤としては特に限定されないが、例えば、次の化合物が挙げられる:ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルアリルエーテルあるいはポリオキシエチレンアルキルエーテル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノステアレート等のポリオキシエチレンソルビタンエステル類、ポリエチレングルコールモノラウレート、ポリエチレングルコールモノステアレート、ポリエチレングルコールモノオレエート等のポリオキシエチレン脂肪酸エステル類、オキシエチレン/オキシプロピレンブロックコポリマーなど。 The nonionic surfactant among the above emulsifiers is not particularly limited, and examples thereof include the following compounds: polyoxy such as polyoxyethylene nonylphenyl ether, polyoxyethylene oleyl ether, and polyoxyethylene lauryl ether. Polyoxyethylene sorbitan esters such as ethylene alkyl allyl ethers or polyoxyethylene alkyl ethers, polyoxyethylene sorbitan monolaurates, polyoxyethylene sorbitan monostearates, polyethylene glucol monolaurates, polyethylene glucol monostearates, Polyoxyethylene fatty acid esters such as polyethylene glucol monooleate, oxyethylene / oxypropylene block copolymers, etc.
 また、上記乳化剤のうちカチオン性界面活性剤としては特に限定されないが、例えば、次の化合物が挙げられる:ココナットアミンアセテート、ステアリルアミンアセテート、オクタデシルアミンアセテート、テトラデシルアミンアセテートなどのアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライドなどの第4級アンモニウム塩など。  The cationic surfactant among the above emulsifiers is not particularly limited, and examples thereof include the following compounds: alkylamine salts such as coconatamine acetate, stearylamine acetate, octadecylamine acetate, and tetradecylamine acetate; Tertiary ammonium salts such as lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, distearyldimethylammonium chloride, alkylbenzyldimethylammonium chloride, hexadecyltrimethylammonium chloride, and behenyltrimethylammonium chloride.
 また、上記乳化剤のうち両性界面活性剤としては特に限定されないが、例えば、次の化合物が挙げられる:ラウリルベタイン、ステアリルベタイン、ジメチルラウリルベタインなどのアルキルベタイン;ラウリルジアミノエチルグリシンナトリウム;アミドベタイン;イミダゾリン;ラウリルカルボキシメチルヒドロキシエチルイミダゾリニウムベタインなど。 The amphoteric surfactant among the above emulsifiers is not particularly limited, and examples thereof include the following compounds: alkyl betaines such as lauryl betaine, stearyl betaine, and dimethyl lauryl betaine; sodium lauryl diaminoethylglycine; amide betaine; imidazoline. Lauryl carboxymethyl hydroxyethyl imidazolinium betaine, etc.
 これらの乳化剤(分散剤)は、単独で用いても、2種以上を組み合わせて用いてもよい。乳化剤の使用量を調節することによって、上述したr1やr2を制御することができる。 These emulsifiers (dispersants) may be used alone or in combination of two or more. By adjusting the amount of the emulsifier used, the above-mentioned r1 and r2 can be controlled.
 ポリマー粒子の水性ラテックスの分散安定性に支障を来さない限り、乳化剤(分散剤)の使用量は少なくすることが好ましい。また、乳化剤(分散剤)は、その水溶性が高いほど好ましい。水溶性が高いと、乳化剤(分散剤)の水洗除去が容易になり、最終的に得られる樹脂組成物又は成形体への悪影響を容易に防止できる。 It is preferable to use a small amount of emulsifier (dispersant) as long as it does not interfere with the dispersion stability of the aqueous latex of the polymer particles. The higher the water solubility of the emulsifier (dispersant), the more preferable it is. When the water solubility is high, the emulsifier (dispersant) can be easily removed by washing with water, and adverse effects on the finally obtained resin composition or molded product can be easily prevented.
 乳化重合法を採用する場合には、公知の開始剤、すなわち2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどを熱分解型開始剤として用いることができる。 When the emulsion polymerization method is adopted, a known initiator, that is, 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, ammonium persulfate and the like can be used as the pyrolytic initiator. ..
 また、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキサイドなどの有機過酸化物;過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物といった過酸化物と、必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などを併用したレドックス型開始剤を使用することもできる。 In addition, organic compounds such as t-butyl peroxyisopropyl carbonate, paramentan hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t-hexyl peroxide. Oxides; peroxides such as inorganic peroxides such as hydrogen peroxide, potassium persulfate, ammonium persulfate, and optionally sodium formaldehyde sulfoxylates, reducing agents such as glucose, and optionally iron sulfate (II). ), And if necessary, a chelating agent such as disodium ethylenediamine tetraacetate, and if necessary, a phosphorus-containing compound such as sodium pyrophosphate can be used in combination with a redox-type initiator.
 レドックス型開始剤系を用いた場合には、前記過酸化物が実質的に熱分解しない低い温度でも重合を行うことができ、重合温度を広い範囲で設定できるようになり好ましい。中でもクメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイドなどの有機過酸化物をレドックス型開始剤として用いることが好ましい。前記開始剤の使用量、レドックス型開始剤を用いる場合には前記還元剤・遷移金属塩・キレート剤などの使用量は公知の範囲で用いることができる。またラジカル重合性二重結合を2以上有するモノマーを重合するに際しては公知の連鎖移動剤を公知の範囲で用いることができる。追加的に界面活性剤を用いることができるが、これも公知の範囲である。 When a redox-type initiator system is used, polymerization can be carried out even at a low temperature at which the peroxide does not substantially undergo thermal decomposition, and the polymerization temperature can be set in a wide range, which is preferable. Of these, it is preferable to use organic peroxides such as cumene hydroperoxide, dicumyl peroxide, and t-butyl hydroperoxide as the redox-type initiator. The amount of the initiator used, and when the redox-type initiator is used, the amount of the reducing agent, transition metal salt, chelating agent, etc. used can be used within a known range. Further, when polymerizing a monomer having two or more radically polymerizable double bonds, a known chain transfer agent can be used in a known range. Surfactants can be additionally used, but this is also in the known range.
 重合に際しての重合温度、圧力、脱酸素などの条件は、公知の範囲のものが適用できる。 Conditions such as polymerization temperature, pressure, and deoxygenation at the time of polymerization can be applied within a known range.
 本発明で使用するラジカル共重合体は、下記特性(i)-(iii)のいずれか1つ以上を満足することが好ましい。また、いずれか2以上を満足することがより好ましく、3つ全てを満足することがさらに好ましい。 The radical copolymer used in the present invention preferably satisfies any one or more of the following properties (i)-(iii). Further, it is more preferable to satisfy any two or more, and it is further preferable to satisfy all three.
 (i)下記試験片作製条件に従って作製された、長さ63.5mm、幅12.7mm、厚さ3.2mm、vノッチ付きの試験片1について、下記測定条件に従って測定されるIzod衝撃強度が、30kJ/m以上である。好ましくは35kJ/m以上であり、より好ましくは40kJ/m以上であり、さらに好ましくは45kJ/m以上である。
 [試験片作製条件]:
(a)粘度平均分子量19,000の芳香族ポリカーボネート樹脂(帝人(株)製パンライトL-1225WX)74.4重量部
(b)アクリロニトリル-スチレン樹脂(旭化成(株)製STYLAC T8701)16重量部
(c)前記グラフト共重合体9重量部
(d)カーボンブラック30重量%含有ポリカーボネート樹脂マスターバッチ(濤和化学(株)製)0.65重量部
 前記(a)~(d)の混合物を、バレル温度200~250℃に加熱した二軸押出機(株式会社日本製鋼所社製TEX44SS)にてスクリュー回転数100rpmの条件で混錬し、押出ペレットを得る。このペレットを熱風乾燥機にて80℃で5時間乾燥し、射出成形機(ファナック(株)社製FAS100B)にて成形温度250℃、金型温度70℃の条件で試験片を作製する。
 [測定条件]:
 ASTM D256規格に準拠する方法によって、10℃でのIzod衝撃強度を測定する。
(I) The Izod impact strength measured according to the following measurement conditions is obtained for the test piece 1 having a length of 63.5 mm, a width of 12.7 mm, a thickness of 3.2 mm, and a v-notch manufactured according to the following test piece preparation conditions. , 30 kJ / m 2 or more. It is preferably 35 kJ / m 2 or more, more preferably 40 kJ / m 2 or more, and further preferably 45 kJ / m 2 or more.
[Test piece preparation conditions]:
(A) Aromatic polycarbonate resin with a viscosity average molecular weight of 19,000 (Panlite L-1225WX manufactured by Teijin Co., Ltd.) 74.4 parts by weight (b) Acrylonitrile-styrene resin (STYLAC T8701 manufactured by Asahi Kasei Co., Ltd.) 16 parts by weight (C) 9 parts by weight of the graft copolymer (d) 0.65 parts by weight of a polycarbonate resin masterbatch containing 30% by weight of carbon black (manufactured by Sowa Chemical Co., Ltd.) The mixture of the above (a) to (d) was added. A twin-screw extruder heated to a barrel temperature of 200 to 250 ° C. (TEX44SS manufactured by Nippon Steel Co., Ltd.) is kneaded under the condition of a screw rotation speed of 100 rpm to obtain extruded pellets. The pellets are dried at 80 ° C. for 5 hours in a hot air dryer, and a test piece is prepared in an injection molding machine (FAS100B manufactured by FANUC Co., Ltd.) under the conditions of a molding temperature of 250 ° C. and a mold temperature of 70 ° C.
[Measurement condition]:
The Izod impact strength at 10 ° C. is measured by a method conforming to the ASTM D256 standard.
 (ii)前記(i)中の試験片作製条件に従って作製された、ASTM D638規格のダンベル型、厚さ3.2mmの試験片2について、下記測定条件に従って測定されるL値が、20以下である。好ましくは15以下であり、より好ましくは13以下であり、さらに好ましくは11以下であり、特に好ましくは10以下である。
 [測定条件]:
  JIS K8722規格に準じ、日本電色工業社製の色差計(型式:SE-2000)にて反射L値を測定する。
(Ii) Regarding the test piece 2 having an ASTM D638 standard dumbbell type and a thickness of 3.2 mm, which was manufactured according to the test piece preparation conditions in (i) above, the L value measured according to the following measurement conditions is 20 or less. is there. It is preferably 15 or less, more preferably 13 or less, still more preferably 11 or less, and particularly preferably 10 or less.
[Measurement condition]:
According to JIS K8722 standard, the reflected L value is measured with a color difference meter (model: SE-2000) manufactured by Nippon Denshoku Kogyo Co., Ltd.
 (iii)前記(i)中の試験片作製条件中の手順に従って作製された押出ペレットについて、下記測定条件に従って測定されるMFR値が、21以上である。好ましくは23以上であり、より好ましくは24以上であり、さらに好ましくは25以上である。
 [測定条件]:
 JIS K7210 A法に準じ、前記押出ペレットを熱風乾燥機にて80℃で5時間乾燥させた後、測定温度260℃、荷重5kgの条件にてMFR値を測定する。
(Iii) The MFR value measured according to the following measurement conditions is 21 or more for the extruded pellets produced according to the procedure in the test piece preparation conditions in (i) above. It is preferably 23 or more, more preferably 24 or more, and even more preferably 25 or more.
[Measurement condition]:
According to the JIS K7210 A method, the extruded pellets are dried at 80 ° C. for 5 hours in a hot air dryer, and then the MFR value is measured under the conditions of a measurement temperature of 260 ° C. and a load of 5 kg.
 本発明の熱可塑性樹脂組成物には、必要に応じて、難燃剤、滑剤、抗菌剤、離型剤、核剤、可塑剤、熱安定剤、酸化防止剤、光安定剤、紫外線安定剤、相溶化剤、顔料、染料及び無機物添加剤など任意の添加剤を配合することができる。各添加剤の配合量は当業者が適宜設定することができる。 The thermoplastic resin composition of the present invention contains flame retardants, lubricants, antibacterial agents, mold release agents, nucleating agents, plasticizers, heat stabilizers, antioxidants, light stabilizers, ultraviolet stabilizers, as required. Any additive such as a compatibilizer, a pigment, a dye and an inorganic substance additive can be blended. Those skilled in the art can appropriately set the blending amount of each additive.
 本発明の熱可塑性樹脂組成物の製造方法は特に限定されず、原料の混合には、ヘンシェルミキサーやタンブラーミキサーなどが利用でき、溶融混練には、単軸または二軸押出機、バンバリーミキサー、加圧ニーダー、ミキシングロールなどの混練機を利用することができる。 The method for producing the thermoplastic resin composition of the present invention is not particularly limited, and a Henschel mixer, a tumbler mixer, or the like can be used for mixing the raw materials, and a single-screw or twin-screw extruder, a Banbury mixer, or the addition is used for melt kneading. A kneader such as a pressure kneader or a mixing roll can be used.
 本発明の熱可塑性樹脂組成物は各種用途に製造でき、建築用途、電気・電子用途、車輌用途等に利用することができ、例えば、パソコン、液晶ディスプレイ、プロジェクター、PDA、プリンター、コピー機、ファックス、ビデオカメラ、デジタルカメラ、携帯電話(スマートフォン)、携帯オーディオ機器、ゲーム機、DVDレコーダー、電子レンジ、炊飯器等の電気・電子用途;道路透光板、採光窓、カーポート、照明用レンズ、照明用カバー、建材用サイジング、ドア等の建築用途;ハンドル、シフトレバー、防振材等の自動車、電車の窓、表示、照明、運転席パネル等の車輌用途等に利用することができる。特に、優れた耐衝撃性と発色性を活かして、自動車内外装材、携帯電話やスマートフォンなどの電化製品の外装材、床、窓、内外壁、採光部、道路標識などの土木建築用内外装材などにおいて好適に利用することができる。 The thermoplastic resin composition of the present invention can be produced for various purposes and can be used for construction applications, electrical / electronic applications, vehicle applications, etc., for example, personal computers, liquid crystal displays, projectors, PDAs, printers, copiers, fax machines, etc. , Video cameras, digital cameras, mobile phones (smartphones), portable audio equipment, game machines, DVD recorders, microwave ovens, rice cookers, and other electrical and electronic applications; road light-transmitting plates, light-collecting windows, carports, lighting lenses, etc. It can be used for construction applications such as lighting covers, sizing for building materials, doors, etc .; for automobiles such as handles, shift levers, and vibration isolators, and for vehicles such as train windows, displays, lighting, and driver's seat panels. In particular, taking advantage of its excellent impact resistance and color development, interior and exterior materials for automobiles, exterior materials for electrical appliances such as mobile phones and smartphones, interior and exterior for civil engineering and construction such as floors, windows, interior and exterior walls, daylighting parts, and road signs. It can be suitably used for materials and the like.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
 (シードの屈折率)
 シードの屈折率は、シードの形成時に用いた各モノマーの屈折率とその使用割合に基づいて算出した。具体的には以下のとおりである。メチルメタクリレート(以下MMAとする)の屈折率1.494、ブチルアクリレート(以下BAとする)の屈折率1.463、スチレン(以下STとする)の屈折率1.595、アクリロニトリル(以下ANとする)の屈折率1.516とし、以下の式1に基づき計算した。各モノマーの重量割合は、シード全体量に対する各モノマーの重量割合とする。
(式1)
シードの屈折率=(MMAの屈折率XMMAの重量割合/100)+(BAの屈折率XBAの重量割合/100)+(STの屈折率XSTの重量割合/100)+(ANの屈折率XANの重量割合/100)
(Refractive index of seed)
The refractive index of the seed was calculated based on the refractive index of each monomer used at the time of forming the seed and the ratio of its use. Specifically, it is as follows. The refractive index of methyl methacrylate (hereinafter referred to as MMA) is 1.494, the refractive index of butyl acrylate (hereinafter referred to as BA) is 1.463, the refractive index of styrene (hereinafter referred to as ST) is 1.595, and acrylonitrile (hereinafter referred to as AN). ) With a refractive index of 1.516, and calculated based on the following equation 1. The weight ratio of each monomer shall be the weight ratio of each monomer to the total amount of seeds.
(Equation 1)
Refractive index of seed = (MMA refractive index XMMA weight ratio / 100) + (BA refractive index XBA weight ratio / 100) + (ST refractive index XST weight ratio / 100) + (AN refractive index XAN Weight ratio / 100)
 (マトリクス樹脂の屈折率)
 AS樹脂又はポリカーボネート樹脂(以下PC樹脂とする)の2mmのプレートを用い、JIS K7142規格に準じて、アタゴ社製アッベ屈折計2Tを用いて、各樹脂の屈折率を測定した。マトリクス樹脂が混合物である場合に関しては、以下の式2に基づき計算した。
(式2)
マトリクス樹脂の屈折率=(AS樹脂の屈折率Xマトリクス樹脂全体に占めるAS樹脂の重量割合/100)+(PC樹脂の屈折率Xマトリクス樹脂全体に占めるPC樹脂の重量割合/100)
(Refractive index of matrix resin)
The refractive index of each resin was measured using a 2 mm plate of AS resin or polycarbonate resin (hereinafter referred to as PC resin) and an Abbe refractometer 2T manufactured by Atago Co., Ltd. in accordance with JIS K7142 standard. When the matrix resin was a mixture, it was calculated based on the following formula 2.
(Equation 2)
Refractive index of matrix resin = (refractive index of AS resin X weight ratio of AS resin to total matrix resin / 100) + (refractive index of PC resin X weight ratio of PC resin to total matrix resin / 100)
 (体積平均粒子径)
 体積平均粒子径は、シードのラテックスの状態、又は、シードとコア層が形成されてシェル層が形成される前の粒子のラテックスの状態で測定した。測定装置として、日機装株式会社製のMICROTRAC UPA150を使用した。
(Volume average particle size)
The volume average particle size was measured in the latex state of the seed or in the latex state of the particles before the seed and the core layer were formed and the shell layer was formed. As a measuring device, MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd. was used.
 (重合転化率)
 得られたラテックスの一部を採取・精秤し、それを熱風乾燥器中で120℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率をラテックス中の固形成分比率として求めた。最後に、この固形成分比率を用いて、以下の式3により重合転化率を算出した。
(式3)
重合転化率=(仕込み原料総重量×固形成分比率-モノマー以外の原料総重量)/仕込みモノマー重量×100(%)
(Polymerization conversion rate)
A part of the obtained latex was collected and precisely weighed, dried in a hot air dryer at 120 ° C. for 1 hour, and the weight after drying was precisely weighed as the solid content. Next, the ratio of the precision results before and after drying was determined as the ratio of solid components in latex. Finally, using this solid component ratio, the polymerization conversion rate was calculated by the following formula 3.
(Equation 3)
Polymerization conversion rate = (total weight of charged raw materials x solid component ratio-total weight of raw materials other than monomer) / weight of charged monomer x 100 (%)
 (Izod衝撃強度)
 各実施例及び比較例の混合物を、バレル温度200~250℃に加熱した二軸押出機(株式会社日本製鋼所社製TEX44SS)にてスクリュー回転数100rpmの条件で混錬し、押出ペレットを得た。このペレットを熱風乾燥機にて80℃で5時間乾燥し、射出成形機(ファナック(株)社製FAS100B)にて成形温度250℃、金型温度70℃の条件で、長さ63.5mm、幅12.7mm、厚さ3.2mm、vノッチ付きの試験片1を作製した。得られた試験片1について、ASTM D256規格に準拠する方法によって、-30℃、0℃、10℃、及び23℃でのIzod衝撃強度を測定した。
(Izod impact strength)
The mixture of each example and comparative example is kneaded with a twin-screw extruder (TEX44SS manufactured by Japan Steel Works, Ltd.) heated to a barrel temperature of 200 to 250 ° C. under the condition of a screw rotation speed of 100 rpm to obtain extruded pellets. It was. The pellets were dried at 80 ° C. for 5 hours in a hot air dryer, and the length was 63.5 mm under the conditions of an injection molding machine (FAS100B manufactured by FANUC Corporation) at a molding temperature of 250 ° C. and a mold temperature of 70 ° C. A test piece 1 having a width of 12.7 mm, a thickness of 3.2 mm, and a v-notch was prepared. The Izod impact strength of the obtained test piece 1 was measured at −30 ° C., 0 ° C., 10 ° C., and 23 ° C. by a method conforming to the ASTM D256 standard.
 (L値)
 Izod衝撃強度の試験片1と同じ条件で、ASTM D638規格のダンベル型、厚さ3.2mmの試験片2を作製した。得られた試験片2について、JIS K8722規格に準じ、日本電色工業社製の色差計(型式:SE-2000)にて反射L値を測定した。なお、L値は低いほど、濃い黒色であることを示し、発色性が良いことを意味する。
(L value)
Under the same conditions as the Izod impact strength test piece 1, a dumbbell type test piece 2 having an ASTM D638 standard and a thickness of 3.2 mm was produced. The reflected L value of the obtained test piece 2 was measured with a color difference meter (model: SE-2000) manufactured by Nippon Denshoku Kogyo Co., Ltd. in accordance with JIS K8722 standard. The lower the L value, the darker the black color, which means that the color development property is good.
 (MFR)
 Izod衝撃強度に関して前述した条件で作製した押出ペレットを、JIS K7210 A法に準じ、熱風乾燥機にて80℃で5時間乾燥させた後、測定温度260℃、荷重5kgの条件にてMFR値を測定した。
(MFR)
Extruded pellets prepared under the above-mentioned conditions regarding Izod impact strength are dried in a hot air dryer at 80 ° C. for 5 hours according to the JIS K7210 A method, and then the MFR value is determined under the conditions of a measurement temperature of 260 ° C. and a load of 5 kg. It was measured.
 (実施例1~20及び比較例1~7)
 各表に記載の重量割合に基づいてシード、コア層、及びシェル層から構成されるグラフト共重合体を作製した。作製の過程で、シードの体積平均粒子径(2×r1)、及び、又は、シードとコア層が形成されてシェル層が形成される前の粒子の体積平均粒子径(2×r2)を測定し、得られた2×r2の数値と、算出したr2-r1の数値を各表に示した。
(Examples 1 to 20 and Comparative Examples 1 to 7)
A graft copolymer composed of a seed, a core layer, and a shell layer was prepared based on the weight ratios shown in each table. In the process of preparation, the volume average particle diameter (2 × r1) of the seed and the volume average particle diameter (2 × r2) of the particles before the seed and the core layer are formed and the shell layer is formed are measured. The obtained 2 × r2 numerical value and the calculated r2-r1 numerical value are shown in each table.
 代表的なグラフト共重合体として、実施例6におけるグラフト共重合体を製造、取得した具体的な手順を以下に示す。また、比較例1のグラフト共重合体の製造手順についても別途後述する。なお、実施例6以外の実施例又は比較例1以外の比較例におけるグラフト共重合体の製造・取得手順は、実施例6に関する以下の記載に準ずるが、乳化剤の使用量は、シードの粒径やコア層の厚み、モノマーの使用量に応じて適宜変更した。また、グラフト共重合体におけるシード、コア層(第一コア層と第二コア層)、及びシェル層の重量割合は、各表に記載のとおりであるが、各層で使用したモノマー種は実施例6と同じで、また、各層中のモノマーの使用比率は実施例6におけるモノマーの使用比率と同じである。但し、実施例19と比較例6及び7に関してはシードで使用したモノマー種及びその使用比率を変更した。 The specific procedure for producing and acquiring the graft copolymer in Example 6 as a typical graft copolymer is shown below. The procedure for producing the graft copolymer of Comparative Example 1 will also be described later. The procedure for producing and obtaining the graft copolymer in Examples other than Example 6 or Comparative Examples other than Comparative Example 1 conforms to the following description regarding Example 6, but the amount of the emulsifier used is the particle size of the seed. It was changed as appropriate according to the thickness of the core layer and the amount of monomer used. The weight ratios of the seed, core layer (first core layer and second core layer), and shell layer in the graft copolymer are as shown in each table, but the monomer species used in each layer are Examples. It is the same as No. 6, and the usage ratio of the monomer in each layer is the same as the usage ratio of the monomer in Example 6. However, with respect to Example 19 and Comparative Examples 6 and 7, the monomer species used in the seed and the usage ratio thereof were changed.
 (実施例6のグラフト共重合体の製造)
 温度計、攪拌機、還流冷却器、窒素流入口、及び、モノマーと乳化剤の添加装置を有するガラス反応器に、脱イオン水180重量部、及び、0.5重量%濃度のジオクチルスルホコハク酸ナトリウム水溶液0.023重量部を仕込み、窒素気流中で攪拌しながら60℃に昇温した。
(Production of Graft Copolymer of Example 6)
180 parts by weight of deionized water and 0.5% by weight of sodium dioctyl sulfosuccinate aqueous solution in a glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a device for adding a monomer and an emulsifier. .023 parts by weight was charged and the temperature was raised to 60 ° C. while stirring in a nitrogen stream.
 そこに、メチルメタクリレート(以下MMAとする)4.75重量部、ブチルアクリレート(以下BAとする)0.25重量部、アリルメタクリレート0.25重量部、及び、クメンハイドロパーオキサイド0.015重量部を混合したものを添加した。次に、エチレンジアミン四酢酸二ナトリウムと硫酸第一鉄を4:1の混合比で、0.5重量%濃度になるように脱イオン水で溶解した混合液を0.0033重量部と、5重量%濃度のホルムアルデヒドスルホキシル酸ナトリウム0.04重量部を仕込んだ。その状態で60分間攪拌し、シード粒子を重合転化率97%で形成した。 There, 4.75 parts by weight of methyl methacrylate (hereinafter referred to as MMA), 0.25 parts by weight of butyl acrylate (hereinafter referred to as BA), 0.25 parts by weight of allyl methacrylate, and 0.015 parts by weight of cumene hydroperoxide. Was added. Next, 0.0033 parts by weight and 5 parts by weight of a mixed solution prepared by dissolving disodium ethylenediaminetetraacetate and ferrous sulfate in deionized water at a mixing ratio of 4: 1 to a concentration of 0.5% by mass. 0.04 parts by weight of sodium formaldehyde sulfoxylate at a% concentration was charged. In that state, the mixture was stirred for 60 minutes to form seed particles with a polymerization conversion rate of 97%.
 そこに、クメンハイドロパーオキサイド0.005重量部を仕込み、BA 42.5重量部、アリルメタクリレート0.2重量部の混合物を120分間かけて添加した。添加途中、重合進行度に応じてクメンハイドロパーオキサイド0.005重量部を添加した。添加後、65℃に昇温しながら60分間攪拌し、第一コア層を重合転化率98%で形成した。 0.005 part by weight of cumene hydroperoxide was charged therein, and a mixture of 42.5 part by weight of BA and 0.2 part by weight of allyl methacrylate was added over 120 minutes. During the addition, 0.005 parts by weight of cumene hydroperoxide was added according to the progress of polymerization. After the addition, the mixture was stirred for 60 minutes while raising the temperature to 65 ° C. to form a first core layer with a polymerization conversion rate of 98%.
 そこに、エチレンジアミン四酢酸二ナトリウムと硫酸第一鉄を4:1の混合比で、0.5重量%濃度になるように脱イオン水で溶解した混合液を0.0027重量部を仕込み、BA 2.5重量部、アリルメタクリレート0.06重量部、及び、クメンハイドロパーオキサイド0.0063重量部の混合物を、10分間かけて添加した。添加後60分間攪拌し、第二コア層を重合転化率99%で形成した。 A mixture of disodium ethylenediamine tetraacetate and ferrous sulfate at a mixing ratio of 4: 1 and dissolved in deionized water so as to have a concentration of 0.5% by weight was charged therein in an amount of 0.0027 parts by weight. A mixture of 2.5 parts by weight, 0.06 parts by weight of allyl methacrylate, and 0.0063 parts by weight of cumene hydroperoxide was added over 10 minutes. After the addition, the mixture was stirred for 60 minutes to form a second core layer with a polymerization conversion rate of 99%.
 そこに、5重量%濃度のホルムアルデヒドスルホキシル酸ナトリウム0.16重量部を仕込み、アクリロニトリル(以下ANとする)12.7重量部、スチレン(以下STとする)36.3重量部、BA1.0重量部、t-ドデシルメルカプタン0.12重量部、及び、t-ブチルハイドロパーオキサイド0.2重量部を混合したものを180分間かけて添加した。添加後、エチレンジアミン四酢酸二ナトリウムと硫酸第一鉄を4:1の混合比で、0.5重量%濃度になるように脱イオン水で溶解した混合液を0.0051重量部、5重量%濃度のホルムアルデヒドスルホキシル酸ナトリウム0.05重量部を仕込み10分間攪拌した。その後、t-ブチルハイドロパーオキサイド0.05重量部を仕込み、20分間攪拌した。その後、t-ブチルハイドロパーオキサイド0.05重量部を仕込み、40分間攪拌し、シェル層を重合転化率99.5%で形成した。以上により、シード、コア層(第一コア層と第二コア層)、及びシェル層から構成されるグラフト共重合体のラテックスを得た。 0.16 parts by weight of sodium formaldehyde sulfoxylate having a concentration of 5% by weight was charged therein, and 12.7 parts by weight of acrylonitrile (hereinafter referred to as AN), 36.3 parts by weight of styrene (hereinafter referred to as ST), BA1.0. A mixture of 0.12 parts by weight of t-dodecyl mercaptan and 0.2 parts by weight of t-butyl hydroperoxide was added over 180 minutes. After the addition, 0.0051 parts by mass, 5% by weight of a mixed solution in which disodium ethylenediaminetetraacetate and ferrous sulfate were dissolved in deionized water at a mixing ratio of 4: 1 to a concentration of 0.5% by mass. 0.05 part by weight of sodium formaldehyde sulfoxylate was charged and stirred for 10 minutes. Then, 0.05 part by weight of t-butyl hydroperoxide was charged and stirred for 20 minutes. Then, 0.05 part by weight of t-butyl hydroperoxide was charged and stirred for 40 minutes to form a shell layer having a polymerization conversion rate of 99.5%. From the above, a latex of a graft copolymer composed of a seed, a core layer (first core layer and second core layer), and a shell layer was obtained.
 (比較例1のグラフト共重合体の製造)
 温度計、攪拌機、還流冷却器、窒素流入口、及び、モノマーと乳化剤の添加装置を有するガラス反応器に、脱イオン水155重量部、ホウ酸0.48重量部、炭酸ナトリウム0.05質量部、及び1.0重量%濃度のポリオキシエチレンラウリルエーテルリン酸水溶液0.016重量部を仕込み、窒素気流中で攪拌しながら50℃に昇温した。
(Production of Graft Copolymer of Comparative Example 1)
155 parts by weight of deionized water, 0.48 parts by weight of boric acid, 0.05 parts by mass of sodium carbonate in a glass reactor equipped with a thermometer, agitator, a reflux condenser, a nitrogen inlet, and a device for adding monomers and emulsifiers. , And 0.016 parts by weight of an aqueous solution of polyoxyethylene lauryl ether phosphoric acid having a concentration of 1.0% by mass was charged, and the temperature was raised to 50 ° C. while stirring in a nitrogen stream.
 そこに、BA8.5重量部、アリルメタクリレート0.04重量部を混合したものを添加し、t-ブチルハイドロパーオキサイド0.0017重量部を仕込んだ。次に、エチレンジアミン四酢酸二ナトリウムと硫酸第一鉄を4:1の混合比で、0.5重量%濃度になるように脱イオン水で溶解した混合液0.007重量部と、5重量%濃度のホルムアルデヒドスルホキシル酸ナトリウム0.2重量部を仕込み50分間攪拌した。そこに、BA76.5重量部、アリルメタクリレート0.38重量部、t-ブチルハイドロパーオキサイド0.025重量部、ポリオキシエチレンラウリルエーテルリン酸0.765重量部の混合物を、220分かけて添加した。添加途中に適宜、2重量%濃度の水酸化ナトリウム水溶液0.02重量部を添加した。混合物添加後、t-ブチルハイドロパーオキサイド0.015重量部を添加し、45分間攪拌し、コア層を重合転化率98.5%で形成した。 A mixture of 8.5 parts by weight of BA and 0.04 parts by weight of allyl methacrylate was added thereto, and 0.0017 parts by weight of t-butyl hydroperoxide was charged. Next, 0.007 parts by weight and 5% by weight of a mixed solution in which disodium ethylenediaminetetraacetate and ferrous sulfate were dissolved in deionized water at a mixing ratio of 4: 1 to a concentration of 0.5% by mass. 0.2 part by weight of sodium formaldehyde sulfoxylate having a concentration was charged and stirred for 50 minutes. A mixture of 76.5 parts by weight of BA, 0.38 parts by weight of allyl methacrylate, 0.025 parts by weight of t-butyl hydroperoxide, and 0.765 parts by weight of polyoxyethylene lauryl ether phosphoric acid was added thereto over 220 minutes. did. During the addition, 0.02 part by weight of a 2% by weight aqueous sodium hydroxide solution was appropriately added. After adding the mixture, 0.015 parts by weight of t-butyl hydroperoxide was added and stirred for 45 minutes to form a core layer with a polymerization conversion rate of 98.5%.
 そこに、MMA13.5重量部、BA1.5重量部、t-ブチルハイドロパーオキサイド0.007重量部、ポリオキシエチレンラウリルエーテルリン酸0.14重量部の混合物を、50分かけて添加した。添加途中に適宜、2重量%濃度の水酸化ナトリウム水溶液0.01重量部を添加した。混合物添加後、15分間攪拌し、t-ブチルハイドロパーオキサイド0.015重量部を添加した。その後、15分間攪拌し、t-ブチルハイドロパーオキサイド0.03重量部を添加し、更に30分間攪拌することで、シェル層を重合転化率100%で形成した。以上により、コア層と、シェル層のみから構成されるグラフト共重合体のラテックスを得た。 A mixture of 13.5 parts by weight of MMA, 1.5 parts by weight of BA, 0.007 parts by weight of t-butyl hydroperoxide, and 0.14 parts by weight of polyoxyethylene lauryl ether phosphoric acid was added thereto over 50 minutes. During the addition, 0.01 part by weight of a 2% by weight aqueous sodium hydroxide solution was appropriately added. After adding the mixture, the mixture was stirred for 15 minutes, and 0.015 parts by weight of t-butyl hydroperoxide was added. Then, the mixture was stirred for 15 minutes, 0.03 part by weight of t-butyl hydroperoxide was added, and the mixture was further stirred for 30 minutes to form a shell layer having a polymerization conversion rate of 100%. From the above, a latex of a graft copolymer composed of only a core layer and a shell layer was obtained.
 (グラフト共重合体の白色樹脂粉末の取得)
 脱イオン水500重量部、25重量%濃度の塩化カルシウム水溶液5重量部を70℃に昇温し、そこにグラフト共重合体のラテックスを投入し、凝固ラテックス粒子を含むスラリーを得た。その後、その凝固ラテックス粒子スラリーを95℃まで昇温し、脱水、乾燥させることにより、白色樹脂粉末としてグラフト共重合体を得た。
(Acquisition of white resin powder of graft copolymer)
500 parts by weight of deionized water and 5 parts by weight of a 25% by mass calcium chloride aqueous solution were heated to 70 ° C., and the latex of the graft copolymer was added thereto to obtain a slurry containing coagulated latex particles. Then, the solidified latex particle slurry was heated to 95 ° C., dehydrated and dried to obtain a graft copolymer as a white resin powder.
 (熱可塑性樹脂組成物の製造)
 得られたグラフト共重合体の白色樹脂粉末と、粘度平均分子量19,000の芳香族ポリカーボネート樹脂(帝人(株)製パンライトL-1225WX)、アクリロニトリル-スチレン樹脂(旭化成(株)製STYLAC T8701)、及び、カーボンブラック30重量%含有ポリカーボネート樹脂マスターバッチ(濤和化学(株)製)を、各表に記載の配合部数で混合して得られた混合物について、上述した条件に従って、Izod衝撃強度、MFR、及びL値を測定し、それらの結果を各表に示した。
(Manufacturing of thermoplastic resin composition)
The white resin powder of the obtained graft copolymer, an aromatic polycarbonate resin having a viscosity average molecular weight of 19,000 (Panlite L-1225WX manufactured by Teijin Co., Ltd.), and an acrylonitrile-styrene resin (STYLAC T8701 manufactured by Asahi Kasei Co., Ltd.). , And a polycarbonate resin masterbatch containing 30% by weight of carbon black (manufactured by Sowa Kagaku Co., Ltd.) was mixed in the number of parts listed in each table, and the mixture was obtained according to the above-mentioned conditions. The MFR and L values were measured and the results are shown in each table.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の各実施例で得られた熱可塑性樹脂組成物は、10℃で測定したIzod衝撃強度が30kJ/m以上、-30℃で測定したIzod衝撃強度が14kJ/m以上で、かつL値が20以下であったことから、耐衝撃性と発色性の双方に優れていることが分かる。一方、シードを有しないグラフト共重合体を使用した比較例1で得られた熱可塑性樹脂組成物は、L値が21で、発色性に劣ることが分かる。また、コア層の厚みであるr2-r1が40nm未満のグラフト共重合体を使用した比較例2~4で得られた熱可塑性樹脂組成物は、10℃で測定したIzod衝撃強度が30kJ/m未満で、耐衝撃性に劣ることが分かる。更に、シードとコア層から構成される粒子の直径である2xr2が300nm未満のグラフト共重合体を使用した比較例5で得られた熱可塑性樹脂組成物は、-30℃で測定したIzod衝撃強度が低く、低温での耐衝撃性に劣ることが分かる。 The thermoplastic resin composition obtained in each Example in Table 1, Izod impact strength measured at 10 ° C. is 30 kJ / m 2 or more, at -30 Izod impact strength measured at ° C. is 14 kJ / m 2 or more, and Since the L value was 20 or less, it can be seen that both impact resistance and color development are excellent. On the other hand, it can be seen that the thermoplastic resin composition obtained in Comparative Example 1 using the graft copolymer having no seed has an L value of 21 and is inferior in color development. Further, the thermoplastic resin compositions obtained in Comparative Examples 2 to 4 using a graft copolymer having a core layer thickness of r2-r1 of less than 40 nm had an Izod impact strength of 30 kJ / m measured at 10 ° C. If it is less than 2 , it can be seen that the impact resistance is inferior. Further, the thermoplastic resin composition obtained in Comparative Example 5 using a graft copolymer having a diameter of 2xr2 of less than 300 nm, which is the diameter of the particles composed of the seed and the core layer, had an Izod impact strength measured at −30 ° C. It can be seen that the impact resistance at low temperature is inferior.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2の実施例13~16は、グラフト共重合体の配合部数を変更したものであるが、いずれも良好な耐衝撃性と発色性を示した。また、実施例17及び実施例18は、マトリクス樹脂における樹脂組成を変更したものであるが、いずれも良好な耐衝撃性と発色性を示した。 In Examples 13 to 16 in Table 2, the number of copies of the graft copolymer was changed, but all of them showed good impact resistance and color development. Further, in Examples 17 and 18, although the resin composition in the matrix resin was changed, both showed good impact resistance and color development.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3の実施例19はシードの屈折率とマトリクス樹脂の屈折率の差を0.07としたもので、良好な耐衝撃性と発色性を示したのに対し、比較例6は前記屈折率の差を0.06としたもので、-30℃で測定したIzod衝撃強度が低く、低温での耐衝撃性に劣ることが分かる。 In Example 19 of Table 3, the difference between the refractive index of the seed and the refractive index of the matrix resin was 0.07, which showed good impact resistance and color development, whereas Comparative Example 6 had the refractive index. It can be seen that the difference between the two is 0.06, the Izod impact strength measured at −30 ° C. is low, and the impact resistance at low temperature is inferior.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4の実施例20と比較例7は、マトリクス樹脂における樹脂組成を変更したものである。実施例20はシードの屈折率とマトリクス樹脂の屈折率の差を0.073としたもので、比較例7は前記屈折率の差を0.03としたものであるが、実施例20は比較例7よりも耐衝撃性が良好であった。
 
In Example 20 and Comparative Example 7 in Table 4, the resin composition of the matrix resin was changed. In Example 20, the difference between the refractive index of the seed and the refractive index of the matrix resin was 0.073, and in Comparative Example 7, the difference in the refractive index was 0.03, but in Example 20, comparison was made. The impact resistance was better than that of Example 7.

Claims (15)

  1.  シード、前記シード表面に形成されたコア層、及び、前記コア層表面に形成されたシェル層から構成される粒子状のグラフト共重合体、及び、マトリクス樹脂を含有する熱可塑性樹脂組成物であって、
     前記マトリクス樹脂は、アクリロニトリル-スチレン樹脂を含み、
     前記シードは、(メタ)アクリル酸エステル、芳香族ビニル化合物、及びシアン化ビニル化合物からなる群より選択される少なくとも1種を含むモノマー成分の重合体からなり、
     前記シードの屈折率と、前記マトリクス樹脂の屈折率の差が0.07以上であり、
     前記コア層は、少なくとも1種のアクリル酸エステルを含むモノマー成分の重合体であって架橋構造を有する重合体からなり、
     前記シェル層は、(メタ)アクリル酸エステル、芳香族ビニル化合物、及びシアン化ビニル化合物からなる群より選択される少なくとも1種を含むモノマー成分の重合体からなり、
     前記グラフト共重合体は、下記式(1)及び式(2)を満足する、熱可塑性樹脂組成物。
    300≦2xr2≦700   (1)
    40≦r2-r1≦210   (2)
    (式中、r1は前記シードの半径(nm)を表し、r2は前記シードと前記コア層から構成される粒子の半径(nm)を表す。)
    A thermoplastic resin composition containing a seed, a particulate graft copolymer composed of a core layer formed on the surface of the seed, and a shell layer formed on the surface of the core layer, and a matrix resin. hand,
    The matrix resin contains an acrylonitrile-styrene resin and contains.
    The seed comprises a polymer of monomer components containing at least one selected from the group consisting of (meth) acrylic acid ester, aromatic vinyl compound, and vinyl cyanide compound.
    The difference between the refractive index of the seed and the refractive index of the matrix resin is 0.07 or more.
    The core layer is a polymer of a monomer component containing at least one kind of acrylic acid ester and is composed of a polymer having a crosslinked structure.
    The shell layer is composed of a polymer of a monomer component containing at least one selected from the group consisting of (meth) acrylic acid ester, aromatic vinyl compound, and vinyl cyanide compound.
    The graft copolymer is a thermoplastic resin composition that satisfies the following formulas (1) and (2).
    300 ≦ 2xr2 ≦ 700 (1)
    40 ≦ r2-r1 ≦ 210 (2)
    (In the formula, r1 represents the radius (nm) of the seed, and r2 represents the radius (nm) of the particles composed of the seed and the core layer.)
  2.  前記コア層が、前記グラフト共重合体中に占める重量割合が83重量%以下である、請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the core layer occupies 83% by weight or less in the graft copolymer.
  3.  前記シードが、(メタ)アクリル酸エステル80~100重量%及び芳香族ビニル化合物0~20重量%を重合してなる重合体からなる、請求項1又は2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, wherein the seed comprises a polymer obtained by polymerizing 80 to 100% by weight of a (meth) acrylic acid ester and 0 to 20% by weight of an aromatic vinyl compound.
  4.  前記シードにおける前記(メタ)アクリル酸エステルが、メタクリル酸アルキルエステルを含む、請求項3に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 3, wherein the (meth) acrylic acid ester in the seed contains an alkyl methacrylate ester.
  5.  前記シードを構成する重合体が、架橋構造を有する、請求項1~4のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 4, wherein the polymer constituting the seed has a crosslinked structure.
  6.  前記コア層が、互いに異なる2種以上の層から構成される、請求項1~5のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 5, wherein the core layer is composed of two or more different layers.
  7.  前記シェル層が、少なくとも芳香族ビニル化合物及びシアン化ビニル化合物を重合してなる重合体からなる、請求項1~6のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 6, wherein the shell layer comprises a polymer obtained by polymerizing at least an aromatic vinyl compound and a vinyl cyanide compound.
  8.  前記グラフト共重合体が、前記マトリクス樹脂と前記グラフト共重合体の合計に対して占める重量割合が1~60重量%である、請求項1~7のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 7, wherein the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is 1 to 60% by weight.
  9.  前記マトリクス樹脂が、ポリカーボネート樹脂をさらに含む、請求項1~8のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 8, wherein the matrix resin further contains a polycarbonate resin.
  10.  前記アクリロニトリル-スチレン樹脂と前記ポリカーボネート樹脂の重量比が、25:75~5:95である、請求項9に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 9, wherein the weight ratio of the acrylonitrile-styrene resin to the polycarbonate resin is 25:75 to 5:95.
  11.  前記グラフト共重合体が、前記マトリクス樹脂と前記グラフト共重合体の合計に対して占める重量割合が2~20重量%である、請求項9または10のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 9 or 10, wherein the weight ratio of the graft copolymer to the total of the matrix resin and the graft copolymer is 2 to 20% by weight.
  12.  下記試験片作製条件に従って作製された、長さ63.5mm、幅12.7mm、厚さ3.2mm、vノッチ付きの試験片1について、下記測定条件に従って測定されるIzod衝撃強度が、30kJ/m以上である、請求項1~11のいずれかに記載の熱可塑性樹脂組成物。
     [試験片作製条件]:
    (a)粘度平均分子量19,000の芳香族ポリカーボネート樹脂(帝人(株)製パンライトL-1225WX)74.4重量部
    (b)アクリロニトリル-スチレン樹脂(旭化成(株)製STYLAC T8701)16重量部
    (c)前記グラフト共重合体9重量部
    (d)カーボンブラック30重量%含有ポリカーボネート樹脂マスターバッチ(濤和化学(株)製)0.65重量部
     前記(a)~(d)の混合物を、バレル温度200~250℃に加熱した二軸押出機(株式会社日本製鋼所社製TEX44SS)にてスクリュー回転数100rpmの条件で混錬し、押出ペレットを得る。このペレットを熱風乾燥機にて80℃で5時間乾燥し、射出成形機(ファナック(株)社製FAS100B)にて成形温度250℃、金型温度70℃の条件で試験片を作製する。
     [測定条件]:
     ASTM D256規格に準拠する方法によって、10℃でのIzod衝撃強度を測定する。
    The Izod impact strength measured according to the following measurement conditions for the test piece 1 having a length of 63.5 mm, a width of 12.7 mm, a thickness of 3.2 mm, and a v-notch manufactured according to the following test piece preparation conditions is 30 kJ / The thermoplastic resin composition according to any one of claims 1 to 11, which is m 2 or more.
    [Test piece preparation conditions]:
    (A) Aromatic polycarbonate resin with a viscosity average molecular weight of 19,000 (Panlite L-1225WX manufactured by Teijin Co., Ltd.) 74.4 parts by weight (b) Acrylonitrile-styrene resin (STYLAC T8701 manufactured by Asahi Kasei Co., Ltd.) 16 parts by weight (C) 9 parts by weight of the graft copolymer (d) 0.65 parts by weight of a polycarbonate resin masterbatch containing 30% by weight of carbon black (manufactured by Sowa Chemical Co., Ltd.) The mixture of the above (a) to (d) was added. A twin-screw extruder heated to a barrel temperature of 200 to 250 ° C. (TEX44SS manufactured by Nippon Steel Co., Ltd.) is kneaded under the condition of a screw rotation speed of 100 rpm to obtain extruded pellets. The pellets are dried at 80 ° C. for 5 hours in a hot air dryer, and a test piece is prepared in an injection molding machine (FAS100B manufactured by FANUC Co., Ltd.) under the conditions of a molding temperature of 250 ° C. and a mold temperature of 70 ° C.
    [Measurement condition]:
    The Izod impact strength at 10 ° C. is measured by a method conforming to the ASTM D256 standard.
  13.  請求項12に記載の試験片作製条件に従って作製された、ASTM D638規格のダンベル型、厚さ3.2mmの試験片2について、下記測定条件に従って測定されるL値が、20以下である、請求項1~12のいずれかに記載の熱可塑性樹脂組成物。
     [測定条件]:
     JIS K8722規格に準じ、日本電色工業社製の色差計(型式:SE-2000)にて反射L値を測定する。
    Claimed that the L value measured according to the following measurement conditions is 20 or less for the test piece 2 of the ASTM D638 standard dumbbell type and thickness 3.2 mm manufactured according to the test piece preparation condition according to claim 12. Item 2. The thermoplastic resin composition according to any one of Items 1 to 12.
    [Measurement condition]:
    According to JIS K8722 standard, the reflected L value is measured with a color difference meter (model: SE-2000) manufactured by Nippon Denshoku Kogyo Co., Ltd.
  14.  請求項12に記載の試験片作製条件中の手順に従って作製された押出ペレットについて、下記測定条件に従って測定されるMFR値が、21以上である、請求項1~13のいずれかに記載の熱可塑性樹脂組成物。
     [測定条件]:
     JIS K7210 A法に準じ、前記押出ペレットを熱風乾燥機にて80℃で5時間乾燥させた後、測定温度260℃、荷重5kgの条件にてMFR値を測定する。
    The thermoplastic according to any one of claims 1 to 13, wherein the extruded pellet produced according to the procedure in the test piece preparation condition according to claim 12 has an MFR value of 21 or more measured according to the following measurement conditions. Resin composition.
    [Measurement condition]:
    According to the JIS K7210 A method, the extruded pellets are dried at 80 ° C. for 5 hours in a hot air dryer, and then the MFR value is measured under the conditions of a measurement temperature of 260 ° C. and a load of 5 kg.
  15.  請求項1~14のいずれかに記載の熱可塑性樹脂組成物が成形されてなる成形体。
     
    A molded product obtained by molding the thermoplastic resin composition according to any one of claims 1 to 14.
PCT/JP2020/010321 2019-03-26 2020-03-10 Thermoplastic resin composition and molded article WO2020195798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080022580.8A CN113614178B (en) 2019-03-26 2020-03-10 Thermoplastic resin composition and molded article
JP2021508987A JP7509750B2 (en) 2019-03-26 2020-03-10 Thermoplastic resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057665 2019-03-26
JP2019-057665 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195798A1 true WO2020195798A1 (en) 2020-10-01

Family

ID=72610565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010321 WO2020195798A1 (en) 2019-03-26 2020-03-10 Thermoplastic resin composition and molded article

Country Status (2)

Country Link
CN (1) CN113614178B (en)
WO (1) WO2020195798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468606B1 (en) 2022-12-01 2024-04-16 テクノUmg株式会社 Thermoplastic resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260948A (en) * 1987-04-20 1988-10-27 Denki Kagaku Kogyo Kk High-rigidity, high-impact strength, weather-resistant resin composition
JP2006509101A (en) * 2003-08-05 2006-03-16 エルジー ケム リミテッド Graft copolymer latex and method for producing dry powder thereof
JP2014516104A (en) * 2012-02-03 2014-07-07 エルジー・ケム・リミテッド ASA-based graft copolymer composition
JP2014530957A (en) * 2012-10-11 2014-11-20 エルジー・ケム・リミテッド Alkyl acrylate-aromatic vinyl compound-vinyl cyanide compound copolymer having improved low-temperature impact strength and polycarbonate composition containing the same
WO2018174395A1 (en) * 2017-03-20 2018-09-27 (주) 엘지화학 Method for preparing asa-based graft copolymer, method for preparing thermoplastic resin composition comprising same, and method for manufacturing molded product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815995B1 (en) * 2006-06-08 2008-03-21 제일모직주식회사 Acrylate-Styrene- Acrylonitrile Grafted Copolymer with Excellent Impact Strength at Low and Room Temperature, Coloring, and Weatherability, and Thermoplastic Resin Composition Containing Same
KR101760987B1 (en) * 2013-12-10 2017-07-25 주식회사 엘지화학 Thermoplastic resin composition and molded article preparing therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260948A (en) * 1987-04-20 1988-10-27 Denki Kagaku Kogyo Kk High-rigidity, high-impact strength, weather-resistant resin composition
JP2006509101A (en) * 2003-08-05 2006-03-16 エルジー ケム リミテッド Graft copolymer latex and method for producing dry powder thereof
JP2014516104A (en) * 2012-02-03 2014-07-07 エルジー・ケム・リミテッド ASA-based graft copolymer composition
JP2014530957A (en) * 2012-10-11 2014-11-20 エルジー・ケム・リミテッド Alkyl acrylate-aromatic vinyl compound-vinyl cyanide compound copolymer having improved low-temperature impact strength and polycarbonate composition containing the same
WO2018174395A1 (en) * 2017-03-20 2018-09-27 (주) 엘지화학 Method for preparing asa-based graft copolymer, method for preparing thermoplastic resin composition comprising same, and method for manufacturing molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468606B1 (en) 2022-12-01 2024-04-16 テクノUmg株式会社 Thermoplastic resin composition
WO2024116569A1 (en) * 2022-12-01 2024-06-06 テクノUmg株式会社 Rattle noise reduction material and thermoplastic resin composition

Also Published As

Publication number Publication date
JPWO2020195798A1 (en) 2020-10-01
CN113614178B (en) 2023-06-16
CN113614178A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6185910B2 (en) Method for producing rubber graft copolymer
EP3103838B1 (en) Thermoplastic resin composition
KR20080063052A (en) Polycarbonate resin composition and plastic article
KR20160055799A (en) Mineral reinforced thermoplastic polymer compositions with improved properties
CN101679739A (en) Flame-retardant polycarbonate resin composition and molded article thereof
EP2285904A1 (en) Flame retardant polycarbonate resin composition
KR20010074740A (en) Flame retardant polycarbonate/rubber-modified graft copolymer resin blend having a metallic appearance
KR100680338B1 (en) Thermoplastic polycarbonate alloy with low gloss
JP2022093366A (en) Flame-retardant resin composition
KR101261294B1 (en) and Thermoplastic composition having impact modifier having core-shell structure
JP2007051300A (en) Flame-retardant resin composition
TWI500692B (en) Impact-modified polycarbonate compositions
JP2011168633A (en) Method for producing polycarbonate resin composition and molded product obtained therefrom
WO2020195798A1 (en) Thermoplastic resin composition and molded article
WO2019176763A1 (en) Thermoplastic resin composition and molded article thereof
JPH08127686A (en) Polycarbonate resin composition
JP7509750B2 (en) Thermoplastic resin composition and molded article
JP6904482B2 (en) Thermoplastic resin composition and its molded product
KR101651719B1 (en) Light diffusing composition and light diffusing resin composition comprising thereof
JP2017088738A (en) Polycarbonate resin composition and molded article
JP2001310985A (en) Flame retardant thermoblastic resin composition
JP2018076459A (en) Polycarbonate resin composition and molding
JP2002194100A (en) Translucent/transparent flame-retardant thin walled resin molding and use thereof
JP4559986B2 (en) Polycarbonate flame retardant resin composition
JP2003113299A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778915

Country of ref document: EP

Kind code of ref document: A1