WO2020208875A1 - Reformer system and engine system - Google Patents

Reformer system and engine system Download PDF

Info

Publication number
WO2020208875A1
WO2020208875A1 PCT/JP2019/050271 JP2019050271W WO2020208875A1 WO 2020208875 A1 WO2020208875 A1 WO 2020208875A1 JP 2019050271 W JP2019050271 W JP 2019050271W WO 2020208875 A1 WO2020208875 A1 WO 2020208875A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
ammonia
reforming
flow path
gas
Prior art date
Application number
PCT/JP2019/050271
Other languages
French (fr)
Japanese (ja)
Inventor
竹内秀隆
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020208875A1 publication Critical patent/WO2020208875A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a reforming system and an engine system.
  • Patent Document 1 a reforming system applied to an engine has been conventionally known.
  • the reforming system described in Patent Document 1 is a cracker that decomposes gaseous ammonia with a catalyst to generate hydrogen, an ammonia supply pipe that supplies gaseous ammonia to the cracker, and air to the cracker. It is provided with an air supply pipe, an outflow pipe from which a gas containing hydrogen generated by the decomposer flows out, and a cooler connected to the outflow pipe to cool the high-temperature gas flowing out from the decomposer.
  • the above-mentioned conventional technology has the following problems. That is, when reforming gaseous ammonia with a catalyst, a part of the ammonia is burned (oxidation reaction), and the remaining ammonia is separated by using the combustion heat to take out the reformed gas containing hydrogen. ing. However, since the heat of combustion becomes a high temperature of several hundred degrees, the reformed gas also becomes a high temperature of the same degree. Therefore, in order to supply the reformed gas to the engine, it is necessary to dispose a large cooler on the downstream side of the decomposer, which leads to deterioration of mountability and cost increase.
  • An object of the present invention is to provide a reforming system and an engine system capable of effectively cooling a reforming gas using a simple system.
  • the reforming system includes a reforming section that reforms fuel to generate a reforming gas containing hydrogen, an air supply section that supplies air to the reforming section, and a reforming section.
  • the first fuel supply section that supplies fuel, the reforming gas flow path through which the reforming gas generated by the reforming section flows, the heater section that raises the temperature of the reforming section, and the reforming gas flow path are the same as fuel. It is provided with a second fuel supply unit having a liquid fuel injection valve for injecting a material liquid fuel.
  • the reforming system includes a storage unit for storing liquid fuel and a vaporization unit for vaporizing the liquid fuel stored in the storage unit to generate gaseous fuel, and the first fuel supply unit is generated by the vaporization unit.
  • the second fuel supply unit may have a liquid fuel flow path through which the liquid fuel stored in the storage unit flows, and has a gas fuel flow path through which the gas fuel flows.
  • the gas fuel flow path is provided with a first pressure reducing valve for reducing the pressure of the gaseous fuel supplied to the reforming section, and the liquid fuel flow path reduces the pressure of the liquid fuel injected into the reforming gas flow path.
  • a second pressure reducing valve may be provided. In such a configuration, the supply pressure of the gaseous fuel to the reformed portion becomes a constant pressure, and the supply pressure (injection pressure) of the liquid fuel to the reformed gas flow path becomes a constant pressure.
  • the gaseous fuel may be gaseous ammonia and the liquid fuel may be liquid ammonia.
  • Liquid ammonia has a larger latent heat of vaporization than other liquid fuels. Therefore, by using liquid ammonia as the liquid fuel, the reformed gas can be cooled more effectively. Therefore, the reformed gas can be cooled even if the supply amount of liquid ammonia is reduced.
  • the engine system includes an engine, an intake passage through which air supplied to the engine flows, a throttle valve arranged in the intake passage and controlling the flow rate of air supplied to the engine, and fuel.
  • a reforming section that reforms to generate a reforming gas containing hydrogen, an air supply section that supplies air to the reforming section, a first fuel supply section that supplies fuel to the reforming section, and a reforming section.
  • the first fuel supply unit may supply fuel to the engine and the reforming unit.
  • the gaseous fuel produced by the liquid fuel taking heat from the high-temperature reformed gas and vaporizing it is supplied to the engine, but also the fuel is supplied to the engine by the first fuel supply unit. Will be. Therefore, the responsiveness of the engine is improved.
  • the reformed gas can be effectively cooled by using a simple system.
  • FIG. 1 is a schematic configuration diagram showing an engine system including a reforming system according to an embodiment of the present invention.
  • the engine system 1 of the present embodiment is mounted on a vehicle.
  • the engine system 1 includes an ammonia engine 2, an intake passage 3, an exhaust passage 4, a plurality of (four in this case) main injectors 5, and a main throttle valve 6.
  • the ammonia engine 2 is an engine that uses ammonia (NH 3 ) as fuel.
  • the ammonia engine 2 is, for example, a 4-cylinder engine and has four combustion chambers 2a. Hydrogen (H 2 ) is supplied to the ammonia engine 2 together with ammonia (described later).
  • the intake passage 3 is connected to the combustion chamber 2a.
  • the intake passage 3 is a passage through which the air supplied to the combustion chamber 2a flows.
  • An air cleaner 7 for removing dust and foreign matter such as dust contained in the air is provided in the intake passage 3.
  • the exhaust passage 4 is connected to the combustion chamber 2a.
  • the exhaust passage 4 is a passage through which the exhaust gas generated from the combustion chamber 2a flows.
  • An exhaust purification catalyst 8 for removing harmful substances such as nitrogen oxides (NOx) and ammonia contained in the exhaust gas is arranged in the exhaust passage 4.
  • the exhaust gas purification catalyst 8 for example, a three-way catalyst, an SCR (Selective Catalytic Reduction) catalyst, or the like is used.
  • the main injector 5 is an electromagnetic type fuel injection valve for injecting ammonia gas (NH 3 gas) into the combustion chamber 2a.
  • the main injector 5 is connected to a vaporizer 12 described later via a gaseous ammonia flow path 9.
  • the main injector 5 is attached to the ammonia engine 2.
  • the main throttle valve 6 is arranged between the air cleaner 7 and the ammonia engine 2 in the intake passage 3.
  • the main throttle valve 6 is an electromagnetic flow rate control valve that controls the flow rate of air supplied to the ammonia engine 2.
  • the engine system 1 is provided with a reforming system 10 for reforming ammonia gas.
  • the reforming system 10 includes an ammonia tank 11, a vaporizer 12, a reformer 13, an air flow path 14, a reforming throttle valve 15, a reforming injector 16, an electric heater 17, and a reforming gas flow.
  • the road 18, the cooler 19, and the cooling injector 20 are provided.
  • Ammonia tank 11 is a storage unit that stores ammonia in a liquid state. That is, the ammonia tank 11 stores liquid ammonia (liquid fuel).
  • the vaporizer 12 is a vaporizer unit that vaporizes the liquid ammonia stored in the ammonia tank 11 to generate ammonia gas, which is gaseous ammonia (gas fuel).
  • Liquid ammonia is the same substance as gaseous ammonia. The same substance means that the substance has the same chemical formula.
  • the reformer 13 is a reforming unit that reforms ammonia gas to generate a reformed gas containing hydrogen.
  • the reformer 13 has, for example, a carrier 13a exhibiting a honeycomb structure.
  • the carrier 13a is coated with a reforming catalyst 13b that decomposes ammonia gas into hydrogen.
  • the reforming catalyst 13b has a function of burning ammonia gas in addition to a function of decomposing ammonia gas into hydrogen.
  • the reforming catalyst 13b is an ATR (Autothermal Reformer) type ammonia reforming catalyst.
  • a low temperature reaction catalyst may be used as the reforming catalyst 13b.
  • the air passage 14 connects the intake passage 3 and the reformer 13. Specifically, one end of the air flow path 14 is branched and connected to a portion of the intake passage 3 between the air cleaner 7 and the main throttle valve 6. The other end of the air flow path 14 is connected to the reformer 13.
  • the air flow path 14 is a flow path through which the air supplied to the reformer 13 flows.
  • the reforming throttle valve 15 is arranged in the air flow path 14.
  • the reforming throttle valve 15 is an electromagnetic flow rate control valve that controls the flow rate of air supplied to the reformer 13.
  • the air flow path 14 and the reforming throttle valve 15 constitute an air supply unit 21 that supplies air to the reformer 13.
  • the reforming injector 16 is connected to the vaporizer 12 via the gaseous ammonia flow path 9.
  • the gaseous ammonia flow path 9 is a gas fuel flow path through which the ammonia gas generated by the vaporizer 12 flows.
  • the reforming injector 16 is an electromagnetic fuel injection valve that injects ammonia gas, which is a gaseous fuel, toward the reformer 13. Specifically, the reforming injector 16 injects ammonia gas between the reforming throttle valve 15 and the reformer 13 in the air flow path 14. Therefore, air and ammonia gas flow through the portion of the air flow path 14 between the reforming throttle valve 15 and the reformer 13.
  • the gaseous ammonia flow path 9, the main injector 5, the reforming injector 16, and the air flow path 14 constitute an ammonia gas supply unit 22 (first fuel supply unit) that supplies ammonia gas to the ammonia engine 2 and the reformer 13. ing.
  • a pressure reducing valve 23 is provided in the gaseous ammonia flow path 9.
  • the pressure reducing valve 23 is a first pressure reducing valve that reduces the pressure of ammonia gas supplied to the ammonia engine 2 and the reformer 13.
  • the pressure reducing valve 23 maintains the pressure of the ammonia gas supplied to the ammonia engine 2 and the reformer 13 at a predetermined pressure.
  • the electric heater 17 is a heater unit that raises the temperature of the reformer 13 through the ammonia gas by heating the ammonia gas supplied to the reformer 13.
  • the electric heater 17 has a heating element 24 arranged in the air flow path 14 and a power supply 25 for energizing the heating element 24.
  • the heating element 24 has, for example, a honeycomb structure. The heat of the ammonia gas heated by the electric heater 17 is transferred to the reformer 13, so that the temperature of the reformer 13 rises.
  • the reformed gas flow path 18 connects the reformer 13 and the intake passage 3. Specifically, one end of the reforming gas flow path 18 is connected to the reformer 13. The other end of the reformed gas flow path 18 is branched and connected to a portion of the intake passage 3 between the main throttle valve 6 and the ammonia engine 2.
  • the reformed gas flow path 18 is a flow path through which the reformed gas generated by the reformer 13 flows toward the ammonia engine 2.
  • the cooler 19 is arranged in the reformed gas flow path 18.
  • the cooler 19 cools the reformed gas supplied to the ammonia engine 2.
  • the cooler 19 cools the reformed gas by, for example, heat exchange with the engine cooling water.
  • the cooling injector 20 is connected to the ammonia tank 11 via the liquid ammonia flow path 26.
  • the liquid ammonia flow path 26 is a liquid fuel flow path through which the liquid ammonia stored in the ammonia tank 11 flows.
  • the cooling injector 20 is an electromagnetic liquid fuel injection valve that cools the reformed gas by injecting liquid ammonia into the reformed gas flow path 18 by utilizing the latent heat of vaporization. Specifically, the cooling injector 20 injects liquid ammonia between the reformer 13 and the cooler 19 in the reforming gas flow path 18.
  • the liquid ammonia flow path 26 and the cooling injector 20 form a liquid ammonia supply unit 27 (second fuel supply unit) that supplies liquid ammonia to the reformed gas flow path 18.
  • a liquid ammonia supply unit 27 (second fuel supply unit) that supplies liquid ammonia to the reformed gas flow path 18.
  • liquid ammonia supply unit 27 having the cooling injector 20 together with the cooler 19 it is possible to prevent the intake system parts such as the main throttle valve 6 from being damaged by heat and to suppress the volume expansion of the reformed gas. Therefore, the air is sufficiently easily sucked into the combustion chamber 2a of the ammonia engine 2.
  • a pressure reducing valve 28 is provided in the liquid ammonia flow path 26.
  • the pressure reducing valve 28 is a second pressure reducing valve that reduces the pressure of liquid ammonia supplied to the reformed gas flow path 18.
  • the pressure reducing valve 28 maintains the pressure of the liquid ammonia supplied to the reforming gas flow path 18 at a predetermined pressure.
  • the reforming system 10 includes a temperature sensor 29 and a controller 30.
  • the temperature sensor 29 is a sensor that detects the temperature of the reformer 13.
  • the temperature sensor 29 detects, for example, the temperature at the upstream end of the reforming catalyst 13b of the reformer 13.
  • the controller 30 is composed of a CPU, RAM, ROM, an input / output interface, and the like.
  • An ignition switch 31 (IG switch) and a starter motor 32 are connected to the controller 30.
  • the ignition switch 31 is a manually operated switch for instructing the driver of the vehicle to start and stop the ammonia engine 2.
  • the starter motor 32 is a motor for starting the ammonia engine 2.
  • the controller 30 includes the main injector 5, the main throttle valve 6, the reforming throttle valve 15, the reforming injector 16, the electric heater 17, the cooling injector 20, and the cooling injector 20 based on the operation signal of the ignition switch 31 and the detected value of the temperature sensor 29.
  • the starter motor 32 is controlled.
  • FIG. 2 is a flowchart showing details of the control processing procedure executed by the controller 30. This process is executed when the ammonia engine 2 is started. Before the execution of this process, the main injector 5, the main throttle valve 6, the reforming throttle valve 15, the reforming injector 16, and the cooling injector 20 are in a closed state.
  • the controller 30 first determines whether or not the ignition switch 31 has been turned ON based on the operation signal of the ignition switch 31 (procedure S101). When the controller 30 determines that the ignition switch 31 has been turned on, the controller 30 controls the power supply 25 so as to energize the heating element 24 of the electric heater 17 (procedure S102). As a result, the heating element 24 generates heat.
  • the controller 30 controls to open the reforming injector 16 (procedure S103).
  • ammonia gas is injected from the reforming injector 16 and the ammonia gas is supplied to the reformer 13.
  • the controller 30 controls to open the reforming throttle valve 15 (procedure S104). As a result, air is supplied to the reformer 13.
  • the controller 30 controls the starter motor 32 so as to crank the ammonia engine 2 (procedure S105). As a result, the ammonia engine 2 is started.
  • the controller 30 controls to open the main throttle valve 6 and also controls to open the main injector 5 (procedure S106).
  • air is supplied to the ammonia engine 2
  • ammonia gas is injected from the main injector 5, and ammonia gas is supplied to the ammonia engine 2.
  • the controller 30 determines whether or not the temperature of the reformer 13 is equal to or higher than the first specified temperature based on the detected value of the temperature sensor 29 (procedure S107).
  • the first specified temperature is a temperature at which ammonia gas can be burned, and is, for example, about 200 ° C.
  • the controller 30 controls the power supply 25 so as to stop the energization of the heating element 24 (procedure S108).
  • ammonia gas is burned in the reformer 13, and the heat of the combustion further raises the temperature of the reformer 13.
  • the controller 30 determines whether or not the temperature of the reformer 13 is equal to or higher than the second specified temperature based on the detected value of the temperature sensor 29 (procedure S109).
  • the second specified temperature is, for example, a temperature at which ammonia gas can be reformed, and is, for example, about 300 ° C. to 400 ° C.
  • the controller 30 controls the cooling injector 20 to open (procedure S110). As a result, liquid ammonia is injected from the cooling injector 20 and liquid ammonia is supplied to the reformed gas flow path 18.
  • step S105 may be performed after step S107.
  • the heating element 24 of the electric heater 17 is energized and the heating element 24 generates heat.
  • the reforming injector 16 opens, ammonia gas is injected from the reforming injector 16 and the ammonia gas is supplied to the reformer 13.
  • the ammonia gas is heated by the heat of the heating element 24, and the heat of the warmed ammonia gas is transferred to the reformer 13, so that the reformer 13 raises the temperature.
  • the reforming throttle valve 15 is opened, air is supplied to the reformer 13.
  • the ammonia engine 2 is started by the starter motor 32. Then, when the main throttle valve 6 and the main injector 5 are opened, air is supplied to the combustion chamber 2a of the ammonia engine 2, and ammonia gas is injected from the main injector 5 to the combustion chamber 2a of the ammonia engine 2. Ammonia gas is supplied. As a result, the ammonia gas begins to burn in the combustion chamber 2a.
  • the energization of the heating element 24 is stopped, but the ammonia gas is ignited and burned by the reforming catalyst 13b of the reformer 13, and reformed by the combustion heat.
  • the temperature of the vessel 13 is further increased. Specifically, as shown in the following formula, a chemical reaction (oxidation reaction) occurs between a part of ammonia and oxygen in the air, so that a combustion reaction of ammonia occurs and combustion heat is generated.
  • a chemical reaction oxidation reaction
  • the reforming catalyst 13b of the reformer 13 starts reforming the ammonia gas, and a high-temperature reforming gas containing hydrogen is generated.
  • a reforming reaction occurs in which ammonia is decomposed into hydrogen and nitrogen by the heat of combustion of ammonia, and a reforming gas containing hydrogen and nitrogen is generated.
  • the cooling injector 20 opens, and liquid ammonia is injected from the cooling injector 20 into the reformed gas flow path 18. Then, the liquid ammonia takes heat from the high-temperature reformed gas and vaporizes it, so that ammonia gas is generated and the reformed gas is cooled. Then, the cooled reformed gas is supplied to the combustion chamber 2a of the ammonia engine 2 together with the ammonia gas. As a result, the ammonia gas burns together with the hydrogen in the reformed gas in the combustion chamber 2a. As described above, the engine system 1 is in steady operation after the warming up of the reformer 13 is completed.
  • the ammonia gas is burned in the reformer 13. .. Then, since the reformer 13 is further heated by the heat of combustion, a high-temperature reforming gas is generated in the reformer 13, and the reforming gas flows through the reforming gas flow path 18. At this time, liquid ammonia is directly injected into the reformed gas flow path 18 by the cooling injector 20. Therefore, the liquid ammonia takes heat from the high-temperature reformed gas and vaporizes, and the reformed gas is cooled.
  • the reformed gas can be effectively cooled. As a result, it becomes possible to reduce the size of the cooler 19 in the subsequent stage or to abolish the cooler 19 in the subsequent stage.
  • the liquid ammonia injected into the reforming gas flow path 18 is a substance called ammonia, which is the same as the ammonia gas supplied to the reformer 13. Therefore, since it is not necessary to prepare a plurality of types of fuel, the reformed gas can be cooled by using a simple system. As a result, it becomes possible to improve the mountability of the engine system 1. Further, it is possible to reduce the cost of the engine system 1.
  • the ammonia gas is supplied to the ammonia engine 2 and the reformer 13 by the ammonia gas supply unit 22. Therefore, not only the ammonia gas generated by the liquid ammonia taking heat from the high-temperature reforming gas and vaporizing it is supplied to the ammonia engine 2, but also the ammonia gas is supplied to the ammonia engine 2 by the ammonia gas supply unit 22. It will be supplied. Therefore, the responsiveness of the ammonia engine 2 is improved. Further, the vaporizer 12 can be downsized by the amount that the liquid ammonia is supplied to the reformed gas flow path 18 by the liquid ammonia supply unit 27.
  • the liquid ammonia stored in the ammonia tank 11 is vaporized by the vaporizer 12 to generate ammonia gas, and the ammonia gas is supplied to the ammonia engine 2 and the reformer 13 and the ammonia tank.
  • the liquid ammonia stored in 11 is supplied to the reformed gas flow path 18. Therefore, the ammonia gas supplied to the ammonia engine 2 and the reformer 13 and the liquid ammonia supplied to the reforming gas flow path 18 can be easily obtained.
  • the gaseous ammonia flow path 9 is provided with a pressure reducing valve 23 for reducing the pressure of the ammonia gas supplied to the ammonia engine 2 and the reformer 13. Therefore, the supply pressure of ammonia gas to the ammonia engine 2 and the reformer 13 becomes a constant pressure.
  • the liquid ammonia flow path 26 is provided with a pressure reducing valve 28 for reducing the pressure of the liquid ammonia injected into the reforming gas flow path 18. Therefore, the supply pressure (injection pressure) of liquid ammonia to the reformed gas flow path 18 becomes a constant pressure. Further, since the injection pressures of the main injector 5, the reforming injector 16 and the cooling injector 20 are low, it is not necessary to use a highly durable and expensive injector as the main injector 5, the reforming injector 16 and the cooling injector 20.
  • the reformed gas can be cooled more effectively by using liquid ammonia having a larger latent heat of vaporization than other liquid fuels. Therefore, the reformed gas can be cooled even if the supply amount of liquid ammonia is reduced.
  • a plurality of main injectors 5 for injecting ammonia gas into each combustion chamber 2a of the ammonia engine 2 are attached to the ammonia engine 2, but the number of main injectors 5 is one. May be good.
  • the main injector 5 may be arranged so as to inject ammonia gas between the main throttle valve 6 and the ammonia engine 2 in the intake passage 3.
  • FIG. 3 is a schematic configuration diagram showing an engine system according to another embodiment of the present invention.
  • the engine system 1A of the present embodiment does not include the main injector 5 of the above embodiment.
  • the ammonia gas generated by vaporizing the liquid ammonia supplied to the reforming gas flow path 18 is supplied to the combustion chamber 2a of the ammonia engine 2.
  • the engine system 1A includes an ammonia gas supply unit 22A and a controller 30A instead of the ammonia gas supply unit 22 and the controller 30 in the above embodiment.
  • the ammonia gas supply unit 22A supplies ammonia gas to the reformer 13.
  • the controller 30A sets the main throttle valve 6, the reforming throttle valve 15, the reforming injector 16, the electric heater 17, the cooling injector 20, and the starter motor 32 based on the operation signal of the ignition switch 31 and the detected value of the temperature sensor 29. Control.
  • FIG. 4 is a flowchart showing details of the control processing procedure executed by the controller 30A shown in FIG.
  • the controller 30A sequentially executes the procedures S101 to S105 in the controller 30.
  • the controller 30A controls to open the main throttle valve 6 after executing the procedure S105 (procedure S106A). After that, the controller 30A sequentially executes the procedures S107 to S110 in the controller 30.
  • liquid ammonia is injected from the cooling injector 20 and liquid ammonia is supplied to the reformed gas flow path 18. Then, the liquid ammonia takes heat from the high-temperature reformed gas and vaporizes it, so that ammonia gas is generated and the reformed gas is cooled. Then, the cooled reformed gas is supplied to the combustion chamber 2a of the ammonia engine 2 together with the ammonia gas. Then, in the combustion chamber 2a, the ammonia gas burns together with the hydrogen in the reformed gas.
  • the reformed gas can be effectively cooled by using the latent heat of vaporization of the liquid ammonia using a simple system. Further, in the present embodiment, since the main injector 5 is not required, the engine system 1A can be simplified.
  • the present invention is not limited to the above embodiment.
  • liquid ammonia is injected from the cooling injector 20, but the embodiment is not particularly limited.
  • the timing of injecting liquid ammonia from the cooling injector 20 may be when the temperature of the reformer 13 becomes equal to or higher than the first specified temperature, or when the main throttle valve 6 is opened, and can be changed as appropriate. Further, the cooling injector 20 may continuously inject liquid ammonia, or the cooling injector 20 may intermittently inject liquid ammonia.
  • the electric heater 17 heats the ammonia gas supplied to the reformer 13 to raise the temperature of the reformer 13 through the ammonia gas, but the temperature is particularly limited to that form. Absent.
  • the electric heater 17 may directly raise the temperature of the reformer 13 by directly heating the reformer 13. Further, a combustion type heater that burns and heats ammonia may be used.
  • the temperature of the reformer 13 is detected by the temperature sensor 29, but the present invention is not particularly limited to that mode, and the reformer 13 is based on the flow rate of ammonia gas, the flow rate of air, the time, the room temperature, and the like. You may estimate the temperature of.
  • the air flow path 14 through which the air supplied to the reformer 13 flows is branched and connected to the intake passage 3, but the present invention is not particularly limited to that form, and the intake air connected to the ammonia engine 2 is connected. Air may be supplied to the air passage 14 from a route different from that of the passage 3. In this case, it is possible to prevent the influence of the pulsation of the intake passage 3.
  • ammonia gas gaseous ammonia
  • liquid ammonia is used as the liquid fuel supplied to the reforming gas flow path 18.
  • the fuel used is not particularly limited to ammonia as long as it is the same substance, and may be, for example, an alcohol-based substance such as ethanol. Further, liquid fuel may be supplied to the ammonia engine 2 and the reformer 13. In this case, the vaporizer 12 becomes unnecessary.
  • the ammonia gas supply unit 22 has a reforming injector 16 that injects ammonia gas toward the reformer 13, but the embodiment is not particularly limited, and for example, the reforming injector 16 Instead of, a flow rate adjusting valve may be used.
  • the other end of the gas ammonia flow path 9 is connected to the air flow path 14, and a flow rate adjusting valve is provided in the gas ammonia flow path 9. By using the flow rate adjusting valve, ammonia gas can be continuously supplied to the reformer 13.
  • the other end of the reformed gas flow path 18 is connected to the air flow path 14, but the embodiment is not particularly limited, and for example, the other end of the reformed gas flow path 18 is connected to the ammonia engine.
  • An injector that injects reformed gas toward 2 or the intake passage 3 may be provided.
  • the reforming system of the above embodiment is provided in the engine system, the present invention is not particularly limited to the engine system, and can be applied to, for example, a turbine system or a fuel cell system.
  • 1,1A engine system 2 Ammonia engine (engine) 3 Intake passage 6 Main throttle valve (throttle valve) 9 Gas ammonia flow path (gas fuel flow path) 10 Reform system 11 Ammonia tank (storage part) 12 Vaporizer (Vaporizer) 13 Reformer (reformer) 17 Electric heater (heater part) 18 Reformed gas flow path 21 Air supply unit 20 Cooling injector (liquid fuel injection valve) 22 Ammonia gas supply unit (first fuel supply unit) 23 Pressure reducing valve (first pressure reducing valve) 26 Liquid ammonia flow path (liquid fuel flow path) 27 Liquid ammonia supply section (second fuel supply section) 28 Pressure reducing valve (second pressure reducing valve)

Abstract

A reformer system (10) comprising: a reformer (13) that reforms ammonia gas to generate a reformed gas that contains hydrogen; an air supply unit (21) that supplies air to the reformer (13); an ammonia gas supply unit (22) that supplies ammonia gas to the reformer (13); a reformed gas flow path (18) that conveys the reformed gas generated by the reformer (13); an electric heater (17) that increases the temperature of the reformer (13); and a liquid ammonia supply unit (27) comprising a coolant injector (20) that sprays liquid ammonia into the reformed gas flow path (18).

Description

改質システム及びエンジンシステムRemodeling system and engine system
 本発明は、改質システム及びエンジンシステムに関する。 The present invention relates to a reforming system and an engine system.
 例えば特許文献1に記載されているように、エンジンに適用された改質システムが従来から知られている。特許文献1に記載の改質システムは、気体のアンモニアを触媒により分解して水素を生成する分解器と、この分解器に気体のアンモニアを供給するアンモニア供給管と、分解器に空気を供給する空気供給管と、分解器で生成された水素を含む気体が流出する流出管と、この流出管に接続され、分解器から流出した高温の気体を冷却する冷却器とを備えている。 For example, as described in Patent Document 1, a reforming system applied to an engine has been conventionally known. The reforming system described in Patent Document 1 is a cracker that decomposes gaseous ammonia with a catalyst to generate hydrogen, an ammonia supply pipe that supplies gaseous ammonia to the cracker, and air to the cracker. It is provided with an air supply pipe, an outflow pipe from which a gas containing hydrogen generated by the decomposer flows out, and a cooler connected to the outflow pipe to cool the high-temperature gas flowing out from the decomposer.
特再公表2012-090739号公報Special Republication 2012-090739
 しかしながら、上記従来技術においては、以下の問題点が存在する。即ち、触媒により気体のアンモニアを改質する際には、アンモニアの一部を燃焼させ(酸化反応)、その燃焼熱を利用して残りのアンモニアを乖離させて、水素を含む改質ガスを取り出している。しかし、燃焼熱は数百度の高温となるため、改質ガスも同程度の高温となる。従って、改質ガスをエンジンに供給するためには、分解器の下流側に大型の冷却器を配置する必要があり、搭載性の悪化及びコストアップにつながる。 However, the above-mentioned conventional technology has the following problems. That is, when reforming gaseous ammonia with a catalyst, a part of the ammonia is burned (oxidation reaction), and the remaining ammonia is separated by using the combustion heat to take out the reformed gas containing hydrogen. ing. However, since the heat of combustion becomes a high temperature of several hundred degrees, the reformed gas also becomes a high temperature of the same degree. Therefore, in order to supply the reformed gas to the engine, it is necessary to dispose a large cooler on the downstream side of the decomposer, which leads to deterioration of mountability and cost increase.
 本発明の目的は、単純なシステムを用いて改質ガスを効果的に冷却することができる改質システム及びエンジンシステムを提供することである。 An object of the present invention is to provide a reforming system and an engine system capable of effectively cooling a reforming gas using a simple system.
 本発明の一態様に係る改質システムは、燃料を改質して水素を含有した改質ガスを生成する改質部と、改質部に空気を供給する空気供給部と、改質部に燃料を供給する第1燃料供給部と、改質部により生成された改質ガスが流れる改質ガス流路と、改質部を昇温させるヒータ部と、改質ガス流路に燃料と同じ物質の液体燃料を噴射する液体燃料噴射弁を有する第2燃料供給部とを備える。 The reforming system according to one aspect of the present invention includes a reforming section that reforms fuel to generate a reforming gas containing hydrogen, an air supply section that supplies air to the reforming section, and a reforming section. The first fuel supply section that supplies fuel, the reforming gas flow path through which the reforming gas generated by the reforming section flows, the heater section that raises the temperature of the reforming section, and the reforming gas flow path are the same as fuel. It is provided with a second fuel supply unit having a liquid fuel injection valve for injecting a material liquid fuel.
 このような改質システムでは、改質部に空気及び燃料が供給されると共に、ヒータ部により改質部が昇温すると、改質部において燃料が燃焼する。すると、燃焼熱によって改質部が更に昇温するため、改質部において高温の改質ガスが生成され、その改質ガスが改質ガス流路を流れる。このとき、改質ガス流路には、液体燃料噴射弁により液体燃料が直接噴射される。このため、液体燃料が高温の改質ガスから熱を奪って気化し、改質ガスが冷却される。このように液体燃料の気化潜熱を利用することで、改質ガスを効果的に冷却することができる。また、改質ガス流路に噴射される液体燃料は、改質部に供給される燃料と同じ物質である。従って、複数種類の燃料を用意しなくて済むため、単純なシステムを用いて改質ガスを冷却することができる。 In such a reforming system, air and fuel are supplied to the reforming section, and when the temperature of the reforming section rises due to the heater section, the fuel burns in the reforming section. Then, since the reformed portion is further heated by the heat of combustion, a high-temperature reformed gas is generated in the reformed portion, and the reformed gas flows through the reformed gas flow path. At this time, the liquid fuel is directly injected into the reformed gas flow path by the liquid fuel injection valve. Therefore, the liquid fuel takes heat from the high-temperature reformed gas and vaporizes, and the reformed gas is cooled. By utilizing the latent heat of vaporization of the liquid fuel in this way, the reformed gas can be effectively cooled. The liquid fuel injected into the reformed gas flow path is the same substance as the fuel supplied to the reformed section. Therefore, since it is not necessary to prepare a plurality of types of fuel, the reformed gas can be cooled by using a simple system.
 改質システムは、液体燃料を貯蔵する貯蔵部と、貯蔵部に貯蔵された液体燃料を気化させて気体燃料を生成する気化部とを備え、第1燃料供給部は、気化部により生成された気体燃料が流れる気体燃料流路を有し、第2燃料供給部は、貯蔵部に貯蔵された液体燃料が流れる液体燃料流路を有してもよい。このような構成では、改質部に供給される気体燃料と改質ガス流路に供給される液体燃料とを簡単に取得することができる。 The reforming system includes a storage unit for storing liquid fuel and a vaporization unit for vaporizing the liquid fuel stored in the storage unit to generate gaseous fuel, and the first fuel supply unit is generated by the vaporization unit. The second fuel supply unit may have a liquid fuel flow path through which the liquid fuel stored in the storage unit flows, and has a gas fuel flow path through which the gas fuel flows. With such a configuration, the gaseous fuel supplied to the reforming section and the liquid fuel supplied to the reforming gas flow path can be easily obtained.
 気体燃料流路には、改質部に供給される気体燃料を減圧する第1減圧弁が配設されており、液体燃料流路には、改質ガス流路に噴射される液体燃料を減圧する第2減圧弁が配設されていてもよい。このような構成では、改質部に対する気体燃料の供給圧が一定圧になると共に、改質ガス流路に対する液体燃料の供給圧(噴射圧)が一定圧になる。 The gas fuel flow path is provided with a first pressure reducing valve for reducing the pressure of the gaseous fuel supplied to the reforming section, and the liquid fuel flow path reduces the pressure of the liquid fuel injected into the reforming gas flow path. A second pressure reducing valve may be provided. In such a configuration, the supply pressure of the gaseous fuel to the reformed portion becomes a constant pressure, and the supply pressure (injection pressure) of the liquid fuel to the reformed gas flow path becomes a constant pressure.
 気体燃料は気体アンモニアであり、液体燃料は液体アンモニアであってもよい。液体アンモニアは、他の液体燃料に比べて気化潜熱が大きい。このため、液体燃料として液体アンモニアを使用することで、改質ガスをより効果的に冷却することができる。従って、液体アンモニアの供給量を少なくしても、改質ガスを冷却することができる。 The gaseous fuel may be gaseous ammonia and the liquid fuel may be liquid ammonia. Liquid ammonia has a larger latent heat of vaporization than other liquid fuels. Therefore, by using liquid ammonia as the liquid fuel, the reformed gas can be cooled more effectively. Therefore, the reformed gas can be cooled even if the supply amount of liquid ammonia is reduced.
 本発明の他の態様に係るエンジンシステムは、エンジンと、エンジンに供給される空気が流れる吸気通路と、吸気通路に配設され、エンジンに供給される空気の流量を制御するスロットルバルブと、燃料を改質して水素を含有した改質ガスを生成する改質部と、改質部に空気を供給する空気供給部と、改質部に燃料を供給する第1燃料供給部と、改質部により生成された改質ガスがエンジンに向けて流れる改質ガス流路と、改質部を昇温させるヒータ部と、改質ガス流路に燃料と同じ物質の液体燃料を噴射する液体燃料噴射弁を有する第2燃料供給部とを備える。 The engine system according to another aspect of the present invention includes an engine, an intake passage through which air supplied to the engine flows, a throttle valve arranged in the intake passage and controlling the flow rate of air supplied to the engine, and fuel. A reforming section that reforms to generate a reforming gas containing hydrogen, an air supply section that supplies air to the reforming section, a first fuel supply section that supplies fuel to the reforming section, and a reforming section. A reformed gas flow path through which the reformed gas generated by the unit flows toward the engine, a heater unit that raises the temperature of the reformed unit, and a liquid fuel that injects liquid fuel of the same substance as the fuel into the reformed gas flow path. It includes a second fuel supply unit having an injection valve.
 このようなエンジンシステムでは、改質部に空気及び燃料が供給されると共に、ヒータ部により改質部が昇温すると、改質部において燃料が燃焼する。すると、燃焼熱によって改質部が更に昇温するため、改質部において高温の改質ガスが生成され、その改質ガスが改質ガス流路を流れる。このとき、改質ガス流路には、液体燃料噴射弁により液体燃料が直接噴射される。このため、液体燃料が高温の改質ガスから熱を奪って気化し、改質ガスが冷却される。このように液体燃料の気化潜熱を利用することで、改質ガスを効果的に冷却することができる。また、改質ガス流路に噴射される液体燃料は、改質部に供給される燃料と同じ物質である。従って、複数種類の燃料を用意しなくて済むため、単純なシステムを用いて改質ガスを冷却することができる。 In such an engine system, air and fuel are supplied to the reforming section, and when the temperature of the reforming section rises due to the heater section, the fuel burns in the reforming section. Then, since the reformed portion is further heated by the heat of combustion, a high-temperature reformed gas is generated in the reformed portion, and the reformed gas flows through the reformed gas flow path. At this time, the liquid fuel is directly injected into the reformed gas flow path by the liquid fuel injection valve. Therefore, the liquid fuel takes heat from the high-temperature reformed gas and vaporizes, and the reformed gas is cooled. By utilizing the latent heat of vaporization of the liquid fuel in this way, the reformed gas can be effectively cooled. The liquid fuel injected into the reformed gas flow path is the same substance as the fuel supplied to the reformed section. Therefore, since it is not necessary to prepare a plurality of types of fuel, the reformed gas can be cooled by using a simple system.
 第1燃料供給部は、エンジン及び改質部に燃料を供給してもよい。このような構成では、液体燃料が高温の改質ガスから熱を奪って気化することで生成される気体燃料がエンジンに供給されるだけでなく、第1燃料供給部によりエンジンに燃料が供給されることになる。従って、エンジンの応答性が良くなる。 The first fuel supply unit may supply fuel to the engine and the reforming unit. In such a configuration, not only the gaseous fuel produced by the liquid fuel taking heat from the high-temperature reformed gas and vaporizing it is supplied to the engine, but also the fuel is supplied to the engine by the first fuel supply unit. Will be. Therefore, the responsiveness of the engine is improved.
 本発明によれば、単純なシステムを用いて改質ガスを効果的に冷却することができる。 According to the present invention, the reformed gas can be effectively cooled by using a simple system.
本発明の一実施形態に係るエンジンシステムを示す概略構成図である。It is a schematic block diagram which shows the engine system which concerns on one Embodiment of this invention. 図1に示されたコントローラにより実行される制御処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the control processing procedure executed by the controller shown in FIG. 本発明の他の実施形態に係るエンジンシステムを示す概略構成図である。It is a schematic block diagram which shows the engine system which concerns on other embodiment of this invention. 図3に示されたコントローラにより実行される制御処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the control processing procedure executed by the controller shown in FIG.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are designated by the same reference numerals, and duplicate description will be omitted.
 図1は、本発明の一実施形態に係る改質システムを具備したエンジンシステムを示す概略構成図である。図1において、本実施形態のエンジンシステム1は、車両に搭載されている。エンジンシステム1は、アンモニアエンジン2と、吸気通路3と、排気通路4と、複数(ここでは4つ)のメインインジェクタ5と、メインスロットルバルブ6とを備えている。 FIG. 1 is a schematic configuration diagram showing an engine system including a reforming system according to an embodiment of the present invention. In FIG. 1, the engine system 1 of the present embodiment is mounted on a vehicle. The engine system 1 includes an ammonia engine 2, an intake passage 3, an exhaust passage 4, a plurality of (four in this case) main injectors 5, and a main throttle valve 6.
 アンモニアエンジン2は、アンモニア(NH)を燃料として使用するエンジンである。アンモニアエンジン2は、例えば4気筒エンジンであり、4つの燃焼室2aを有している。アンモニアエンジン2には、アンモニアと共に水素(H)が供給される(後述)。 The ammonia engine 2 is an engine that uses ammonia (NH 3 ) as fuel. The ammonia engine 2 is, for example, a 4-cylinder engine and has four combustion chambers 2a. Hydrogen (H 2 ) is supplied to the ammonia engine 2 together with ammonia (described later).
 吸気通路3は、燃焼室2aに接続されている。吸気通路3は、燃焼室2aに供給される空気が流れる通路である。吸気通路3には、空気に含まれる塵及び埃等の異物を除去するエアクリーナ7が配設されている。 The intake passage 3 is connected to the combustion chamber 2a. The intake passage 3 is a passage through which the air supplied to the combustion chamber 2a flows. An air cleaner 7 for removing dust and foreign matter such as dust contained in the air is provided in the intake passage 3.
 排気通路4は、燃焼室2aに接続されている。排気通路4は、燃焼室2aから発生した排気ガスが流れる通路である。排気通路4には、排気ガスに含まれる窒素酸化物(NOx)及びアンモニア等の有害物質を除去する排気浄化触媒8が配設されている。排気浄化触媒8としては、例えば三元触媒やSCR(Selective Catalytic Reduction)触媒等が用いられる。 The exhaust passage 4 is connected to the combustion chamber 2a. The exhaust passage 4 is a passage through which the exhaust gas generated from the combustion chamber 2a flows. An exhaust purification catalyst 8 for removing harmful substances such as nitrogen oxides (NOx) and ammonia contained in the exhaust gas is arranged in the exhaust passage 4. As the exhaust gas purification catalyst 8, for example, a three-way catalyst, an SCR (Selective Catalytic Reduction) catalyst, or the like is used.
 メインインジェクタ5は、燃焼室2aにアンモニアガス(NHガス)を噴射する電磁式の燃料噴射弁である。メインインジェクタ5は、後述する気化器12と気体アンモニア流路9を介して接続されている。メインインジェクタ5は、アンモニアエンジン2に取り付けられている。 The main injector 5 is an electromagnetic type fuel injection valve for injecting ammonia gas (NH 3 gas) into the combustion chamber 2a. The main injector 5 is connected to a vaporizer 12 described later via a gaseous ammonia flow path 9. The main injector 5 is attached to the ammonia engine 2.
 メインスロットルバルブ6は、吸気通路3におけるエアクリーナ7とアンモニアエンジン2との間に配設されている。メインスロットルバルブ6は、アンモニアエンジン2に供給される空気の流量を制御する電磁式の流量制御弁である。 The main throttle valve 6 is arranged between the air cleaner 7 and the ammonia engine 2 in the intake passage 3. The main throttle valve 6 is an electromagnetic flow rate control valve that controls the flow rate of air supplied to the ammonia engine 2.
 また、エンジンシステム1は、アンモニアガスの改質を行う改質システム10を具備している。改質システム10は、アンモニアタンク11と、気化器12と、改質器13と、空気流路14と、改質スロットルバルブ15と、改質インジェクタ16と、電気ヒータ17と、改質ガス流路18と、クーラ19と、冷却インジェクタ20とを備えている。 Further, the engine system 1 is provided with a reforming system 10 for reforming ammonia gas. The reforming system 10 includes an ammonia tank 11, a vaporizer 12, a reformer 13, an air flow path 14, a reforming throttle valve 15, a reforming injector 16, an electric heater 17, and a reforming gas flow. The road 18, the cooler 19, and the cooling injector 20 are provided.
 アンモニアタンク11は、アンモニアを液体状態で貯蔵する貯蔵部である。つまり、アンモニアタンク11は、液体アンモニア(液体燃料)を貯蔵する。気化器12は、アンモニアタンク11に貯蔵された液体アンモニアを気化させて、気体アンモニア(気体燃料)であるアンモニアガスを生成する気化部である。液体アンモニアは、気体アンモニアと同じ物質である。同じ物質とは、物質の化学式が同じということである。 Ammonia tank 11 is a storage unit that stores ammonia in a liquid state. That is, the ammonia tank 11 stores liquid ammonia (liquid fuel). The vaporizer 12 is a vaporizer unit that vaporizes the liquid ammonia stored in the ammonia tank 11 to generate ammonia gas, which is gaseous ammonia (gas fuel). Liquid ammonia is the same substance as gaseous ammonia. The same substance means that the substance has the same chemical formula.
 改質器13は、アンモニアガスを改質して、水素を含有した改質ガスを生成する改質部である。改質器13は、例えばハニカム構造を呈する担体13aを有している。担体13aには、アンモニアガスを水素に分解する改質触媒13bが塗布されている。改質触媒13bは、アンモニアガスを水素に分解する機能に加え、アンモニアガスを燃焼させる機能も有している。改質触媒13bは、ATR(Autothermal Reformer)式アンモニア改質触媒である。なお、改質触媒13bとして低温反応触媒を採用してもよい。 The reformer 13 is a reforming unit that reforms ammonia gas to generate a reformed gas containing hydrogen. The reformer 13 has, for example, a carrier 13a exhibiting a honeycomb structure. The carrier 13a is coated with a reforming catalyst 13b that decomposes ammonia gas into hydrogen. The reforming catalyst 13b has a function of burning ammonia gas in addition to a function of decomposing ammonia gas into hydrogen. The reforming catalyst 13b is an ATR (Autothermal Reformer) type ammonia reforming catalyst. A low temperature reaction catalyst may be used as the reforming catalyst 13b.
 空気流路14は、吸気通路3と改質器13とを接続している。具体的には、空気流路14の一端は、吸気通路3におけるエアクリーナ7とメインスロットルバルブ6との間の部分に分岐接続されている。空気流路14の他端は、改質器13に接続されている。空気流路14は、改質器13に供給される空気が流れる流路である。 The air passage 14 connects the intake passage 3 and the reformer 13. Specifically, one end of the air flow path 14 is branched and connected to a portion of the intake passage 3 between the air cleaner 7 and the main throttle valve 6. The other end of the air flow path 14 is connected to the reformer 13. The air flow path 14 is a flow path through which the air supplied to the reformer 13 flows.
 改質スロットルバルブ15は、空気流路14に配設されている。改質スロットルバルブ15は、改質器13に供給される空気の流量を制御する電磁式の流量制御弁である。空気流路14及び改質スロットルバルブ15は、改質器13に空気を供給する空気供給部21を構成している。 The reforming throttle valve 15 is arranged in the air flow path 14. The reforming throttle valve 15 is an electromagnetic flow rate control valve that controls the flow rate of air supplied to the reformer 13. The air flow path 14 and the reforming throttle valve 15 constitute an air supply unit 21 that supplies air to the reformer 13.
 改質インジェクタ16は、気化器12と気体アンモニア流路9を介して接続されている。気体アンモニア流路9は、気化器12により生成されたアンモニアガスが流れる気体燃料流路である。改質インジェクタ16は、改質器13に向けて気体燃料であるアンモニアガスを噴射する電磁式の燃料噴射弁である。具体的は、改質インジェクタ16は、空気流路14における改質スロットルバルブ15と改質器13との間にアンモニアガスを噴射する。従って、空気流路14における改質スロットルバルブ15と改質器13との間の部分には、空気及びアンモニアガスが流れることとなる。 The reforming injector 16 is connected to the vaporizer 12 via the gaseous ammonia flow path 9. The gaseous ammonia flow path 9 is a gas fuel flow path through which the ammonia gas generated by the vaporizer 12 flows. The reforming injector 16 is an electromagnetic fuel injection valve that injects ammonia gas, which is a gaseous fuel, toward the reformer 13. Specifically, the reforming injector 16 injects ammonia gas between the reforming throttle valve 15 and the reformer 13 in the air flow path 14. Therefore, air and ammonia gas flow through the portion of the air flow path 14 between the reforming throttle valve 15 and the reformer 13.
 気体アンモニア流路9、メインインジェクタ5、改質インジェクタ16及び空気流路14は、アンモニアエンジン2及び改質器13にアンモニアガスを供給するアンモニアガス供給部22(第1燃料供給部)を構成している。 The gaseous ammonia flow path 9, the main injector 5, the reforming injector 16, and the air flow path 14 constitute an ammonia gas supply unit 22 (first fuel supply unit) that supplies ammonia gas to the ammonia engine 2 and the reformer 13. ing.
 気体アンモニア流路9には、減圧弁23が配設されている。減圧弁23は、アンモニアエンジン2及び改質器13に供給されるアンモニアガスを減圧する第1減圧弁である。減圧弁23は、アンモニアエンジン2及び改質器13に供給されるアンモニアガスの圧力を所定圧に保持する。 A pressure reducing valve 23 is provided in the gaseous ammonia flow path 9. The pressure reducing valve 23 is a first pressure reducing valve that reduces the pressure of ammonia gas supplied to the ammonia engine 2 and the reformer 13. The pressure reducing valve 23 maintains the pressure of the ammonia gas supplied to the ammonia engine 2 and the reformer 13 at a predetermined pressure.
 電気ヒータ17は、改質器13に供給されるアンモニアガスを加熱することにより、改質器13をアンモニアガスを通して昇温させるヒータ部である。電気ヒータ17は、空気流路14に配設された発熱体24と、この発熱体24を通電する電源25とを有している。発熱体24は、例えばハニカム構造を呈している。電気ヒータ17により加熱されたアンモニアガスの熱が改質器13に伝達されることで、改質器13が昇温する。 The electric heater 17 is a heater unit that raises the temperature of the reformer 13 through the ammonia gas by heating the ammonia gas supplied to the reformer 13. The electric heater 17 has a heating element 24 arranged in the air flow path 14 and a power supply 25 for energizing the heating element 24. The heating element 24 has, for example, a honeycomb structure. The heat of the ammonia gas heated by the electric heater 17 is transferred to the reformer 13, so that the temperature of the reformer 13 rises.
 改質ガス流路18は、改質器13と吸気通路3とを接続している。具体的には、改質ガス流路18の一端は、改質器13に接続されている。改質ガス流路18の他端は、吸気通路3におけるメインスロットルバルブ6とアンモニアエンジン2との間の部分に分岐接続されている。改質ガス流路18は、改質器13により生成された改質ガスがアンモニアエンジン2に向けて流れる流路である。 The reformed gas flow path 18 connects the reformer 13 and the intake passage 3. Specifically, one end of the reforming gas flow path 18 is connected to the reformer 13. The other end of the reformed gas flow path 18 is branched and connected to a portion of the intake passage 3 between the main throttle valve 6 and the ammonia engine 2. The reformed gas flow path 18 is a flow path through which the reformed gas generated by the reformer 13 flows toward the ammonia engine 2.
 クーラ19は、改質ガス流路18に配設されている。クーラ19は、アンモニアエンジン2に供給される改質ガスを冷却する。クーラ19は、例えばエンジン冷却水との熱交換によって改質ガスを冷却する。 The cooler 19 is arranged in the reformed gas flow path 18. The cooler 19 cools the reformed gas supplied to the ammonia engine 2. The cooler 19 cools the reformed gas by, for example, heat exchange with the engine cooling water.
 冷却インジェクタ20は、アンモニアタンク11と液体アンモニア流路26を介して接続されている。液体アンモニア流路26は、アンモニアタンク11に貯蔵された液体アンモニアが流れる液体燃料流路である。冷却インジェクタ20は、改質ガス流路18に液体アンモニアを噴射することにより、気化潜熱を利用して改質ガスを冷却する電磁式の液体燃料噴射弁である。具体的は、冷却インジェクタ20は、改質ガス流路18における改質器13とクーラ19との間に液体アンモニアを噴射する。 The cooling injector 20 is connected to the ammonia tank 11 via the liquid ammonia flow path 26. The liquid ammonia flow path 26 is a liquid fuel flow path through which the liquid ammonia stored in the ammonia tank 11 flows. The cooling injector 20 is an electromagnetic liquid fuel injection valve that cools the reformed gas by injecting liquid ammonia into the reformed gas flow path 18 by utilizing the latent heat of vaporization. Specifically, the cooling injector 20 injects liquid ammonia between the reformer 13 and the cooler 19 in the reforming gas flow path 18.
 液体アンモニア流路26及び冷却インジェクタ20は、改質ガス流路18に液体アンモニアを供給する液体アンモニア供給部27(第2燃料供給部)を構成している。 The liquid ammonia flow path 26 and the cooling injector 20 form a liquid ammonia supply unit 27 (second fuel supply unit) that supplies liquid ammonia to the reformed gas flow path 18.
 このように冷却インジェクタ20を有する液体アンモニア供給部27をクーラ19と共に備えることにより、メインスロットルバルブ6等の吸気系部品が熱により損傷することが防止されると共に、改質ガスの体積膨張が抑制されるため、空気がアンモニアエンジン2の燃焼室2aに十分に吸入されやすくなる。 By providing the liquid ammonia supply unit 27 having the cooling injector 20 together with the cooler 19, it is possible to prevent the intake system parts such as the main throttle valve 6 from being damaged by heat and to suppress the volume expansion of the reformed gas. Therefore, the air is sufficiently easily sucked into the combustion chamber 2a of the ammonia engine 2.
 液体アンモニア流路26には、減圧弁28が配設されている。減圧弁28は、改質ガス流路18に供給される液体アンモニアを減圧する第2減圧弁である。減圧弁28は、改質ガス流路18に供給される液体アンモニアの圧力を所定圧に保持する。 A pressure reducing valve 28 is provided in the liquid ammonia flow path 26. The pressure reducing valve 28 is a second pressure reducing valve that reduces the pressure of liquid ammonia supplied to the reformed gas flow path 18. The pressure reducing valve 28 maintains the pressure of the liquid ammonia supplied to the reforming gas flow path 18 at a predetermined pressure.
 また、改質システム10は、温度センサ29と、コントローラ30とを備えている。温度センサ29は、改質器13の温度を検出するセンサである。温度センサ29は、例えば改質器13の改質触媒13bの上流側端部の温度を検出する。 Further, the reforming system 10 includes a temperature sensor 29 and a controller 30. The temperature sensor 29 is a sensor that detects the temperature of the reformer 13. The temperature sensor 29 detects, for example, the temperature at the upstream end of the reforming catalyst 13b of the reformer 13.
 コントローラ30は、CPU、RAM、ROM及び入出力インターフェース等により構成されている。コントローラ30には、イグニッションスイッチ31(IGスイッチ)及びスタータモータ32が接続されている。イグニッションスイッチ31は、車両の運転者がアンモニアエンジン2の始動及び停止を指示するための手動操作スイッチである。スタータモータ32は、アンモニアエンジン2を始動させるモータである。 The controller 30 is composed of a CPU, RAM, ROM, an input / output interface, and the like. An ignition switch 31 (IG switch) and a starter motor 32 are connected to the controller 30. The ignition switch 31 is a manually operated switch for instructing the driver of the vehicle to start and stop the ammonia engine 2. The starter motor 32 is a motor for starting the ammonia engine 2.
 コントローラ30は、イグニッションスイッチ31の操作信号と温度センサ29の検出値とに基づいて、メインインジェクタ5、メインスロットルバルブ6、改質スロットルバルブ15、改質インジェクタ16、電気ヒータ17、冷却インジェクタ20及びスタータモータ32を制御する。 The controller 30 includes the main injector 5, the main throttle valve 6, the reforming throttle valve 15, the reforming injector 16, the electric heater 17, the cooling injector 20, and the cooling injector 20 based on the operation signal of the ignition switch 31 and the detected value of the temperature sensor 29. The starter motor 32 is controlled.
 図2は、コントローラ30により実行される制御処理手順の詳細を示すフローチャートである。本処理は、アンモニアエンジン2の始動時に実行される。本処理の実行前には、メインインジェクタ5、メインスロットルバルブ6、改質スロットルバルブ15、改質インジェクタ16及び冷却インジェクタ20は、閉じた状態となっている。 FIG. 2 is a flowchart showing details of the control processing procedure executed by the controller 30. This process is executed when the ammonia engine 2 is started. Before the execution of this process, the main injector 5, the main throttle valve 6, the reforming throttle valve 15, the reforming injector 16, and the cooling injector 20 are in a closed state.
 図2において、コントローラ30は、まずイグニッションスイッチ31の操作信号に基づいて、イグニッションスイッチ31がON操作されたかどうかを判断する(手順S101)。コントローラ30は、イグニッションスイッチ31がON操作されたと判断したときは、電気ヒータ17の発熱体24を通電するように電源25を制御する(手順S102)。これにより、発熱体24が発熱するようになる。 In FIG. 2, the controller 30 first determines whether or not the ignition switch 31 has been turned ON based on the operation signal of the ignition switch 31 (procedure S101). When the controller 30 determines that the ignition switch 31 has been turned on, the controller 30 controls the power supply 25 so as to energize the heating element 24 of the electric heater 17 (procedure S102). As a result, the heating element 24 generates heat.
 そして、コントローラ30は、改質インジェクタ16を開くように制御する(手順S103)。これにより、改質インジェクタ16からアンモニアガスが噴射し、改質器13にアンモニアガスが供給される。このとき、発熱体24によりアンモニアガスが加熱されるため、アンモニアガスの熱によって改質器13が昇温する。続いて、コントローラ30は、改質スロットルバルブ15を開くように制御する(手順S104)。これにより、改質器13に空気が供給される。 Then, the controller 30 controls to open the reforming injector 16 (procedure S103). As a result, ammonia gas is injected from the reforming injector 16 and the ammonia gas is supplied to the reformer 13. At this time, since the ammonia gas is heated by the heating element 24, the temperature of the reformer 13 is raised by the heat of the ammonia gas. Subsequently, the controller 30 controls to open the reforming throttle valve 15 (procedure S104). As a result, air is supplied to the reformer 13.
 そして、コントローラ30は、アンモニアエンジン2をクランキングさせるようにスタータモータ32を制御する(手順S105)。これにより、アンモニアエンジン2が始動する。 Then, the controller 30 controls the starter motor 32 so as to crank the ammonia engine 2 (procedure S105). As a result, the ammonia engine 2 is started.
 続いて、コントローラ30は、メインスロットルバルブ6を開くように制御すると共に、メインインジェクタ5を開くように制御する(手順S106)。これにより、アンモニアエンジン2に空気が供給されると共に、メインインジェクタ5からアンモニアガスが噴射し、アンモニアエンジン2にアンモニアガスが供給される。 Subsequently, the controller 30 controls to open the main throttle valve 6 and also controls to open the main injector 5 (procedure S106). As a result, air is supplied to the ammonia engine 2, ammonia gas is injected from the main injector 5, and ammonia gas is supplied to the ammonia engine 2.
 続いて、コントローラ30は、温度センサ29の検出値に基づいて、改質器13の温度が第1規定温度以上であるかどうかを判断する(手順S107)。第1規定温度は、アンモニアガスの燃焼が可能となる温度であり、例えば200℃程度である。コントローラ30は、改質器13の温度が第1規定温度以上であると判断したときは、発熱体24の通電を停止させるように電源25を制御する(手順S108)。改質器13の温度が第1規定温度以上になると、改質器13においてアンモニアガスが燃焼し、その燃焼熱によって改質器13が更に昇温する。 Subsequently, the controller 30 determines whether or not the temperature of the reformer 13 is equal to or higher than the first specified temperature based on the detected value of the temperature sensor 29 (procedure S107). The first specified temperature is a temperature at which ammonia gas can be burned, and is, for example, about 200 ° C. When the controller 30 determines that the temperature of the reformer 13 is equal to or higher than the first specified temperature, the controller 30 controls the power supply 25 so as to stop the energization of the heating element 24 (procedure S108). When the temperature of the reformer 13 becomes equal to or higher than the first specified temperature, ammonia gas is burned in the reformer 13, and the heat of the combustion further raises the temperature of the reformer 13.
 続いて、コントローラ30は、温度センサ29の検出値に基づいて、改質器13の温度が第2規定温度以上であるかどうかを判断する(手順S109)。第2規定温度は、例えばアンモニアガスの改質が可能となる温度であり、例えば300℃~400℃程度である。コントローラ30は、改質器13の温度が第2規定温度以上であると判断したときは、冷却インジェクタ20を開くように制御する(手順S110)。これにより、冷却インジェクタ20から液体アンモニアが噴射し、改質ガス流路18に液体アンモニアが供給される。 Subsequently, the controller 30 determines whether or not the temperature of the reformer 13 is equal to or higher than the second specified temperature based on the detected value of the temperature sensor 29 (procedure S109). The second specified temperature is, for example, a temperature at which ammonia gas can be reformed, and is, for example, about 300 ° C. to 400 ° C. When the controller 30 determines that the temperature of the reformer 13 is equal to or higher than the second specified temperature, the controller 30 controls the cooling injector 20 to open (procedure S110). As a result, liquid ammonia is injected from the cooling injector 20 and liquid ammonia is supplied to the reformed gas flow path 18.
 なお、コントローラ30により実行される制御処理手順としては、特に上記のフローには限られない。例えば、手順S105は、手順S107の後に実行されてもよい。 Note that the control processing procedure executed by the controller 30 is not particularly limited to the above flow. For example, step S105 may be performed after step S107.
 以上のようなエンジンシステム1において、イグニッションスイッチ31がON操作されると、電気ヒータ17の発熱体24が通電され、発熱体24が発熱する。そして、改質インジェクタ16が開弁することで、改質インジェクタ16からアンモニアガスが噴射し、改質器13にアンモニアガスが供給される。このとき、発熱体24の熱によってアンモニアガスが加熱され、暖められたアンモニアガスの熱が改質器13に伝達されるため、改質器13が昇温する。そして、改質スロットルバルブ15が開弁することで、改質器13に空気が供給される。 In the engine system 1 as described above, when the ignition switch 31 is turned on, the heating element 24 of the electric heater 17 is energized and the heating element 24 generates heat. Then, when the reforming injector 16 opens, ammonia gas is injected from the reforming injector 16 and the ammonia gas is supplied to the reformer 13. At this time, the ammonia gas is heated by the heat of the heating element 24, and the heat of the warmed ammonia gas is transferred to the reformer 13, so that the reformer 13 raises the temperature. Then, when the reforming throttle valve 15 is opened, air is supplied to the reformer 13.
 続いて、スタータモータ32によりアンモニアエンジン2が始動する。そして、メインスロットルバルブ6及びメインインジェクタ5が開弁することで、アンモニアエンジン2の燃焼室2aに空気が供給されると共に、メインインジェクタ5からアンモニアガスが噴射し、アンモニアエンジン2の燃焼室2aにアンモニアガスが供給される。これにより、燃焼室2aにおいてアンモニアガスが燃焼し始める。 Subsequently, the ammonia engine 2 is started by the starter motor 32. Then, when the main throttle valve 6 and the main injector 5 are opened, air is supplied to the combustion chamber 2a of the ammonia engine 2, and ammonia gas is injected from the main injector 5 to the combustion chamber 2a of the ammonia engine 2. Ammonia gas is supplied. As a result, the ammonia gas begins to burn in the combustion chamber 2a.
 改質器13の温度が第1規定温度に達すると、発熱体24の通電が停止するが、改質器13の改質触媒13bによってアンモニアガスが着火して燃焼し、その燃焼熱によって改質器13が更に昇温する。具体的には、下記式のように、一部のアンモニアと空気中の酸素とが化学反応(酸化反応)することで、アンモニアの燃焼反応が起こり、燃焼熱が発生する。
    NH+3/4O→1/2N+3/2HO+Q
When the temperature of the reformer 13 reaches the first specified temperature, the energization of the heating element 24 is stopped, but the ammonia gas is ignited and burned by the reforming catalyst 13b of the reformer 13, and reformed by the combustion heat. The temperature of the vessel 13 is further increased. Specifically, as shown in the following formula, a chemical reaction (oxidation reaction) occurs between a part of ammonia and oxygen in the air, so that a combustion reaction of ammonia occurs and combustion heat is generated.
NH 3 + 3/4O 2 → 1 / 2N 2 + 3 / 2H 2 O + Q
 そして、改質器13の温度が第2規定温度に達すると、改質器13の改質触媒13bによってアンモニアガスの改質が開始され、水素を含有した高温の改質ガスが生成される。具体的には、下記式のように、アンモニアの燃焼熱によってアンモニアが水素と窒素とに分解される改質反応が起こり、水素及び窒素を含む改質ガスが生成される。
    NH→3/2H+1/2N-Q
Then, when the temperature of the reformer 13 reaches the second specified temperature, the reforming catalyst 13b of the reformer 13 starts reforming the ammonia gas, and a high-temperature reforming gas containing hydrogen is generated. Specifically, as shown in the following formula, a reforming reaction occurs in which ammonia is decomposed into hydrogen and nitrogen by the heat of combustion of ammonia, and a reforming gas containing hydrogen and nitrogen is generated.
NH 3 → 3 / 2H 2 + 1 / 2N 2- Q
 このとき、冷却インジェクタ20が開弁し、冷却インジェクタ20から改質ガス流路18に液体アンモニアが噴射する。すると、液体アンモニアが高温の改質ガスから熱を奪い取って気化することで、アンモニアガスが生成されると共に改質ガスが冷却される。そして、冷やされた改質ガスがアンモニアガスと共にアンモニアエンジン2の燃焼室2aに供給される。これにより、燃焼室2aにおいてアンモニアガスが改質ガス中の水素と共に燃焼するようになる。以上により、エンジンシステム1は、改質器13の暖気が完了した後の定常動作となる。 At this time, the cooling injector 20 opens, and liquid ammonia is injected from the cooling injector 20 into the reformed gas flow path 18. Then, the liquid ammonia takes heat from the high-temperature reformed gas and vaporizes it, so that ammonia gas is generated and the reformed gas is cooled. Then, the cooled reformed gas is supplied to the combustion chamber 2a of the ammonia engine 2 together with the ammonia gas. As a result, the ammonia gas burns together with the hydrogen in the reformed gas in the combustion chamber 2a. As described above, the engine system 1 is in steady operation after the warming up of the reformer 13 is completed.
 以上のように本実施形態にあっては、改質器13に空気及びアンモニアガスが供給されると共に、電気ヒータ17により改質器13が昇温すると、改質器13においてアンモニアガスが燃焼する。すると、燃焼熱によって改質器13が更に昇温するため、改質器13において高温の改質ガスが生成され、その改質ガスが改質ガス流路18を流れる。このとき、改質ガス流路18には、冷却インジェクタ20により液体アンモニアが直接噴射される。このため、液体アンモニアが高温の改質ガスから熱を奪って気化し、改質ガスが冷却される。このように液体アンモニアの気化潜熱を利用することで、改質ガスを効果的に冷却することができる。これにより、後段のクーラ19を小型化したり、或いは後段のクーラ19を廃止することが可能となる。また、改質ガス流路18に噴射される液体アンモニアは、改質器13に供給されるアンモニアガスと同じアンモニアという物質である。従って、複数種類の燃料を用意しなくて済むため、単純なシステムを用いて改質ガスを冷却することができる。その結果、エンジンシステム1の搭載性を向上させることが可能になる。また、エンジンシステム1の低コスト化を図ることが可能となる。 As described above, in the present embodiment, when air and ammonia gas are supplied to the reformer 13 and the temperature of the reformer 13 is raised by the electric heater 17, the ammonia gas is burned in the reformer 13. .. Then, since the reformer 13 is further heated by the heat of combustion, a high-temperature reforming gas is generated in the reformer 13, and the reforming gas flows through the reforming gas flow path 18. At this time, liquid ammonia is directly injected into the reformed gas flow path 18 by the cooling injector 20. Therefore, the liquid ammonia takes heat from the high-temperature reformed gas and vaporizes, and the reformed gas is cooled. By utilizing the latent heat of vaporization of liquid ammonia in this way, the reformed gas can be effectively cooled. As a result, it becomes possible to reduce the size of the cooler 19 in the subsequent stage or to abolish the cooler 19 in the subsequent stage. The liquid ammonia injected into the reforming gas flow path 18 is a substance called ammonia, which is the same as the ammonia gas supplied to the reformer 13. Therefore, since it is not necessary to prepare a plurality of types of fuel, the reformed gas can be cooled by using a simple system. As a result, it becomes possible to improve the mountability of the engine system 1. Further, it is possible to reduce the cost of the engine system 1.
 また、本実施形態では、アンモニアガス供給部22によりアンモニアエンジン2及び改質器13にアンモニアガスが供給される。このため、液体アンモニアが高温の改質ガスから熱を奪って気化することで生成されるアンモニアガスがアンモニアエンジン2に供給されるだけでなく、アンモニアガス供給部22によりアンモニアエンジン2にアンモニアガスが供給されることになる。従って、アンモニアエンジン2の応答性が良くなる。また、液体アンモニア供給部27により改質ガス流路18に液体アンモニアが供給される分だけ、気化器12を小型化することができる。 Further, in the present embodiment, the ammonia gas is supplied to the ammonia engine 2 and the reformer 13 by the ammonia gas supply unit 22. Therefore, not only the ammonia gas generated by the liquid ammonia taking heat from the high-temperature reforming gas and vaporizing it is supplied to the ammonia engine 2, but also the ammonia gas is supplied to the ammonia engine 2 by the ammonia gas supply unit 22. It will be supplied. Therefore, the responsiveness of the ammonia engine 2 is improved. Further, the vaporizer 12 can be downsized by the amount that the liquid ammonia is supplied to the reformed gas flow path 18 by the liquid ammonia supply unit 27.
 また、本実施形態では、アンモニアタンク11に貯蔵された液体アンモニアが気化器12により気化されてアンモニアガスが生成され、そのアンモニアガスがアンモニアエンジン2及び改質器13に供給されると共に、アンモニアタンク11に貯蔵された液体アンモニアが改質ガス流路18に供給される。従って、アンモニアエンジン2及び改質器13に供給されるアンモニアガスと改質ガス流路18に供給される液体アンモニアとを簡単に取得することができる。 Further, in the present embodiment, the liquid ammonia stored in the ammonia tank 11 is vaporized by the vaporizer 12 to generate ammonia gas, and the ammonia gas is supplied to the ammonia engine 2 and the reformer 13 and the ammonia tank. The liquid ammonia stored in 11 is supplied to the reformed gas flow path 18. Therefore, the ammonia gas supplied to the ammonia engine 2 and the reformer 13 and the liquid ammonia supplied to the reforming gas flow path 18 can be easily obtained.
 また、本実施形態では、気体アンモニア流路9には、アンモニアエンジン2及び改質器13に供給されるアンモニアガスを減圧する減圧弁23が配設されている。従って、アンモニアエンジン2及び改質器13に対するアンモニアガスの供給圧が一定圧になる。また、液体アンモニア流路26には、改質ガス流路18に噴射される液体アンモニアを減圧する減圧弁28が配設されている。従って、改質ガス流路18に対する液体アンモニアの供給圧(噴射圧)が一定圧になる。また、メインインジェクタ5、改質インジェクタ16及び冷却インジェクタ20の噴射圧が低くなるため、メインインジェクタ5、改質インジェクタ16及び冷却インジェクタ20として、耐久性の高い高価なインジェクタを使用しなくて済む。 Further, in the present embodiment, the gaseous ammonia flow path 9 is provided with a pressure reducing valve 23 for reducing the pressure of the ammonia gas supplied to the ammonia engine 2 and the reformer 13. Therefore, the supply pressure of ammonia gas to the ammonia engine 2 and the reformer 13 becomes a constant pressure. Further, the liquid ammonia flow path 26 is provided with a pressure reducing valve 28 for reducing the pressure of the liquid ammonia injected into the reforming gas flow path 18. Therefore, the supply pressure (injection pressure) of liquid ammonia to the reformed gas flow path 18 becomes a constant pressure. Further, since the injection pressures of the main injector 5, the reforming injector 16 and the cooling injector 20 are low, it is not necessary to use a highly durable and expensive injector as the main injector 5, the reforming injector 16 and the cooling injector 20.
 また、本実施形態では、他の液体燃料に比べて気化潜熱が大きい液体アンモニアを使用することにより、改質ガスをより効果的に冷却することができる。従って、液体アンモニアの供給量を少なくしても、改質ガスを冷却することができる。 Further, in the present embodiment, the reformed gas can be cooled more effectively by using liquid ammonia having a larger latent heat of vaporization than other liquid fuels. Therefore, the reformed gas can be cooled even if the supply amount of liquid ammonia is reduced.
 なお、本実施形態では、アンモニアエンジン2の各燃焼室2aにアンモニアガスを噴射する複数のメインインジェクタ5がアンモニアエンジン2に取り付けられているが、メインインジェクタ5の数としては、1つであってもよい。この場合には、メインインジェクタ5は、吸気通路3におけるメインスロットルバルブ6とアンモニアエンジン2との間にアンモニアガスを噴射するように配置されていてもよい。 In the present embodiment, a plurality of main injectors 5 for injecting ammonia gas into each combustion chamber 2a of the ammonia engine 2 are attached to the ammonia engine 2, but the number of main injectors 5 is one. May be good. In this case, the main injector 5 may be arranged so as to inject ammonia gas between the main throttle valve 6 and the ammonia engine 2 in the intake passage 3.
 図3は、本発明の他の実施形態に係るエンジンシステムを示す概略構成図である。図3において、本実施形態のエンジンシステム1Aは、上記の実施形態におけるメインインジェクタ5を備えていない。エンジンシステム1Aでは、改質ガス流路18に供給された液体アンモニアが気化して生成されるアンモニアガスのみが、アンモニアエンジン2の燃焼室2aに供給される。 FIG. 3 is a schematic configuration diagram showing an engine system according to another embodiment of the present invention. In FIG. 3, the engine system 1A of the present embodiment does not include the main injector 5 of the above embodiment. In the engine system 1A, only the ammonia gas generated by vaporizing the liquid ammonia supplied to the reforming gas flow path 18 is supplied to the combustion chamber 2a of the ammonia engine 2.
 また、エンジンシステム1Aは、上記の実施形態におけるアンモニアガス供給部22及びコントローラ30に代えて、アンモニアガス供給部22A及びコントローラ30Aを備えている。アンモニアガス供給部22Aは、改質器13にアンモニアガスを供給する。 Further, the engine system 1A includes an ammonia gas supply unit 22A and a controller 30A instead of the ammonia gas supply unit 22 and the controller 30 in the above embodiment. The ammonia gas supply unit 22A supplies ammonia gas to the reformer 13.
 コントローラ30Aは、イグニッションスイッチ31の操作信号と温度センサ29の検出値とに基づいて、メインスロットルバルブ6、改質スロットルバルブ15、改質インジェクタ16、電気ヒータ17、冷却インジェクタ20及びスタータモータ32を制御する。 The controller 30A sets the main throttle valve 6, the reforming throttle valve 15, the reforming injector 16, the electric heater 17, the cooling injector 20, and the starter motor 32 based on the operation signal of the ignition switch 31 and the detected value of the temperature sensor 29. Control.
 図4は、図3に示されたコントローラ30Aにより実行される制御処理手順の詳細を示すフローチャートである。図4において、コントローラ30Aは、上記のコントローラ30における手順S101~S105を順次実行する。コントローラ30Aは、手順S105を実行した後、メインスロットルバルブ6を開くように制御する(手順S106A)。その後、コントローラ30Aは、上記のコントローラ30における手順S107~S110を順次実行する。 FIG. 4 is a flowchart showing details of the control processing procedure executed by the controller 30A shown in FIG. In FIG. 4, the controller 30A sequentially executes the procedures S101 to S105 in the controller 30. The controller 30A controls to open the main throttle valve 6 after executing the procedure S105 (procedure S106A). After that, the controller 30A sequentially executes the procedures S107 to S110 in the controller 30.
 冷却インジェクタ20が開弁すると、冷却インジェクタ20から液体アンモニアが噴射し、改質ガス流路18に液体アンモニアが供給される。すると、液体アンモニアが高温の改質ガスから熱を奪い取って気化することで、アンモニアガスが生成されると共に改質ガスが冷却される。そして、冷やされた改質ガスがアンモニアガスと共にアンモニアエンジン2の燃焼室2aに供給される。そして、燃焼室2aにおいてアンモニアガスが改質ガス中の水素と共に燃焼する。 When the cooling injector 20 opens, liquid ammonia is injected from the cooling injector 20 and liquid ammonia is supplied to the reformed gas flow path 18. Then, the liquid ammonia takes heat from the high-temperature reformed gas and vaporizes it, so that ammonia gas is generated and the reformed gas is cooled. Then, the cooled reformed gas is supplied to the combustion chamber 2a of the ammonia engine 2 together with the ammonia gas. Then, in the combustion chamber 2a, the ammonia gas burns together with the hydrogen in the reformed gas.
 以上のような本実施形態においても、液体アンモニアの気化潜熱を利用することで、単純なシステムを用いて改質ガスを効果的に冷却することができる。また、本実施形態では、メインインジェクタ5が不要となるため、エンジンシステム1Aを簡素化することができる。 Even in the present embodiment as described above, the reformed gas can be effectively cooled by using the latent heat of vaporization of the liquid ammonia using a simple system. Further, in the present embodiment, since the main injector 5 is not required, the engine system 1A can be simplified.
 なお、本発明は、上記実施形態には限定されない。例えば上記実施形態では、改質器13の温度が第2規定温度以上となったときに、冷却インジェクタ20から液体アンモニアを噴射させているが、特にその形態には限られない。冷却インジェクタ20から液体アンモニアを噴射させるタイミングとしては、改質器13の温度が第1規定温度以上となったときでもよいし、メインスロットルバルブ6を開くときでもよいし、適宜変更可能である。また、冷却インジェクタ20から液体アンモニアを連続的に噴射させてもよいし、冷却インジェクタ20から液体アンモニアを間欠的に噴射させてもよい。 The present invention is not limited to the above embodiment. For example, in the above embodiment, when the temperature of the reformer 13 becomes equal to or higher than the second specified temperature, liquid ammonia is injected from the cooling injector 20, but the embodiment is not particularly limited. The timing of injecting liquid ammonia from the cooling injector 20 may be when the temperature of the reformer 13 becomes equal to or higher than the first specified temperature, or when the main throttle valve 6 is opened, and can be changed as appropriate. Further, the cooling injector 20 may continuously inject liquid ammonia, or the cooling injector 20 may intermittently inject liquid ammonia.
 また、上記実施形態では、電気ヒータ17は、改質器13に供給されるアンモニアガスを加熱することにより、改質器13をアンモニアガスを通して昇温させているが、特にその形態には限られない。電気ヒータ17は、改質器13を直接加熱することにより、改質器13を直接昇温させてもよい。また、アンモニアを燃やして加熱する燃焼式のヒータを使用してもよい。 Further, in the above embodiment, the electric heater 17 heats the ammonia gas supplied to the reformer 13 to raise the temperature of the reformer 13 through the ammonia gas, but the temperature is particularly limited to that form. Absent. The electric heater 17 may directly raise the temperature of the reformer 13 by directly heating the reformer 13. Further, a combustion type heater that burns and heats ammonia may be used.
 また、上記実施形態では、温度センサ29により改質器13の温度が検出されているが、特にその形態には限られず、アンモニアガスの流量、空気の流量、時間及び室温等から改質器13の温度を推定してもよい。 Further, in the above embodiment, the temperature of the reformer 13 is detected by the temperature sensor 29, but the present invention is not particularly limited to that mode, and the reformer 13 is based on the flow rate of ammonia gas, the flow rate of air, the time, the room temperature, and the like. You may estimate the temperature of.
 また、上記実施形態では、改質器13に供給される空気が流れる空気流路14が吸気通路3に分岐接続されているが、特にその形態には限られず、アンモニアエンジン2と接続された吸気通路3とは異なる経路から空気流路14に空気が供給されてもよい。この場合には、吸気通路3の脈動の影響を受けることを防止できる。 Further, in the above embodiment, the air flow path 14 through which the air supplied to the reformer 13 flows is branched and connected to the intake passage 3, but the present invention is not particularly limited to that form, and the intake air connected to the ammonia engine 2 is connected. Air may be supplied to the air passage 14 from a route different from that of the passage 3. In this case, it is possible to prevent the influence of the pulsation of the intake passage 3.
 また、上記実施形態では、改質器13に供給される気体燃料としてアンモニアガス(気体アンモニア)を使用し、改質ガス流路18に供給される液体燃料として液体アンモニアを使用しているが、使用する燃料としては、同じ物質であれば、特にアンモニアには限られず、例えばエタノール等のアルコール系物質等であってもよい。また、アンモニアエンジン2及び改質器13には、液体燃料が供給されてもよい。この場合には、気化器12が不要となる。 Further, in the above embodiment, ammonia gas (gaseous ammonia) is used as the gaseous fuel supplied to the reformer 13, and liquid ammonia is used as the liquid fuel supplied to the reforming gas flow path 18. The fuel used is not particularly limited to ammonia as long as it is the same substance, and may be, for example, an alcohol-based substance such as ethanol. Further, liquid fuel may be supplied to the ammonia engine 2 and the reformer 13. In this case, the vaporizer 12 becomes unnecessary.
 また、上記実施形態では、アンモニアガス供給部22は、改質器13に向けてアンモニアガスを噴射する改質インジェクタ16を有しているが、特にその形態には限られず、例えば改質インジェクタ16に代えて、流量調整弁を用いてもよい。この場合には、気体アンモニア流路9の他端を空気流路14に接続すると共に、気体アンモニア流路9に流量調整弁を配設する。流量調整弁を用いることにより、アンモニアガスを改質器13に連続供給することができる。 Further, in the above embodiment, the ammonia gas supply unit 22 has a reforming injector 16 that injects ammonia gas toward the reformer 13, but the embodiment is not particularly limited, and for example, the reforming injector 16 Instead of, a flow rate adjusting valve may be used. In this case, the other end of the gas ammonia flow path 9 is connected to the air flow path 14, and a flow rate adjusting valve is provided in the gas ammonia flow path 9. By using the flow rate adjusting valve, ammonia gas can be continuously supplied to the reformer 13.
 また、上記実施形態では、改質ガス流路18の他端が空気流路14に接続されているが、特にその形態には限られず、例えば改質ガス流路18の他端に、アンモニアエンジン2または吸気通路3に向けて改質ガスを噴射するインジェクタを設けてもよい。 Further, in the above embodiment, the other end of the reformed gas flow path 18 is connected to the air flow path 14, but the embodiment is not particularly limited, and for example, the other end of the reformed gas flow path 18 is connected to the ammonia engine. An injector that injects reformed gas toward 2 or the intake passage 3 may be provided.
 また、上記実施形態の改質システムは、エンジンシステムに具備されているが、本発明は、特にエンジンシステムには限られず、例えばタービンシステムまたは燃料電池システム等にも適用可能である。 Further, although the reforming system of the above embodiment is provided in the engine system, the present invention is not particularly limited to the engine system, and can be applied to, for example, a turbine system or a fuel cell system.
 1,1A  エンジンシステム
 2  アンモニアエンジン(エンジン)
 3  吸気通路
 6  メインスロットルバルブ(スロットルバルブ)
 9  気体アンモニア流路(気体燃料流路)
 10  改質システム
 11  アンモニアタンク(貯蔵部)
 12  気化器(気化部)
 13  改質器(改質部)
 17  電気ヒータ(ヒータ部)
 18  改質ガス流路
 21  空気供給部
 20  冷却インジェクタ(液体燃料噴射弁)
 22  アンモニアガス供給部(第1燃料供給部)
 23  減圧弁(第1減圧弁)
 26  液体アンモニア流路(液体燃料流路)
 27  液体アンモニア供給部(第2燃料供給部)
 28  減圧弁(第2減圧弁)
1,1A engine system 2 Ammonia engine (engine)
3 Intake passage 6 Main throttle valve (throttle valve)
9 Gas ammonia flow path (gas fuel flow path)
10 Reform system 11 Ammonia tank (storage part)
12 Vaporizer (Vaporizer)
13 Reformer (reformer)
17 Electric heater (heater part)
18 Reformed gas flow path 21 Air supply unit 20 Cooling injector (liquid fuel injection valve)
22 Ammonia gas supply unit (first fuel supply unit)
23 Pressure reducing valve (first pressure reducing valve)
26 Liquid ammonia flow path (liquid fuel flow path)
27 Liquid ammonia supply section (second fuel supply section)
28 Pressure reducing valve (second pressure reducing valve)

Claims (6)

  1.  燃料を改質して水素を含有した改質ガスを生成する改質部と、
     前記改質部に空気を供給する空気供給部と、
     前記改質部に前記燃料を供給する第1燃料供給部と、
     前記改質部により生成された前記改質ガスが流れる改質ガス流路と、
     前記改質部を昇温させるヒータ部と、
     前記改質ガス流路に前記燃料と同じ物質の液体燃料を噴射する液体燃料噴射弁を有する第2燃料供給部とを備える改質システム。
    A reformer that reforms fuel to generate a reformed gas containing hydrogen,
    An air supply unit that supplies air to the reforming unit and
    A first fuel supply unit that supplies the fuel to the reforming unit,
    A reformed gas flow path through which the reformed gas generated by the reformed portion flows,
    A heater unit that raises the temperature of the reforming unit and
    A reforming system including a second fuel supply unit having a liquid fuel injection valve for injecting a liquid fuel of the same substance as the fuel into the reforming gas flow path.
  2.  前記液体燃料を貯蔵する貯蔵部と、
     前記貯蔵部に貯蔵された前記液体燃料を気化させて気体燃料を生成する気化部とを備え、
     前記第1燃料供給部は、前記気化部により生成された前記気体燃料が流れる気体燃料流路を有し、
     前記第2燃料供給部は、前記貯蔵部に貯蔵された前記液体燃料が流れる液体燃料流路を有する請求項1記載の改質システム。
    A storage unit for storing the liquid fuel and
    It is provided with a vaporization unit that vaporizes the liquid fuel stored in the storage unit to generate a gaseous fuel.
    The first fuel supply unit has a gas fuel flow path through which the gas fuel generated by the vaporization unit flows.
    The reforming system according to claim 1, wherein the second fuel supply unit has a liquid fuel flow path through which the liquid fuel stored in the storage unit flows.
  3.  前記気体燃料流路には、前記改質部に供給される前記気体燃料を減圧する第1減圧弁が配設されており、
     前記液体燃料流路には、前記液体燃料噴射弁に供給される前記液体燃料を減圧する第2減圧弁が配設されている請求項2記載の改質システム。
    The gas fuel flow path is provided with a first pressure reducing valve for reducing the pressure of the gas fuel supplied to the reforming unit.
    The reforming system according to claim 2, wherein a second pressure reducing valve for reducing the pressure of the liquid fuel supplied to the liquid fuel injection valve is provided in the liquid fuel flow path.
  4.  前記気体燃料は気体アンモニアであり、
     前記液体燃料は液体アンモニアである請求項2または3記載の改質システム。
    The gaseous fuel is gaseous ammonia
    The reforming system according to claim 2 or 3, wherein the liquid fuel is liquid ammonia.
  5.  エンジンと、
     前記エンジンに供給される空気が流れる吸気通路と、
     前記吸気通路に配設され、前記エンジンに供給される前記空気の流量を制御するスロットルバルブと、
     燃料を改質して水素を含有した改質ガスを生成する改質部と、
     前記改質部に空気を供給する空気供給部と、
     前記改質部に前記燃料を供給する第1燃料供給部と、
     前記改質部により生成された前記改質ガスが前記エンジンに向けて流れる改質ガス流路と、
     前記改質部を昇温させるヒータ部と、
     前記改質ガス流路に前記燃料と同じ物質の液体燃料を噴射する液体燃料噴射弁を有する第2燃料供給部とを備えるエンジンシステム。
    With the engine
    The intake passage through which the air supplied to the engine flows and
    A throttle valve arranged in the intake passage and controlling the flow rate of the air supplied to the engine.
    A reformer that reforms fuel to generate a reformed gas containing hydrogen,
    An air supply unit that supplies air to the reforming unit and
    A first fuel supply unit that supplies the fuel to the reforming unit,
    A reformed gas flow path through which the reformed gas generated by the reformed portion flows toward the engine, and
    A heater unit that raises the temperature of the reforming unit and
    An engine system including a second fuel supply unit having a liquid fuel injection valve for injecting a liquid fuel of the same substance as the fuel into the reformed gas flow path.
  6.  前記第1燃料供給部は、前記エンジン及び前記改質部に前記燃料を供給する請求項5記載のエンジンシステム。 The engine system according to claim 5, wherein the first fuel supply unit supplies the fuel to the engine and the reforming unit.
PCT/JP2019/050271 2019-04-11 2019-12-23 Reformer system and engine system WO2020208875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075708 2019-04-11
JP2019075708A JP2020172904A (en) 2019-04-11 2019-04-11 Reforming system and engine system

Publications (1)

Publication Number Publication Date
WO2020208875A1 true WO2020208875A1 (en) 2020-10-15

Family

ID=72751026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050271 WO2020208875A1 (en) 2019-04-11 2019-12-23 Reformer system and engine system

Country Status (2)

Country Link
JP (1) JP2020172904A (en)
WO (1) WO2020208875A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183275A (en) * 2021-11-09 2022-03-15 佛山仙湖实验室 Ammonia-hydrogen mixed gas power system based on hydrogen ignition and operation control method
CN114483299A (en) * 2022-01-26 2022-05-13 上海交通大学 System and method for reducing unburned ammonia emission of ammonia engine
CN114810433A (en) * 2022-04-15 2022-07-29 佛山仙湖实验室 Fuel supply and flame-spraying ignition system of ammonia-hydrogen fusion internal combustion engine and electric control method
CN115217589A (en) * 2022-07-18 2022-10-21 中国船舶重工集团柴油机有限公司 Temperature compensation system and method for SCR system of marine ammonia engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113756997A (en) * 2021-10-06 2021-12-07 石荣明 Ammonia water circulating system and method for gas permeation of ammonia-containing gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097421A (en) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc Engine system
WO2012090739A1 (en) * 2010-12-30 2012-07-05 株式会社豊田中央研究所 Hydrogen generator and internal combustion engine provided with hydrogen generator
JP2018162759A (en) * 2017-03-27 2018-10-18 株式会社Ihi gas turbine
JP2018162752A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine engine system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097421A (en) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc Engine system
WO2012090739A1 (en) * 2010-12-30 2012-07-05 株式会社豊田中央研究所 Hydrogen generator and internal combustion engine provided with hydrogen generator
JP2018162759A (en) * 2017-03-27 2018-10-18 株式会社Ihi gas turbine
JP2018162752A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine engine system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183275A (en) * 2021-11-09 2022-03-15 佛山仙湖实验室 Ammonia-hydrogen mixed gas power system based on hydrogen ignition and operation control method
CN114183275B (en) * 2021-11-09 2022-11-29 佛山仙湖实验室 Ammonia-hydrogen mixed gas power system based on hydrogen ignition and operation control method
CN114483299A (en) * 2022-01-26 2022-05-13 上海交通大学 System and method for reducing unburned ammonia emission of ammonia engine
CN114810433A (en) * 2022-04-15 2022-07-29 佛山仙湖实验室 Fuel supply and flame-spraying ignition system of ammonia-hydrogen fusion internal combustion engine and electric control method
CN114810433B (en) * 2022-04-15 2023-03-10 佛山仙湖实验室 Fuel supply and flame injection ignition system of ammonia-hydrogen fusion internal combustion engine and electric control method
CN115217589A (en) * 2022-07-18 2022-10-21 中国船舶重工集团柴油机有限公司 Temperature compensation system and method for SCR system of marine ammonia engine

Also Published As

Publication number Publication date
JP2020172904A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2020208875A1 (en) Reformer system and engine system
AU2019445332B2 (en) Reforming system and engine system
US11578686B2 (en) Engine system
JP4337786B2 (en) Internal combustion engine and start control device for internal combustion engine
WO2020246302A1 (en) Ammonia combustion system
KR100463216B1 (en) Fuel cell drive system
US11713727B2 (en) Engine system
JP2020196646A (en) Reforming system
KR20070038446A (en) Intermittent application of syngas to nox trap and/or diesel engine
JP2021071253A (en) Combustion system
JP2007113421A (en) Control device of internal combustion engine
WO2021049287A1 (en) Engine system
AU2020283012B2 (en) Engine system
JP2002339772A (en) Engine system
JP2020159241A (en) Engine system
JP2020147475A (en) Reforming system
JP2013234079A (en) Hydrogen generating apparatus
JP2004284835A (en) Fuel reform system
JP2016153613A (en) Fuel reforming control device
JP2006249981A (en) Reformed gas-utilizing internal combustion engine
JP2023061517A (en) engine system
JP2021070612A (en) Combustion system
JP5409568B2 (en) Reducing gas supply device
JP2023099906A (en) engine system
JP2024025527A (en) ammonia engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924356

Country of ref document: EP

Kind code of ref document: A1