WO2020195454A1 - Method for dehydrating organic solvent and method for purifying organic solvent - Google Patents

Method for dehydrating organic solvent and method for purifying organic solvent Download PDF

Info

Publication number
WO2020195454A1
WO2020195454A1 PCT/JP2020/007412 JP2020007412W WO2020195454A1 WO 2020195454 A1 WO2020195454 A1 WO 2020195454A1 JP 2020007412 W JP2020007412 W JP 2020007412W WO 2020195454 A1 WO2020195454 A1 WO 2020195454A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
gas
dehydrating
filter
fine particles
Prior art date
Application number
PCT/JP2020/007412
Other languages
French (fr)
Japanese (ja)
Inventor
圭祐 太田
菅原 充
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020217025684A priority Critical patent/KR20210143730A/en
Priority to JP2021508827A priority patent/JP7459865B2/en
Priority to CN202080005869.9A priority patent/CN112955421A/en
Publication of WO2020195454A1 publication Critical patent/WO2020195454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/08Monocyclic halogenated hydrocarbons with a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms

Definitions

  • the present invention relates to a method for dehydrating an organic solvent and a method for purifying an organic solvent, and more particularly to a method for dehydrating an organic solvent using gas-liquid contact and a method for purifying an organic solvent using the dehydration method.
  • an object of the present invention is to provide a method for dehydrating an organic solvent while suppressing an increase in the number of fine particles.
  • Another object of the present invention is to provide a method for purifying an organic solvent capable of satisfactorily reducing both the amount of water and the number of fine particles.
  • An object of the present invention is to advantageously solve the above problems, and the method for dehydrating an organic solvent of the present invention includes a step (A) of preparing a dehydration gas, the dehydration gas, and an organic solvent.
  • the step (A) is a step (a1) of passing a gas having a dew point of ⁇ 30 ° C. or lower through a gas filter to obtain a gas for dehydration, or passing through a gas filter. It is characterized by including a step (a2) of adjusting the dew point of the gas to obtain a dehydrating gas by adjusting the dew point to ⁇ 30 ° C. or lower.
  • the dehydration gas obtained by passing a gas having a dew point of ⁇ 30 ° C. or lower through the gas filter, or the dehydration gas obtained by adjusting the dew point of the gas passed through the gas filter to ⁇ 30 ° C. or lower. can be used to dehydrate the organic solvent while suppressing an increase in the number of fine particles.
  • the "dew point” refers to the dew point under atmospheric pressure obtained from the amount of water measured by Fourier transform infrared spectroscopy (FT-IR).
  • the organic solvent is a group consisting of hydrocarbons, alcohols, ethers, ketones, amides, esters, nitriles, hydrofluorocarbons, hydrofluoroethers, perfluorocarbons and hydrofluoroolefins. It may contain at least one solvent of choice.
  • the organic solvent preferably contains 1,1,2,2,3,3,4-heptafluorocyclopentane.
  • Organic solvents containing 1,1,2,2,3,3,4-heptafluorocyclopentane can be advantageously used in the manufacture and cleaning of semiconductor devices.
  • the organic solvent may be an azeotropic composition.
  • the organic solvent is preferably a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol. Mixtures of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol can be advantageously used in the manufacture and cleaning of semiconductor devices.
  • the gas preferably comprises at least one selected from the group consisting of hydrogen, air, oxygen, nitrogen, helium, neon, argon, krypton, xenon, carbon monoxide and carbon dioxide.
  • the organic solvent can be satisfactorily dehydrated while suppressing the occurrence of side reactions.
  • the present invention aims to advantageously solve the above problems, and the method for purifying an organic solvent of the present invention includes a step ( ⁇ ) of filtering an organic solvent with a filter and the above-mentioned organic solvent. It is characterized by including a step ( ⁇ ) of dehydrating an organic solvent by using any of the dehydration methods. By carrying out step ( ⁇ ) and step ( ⁇ ), it is possible to obtain a purified product made of an organic solvent in which both water content and fine particles are satisfactorily removed from the organic solvent and the water content and the number of fine particles are reduced.
  • the step ( ⁇ ) in the method for purifying an organic solvent of the present invention, it is preferable to dehydrate the organic solvent filtered in the step ( ⁇ ). If the step ( ⁇ ) is carried out after the step ( ⁇ ), it is possible to suppress the mixing of water during the filtration.
  • the step ( ⁇ ) since the organic solvent is dehydrated using the method for dehydrating the organic solvent of the present invention described above in the step ( ⁇ ), the step ( ⁇ ) is performed after the step ( ⁇ ). Even when this is carried out, a purified product having a sufficiently reduced number of fine particles can be obtained.
  • the organic solvent can be dehydrated while suppressing an increase in the number of fine particles. Further, according to the method for purifying an organic solvent of the present invention, it is possible to obtain a purified product in which both the water content and the number of fine particles are satisfactorily reduced.
  • (A) is a diagram showing a flow of an example of the method for purifying an organic solvent of the present invention
  • (b) is a diagram showing a flow of another example of the method for purifying an organic solvent of the present invention. It is explanatory drawing which shows the schematic structure of an example of the dehydration apparatus which can be used for dehydration of an organic solvent.
  • the method for dehydrating an organic solvent of the present invention can be used when dehydrating an organic solvent.
  • the method for purifying an organic solvent of the present invention includes a step of dehydrating the organic solvent using the method for dehydrating the organic solvent of the present invention, and removes both water and fine particles from the organic solvent to obtain the amount of water and the amount of water. It can be used to obtain a purified product made of an organic solvent having a reduced number of fine particles.
  • the method for purifying an organic solvent of the present invention includes a step of filtering the organic solvent with a filter ( ⁇ ) and a step of dehydrating the organic solvent using the method of dehydrating the organic solvent of the present invention ( ⁇ ).
  • a pretreatment step ( ⁇ ) may be further included before the step ( ⁇ ).
  • the organic solvent is dehydrated using the method for dehydrating the organic solvent of the present invention in step ( ⁇ ), and therefore, as will be described in detail later, due to the dehydration operation.
  • the organic solvent can be dehydrated while suppressing an increase in the number of fine particles. Therefore, according to the method for purifying an organic solvent of the present invention, it is possible to obtain a purified product made of an organic solvent in which the water content and the number of fine particles are satisfactorily reduced.
  • the step ( ⁇ ) and the step ( ⁇ ) may be carried out first, but it is preferable to carry out the step ( ⁇ ) first.
  • the step ( ⁇ ) is carried out first as shown in FIG. 1 (b)
  • FIG. 1A if the step ( ⁇ ) is carried out first and the organic solvent filtered in the step ( ⁇ ) is dehydrated, the amount of water in the obtained purified product can be sufficiently reduced. Can be done.
  • the organic solvent can be dehydrated while suppressing the increase in the number of fine particles, so that the water content and the number of fine particles are sufficient even when the step ( ⁇ ) is carried out first.
  • a purified product made of an organic solvent reduced to a large amount can be obtained.
  • the organic solvent purified by the method for purifying the organic solvent of the present invention is not particularly limited, and for example, hydrocarbons such as hexane, cyclohexane, octane, and decane; butanol, isopropanol, 2-butanol, Aliper alcohols such as methylbutanol, propanol, heptanol, hexanol, decanol, nonanol, benzyl alcohol, methylbenzyl alcohol, ethylbenzyl alcohol, methoxybenzyl alcohol, ethoxybenzyl alcohol, hydroxybenzyl alcohol, 3-phenylpropanol, cumyl alcohol , Alcohols such as furfuryl alcohol, phenethyl alcohol, methoxyphenethyl alcohol, ethoxyphenethyl alcohol and other aromatic alcohols; ethers such as dibutyl ether and cyclopentyl methyl ether
  • esters such as acrylonitrile, methacrylonitrile, acetonitrile; formula: C n H m F 2n + 2-m [In the formula, n is an integer of 4 or more and 6 or less, and m is an integer of 1 or more.
  • m is an integer greater than or equal to 1] (eg, 1,1,2,2,3-pentafluorocyclobutane, 1,1,2,2,3,3,4-heptafluorocyclopentane, Hydrofluorocarbons such as 1,1,2,2,3,3,4,5-nonafluorocyclocyclohexane); methylperfluorobutyl ether, methylperfluoroisobutyl ether, methylperfluoropentyl ether, ethylperfluorobutyl ether , Hydrofluoroethers such as ethyl perfluoroisobutyl ether; perfluorocarbons such as perfluorocyclohexane and perfluoromethylcyclohexane; hydrofluoroolefins such as 1-chloro-3,3,3-trifluoropropene; propylene glycol monomethyl Ete Glycol ethers such as dipropylene glycol monobutyl ether, dipropy
  • the organic solvent is selected from the group consisting of hydrocarbons, alcohols, ethers, ketones, amides, esters, nitriles, hydrofluorocarbons, hydrofluoroethers, perfluorocarbons and hydrofluoroolefins. It is preferable to contain at least one solvent, more preferably a solvent containing a fluorine atom (fluorine-based solvent), further preferably containing hydrofluorocarbons, and further preferably containing cyclic hydrofluorocarbons. More preferably, it contains 1,1,2,2,3,3,4-heptafluorocyclopentane.
  • hydrofluorocarbons are nonflammable, have excellent stability in the presence of water, have low toxicity, and have an ozone depletion potential of zero.
  • 1,1,2,2,3,3,4-heptafluorocyclopentane has an appropriate boiling point for handling as a solvent, and can be advantageously used for manufacturing and cleaning semiconductor devices. Is.
  • the organic solvent may be an azeotropic composition.
  • the organic solvent is a mixture of a fluorine-based solvent and an alcohol having 5 or less carbon atoms. It is preferably a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and at least one selected from the group consisting of tert-amyl alcohol, benzyl alcohol and phenethyl alcohol. More preferably, it is a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol.
  • the organic solvent may contain additives such as phenolic antioxidants and surfactants.
  • the phenolic antioxidant that can be arbitrarily contained in the organic solvent is not particularly limited, and is, for example, phenol, 2,6-di-t-butylphenol, 2,6-di-t-butyl-. Examples thereof include p-cresol and butyl hydroxylanisole.
  • 2,6-di-t-butyl-p-cresol is a phenolic antioxidant from the viewpoint of imparting a high antioxidant effect to the purified product obtained by the method for purifying an organic solvent of the present invention.
  • the above-mentioned phenolic antioxidant may be used alone or in combination of two or more.
  • the concentration of the phenolic antioxidant in the organic solvent can be, for example, 1% by mass or more and 5% by mass or less.
  • the surfactant that can be arbitrarily contained in the organic solvent is not particularly limited, but is nonionic from the viewpoint that excellent detergency can be easily imparted to the purified product obtained by the method for purifying the organic solvent of the present invention.
  • sexual surfactants are preferred.
  • the concentration of the surfactant in the organic solvent can be, for example, 1% by mass or more and 5% by mass or less.
  • the ratio of the organic solvent and the phenolic antioxidant and the surfactant which are optional components can be appropriately set according to the purpose of use of the purified product obtained by the method for purifying the organic solvent of the present invention.
  • the pretreatment step ( ⁇ ) which can be arbitrarily performed before the step ( ⁇ )
  • the coarse particles contained in the organic solvent filtered in the step ( ⁇ ) are removed.
  • the method for removing the coarse particles in the organic solvent in the pretreatment step ( ⁇ ) is not particularly limited, and for example, the organic solvent is filtered using a filter material such as a pretreatment filter having an arbitrary opening. The method of doing this can be mentioned. At that time, pressure filtration or pressure filtration may be performed under any pressure.
  • the pretreatment step ( ⁇ ) may be carried out before the step ( ⁇ ). It may be carried out between ( ⁇ ) and step ( ⁇ ).
  • the organic solvent is filtered using a filter.
  • the organic solvent may be filtered in air, or may be filtered in an inert gas atmosphere such as an argon atmosphere or a nitrogen atmosphere. Further, the filtration may be performed using a general liquid filtration device, or may be performed by installing a filter on an industrial line such as a chemical solution supply device where an organic solvent as a chemical solution passes. Then, the units in which the filters are packed in a container may be connected in series and performed in multiple stages.
  • the organic solvent filtered by the filter usually contains fine particles.
  • the filter used in the step ( ⁇ ) is not particularly limited as long as it can separate at least fine particles from the organic solvent, and even if it is a filter made of an organic material, it is a filter made of an inorganic material. Although it may be used, a filter made of an organic material is preferable.
  • the organic solvent contains a fluorine-based solvent
  • the material containing a fluorine atom is not particularly limited, and is selected from the group consisting of, for example, tetrafluoroethylene unit, chlorotrifluoroethylene unit, vinylidene fluoride unit, perfluoroalkyl vinyl ether unit and hexafluoropropylene unit.
  • a polymer containing at least one fluorine-containing monomer unit is preferable.
  • the polymer may optionally contain a fluorine-free monomer unit.
  • the fluorine-free monomer unit is not particularly limited, and examples thereof include an ethylene unit and a propylene unit.
  • "containing a monomer unit” means that "a polymer obtained by using the monomer contains a repeating unit derived from the monomer".
  • the proportion of the fluorine-containing monomer unit in the polymer is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass, that is, the material containing a fluorine atom. , It is more preferable that it is a homopolymer of a fluorine-containing monomer.
  • the content ratio of each monomer unit contained in the polymer can be determined, for example, by measuring 1 1 H-NMR and 19 F-NMR.
  • the above-mentioned polymer is not particularly limited, and for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexa.
  • examples thereof include fluoropropylene copolymers, ethylene / tetrafluoroethylene copolymers, and chlorotrifluoroethylene / ethylene copolymers.
  • the polymer is most preferably polytetrafluoroethylene.
  • the pore size of the filter is preferably 30 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, and preferably 0.1 nm or more, preferably 0.2 nm or more. It is more preferably present, and more preferably 0.5 nm or more.
  • the pore size of the filter is 30 nm or less, fine particles having a particle size of 30 nm or more contained in the organic solvent are removed by the filter, so that a purified product having reduced fine particles can be obtained more effectively.
  • the liquid passing rate per effective filtration area of the filter when filtering the organic solvent is preferably less than 0.2 mL / min ⁇ cm 2 , more preferably 0.15 mL / min ⁇ cm 2. or less, more preferably set to 0.1 mL / min ⁇ cm 2 or less, preferably 0.001 mL / min ⁇ cm 2 or more, more preferably 0.002 mL / min ⁇ cm 2 or more.
  • the effective filtration area of the filter shall be the effective filtration area of all the filters used.
  • the pressure in the step ( ⁇ ) may be appropriately set in consideration of the pore size and filtration speed of the filter to be used, but it is preferable to perform the pressure under pressure from the viewpoint of improving the filtration efficiency.
  • the applied pressure is usually 0.001 MPa or more, preferably 0.01 MPa or more, and usually 0.5 MPa or less, preferably 0.3 MPa or less.
  • the temperature in the step ( ⁇ ) may be appropriately set in consideration of the boiling point of the organic solvent to be filtered, but the upper limit of the temperature is usually 10 ° C. or more lower than the boiling point of the organic solvent, which is preferable. Is a temperature lower than 15 ° C., more preferably a temperature lower than 20 ° C.
  • the lower limit of the temperature is not particularly limited, but is usually a temperature 1 ° C. or higher higher than the freezing point of the organic solvent, preferably 2 ° C. or higher, and more preferably 5 ° C. or higher.
  • the filtrate (organic solvent after filtration) obtained by filtering the organic solvent with a filter in the step ( ⁇ ) usually has 100 or less fine particles having a particle size of 30 nm or more. Specifically, the number of fine particles having a particle size of 30 nm or more and less than 100 nm contained in the filtrate is usually 95 pieces / mL or less. The number of fine particles having a particle size of 100 nm or more contained in the filtrate is usually 5 / mL or less. The "number of fine particles" can be measured by using the method described in Examples.
  • step ( ⁇ ) the organic solvent is dehydrated using the method for dehydrating the organic solvent of the present invention.
  • an organic solvent including a step (A) of preparing a dehydration gas and a step (B) of bringing the dehydration gas prepared in the step (A) into contact with an organic solvent. Dehydrate the organic solvent using the dehydration method of.
  • a gas having a dew point of ⁇ 30 ° C. or lower is passed through the gas filter to obtain a dehydrating gas (a1), or the dew point of the gas passed through the gas filter is set to ⁇ 30 ° C. or lower.
  • the step ( ⁇ ) may include steps other than the step (A) and the step (B). Further, the step (A) may include steps other than the step (a1) and the step (a2). Then, in the step ( ⁇ ), the dew point of the dehydration gas obtained by passing a gas having a dew point of ⁇ 30 ° C. or lower through the gas filter or the gas having passed through the gas filter is adjusted to ⁇ 30 ° C. or lower. Since the dew point gas is used, the organic solvent can be dehydrated while suppressing an increase in the number of fine particles.
  • the gas having a dew point of ⁇ 30 ° C. or lower passed through the gas filter in the step (a1) and the gas passed through the gas filter in the step (a2) are not particularly limited, and are, for example, hydrogen and air.
  • Oxygen, nitrogen, helium, neon, argon, krypton, xenone, carbon monoxide and carbon dioxide can be at least one selected from the group.
  • the organic solvent can be satisfactorily dehydrated while suppressing the occurrence of side reactions.
  • the gas having a dew point of ⁇ 30 ° C. or lower passed through the gas filter in the step (a1) and the gas passed through the gas filter in the step (a2) are air, oxygen, nitrogen and helium. Alternatively, it is preferably argon.
  • the gas having a dew point of ⁇ 30 ° C. or lower can be prepared by using a known method such as cooling dehumidification or compression dehumidification.
  • the dew point of the gas passed through the gas filter in the step (a1) is preferably ⁇ 60 ° C. or lower.
  • the gas filter is not particularly limited, and a resin filter such as a polypropylene (PP) gas filter or a polytetrafluoroethylene (PTFE) gas filter may be used, or a SUS filter, a nickel filter, or the like may be used. Metal filters may be used.
  • a resin filter such as a polypropylene (PP) gas filter or a polytetrafluoroethylene (PTFE) gas filter
  • PTFE polytetrafluoroethylene
  • the minimum value (captured particle diameter) of the particle diameter at which the particle trapping rate when passing particles is 99.9% or more is preferably 0.03 ⁇ m or less, preferably 0.01 ⁇ m or less. It is more preferable that it is 0.003 ⁇ m or less.
  • the captured particle size is not more than the above upper limit value, a dehydrating gas having a small number of fine particles can be obtained, so that the organic solvent can be dehydrated while satisfactorily suppressing an increase in the number of fine particles.
  • the contact between the dehydration gas and the organic solvent in the step (B) is not particularly limited, and for example, a method of blowing (babbling) the dehydration gas into the organic solvent or an organic substance in the dehydration gas. This can be done using a method of spraying a solvent.
  • the contact between the dehydration gas and the organic solvent is preferably performed by blowing the dehydration gas into the organic solvent.
  • a dehydrator 10 as shown in FIG. 2 is used, and the dew point of the organic solvent stored in the container 1 passed through the gas filter 2 is ⁇ 30 ° C. It is preferable to dehydrate the organic solvent by diffusing the following gas as it is from the air diffuser pipe 3.
  • the temperature at which the dehydration gas and the organic solvent are brought into contact with each other is not particularly limited as long as it is equal to or higher than the freezing point of the organic solvent, but the heat of vaporization of the organic solvent causes the organic solvent to solidify and bubbling becomes impossible.
  • the freezing point is preferably + 5 ° C. or higher, and from the viewpoint of preventing excessive vaporization of the organic solvent, the boiling point of the organic solvent is preferably ⁇ 20 ° C. or lower.
  • the volume of the gas to be brought into contact with the organic solvent is not particularly limited as long as it can be dehydrated, but from the viewpoint of obtaining a sufficient dehydration effect, it is 1 times or more the volume of the organic solvent. From the viewpoint of preventing excessive vaporization of the organic solvent, it is preferably 200 times or less the volume of the organic solvent.
  • the amount of water in the dehydrated organic solvent is preferably 10 mass ppm or less, and more preferably 5 mass ppm or less.
  • the "water content” can be measured by using the method described in Examples.
  • the purified product obtained by using the method for purifying an organic solvent of the present invention contains at least an organic solvent, and may optionally further contain other components such as a phenolic antioxidant and a surfactant.
  • the number of fine particles having a particle size of 30 nm or more is preferably 100 pieces / mL or less, more preferably 95 pieces / mL or less, still more preferably 60 pieces / mL or less, and particularly preferably 30. Pieces / mL or less.
  • the number of fine particles having a particle size of 30 nm or more and less than 100 nm in the purified product is preferably 95 pieces / mL or less, more preferably 60 pieces / mL or less, and further preferably 30 pieces / mL or less. is there.
  • the number of fine particles having a particle size of 100 nm or more in the purified product is preferably 5 or less, more preferably 4 or less, and further preferably 3 or less.
  • the water content in the purified product is preferably 10 mass ppm or less, and more preferably 5 mass ppm or less.
  • the refined product Since the refined product has a reduced number of fine particles and a reduced amount of water contained in the purified product, it can be suitably used as a solvent used for manufacturing or cleaning fine semiconductors.
  • the evaluation in this example was performed by the following method.
  • Moisture content Three measurements were performed using a Karl Fischer titer (manufactured by Mitsubishi Analytical Co., Ltd., CA-200), and the average value of the three measurements was taken as the water content in the organic solvent.
  • (2) Number of fine particles The number of fine particles with a particle size of 30 nm or more contained in the organic solvent was measured three times at a temperature of 23 ° C. using an in-liquid fine particle measuring instrument (manufactured by RION, KS-19F), and 3 The average value of the measured values was taken as the number of fine particles in the organic solvent.
  • Example 1 ⁇ Making a filtration device> As a filtration device, three units in which one filter is packed in one container were prepared, and a multi-stage filtration device in which these units were connected in series in three stages was produced. As the filter packed in each unit, a filter A made of polytetrafluoroethylene (PTFE) (PFFW15C3S manufactured by Entegris, pore diameter: 15 nm, filtration area: 1300 cm 2 ) was used.
  • PTFE polytetrafluoroethylene
  • Organic solvent consisting of 1,1,2,2,3,3,4-heptafluorocyclopentane (number of fine particles with a particle size of 30 nm or more: 40,000 / mL, water content: 50% by mass ppm, boiling point: 82.5 ° C)
  • the above-mentioned 1,1,2,2,3,3,4-heptafluorocyclopentane was heated to 30 ° C. in a high-purity argon atmosphere after being placed in a pressurized container and heated to 30 ° C.
  • the mixture was filtered under a pressure of 0.02 MPa at a filtration rate of 130 mL / min to obtain a filtrate (organic solvent after filtration).
  • ⁇ Process ( ⁇ )> In a class 100 clean room, connect a pressure reducing valve, float type flow meter, and gas filter (Entegris, WGMS02PRU, trapped particle size: 0.003 ⁇ m) from the upstream side with a stainless steel pipe, and 1/8 at the end of the pipe. A gas line was made by connecting inch PFA tubes.
  • nitrogen gas with a dew point of -60 ° C generated by the cold evaporator was adjusted to a pressure of 0.08 MPa by a pressure reducing valve so that the measured value of the float type flow meter was 2 L / min. It was circulated for 30 minutes.
  • 1.5 kg of the filtrate obtained in the step ( ⁇ ) was placed in a brown bottle that had been dried after de-alkali treatment and ultrapure water washing, and heated to 30 ° C.
  • a 1/8 inch PFA tube was inserted into a brown bottle, and nitrogen gas having a dew point of ⁇ 60 ° C. was bubbled from the bottom at a temperature of 30 ° C.
  • step ( ⁇ ) a filtration device was prepared in the same manner as in Example 1 except that argon gas (dew point: -80 ° C) filled in an argon cylinder was used instead of nitrogen gas having a dew point of -60 ° C. ( ⁇ ) and step ( ⁇ ) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • step ( ⁇ ) the same as in Example 1 except that compressed air controlled at a dew point of -30 ° C was used instead of nitrogen gas having a dew point of -60 ° C, preparation of a filtration device, step ( ⁇ ) and step. ( ⁇ ) was carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • step ( ⁇ ) a filtration device was prepared in the same manner as in Example 1 except that helium gas (dew point: -80 ° C) filled in a helium cylinder was used instead of nitrogen gas having a dew point of -60 ° C. ( ⁇ ) and step ( ⁇ ) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • step ( ⁇ ) a filtration device was prepared in the same manner as in Example 1 except that oxygen gas filled in an oxygen cylinder (dew point: -80 ° C) was used instead of nitrogen gas having a dew point of -60 ° C. ( ⁇ ) and step ( ⁇ ) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A filtration device was prepared in the same manner as in Example 1 except that a gas filter (manufactured by Entegris, WGMS02PRU, trapped particle size: 0.003 ⁇ m) was not used when the gas line was prepared in the step ( ⁇ ). ⁇ ) and step ( ⁇ ) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 A filtration device was prepared in the same manner as in Example 2 except that a gas filter (manufactured by Entegris, WGMS02PRU, trapped particle size: 0.003 ⁇ m) was not used when the gas line was prepared in the step ( ⁇ ). ⁇ ) and step ( ⁇ ) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • step ( ⁇ ) the same as in Comparative Example 1 except that compressed air controlled at a dew point of 0 ° C. was used instead of nitrogen gas having a dew point of -60 ° C. ⁇ ) was carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • step ( ⁇ ) the fabrication of the filtration device, step ( ⁇ ) and step ( ⁇ ) were carried out in the same manner as in Example 1 except that nitrogen gas having a dew point of 0 ° C was used instead of nitrogen gas having a dew point of -60 ° C. This was done to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • ⁇ Process ( ⁇ ')> In a class 100 clean room, the filtrate obtained in step ( ⁇ ) and the molecular sheave 5A as a dehydrating agent were added to the brown bottle dried after de-alkali treatment and ultrapure water cleaning. The mixture was added so that the concentration was 10% by mass, and the mixture was shaken at a temperature of 25 ° C. for 24 hours. Then, 1,1,2,2,3,3,4-heptafluorocyclopentane as a purified product was sampled from the brown bottle, and the water content and the number of fine particles were measured. The water content of the purified product was 1 mass ppm. In addition, the purified product was turbid, and the number of fine particles could not be measured (exceeding the upper limit of measurement).
  • ⁇ Process ( ⁇ ')> A filtrate obtained in step ( ⁇ ) is passed through a packing tower filled with a molecular sieve 5A as a dehydrating agent in a class 100 clean room under the conditions of a temperature of 25 ° C. and a liquid space velocity (LHSV) of 5h -1.
  • LHSV liquid space velocity
  • 1,1,2,2,3,3,4-heptafluorocyclopentane as a purified product was obtained.
  • the water content and the number of fine particles of the purified product were measured.
  • the water content of the purified product was 1 mass ppm, and the number of fine particles could not be measured (exceeding the upper limit of measurement).
  • the organic solvent can be dehydrated while suppressing an increase in the number of fine particles. Further, according to the method for purifying an organic solvent of the present invention, it is possible to obtain a purified product in which both the water content and the number of fine particles are satisfactorily reduced.

Abstract

The present invention provides a method for dehydrating an organic solvent, while suppressing an increase in the number of fine particles. A method for dehydrating an organic solvent according to the present invention comprises: a step (A) wherein a gas for dehydration is prepared; and a step (B) wherein the gas for dehydration, which has been prepared in the step (A), is brought into contact with an organic solvent. The step (A) comprises: a step (a1) wherein a gas for dehydration is obtained by having a gas, which has a dew point of -30°C or less, permeate through a gas filter; or a step (a2) wherein a gas for dehydration is obtained by adjusting the dew point of a gas, which has been caused to permeate through a gas filter, to -30°C or less.

Description

有機溶剤の脱水方法および有機溶剤の精製方法Dehydration method of organic solvent and purification method of organic solvent
 本発明は、有機溶剤の脱水方法および有機溶剤の精製方法に関し、特には、気液接触を用いた有機溶剤の脱水方法および当該脱水方法を用いた有機溶剤の精製方法に関するものである。 The present invention relates to a method for dehydrating an organic solvent and a method for purifying an organic solvent, and more particularly to a method for dehydrating an organic solvent using gas-liquid contact and a method for purifying an organic solvent using the dehydration method.
 従来、有機溶剤などの液体中に含まれている水分を除去する方法として、モレキュラーシーブなどの水分吸着剤に接触させることにより乾燥させた不活性ガスを液体中に吹き込み、液体中の水分を不活性ガスに帯同させて除去する方法が知られている(例えば、特許文献1参照)。 Conventionally, as a method of removing water contained in a liquid such as an organic solvent, an inert gas dried by contacting with a water adsorbent such as a molecular sieve is blown into the liquid to eliminate the water in the liquid. A method of removing the active gas together with the active gas is known (see, for example, Patent Document 1).
特公昭52-4269号公報Special Publication No. 52-4269
 ここで、例えば半導体デバイスの製造や洗浄に用いられる有機溶剤などでは、水分や微粒子等の不純物を低減することが求められている。 Here, for example, in an organic solvent used for manufacturing or cleaning a semiconductor device, it is required to reduce impurities such as water and fine particles.
 しかし、乾燥させたガスをそのまま吹き込んで液体中の水分を除去する上記従来の脱水方法には、脱水後の液体中に含まれている微粒子の量が増加してしまうという問題があった。 However, the above-mentioned conventional dehydration method in which the dried gas is blown as it is to remove the water in the liquid has a problem that the amount of fine particles contained in the dehydrated liquid increases.
 そこで、本発明は、微粒子数の増加を抑制しつつ有機溶剤を脱水する方法を提供することを目的とする。
 また、本発明は、水分量および微粒子数の双方を良好に低減可能な有機溶剤の精製方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for dehydrating an organic solvent while suppressing an increase in the number of fine particles.
Another object of the present invention is to provide a method for purifying an organic solvent capable of satisfactorily reducing both the amount of water and the number of fine particles.
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の有機溶剤の脱水方法は、脱水用ガスを準備する工程(A)と、前記脱水用ガスと、有機溶剤とを接触させる工程(B)とを含み、前記工程(A)が、露点が-30℃以下のガスをガスフィルターに通過させて脱水用ガスを得る工程(a1)、または、ガスフィルターを通過させたガスの露点を-30℃以下に調整して脱水用ガスを得る工程(a2)を含むことを特徴とする。このように、露点が-30℃以下のガスをガスフィルターに通過させて得た脱水用ガス、または、ガスフィルターを通過させたガスの露点を-30℃以下に調整して得た脱水用ガスを使用すれば、微粒子数の増加を抑制しつつ有機溶剤を脱水することができる。
 なお、本発明において、「露点」とは、フーリエ変換赤外分光法(FT-IR)を用いて測定した水分量から求めた大気圧下露点を指す。
An object of the present invention is to advantageously solve the above problems, and the method for dehydrating an organic solvent of the present invention includes a step (A) of preparing a dehydration gas, the dehydration gas, and an organic solvent. Including the step (B) of contacting with, the step (A) is a step (a1) of passing a gas having a dew point of −30 ° C. or lower through a gas filter to obtain a gas for dehydration, or passing through a gas filter. It is characterized by including a step (a2) of adjusting the dew point of the gas to obtain a dehydrating gas by adjusting the dew point to −30 ° C. or lower. As described above, the dehydration gas obtained by passing a gas having a dew point of −30 ° C. or lower through the gas filter, or the dehydration gas obtained by adjusting the dew point of the gas passed through the gas filter to −30 ° C. or lower. Can be used to dehydrate the organic solvent while suppressing an increase in the number of fine particles.
In the present invention, the "dew point" refers to the dew point under atmospheric pressure obtained from the amount of water measured by Fourier transform infrared spectroscopy (FT-IR).
 ここで、前記有機溶剤は、炭化水素類、アルコール類、エーテル類、ケトン類、アミド類、エステル類、ニトリル類、ハイドロフルオロカーボン類、ハイドロフルオロエーテル類、パーフルオロカーボン類およびハイドロフルオロオレフィン類からなる群より選択される少なくとも1種の溶剤を含み得る。 Here, the organic solvent is a group consisting of hydrocarbons, alcohols, ethers, ketones, amides, esters, nitriles, hydrofluorocarbons, hydrofluoroethers, perfluorocarbons and hydrofluoroolefins. It may contain at least one solvent of choice.
 中でも、前記有機溶剤は、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを含むことが好ましい。1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを含む有機溶剤は、半導体デバイスの製造や洗浄に有利に使用し得る。 Among them, the organic solvent preferably contains 1,1,2,2,3,3,4-heptafluorocyclopentane. Organic solvents containing 1,1,2,2,3,3,4-heptafluorocyclopentane can be advantageously used in the manufacture and cleaning of semiconductor devices.
 また、前記有機溶剤は、共沸組成物であってもよい。 Further, the organic solvent may be an azeotropic composition.
 そして、前記有機溶剤は、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンと、tert-アミルアルコールとの混合物であることが好ましい。1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンと、tert-アミルアルコールとの混合物は、半導体デバイスの製造や洗浄に有利に使用し得る。 The organic solvent is preferably a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol. Mixtures of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol can be advantageously used in the manufacture and cleaning of semiconductor devices.
 更に、前記ガスは、水素、空気、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、一酸化炭素および二酸化炭素からなる群より選択される少なくとも1種よりなることが好ましい。これらのガスを使用すれば、副反応の発生を抑制しつつ有機溶剤を良好に脱水することができる。 Further, the gas preferably comprises at least one selected from the group consisting of hydrogen, air, oxygen, nitrogen, helium, neon, argon, krypton, xenon, carbon monoxide and carbon dioxide. By using these gases, the organic solvent can be satisfactorily dehydrated while suppressing the occurrence of side reactions.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の有機溶剤の精製方法は、有機溶剤をフィルターでろ過する工程(α)と、上述した有機溶剤の脱水方法の何れかを用いて有機溶剤を脱水する工程(β)とを含むことを特徴とする。工程(α)および工程(β)を実施すれば、有機溶剤から水分および微粒子の双方を良好に除去して水分量および微粒子数が低減された有機溶剤よりなる精製物を得ることができる。 Further, the present invention aims to advantageously solve the above problems, and the method for purifying an organic solvent of the present invention includes a step (α) of filtering an organic solvent with a filter and the above-mentioned organic solvent. It is characterized by including a step (β) of dehydrating an organic solvent by using any of the dehydration methods. By carrying out step (α) and step (β), it is possible to obtain a purified product made of an organic solvent in which both water content and fine particles are satisfactorily removed from the organic solvent and the water content and the number of fine particles are reduced.
 ここで、本発明の有機溶剤の精製方法において、前記工程(β)では、前記工程(α)でろ過された有機溶剤を脱水することが好ましい。工程(α)の後に工程(β)を実施すれば、ろ過中に水分が混入するのを抑制することができる。なお、本発明の有機溶剤の精製方法では、工程(β)において上述した本発明の有機溶剤の脱水方法を用いて有機溶剤を脱水しているので、工程(α)の後に工程(β)を実施した場合であっても、微粒子数が十分に低減された精製物を得ることができる。 Here, in the method for purifying an organic solvent of the present invention, in the step (β), it is preferable to dehydrate the organic solvent filtered in the step (α). If the step (β) is carried out after the step (α), it is possible to suppress the mixing of water during the filtration. In the method for purifying an organic solvent of the present invention, since the organic solvent is dehydrated using the method for dehydrating the organic solvent of the present invention described above in the step (β), the step (β) is performed after the step (α). Even when this is carried out, a purified product having a sufficiently reduced number of fine particles can be obtained.
 本発明の有機溶剤の脱水方法によれば、微粒子数の増加を抑制しつつ有機溶剤を脱水することができる。
 また、本発明の有機溶剤の精製方法によれば、水分量および微粒子数の双方を良好に低減した精製物を得ることができる。
According to the method for dehydrating an organic solvent of the present invention, the organic solvent can be dehydrated while suppressing an increase in the number of fine particles.
Further, according to the method for purifying an organic solvent of the present invention, it is possible to obtain a purified product in which both the water content and the number of fine particles are satisfactorily reduced.
(a)は、本発明の有機溶剤の精製方法の一例のフローを示す図であり、(b)は、本発明の有機溶剤の精製方法の他の例のフローを示す図である。(A) is a diagram showing a flow of an example of the method for purifying an organic solvent of the present invention, and (b) is a diagram showing a flow of another example of the method for purifying an organic solvent of the present invention. 有機溶剤の脱水に使用し得る脱水装置の一例の概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of an example of the dehydration apparatus which can be used for dehydration of an organic solvent.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の有機溶剤の脱水方法は、有機溶剤を脱水する際に用いることができる。また、本発明の有機溶剤の精製方法は、本発明の有機溶剤の脱水方法を用いて有機溶剤を脱水する工程を含むものであり、有機溶剤から水分および微粒子の双方を除去して水分量および微粒子数が低減された有機溶剤よりなる精製物を得る際に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the method for dehydrating an organic solvent of the present invention can be used when dehydrating an organic solvent. Further, the method for purifying an organic solvent of the present invention includes a step of dehydrating the organic solvent using the method for dehydrating the organic solvent of the present invention, and removes both water and fine particles from the organic solvent to obtain the amount of water and the amount of water. It can be used to obtain a purified product made of an organic solvent having a reduced number of fine particles.
(有機溶剤の精製方法)
 本発明の有機溶剤の精製方法は、有機溶剤をフィルターでろ過する工程(α)と、本発明の有機溶剤の脱水方法を用いて有機溶剤を脱水する工程(β)とを含み、任意に、工程(α)の前に前処理工程(γ)を更に含み得る。
(Method for purifying organic solvent)
The method for purifying an organic solvent of the present invention includes a step of filtering the organic solvent with a filter (α) and a step of dehydrating the organic solvent using the method of dehydrating the organic solvent of the present invention (β). A pretreatment step (γ) may be further included before the step (α).
 そして、本発明の有機溶剤の精製方法では、工程(α)において有機溶剤をフィルターでろ過しているので、有機溶剤から微粒子を除去することができる。また、本発明の有機溶剤の精製方法では、工程(β)において本発明の有機溶剤の脱水方法を用いて有機溶剤を脱水しているので、後に詳細に説明するように脱水操作に起因して微粒子数が増加するのを抑制しつつ有機溶剤を脱水することができる。従って、本発明の有機溶剤の精製方法によれば、水分量および微粒子数が良好に低減された有機溶剤よりなる精製物を得ることができる。 Then, in the method for purifying an organic solvent of the present invention, since the organic solvent is filtered by a filter in the step (α), fine particles can be removed from the organic solvent. Further, in the method for purifying an organic solvent of the present invention, the organic solvent is dehydrated using the method for dehydrating the organic solvent of the present invention in step (β), and therefore, as will be described in detail later, due to the dehydration operation. The organic solvent can be dehydrated while suppressing an increase in the number of fine particles. Therefore, according to the method for purifying an organic solvent of the present invention, it is possible to obtain a purified product made of an organic solvent in which the water content and the number of fine particles are satisfactorily reduced.
 なお、工程(α)と工程(β)とは、何れを先に実施してもよいが、工程(α)を先に実施することが好ましい。図1(b)に示すように工程(β)を先に実施した場合、脱水後の有機溶剤をフィルターでろ過する際に周囲雰囲気等から有機溶剤中に水分が混入する可能性がある。しかし、図1(a)に示すように工程(α)を先に実施し、工程(α)でろ過された有機溶剤を脱水すれば、得られる精製物中の水分量を十分に低減することができる。また、工程(β)では、微粒子数が増加するのを抑制しつつ有機溶剤を脱水することができるので、工程(α)を先に実施した場合であっても、水分量および微粒子数が十分に低減された有機溶剤よりなる精製物を得ることができる。 The step (α) and the step (β) may be carried out first, but it is preferable to carry out the step (α) first. When the step (β) is carried out first as shown in FIG. 1 (b), there is a possibility that water may be mixed into the organic solvent due to the ambient atmosphere or the like when the dehydrated organic solvent is filtered by a filter. However, as shown in FIG. 1A, if the step (α) is carried out first and the organic solvent filtered in the step (α) is dehydrated, the amount of water in the obtained purified product can be sufficiently reduced. Can be done. Further, in the step (β), the organic solvent can be dehydrated while suppressing the increase in the number of fine particles, so that the water content and the number of fine particles are sufficient even when the step (α) is carried out first. A purified product made of an organic solvent reduced to a large amount can be obtained.
<有機溶剤>
 ここで、本発明の有機溶剤の精製方法で精製される有機溶剤としては、特に限定されることなく、例えば、ヘキサン、シクロヘキサン、オクタン、デカン等の炭化水素類;ブタノール、イソプロパノール、2-ブタノール、メチルブタノール、プロパノール、ヘプタノール、ヘキサノール、デカノール、ノナノール等の脂肪族アルコール類やベンジルアルコール、メチルベンジルアルコール、エチルベンジルアルコール、メトキシベンジルアルコール、エトキシベンジルアルコール、ヒドロキシベンジルアルコール、3-フェニルプロパノール、クミルアルコール、フルフリルアルコール、フェネチルアルコール、メトキシフェネチルアルコール、エトキシフェネチルアルコール等の芳香族アルコール類等のアルコール類;ジブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;メチルエチルケトン、アセチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン等のケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類;酢酸ブチル、酢酸イソプロピル、プロピオン酸ブチル、カプロン酸メチル、カプロン酸ブチル等のエステル類;アクリロニトリル、メタクリロニトリル、アセトニトリル等のニトリル類;式:Cnm2n+2-m〔式中、nは4以上6以下の整数であり、mは1以上の整数である〕で表される化合物(例えば、1,1,1,3,3-ペンタフルオロブタン)、式:Cnm2n-m〔式中、nは4以上6以下の整数であり、mは1以上の整数である〕で表される化合物(例えば、1,1,2,2,3-ペンタフルオロシクロブタン、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,2,2,3,3,4,4,5-ノナフルオロシクロシクロヘキサン)等のハイドロフルオロカーボン類;メチルパーフルオロブチルエーテル、メチルパーフルオロイソブチルエーテル、メチルパーフルオロペンチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル等のハイドロフルオロエーテル類;パーフルオロシクロヘキサン、パーフルオロメチルシクロヘキサン等のパーフルオロカーボン類;1-クロロ-3,3,3-トリフルオロプロペン等のハイドロフルオロオレフィン類;プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、3-メトキシ-3-メチルブタノール等のグリコールエーテル類;3-メトキシ-3-メチルブチルアセテート等のグリコールエーテルアセテート類;炭酸ジメチル、炭酸ジエチル、炭酸プロピル等の炭酸エステル類;並びに、γ-ブチルラクトン等のラクトン類が挙げられる。
 なお、上述した有機溶剤は、1種単独で、または、2種以上を混合して用いることができる。
<Organic solvent>
Here, the organic solvent purified by the method for purifying the organic solvent of the present invention is not particularly limited, and for example, hydrocarbons such as hexane, cyclohexane, octane, and decane; butanol, isopropanol, 2-butanol, Aliper alcohols such as methylbutanol, propanol, heptanol, hexanol, decanol, nonanol, benzyl alcohol, methylbenzyl alcohol, ethylbenzyl alcohol, methoxybenzyl alcohol, ethoxybenzyl alcohol, hydroxybenzyl alcohol, 3-phenylpropanol, cumyl alcohol , Alcohols such as furfuryl alcohol, phenethyl alcohol, methoxyphenethyl alcohol, ethoxyphenethyl alcohol and other aromatic alcohols; ethers such as dibutyl ether and cyclopentyl methyl ether; methyl ethyl ketone, acetyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopenta Non-ketones such as non-ketones; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone; butyl acetate, isopropyl acetate, butyl propionate, methyl caproate, butyl caproate, etc. Esters; nitriles such as acrylonitrile, methacrylonitrile, acetonitrile; formula: C n H m F 2n + 2-m [In the formula, n is an integer of 4 or more and 6 or less, and m is an integer of 1 or more. A compound represented by [for example, 1,1,1,3,3-pentafluorobutane], formula: C n H m F 2n-m [in the formula, n is an integer of 4 or more and 6 or less. m is an integer greater than or equal to 1] (eg, 1,1,2,2,3-pentafluorocyclobutane, 1,1,2,2,3,3,4-heptafluorocyclopentane, Hydrofluorocarbons such as 1,1,2,2,3,3,4,5-nonafluorocyclocyclohexane); methylperfluorobutyl ether, methylperfluoroisobutyl ether, methylperfluoropentyl ether, ethylperfluorobutyl ether , Hydrofluoroethers such as ethyl perfluoroisobutyl ether; perfluorocarbons such as perfluorocyclohexane and perfluoromethylcyclohexane; hydrofluoroolefins such as 1-chloro-3,3,3-trifluoropropene; propylene glycol monomethyl Ete Glycol ethers such as dipropylene glycol monobutyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, 3-methoxy-3-methylbutanol; 3-methoxy-3-methylbutyl acetate Glycol ether acetates such as dimethyl carbonate, diethyl carbonate, propyl carbonate and the like; and lactones such as γ-butyl lactone.
The above-mentioned organic solvent may be used alone or in combination of two or more.
 中でも、有機溶剤は、炭化水素類、アルコール類、エーテル類、ケトン類、アミド類、エステル類、ニトリル類、ハイドロフルオロカーボン類、ハイドロフルオロエーテル類、パーフルオロカーボン類およびハイドロフルオロオレフィン類からなる群より選択される少なくとも1種の溶剤を含むことが好ましく、フッ素原子を含有する溶剤(フッ素系溶剤)を含むことがより好ましく、ハイドロフルオロカーボン類を含むことが更に好ましく、環状のハイドロフルオロカーボン類を含むことが一層好ましく、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを含むことが特に好ましい。ハイドロフルオロカーボン類は、不燃性であり、水存在下での安定性に優れ、低毒性であり、オゾン破壊係数がゼロだからである。また、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンは、溶剤として取り扱うのに適度な沸点を有していると共に、半導体デバイスの製造や洗浄に有利に使用し得るからである。 Among them, the organic solvent is selected from the group consisting of hydrocarbons, alcohols, ethers, ketones, amides, esters, nitriles, hydrofluorocarbons, hydrofluoroethers, perfluorocarbons and hydrofluoroolefins. It is preferable to contain at least one solvent, more preferably a solvent containing a fluorine atom (fluorine-based solvent), further preferably containing hydrofluorocarbons, and further preferably containing cyclic hydrofluorocarbons. More preferably, it contains 1,1,2,2,3,3,4-heptafluorocyclopentane. This is because hydrofluorocarbons are nonflammable, have excellent stability in the presence of water, have low toxicity, and have an ozone depletion potential of zero. Further, 1,1,2,2,3,3,4-heptafluorocyclopentane has an appropriate boiling point for handling as a solvent, and can be advantageously used for manufacturing and cleaning semiconductor devices. Is.
 また、有機溶剤は、共沸組成物であってもよい。
 そして、半導体デバイスの製造や洗浄に有利に使用することができ、且つ、共沸組成物を形成し易い観点からは、有機溶剤は、フッ素系溶剤と、炭素数5以下のアルコールとの混合物であることが好ましく、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンと、tert-アミルアルコール、ベンジルアルコールおよびフェネチルアルコールからなる群より選択される少なくとも1種との混合物であることがより好ましく、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンと、tert-アミルアルコールとの混合物であることが更に好ましい。
Moreover, the organic solvent may be an azeotropic composition.
From the viewpoint that it can be advantageously used for manufacturing and cleaning semiconductor devices and that an azeotropic composition can be easily formed, the organic solvent is a mixture of a fluorine-based solvent and an alcohol having 5 or less carbon atoms. It is preferably a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and at least one selected from the group consisting of tert-amyl alcohol, benzyl alcohol and phenethyl alcohol. More preferably, it is a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol.
 なお、有機溶剤は、フェノール系酸化防止剤や界面活性剤などの添加剤を含有していてもよい。 The organic solvent may contain additives such as phenolic antioxidants and surfactants.
〔フェノール系酸化防止剤〕
 ここで、有機溶剤に任意に含まれ得るフェノール系酸化防止剤としては、特に限定されることなく、例えば、フェノール、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール、ブチルヒドロキシルアニソール等を挙げることができる。これらの中でも、本発明の有機溶剤の精製方法によって得られる精製物に高い酸化防止効果を付与できる観点から、フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾールが好ましい。
 なお、上述したフェノール系酸化防止剤は、1種単独で、または、2種以上を混合して用いることができる。
 そして、有機溶剤中のフェノール系酸化防止剤の濃度は、例えば1質量%以上5質量%以下とすることができる。
[Phenolic antioxidant]
Here, the phenolic antioxidant that can be arbitrarily contained in the organic solvent is not particularly limited, and is, for example, phenol, 2,6-di-t-butylphenol, 2,6-di-t-butyl-. Examples thereof include p-cresol and butyl hydroxylanisole. Among these, 2,6-di-t-butyl-p-cresol is a phenolic antioxidant from the viewpoint of imparting a high antioxidant effect to the purified product obtained by the method for purifying an organic solvent of the present invention. preferable.
The above-mentioned phenolic antioxidant may be used alone or in combination of two or more.
The concentration of the phenolic antioxidant in the organic solvent can be, for example, 1% by mass or more and 5% by mass or less.
〔界面活性剤〕
 また、有機溶剤に任意に含まれ得る界面活性剤としては、特に限定されないが、本発明の有機溶剤の精製方法によって得られる精製物に優れた洗浄性を容易に付与できるという観点から、非イオン性界面活性剤が好ましい。
 なお、有機溶剤中の界面活性剤の濃度は、例えば1質量%以上5質量%以下とすることができる。
[Surfactant]
The surfactant that can be arbitrarily contained in the organic solvent is not particularly limited, but is nonionic from the viewpoint that excellent detergency can be easily imparted to the purified product obtained by the method for purifying the organic solvent of the present invention. Sexual surfactants are preferred.
The concentration of the surfactant in the organic solvent can be, for example, 1% by mass or more and 5% by mass or less.
 そして、有機溶剤、並びに、任意成分であるフェノール系酸化防止剤および界面活性剤の割合は、本発明の有機溶剤の精製方法によって得られる精製物の使用目的等に応じて適宜設定し得る。 Then, the ratio of the organic solvent and the phenolic antioxidant and the surfactant which are optional components can be appropriately set according to the purpose of use of the purified product obtained by the method for purifying the organic solvent of the present invention.
<前処理工程(γ)>
 ここで、工程(α)の前に任意に実施し得る前処理工程(γ)では、例えば、工程(α)においてろ過される有機溶剤中に含まれる粗大粒子を除去する。工程(α)の前に前処理工程(γ)を行うことで、工程(α)で使用するフィルターが粗大粒子によって目詰まりしたり、フィルターの寿命が低下したりするのを防ぐことができる。
<Pretreatment process (γ)>
Here, in the pretreatment step (γ) which can be arbitrarily performed before the step (α), for example, the coarse particles contained in the organic solvent filtered in the step (α) are removed. By performing the pretreatment step (γ) before the step (α), it is possible to prevent the filter used in the step (α) from being clogged by coarse particles and the life of the filter from being shortened.
 ここで、前処理工程(γ)において有機溶剤中の粗大粒子を除去する方法は、特に限定されず、例えば、任意の目開きを有する前処理用フィルター等のろ過材を用いて有機溶剤をろ過する方法等が挙げられる。その際、任意の圧力下において加圧ろ過、または減圧ろ過を行ってもよい。 Here, the method for removing the coarse particles in the organic solvent in the pretreatment step (γ) is not particularly limited, and for example, the organic solvent is filtered using a filter material such as a pretreatment filter having an arbitrary opening. The method of doing this can be mentioned. At that time, pressure filtration or pressure filtration may be performed under any pressure.
 なお、本発明の有機溶剤の精製方法において工程(β)を工程(α)の前に実施する場合、前処理工程(γ)は、工程(β)の前に実施してもよいし、工程(β)と工程(α)との間に実施してもよい。 When the step (β) is carried out before the step (α) in the method for purifying an organic solvent of the present invention, the pretreatment step (γ) may be carried out before the step (β). It may be carried out between (β) and step (α).
<工程(α)>
 そして、工程(α)では、フィルターを用いて有機溶剤をろ過する。なお、有機溶剤は、空気中でろ過してもよく、例えば、アルゴン雰囲気下、窒素雰囲気下などの不活性ガス雰囲気下でろ過してもよい。また、ろ過は、一般的な液体のろ過装置を用いて行ってもよいし、薬液供給装置などの工業ライン上で薬液としての有機溶剤が通過する箇所にフィルターを設置することにより行ってもよいし、フィルターを容器に詰めてなるユニットを直列接続して多段で行ってもよい。
<Process (α)>
Then, in the step (α), the organic solvent is filtered using a filter. The organic solvent may be filtered in air, or may be filtered in an inert gas atmosphere such as an argon atmosphere or a nitrogen atmosphere. Further, the filtration may be performed using a general liquid filtration device, or may be performed by installing a filter on an industrial line such as a chemical solution supply device where an organic solvent as a chemical solution passes. Then, the units in which the filters are packed in a container may be connected in series and performed in multiple stages.
〔フィルター〕
 ここで、フィルターでろ過する有機溶剤は、通常、微粒子を含むものである。
 そして、工程(α)で使用するフィルターは、少なくとも微粒子を有機溶剤から分離可能なものであれば、特に限定されることなく、有機材料からなるフィルターであっても無機材料からなるフィルターであってもよいが、有機材料からなるフィルターであることが好ましい。
〔filter〕
Here, the organic solvent filtered by the filter usually contains fine particles.
The filter used in the step (α) is not particularly limited as long as it can separate at least fine particles from the organic solvent, and even if it is a filter made of an organic material, it is a filter made of an inorganic material. Although it may be used, a filter made of an organic material is preferable.
 中でも、有機溶剤がフッ素系溶剤を含む場合には、微粒子を良好に分離する観点から、フィルターとしては、フッ素原子を含む材料からなるフィルターを用いることが好ましい。 Among them, when the organic solvent contains a fluorine-based solvent, it is preferable to use a filter made of a material containing a fluorine atom as the filter from the viewpoint of separating fine particles well.
 そして、フッ素原子を含む材料としては、特に限定されることなく、例えば、テトラフルオロエチレン単位、クロロトリフルオロエチレン単位、フッ化ビニリデン単位、パーフルオロアルキルビニルエーテル単位およびヘキサフルオロプロピレン単位からなる群から選択される少なくとも1種のフッ素含有単量体単位を含む重合体が好ましい。
 なお、上記重合体は、任意に、フッ素非含有単量体単位を含み得る。そして、フッ素非含有単量体単位としては、特に限定されることなく、例えば、エチレン単位、プロピレン単位等が挙げられる。
 ここで、本明細書において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
The material containing a fluorine atom is not particularly limited, and is selected from the group consisting of, for example, tetrafluoroethylene unit, chlorotrifluoroethylene unit, vinylidene fluoride unit, perfluoroalkyl vinyl ether unit and hexafluoropropylene unit. A polymer containing at least one fluorine-containing monomer unit is preferable.
The polymer may optionally contain a fluorine-free monomer unit. The fluorine-free monomer unit is not particularly limited, and examples thereof include an ethylene unit and a propylene unit.
Here, in the present specification, "containing a monomer unit" means that "a polymer obtained by using the monomer contains a repeating unit derived from the monomer".
 なお、上記重合体中、フッ素含有単量体単位の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%、即ち、フッ素原子を含む材料は、フッ素含有単量体の単独重合体であることが更に好ましい。ここで、重合体に含まれる各単量体単位の含有割合は、例えば1H-NMR、19F-NMRを測定することによって求めることができる。 The proportion of the fluorine-containing monomer unit in the polymer is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass, that is, the material containing a fluorine atom. , It is more preferable that it is a homopolymer of a fluorine-containing monomer. Here, the content ratio of each monomer unit contained in the polymer can be determined, for example, by measuring 1 1 H-NMR and 19 F-NMR.
 そして、上述した重合体としては、特に限定されることなく、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、エチレン・テトラフルオロエチレン共重合体、クロロトリフルオロエチレン・エチレン共重合体等が挙げられる。中でも、重合体は、ポリテトラフルオロエチレンであることが最も好ましい。 The above-mentioned polymer is not particularly limited, and for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexa. Examples thereof include fluoropropylene copolymers, ethylene / tetrafluoroethylene copolymers, and chlorotrifluoroethylene / ethylene copolymers. Among them, the polymer is most preferably polytetrafluoroethylene.
 また、フィルターの孔径は、30nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることが更に好ましく、また、0.1nm以上であることが好ましく、0.2nm以上であることがより好ましく、0.5nm以上であることが更に好ましい。フィルターの孔径が30nm以下であれば、有機溶剤中に含まれる粒径30nm以上の微粒子がフィルターによって除去されるため、微粒子が低減された精製物を更に効果的に得ることができる。 The pore size of the filter is preferably 30 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, and preferably 0.1 nm or more, preferably 0.2 nm or more. It is more preferably present, and more preferably 0.5 nm or more. When the pore size of the filter is 30 nm or less, fine particles having a particle size of 30 nm or more contained in the organic solvent are removed by the filter, so that a purified product having reduced fine particles can be obtained more effectively.
〔ろ過条件〕
 そして、工程(α)において、有機溶剤をろ過する際のフィルターの有効ろ過面積あたりの通液速度は、好ましくは0.2mL/分・cm2未満、より好ましくは0.15mL/分・cm2以下、更に好ましくは0.1mL/分・cm2以下とし、また、好ましくは0.001mL/分・cm2以上、より好ましくは0.002mL/分・cm2以上とする。フィルターの有効ろ過面積あたりの有機溶剤の通液速度を0.2mL/分・cm2未満とすることで、精製物中の微粒子を十分に低減することができる。なお、フィルターを容器に詰めてなるユニットを直列接続して多段でろ過する場合には、フィルターの有効ろ過面積は、使用する全フィルターの有効ろ過面積とする。
[Filtration conditions]
Then, in the step (α), the liquid passing rate per effective filtration area of the filter when filtering the organic solvent is preferably less than 0.2 mL / min · cm 2 , more preferably 0.15 mL / min · cm 2. or less, more preferably set to 0.1 mL / min · cm 2 or less, preferably 0.001 mL / min · cm 2 or more, more preferably 0.002 mL / min · cm 2 or more. By setting the flow rate of the organic solvent per effective filtration area of the filter to less than 0.2 mL / min · cm 2 , fine particles in the purified product can be sufficiently reduced. When the units in which the filters are packed in a container are connected in series and filtered in multiple stages, the effective filtration area of the filter shall be the effective filtration area of all the filters used.
 また、工程(α)における圧力は、用いるフィルターの孔径やろ過速度などを考慮して適宜設定すればよいが、ろ過効率を向上させる観点から、加圧下にて行うことが好ましい。その際、加える圧力は、通常0.001MPa以上であり、好ましくは0.01MPa以上であり、また、通常は0.5MPa以下であり、好ましくは0.3MPa以下である。 Further, the pressure in the step (α) may be appropriately set in consideration of the pore size and filtration speed of the filter to be used, but it is preferable to perform the pressure under pressure from the viewpoint of improving the filtration efficiency. At that time, the applied pressure is usually 0.001 MPa or more, preferably 0.01 MPa or more, and usually 0.5 MPa or less, preferably 0.3 MPa or less.
 また、工程(α)における温度は、ろ過する有機溶剤の沸点を考慮して適宜設定すればよいが、温度の上限は、通常は、有機溶剤の沸点よりも10℃以上低い温度であり、好ましくは15℃以上低い温度であり、より好ましくは20℃以上低い温度である。また、温度の下限は、特に限定されないが、通常は、有機溶剤の凝固点よりも1℃以上高い温度であり、好ましくは2℃以上高い温度であり、より好ましくは5℃以上高い温度である。 The temperature in the step (α) may be appropriately set in consideration of the boiling point of the organic solvent to be filtered, but the upper limit of the temperature is usually 10 ° C. or more lower than the boiling point of the organic solvent, which is preferable. Is a temperature lower than 15 ° C., more preferably a temperature lower than 20 ° C. The lower limit of the temperature is not particularly limited, but is usually a temperature 1 ° C. or higher higher than the freezing point of the organic solvent, preferably 2 ° C. or higher, and more preferably 5 ° C. or higher.
〔ろ液の性状〕
 工程(α)において有機溶剤をフィルターでろ過して得られるろ液(ろ過後の有機溶剤)は、粒径30nm以上の微粒子数が、通常、100個/mL以下である。具体的には、当該ろ液中に含まれる粒径30nm以上100nm未満の微粒子の数は、通常、95個/mL以下である。また、ろ液中に含まれる粒径100nm以上の微粒子の数は、通常5個/mL以下である。
 なお、「微粒子数」は実施例に記載の方法を用いて測定することができる。
[Characteristics of filtrate]
The filtrate (organic solvent after filtration) obtained by filtering the organic solvent with a filter in the step (α) usually has 100 or less fine particles having a particle size of 30 nm or more. Specifically, the number of fine particles having a particle size of 30 nm or more and less than 100 nm contained in the filtrate is usually 95 pieces / mL or less. The number of fine particles having a particle size of 100 nm or more contained in the filtrate is usually 5 / mL or less.
The "number of fine particles" can be measured by using the method described in Examples.
<工程(β)>
 工程(β)では、本発明の有機溶剤の脱水方法を用いて有機溶剤を脱水する。具体的には、工程(β)では、脱水用ガスを準備する工程(A)と、工程(A)で準備した脱水用ガスと、有機溶剤とを接触させる工程(B)とを含む有機溶剤の脱水方法を用いて有機溶剤を脱水する。そして、工程(A)は、露点が-30℃以下のガスをガスフィルターに通過させて脱水用ガスを得る工程(a1)、または、ガスフィルターを通過させたガスの露点を-30℃以下に調整して脱水用ガスを得る工程(a2)を含むことを必要とする。なお、工程(β)は、工程(A)および工程(B)以外の工程を含んでいてもよい。また、工程(A)は、工程(a1)および工程(a2)以外の工程を含んでいてもよい。
 そして、工程(β)では、露点が-30℃以下のガスをガスフィルターに通過させて得た脱水用ガス、または、ガスフィルターを通過させたガスの露点を-30℃以下に調整して得た脱水用ガスを使用しているので、微粒子数の増加を抑制しつつ有機溶剤を脱水することができる。なお、微粒子数の増加を更に抑制する観点からは、工程(β)では、露点が-30℃以下のガスをガスフィルターに通過させて得た脱水用ガスを用いることが好ましい。予め露点を-30℃以下に調整したガスをガスフィルターに通過させて脱水用ガスとすれば、露点の調整時に混入した微粒子が脱水用ガス中に持ち込まれるのを抑制することができる。
<Process (β)>
In step (β), the organic solvent is dehydrated using the method for dehydrating the organic solvent of the present invention. Specifically, in the step (β), an organic solvent including a step (A) of preparing a dehydration gas and a step (B) of bringing the dehydration gas prepared in the step (A) into contact with an organic solvent. Dehydrate the organic solvent using the dehydration method of. Then, in the step (A), a gas having a dew point of −30 ° C. or lower is passed through the gas filter to obtain a dehydrating gas (a1), or the dew point of the gas passed through the gas filter is set to −30 ° C. or lower. It is necessary to include a step (a2) of adjusting to obtain a dew point gas. The step (β) may include steps other than the step (A) and the step (B). Further, the step (A) may include steps other than the step (a1) and the step (a2).
Then, in the step (β), the dew point of the dehydration gas obtained by passing a gas having a dew point of −30 ° C. or lower through the gas filter or the gas having passed through the gas filter is adjusted to −30 ° C. or lower. Since the dew point gas is used, the organic solvent can be dehydrated while suppressing an increase in the number of fine particles. From the viewpoint of further suppressing the increase in the number of fine particles, it is preferable to use the dehydration gas obtained by passing a gas having a dew point of −30 ° C. or lower through a gas filter in the step (β). If a gas whose dew point is adjusted to −30 ° C. or lower is passed through a gas filter to be used as a dehydrating gas, it is possible to prevent fine particles mixed during the dew point adjustment from being brought into the dehydrating gas.
〔ガス〕
 ここで、工程(a1)においてガスフィルターに通過させる露点が-30℃以下のガス、および、工程(a2)においてガスフィルターに通過させるガスとしては、特に限定されることなく、例えば、水素、空気、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、一酸化炭素および二酸化炭素からなる群より選択される少なくとも1種を用いることができる。これらのガスを使用すれば、副反応の発生を抑制しつつ有機溶剤を良好に脱水することができる。
 中でも、入手容易性の観点から、工程(a1)においてガスフィルターに通過させる露点が-30℃以下のガス、および、工程(a2)においてガスフィルターに通過させるガスは、空気、酸素、窒素、ヘリウムまたはアルゴンであることが好ましい。
〔gas〕
Here, the gas having a dew point of −30 ° C. or lower passed through the gas filter in the step (a1) and the gas passed through the gas filter in the step (a2) are not particularly limited, and are, for example, hydrogen and air. , Oxygen, nitrogen, helium, neon, argon, krypton, xenone, carbon monoxide and carbon dioxide can be at least one selected from the group. By using these gases, the organic solvent can be satisfactorily dehydrated while suppressing the occurrence of side reactions.
Among them, from the viewpoint of availability, the gas having a dew point of −30 ° C. or lower passed through the gas filter in the step (a1) and the gas passed through the gas filter in the step (a2) are air, oxygen, nitrogen and helium. Alternatively, it is preferably argon.
 なお、工程(a1)および工程(a2)において、露点が-30℃以下のガスは、例えば、冷却除湿や圧縮除湿等の既知の方法を用いて調製することができる。
 そして、有機溶剤を良好に脱水する観点からは、工程(a1)においてガスフィルターに通過させるガスの露点は、-60℃以下であることが好ましい。また、工程(a2)では、ガスフィルターを通過させたガスの露点を-60℃以下に調整することが好ましい。
In the steps (a1) and (a2), the gas having a dew point of −30 ° C. or lower can be prepared by using a known method such as cooling dehumidification or compression dehumidification.
From the viewpoint of satisfactorily dehydrating the organic solvent, the dew point of the gas passed through the gas filter in the step (a1) is preferably −60 ° C. or lower. Further, in the step (a2), it is preferable to adjust the dew point of the gas passed through the gas filter to −60 ° C. or lower.
〔ガスフィルター〕
 ガスフィルターとしては、特に限定されることなく、ポリプロピレン(PP)製ガスフィルターやポリテトラフルオロエチレン(PTFE)製ガスフィルター等の樹脂製フィルターを用いてもよいし、SUS製フィルターやニッケル製フィルター等の金属製フィルターを用いてもよい。
[Gas filter]
The gas filter is not particularly limited, and a resin filter such as a polypropylene (PP) gas filter or a polytetrafluoroethylene (PTFE) gas filter may be used, or a SUS filter, a nickel filter, or the like may be used. Metal filters may be used.
 そして、ガスフィルターは、粒子を通過させた時の粒子捕捉率が99.9%以上となる粒子径の最小値(捕捉粒子径)が、0.03μm以下であることが好ましく、0.01μm以下であることがより好ましく、0.003μm以下であることが更に好ましい。捕捉粒子径が上記上限値以下であれば、微粒子数の少ない脱水用ガスを得ることができるので、微粒子数の増加を良好に抑制しつつ有機溶剤を脱水することができる。 In the gas filter, the minimum value (captured particle diameter) of the particle diameter at which the particle trapping rate when passing particles is 99.9% or more is preferably 0.03 μm or less, preferably 0.01 μm or less. It is more preferable that it is 0.003 μm or less. When the captured particle size is not more than the above upper limit value, a dehydrating gas having a small number of fine particles can be obtained, so that the organic solvent can be dehydrated while satisfactorily suppressing an increase in the number of fine particles.
〔通気条件〕
 なお、工程(a1)および工程(a2)においてガスをガスフィルターに通過させる際の温度、圧力および流量は、適宜に設定し得る。
[Ventilation conditions]
The temperature, pressure, and flow rate when passing the gas through the gas filter in the steps (a1) and (a2) can be appropriately set.
〔接触〕
 工程(B)における、脱水用ガスと、有機溶剤との接触は、特に限定されることなく、例えば、有機溶剤中に脱水用ガスを吹き込む(バブリングする)方法、または、脱水用ガス中に有機溶剤を散布する方法を用いて行うことができる。
〔contact〕
The contact between the dehydration gas and the organic solvent in the step (B) is not particularly limited, and for example, a method of blowing (babbling) the dehydration gas into the organic solvent or an organic substance in the dehydration gas. This can be done using a method of spraying a solvent.
 中でも、作業の容易性の観点から、脱水用ガスと有機溶剤との接触は、有機溶剤中に脱水用ガスを吹き込むことにより行うことが好ましい。
 より具体的には、工程(β)では、例えば図2に示すような脱水装置10を使用し、容器1内に貯留された有機溶剤に対し、ガスフィルター2を通過させた露点が-30℃以下のガスをそのまま散気管3から散気することにより有機溶剤を脱水することが好ましい。
Above all, from the viewpoint of ease of work, the contact between the dehydration gas and the organic solvent is preferably performed by blowing the dehydration gas into the organic solvent.
More specifically, in the step (β), for example, a dehydrator 10 as shown in FIG. 2 is used, and the dew point of the organic solvent stored in the container 1 passed through the gas filter 2 is −30 ° C. It is preferable to dehydrate the organic solvent by diffusing the following gas as it is from the air diffuser pipe 3.
〔接触条件〕
 ここで、脱水用ガスと有機溶剤とを接触させる際の温度は、有機溶剤の凝固点以上であれば特に限定されないが、有機溶剤の気化熱で有機溶剤が凝固してバブリングが不可能となるのを防止する観点からは、凝固点+5℃以上であることが好ましく、有機溶剤の過度な気化を防止する観点からは、有機溶剤の沸点-20℃以下であることが好ましい。
 また、有機溶剤中に脱水用ガスを吹き込む場合、有機溶剤に接触させるガスの体積は、脱水ができれば特に限定されないが、十分な脱水効果を得る観点からは有機溶剤の体積に対して1倍以上であることが好ましく、有機溶剤の過度な気化を防止する観点からは有機溶剤の体積に対して200倍以下であることが好ましい。
[Contact conditions]
Here, the temperature at which the dehydration gas and the organic solvent are brought into contact with each other is not particularly limited as long as it is equal to or higher than the freezing point of the organic solvent, but the heat of vaporization of the organic solvent causes the organic solvent to solidify and bubbling becomes impossible. From the viewpoint of preventing excessive vaporization of the organic solvent, the freezing point is preferably + 5 ° C. or higher, and from the viewpoint of preventing excessive vaporization of the organic solvent, the boiling point of the organic solvent is preferably −20 ° C. or lower.
Further, when the dehydration gas is blown into the organic solvent, the volume of the gas to be brought into contact with the organic solvent is not particularly limited as long as it can be dehydrated, but from the viewpoint of obtaining a sufficient dehydration effect, it is 1 times or more the volume of the organic solvent. From the viewpoint of preventing excessive vaporization of the organic solvent, it is preferably 200 times or less the volume of the organic solvent.
 そして、脱水された有機溶剤中の水分量は、10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましい。
 なお、「水分量」は実施例に記載の方法を用いて測定することができる。
The amount of water in the dehydrated organic solvent is preferably 10 mass ppm or less, and more preferably 5 mass ppm or less.
The "water content" can be measured by using the method described in Examples.
<精製物>
 そして、本発明の有機溶剤の精製方法を用いて得られる精製物は、少なくとも有機溶剤を含み、任意に、フェノール系酸化防止剤および界面活性剤等の他の成分を更に含み得る。
<Refined product>
The purified product obtained by using the method for purifying an organic solvent of the present invention contains at least an organic solvent, and may optionally further contain other components such as a phenolic antioxidant and a surfactant.
 そして、精製物は、粒径30nm以上の微粒子数が好ましくは100個/mL以下であり、より好ましくは95個/mL以下であり、更に好ましくは60個/mL以下であり、特に好ましくは30個/mL以下である。具体的には、精製物中の粒径30nm以上100nm未満の微粒子数は、好ましくは95個/mL以下であり、より好ましくは60個/mL以下であり、更に好ましくは30個/mL以下である。また、精製物中の粒径100nm以上の微粒子数は、好ましくは5個以下であり、より好ましくは4個以下であり、更に好ましくは3個以下である。 The number of fine particles having a particle size of 30 nm or more is preferably 100 pieces / mL or less, more preferably 95 pieces / mL or less, still more preferably 60 pieces / mL or less, and particularly preferably 30. Pieces / mL or less. Specifically, the number of fine particles having a particle size of 30 nm or more and less than 100 nm in the purified product is preferably 95 pieces / mL or less, more preferably 60 pieces / mL or less, and further preferably 30 pieces / mL or less. is there. The number of fine particles having a particle size of 100 nm or more in the purified product is preferably 5 or less, more preferably 4 or less, and further preferably 3 or less.
 また、精製物中の水分量は、10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましい。 Further, the water content in the purified product is preferably 10 mass ppm or less, and more preferably 5 mass ppm or less.
 そして、精製物は、精製物中に含まれる微粒子数および水分量が低減されているため、微細な半導体の製造や洗浄に用いられる溶剤として好適に用いることができる。 Since the refined product has a reduced number of fine particles and a reduced amount of water contained in the purified product, it can be suitably used as a solvent used for manufacturing or cleaning fine semiconductors.
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 なお、本実施例における評価は、以下の方法によって行った。
(1)水分量
 カールフィッシャー水分計(三菱アナリティック社製、CA-200)を用いて3回測定を行い、3回の測定値の平均値を有機溶剤中の水分量とした。
(2)微粒子数
 有機溶剤中に含まれる粒径30nm以上の微粒子数について、液中微粒子計測器(RION社製、KS-19F)を用いて、温度23℃にて3回測定を行い、3回の測定値の平均値を有機溶剤中の微粒子数とした。
The evaluation in this example was performed by the following method.
(1) Moisture content Three measurements were performed using a Karl Fischer titer (manufactured by Mitsubishi Analytical Co., Ltd., CA-200), and the average value of the three measurements was taken as the water content in the organic solvent.
(2) Number of fine particles The number of fine particles with a particle size of 30 nm or more contained in the organic solvent was measured three times at a temperature of 23 ° C. using an in-liquid fine particle measuring instrument (manufactured by RION, KS-19F), and 3 The average value of the measured values was taken as the number of fine particles in the organic solvent.
(実施例1)
<ろ過装置の作製>
 ろ過装置として、1つのフィルターを1つの容器に詰めてなるユニットを3個準備し、それらのユニットが3段に直列接続されてなる多段ろ過装置を作製した。
 なお、各ユニットに詰められたフィルターとしては、ポリテトラフルオロエチレン(PTFE)からなるフィルターA(インテグリス社製、PFFW15C3S、孔径:15nm、濾過面積:1300cm2)を使用した。
<工程(α)>
 1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(粒径30nm以上の微粒子数:40000個/mL、水分量:50質量ppm、沸点:82.5℃)からなる有機溶剤を加圧容器に入れて30℃に加温した後、高純度アルゴン雰囲気下、30℃に加温された1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを、上述したろ過装置を用いて、0.02MPaの加圧下、ろ過速度130mL/分でろ過し、ろ液(ろ過後の有機溶剤)を得た。
 なお、フィルターの有効ろ過面積あたりの通液速度(=[濾過速度(mL/分)]/[フィルターの濾過面積(cm2)])は、0.1mL/分・cm2であった。
 そして、ろ液の水分量および微粒子数を測定した。結果を表1に示す。
<工程(β)>
 クラス100のクリーンルーム内で、上流側から減圧弁、フロート式流量計、ガスフィルター(Entegris製、WGMS02PRU、捕捉粒子径:0.003μm)をステンレス製配管で接続し、さらに配管の末端に1/8インチのPFAチューブを接続してガスラインを作製した。このガスラインの上流側から、コールドエバポレーターで発生させた露点-60℃の窒素ガスを、減圧弁により圧力0.08MPaとし、フロート式流量計の測定値が2L/分となるように調整して30分間流通させた。
 次に、脱アルカリ処理および超純水洗浄を行った後に乾燥させた褐色瓶に、工程(α)で得たろ液1.5kgを入れ、30℃に加温した。その後、1/8インチのPFAチューブを褐色瓶に挿入し、温度30℃において底部からガス流量2L/分で露点-60℃の窒素ガスを30分間バブリングした。バブリング後、褐色瓶内から精製物としての1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンをサンプリングし、水分量および微粒子数を測定した。結果を表1に示す。
(Example 1)
<Making a filtration device>
As a filtration device, three units in which one filter is packed in one container were prepared, and a multi-stage filtration device in which these units were connected in series in three stages was produced.
As the filter packed in each unit, a filter A made of polytetrafluoroethylene (PTFE) (PFFW15C3S manufactured by Entegris, pore diameter: 15 nm, filtration area: 1300 cm 2 ) was used.
<Process (α)>
Organic solvent consisting of 1,1,2,2,3,3,4-heptafluorocyclopentane (number of fine particles with a particle size of 30 nm or more: 40,000 / mL, water content: 50% by mass ppm, boiling point: 82.5 ° C) The above-mentioned 1,1,2,2,3,3,4-heptafluorocyclopentane was heated to 30 ° C. in a high-purity argon atmosphere after being placed in a pressurized container and heated to 30 ° C. Using a filtration device, the mixture was filtered under a pressure of 0.02 MPa at a filtration rate of 130 mL / min to obtain a filtrate (organic solvent after filtration).
The flow rate per effective filtration area of the filter (= [filtration rate (mL / min)] / [filter area of filter (cm 2 )]) was 0.1 mL / min · cm 2 .
Then, the water content and the number of fine particles of the filtrate were measured. The results are shown in Table 1.
<Process (β)>
In a class 100 clean room, connect a pressure reducing valve, float type flow meter, and gas filter (Entegris, WGMS02PRU, trapped particle size: 0.003 μm) from the upstream side with a stainless steel pipe, and 1/8 at the end of the pipe. A gas line was made by connecting inch PFA tubes. From the upstream side of this gas line, nitrogen gas with a dew point of -60 ° C generated by the cold evaporator was adjusted to a pressure of 0.08 MPa by a pressure reducing valve so that the measured value of the float type flow meter was 2 L / min. It was circulated for 30 minutes.
Next, 1.5 kg of the filtrate obtained in the step (α) was placed in a brown bottle that had been dried after de-alkali treatment and ultrapure water washing, and heated to 30 ° C. Then, a 1/8 inch PFA tube was inserted into a brown bottle, and nitrogen gas having a dew point of −60 ° C. was bubbled from the bottom at a temperature of 30 ° C. at a gas flow rate of 2 L / min for 30 minutes. After bubbling, 1,1,2,2,3,3,4-heptafluorocyclopentane as a purified product was sampled from the brown bottle, and the water content and the number of fine particles were measured. The results are shown in Table 1.
(実施例2)
 工程(β)において、露点-60℃の窒素ガスに替えてアルゴンボンベに充填されたアルゴンガス(露点:-80℃)を用いた以外は実施例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 2)
In step (β), a filtration device was prepared in the same manner as in Example 1 except that argon gas (dew point: -80 ° C) filled in an argon cylinder was used instead of nitrogen gas having a dew point of -60 ° C. (Α) and step (β) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 工程(β)において、露点-60℃の窒素ガスに替えて露点-30℃に管理された圧縮空気を用いた以外は実施例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 3)
In step (β), the same as in Example 1 except that compressed air controlled at a dew point of -30 ° C was used instead of nitrogen gas having a dew point of -60 ° C, preparation of a filtration device, step (α) and step. (Β) was carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
 工程(β)において、露点-60℃の窒素ガスに替えてヘリウムボンベに充填されたヘリウムガス(露点:-80℃)を用いた以外は実施例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 4)
In step (β), a filtration device was prepared in the same manner as in Example 1 except that helium gas (dew point: -80 ° C) filled in a helium cylinder was used instead of nitrogen gas having a dew point of -60 ° C. (Α) and step (β) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例5)
 工程(β)において、露点-60℃の窒素ガスに替えて酸素ボンベに充填された酸素ガス(露点:-80℃)を用いた以外は実施例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 5)
In step (β), a filtration device was prepared in the same manner as in Example 1 except that oxygen gas filled in an oxygen cylinder (dew point: -80 ° C) was used instead of nitrogen gas having a dew point of -60 ° C. (Α) and step (β) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 工程(β)においてガスラインを作製する際にガスフィルター(Entegris製、WGMS02PRU、捕捉粒子径:0.003μm)を使用しなかった以外は実施例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 1)
A filtration device was prepared in the same manner as in Example 1 except that a gas filter (manufactured by Entegris, WGMS02PRU, trapped particle size: 0.003 μm) was not used when the gas line was prepared in the step (β). α) and step (β) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 工程(β)においてガスラインを作製する際にガスフィルター(Entegris製、WGMS02PRU、捕捉粒子径:0.003μm)を使用しなかった以外は実施例2と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 2)
A filtration device was prepared in the same manner as in Example 2 except that a gas filter (manufactured by Entegris, WGMS02PRU, trapped particle size: 0.003 μm) was not used when the gas line was prepared in the step (β). α) and step (β) were carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例3)
 工程(β)において、露点-60℃の窒素ガスに替えて露点0℃に管理された圧縮空気を用いた以外は比較例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 3)
In step (β), the same as in Comparative Example 1 except that compressed air controlled at a dew point of 0 ° C. was used instead of nitrogen gas having a dew point of -60 ° C. β) was carried out to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例4)
 工程(β)において、露点-60℃の窒素ガスに替えて露点0℃の窒素ガスを用いた以外は実施例1と同様にして、ろ過装置の作製、工程(α)および工程(β)を行い、精製物を得た。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 4)
In step (β), the fabrication of the filtration device, step (α) and step (β) were carried out in the same manner as in Example 1 except that nitrogen gas having a dew point of 0 ° C was used instead of nitrogen gas having a dew point of -60 ° C. This was done to obtain a purified product. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(参考例1)
<ろ過装置の作製>
 実施例1と同様にして多段ろ過装置を作製した。
<工程(α)>
 実施例1と同様にして1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(粒径30nm以上の微粒子数:40000個/mL、水分量:50質量ppm、沸点:82.5℃)からなる有機溶剤をろ過し、ろ液(ろ過後の有機溶剤)を得た。
 そして、ろ液の水分量および微粒子数を測定したところ、水分量は100質量ppmであり、微粒子数は16個/mLであった。
<工程(β’)>
 脱アルカリ処理および超純水洗浄を行った後に乾燥させた褐色瓶に対し、クラス100のクリーンルーム内において、工程(α)で得たろ液と、脱水剤としてのモレキュラーシーブ5Aとをモレキュラーシーブ5Aの濃度が10質量%となるように入れ、温度25℃で24時間振盪した。その後、褐色瓶内から精製物としての1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンをサンプリングし、水分量および微粒子数を測定した。精製物の水分量は1質量ppmであった。また、精製物は、濁っており、微粒子数は測定不能(測定上限超え)であった。
(Reference example 1)
<Making a filtration device>
A multi-stage filtration device was produced in the same manner as in Example 1.
<Process (α)>
In the same manner as in Example 1, 1,1,2,2,3,3,4-heptafluorocyclopentane (number of fine particles having a particle size of 30 nm or more: 40,000 / mL, water content: 50 mass ppm, boiling point: 82. The organic solvent (5 ° C.) was filtered to obtain a filtrate (organic solvent after filtration).
Then, when the water content and the number of fine particles of the filtrate were measured, the water content was 100 mass ppm and the number of fine particles was 16 / mL.
<Process (β')>
In a class 100 clean room, the filtrate obtained in step (α) and the molecular sheave 5A as a dehydrating agent were added to the brown bottle dried after de-alkali treatment and ultrapure water cleaning. The mixture was added so that the concentration was 10% by mass, and the mixture was shaken at a temperature of 25 ° C. for 24 hours. Then, 1,1,2,2,3,3,4-heptafluorocyclopentane as a purified product was sampled from the brown bottle, and the water content and the number of fine particles were measured. The water content of the purified product was 1 mass ppm. In addition, the purified product was turbid, and the number of fine particles could not be measured (exceeding the upper limit of measurement).
(参考例2)
<ろ過装置の作製>
 実施例1と同様にして多段ろ過装置を作製した。
<工程(α)>
 実施例1と同様にして1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(粒径30nm以上の微粒子数:40000個/mL、水分量:50質量ppm、沸点:82.5℃)からなる有機溶剤をろ過し、ろ液(ろ過後の有機溶剤)を得た。
 そして、ろ液の水分量および微粒子数を測定したところ、水分量は60質量ppmであり、微粒子数は16個/mLであった。
<工程(β’)>
 脱水剤としてのモレキュラーシーブ5Aを充填した充填塔に対し、クラス100のクリーンルーム内において、工程(α)で得たろ液を、温度25℃、液空間速度(LHSV)5h-1の条件で通液して精製物としての1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを得た。そして、精製物の水分量および微粒子数を測定した。精製物の水分量は1質量ppmであり、微粒子数は測定不能(測定上限超え)であった。
(Reference example 2)
<Making a filtration device>
A multi-stage filtration device was produced in the same manner as in Example 1.
<Process (α)>
In the same manner as in Example 1, 1,1,2,2,3,3,4-heptafluorocyclopentane (number of fine particles having a particle size of 30 nm or more: 40,000 / mL, water content: 50 mass ppm, boiling point: 82. The organic solvent (5 ° C.) was filtered to obtain a filtrate (organic solvent after filtration).
Then, when the water content and the number of fine particles of the filtrate were measured, the water content was 60 mass ppm and the number of fine particles was 16 / mL.
<Process (β')>
A filtrate obtained in step (α) is passed through a packing tower filled with a molecular sieve 5A as a dehydrating agent in a class 100 clean room under the conditions of a temperature of 25 ° C. and a liquid space velocity (LHSV) of 5h -1. As a result, 1,1,2,2,3,3,4-heptafluorocyclopentane as a purified product was obtained. Then, the water content and the number of fine particles of the purified product were measured. The water content of the purified product was 1 mass ppm, and the number of fine particles could not be measured (exceeding the upper limit of measurement).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~5では、水分量および微粒子数の双方を良好に低減した精製物が得られることが分かる。
 一方、表1より、ガスフィルターを使用しなかった比較例1~3では脱水の際に微粒子数の増加を抑制することができず、精製物中の微粒子数が増加してしまうことが分かる。また、露点が0℃のガスを用いた比較例3~4では、有機溶剤を十分に脱水することができないことが分かる。
 また、参考例1,2より、モレキュラーシーブ等の固体の脱水剤を有機溶剤に直接接触させて脱水を行った場合にも、脱水の際に微粒子数の増加を抑制することができず、精製物中の微粒子数が増加してしまうことが分かる。
From Table 1, it can be seen that in Examples 1 to 5, purified products having both the water content and the number of fine particles satisfactorily reduced can be obtained.
On the other hand, from Table 1, it can be seen that in Comparative Examples 1 to 3 in which the gas filter was not used, the increase in the number of fine particles could not be suppressed during dehydration, and the number of fine particles in the purified product increased. Further, it can be seen that in Comparative Examples 3 to 4 using a gas having a dew point of 0 ° C., the organic solvent cannot be sufficiently dehydrated.
Further, from Reference Examples 1 and 2, even when dehydration is performed by directly contacting a solid dehydrating agent such as molecular sieve with an organic solvent, an increase in the number of fine particles cannot be suppressed during dehydration, and purification is performed. It can be seen that the number of fine particles in the object increases.
 本発明の有機溶剤の脱水方法によれば、微粒子数の増加を抑制しつつ有機溶剤を脱水することができる。
 また、本発明の有機溶剤の精製方法によれば、水分量および微粒子数の双方を良好に低減した精製物を得ることができる。
According to the method for dehydrating an organic solvent of the present invention, the organic solvent can be dehydrated while suppressing an increase in the number of fine particles.
Further, according to the method for purifying an organic solvent of the present invention, it is possible to obtain a purified product in which both the water content and the number of fine particles are satisfactorily reduced.
1 容器
2 ガスフィルター
3 散気管
10 脱水装置
1 Container 2 Gas filter 3 Air diffuser 10 Dehydrator

Claims (8)

  1.  脱水用ガスを準備する工程(A)と、
     前記脱水用ガスと、有機溶剤とを接触させる工程(B)と、
    を含み、
     前記工程(A)が、露点が-30℃以下のガスをガスフィルターに通過させて脱水用ガスを得る工程(a1)、または、ガスフィルターを通過させたガスの露点を-30℃以下に調整して脱水用ガスを得る工程(a2)を含む、有機溶剤の脱水方法。
    Step (A) of preparing dehydration gas and
    The step (B) of bringing the dehydration gas into contact with the organic solvent,
    Including
    The step (A) is a step (a1) of passing a gas having a dew point of -30 ° C or lower through a gas filter to obtain a dehydrating gas, or adjusting the dew point of the gas passed through the gas filter to -30 ° C or lower. A method for dehydrating an organic solvent, which comprises the step (a2) of obtaining a dehydrating gas.
  2.  前記有機溶剤が、炭化水素類、アルコール類、エーテル類、ケトン類、アミド類、エステル類、ニトリル類、ハイドロフルオロカーボン類、ハイドロフルオロエーテル類、パーフルオロカーボン類およびハイドロフルオロオレフィン類からなる群より選択される少なくとも1種の溶剤を含む、請求項1に記載の有機溶剤の脱水方法。 The organic solvent is selected from the group consisting of hydrocarbons, alcohols, ethers, ketones, amides, esters, nitriles, hydrofluorocarbons, hydrofluoroethers, perfluorocarbons and hydrofluoroolefins. The method for dehydrating an organic solvent according to claim 1, which comprises at least one solvent.
  3.  前記有機溶剤が1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンを含む、請求項1または2に記載の有機溶剤の脱水方法。 The method for dehydrating an organic solvent according to claim 1 or 2, wherein the organic solvent contains 1,1,2,2,3,3,4-heptafluorocyclopentane.
  4.  前記有機溶剤が共沸組成物である、請求項1~3の何れかに記載の有機溶剤の脱水方法。 The method for dehydrating an organic solvent according to any one of claims 1 to 3, wherein the organic solvent is an azeotropic composition.
  5.  前記有機溶剤が、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンと、tert-アミルアルコールとの混合物である、請求項1~4の何れかに記載の有機溶剤の脱水方法。 The dehydration of the organic solvent according to any one of claims 1 to 4, wherein the organic solvent is a mixture of 1,1,2,2,3,3,4-heptafluorocyclopentane and tert-amyl alcohol. Method.
  6.  前記ガスが、水素、空気、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、一酸化炭素および二酸化炭素からなる群より選択される少なくとも1種よりなる、請求項1~5の何れかに記載の有機溶剤の脱水方法。 The gas according to any one of claims 1 to 5, wherein the gas comprises at least one selected from the group consisting of hydrogen, air, oxygen, nitrogen, helium, neon, argon, krypton, xenon, carbon monoxide and carbon dioxide. The method for dehydrating an organic solvent according to the above.
  7.  有機溶剤をフィルターでろ過する工程(α)と、
     請求項1~6の何れかに記載の有機溶剤の脱水方法を用いて有機溶剤を脱水する工程(β)と、
    を含む、有機溶剤の精製方法。
    The process of filtering the organic solvent with a filter (α) and
    A step (β) of dehydrating an organic solvent using the method for dehydrating an organic solvent according to any one of claims 1 to 6.
    A method for purifying an organic solvent, including.
  8.  前記工程(β)では、前記工程(α)でろ過された有機溶剤を脱水する、請求項7に記載の有機溶剤の精製方法。 The method for purifying an organic solvent according to claim 7, wherein in the step (β), the organic solvent filtered in the step (α) is dehydrated.
PCT/JP2020/007412 2019-03-26 2020-02-25 Method for dehydrating organic solvent and method for purifying organic solvent WO2020195454A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217025684A KR20210143730A (en) 2019-03-26 2020-02-25 Organic solvent dehydration method and organic solvent purification method
JP2021508827A JP7459865B2 (en) 2019-03-26 2020-02-25 Method for dehydrating organic solvent and method for purifying organic solvent
CN202080005869.9A CN112955421A (en) 2019-03-26 2020-02-25 Method for dehydrating organic solvent and method for purifying organic solvent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-059227 2019-03-26
JP2019059227 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195454A1 true WO2020195454A1 (en) 2020-10-01

Family

ID=72608447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007412 WO2020195454A1 (en) 2019-03-26 2020-02-25 Method for dehydrating organic solvent and method for purifying organic solvent

Country Status (5)

Country Link
JP (1) JP7459865B2 (en)
KR (1) KR20210143730A (en)
CN (1) CN112955421A (en)
TW (1) TW202100219A (en)
WO (1) WO2020195454A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524269B2 (en) * 1973-07-17 1977-02-02
JPH07332180A (en) * 1994-06-10 1995-12-22 Wacker Chemie Gmbh Gas filter and its recycling method
JPH11192419A (en) * 1997-10-27 1999-07-21 Toshiba Ceramics Co Ltd Gas filter, gas filter module and production of gas filter
JP2005223184A (en) * 2004-02-06 2005-08-18 Nippon Zeon Co Ltd Washings and its utilization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524269A (en) 1975-06-28 1977-01-13 Citizen Watch Co Ltd Crystal wrist watch with static shield plate
CN104923028A (en) * 2015-06-02 2015-09-23 江苏三美化工有限公司 Method for dehydrating coarse pyrolysis gas in production of vinylidene fluoride and dehydration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524269B2 (en) * 1973-07-17 1977-02-02
JPH07332180A (en) * 1994-06-10 1995-12-22 Wacker Chemie Gmbh Gas filter and its recycling method
JPH11192419A (en) * 1997-10-27 1999-07-21 Toshiba Ceramics Co Ltd Gas filter, gas filter module and production of gas filter
JP2005223184A (en) * 2004-02-06 2005-08-18 Nippon Zeon Co Ltd Washings and its utilization

Also Published As

Publication number Publication date
TW202100219A (en) 2021-01-01
JP7459865B2 (en) 2024-04-02
JPWO2020195454A1 (en) 2020-10-01
CN112955421A (en) 2021-06-11
KR20210143730A (en) 2021-11-29

Similar Documents

Publication Publication Date Title
Favvas et al. Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor
US5417742A (en) Removal of perfluorocarbons from gas streams
Zafar et al. Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures
WO2010001025A2 (en) Process for the purification of 2,3,3,3-tetrafluoro-1-propene (hfo-1234yf)
WO2015033643A1 (en) Porous carbon, humidity-controlling adsorbent material, adsorption-type heat pump, and fuel cell
CN106349008A (en) Method for purifying butadiene hexafluoride
WO2020195454A1 (en) Method for dehydrating organic solvent and method for purifying organic solvent
JP5271390B2 (en) Method and apparatus for recycling liquid crystal alignment solution
WO2020031732A1 (en) Method for refining fluorine-based-solvent-containing article, and refined fluorine-based-solvent-containing article
KR20170125961A (en) Method for separating fluorine-containing solvent, method for removing fluorine-containing solvent contaminant, and apparatus therefor
JP3470180B2 (en) Method for separating and concentrating fluorine compounds
DE602004002018T2 (en) Separation of C2F6 from CF4 by adsorption on activated carbon
JP4089223B2 (en) Halogen compound gas separation and recovery apparatus and separation and recovery method
TW202214715A (en) Method for purifying a vinylidene fluoride polymer
KR101777568B1 (en) Preparing method of porous pvdf nanofaiber and porous pvdf nanofaiber prepared by the method
JPH0592119A (en) Method for purifying fluorine containing gas
CN112569738A (en) Method and apparatus for recovering heptafluoroisobutyronitrile
KR101341129B1 (en) Carbon adsorbent for CO₂ adsorption and manufacturing method thereof
RU2744357C1 (en) Method for purifying nitrogen trifluoride from carbon tetrafluoride impurity
JP7426852B2 (en) Manufacturing method of porous body
RU2350552C1 (en) Nitrogen trifluoride purification method
JP5074132B2 (en) Perfluoro compound gas purification method and apparatus
JP2005239615A (en) Method for refining fluorine-based solvent
FR3137845A1 (en) Process for purifying 1,1,1,2,3,3-hexafluoropropane
WO2023108402A1 (en) Purification of organic solvents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776869

Country of ref document: EP

Kind code of ref document: A1