WO2020195426A1 - Ammonia engine - Google Patents

Ammonia engine Download PDF

Info

Publication number
WO2020195426A1
WO2020195426A1 PCT/JP2020/007055 JP2020007055W WO2020195426A1 WO 2020195426 A1 WO2020195426 A1 WO 2020195426A1 JP 2020007055 W JP2020007055 W JP 2020007055W WO 2020195426 A1 WO2020195426 A1 WO 2020195426A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
reformer
valve
control
opening degree
Prior art date
Application number
PCT/JP2020/007055
Other languages
French (fr)
Japanese (ja)
Inventor
竹内秀隆
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020195426A1 publication Critical patent/WO2020195426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an ammonia engine including a reformer that reforms fuel into reforming gas.
  • a reformer for reforming fuel into reforming gas Conventionally, a reformer for reforming fuel into reforming gas, a reforming flow path provided with the reformer, and a reformer downstream valve provided on the downstream side of the reformer in the reforming flow path.
  • An engine including the above is known (for example, Patent Document 1).
  • the reformer downstream valve is opened and modified. Quality gas is supplied to the intake flow path and the starter is activated.
  • the reformer When starting the ammonia engine, the reformer is warmed up. It is desirable that the reformer be warmed up in a reducing atmosphere in order to suppress deterioration due to oxidation, for example.
  • a reducing atmosphere for example, ammonia as a fuel may be used to replace the residual gas in the reformer.
  • ammonia gas flowing out to the intake flow path through the reforming flow path may leak to the external environment through the intake flow path or the exhaust flow path of the ammonia engine.
  • An object of the present invention is to provide an ammonia engine capable of warming up the reformer in a reducing atmosphere while suppressing leakage of ammonia at the time of starting.
  • the ammonia engine is an ammonia engine including a reformer that reforms ammonia as a fuel into a reforming gas, and has an intake flow path for passing the intake air of the ammonia engine and the reformer. It is provided in a reforming flow path for flowing reforming air through the reformer and for flowing reforming gas from the reformer to the intake flow path, and on the upstream side of the reformer in the reforming flow path.
  • a reforming fuel injection valve provided between the reformer upstream valve and the reformer upstream valve and the reformer in the reforming flow path and injecting fuel into the reforming flow path, and a reforming flow path.
  • the reformer downstream valve provided on the downstream side of the reformer, the start signal output unit that outputs the start signal for operating the starter of the ammonia engine, and the amount of fuel injected by the reformer fuel injection valve.
  • a control unit for controlling the reformer upstream valve, the reforming fuel injection valve, and the reformer downstream valve is provided based on the start signal, and the control unit is modified when the start signal is input.
  • the second control for injecting fuel into the reforming fuel injection valve in a predetermined fuel injection pattern is executed, and the fuel injected in the second control with the opening of the reformer upstream valve fully closed.
  • the replacement timing at which the residual gas of the reformer is replaced by the fuel injected in the second control is calculated based on the injection amount of the reformer and the predetermined replacement estimated volume amount, and the reformer downstream valve is replaced at the latest at the replacement timing.
  • the third control for reducing the opening degree of the reformer downstream valve is executed so that the opening degree is fully closed.
  • the opening degree of the reformer upstream valve is fully closed, and the opening degree of the reformer upstream valve is fully closed.
  • the second control for injecting fuel into the reforming fuel injection valve is executed. As a result, it is possible to prevent the fuel ammonia from leaking to the external environment through the reformer upstream valve. Further, when the opening degree of the reformer upstream valve is fully closed, the opening degree of the reformer downstream valve is reduced so that the opening degree of the reformer downstream valve is fully closed at the latest at the replacement timing. 3 Control is executed.
  • the residual gas of the reformer can be replaced by using the fuel injected by the reforming fuel injection valve while suppressing the leakage of fuel ammonia to the external environment through the reformer downstream valve. Be done.
  • the fuel injected by the reforming fuel injection valve created a reducing atmosphere.
  • the reformer is warmed up. Therefore, according to the ammonia engine according to one aspect of the present invention, it is possible to warm up the reformer in a reducing atmosphere while suppressing the leakage of ammonia at the time of starting.
  • the control unit injects fuel into the reforming fuel injection valve in the first fuel injection pattern in which fuel is continuously injected as the fuel injection pattern.
  • the opening degree of the reformer downstream valve is maintained at the initial opening until the replacement timing, and the opening degree of the reformer downstream valve is fully closed at the replacement timing. May be reduced.
  • the opening degree of the reformer downstream valve is fully closed with most of the residual gas pushed out from the reformer by the fuel injected by the reforming fuel injection valve. Therefore, the reformer can be made into a reducing atmosphere more reliably.
  • the control unit injects fuel into the reforming fuel injection valve in the second fuel injection pattern in which the fuel is intermittently injected as the fuel injection pattern, and the third In the control, the opening degree of the reformer downstream valve may be gradually reduced according to the increase in the injection amount of the fuel injected in the second control.
  • the fuel since the fuel is injected in the second fuel injection pattern in which the fuel is injected intermittently, the fuel is suppressed from being mixed with the residual gas of the reformer, and the reformer is more reliably made into a reducing atmosphere. be able to.
  • the opening degree of the reformer downstream valve is gradually reduced as the fuel injection amount increases, it is suppressed that the pressure inside the reformer suddenly increases, and the pressure balance allows the reformer fuel injection valve to be used. It is possible to extend the time until the fuel cannot be injected. Therefore, it is possible to prevent the fuel from being difficult to be injected from the reforming fuel injection valve due to the increase in pressure.
  • the reformer is a mixture of a reforming catalyst for reforming fuel and a residual gas provided so as to cover the inflow surface of the reforming catalyst upstream of the reforming catalyst. It may have a restraining member.
  • the mixture of the fuel injected by the reforming fuel injection valve and the residual gas of the reformer is physically suppressed by the residual gas mixing suppressing member.
  • the fuel can suitably exert the action of pushing the residual gas out of the reformer.
  • FIG. 1 is a schematic configuration diagram of an engine of one embodiment.
  • the ammonia engine 100 of the present embodiment includes an ECU [Electronic Control Unit] (control unit) 10, an engine main unit 20, and a reforming unit 30.
  • the ammonia engine 100 is an internal combustion engine that burns an air-fuel mixture containing ammonia (NH 3 ), and is configured as, for example, a 4-cycle reciprocating engine.
  • the ammonia engine 100 is mounted on an industrial vehicle such as a forklift that performs cargo handling work.
  • the ammonia engine 100 may be mounted on other vehicles such as passenger cars, trucks, and buses.
  • the engine main part 20 includes an engine main body 21, an intake flow path 22, a main throttle 23, a main injector 24, an exhaust flow path 25, a three-way catalyst 26, and SCR [Selective Catalyst] as an example of an ammonia adsorption catalyst. Reduction] 27 and.
  • the engine body 21 is the main part of the ammonia engine 100 for burning the air-fuel mixture, and is composed of a cylinder block, a cylinder head, a piston, and the like.
  • a combustion chamber is defined by a cylinder block, a cylinder head, and a piston.
  • the cylinder head is provided with, for example, a spark plug.
  • the engine body 21 has a starter for starting the ammonia engine 100.
  • the intake flow path 22 is a flow path for passing intake air to the engine body 21 of the ammonia engine 100, and includes, for example, piping, a surge tank, an intake manifold, an intake port, and the like. At the inlet of the intake flow path 22, for example, an air cleaner 28 for filtering the intake air is provided.
  • the main throttle 23 is a valve that adjusts the flow rate of the air sucked through the air cleaner 28.
  • the main throttle 23 is provided on the downstream side of the air cleaner 28 in the intake flow path 22.
  • the main throttle 23 is, for example, an electronically controlled throttle valve.
  • the main throttle 23 is electrically connected to the ECU 10. The operation of the main throttle 23 is controlled by the ECU 10.
  • the main injector 24 is a valve that injects fuel into the intake flow path 22.
  • the main injector 24 is provided on the downstream side of the main throttle 23 in the intake flow path 22.
  • the number of main injectors 24 may be one or a plurality. When the number of main injectors 24 is one, the main injectors 24 may be provided, for example, in the intake port of the engine body 21. When the number of main injectors 24 is plural, the main injectors 24 may be provided, for example, in the surge tank of the engine body 21.
  • the main injector 24 injects ammonia gas that does not contain reforming gas as fuel.
  • the main injector 24 is electrically connected to the ECU 10. The operation of the main injector 24 is controlled by the ECU 10.
  • the main injector 24 may be provided on the upstream side of the main throttle 23 in the intake flow path 22. Alternatively, instead of the main injector 24, fuel may be supplied from a fuel supply device such as a mixer provided in the intake flow path 22.
  • the exhaust flow path 25 is a flow path through which the exhaust gas from the engine body 21 of the ammonia engine 100 flows, and includes, for example, an exhaust port, piping, an aftertreatment device, a silencer, and the like.
  • the three-way catalyst 26 and the SCR 27 as an example of the ammonia adsorption catalyst are provided in the exhaust flow path 25 in this order.
  • the three-way catalyst 26 is adapted to purify the oxidation of H 2 in the exhaust gas, a catalyst for purifying by reducing NOx in the exhaust gas.
  • SCR27 is a selective reduction catalyst that purifies NOx contained in exhaust gas by a reduction reaction.
  • the SCR27 may be a catalyst made of another material (for example, zeolite-based) that adsorbs ammonia.
  • the reforming section 30 includes a reforming flow path 31, a reforming throttle (reformer upstream valve) 32, an NH 3 tank 33, a vaporizer 34, and a reforming injector (reformer fuel injection valve). It has 35, a reformer 36, a cooler 37, and a stop valve (reformer downstream valve) 38.
  • the reforming flow path 31 is a flow path for reforming fuel into reforming gas.
  • the reforming flow path 31 is provided, for example, so as to connect the upstream side of the main throttle 23 and the downstream side of the main throttle 23 in the intake flow path 22.
  • the reforming flow path 31 allows reforming air to flow from the upstream side of the main throttle 23 in the intake flow path 22 to the reformer 36, and from the reformer 36 to the downstream side of the main throttle 23 in the intake flow path 22. Distribute the reformed gas.
  • the reforming air is the air used for reforming the fuel into a reforming gas in the reformer 36.
  • a reformer 36 is provided in the reforming flow rate 31.
  • the reforming flow path 31 is not connected to the upstream side of the main throttle 23 in the intake flow path 22, and the outside air sucked through the dedicated air cleaner can be distributed to the reformer 36 as reforming air. It may be configured in.
  • the reforming throttle 32 is a valve that adjusts the flow rate of reforming air.
  • the reforming throttle 32 is provided on the upstream side of the reformer 36 in the reforming flow path 31.
  • the reforming throttle 32 is, for example, an electronically controlled throttle valve.
  • the reforming throttle 32 is electrically connected to the ECU 10. The operation of the reforming throttle 32 is controlled by the ECU 10.
  • the opening degree of the reforming throttle 32 can be changed continuously or stepwise between fully closed and fully opened by controlling the ECU 10.
  • the fully closed state of the reforming throttle 32 means an opening degree at which gas cannot flow through the reforming throttle 32.
  • the fully closed reforming throttle 32 may be the minimum opening degree of the reforming throttle 32, or a minute amount within a range in which gas flow through the reforming throttle 32 is substantially impossible. It may be the opening degree.
  • Fully opening the reforming throttle 32 means that the opening degree of the reforming throttle 32 is the largest.
  • the NH 3 tank 33 is a tank for storing ammonia as a fuel.
  • the NH 3 tank 33 is not particularly limited, but for example, a general steel cylinder can be used.
  • ammonia is pressurized so as to maintain a liquid state.
  • the NH 3 tank 33 is connected to the vaporizer 34.
  • the vaporizer 34 vaporizes the ammonia derived from the NH 3 tank 33.
  • the vaporizer 34 is connected to the main injector 24 and the reforming injector 35.
  • the vaporized ammonia (ammonia gas) is guided to each of the main injector 24 and the reforming injector 35.
  • a regulator that regulates the pressure of ammonia gas may be provided between the vaporizer 34, the main injector 24, and the reforming injector 35.
  • the reforming injector 35 is a fuel injection valve that injects reforming ammonia gas (fuel) into the reforming flow path 31.
  • the reforming injector 35 is provided on the upstream side of the reformer 36 in the reforming flow path 31.
  • the reforming injector 35 is provided between the reforming throttle 32 and the reformer 36 in the reforming flow path 31.
  • the number of reforming injectors 35 is, for example, one.
  • the reforming injector 35 is electrically connected to the ECU 10. The operation of the reforming injector 35 is controlled by the ECU 10.
  • the reformer 36 reforms the reforming ammonia gas to generate the reforming gas.
  • the reformer 36 here reforms the reforming ammonia gas into a reforming gas containing hydrogen gas (H 2 ).
  • the reformer 36 has a reformer heater 36a, a reforming catalyst 36b for reforming ammonia gas for reforming, and a perforated plate member (residual gas mixing suppressing member) 36c.
  • the reformer 36 has, for example, a case having a substantially cylindrical outer shape in which the inlet and the outlet are reduced in diameter, and the reformer heater 36a, the reforming catalyst 36b, and the perforated plate member 36c are in the axial direction of the case. It is arranged in the case so as to line up along.
  • the reforming flow path 31 is connected to substantially the center of the cross section of the case when viewed along the axial direction of the case (hereinafter, also referred to as a cross-sectional view of the case).
  • the perforated plate member 36c does not necessarily have to be provided. The order of the reformer heater 36a and the perforated plate member 36c may be reversed.
  • the reformer heater 36a is provided on the upstream side of the reforming catalyst 36b and is used for warming up the reforming catalyst 36b.
  • the reformer heater 36a is, for example, a substantially spiral electric heater.
  • the inflow surface of the reformer heater 36a extends along the inflow surface of the reformer catalyst 36b.
  • the inflow surface is a surface of the reforming flow path 31 facing upstream in the gas flow direction.
  • the outflow surface of the reformer heater 36a extends along the outflow surface of the reformer catalyst 36b.
  • the outflow surface is a surface of the reforming flow path 31 facing the downstream side in the gas flow direction.
  • the reformer heater 36a is electrically connected to the ECU 10.
  • the operation of the reformer heater 36a is controlled by the ECU 10.
  • the reformer heater 36a may be a small combustor.
  • the reforming catalyst 36b reforms the reforming ammonia gas injected by the reforming injector 35 with the reforming air.
  • the reforming catalyst 36b here is an ATR [Autothermal Reformer] type ammonia reforming catalyst.
  • the reforming catalyst 36b utilizes the heat of the reformer heater 36a or the reaction heat of the reforming catalyst 36b to thermally dissociate the reforming ammonia gas with the reforming air, thereby causing hydrogen gas and ammonia. Generates reformed gas containing gas.
  • the reforming catalyst 36b here is mainly used in a reducing atmosphere (that is, an atmosphere in an NH 3- rich state) in order to suppress deterioration due to oxidation, for example.
  • a low temperature reaction catalyst may be used for the reforming catalyst 36b.
  • the perforated plate member 36c is provided upstream of the reforming catalyst 36b along the inflow surface of the reforming catalyst 36b.
  • the perforated plate member 36c is, for example, a plate-shaped member provided on the upstream side of the reformer heater 36a.
  • the perforated plate member 36c is arranged so as to cover substantially the entire inflow surface of the reformer heater 36a.
  • FIG. 3 is a plan view of the perforated plate member 36c.
  • FIG. 3 shows the inflow surface of the perforated plate member 36c (in the cross-sectional view of the case) when viewed along the axial direction of the case. Note that, for convenience, only the perforated plate member 36c is shown in FIG.
  • the outer shape of the perforated plate member 36c is, for example, substantially a disk shape, and a plurality of through holes H1, H2, H3, and H4 are formed.
  • the through holes H1, H2, H3, and H4 are gas flow holes for communicating the space on the upstream side and the space on the downstream side of the perforated plate member 36c in the reformer 36.
  • the total opening area of the through holes H1, H2, H3, and H4 is set according to, for example, the injection amount of the reforming ammonia gas injected by the reforming injector 35.
  • the through holes H1, H2, H3, and H4 for example, have an opening area that allows the reforming ammonia gas to flow uniformly into the inflow surfaces of the reformer heater 36a and the reforming catalyst 36b. At least one of the size of the hole diameter and the number of through holes is adjusted.
  • the diameter of the through hole H1 is smaller than the diameter of the through hole H2.
  • the diameter of the through hole H2 is smaller than the diameter of the through hole H3.
  • the diameter of the through hole H3 is smaller than the diameter of the through hole H4. That is, the through hole H1 has the smallest diameter among the through holes H1, H2, H3, and H4.
  • the through hole H4 has the largest diameter among the through holes H1, H2, H3, and H4.
  • the number of through holes H2 is larger than the number of through holes H1.
  • the number of through holes H3 is larger than the number of through holes H2.
  • the number of through holes H4 is larger than the number of through holes H3.
  • the through holes H1, H2, H3, and H4 are arranged so as to have an opening area of the through holes so that the reforming ammonia gas can uniformly flow into the inflow surfaces of the reformer heater 36a and the reforming catalyst 36b. Has been done.
  • the through holes H1, H2, H3, and H4 are arranged so as to be substantially radial in the radial direction in the circular portion of the perforated plate member 36c.
  • Each of the through holes H1, H2, H3, and H4 is arranged in the circular portion of the perforated plate member 36c so that through holes having the same diameter are arranged on the circumference having the same radius from the center.
  • the through hole H1 is provided in the central region of the circular portion of the perforated plate member 36c.
  • the through hole H2 is provided in a region surrounding the region where the through hole H1 is provided in the circular portion of the perforated plate member 36c.
  • the through hole H3 is provided in a region surrounding the region where the through hole H2 is provided in the circular portion of the perforated plate member 36c.
  • the through hole H4 is provided in the region of the outer edge portion of the circular portion surrounding the region where the through hole H3 is provided in the circular portion of the perforated plate member 36c.
  • the reforming ammonia gas flowing into the reformer 36 from the reforming flow path 31 Inflows into the reformer 36 on the inlet side of the case of the reformer 36 with an inflow distribution such that the density becomes higher toward the center of the cross section of the case.
  • the inflowing reforming ammonia gas flows through the through holes H1, H2, H3, and H4 as described above in the outer edge portion of the circular portion of the perforated plate member 36c than in the central portion. Easy to do.
  • the reforming ammonia gas that has flowed into the reformer 36 with the inflow distribution as described above is equalized in the cross-sectional view of the case by passing through the through holes H1, H2, H3, and H4 of the perforated plate member 36c.
  • the perforated plate member 36c brings the flow of the reforming ammonia gas to the reformer heater 36a and the reforming catalyst 36b closer to the parallel flow.
  • the reforming ammonia gas and the reformer 36 are partitioned by the perforated plate member 36c to a certain extent, the reforming ammonia gas and the reformer It is physically suppressed from being mixed with the residual gas of.
  • the reforming ammonia gas is injected by the reforming injector 35, it is possible to prevent the reforming ammonia gas and the residual gas of the reformer from being directly mixed by the force of the injection.
  • the reforming ammonia gas when the reforming ammonia gas is injected by the reforming injector 35, the pressure in the space on the upstream side of the perforated plate member 36c is higher than that in the space on the downstream side, so that the space on the upstream side is on the downstream side.
  • Ammonia gas for reforming easily flows unilaterally into the space through the through holes H1, H2, H3, and H4. Therefore, in the space on the downstream side, the reforming ammonia gas pushes out the residual gas in a plane toward the downstream side.
  • the cooler 37 is provided on the downstream side of the reformer 36 in the reforming flow path 31.
  • the cooler 37 cools the reformed gas from the reformer 36.
  • a heat exchanger using the cooling water of the ammonia engine 100 or the running wind of the vehicle as a low temperature heat source can be used.
  • the stop valve 38 is provided on the downstream side of the reformer 36 in the reforming flow path 31.
  • the stop valve 38 here is, for example, an electromagnetic valve provided between the cooler 37 and the intake flow path 22.
  • the stop valve 38 adjusts the flow rate of the gas flowing from the reforming flow path 31 to the intake flow path 22.
  • the stop valve 38 is electrically connected to the ECU 10. The operation of the stop valve 38 is controlled by the ECU 10.
  • the opening degree of the stop valve 38 can be changed continuously or stepwise between fully closed and fully opened by the control of the ECU 10.
  • the fully closed state of the stop valve 38 means an opening degree at which gas cannot flow through the stop valve 38.
  • the fully closed stop valve 38 may be the minimum opening of the stop valve 38, or may be a minute opening within a range in which gas flow through the stop valve 38 is substantially impossible. Good.
  • Fully opening the stop valve 38 means that the opening degree of the stop valve 38 is the largest.
  • FIG. 2 is a block diagram of a configuration for controlling the ammonia engine of FIG. As shown in FIG. 2, the ECU 10 is electrically connected to the key switch (starting signal output unit) 1.
  • the ECU 10 is an electronic control unit that controls the ammonia engine 100.
  • the ECU 10 is a controller having a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], a communication circuit, and the like.
  • various functions are realized by loading the program stored in the ROM into the RAM and executing the program loaded in the RAM in the CPU.
  • the ECU 10 may be composed of a plurality of electronic units.
  • the key switch 1 is a switch that outputs a start signal for starting the ammonia engine 100.
  • the key switch 1 is, for example, an ignition switch for operating the starter of the engine body 21 by its operation.
  • the key switch 1 is operated by being rotated as the key is inserted.
  • the key switch 1 has a key cylinder including a physical contact inside.
  • a plurality of switch states of the key cylinder can be switched according to the operation position of the key switch 1. Examples of the switch state include OFF, ON (key switch on) and ST (starter switch on).
  • the key switch 1 outputs a signal related to the switch state to the ECU 10.
  • a button for outputting a start signal for starting the ammonia engine 100 may be used.
  • the key switch 1 outputs an OFF signal to the ECU 10 by switching the driving circuit on the vehicle side to the open state, for example, when the switch state is OFF.
  • the key switch 1 outputs an ON signal to the ECU 10 by switching the driving circuit on the vehicle side to the closed state when the switch state is ON, for example.
  • the key switch 1 outputs an ST signal (starting signal) to the ECU 10 by switching the starting circuit on the vehicle side to the closed state, for example, when the switch state is ST.
  • the key switch 1 may be configured by using an electronic circuit that outputs each of the above signals in response to an operation by the driver of the vehicle.
  • the ECU 10 includes an engine state acquisition unit 11, a first control execution unit 12, a second control execution unit 13, a third control execution unit 14, and a start permission unit 15.
  • the engine state acquisition unit 11 acquires the engine state, which is the state of the ammonia engine 100.
  • the engine state acquisition unit 11 acquires the switch state of the key switch 1 described above based on the signal regarding the switch state from the key switch 1.
  • the engine state acquisition unit 11 determines, for example, that the ammonia engine 100 is in the start preparation state.
  • the start-preparation state is a state in which preparations are made for starting the ammonia engine 100.
  • the reforming catalyst 36b is made into a reducing atmosphere and the reforming catalyst 36b is warmed up.
  • the start preparation state is completed and the starter is operated. The operation of the starter may be started before the start preparation state is completed.
  • the first control execution unit 12 When the engine state acquisition unit 11 determines that the first control execution unit 12 is in the start preparation state, the first control execution unit 12 energizes the reformer heater 36a. As a result, the temperature of the reformer heater 36a rises. The heat of the reformer heater 36a is transferred to the reforming catalyst 36b by the flow of the reforming ammonia gas to the downstream side when the reforming ammonia gas is injected by the reforming injector 35 in the second control described later. Will be done.
  • the first control execution unit 12 When the engine state acquisition unit 11 determines that the first control execution unit 12 is in the start preparation state, the first control execution unit 12 fully closes the opening degree of the reforming throttle 32 and opens the opening degree of the stop valve 38 to a predetermined initial position. The first control is executed. When the engine state acquisition unit 11 determines that the first control execution unit 12 is in the start preparation state, the first control execution unit 12 executes the first control while, for example, the reformer heater 36a is energized.
  • the initial opening degree of the stop valve 38 is an initial value of the opening degree of the stop valve 38 in the third control described later.
  • the initial opening degree is larger than the fully closed stop valve 38.
  • the initial opening degree can be set to such an opening degree that the gas (residual gas) remaining in the reformer 36 before the start-preparation state can be discharged to the outside of the reformer 36.
  • the initial opening degree may be stored in the ECU 10 in advance.
  • the second control execution unit 13 executes the second control with the opening degree of the reforming throttle 32 fully closed.
  • the second control is a control in which the reforming injector 35 is injected with the reforming ammonia gas in a predetermined fuel injection pattern.
  • the fuel injection pattern can be a pattern in which the valve opening time of the reforming injector 35 is defined in time series.
  • the fuel injection pattern may be defined as a time series from the time when the start signal is input.
  • the second control execution unit 13 maintains the opening degree of the reforming throttle 32 in a fully closed state after the first control described above, and executes the second control. A specific example of the second control will be described later.
  • the third control execution unit 14 executes the third control with the opening degree of the reforming throttle 32 fully closed.
  • the third control is a control that reduces the opening degree of the stop valve 38 so that the opening degree of the stop valve 38 reaches the fully closed position at the latest at the replacement timing.
  • the replacement timing is the timing at which the residual gas of the reformer 36 is replaced by the reforming ammonia gas injected in the second control.
  • the residual gas of the reformer 36 is replaced by the reforming ammonia gas means that the reforming catalyst 36b has a reducing atmosphere with the reforming ammonia gas.
  • the replacement timing may be, for example, a time when it is estimated that the residual gas of the reformer 36 is completely replaced by the reforming ammonia gas, or the residual gas of the reformer 36 is replaced by the reforming ammonia gas. It may be at a time when it is estimated that the gas has been replaced at a predetermined rate.
  • the third control execution unit 14 calculates the replacement timing based on the time-integrated value of the injection amount of the reforming ammonia gas injected in the second control and the estimated replacement volume amount.
  • the replacement estimated volume amount is a volume threshold value for estimating whether or not the residual gas of the reformer 36 has been replaced by the reforming ammonia gas.
  • the estimated replacement volume may be at least the volume value from the reforming throttle 32 to the stop valve 38.
  • the estimated replacement volume can be, for example, the volume value of the reforming flow path 31 from the reforming throttle 32 to the stop valve 38 and the reformer 36.
  • the injection amount of the reforming ammonia gas here is the injection amount of the reforming ammonia gas for pushing the residual gas out of the reformer 36 by the reforming ammonia gas (the injection amount of the reforming ammonia gas for starting). Means.
  • the injection amount of the reforming ammonia gas is based on, for example, the injection pressure of the reforming injector 35 (for example, the discharge pressure of the NH 3 tank 33 or the regulation pressure of the regulator) and the injection time of the reforming ammonia gas. It can be calculated.
  • the third control execution unit 14 maintains the opening degree of the reforming throttle 32 in a fully closed state after the first control described above, and is injected by the second control while executing the second control.
  • the third control is executed based on the injection amount of the reforming ammonia gas.
  • FIG. 4 is a timing chart showing an operation example of the ammonia engine of FIG.
  • FIG. 4A shows a change over time in the injection pressure of the reforming ammonia gas injected by the reforming injector 35 so as to correspond to the first fuel injection pattern.
  • the period during which the injection pressure is P1 means the valve opening period of the reforming injector 35.
  • FIG. 4B shows the change over time in the amount of gas replacement.
  • FIG. 4C shows the change over time in the opening degree of the stop valve 38.
  • a start signal is input at time t1 and the engine state acquisition unit 11 determines the start preparation state.
  • the first control execution unit 12 starts energizing the reformer heater 36a.
  • the first control execution unit 12 executes the first control. Specifically, the first control execution unit 12 sets the opening degree of the reforming throttle 32 to be fully closed (not shown), and the opening degree of the stop valve 38 to be the initial opening degree S1.
  • the opening degree of the stop valve 38 is defined as the initial opening degree S1.
  • the opening degree of the stop valve 38 may be set to the initial opening degree S1 in advance before the time t1 as in the example of FIG. 4C.
  • the second control execution unit 13 and the third control execution unit 14 maintain the state in which the opening degree of the reforming throttle 32 is fully closed, and the second control and the third control are executed.
  • reforming from the reforming injector 35 by the second control execution unit 13 at time t2 (for example, when the energizing time of the reformer heater 36a reaches a predetermined time).
  • Ammonia gas injection is started.
  • the second control execution unit 13 maintains the valve opening of the reforming injector 35 at a predetermined injection pressure P1, and the reforming ammonia gas is continuously injected. That is, in the second control, the second control execution unit 13 injects the reforming ammonia gas into the reforming injector 35 in the first fuel injection pattern in which the reforming ammonia gas is continuously injected.
  • the third control execution unit 14 sets the injection pressure of the reforming injector 35 and the reforming ammonia gas injection time (elapsed time from time t2). Based on this, the calculation of the injection amount of the reforming ammonia gas and the calculation of the gas replacement amount are started.
  • the gas replacement amount is a time-integrated value of the injection amount of the reforming ammonia gas injected by the reforming injector 35.
  • the amount of gas replacement calculated by the third control execution unit 14 increases.
  • the gas replacement amount calculated by the third control execution unit 14 reaches the replacement estimated volume amount Th. That is, the time t3 is the replacement timing.
  • the opening degree of the stop valve 38 is fully closed by the third control execution unit 14. That is, in the third control, the third control execution unit 14 maintains the opening degree of the stop valve 38 at the initial opening degree until the replacement timing, and stops so as to fully close the opening degree of the stop valve 38 at the replacement timing. The opening degree of the valve 38 is reduced.
  • the opening degree of the stop valve 38 reduced by the third control reaches full closure. That is, in the third control of FIG. 4C, the opening degree of the stop valve 38 is reduced so that the opening degree of the stop valve 38 is fully closed at the latest at the replacement timing.
  • the reforming injector 35 injects the gas in the second control. It is possible to prevent the reformed ammonia gas from flowing (backflow) through the reforming throttle 32. Since the opening degree of the stop valve 38 is set to the initial opening degree S1 by the first control and the reforming ammonia gas is continuously injected by the second control, the reformer 36 is made by the reforming ammonia gas. Residual gas is pushed out. Further, since the opening degree of the stop valve 38 is fully closed at the replacement timing by the third control, the opening degree of the reforming throttle 32 is fully closed and the opening degree of the stop valve 38 is fully closed. Then, the reformer 36, which has a reducing atmosphere with the fuel injected by the reforming injector 35, is warmed up.
  • FIG. 5 is a timing chart showing another operation example of the ammonia engine of FIG.
  • FIG. 5A shows a change over time in the injection pressure of the reforming ammonia gas injected by the reforming injector 35 so as to correspond to the second fuel injection pattern.
  • the period during which the injection pressure is P1 means the valve opening period of the reforming injector 35.
  • FIG. 5B shows the change over time in the amount of gas replacement.
  • FIG. 5C shows a change over time in the opening degree of the stop valve 38.
  • a start signal is input at time t4, and the engine state acquisition unit 11 determines the start preparation state.
  • the first control execution unit 12 starts energization of the reformer heater 36a and executes the first control.
  • the second control execution unit 13 and the third control execution unit 14 maintain the state in which the opening degree of the reforming throttle 32 is fully closed, and the second control and the third control are executed.
  • reforming from the reforming injector 35 by the second control execution unit 13 at time t5 (for example, when the energizing time of the reformer heater 36a reaches a predetermined time).
  • Ammonia gas injection is started.
  • the reforming injector 35 is opened by the second control execution unit 13 at a predetermined injection pressure P1, and the reforming ammonia gas is intermittently injected.
  • time t5 to time t6 (hereinafter, first valve opening time), time t7 to time t8 (hereinafter, second valve opening time), time t9 to time t10 (hereinafter, third valve opening time), and
  • the reforming injector 35 is opened from time t11 to time t12 (hereinafter, the fourth valve opening time). That is, the second control execution unit 13 injects the reforming ammonia gas into the reforming injector 35 in the second fuel injection pattern in which the reforming ammonia gas is intermittently injected as the second control.
  • the third control execution unit 14 uses the reforming ammonia gas based on the injection pressure of the reforming injector 35 and the reforming ammonia gas injection time. Calculation of the injection amount and calculation of the gas replacement amount are started. More specifically, from time t5 to time t7, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first valve opening time, and the gas replacement amount G1. To reach. From time t7 to time t9, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first and second valve opening times, and sets the gas replacement amount to G2. Reach.
  • the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first to third valve opening times, and sets the gas replacement amount to G3. Reach. From time t11 to time t13, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first to fourth valve opening times, and the replacement estimated volume amount Th. To reach. That is, the time t13 is the replacement timing.
  • the third control execution unit 14 starts reducing the opening degree of the stop valve 38 according to the injection amount of the reforming ammonia gas. More specifically, from time t5 to time t7, the opening degree of the stop valve 38 is opened from the initial opening degree S1 according to the first reduction gradient set by the third control execution unit 14 according to the first valve opening time. The degree is reduced to S2. From time t7 to time t9, the opening degree of the stop valve 38 is reduced from the opening degree S2 to the opening degree S3 according to the second reduction gradient set according to the second valve opening time by the third control execution unit 14. To.
  • the third control execution unit 14 reduces the opening degree of the stop valve 38 from the opening degree S3 according to the third reduction gradient set according to the third valve opening time. From time t11 to time t12, the opening degree of the stop valve 38 is increased according to the fourth reduction gradient (here, equal to the third reduction gradient) set by the third control execution unit 14 according to the fourth valve opening time. Subsequently, it is reduced to the fully closed opening. That is, as the third control, the third control execution unit 14 gradually reduces the opening degree of the stop valve 38 according to the increase in the injection amount of the reforming ammonia gas injected in the second control.
  • the opening degree of the stop valve 38 reduced by the third control reaches full closure. That is, in the third control of FIG. 5C, the opening degree of the stop valve 38 is reduced so that the opening degree of the stop valve 38 is fully closed at a timing earlier than the replacement timing.
  • the reforming injector 35 injects the gas in the second control. It is possible to prevent the reformed ammonia gas from flowing (backflow) through the reforming throttle 32.
  • the opening degree of the stop valve 38 is set to the initial opening degree S1 by the first control, and the reforming ammonia gas is intermittently injected by the second control. Therefore, the reformer 36 is made of the reforming ammonia gas. Residual gas is gradually pushed out.
  • the second valve opening time is longer than the first valve opening time
  • the third valve opening time is longer than the second valve opening time
  • the fourth valve opening time is longer than the third valve opening time.
  • the valve In the initial stage of the start-up preparation state, the gas flow of the reforming ammonia gas is weakened, and the mixing of the reforming ammonia gas and the residual gas is suppressed.
  • the valve may be opened at the same time or at an arbitrary time.
  • the valve opening time may be constant, the magnitude relationship opposite to the above example may be used, or the magnitude relationship may be irregular.
  • the number of valve openings may be any number as long as it is two or more times.
  • a fuel injection pattern in which the injection pressure is changed while continuously injecting fuel may be used.
  • the opening degree of the stop valve 38 is gradually reduced according to the increase in the injection amount of the reforming ammonia gas, so that the pressure in the reformer 36 is suppressed from suddenly increasing, and the pressure is suppressed.
  • the equilibrium can extend the time until the reforming ammonia gas cannot be injected from the reforming injector 35.
  • the magnitude of the second reduction gradient is smaller than the magnitude of the first reduction gradient
  • the magnitude of the third reduction gradient is smaller than the magnitude of the second reduction gradient
  • the magnitude of the fourth reduction gradient is the magnitude of the third reduction gradient.
  • the opening of the stop valve 38 is rapidly reduced in the early stage of the start preparation state, and the opening of the stop valve 38 is gradually reduced in the state of being close to fully closed in the latter stage of the start preparation state.
  • the increase in pressure in the reformer 36 is moderated while suppressing the sudden outflow of the reforming ammonia gas to the intake flow path 22 side in the initial stage of the start preparation state.
  • the reformer 36 has a reducing atmosphere with the fuel injected by the reforming injector 35. Is warmed up.
  • the start permission unit 15 permits the start of the ammonia engine 100 when the opening degree of the stop valve 38 reduced by the third control is fully closed.
  • the start permission unit 15 permits the start of cranking of the starter when the warm-up of the reformer 36 is completed, for example, when the opening degree of the stop valve 38 reduced by the third control is fully closed. ..
  • the floor temperature of the reformer 36b becomes about 200 ° C. or higher because the elapsed time from the input of the start signal exceeds a predetermined time set in advance based on an experiment or the like. If it is presumed to have been completed, it can be considered complete.
  • the start permission unit 15 may allow the start of the ammonia engine 100 before the opening degree of the stop valve 38 is fully closed.
  • FIG. 6 is a flowchart showing the reformer warm-up process of the ECU 10.
  • the ECU 10 determines in S11 whether or not a start signal is input by the engine state acquisition unit 11.
  • the engine state acquisition unit 11 determines whether or not the ammonia engine 100 is in the start preparation state, for example, as a determination of whether or not a start signal is input.
  • the engine state acquisition unit 11 determines that there is no input of the start signal (S11: NO)
  • the ECU 10 ends the process of FIG.
  • the ECU 10 executes the first control by the first control execution unit 12 in S12.
  • the first control execution unit 12 makes, for example, the opening degree of the reforming throttle 32 fully closed and the opening degree of the stop valve 38 a predetermined initial opening degree while energizing the reformer heater 36a. Take control.
  • the ECU 10 executes the second control by the second control execution unit 13 with the opening degree of the reforming throttle 32 fully closed.
  • the second control execution unit 13 injects the reforming ammonia gas into the reforming injector 35 in the first fuel injection pattern in which the reforming ammonia gas is continuously injected in the second control.
  • the second control execution unit 13 may inject the reforming ammonia gas into the reforming injector 35 in a second fuel injection pattern in which the reforming ammonia gas is intermittently injected as the second control.
  • the ECU 10 executes the third control in the state where the opening degree of the reforming throttle 32 is fully closed by the third control execution unit 14.
  • the third control execution unit 14 calculates the replacement timing based on, for example, the time-integrated value of the injection amount of the reforming ammonia gas injected in the second control and the estimated replacement volume amount.
  • the third control execution unit 14 maintains the opening degree of the stop valve 38 at the initial opening degree until the replacement timing, and closes the opening degree of the stop valve 38 at the replacement timing. Reduce the opening of.
  • the third control execution unit 14 may gradually reduce the opening degree of the stop valve 38 according to the increase in the injection amount of the reforming ammonia gas injected in the second control.
  • the ECU 10 determines whether or not the opening degree of the stop valve 38 has reached full closure by the third control execution unit 14.
  • the third control execution unit 14 determines that the opening degree of the stop valve 38 has not reached full closure (S15: NO)
  • the ECU 10 repeats the processes of S13 and S14.
  • the ECU 10 determines that the opening degree of the stop valve 38 has been fully closed (S15: YES)
  • the ECU 10 permits the start of the ammonia engine 100 by the start permission unit 15 in S16. I do.
  • the start permission unit 15 permits the start of cranking of the starter, for example, when the warm-up of the reformer 36 is completed.
  • the residual gas of the reformer 36 is replaced by the reforming ammonia gas injected by the reforming injector 35 while suppressing the fuel ammonia from leaking to the external environment through the stop valve 38. Is planned.
  • the reforming ammonia gas injected by the reforming injector 35 creates a reducing atmosphere.
  • the reformer 36 is warmed up. Therefore, according to the ammonia engine 100, it is possible to warm up the reformer 36 in a reducing atmosphere while suppressing the leakage of ammonia at the time of starting.
  • the ECU 10 injects the reforming ammonia gas into the reforming injector 35 in the first fuel injection pattern in which the reforming ammonia gas is continuously injected as the fuel injection pattern.
  • the opening degree of the stop valve 38 is maintained at the initial opening degree S1 until the replacement timing, and the opening degree of the stop valve 38 is reduced so that the opening degree of the stop valve 38 is fully closed at the replacement timing.
  • the opening degree of the stop valve 38 is fully closed while most of the residual gas is pushed out from the reformer 36 by the reforming ammonia gas injected by the reforming injector 35. Therefore, the reformer 36 can be more reliably used as a reducing atmosphere.
  • the ECU 10 injects the reforming ammonia gas into the reforming injector 35 in the second fuel injection pattern in which the reforming ammonia gas is intermittently injected as the fuel injection pattern.
  • the opening degree of the stop valve 38 is gradually reduced according to the increase in the injection amount of the reforming ammonia gas injected in the second control.
  • the reforming ammonia gas is injected in the second fuel injection pattern in which the reforming ammonia gas is intermittently injected, so that the reforming ammonia gas is prevented from being mixed with the residual gas of the reformer 36. Therefore, the reformer 36 can be made into a reducing atmosphere more reliably.
  • the opening degree of the stop valve 38 is gradually reduced according to the increase in the injection amount of the reforming ammonia gas, it is suppressed that the pressure in the reformer 36 suddenly increases, and the reforming injector is suppressed by the pressure balance. It is possible to extend the time from 35 until the reforming ammonia gas cannot be injected. Therefore, it is possible to prevent the reforming ammonia gas from being easily injected from the reforming injector 35 due to the increase in pressure.
  • the reformer 36 is provided so as to cover the reforming catalyst 36b for reforming the reforming ammonia gas and the inflow surface of the reforming catalyst 36b upstream of the reforming catalyst 36b. It has a hole plate member 36c and. As a result, the perforated plate member 36c physically suppresses the mixing of the reforming ammonia gas injected by the reforming injector 35 and the residual gas of the reformer 36. As a result, the reforming ammonia gas can suitably exert the action of pushing out the residual gas from the reformer 36.
  • the reforming throttle 32 is illustrated as the reformer upstream valve, but for example, an electromagnetic valve or the like may be used.
  • the number of the reforming injectors 35 is, for example, one, but may be a plurality.
  • the stop valve 38 is exemplified as the reformer downstream valve, but instead of the solenoid valve, for example, a butterfly valve or a three-way valve provided at the position of the intake flow path 22 may be used.
  • the three-way catalyst 26 is provided, but it may be omitted.
  • the opening degree of the stop valve 38 is gradually reduced so that the opening degree of the stop valve 38 is fully closed earlier than the replacement timing. For example, if the opening degree of the stop valve 38 is not fully closed when the replacement timing is reached, the third control execution unit 14 may forcibly close the opening degree of the stop valve 38 at that time. ..
  • the perforated plate member 36c is provided on the upstream side of the reformer heater 36a, but may be provided between the reformer heater 36a and the reformer catalyst 36b.
  • the outer shape of the perforated plate member 36c may have a shape other than a substantially disk shape.
  • the perforated plate member 36c does not necessarily have to cover substantially the entire inflow surface of the reformer heater 36a.
  • the residual gas mixing suppressing member is not limited to the perforated plate member 36c, and may be, for example, a net-like member or a porous member. Further, the perforated plate member 36c may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

An ECU (10) in this ammonia engine (100) executes: first control in which, when a start-up signal is input, the degree of opening of a reforming throttle (32) is complete closure, and the degree of opening of a stop valve (38) is a predefined initial degree of opening; second control in which, with the degree of opening of the reforming throttle (32) being complete closure, a reforming injector (35) is made to inject fuel in a predefined fuel injection pattern; and third control in which, with the degree of opening of the reforming throttle (32) being complete closure, and on the basis of the amount of fuel injected in the second control and a predefined estimated displacement volume, a displacement time by which the remaining gas in a reformer is to be displaced by the fuel injected in the second control is calculated, and the degree of opening of the stop valve (38) is decreased such that the degree of opening of the stop valve (38) reaches complete closure no later than the displacement time.

Description

アンモニアエンジンAmmonia engine
 本発明は、燃料を改質ガスに改質する改質器を備えるアンモニアエンジンに関する。 The present invention relates to an ammonia engine including a reformer that reforms fuel into reforming gas.
 従来、燃料を改質ガスに改質する改質器と、改質器が設けられる改質流路と、改質流路における改質器の下流側に設けられた改質器下流弁と、を備えるエンジンが知られている(例えば特許文献1)。特許文献1記載のエンジンでは、エンジンの始動指令の出力後、触媒が活性し且つ改質器で改質ガスが生成可能であると判定されたときに、改質器下流弁が開放されて改質ガスが吸気流路に供給され、スタータが作動される。 Conventionally, a reformer for reforming fuel into reforming gas, a reforming flow path provided with the reformer, and a reformer downstream valve provided on the downstream side of the reformer in the reforming flow path. An engine including the above is known (for example, Patent Document 1). In the engine described in Patent Document 1, after the output of the engine start command, when it is determined that the catalyst is activated and the reformer can generate reforming gas, the reformer downstream valve is opened and modified. Quality gas is supplied to the intake flow path and the starter is activated.
特開2007-113421号公報Japanese Unexamined Patent Publication No. 2007-11342
 アンモニアエンジンを始動する際、改質器が暖機される。改質器の暖機は、例えば酸化による劣化を抑制するため、還元雰囲気下で行われることが望まれる。還元雰囲気とするには、例えば燃料のアンモニアを用いて改質器の残留ガスを置換することが考えられる。しかしながら、この場合、改質流路を介して吸気流路に流出したアンモニアガスが、アンモニアエンジンの吸気流路又は排気流路を通って外部環境に漏れ出すおそれがある。 When starting the ammonia engine, the reformer is warmed up. It is desirable that the reformer be warmed up in a reducing atmosphere in order to suppress deterioration due to oxidation, for example. To create a reducing atmosphere, for example, ammonia as a fuel may be used to replace the residual gas in the reformer. However, in this case, the ammonia gas flowing out to the intake flow path through the reforming flow path may leak to the external environment through the intake flow path or the exhaust flow path of the ammonia engine.
 本発明は、始動の際にアンモニアの漏洩を抑制しつつ還元雰囲気下で改質器の暖機を行うことが可能となるアンモニアエンジンを提供することを目的とする。 An object of the present invention is to provide an ammonia engine capable of warming up the reformer in a reducing atmosphere while suppressing leakage of ammonia at the time of starting.
 本発明の一態様に係るアンモニアエンジンは、燃料のアンモニアを改質ガスに改質する改質器を備えるアンモニアエンジンであって、アンモニアエンジンの吸入空気を流通させる吸気流路と、改質器が設けられ、改質器に改質用空気を流通させると共に、改質器から吸気流路に改質ガスを流通させる改質流路と、改質流路における改質器の上流側に設けられた改質器上流弁と、改質流路における改質器上流弁と改質器との間に設けられ、改質流路に燃料を噴射する改質用燃料噴射弁と、改質流路における改質器の下流側に設けられた改質器下流弁と、アンモニアエンジンのスタータを作動させるための始動信号を出力する始動信号出力部と、改質用燃料噴射弁による燃料の噴射量と始動信号とに基づいて、改質器上流弁と改質用燃料噴射弁と改質器下流弁とを制御する制御部と、を備え、制御部は、始動信号が入力された場合に、改質器上流弁の開度を全閉とすると共に改質器下流弁の開度を所定の初期開度とする第1制御を実行し、改質器上流弁の開度を全閉とした状態で、所定の燃料噴射パターンで改質用燃料噴射弁に燃料を噴射させる第2制御を実行し、改質器上流弁の開度を全閉とした状態で、第2制御で噴射された燃料の噴射量と所定の置換推定容積量とに基づいて、第2制御で噴射された燃料によって改質器の残留ガスが置換される置換タイミングを算出し、遅くとも置換タイミングで改質器下流弁の開度が全閉に至るように改質器下流弁の開度を低減させる第3制御を実行する。 The ammonia engine according to one aspect of the present invention is an ammonia engine including a reformer that reforms ammonia as a fuel into a reforming gas, and has an intake flow path for passing the intake air of the ammonia engine and the reformer. It is provided in a reforming flow path for flowing reforming air through the reformer and for flowing reforming gas from the reformer to the intake flow path, and on the upstream side of the reformer in the reforming flow path. A reforming fuel injection valve provided between the reformer upstream valve and the reformer upstream valve and the reformer in the reforming flow path and injecting fuel into the reforming flow path, and a reforming flow path. The reformer downstream valve provided on the downstream side of the reformer, the start signal output unit that outputs the start signal for operating the starter of the ammonia engine, and the amount of fuel injected by the reformer fuel injection valve. A control unit for controlling the reformer upstream valve, the reforming fuel injection valve, and the reformer downstream valve is provided based on the start signal, and the control unit is modified when the start signal is input. A state in which the opening of the reformer upstream valve is fully closed and the opening of the reformer upstream valve is fully closed by executing the first control in which the opening of the reformer downstream valve is set to a predetermined initial opening. Then, the second control for injecting fuel into the reforming fuel injection valve in a predetermined fuel injection pattern is executed, and the fuel injected in the second control with the opening of the reformer upstream valve fully closed. The replacement timing at which the residual gas of the reformer is replaced by the fuel injected in the second control is calculated based on the injection amount of the reformer and the predetermined replacement estimated volume amount, and the reformer downstream valve is replaced at the latest at the replacement timing. The third control for reducing the opening degree of the reformer downstream valve is executed so that the opening degree is fully closed.
 本発明の一態様に係るアンモニアエンジンでは、始動信号が入力された場合に改質器上流弁の開度が全閉とされ、改質器上流弁の開度が全閉とされた状態で、改質用燃料噴射弁に燃料を噴射させる第2制御が実行される。これにより、改質器上流弁を介して燃料のアンモニアが外部環境に漏れ出すことを抑制できる。また、改質器上流弁の開度が全閉とされた状態で、遅くとも置換タイミングで改質器下流弁の開度が全閉に至るように改質器下流弁の開度を低減させる第3制御が実行される。これにより、改質器下流弁を介して燃料のアンモニアが外部環境に漏れ出すことを抑制しつつ、改質用燃料噴射弁で噴射された燃料を用いて改質器の残留ガスの置換が図られる。その結果、改質器上流弁の開度が全閉で且つ改質器下流弁の開度が全閉となった状態で、改質用燃料噴射弁で噴射された燃料で還元雰囲気となった改質器が暖機される。したがって、本発明の一態様に係るアンモニアエンジンによれば、始動の際にアンモニアの漏洩を抑制しつつ還元雰囲気下で改質器の暖機を行うことが可能となる。 In the ammonia engine according to one aspect of the present invention, when the start signal is input, the opening degree of the reformer upstream valve is fully closed, and the opening degree of the reformer upstream valve is fully closed. The second control for injecting fuel into the reforming fuel injection valve is executed. As a result, it is possible to prevent the fuel ammonia from leaking to the external environment through the reformer upstream valve. Further, when the opening degree of the reformer upstream valve is fully closed, the opening degree of the reformer downstream valve is reduced so that the opening degree of the reformer downstream valve is fully closed at the latest at the replacement timing. 3 Control is executed. As a result, the residual gas of the reformer can be replaced by using the fuel injected by the reforming fuel injection valve while suppressing the leakage of fuel ammonia to the external environment through the reformer downstream valve. Be done. As a result, with the opening of the reformer upstream valve fully closed and the opening of the reformer downstream valve fully closed, the fuel injected by the reforming fuel injection valve created a reducing atmosphere. The reformer is warmed up. Therefore, according to the ammonia engine according to one aspect of the present invention, it is possible to warm up the reformer in a reducing atmosphere while suppressing the leakage of ammonia at the time of starting.
 本発明の一態様に係るアンモニアエンジンでは、制御部は、第2制御において、燃料噴射パターンとして連続的に燃料を噴射する第1燃料噴射パターンで改質用燃料噴射弁に燃料を噴射させ、第3制御において、置換タイミングまで改質器下流弁の開度を初期開度に維持すると共に、置換タイミングで改質器下流弁の開度を全閉とするように改質器下流弁の開度を低減させてもよい。この場合、改質用燃料噴射弁で噴射された燃料によって残留ガスの大部分が改質器から押し出された状態で、改質器下流弁の開度が全閉とされる。よって、より確実に改質器を還元雰囲気とすることができる。 In the ammonia engine according to one aspect of the present invention, in the second control, the control unit injects fuel into the reforming fuel injection valve in the first fuel injection pattern in which fuel is continuously injected as the fuel injection pattern. In 3 control, the opening degree of the reformer downstream valve is maintained at the initial opening until the replacement timing, and the opening degree of the reformer downstream valve is fully closed at the replacement timing. May be reduced. In this case, the opening degree of the reformer downstream valve is fully closed with most of the residual gas pushed out from the reformer by the fuel injected by the reforming fuel injection valve. Therefore, the reformer can be made into a reducing atmosphere more reliably.
 本発明の一態様に係るエンジンでは、制御部は、第2制御において、燃料噴射パターンとして間欠的に燃料を噴射する第2燃料噴射パターンで改質用燃料噴射弁に燃料を噴射させ、第3制御において、第2制御で噴射された燃料の噴射量の増加に応じて改質器下流弁の開度を漸減させてもよい。この場合、間欠的に燃料を噴射する第2燃料噴射パターンで燃料が噴射されるため、燃料が改質器の残留ガスと混じり合うことが抑えられ、より確実に改質器を還元雰囲気とすることができる。また、燃料の噴射量の増加に応じて改質器下流弁の開度を漸減させるため、改質器内の圧力が急激に高くなることが抑制され、圧力平衡により改質用燃料噴射弁から燃料が噴射できなくなるまでの時間を延ばすことができる。よって、圧力上昇によって改質用燃料噴射弁から燃料が噴射されにくくなることを抑制できる。 In the engine according to one aspect of the present invention, in the second control, the control unit injects fuel into the reforming fuel injection valve in the second fuel injection pattern in which the fuel is intermittently injected as the fuel injection pattern, and the third In the control, the opening degree of the reformer downstream valve may be gradually reduced according to the increase in the injection amount of the fuel injected in the second control. In this case, since the fuel is injected in the second fuel injection pattern in which the fuel is injected intermittently, the fuel is suppressed from being mixed with the residual gas of the reformer, and the reformer is more reliably made into a reducing atmosphere. be able to. In addition, since the opening degree of the reformer downstream valve is gradually reduced as the fuel injection amount increases, it is suppressed that the pressure inside the reformer suddenly increases, and the pressure balance allows the reformer fuel injection valve to be used. It is possible to extend the time until the fuel cannot be injected. Therefore, it is possible to prevent the fuel from being difficult to be injected from the reforming fuel injection valve due to the increase in pressure.
 本発明の一態様に係るアンモニアエンジンでは、改質器は、燃料を改質するための改質触媒と、改質触媒の上流において改質触媒の流入面を覆うように設けられた残留ガス混合抑制部材と、を有してもよい。この場合、改質用燃料噴射弁で噴射された燃料と改質器の残留ガスとが混じり合うことが、残留ガス混合抑制部材により物理的に抑制される。その結果、燃料が残留ガスを改質器から押し出す作用を好適に奏することが可能となる。 In the ammonia engine according to one aspect of the present invention, the reformer is a mixture of a reforming catalyst for reforming fuel and a residual gas provided so as to cover the inflow surface of the reforming catalyst upstream of the reforming catalyst. It may have a restraining member. In this case, the mixture of the fuel injected by the reforming fuel injection valve and the residual gas of the reformer is physically suppressed by the residual gas mixing suppressing member. As a result, the fuel can suitably exert the action of pushing the residual gas out of the reformer.
 本発明によれば、始動の際にアンモニアの漏洩を抑制しつつ還元雰囲気下で改質器の暖機を行うことが可能となる。 According to the present invention, it is possible to warm up the reformer in a reducing atmosphere while suppressing the leakage of ammonia at the time of starting.
一実施形態に係るアンモニアエンジンの概略構成図である。It is a schematic block diagram of the ammonia engine which concerns on one Embodiment. 図1のアンモニアエンジンの制御のための構成のブロック図である。It is a block diagram of the structure for the control of the ammonia engine of FIG. 残留ガス混合抑制部材の一例の平面図である。It is a top view of an example of the residual gas mixing suppression member. 図1のアンモニアエンジンの動作例を示すタイミングチャートである。It is a timing chart which shows the operation example of the ammonia engine of FIG. 図1のアンモニアエンジンの他の動作例を示すタイミングチャートである。It is a timing chart which shows the other operation example of the ammonia engine of FIG. 図2のECUの改質器暖機処理を示すフローチャートである。It is a flowchart which shows the reformer warm-up process of the ECU of FIG.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are designated by the same reference numerals, and duplicate description will be omitted.
 図1は、一実施形態のエンジンの概略構成図である。図1に示されるように、本実施形態のアンモニアエンジン100は、ECU[Electronic Control Unit](制御部)10と、エンジン主要部20と、改質部30と、を備えている。アンモニアエンジン100は、アンモニア(NH)を含む混合気を燃焼させる内燃機関であり、例えば4サイクルレシプロエンジンとして構成されている。アンモニアエンジン100は、例えば荷役作業を行うフォークリフト等の産業車両に搭載される。アンモニアエンジン100は、その他、例えば乗用車、トラック、バス等の車両に搭載されていてもよい。 FIG. 1 is a schematic configuration diagram of an engine of one embodiment. As shown in FIG. 1, the ammonia engine 100 of the present embodiment includes an ECU [Electronic Control Unit] (control unit) 10, an engine main unit 20, and a reforming unit 30. The ammonia engine 100 is an internal combustion engine that burns an air-fuel mixture containing ammonia (NH 3 ), and is configured as, for example, a 4-cycle reciprocating engine. The ammonia engine 100 is mounted on an industrial vehicle such as a forklift that performs cargo handling work. The ammonia engine 100 may be mounted on other vehicles such as passenger cars, trucks, and buses.
 エンジン主要部20は、エンジン本体21と、吸気流路22と、メインスロットル23と、メインインジェクタ24と、排気流路25と、三元触媒26と、アンモニア吸着触媒の一例としてのSCR[Selective Catalytic Reduction]27と、を有している。 The engine main part 20 includes an engine main body 21, an intake flow path 22, a main throttle 23, a main injector 24, an exhaust flow path 25, a three-way catalyst 26, and SCR [Selective Catalyst] as an example of an ammonia adsorption catalyst. Reduction] 27 and.
 エンジン本体21は、混合気を燃焼させるためのアンモニアエンジン100の主要部であり、シリンダブロック、シリンダヘッド、及びピストン等で構成されている。エンジン本体21では、シリンダブロック、シリンダヘッド、及びピストンにより燃焼室が画成されている。シリンダヘッドには、例えば点火プラグが設けられている。エンジン本体21は、アンモニアエンジン100を始動させるためのスタータを有している。 The engine body 21 is the main part of the ammonia engine 100 for burning the air-fuel mixture, and is composed of a cylinder block, a cylinder head, a piston, and the like. In the engine body 21, a combustion chamber is defined by a cylinder block, a cylinder head, and a piston. The cylinder head is provided with, for example, a spark plug. The engine body 21 has a starter for starting the ammonia engine 100.
 吸気流路22は、アンモニアエンジン100のエンジン本体21へ吸入空気を流通させる流路であり、例えば配管、サージタンク、インテークマニホールド、及び吸気ポート等が含まれる。吸気流路22の入口には、例えば、吸入する空気を濾過するエアクリーナ28が設けられている。 The intake flow path 22 is a flow path for passing intake air to the engine body 21 of the ammonia engine 100, and includes, for example, piping, a surge tank, an intake manifold, an intake port, and the like. At the inlet of the intake flow path 22, for example, an air cleaner 28 for filtering the intake air is provided.
 メインスロットル23は、エアクリーナ28を介して吸入した空気の流量を調整する弁である。メインスロットル23は、吸気流路22におけるエアクリーナ28の下流側に設けられている。メインスロットル23は、例えば電子制御スロットルバルブである。メインスロットル23は、ECU10と電気的に接続されている。メインスロットル23の動作は、ECU10によって制御される。 The main throttle 23 is a valve that adjusts the flow rate of the air sucked through the air cleaner 28. The main throttle 23 is provided on the downstream side of the air cleaner 28 in the intake flow path 22. The main throttle 23 is, for example, an electronically controlled throttle valve. The main throttle 23 is electrically connected to the ECU 10. The operation of the main throttle 23 is controlled by the ECU 10.
 メインインジェクタ24は、吸気流路22に燃料を噴射する弁である。メインインジェクタ24は、吸気流路22におけるメインスロットル23の下流側に設けられている。メインインジェクタ24の個数は、1個でもよいし複数個であってもよい。メインインジェクタ24の個数が1個の場合、メインインジェクタ24は、例えばエンジン本体21の吸気ポートに設けられていてもよい。メインインジェクタ24の個数が複数個の場合、メインインジェクタ24は、例えばエンジン本体21のサージタンクに設けられていてもよい。メインインジェクタ24は、燃料として改質ガスを含まないアンモニアガスを噴射する。メインインジェクタ24は、ECU10と電気的に接続されている。メインインジェクタ24の動作は、ECU10によって制御される。なお、メインインジェクタ24は、吸気流路22におけるメインスロットル23の上流側に設けられていてもよい。あるいは、メインインジェクタ24に代えて、吸気流路22に設けられたミキサなどの燃料供給装置から燃料を供給するようにしてもよい。 The main injector 24 is a valve that injects fuel into the intake flow path 22. The main injector 24 is provided on the downstream side of the main throttle 23 in the intake flow path 22. The number of main injectors 24 may be one or a plurality. When the number of main injectors 24 is one, the main injectors 24 may be provided, for example, in the intake port of the engine body 21. When the number of main injectors 24 is plural, the main injectors 24 may be provided, for example, in the surge tank of the engine body 21. The main injector 24 injects ammonia gas that does not contain reforming gas as fuel. The main injector 24 is electrically connected to the ECU 10. The operation of the main injector 24 is controlled by the ECU 10. The main injector 24 may be provided on the upstream side of the main throttle 23 in the intake flow path 22. Alternatively, instead of the main injector 24, fuel may be supplied from a fuel supply device such as a mixer provided in the intake flow path 22.
 排気流路25は、アンモニアエンジン100のエンジン本体21からの排気を流通させる流路であり、例えば排気ポート、配管、後処理装置、及び消音器等が含まれる。三元触媒26及びアンモニア吸着触媒の一例としてのSCR27は、この順で排気流路25に設けられている。三元触媒26は、排気ガス中のHを酸化して浄化すると共に、排気ガス中のNOxを還元して浄化する触媒である。SCR27は、還元反応により排気ガス中に含まれるNOxを浄化する選択還元触媒である。SCR27は、アンモニアを吸着する他の材料(例えばゼオライト系)からなる触媒であってもよい。 The exhaust flow path 25 is a flow path through which the exhaust gas from the engine body 21 of the ammonia engine 100 flows, and includes, for example, an exhaust port, piping, an aftertreatment device, a silencer, and the like. The three-way catalyst 26 and the SCR 27 as an example of the ammonia adsorption catalyst are provided in the exhaust flow path 25 in this order. The three-way catalyst 26 is adapted to purify the oxidation of H 2 in the exhaust gas, a catalyst for purifying by reducing NOx in the exhaust gas. SCR27 is a selective reduction catalyst that purifies NOx contained in exhaust gas by a reduction reaction. The SCR27 may be a catalyst made of another material (for example, zeolite-based) that adsorbs ammonia.
 改質部30は、改質流路31と、改質用スロットル(改質器上流弁)32と、NHタンク33と、気化器34と、改質用インジェクタ(改質用燃料噴射弁)35と、改質器36と、クーラ37と、ストップバルブ(改質器下流弁)38と、を有している。 The reforming section 30 includes a reforming flow path 31, a reforming throttle (reformer upstream valve) 32, an NH 3 tank 33, a vaporizer 34, and a reforming injector (reformer fuel injection valve). It has 35, a reformer 36, a cooler 37, and a stop valve (reformer downstream valve) 38.
 改質流路31は、燃料を改質ガスに改質するための流路である。改質流路31は、例えば、吸気流路22におけるメインスロットル23の上流側とメインスロットル23の下流側とを結ぶように設けられている。改質流路31は、吸気流路22におけるメインスロットル23の上流側から改質器36に改質用空気を流通させると共に、吸気流路22におけるメインスロットル23の下流側に改質器36から改質ガスを流通させる。改質用空気とは、改質器36で燃料を改質ガスに改質するために用いられる空気である。改質流路31には、改質器36が設けられている。なお、改質流路31は、例えば、吸気流路22におけるメインスロットル23の上流側に接続されずに、専用のエアクリーナを介して吸入した外気を改質用空気として改質器36に流通可能に構成されていてもよい。 The reforming flow path 31 is a flow path for reforming fuel into reforming gas. The reforming flow path 31 is provided, for example, so as to connect the upstream side of the main throttle 23 and the downstream side of the main throttle 23 in the intake flow path 22. The reforming flow path 31 allows reforming air to flow from the upstream side of the main throttle 23 in the intake flow path 22 to the reformer 36, and from the reformer 36 to the downstream side of the main throttle 23 in the intake flow path 22. Distribute the reformed gas. The reforming air is the air used for reforming the fuel into a reforming gas in the reformer 36. A reformer 36 is provided in the reforming flow rate 31. The reforming flow path 31 is not connected to the upstream side of the main throttle 23 in the intake flow path 22, and the outside air sucked through the dedicated air cleaner can be distributed to the reformer 36 as reforming air. It may be configured in.
 改質用スロットル32は、改質用空気の流量を調整する弁である。改質用スロットル32は、改質流路31における改質器36の上流側に設けられている。改質用スロットル32は、例えば電子制御スロットルバルブである。改質用スロットル32は、ECU10と電気的に接続されている。改質用スロットル32の動作は、ECU10によって制御される。 The reforming throttle 32 is a valve that adjusts the flow rate of reforming air. The reforming throttle 32 is provided on the upstream side of the reformer 36 in the reforming flow path 31. The reforming throttle 32 is, for example, an electronically controlled throttle valve. The reforming throttle 32 is electrically connected to the ECU 10. The operation of the reforming throttle 32 is controlled by the ECU 10.
 改質用スロットル32は、ECU10の制御により、全閉と全開との間で連続的又は段階的に開度を変更可能とされている。改質用スロットル32の全閉とは、改質用スロットル32に介してのガスの流通が不可能となる開度を意味する。改質用スロットル32の全閉は、改質用スロットル32の最小開度であってもよいし、改質用スロットル32に介してのガスの流通が実質的に不可能である範囲内の微小開度であってもよい。改質用スロットル32の全開とは、改質用スロットル32の開度が最も大きいことを意味する。 The opening degree of the reforming throttle 32 can be changed continuously or stepwise between fully closed and fully opened by controlling the ECU 10. The fully closed state of the reforming throttle 32 means an opening degree at which gas cannot flow through the reforming throttle 32. The fully closed reforming throttle 32 may be the minimum opening degree of the reforming throttle 32, or a minute amount within a range in which gas flow through the reforming throttle 32 is substantially impossible. It may be the opening degree. Fully opening the reforming throttle 32 means that the opening degree of the reforming throttle 32 is the largest.
 NHタンク33は、燃料としてのアンモニアを貯蔵するタンクである。NHタンク33は、特に限定されないが、例えば一般的な鋼製のボンベを用いることができる。NHタンク33では、例えばアンモニアが液体の状態を維持できるように加圧されている。NHタンク33は、気化器34と接続されている。 The NH 3 tank 33 is a tank for storing ammonia as a fuel. The NH 3 tank 33 is not particularly limited, but for example, a general steel cylinder can be used. In the NH 3 tank 33, for example, ammonia is pressurized so as to maintain a liquid state. The NH 3 tank 33 is connected to the vaporizer 34.
 気化器34は、NHタンク33から導かれたアンモニアを気化させる。気化器34は、メインインジェクタ24及び改質用インジェクタ35と接続されている。気化したアンモニア(アンモニアガス)は、メインインジェクタ24及び改質用インジェクタ35のそれぞれに導かれる。気化器34とメインインジェクタ24及び改質用インジェクタ35との間には、アンモニアガスの圧力を規制するレギュレータが設けられていてもよい。 The vaporizer 34 vaporizes the ammonia derived from the NH 3 tank 33. The vaporizer 34 is connected to the main injector 24 and the reforming injector 35. The vaporized ammonia (ammonia gas) is guided to each of the main injector 24 and the reforming injector 35. A regulator that regulates the pressure of ammonia gas may be provided between the vaporizer 34, the main injector 24, and the reforming injector 35.
 改質用インジェクタ35は、改質流路31に改質用アンモニアガス(燃料)を噴射する燃料噴射弁である。改質用インジェクタ35は、改質流路31における改質器36の上流側に設けられている。改質用インジェクタ35は、改質流路31における改質用スロットル32と改質器36との間に設けられている。改質用インジェクタ35の個数は、例えば1個である。改質用インジェクタ35は、ECU10と電気的に接続されている。改質用インジェクタ35の動作は、ECU10によって制御される。 The reforming injector 35 is a fuel injection valve that injects reforming ammonia gas (fuel) into the reforming flow path 31. The reforming injector 35 is provided on the upstream side of the reformer 36 in the reforming flow path 31. The reforming injector 35 is provided between the reforming throttle 32 and the reformer 36 in the reforming flow path 31. The number of reforming injectors 35 is, for example, one. The reforming injector 35 is electrically connected to the ECU 10. The operation of the reforming injector 35 is controlled by the ECU 10.
 改質器36は、改質用アンモニアガスを改質して改質ガスを生成する。ここでの改質器36は、改質用アンモニアガスを水素ガス(H)を含む改質ガスに改質する。改質器36は、改質器ヒータ36aと、改質用アンモニアガスを改質するための改質触媒36bと、有孔板部材(残留ガス混合抑制部材)36cと、を有している。改質器36は、例えば入口及び出口が縮径された外形略円筒状のケースを有しており、改質器ヒータ36a、改質触媒36b、及び有孔板部材36cは、ケースの軸方向に沿って並ぶようにケース内に配置されている。改質器36のケースの入口では、ケースの軸方向に沿って見たとき(以下、ケース断面視ともいう)ケースの断面略中央に改質流路31が接続されている。なお、有孔板部材36cは、必ずしも設けられていなくてもよい。改質器ヒータ36aと有孔板部材36cの順番は、逆でもよい。 The reformer 36 reforms the reforming ammonia gas to generate the reforming gas. The reformer 36 here reforms the reforming ammonia gas into a reforming gas containing hydrogen gas (H 2 ). The reformer 36 has a reformer heater 36a, a reforming catalyst 36b for reforming ammonia gas for reforming, and a perforated plate member (residual gas mixing suppressing member) 36c. The reformer 36 has, for example, a case having a substantially cylindrical outer shape in which the inlet and the outlet are reduced in diameter, and the reformer heater 36a, the reforming catalyst 36b, and the perforated plate member 36c are in the axial direction of the case. It is arranged in the case so as to line up along. At the inlet of the case of the reformer 36, the reforming flow path 31 is connected to substantially the center of the cross section of the case when viewed along the axial direction of the case (hereinafter, also referred to as a cross-sectional view of the case). The perforated plate member 36c does not necessarily have to be provided. The order of the reformer heater 36a and the perforated plate member 36c may be reversed.
 改質器ヒータ36aは、改質触媒36bの上流側に設けられ、改質触媒36bの暖機のために用いられる。改質器ヒータ36aは、例えば略渦巻状の電気ヒータである。改質器ヒータ36aの流入面は、改質触媒36bの流入面に沿って延びている。流入面とは、改質流路31のガス流れ方向上流側に臨む面である。改質器ヒータ36aの流出面は、改質触媒36bの流出面に沿って延びている。流出面とは、改質流路31のガス流れ方向下流側に臨む面である。改質器ヒータ36aは、ECU10と電気的に接続されている。改質器ヒータ36aの動作は、ECU10によって制御される。なお、改質器ヒータ36aは、小型燃焼器であってもよい。 The reformer heater 36a is provided on the upstream side of the reforming catalyst 36b and is used for warming up the reforming catalyst 36b. The reformer heater 36a is, for example, a substantially spiral electric heater. The inflow surface of the reformer heater 36a extends along the inflow surface of the reformer catalyst 36b. The inflow surface is a surface of the reforming flow path 31 facing upstream in the gas flow direction. The outflow surface of the reformer heater 36a extends along the outflow surface of the reformer catalyst 36b. The outflow surface is a surface of the reforming flow path 31 facing the downstream side in the gas flow direction. The reformer heater 36a is electrically connected to the ECU 10. The operation of the reformer heater 36a is controlled by the ECU 10. The reformer heater 36a may be a small combustor.
 改質触媒36bは、改質用インジェクタ35で噴射された改質用アンモニアガスを改質用空気を用いて改質する。ここでの改質触媒36bは、ATR[Autothermal Reformer]式アンモニア改質触媒である。改質触媒36bは、改質器ヒータ36aの熱又は改質触媒36bでの反応熱を利用して、改質用アンモニアガスを改質用空気を用いて熱解離させることで、水素ガスとアンモニアガスとを含む改質ガスを生成する。ここでの改質触媒36bは、例えば酸化による劣化を抑制するため、主に還元雰囲気(つまりNHリッチ状態の雰囲気)で用いられる。なお、改質触媒36bに低温反応触媒を採用してもよい。 The reforming catalyst 36b reforms the reforming ammonia gas injected by the reforming injector 35 with the reforming air. The reforming catalyst 36b here is an ATR [Autothermal Reformer] type ammonia reforming catalyst. The reforming catalyst 36b utilizes the heat of the reformer heater 36a or the reaction heat of the reforming catalyst 36b to thermally dissociate the reforming ammonia gas with the reforming air, thereby causing hydrogen gas and ammonia. Generates reformed gas containing gas. The reforming catalyst 36b here is mainly used in a reducing atmosphere (that is, an atmosphere in an NH 3- rich state) in order to suppress deterioration due to oxidation, for example. A low temperature reaction catalyst may be used for the reforming catalyst 36b.
 有孔板部材36cは、改質触媒36bの上流において改質触媒36bの流入面に沿って設けられている。有孔板部材36cは、例えば、改質器ヒータ36aの上流側に設けられた板状部材である。有孔板部材36cは、改質器ヒータ36aの流入面の略全体を覆うように配置されている。 The perforated plate member 36c is provided upstream of the reforming catalyst 36b along the inflow surface of the reforming catalyst 36b. The perforated plate member 36c is, for example, a plate-shaped member provided on the upstream side of the reformer heater 36a. The perforated plate member 36c is arranged so as to cover substantially the entire inflow surface of the reformer heater 36a.
 図3は、有孔板部材36cの平面図である。図3は、ケースの軸方向に沿って見たときの(ケース断面視での)有孔板部材36cの流入面を示している。なお、図3では、便宜上、有孔板部材36cのみを図示している。 FIG. 3 is a plan view of the perforated plate member 36c. FIG. 3 shows the inflow surface of the perforated plate member 36c (in the cross-sectional view of the case) when viewed along the axial direction of the case. Note that, for convenience, only the perforated plate member 36c is shown in FIG.
 図3に示されるように、有孔板部材36cの外形は、例えば略円盤状であり、複数の貫通孔H1,H2,H3,H4が形成されている。貫通孔H1,H2,H3,H4は、改質器36内における有孔板部材36cの上流側の空間と下流側の空間とを連通させるためのガス流通孔である。 As shown in FIG. 3, the outer shape of the perforated plate member 36c is, for example, substantially a disk shape, and a plurality of through holes H1, H2, H3, and H4 are formed. The through holes H1, H2, H3, and H4 are gas flow holes for communicating the space on the upstream side and the space on the downstream side of the perforated plate member 36c in the reformer 36.
 貫通孔H1,H2,H3,H4の総開口面積は、例えば、改質用インジェクタ35で噴射される改質用アンモニアガスの噴射量に応じて設定されている。貫通孔H1,H2,H3,H4では、改質器ヒータ36a及び改質触媒36bの流入面に改質用アンモニアガスを均一に流入させられる貫通孔の開口面積の分布となるように、例えば貫通孔の直径の大小及び貫通孔の数の多寡のうち少なくとも一方が調整されている。 The total opening area of the through holes H1, H2, H3, and H4 is set according to, for example, the injection amount of the reforming ammonia gas injected by the reforming injector 35. In the through holes H1, H2, H3, and H4, for example, the through holes have an opening area that allows the reforming ammonia gas to flow uniformly into the inflow surfaces of the reformer heater 36a and the reforming catalyst 36b. At least one of the size of the hole diameter and the number of through holes is adjusted.
 例えば、有孔板部材36cでは、貫通孔H1の直径は、貫通孔H2の直径よりも小さい。貫通孔H2の直径は、貫通孔H3の直径よりも小さい。貫通孔H3の直径は、貫通孔H4の直径よりも小さい。つまり、貫通孔H1は、貫通孔H1,H2,H3,H4のうちで最も小さい直径を有する。貫通孔H4は、貫通孔H1,H2,H3,H4のうちで最も大きい直径を有する。 For example, in the perforated plate member 36c, the diameter of the through hole H1 is smaller than the diameter of the through hole H2. The diameter of the through hole H2 is smaller than the diameter of the through hole H3. The diameter of the through hole H3 is smaller than the diameter of the through hole H4. That is, the through hole H1 has the smallest diameter among the through holes H1, H2, H3, and H4. The through hole H4 has the largest diameter among the through holes H1, H2, H3, and H4.
 例えば、有孔板部材36cでは、貫通孔H2の数は、貫通孔H1の数よりも多い。貫通孔H3の数は、貫通孔H2の数よりも多い。貫通孔H4の数は、貫通孔H3の数よりも多い。 For example, in the perforated plate member 36c, the number of through holes H2 is larger than the number of through holes H1. The number of through holes H3 is larger than the number of through holes H2. The number of through holes H4 is larger than the number of through holes H3.
 また、貫通孔H1,H2,H3,H4は、改質器ヒータ36a及び改質触媒36bの流入面に改質用アンモニアガスを均一に流入させられる貫通孔の開口面積の分布となるように配置されている。 Further, the through holes H1, H2, H3, and H4 are arranged so as to have an opening area of the through holes so that the reforming ammonia gas can uniformly flow into the inflow surfaces of the reformer heater 36a and the reforming catalyst 36b. Has been done.
 例えば、貫通孔H1,H2,H3,H4は、有孔板部材36cの円形部分において半径方向について略放射状を呈するように配置されている。貫通孔H1,H2,H3,H4のそれぞれは、有孔板部材36cの円形部分において、互いに同じ直径の貫通孔が中心から同一半径の円周上に並ぶように配置されている。貫通孔H1は、有孔板部材36cの円形部分における中央部の領域に設けられている。貫通孔H2は、有孔板部材36cの円形部分における貫通孔H1が設けられた領域を囲む領域に設けられている。貫通孔H3は、有孔板部材36cの円形部分における貫通孔H2が設けられた領域を囲む領域に設けられている。貫通孔H4は、有孔板部材36cの円形部分における貫通孔H3が設けられた領域を囲む円形部分の外縁部の領域に設けられている。 For example, the through holes H1, H2, H3, and H4 are arranged so as to be substantially radial in the radial direction in the circular portion of the perforated plate member 36c. Each of the through holes H1, H2, H3, and H4 is arranged in the circular portion of the perforated plate member 36c so that through holes having the same diameter are arranged on the circumference having the same radius from the center. The through hole H1 is provided in the central region of the circular portion of the perforated plate member 36c. The through hole H2 is provided in a region surrounding the region where the through hole H1 is provided in the circular portion of the perforated plate member 36c. The through hole H3 is provided in a region surrounding the region where the through hole H2 is provided in the circular portion of the perforated plate member 36c. The through hole H4 is provided in the region of the outer edge portion of the circular portion surrounding the region where the through hole H3 is provided in the circular portion of the perforated plate member 36c.
 ここで、改質器36の入口に対した改質流路31が上述のような位置関係で接続されていることから、改質流路31から改質器36に流入した改質用アンモニアガスは、改質器36のケースの入口側において、ケースの断面略中央寄りほど高密度となるような流入分布で改質器36に流入する。有孔板部材36cでは、上述のような貫通孔H1,H2,H3,H4により、有孔板部材36cの円形部分における中央部よりも外縁部の方が、流入した改質用アンモニアガスが流通し易い。したがって、上述のような流入分布で改質器36に流入した改質用アンモニアガスは、有孔板部材36cの貫通孔H1,H2,H3,H4を通り抜けることによって、ケース断面視において均等化される。したがって、有孔板部材36cにより、改質器ヒータ36a及び改質触媒36bへの改質用アンモニアガスの流れが平行流に近づけられる。 Here, since the reforming flow path 31 with respect to the inlet of the reformer 36 is connected in the positional relationship as described above, the reforming ammonia gas flowing into the reformer 36 from the reforming flow path 31 Inflows into the reformer 36 on the inlet side of the case of the reformer 36 with an inflow distribution such that the density becomes higher toward the center of the cross section of the case. In the perforated plate member 36c, the inflowing reforming ammonia gas flows through the through holes H1, H2, H3, and H4 as described above in the outer edge portion of the circular portion of the perforated plate member 36c than in the central portion. Easy to do. Therefore, the reforming ammonia gas that has flowed into the reformer 36 with the inflow distribution as described above is equalized in the cross-sectional view of the case by passing through the through holes H1, H2, H3, and H4 of the perforated plate member 36c. To. Therefore, the perforated plate member 36c brings the flow of the reforming ammonia gas to the reformer heater 36a and the reforming catalyst 36b closer to the parallel flow.
 また、有孔板部材36cにより改質器36内における有孔板部材36cの上流側の空間と下流側の空間とが一定程度で区画されていることから、改質用アンモニアガスと改質器の残留ガスとが混じり合うことが物理的に抑制される。例えば改質用インジェクタ35で改質用アンモニアガスが噴射された際、噴射の勢いで改質用アンモニアガスと改質器の残留ガスとが直接的に混じり合うことが抑えられる。更に、改質用インジェクタ35で改質用アンモニアガスが噴射された際、有孔板部材36cの上流側の空間の圧力が下流側の空間と比べて高まるため、上流側の空間から下流側の空間へ貫通孔H1,H2,H3,H4を介して改質用アンモニアガスが一方的に流動し易くなる。したがって、下流側の空間において改質用アンモニアガスが残留ガスを下流側に向かって平面的に押し出すこととなる。 Further, since the space on the upstream side and the space on the downstream side of the perforated plate member 36c in the reformer 36 are partitioned by the perforated plate member 36c to a certain extent, the reforming ammonia gas and the reformer It is physically suppressed from being mixed with the residual gas of. For example, when the reforming ammonia gas is injected by the reforming injector 35, it is possible to prevent the reforming ammonia gas and the residual gas of the reformer from being directly mixed by the force of the injection. Further, when the reforming ammonia gas is injected by the reforming injector 35, the pressure in the space on the upstream side of the perforated plate member 36c is higher than that in the space on the downstream side, so that the space on the upstream side is on the downstream side. Ammonia gas for reforming easily flows unilaterally into the space through the through holes H1, H2, H3, and H4. Therefore, in the space on the downstream side, the reforming ammonia gas pushes out the residual gas in a plane toward the downstream side.
 クーラ37は、改質流路31における改質器36の下流側に設けられている。クーラ37は、改質器36からの改質ガスを冷却する。クーラ37としては、例えば、アンモニアエンジン100の冷却水又は車両の走行風を低温熱源として用いた熱交換器を用いることができる。 The cooler 37 is provided on the downstream side of the reformer 36 in the reforming flow path 31. The cooler 37 cools the reformed gas from the reformer 36. As the cooler 37, for example, a heat exchanger using the cooling water of the ammonia engine 100 or the running wind of the vehicle as a low temperature heat source can be used.
 ストップバルブ38は、改質流路31における改質器36の下流側に設けられている。ここでのストップバルブ38は、例えば、クーラ37と吸気流路22との間に設けられた電磁弁である。ストップバルブ38は、改質流路31から吸気流路22に流通するガスの流量を調整する。ストップバルブ38は、ECU10と電気的に接続されている。ストップバルブ38の動作は、ECU10によって制御される。 The stop valve 38 is provided on the downstream side of the reformer 36 in the reforming flow path 31. The stop valve 38 here is, for example, an electromagnetic valve provided between the cooler 37 and the intake flow path 22. The stop valve 38 adjusts the flow rate of the gas flowing from the reforming flow path 31 to the intake flow path 22. The stop valve 38 is electrically connected to the ECU 10. The operation of the stop valve 38 is controlled by the ECU 10.
 ストップバルブ38は、ECU10の制御により、全閉と全開との間で連続的又は段階的に開度を変更可能とされている。ストップバルブ38の全閉とは、ストップバルブ38に介してのガスの流通が不可能となる開度を意味する。ストップバルブ38の全閉は、ストップバルブ38の最小開度であってもよいし、ストップバルブ38に介してのガスの流通が実質的に不可能である範囲内の微小開度であってもよい。ストップバルブ38の全開とは、ストップバルブ38の開度が最も大きいことを意味する。 The opening degree of the stop valve 38 can be changed continuously or stepwise between fully closed and fully opened by the control of the ECU 10. The fully closed state of the stop valve 38 means an opening degree at which gas cannot flow through the stop valve 38. The fully closed stop valve 38 may be the minimum opening of the stop valve 38, or may be a minute opening within a range in which gas flow through the stop valve 38 is substantially impossible. Good. Fully opening the stop valve 38 means that the opening degree of the stop valve 38 is the largest.
 図2は、図1のアンモニアエンジンの制御のための構成のブロック図である。図2に示されるように、ECU10は、キースイッチ(始動信号出力部)1と電気的に接続されている。 FIG. 2 is a block diagram of a configuration for controlling the ammonia engine of FIG. As shown in FIG. 2, the ECU 10 is electrically connected to the key switch (starting signal output unit) 1.
 ECU10は、アンモニアエンジン100を制御する電子制御ユニットである。ECU10は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]、通信回路等を有しているコントローラである。ECU10では、例えば、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種の機能を実現する。ECU10は、複数の電子ユニットから構成されていてもよい。 The ECU 10 is an electronic control unit that controls the ammonia engine 100. The ECU 10 is a controller having a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], a communication circuit, and the like. In the ECU 10, for example, various functions are realized by loading the program stored in the ROM into the RAM and executing the program loaded in the RAM in the CPU. The ECU 10 may be composed of a plurality of electronic units.
 キースイッチ1は、アンモニアエンジン100を始動させるための始動信号を出力するスイッチである。キースイッチ1は、例えば、その操作によりエンジン本体21のスタータを作動させるためのイグニッションスイッチである。キースイッチ1は、キーが挿し込まれると共に回転されることで、操作される。キースイッチ1は、内部に物理的な接点を含むキーシリンダを有する。キーシリンダは、キースイッチ1の操作位置に応じて複数のスイッチ状態が切り替えられる。スイッチ状態としては、OFF,ON(キースイッチオン)及びST(スタータスイッチオン)が挙げられる。キースイッチ1は、スイッチ状態に関する信号をECU10に出力する。なお、キースイッチ1に代えて、アンモニアエンジン100を始動させるための始動信号を出力するボタンを用いてもよい。 The key switch 1 is a switch that outputs a start signal for starting the ammonia engine 100. The key switch 1 is, for example, an ignition switch for operating the starter of the engine body 21 by its operation. The key switch 1 is operated by being rotated as the key is inserted. The key switch 1 has a key cylinder including a physical contact inside. A plurality of switch states of the key cylinder can be switched according to the operation position of the key switch 1. Examples of the switch state include OFF, ON (key switch on) and ST (starter switch on). The key switch 1 outputs a signal related to the switch state to the ECU 10. In addition, instead of the key switch 1, a button for outputting a start signal for starting the ammonia engine 100 may be used.
 キースイッチ1は、例えば、スイッチ状態がOFFの場合に車両側の運転用回路を開状態に切り替えることで、ECU10にOFF信号を出力する。キースイッチ1は、例えば、スイッチ状態がONの場合に車両側の運転用回路を閉状態に切り替えることで、ECU10にON信号を出力する。キースイッチ1は、例えば、スイッチ状態がSTの場合に車両側の始動用回路を閉状態に切り替えることで、ECU10にST信号(始動信号)を出力する。なお、キースイッチ1は、車両の運転者による操作に応じて上記各信号を出力する電子回路を用いて構成されていてもよい。 The key switch 1 outputs an OFF signal to the ECU 10 by switching the driving circuit on the vehicle side to the open state, for example, when the switch state is OFF. The key switch 1 outputs an ON signal to the ECU 10 by switching the driving circuit on the vehicle side to the closed state when the switch state is ON, for example. The key switch 1 outputs an ST signal (starting signal) to the ECU 10 by switching the starting circuit on the vehicle side to the closed state, for example, when the switch state is ST. The key switch 1 may be configured by using an electronic circuit that outputs each of the above signals in response to an operation by the driver of the vehicle.
 次に、ECU10の機能的構成について説明する。ECU10は、エンジン状態取得部11と、第1制御実行部12と、第2制御実行部13と、第3制御実行部14と、始動許可部15と、を有している。 Next, the functional configuration of the ECU 10 will be described. The ECU 10 includes an engine state acquisition unit 11, a first control execution unit 12, a second control execution unit 13, a third control execution unit 14, and a start permission unit 15.
 エンジン状態取得部11は、アンモニアエンジン100の状態であるエンジン状態を取得する。エンジン状態取得部11は、キースイッチ1からのスイッチ状態に関する信号に基づいて、上述のキースイッチ1のスイッチ状態を取得する。エンジン状態取得部11は、始動信号が入力された場合に、例えば、アンモニアエンジン100が始動準備状態であると判定する。始動準備状態は、アンモニアエンジン100を始動するための準備を行う状態である。始動準備状態では、始動信号が入力された以降において改質触媒36bが還元雰囲気とされると共に改質触媒36bの暖機が行われる。改質触媒36bの暖機が完了すると、始動準備状態が終了してスタータが作動される。なお、スタータの作動は、始動準備状態が終了する前に開始されてもよい。 The engine state acquisition unit 11 acquires the engine state, which is the state of the ammonia engine 100. The engine state acquisition unit 11 acquires the switch state of the key switch 1 described above based on the signal regarding the switch state from the key switch 1. When the start signal is input, the engine state acquisition unit 11 determines, for example, that the ammonia engine 100 is in the start preparation state. The start-preparation state is a state in which preparations are made for starting the ammonia engine 100. In the start preparation state, after the start signal is input, the reforming catalyst 36b is made into a reducing atmosphere and the reforming catalyst 36b is warmed up. When the warm-up of the reforming catalyst 36b is completed, the start preparation state is completed and the starter is operated. The operation of the starter may be started before the start preparation state is completed.
 第1制御実行部12は、エンジン状態取得部11により始動準備状態であると判定された場合、改質器ヒータ36aに通電する。これにより、改質器ヒータ36aの温度が上昇する。改質器ヒータ36aの熱は、後述の第2制御において改質用インジェクタ35によって改質用アンモニアガスが噴射された際、改質用アンモニアガスの下流側への流動によって改質触媒36bに伝達される。 When the engine state acquisition unit 11 determines that the first control execution unit 12 is in the start preparation state, the first control execution unit 12 energizes the reformer heater 36a. As a result, the temperature of the reformer heater 36a rises. The heat of the reformer heater 36a is transferred to the reforming catalyst 36b by the flow of the reforming ammonia gas to the downstream side when the reforming ammonia gas is injected by the reforming injector 35 in the second control described later. Will be done.
 第1制御実行部12は、エンジン状態取得部11により始動準備状態であると判定された場合、改質用スロットル32の開度を全閉とすると共にストップバルブ38の開度を所定の初期開度とする第1制御を実行する。第1制御実行部12は、エンジン状態取得部11により始動準備状態であると判定された場合、例えば改質器ヒータ36aに通電した状態で、第1制御を実行する。 When the engine state acquisition unit 11 determines that the first control execution unit 12 is in the start preparation state, the first control execution unit 12 fully closes the opening degree of the reforming throttle 32 and opens the opening degree of the stop valve 38 to a predetermined initial position. The first control is executed. When the engine state acquisition unit 11 determines that the first control execution unit 12 is in the start preparation state, the first control execution unit 12 executes the first control while, for example, the reformer heater 36a is energized.
 ストップバルブ38の初期開度は、後述の第3制御におけるストップバルブ38の開度の初期値である。初期開度は、ストップバルブ38の全閉よりも大きい開度である。初期開度は、例えば、始動準備状態となる前から改質器36内に残留しているガス(残留ガス)を改質器36外に流出させられる程度の開度とすることができる。初期開度は、予めECU10に記憶されていてもよい。 The initial opening degree of the stop valve 38 is an initial value of the opening degree of the stop valve 38 in the third control described later. The initial opening degree is larger than the fully closed stop valve 38. The initial opening degree can be set to such an opening degree that the gas (residual gas) remaining in the reformer 36 before the start-preparation state can be discharged to the outside of the reformer 36. The initial opening degree may be stored in the ECU 10 in advance.
 第2制御実行部13は、改質用スロットル32の開度を全閉とした状態で、第2制御を実行する。第2制御は、所定の燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させる制御である。燃料噴射パターンは、改質用インジェクタ35の開弁時間を時系列で規定したパターンとすることができる。燃料噴射パターンは、始動信号が入力された時点からの時系列として規定されてもよい。第2制御実行部13は、例えば、上述の第1制御の後に改質用スロットル32の開度を全閉とした状態で維持すると共に、第2制御を実行する。第2制御の具体例については、後述する。 The second control execution unit 13 executes the second control with the opening degree of the reforming throttle 32 fully closed. The second control is a control in which the reforming injector 35 is injected with the reforming ammonia gas in a predetermined fuel injection pattern. The fuel injection pattern can be a pattern in which the valve opening time of the reforming injector 35 is defined in time series. The fuel injection pattern may be defined as a time series from the time when the start signal is input. For example, the second control execution unit 13 maintains the opening degree of the reforming throttle 32 in a fully closed state after the first control described above, and executes the second control. A specific example of the second control will be described later.
 第3制御実行部14は、改質用スロットル32の開度を全閉とした状態で、第3制御を実行する。第3制御は、遅くとも置換タイミングでストップバルブ38の開度が全閉に至るようにストップバルブ38の開度を低減させる制御である。 The third control execution unit 14 executes the third control with the opening degree of the reforming throttle 32 fully closed. The third control is a control that reduces the opening degree of the stop valve 38 so that the opening degree of the stop valve 38 reaches the fully closed position at the latest at the replacement timing.
 置換タイミングは、第2制御で噴射された改質用アンモニアガスによって改質器36の残留ガスが置換されるタイミングである。「改質用アンモニアガスによって改質器36の残留ガスが置換される」とは、改質触媒36bが改質用アンモニアガスで還元雰囲気となることを意味する。置換タイミングは、例えば、改質用アンモニアガスによって改質器36の残留ガスが完全に置換されたと推定される時点であってもよいし、改質用アンモニアガスによって改質器36の残留ガスが所定割合で置換されたと推定される時点であってもよい。 The replacement timing is the timing at which the residual gas of the reformer 36 is replaced by the reforming ammonia gas injected in the second control. "The residual gas of the reformer 36 is replaced by the reforming ammonia gas" means that the reforming catalyst 36b has a reducing atmosphere with the reforming ammonia gas. The replacement timing may be, for example, a time when it is estimated that the residual gas of the reformer 36 is completely replaced by the reforming ammonia gas, or the residual gas of the reformer 36 is replaced by the reforming ammonia gas. It may be at a time when it is estimated that the gas has been replaced at a predetermined rate.
 第3制御実行部14は、第2制御で噴射された改質用アンモニアガスの噴射量の時間積算値と置換推定容積量とに基づいて、置換タイミングを算出する。置換推定容積量は、改質用アンモニアガスによって改質器36の残留ガスが置換されたか否かを推定するための容積の閾値である。置換推定容積量は、少なくとも改質用スロットル32からストップバルブ38までの容積値であればよい。置換推定容積量は、例えば、改質用スロットル32からストップバルブ38までの改質流路31及び改質器36の容積値とすることができる。 The third control execution unit 14 calculates the replacement timing based on the time-integrated value of the injection amount of the reforming ammonia gas injected in the second control and the estimated replacement volume amount. The replacement estimated volume amount is a volume threshold value for estimating whether or not the residual gas of the reformer 36 has been replaced by the reforming ammonia gas. The estimated replacement volume may be at least the volume value from the reforming throttle 32 to the stop valve 38. The estimated replacement volume can be, for example, the volume value of the reforming flow path 31 from the reforming throttle 32 to the stop valve 38 and the reformer 36.
 ここでの改質用アンモニアガスの噴射量は、改質用アンモニアガスによって改質器36外に残留ガスを押し出すための改質用アンモニアガスの噴射量(始動用改質用アンモニアガス噴射量)を意味する。改質用アンモニアガスの噴射量は、例えば、改質用インジェクタ35の噴射圧(例えばNHタンク33の吐出圧、又は、レギュレータの規制圧)と改質用アンモニアガスの噴射時間とに基づいて算出することができる。 The injection amount of the reforming ammonia gas here is the injection amount of the reforming ammonia gas for pushing the residual gas out of the reformer 36 by the reforming ammonia gas (the injection amount of the reforming ammonia gas for starting). Means. The injection amount of the reforming ammonia gas is based on, for example, the injection pressure of the reforming injector 35 (for example, the discharge pressure of the NH 3 tank 33 or the regulation pressure of the regulator) and the injection time of the reforming ammonia gas. It can be calculated.
 第3制御実行部14は、例えば、上述の第1制御の後に改質用スロットル32の開度を全閉とした状態で維持すると共に、第2制御を実行しつつ、第2制御で噴射された改質用アンモニアガスの噴射量に基づいて第3制御を実行する。 For example, the third control execution unit 14 maintains the opening degree of the reforming throttle 32 in a fully closed state after the first control described above, and is injected by the second control while executing the second control. The third control is executed based on the injection amount of the reforming ammonia gas.
 第2制御及び第3制御の具体例について、図4及び図5を参照して説明する。 Specific examples of the second control and the third control will be described with reference to FIGS. 4 and 5.
 一例として、図4は、図1のアンモニアエンジンの動作例を示すタイミングチャートである。図4(a)には、第1燃料噴射パターンに対応するように改質用インジェクタ35で噴射された改質用アンモニアガスの噴射圧の経時的推移が示されている。噴射圧がP1となっている期間が、改質用インジェクタ35の開弁期間を意味する。図4(b)には、ガス置換量の経時的推移が示されている。図4(c)には、ストップバルブ38の開度の経時的推移が示されている。 As an example, FIG. 4 is a timing chart showing an operation example of the ammonia engine of FIG. FIG. 4A shows a change over time in the injection pressure of the reforming ammonia gas injected by the reforming injector 35 so as to correspond to the first fuel injection pattern. The period during which the injection pressure is P1 means the valve opening period of the reforming injector 35. FIG. 4B shows the change over time in the amount of gas replacement. FIG. 4C shows the change over time in the opening degree of the stop valve 38.
 図4(a)~図4(c)に示されるように、時刻t1において始動信号が入力されてエンジン状態取得部11により始動準備状態が判定される。時刻t1において、第1制御実行部12により、改質器ヒータ36aの通電が開始される。時刻t1において、第1制御実行部12により、第1制御が実行される。具体的には、第1制御実行部12により、改質用スロットル32の開度が全閉とされる(図示省略)と共に、ストップバルブ38の開度が初期開度S1とされる。ここでは、ストップバルブ38の開度が初期開度S1とされる。ストップバルブ38の開度は、図4(c)の例のように時刻t1よりも前から予め初期開度S1とされていてもよい。その後、第2制御実行部13及び第3制御実行部14により、改質用スロットル32の開度を全閉とした状態が維持されると共に、第2制御及び第3制御が実行される。 As shown in FIGS. 4A to 4C, a start signal is input at time t1 and the engine state acquisition unit 11 determines the start preparation state. At time t1, the first control execution unit 12 starts energizing the reformer heater 36a. At time t1, the first control execution unit 12 executes the first control. Specifically, the first control execution unit 12 sets the opening degree of the reforming throttle 32 to be fully closed (not shown), and the opening degree of the stop valve 38 to be the initial opening degree S1. Here, the opening degree of the stop valve 38 is defined as the initial opening degree S1. The opening degree of the stop valve 38 may be set to the initial opening degree S1 in advance before the time t1 as in the example of FIG. 4C. After that, the second control execution unit 13 and the third control execution unit 14 maintain the state in which the opening degree of the reforming throttle 32 is fully closed, and the second control and the third control are executed.
 図4(a)に示されるように、時刻t2(例えば改質器ヒータ36aの通電時間が所定時間となったとき)において、第2制御実行部13により、改質用インジェクタ35からの改質用アンモニアガスの噴射が開始される。時刻t2以降において、第2制御実行部13により、所定の噴射圧P1での改質用インジェクタ35の開弁が維持され、改質用アンモニアガスが連続的に噴射される。つまり、第2制御実行部13は、第2制御において、連続的に改質用アンモニアガスを噴射する第1燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させる。 As shown in FIG. 4A, reforming from the reforming injector 35 by the second control execution unit 13 at time t2 (for example, when the energizing time of the reformer heater 36a reaches a predetermined time). Ammonia gas injection is started. After time t2, the second control execution unit 13 maintains the valve opening of the reforming injector 35 at a predetermined injection pressure P1, and the reforming ammonia gas is continuously injected. That is, in the second control, the second control execution unit 13 injects the reforming ammonia gas into the reforming injector 35 in the first fuel injection pattern in which the reforming ammonia gas is continuously injected.
 図4(b)に示されるように、時刻t2において、第3制御実行部14により、改質用インジェクタ35の噴射圧と改質用アンモニアガスの噴射時間(時刻t2からの経過時間)とに基づいて、改質用アンモニアガスの噴射量の算出及びガス置換量の算出が開始される。ガス置換量は、改質用インジェクタ35で噴射された改質用アンモニアガスの噴射量の時間積算値である。時刻t2からの時間経過に伴って、第3制御実行部14により算出されたガス置換量が増加する。時刻t3において、第3制御実行部14により算出されたガス置換量が置換推定容積量Thに達する。すなわち、時刻t3は置換タイミングである。 As shown in FIG. 4B, at time t2, the third control execution unit 14 sets the injection pressure of the reforming injector 35 and the reforming ammonia gas injection time (elapsed time from time t2). Based on this, the calculation of the injection amount of the reforming ammonia gas and the calculation of the gas replacement amount are started. The gas replacement amount is a time-integrated value of the injection amount of the reforming ammonia gas injected by the reforming injector 35. With the passage of time from the time t2, the amount of gas replacement calculated by the third control execution unit 14 increases. At time t3, the gas replacement amount calculated by the third control execution unit 14 reaches the replacement estimated volume amount Th. That is, the time t3 is the replacement timing.
 図4(c)に示されるように、時刻t3において、第3制御実行部14により、ストップバルブ38の開度が全閉とされる。つまり、第3制御実行部14は、第3制御において、置換タイミングまでストップバルブ38の開度を初期開度に維持すると共に、置換タイミングでストップバルブ38の開度を全閉とするようにストップバルブ38の開度を低減させる。 As shown in FIG. 4C, at time t3, the opening degree of the stop valve 38 is fully closed by the third control execution unit 14. That is, in the third control, the third control execution unit 14 maintains the opening degree of the stop valve 38 at the initial opening degree until the replacement timing, and stops so as to fully close the opening degree of the stop valve 38 at the replacement timing. The opening degree of the valve 38 is reduced.
 図4(c)の例では、時刻t3において、第3制御で低減されたストップバルブ38の開度が全閉に至る。すなわち、図4(c)の第3制御では、遅くとも置換タイミングでストップバルブ38の開度が全閉に至るようにストップバルブ38の開度が低減される。 In the example of FIG. 4C, at time t3, the opening degree of the stop valve 38 reduced by the third control reaches full closure. That is, in the third control of FIG. 4C, the opening degree of the stop valve 38 is reduced so that the opening degree of the stop valve 38 is fully closed at the latest at the replacement timing.
 以上説明した図4(a)~図4(c)の例では、第1制御により、改質用スロットル32の開度が全閉とされるため、第2制御において改質用インジェクタ35によって噴射された改質用アンモニアガスが、改質用スロットル32を介して流通(逆流)することを阻止できる。第1制御により、ストップバルブ38の開度が初期開度S1とされると共に、第2制御により、連続的に改質用アンモニアガスが噴射されるため、改質用アンモニアガスによって改質器36外に残留ガスが押し出される。また、第3制御により、置換タイミングでストップバルブ38の開度が全閉とされるため、改質用スロットル32の開度が全閉で且つストップバルブ38の開度が全閉となった状態で、改質用インジェクタ35で噴射された燃料で還元雰囲気となった改質器36が暖機される。 In the examples of FIGS. 4 (a) to 4 (c) described above, since the opening degree of the reforming throttle 32 is fully closed by the first control, the reforming injector 35 injects the gas in the second control. It is possible to prevent the reformed ammonia gas from flowing (backflow) through the reforming throttle 32. Since the opening degree of the stop valve 38 is set to the initial opening degree S1 by the first control and the reforming ammonia gas is continuously injected by the second control, the reformer 36 is made by the reforming ammonia gas. Residual gas is pushed out. Further, since the opening degree of the stop valve 38 is fully closed at the replacement timing by the third control, the opening degree of the reforming throttle 32 is fully closed and the opening degree of the stop valve 38 is fully closed. Then, the reformer 36, which has a reducing atmosphere with the fuel injected by the reforming injector 35, is warmed up.
 他の例として、図5は、図1のアンモニアエンジンの他の動作例を示すタイミングチャートである。図5(a)には、第2燃料噴射パターンに対応するように改質用インジェクタ35で噴射された改質用アンモニアガスの噴射圧の経時的推移が示されている。噴射圧がP1となっている期間が、改質用インジェクタ35の開弁期間を意味する。図5(b)には、ガス置換量の経時的推移が示されている。図5(c)には、ストップバルブ38の開度の経時的推移が示されている。 As another example, FIG. 5 is a timing chart showing another operation example of the ammonia engine of FIG. FIG. 5A shows a change over time in the injection pressure of the reforming ammonia gas injected by the reforming injector 35 so as to correspond to the second fuel injection pattern. The period during which the injection pressure is P1 means the valve opening period of the reforming injector 35. FIG. 5B shows the change over time in the amount of gas replacement. FIG. 5C shows a change over time in the opening degree of the stop valve 38.
 図5(a)~図5(c)に示されるように、時刻t4において始動信号が入力されてエンジン状態取得部11により始動準備状態が判定される。時刻t4において、図4の例と同様、第1制御実行部12により、改質器ヒータ36aの通電が開始されると共に、第1制御が実行される。その後、第2制御実行部13及び第3制御実行部14により、改質用スロットル32の開度を全閉とした状態が維持されると共に、第2制御及び第3制御が実行される。 As shown in FIGS. 5A to 5C, a start signal is input at time t4, and the engine state acquisition unit 11 determines the start preparation state. At time t4, as in the example of FIG. 4, the first control execution unit 12 starts energization of the reformer heater 36a and executes the first control. After that, the second control execution unit 13 and the third control execution unit 14 maintain the state in which the opening degree of the reforming throttle 32 is fully closed, and the second control and the third control are executed.
 図5(a)に示されるように、時刻t5(例えば改質器ヒータ36aの通電時間が所定時間となったとき)において、第2制御実行部13により、改質用インジェクタ35からの改質用アンモニアガスの噴射が開始される。時刻t5以降において、第2制御実行部13により、所定の噴射圧P1で改質用インジェクタ35が開弁され、改質用アンモニアガスが間欠的に噴射される。より詳しくは、時刻t5~時刻t6(以下、第1開弁時間)、時刻t7~時刻t8(以下、第2開弁時間)、時刻t9~時刻t10(以下、第3開弁時間)、及び時刻t11~時刻t12(以下、第4開弁時間)において、改質用インジェクタ35が開弁される。つまり、第2制御実行部13は、第2制御として、間欠的に改質用アンモニアガスを噴射する第2燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させる。 As shown in FIG. 5A, reforming from the reforming injector 35 by the second control execution unit 13 at time t5 (for example, when the energizing time of the reformer heater 36a reaches a predetermined time). Ammonia gas injection is started. After time t5, the reforming injector 35 is opened by the second control execution unit 13 at a predetermined injection pressure P1, and the reforming ammonia gas is intermittently injected. More specifically, time t5 to time t6 (hereinafter, first valve opening time), time t7 to time t8 (hereinafter, second valve opening time), time t9 to time t10 (hereinafter, third valve opening time), and The reforming injector 35 is opened from time t11 to time t12 (hereinafter, the fourth valve opening time). That is, the second control execution unit 13 injects the reforming ammonia gas into the reforming injector 35 in the second fuel injection pattern in which the reforming ammonia gas is intermittently injected as the second control.
 図5(b)に示されるように、時刻t5において、第3制御実行部14により、改質用インジェクタ35の噴射圧と改質用アンモニアガスの噴射時間とに基づいて、改質用アンモニアガスの噴射量の算出及びガス置換量の算出が開始される。より詳しくは、時刻t5~時刻t7において、第3制御実行部14により、上記第1開弁時間で噴射した改質用アンモニアガスの噴射量に相当するガス置換量が算出され、ガス置換量G1に達する。時刻t7~時刻t9において、第3制御実行部14により、上記第1及び第2開弁時間で噴射した改質用アンモニアガスの噴射量に相当するガス置換量が算出され、ガス置換量G2に達する。時刻t9~時刻t11において、第3制御実行部14により、上記第1~第3開弁時間で噴射した改質用アンモニアガスの噴射量に相当するガス置換量が算出され、ガス置換量G3に達する。時刻t11~時刻t13において、第3制御実行部14により、上記第1~第4開弁時間で噴射した改質用アンモニアガスの噴射量に相当するガス置換量が算出され、置換推定容積量Thに達する。すなわち、時刻t13は置換タイミングである。 As shown in FIG. 5B, at time t5, the third control execution unit 14 uses the reforming ammonia gas based on the injection pressure of the reforming injector 35 and the reforming ammonia gas injection time. Calculation of the injection amount and calculation of the gas replacement amount are started. More specifically, from time t5 to time t7, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first valve opening time, and the gas replacement amount G1. To reach. From time t7 to time t9, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first and second valve opening times, and sets the gas replacement amount to G2. Reach. From time t9 to time t11, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first to third valve opening times, and sets the gas replacement amount to G3. Reach. From time t11 to time t13, the third control execution unit 14 calculates a gas replacement amount corresponding to the injection amount of the reforming ammonia gas injected during the first to fourth valve opening times, and the replacement estimated volume amount Th. To reach. That is, the time t13 is the replacement timing.
 図5(c)に示されるように、時刻t5において、第3制御実行部14により、改質用アンモニアガスの噴射量に応じたストップバルブ38の開度の低減が開始される。より詳しくは、時刻t5~時刻t7において、第3制御実行部14により、上記第1開弁時間に応じて設定される第1低減勾配に従って、ストップバルブ38の開度が初期開度S1から開度S2まで低減される。時刻t7~時刻t9において、第3制御実行部14により、上記第2開弁時間に応じて設定される第2低減勾配に従って、ストップバルブ38の開度が開度S2から開度S3まで低減される。時刻t9~時刻t11において、第3制御実行部14により、上記第3開弁時間に応じて設定される第3低減勾配に従って、ストップバルブ38の開度が開度S3から低減される。時刻t11~時刻t12において、第3制御実行部14により、上記第4開弁時間に応じて設定される第4低減勾配(ここでは第3低減勾配と等しい)に従って、ストップバルブ38の開度が引き続いて全閉開度まで低減される。つまり、第3制御実行部14は、第3制御として、第2制御で噴射された改質用アンモニアガスの噴射量の増加に応じてストップバルブ38の開度を漸減させる。 As shown in FIG. 5C, at time t5, the third control execution unit 14 starts reducing the opening degree of the stop valve 38 according to the injection amount of the reforming ammonia gas. More specifically, from time t5 to time t7, the opening degree of the stop valve 38 is opened from the initial opening degree S1 according to the first reduction gradient set by the third control execution unit 14 according to the first valve opening time. The degree is reduced to S2. From time t7 to time t9, the opening degree of the stop valve 38 is reduced from the opening degree S2 to the opening degree S3 according to the second reduction gradient set according to the second valve opening time by the third control execution unit 14. To. From time t9 to time t11, the third control execution unit 14 reduces the opening degree of the stop valve 38 from the opening degree S3 according to the third reduction gradient set according to the third valve opening time. From time t11 to time t12, the opening degree of the stop valve 38 is increased according to the fourth reduction gradient (here, equal to the third reduction gradient) set by the third control execution unit 14 according to the fourth valve opening time. Subsequently, it is reduced to the fully closed opening. That is, as the third control, the third control execution unit 14 gradually reduces the opening degree of the stop valve 38 according to the increase in the injection amount of the reforming ammonia gas injected in the second control.
 図5(c)の例では、時刻t12において、第3制御で低減されたストップバルブ38の開度が全閉に至る。すなわち、図5(c)の第3制御では、置換タイミングよりも早いタイミングでストップバルブ38の開度が全閉に至るようにストップバルブ38の開度が低減される。 In the example of FIG. 5C, at time t12, the opening degree of the stop valve 38 reduced by the third control reaches full closure. That is, in the third control of FIG. 5C, the opening degree of the stop valve 38 is reduced so that the opening degree of the stop valve 38 is fully closed at a timing earlier than the replacement timing.
 以上説明した図5(a)~図5(c)の例では、第1制御により、改質用スロットル32の開度が全閉とされるため、第2制御において改質用インジェクタ35によって噴射された改質用アンモニアガスが、改質用スロットル32を介して流通(逆流)することを阻止できる。第1制御により、ストップバルブ38の開度が初期開度S1とされると共に、第2制御により、間欠的に改質用アンモニアガスが噴射されるため、改質用アンモニアガスによって改質器36外に残留ガスが徐々に押し出される。特に、第2開弁時間は第1開弁時間よりも長く、第3開弁時間は第2開弁時間よりも長く、第4開弁時間は第3開弁時間よりも長くされるため、始動準備状態の初期では改質用アンモニアガスのガス流動が弱められて、改質用アンモニアガスと残留ガスとの混合が抑制される。なお、開弁時間を徐々に長くするのではなく、同じ時間で開弁したり任意の時間で開弁するようにしてもよい。例えば、開弁時間が一定であってもよいし、上述の例とは反対の大小関係でもよいし、大小関係が不規則であってもよい。また、開弁回数は、2回以上であれば任意の回数としてもよい。また、連続的に燃料を噴射しつつ噴射圧を変化させる燃料噴射パターンとしてもよい。 In the examples of FIGS. 5A to 5C described above, since the opening degree of the reforming throttle 32 is fully closed by the first control, the reforming injector 35 injects the gas in the second control. It is possible to prevent the reformed ammonia gas from flowing (backflow) through the reforming throttle 32. The opening degree of the stop valve 38 is set to the initial opening degree S1 by the first control, and the reforming ammonia gas is intermittently injected by the second control. Therefore, the reformer 36 is made of the reforming ammonia gas. Residual gas is gradually pushed out. In particular, the second valve opening time is longer than the first valve opening time, the third valve opening time is longer than the second valve opening time, and the fourth valve opening time is longer than the third valve opening time. In the initial stage of the start-up preparation state, the gas flow of the reforming ammonia gas is weakened, and the mixing of the reforming ammonia gas and the residual gas is suppressed. Instead of gradually increasing the valve opening time, the valve may be opened at the same time or at an arbitrary time. For example, the valve opening time may be constant, the magnitude relationship opposite to the above example may be used, or the magnitude relationship may be irregular. Further, the number of valve openings may be any number as long as it is two or more times. Further, a fuel injection pattern in which the injection pressure is changed while continuously injecting fuel may be used.
 また、第3制御により、改質用アンモニアガスの噴射量の増加に応じてストップバルブ38の開度が漸減されるため、改質器36内の圧力が急激に高くなることが抑制され、圧力平衡により改質用インジェクタ35から改質用アンモニアガスが噴射できなくなるまでの時間を延ばすことができる。特に、第2低減勾配の大きさは第1低減勾配の大きさよりも小さく、第3低減勾配の大きさは第2低減勾配の大きさよりも小さく、第4低減勾配の大きさは第3低減勾配の大きさよりも小さいため、始動準備状態の初期でストップバルブ38の開度が迅速に低減されると共に、始動準備状態の後期でストップバルブ38の開度が全閉に近い状態で徐々に低減される。これにより、始動準備状態の初期で改質用アンモニアガスが一気に吸気流路22側へ流出してしまうことが抑制されつつ改質器36内の圧力の増加が緩やかにされる。その結果、始動準備状態の後期で、ストップバルブ38の開度が全閉に近くアンモニアガスが漏れにくい状態で、改質用アンモニアガスで残留ガスを押し出すことを継続し易くなる。 Further, by the third control, the opening degree of the stop valve 38 is gradually reduced according to the increase in the injection amount of the reforming ammonia gas, so that the pressure in the reformer 36 is suppressed from suddenly increasing, and the pressure is suppressed. The equilibrium can extend the time until the reforming ammonia gas cannot be injected from the reforming injector 35. In particular, the magnitude of the second reduction gradient is smaller than the magnitude of the first reduction gradient, the magnitude of the third reduction gradient is smaller than the magnitude of the second reduction gradient, and the magnitude of the fourth reduction gradient is the magnitude of the third reduction gradient. Since it is smaller than the size of, the opening of the stop valve 38 is rapidly reduced in the early stage of the start preparation state, and the opening of the stop valve 38 is gradually reduced in the state of being close to fully closed in the latter stage of the start preparation state. To. As a result, the increase in pressure in the reformer 36 is moderated while suppressing the sudden outflow of the reforming ammonia gas to the intake flow path 22 side in the initial stage of the start preparation state. As a result, it becomes easy to continue pushing out the residual gas with the reforming ammonia gas in a state where the opening degree of the stop valve 38 is close to fully closed and the ammonia gas does not easily leak in the latter stage of the start preparation state.
 また、置換タイミングよりも早いタイミングでストップバルブ38の開度が全閉とされるため、アンモニアガスの漏洩の抑制がより確実なものとなる。そして、改質用スロットル32の開度が全閉で且つストップバルブ38の開度が全閉となった状態で、改質用インジェクタ35で噴射された燃料で還元雰囲気となった改質器36が暖機される。 Further, since the opening of the stop valve 38 is fully closed at a timing earlier than the replacement timing, the suppression of the leakage of ammonia gas becomes more reliable. Then, with the opening degree of the reforming throttle 32 fully closed and the opening degree of the stop valve 38 fully closed, the reformer 36 has a reducing atmosphere with the fuel injected by the reforming injector 35. Is warmed up.
 始動許可部15は、第3制御で低減されたストップバルブ38の開度が全閉に至った場合に、アンモニアエンジン100の始動を許可する。始動許可部15は、例えば、第3制御で低減されたストップバルブ38の開度が全閉に至った場合、改質器36の暖機が完了したときに、スタータのクランキング開始を許可する。改質器36の暖機は、例えば、始動信号の入力からの経過時間が実験等に基づき予め設定された所定時間を超えたことにより、改質触媒36bの床温が約200℃以上となったと推定された場合に、完了したものとすることができる。なお、始動許可部15は、ストップバルブ38の開度が全閉に到る前にアンモニアエンジン100の始動を許可してもよい。 The start permission unit 15 permits the start of the ammonia engine 100 when the opening degree of the stop valve 38 reduced by the third control is fully closed. The start permission unit 15 permits the start of cranking of the starter when the warm-up of the reformer 36 is completed, for example, when the opening degree of the stop valve 38 reduced by the third control is fully closed. .. In the warm-up of the reformer 36, for example, the floor temperature of the reformer 36b becomes about 200 ° C. or higher because the elapsed time from the input of the start signal exceeds a predetermined time set in advance based on an experiment or the like. If it is presumed to have been completed, it can be considered complete. The start permission unit 15 may allow the start of the ammonia engine 100 before the opening degree of the stop valve 38 is fully closed.
 次に、ECU10による処理の一例について、図6を参照して説明する。図6は、ECU10の改質器暖機処理を示すフローチャートである。 Next, an example of processing by the ECU 10 will be described with reference to FIG. FIG. 6 is a flowchart showing the reformer warm-up process of the ECU 10.
 図6に示されるように、ECU10は、S11において、エンジン状態取得部11により、始動信号の入力の有無の判定を行う。エンジン状態取得部11は、例えば、始動信号の入力の有無の判定として、アンモニアエンジン100が始動準備状態であるか否かを判定する。エンジン状態取得部11により始動信号の入力がないと判定された場合(S11:NO)、ECU10は、図6の処理を終了する。 As shown in FIG. 6, the ECU 10 determines in S11 whether or not a start signal is input by the engine state acquisition unit 11. The engine state acquisition unit 11 determines whether or not the ammonia engine 100 is in the start preparation state, for example, as a determination of whether or not a start signal is input. When the engine state acquisition unit 11 determines that there is no input of the start signal (S11: NO), the ECU 10 ends the process of FIG.
 一方、エンジン状態取得部11により始動信号の入力があったと判定された場合(S11:YES)、ECU10は、S12において、第1制御実行部12により、第1制御を実行する。第1制御実行部12は、例えば、改質器ヒータ36aに通電しつつ、改質用スロットル32の開度を全閉とすると共にストップバルブ38の開度を所定の初期開度とする第1制御を実行する。 On the other hand, when it is determined by the engine state acquisition unit 11 that the start signal has been input (S11: YES), the ECU 10 executes the first control by the first control execution unit 12 in S12. The first control execution unit 12 makes, for example, the opening degree of the reforming throttle 32 fully closed and the opening degree of the stop valve 38 a predetermined initial opening degree while energizing the reformer heater 36a. Take control.
 ECU10は、S13において、第2制御実行部13により、改質用スロットル32の開度を全閉とした状態で第2制御を実行する。例えば、第2制御実行部13は、第2制御において、連続的に改質用アンモニアガスを噴射する第1燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させる。あるいは、第2制御実行部13は、第2制御として、間欠的に改質用アンモニアガスを噴射する第2燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させてもよい。 In S13, the ECU 10 executes the second control by the second control execution unit 13 with the opening degree of the reforming throttle 32 fully closed. For example, the second control execution unit 13 injects the reforming ammonia gas into the reforming injector 35 in the first fuel injection pattern in which the reforming ammonia gas is continuously injected in the second control. Alternatively, the second control execution unit 13 may inject the reforming ammonia gas into the reforming injector 35 in a second fuel injection pattern in which the reforming ammonia gas is intermittently injected as the second control.
 ECU10は、S14において、第3制御実行部14により、改質用スロットル32の開度を全閉とした状態で第3制御を実行する。第3制御実行部14は、例えば、第2制御で噴射された改質用アンモニアガスの噴射量の時間積算値と置換推定容積量とに基づいて、置換タイミングを算出する。第3制御実行部14は、第3制御において、置換タイミングまでストップバルブ38の開度を初期開度に維持すると共に、置換タイミングでストップバルブ38の開度を全閉とするようにストップバルブ38の開度を低減させる。あるいは、第3制御実行部14は、第3制御として、第2制御で噴射された改質用アンモニアガスの噴射量の増加に応じてストップバルブ38の開度を漸減させてもよい。 In S14, the ECU 10 executes the third control in the state where the opening degree of the reforming throttle 32 is fully closed by the third control execution unit 14. The third control execution unit 14 calculates the replacement timing based on, for example, the time-integrated value of the injection amount of the reforming ammonia gas injected in the second control and the estimated replacement volume amount. In the third control, the third control execution unit 14 maintains the opening degree of the stop valve 38 at the initial opening degree until the replacement timing, and closes the opening degree of the stop valve 38 at the replacement timing. Reduce the opening of. Alternatively, as the third control, the third control execution unit 14 may gradually reduce the opening degree of the stop valve 38 according to the increase in the injection amount of the reforming ammonia gas injected in the second control.
 ECU10は、S15において、第3制御実行部14により、ストップバルブ38の開度が全閉に至ったか否かの判定を行う。第3制御実行部14によりストップバルブ38の開度が全閉に至っていないと判定された場合(S15:NO)、ECU10は、S13及びS14の処理を繰り返し行う。 In S15, the ECU 10 determines whether or not the opening degree of the stop valve 38 has reached full closure by the third control execution unit 14. When the third control execution unit 14 determines that the opening degree of the stop valve 38 has not reached full closure (S15: NO), the ECU 10 repeats the processes of S13 and S14.
 一方、第3制御実行部14によりストップバルブ38の開度が全閉に至ったと判定された場合(S15:YES)、ECU10は、S16において、始動許可部15により、アンモニアエンジン100の始動の許可を行う。始動許可部15は、例えば、改質器36の暖機が完了したときに、スタータのクランキング開始を許可する。 On the other hand, when the third control execution unit 14 determines that the opening degree of the stop valve 38 has been fully closed (S15: YES), the ECU 10 permits the start of the ammonia engine 100 by the start permission unit 15 in S16. I do. The start permission unit 15 permits the start of cranking of the starter, for example, when the warm-up of the reformer 36 is completed.
[作用及び効果]
 以上説明したように、アンモニアエンジン100では、始動信号が入力された場合に改質用スロットル32の開度が全閉とされ、改質用スロットル32の開度が全閉とされた状態で、改質用インジェクタ35に改質用アンモニアガスを噴射させる第2制御が実行される。これにより、改質用スロットル32を介して燃料のアンモニアが外部環境に漏れ出すことを抑制できる。また、改質用スロットル32の開度が全閉とされた状態で、遅くとも置換タイミングでストップバルブ38の開度が全閉に至るようにストップバルブ38の開度を低減させる第3制御が実行される。これにより、ストップバルブ38を介して燃料のアンモニアが外部環境に漏れ出すことを抑制しつつ、改質用インジェクタ35で噴射された改質用アンモニアガスを用いて改質器36の残留ガスの置換が図られる。その結果、改質用スロットル32の開度が全閉で且つストップバルブ38の開度が全閉となった状態で、改質用インジェクタ35で噴射された改質用アンモニアガスで還元雰囲気となった改質器36が暖機される。したがって、アンモニアエンジン100によれば、始動の際にアンモニアの漏洩を抑制しつつ還元雰囲気下で改質器36の暖機を行うことが可能となる。
[Action and effect]
As described above, in the ammonia engine 100, when the start signal is input, the opening degree of the reforming throttle 32 is fully closed, and the opening degree of the reforming throttle 32 is fully closed. The second control of injecting the reforming ammonia gas into the reforming injector 35 is executed. As a result, it is possible to prevent the fuel ammonia from leaking to the external environment through the reforming throttle 32. Further, in a state where the opening degree of the reforming throttle 32 is fully closed, the third control for reducing the opening degree of the stop valve 38 is executed so that the opening degree of the stop valve 38 reaches the fully closed position at the latest at the replacement timing. Will be done. As a result, the residual gas of the reformer 36 is replaced by the reforming ammonia gas injected by the reforming injector 35 while suppressing the fuel ammonia from leaking to the external environment through the stop valve 38. Is planned. As a result, with the opening of the reforming throttle 32 fully closed and the opening of the stop valve 38 fully closed, the reforming ammonia gas injected by the reforming injector 35 creates a reducing atmosphere. The reformer 36 is warmed up. Therefore, according to the ammonia engine 100, it is possible to warm up the reformer 36 in a reducing atmosphere while suppressing the leakage of ammonia at the time of starting.
 アンモニアエンジン100では、ECU10は、第2制御において、燃料噴射パターンとして連続的に改質用アンモニアガスを噴射する第1燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させ、第3制御において、置換タイミングまでストップバルブ38の開度を初期開度S1に維持すると共に、置換タイミングでストップバルブ38の開度を全閉とするようにストップバルブ38の開度を低減させる。これにより、改質用インジェクタ35で噴射された改質用アンモニアガスによって残留ガスの大部分が改質器36から押し出された状態で、ストップバルブ38の開度が全閉とされる。よって、より確実に改質器36を還元雰囲気とすることができる。 In the ammonia engine 100, in the second control, the ECU 10 injects the reforming ammonia gas into the reforming injector 35 in the first fuel injection pattern in which the reforming ammonia gas is continuously injected as the fuel injection pattern. 3 In the control, the opening degree of the stop valve 38 is maintained at the initial opening degree S1 until the replacement timing, and the opening degree of the stop valve 38 is reduced so that the opening degree of the stop valve 38 is fully closed at the replacement timing. As a result, the opening degree of the stop valve 38 is fully closed while most of the residual gas is pushed out from the reformer 36 by the reforming ammonia gas injected by the reforming injector 35. Therefore, the reformer 36 can be more reliably used as a reducing atmosphere.
 アンモニアエンジン100では、ECU10は、第2制御において、燃料噴射パターンとして間欠的に改質用アンモニアガスを噴射する第2燃料噴射パターンで改質用インジェクタ35に改質用アンモニアガスを噴射させ、第3制御において、第2制御で噴射された改質用アンモニアガスの噴射量の増加に応じてストップバルブ38の開度を漸減させる。これにより、間欠的に改質用アンモニアガスを噴射する第2燃料噴射パターンで改質用アンモニアガスが噴射されるため、改質用アンモニアガスが改質器36の残留ガスと混じり合うことが抑えられ、より確実に改質器36を還元雰囲気とすることができる。また、改質用アンモニアガスの噴射量の増加に応じてストップバルブ38の開度を漸減させるため、改質器36内の圧力が急激に高くなることが抑制され、圧力平衡により改質用インジェクタ35から改質用アンモニアガスが噴射できなくなるまでの時間を延ばすことができる。よって、圧力上昇によって改質用インジェクタ35から改質用アンモニアガスが噴射されにくくなることを抑制できる。 In the ammonia engine 100, in the second control, the ECU 10 injects the reforming ammonia gas into the reforming injector 35 in the second fuel injection pattern in which the reforming ammonia gas is intermittently injected as the fuel injection pattern. In the third control, the opening degree of the stop valve 38 is gradually reduced according to the increase in the injection amount of the reforming ammonia gas injected in the second control. As a result, the reforming ammonia gas is injected in the second fuel injection pattern in which the reforming ammonia gas is intermittently injected, so that the reforming ammonia gas is prevented from being mixed with the residual gas of the reformer 36. Therefore, the reformer 36 can be made into a reducing atmosphere more reliably. Further, since the opening degree of the stop valve 38 is gradually reduced according to the increase in the injection amount of the reforming ammonia gas, it is suppressed that the pressure in the reformer 36 suddenly increases, and the reforming injector is suppressed by the pressure balance. It is possible to extend the time from 35 until the reforming ammonia gas cannot be injected. Therefore, it is possible to prevent the reforming ammonia gas from being easily injected from the reforming injector 35 due to the increase in pressure.
 アンモニアエンジン100では、改質器36は、改質用アンモニアガスを改質するための改質触媒36bと、改質触媒36bの上流において改質触媒36bの流入面を覆うように設けられた有孔板部材36cと、を有する。これにより、改質用インジェクタ35で噴射された改質用アンモニアガスと改質器36の残留ガスとが混じり合うことが、有孔板部材36cにより物理的に抑制される。その結果、改質用アンモニアガスが残留ガスを改質器36から押し出す作用を好適に奏することが可能となる。 In the ammonia engine 100, the reformer 36 is provided so as to cover the reforming catalyst 36b for reforming the reforming ammonia gas and the inflow surface of the reforming catalyst 36b upstream of the reforming catalyst 36b. It has a hole plate member 36c and. As a result, the perforated plate member 36c physically suppresses the mixing of the reforming ammonia gas injected by the reforming injector 35 and the residual gas of the reformer 36. As a result, the reforming ammonia gas can suitably exert the action of pushing out the residual gas from the reformer 36.
[変形例]
 以上、本発明に係る実施形態について説明したが、本発明は、上述した実施形態に限られるものではない。
[Modification example]
Although the embodiments according to the present invention have been described above, the present invention is not limited to the above-described embodiments.
 上記実施形態では、改質器上流弁として改質用スロットル32を例示したが、例えば電磁弁等を用いてもよい。 In the above embodiment, the reforming throttle 32 is illustrated as the reformer upstream valve, but for example, an electromagnetic valve or the like may be used.
 上記実施形態では、改質用インジェクタ35の個数は、例えば1個の場合を例示したが、複数個であってもよい。 In the above embodiment, the number of the reforming injectors 35 is, for example, one, but may be a plurality.
 上記実施形態では、改質器下流弁としてストップバルブ38を例示したが、電磁弁に代えて、例えばバタフライバルブ又は吸気流路22の位置に設けられた三方弁等を用いてもよい。 In the above embodiment, the stop valve 38 is exemplified as the reformer downstream valve, but instead of the solenoid valve, for example, a butterfly valve or a three-way valve provided at the position of the intake flow path 22 may be used.
 上記実施形態では、三元触媒26が設けられていたが、省略されてもよい。 In the above embodiment, the three-way catalyst 26 is provided, but it may be omitted.
 上記実施形態の図5(a)~図5(c)の例では、置換タイミングよりも早くストップバルブ38の開度が全閉とされるようにストップバルブ38の開度が漸減されたが、例えば置換タイミングに達した時点でストップバルブ38の開度が全閉に至っていない場合には、第3制御実行部14は、当該時点でストップバルブ38の開度を強制的に全閉としてもよい。 In the examples of FIGS. 5A to 5C of the above embodiment, the opening degree of the stop valve 38 is gradually reduced so that the opening degree of the stop valve 38 is fully closed earlier than the replacement timing. For example, if the opening degree of the stop valve 38 is not fully closed when the replacement timing is reached, the third control execution unit 14 may forcibly close the opening degree of the stop valve 38 at that time. ..
 上記実施形態では、有孔板部材36cは、改質器ヒータ36aの上流側に設けられていたが、改質器ヒータ36aと改質触媒36bとの間に設けられていてもよい。有孔板部材36cの外形は、略円盤状以外の形状であってもよい。有孔板部材36cは、必ずしも改質器ヒータ36aの流入面の略全体を覆っていなくてもよい。残留ガス混合抑制部材は、有孔板部材36cに限定されず、例えば網状部材であってもよいし、多孔質部材であってもよい。また、有孔板部材36cは、省略されてもよい。 In the above embodiment, the perforated plate member 36c is provided on the upstream side of the reformer heater 36a, but may be provided between the reformer heater 36a and the reformer catalyst 36b. The outer shape of the perforated plate member 36c may have a shape other than a substantially disk shape. The perforated plate member 36c does not necessarily have to cover substantially the entire inflow surface of the reformer heater 36a. The residual gas mixing suppressing member is not limited to the perforated plate member 36c, and may be, for example, a net-like member or a porous member. Further, the perforated plate member 36c may be omitted.
 1  キースイッチ(始動信号出力部)
 10  ECU(制御部)
 22  吸気流路
 31  改質流路
 32  改質用スロットル(改質器上流弁)
 35  改質用インジェクタ(改質用燃料噴射弁)
 36  改質器
 36b  改質触媒
 36c  有孔板部材(残留ガス混合抑制部材)
 38  ストップバルブ(改質器下流弁)
 100  アンモニアエンジン
1 key switch (start signal output section)
10 ECU (control unit)
22 Intake flow path 31 Reformation flow path 32 Reformation throttle (reformer upstream valve)
35 Injector for reforming (fuel injection valve for reforming)
36 Reformer 36b Reform catalyst 36c Perforated plate member (residual gas mixing suppression member)
38 Stop valve (reformer downstream valve)
100 ammonia engine

Claims (4)

  1.  燃料のアンモニアを改質ガスに改質する改質器を備えるアンモニアエンジンであって、
     前記アンモニアエンジンの吸入空気を流通させる吸気流路と、
     前記改質器が設けられ、前記改質器に改質用空気を流通させると共に、前記改質器から前記吸気流路に前記改質ガスを流通させる改質流路と、
     前記改質流路における前記改質器の上流側に設けられた改質器上流弁と、
     前記改質流路における前記改質器上流弁と前記改質器との間に設けられ、前記改質流路に前記燃料を噴射する改質用燃料噴射弁と、
     前記改質流路における前記改質器の下流側に設けられた改質器下流弁と、
     前記アンモニアエンジンのスタータを作動させるための始動信号を出力する始動信号出力部と、
     前記改質用燃料噴射弁による前記燃料の噴射量と前記始動信号とに基づいて、前記改質器上流弁と前記改質用燃料噴射弁と前記改質器下流弁とを制御する制御部と、
    を備え、
     前記制御部は、
     前記始動信号が入力された場合に、前記改質器上流弁の開度を全閉とすると共に前記改質器下流弁の開度を所定の初期開度とする第1制御を実行し、
     前記改質器上流弁の開度を全閉とした状態で、所定の燃料噴射パターンで前記改質用燃料噴射弁に前記燃料を噴射させる第2制御を実行し、
     前記改質器上流弁の開度を全閉とした状態で、前記第2制御で噴射された前記燃料の噴射量と所定の置換推定容積量とに基づいて、前記第2制御で噴射された前記燃料によって前記改質器の残留ガスが置換される置換タイミングを算出し、遅くとも前記置換タイミングで前記改質器下流弁の開度が全閉に至るように前記改質器下流弁の開度を低減させる第3制御を実行する、アンモニアエンジン。
    An ammonia engine equipped with a reformer that reforms the fuel ammonia into reforming gas.
    The intake flow path through which the intake air of the ammonia engine flows, and
    The reformer is provided, and a reforming flow path for flowing reforming air through the reformer and for flowing the reforming gas from the reformer to the intake flow path,
    A reformer upstream valve provided on the upstream side of the reformer in the reforming flow rate,
    A reforming fuel injection valve provided between the reformer upstream valve and the reformer in the reforming flow rate and injecting the fuel into the reforming flow rate.
    A reformer downstream valve provided on the downstream side of the reformer in the reformer
    A start signal output unit that outputs a start signal for operating the starter of the ammonia engine, and
    A control unit that controls the reformer upstream valve, the reformer fuel injection valve, and the reformer downstream valve based on the fuel injection amount of the reformer fuel injection valve and the start signal. ,
    With
    The control unit
    When the start signal is input, the first control is executed in which the opening degree of the reformer upstream valve is fully closed and the opening degree of the reformer downstream valve is set to a predetermined initial opening degree.
    With the opening degree of the reformer upstream valve fully closed, the second control for injecting the fuel into the reforming fuel injection valve in a predetermined fuel injection pattern is executed.
    With the opening degree of the reformer upstream valve fully closed, the fuel was injected by the second control based on the injection amount of the fuel injected by the second control and the predetermined replacement estimated volume amount. The replacement timing at which the residual gas of the reformer is replaced by the fuel is calculated, and the opening degree of the reformer downstream valve is opened so that the opening degree of the reformer downstream valve reaches full closure at the latest at the replacement timing. Ammonia engine that performs a third control to reduce.
  2.  前記制御部は、
     前記第2制御において、前記燃料噴射パターンとして連続的に前記燃料を噴射する第1燃料噴射パターンで前記改質用燃料噴射弁に前記燃料を噴射させ、
     前記第3制御において、前記置換タイミングまで前記改質器下流弁の開度を前記初期開度に維持すると共に、前記置換タイミングで前記改質器下流弁の開度を全閉とするように前記改質器下流弁の開度を低減させる、請求項1記載のアンモニアエンジン。
    The control unit
    In the second control, the fuel is injected into the reforming fuel injection valve in the first fuel injection pattern in which the fuel is continuously injected as the fuel injection pattern.
    In the third control, the opening degree of the reformer downstream valve is maintained at the initial opening until the replacement timing, and the opening degree of the reformer downstream valve is fully closed at the replacement timing. The ammonia engine according to claim 1, which reduces the opening degree of the reformer downstream valve.
  3.  前記制御部は、
     前記第2制御において、前記燃料噴射パターンとして間欠的に前記燃料を噴射する第2燃料噴射パターンで前記改質用燃料噴射弁に前記燃料を噴射させ、
     前記第3制御において、前記第2制御で噴射された前記燃料の噴射量の増加に応じて前記改質器下流弁の開度を漸減させる、請求項1記載のアンモニアエンジン。
    The control unit
    In the second control, the fuel is injected into the reforming fuel injection valve in the second fuel injection pattern in which the fuel is intermittently injected as the fuel injection pattern.
    The ammonia engine according to claim 1, wherein in the third control, the opening degree of the reformer downstream valve is gradually reduced according to an increase in the injection amount of the fuel injected in the second control.
  4.  前記改質器は、前記燃料を改質するための改質触媒と、前記改質触媒の上流において前記改質触媒の流入面に沿って設けられた残留ガス混合抑制部材と、を有する、請求項1~3の何れか一項記載のアンモニアエンジン。 The reformer has a reforming catalyst for reforming the fuel and a residual gas mixing suppressing member provided along the inflow surface of the reforming catalyst upstream of the reforming catalyst. The ammonia engine according to any one of Items 1 to 3.
PCT/JP2020/007055 2019-03-25 2020-02-21 Ammonia engine WO2020195426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019056392A JP7074103B2 (en) 2019-03-25 2019-03-25 Ammonia engine
JP2019-056392 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020195426A1 true WO2020195426A1 (en) 2020-10-01

Family

ID=72609449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007055 WO2020195426A1 (en) 2019-03-25 2020-02-21 Ammonia engine

Country Status (2)

Country Link
JP (1) JP7074103B2 (en)
WO (1) WO2020195426A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446134A (en) * 2021-06-16 2021-09-28 哈尔滨工程大学 Gaseous ammonia fuel supply system with stable injection pressure
US20220170415A1 (en) * 2019-03-26 2022-06-02 Kabushiki Kaisha Toyota Jidoshokki Engine system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
JP2024521417A (en) 2021-06-11 2024-05-31 アモジー インコーポレイテッド Systems and methods for processing ammonia
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
JP2024002623A (en) * 2022-06-24 2024-01-11 株式会社豊田自動織機 ammonia engine system
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129818A (en) * 1973-07-24 1975-10-14
JPS54180810U (en) * 1978-06-12 1979-12-21
JP2002356307A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Operation method for apparatus of producing hydrogen- containing gas
JP2007022826A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Hydrogen generation unit and fuel cell system
US20080253938A1 (en) * 2007-04-13 2008-10-16 Fischer Bernhard A Method and apparatus for vaporizing fuel in a hydrocarbon reformer assembly
WO2012090739A1 (en) * 2010-12-30 2012-07-05 株式会社豊田中央研究所 Hydrogen generator and internal combustion engine provided with hydrogen generator
JP2013234079A (en) * 2012-05-07 2013-11-21 Toyota Industries Corp Hydrogen generating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129818A (en) * 1973-07-24 1975-10-14
JPS54180810U (en) * 1978-06-12 1979-12-21
JP2002356307A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Operation method for apparatus of producing hydrogen- containing gas
JP2007022826A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Hydrogen generation unit and fuel cell system
US20080253938A1 (en) * 2007-04-13 2008-10-16 Fischer Bernhard A Method and apparatus for vaporizing fuel in a hydrocarbon reformer assembly
WO2012090739A1 (en) * 2010-12-30 2012-07-05 株式会社豊田中央研究所 Hydrogen generator and internal combustion engine provided with hydrogen generator
JP2013234079A (en) * 2012-05-07 2013-11-21 Toyota Industries Corp Hydrogen generating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220170415A1 (en) * 2019-03-26 2022-06-02 Kabushiki Kaisha Toyota Jidoshokki Engine system
US11713727B2 (en) * 2019-03-26 2023-08-01 Kabushiki Kaisha Toyota Jidoshokki Engine system
CN113446134A (en) * 2021-06-16 2021-09-28 哈尔滨工程大学 Gaseous ammonia fuel supply system with stable injection pressure

Also Published As

Publication number Publication date
JP2020159211A (en) 2020-10-01
JP7074103B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2020195426A1 (en) Ammonia engine
WO2020195427A1 (en) Engine
US8181448B2 (en) System for controlling urea injection quantity of vehicle and method thereof
US11713727B2 (en) Engine system
US11578686B2 (en) Engine system
WO2020208875A1 (en) Reformer system and engine system
US9605575B2 (en) Reducing agent supplying device
EP2966274B1 (en) Reducing agent supplying device
WO2021049287A1 (en) Engine system
WO2020209021A1 (en) Engine
JP2020197211A (en) Engine system
JP2020159241A (en) Engine system
JP2020147475A (en) Reforming system
JP2006249981A (en) Reformed gas-utilizing internal combustion engine
JP2015081570A (en) Exhaust emission control system
WO2023248725A1 (en) Ammonia engine system
JP2008255890A (en) Exhaust emission control device of internal combustion engine
JP2024057726A (en) Engine System
JP2012207630A (en) Exhaust emission control apparatus of internal combustion engine
JP2022044263A (en) Reducing agent supply system, reducing agent supply control device, and reducing agent supply control method
JP2022044262A (en) Reducing agent supply system, reducing agent supply control device, and reducing agent supply control method
JP2007290584A (en) Vehicular exhaust heat utilization heating unit
JP2004270508A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778899

Country of ref document: EP

Kind code of ref document: A1