WO2020195399A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2020195399A1
WO2020195399A1 PCT/JP2020/006706 JP2020006706W WO2020195399A1 WO 2020195399 A1 WO2020195399 A1 WO 2020195399A1 JP 2020006706 W JP2020006706 W JP 2020006706W WO 2020195399 A1 WO2020195399 A1 WO 2020195399A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
bus bar
phase coil
coil
circumferential direction
Prior art date
Application number
PCT/JP2020/006706
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 齋藤
藤原 英雄
尚 石田
梅田 智之
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080014727.9A priority Critical patent/CN113439378B/en
Publication of WO2020195399A1 publication Critical patent/WO2020195399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/44Protection against moisture or chemical attack; Windings specially adapted for operation in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto

Definitions

  • the present invention relates to a motor.
  • Patent Document 1 discloses a motor in which a resin portion for molding a stator constitutes a housing.
  • the motor is connected to the control device via a bus bar connected to the leader wire drawn from the coil, and power is supplied from the control device to the stator.
  • the stator is molded from a resin material, the assembly process can be further simplified by molding the bus bar together with the stator.
  • the electrical resistance of the current path from the bus bar to the coil becomes non-uniform, which may impair the rotational stability of the motor.
  • one of the objects of the present invention is to provide a motor having improved rotational stability by making the lengths of a plurality of leader wires uniform.
  • One embodiment of the motor of the present invention comprises a rotor that rotates around a central axis, an insulator, a stator having a plurality of coils mounted on the insulator and facing the rotor in the radial direction, and a resin.
  • a housing to be embedded and a plurality of bus bars located on one side in the axial direction of the stator are provided.
  • the plurality of the coils are three-phase motors classified into a first-phase coil, a second-phase coil, and a third-phase coil, which are arranged in the following order toward the other side in the circumferential direction around the central axis. is there.
  • the first-phase coil, the second-phase coil, and the third-phase coil have a leader wire extending from a leader portion located on one side in the circumferential direction with respect to the coil.
  • the plurality of the bus bars are connected to the first phase bus bar connected to the leader wire of the first phase coil, the second phase bus bar connected to the leader wire of the second phase coil, and the leader wire of the third phase coil. It is classified into a phase 3 busbar.
  • the first phase bus bar is supported by the insulator to which the second phase coil is mounted.
  • the second phase bus bar is supported by the insulator to which the third phase coil is mounted.
  • the third-phase busbar is supported by the insulator to which the first-phase coil is mounted.
  • a motor having improved rotational stability is provided by making the lengths of a plurality of leader wires uniformly close to each other.
  • FIG. 1 is a cross-sectional view of the motor of one embodiment.
  • FIG. 2 is a perspective view of the bus bar and the stator of one embodiment, and is a view showing a state in which they are disassembled from each other.
  • FIG. 3 is a perspective view of the bus bar and the stator of one embodiment, and is a diagram showing a state in which they are assembled to each other.
  • FIG. 4 is a partial cross-sectional view showing a mold for molding the housing of one embodiment and a state of a stator in the mold.
  • FIG. 5 is a schematic plan view of the stator and bus bar of one embodiment as viewed from below.
  • FIG. 6 is a partial cross-sectional view of a motor having a modified bus bar.
  • the direction parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, and the radial direction centered on the central axis J is simply referred to as “radial direction”.
  • the circumferential direction around the axis J that is, the circumference of the central axis J is simply referred to as the "circumferential direction”.
  • one side in the axial direction along the central axis J is simply referred to as “lower side”
  • the other side is simply referred to as "upper side”.
  • the vertical direction in the present specification is merely a direction used for explanation, and does not limit the posture during use and distribution of the motor.
  • the side that advances counterclockwise when viewed from below that is, the side that advances in the direction of arrow ⁇ is referred to as "one side in the circumferential direction”.
  • the side that advances clockwise when viewed from the upper side to the lower side in the circumferential direction that is, the side that advances in the direction opposite to the direction of the arrow ⁇ is called “the other side in the circumferential direction”.
  • FIG. 1 is a cross-sectional view of the motor 1 of one embodiment.
  • a control device 9 is attached to the lower side of the motor 1.
  • the control device 9 supplies electric power to the motor 1.
  • the motor 1 of this embodiment is a three-phase motor.
  • the control device 9 supplies an alternating current to the motor 1.
  • the motor 1 includes a rotor 10, a stator 20 that surrounds the rotor 10, an upper bearing 15 and a lower bearing (bearing) 16 that rotatably hold the rotor 10 with respect to the stator 20, and an upper bearing that holds the upper bearing 15. It has a holder 40, a lower bearing holder (bearing holder) 70 for holding the lower bearing 16, a housing 30, and a plurality of bus bars 80.
  • the rotor 10 rotates about a central axis J extending in the vertical direction.
  • the rotor 10 has a shaft 11 extending along the central axis J, a rotor core 12, and a rotor magnet 13.
  • the shaft 11 is rotatably supported around the central axis J by the upper bearing 15 and the lower bearing 16.
  • the rotor core 12 is fixed to the outer peripheral surface of the shaft 11.
  • the rotor magnet 13 is fixed to the outer peripheral surface of the rotor core 12.
  • the plurality of rotor magnets 13 may be embedded inside the rotor core 12.
  • the upper bearing 15 is located above the stator 20, and the lower bearing 16 is located below the stator 20.
  • the upper bearing 15 supports the upper end of the shaft 11, and the lower bearing 16 supports the lower end of the shaft 11. That is, the upper bearing 15 and the lower bearing 16 rotatably support the rotor 10.
  • the upper bearing 15 and the lower bearing 16 of the present embodiment are ball bearings.
  • the upper bearing 15 and the lower bearing 16 may be other types of bearings such as needle bearings.
  • the upper bearing holder 40 is located above the stator 20.
  • the upper bearing holder 40 is made of metal.
  • the upper bearing holder 40 has a holder cylinder portion 41, an upper plate portion 42 extending radially inward from the upper end of the holder cylinder portion 41, and a holder flange portion 43 extending radially outward from the lower end of the holder cylinder portion 41. ..
  • the holder cylinder portion 41 has a cylindrical shape centered on the central axis J.
  • the upper bearing 15 is arranged inside the holder cylinder portion 41 in the radial direction.
  • the upper plate portion 42 covers the upper side of the outer ring of the upper bearing 15.
  • the upper plate portion 42 is provided with a central hole 42a penetrating in the axial direction.
  • the shaft 11 is inserted through the central hole 42a.
  • the radial outer edge of the holder flange 43 is embedded in the housing 30. That is, at least a part of the upper bearing holder 40 is embedded in the housing 30.
  • the lower bearing holder 70 is located below the stator 20.
  • the lower bearing holder 70 is made of resin.
  • the lower bearing holder 70 has a disk shape when viewed from the axial direction.
  • the lower bearing holder 70 is fixed to the housing 30 at the outer edge.
  • a central hole 72a is provided in the center of the lower bearing holder 70 when viewed from the axial direction.
  • the lower end of the shaft 11 is inserted into the central hole 72a.
  • An inner wall surface 71a that surrounds the lower bearing 16 from the outside in the radial direction and holds the lower bearing 16 is provided around the central hole 72a.
  • the stator 20 surrounds the rotor 10 from the outside in the radial direction.
  • the stator 20 faces the rotor 10 in the radial direction.
  • the stator 20 includes a stator core 21, a plurality of insulators 22, and a plurality of coils 29 mounted on the insulators.
  • the stator core 21 has an annular core back portion 21a centered on the central axis J and a plurality of teeth portions 21b extending radially inward from the core back portion 21a.
  • a plurality of tooth portions 21b are provided at equal intervals in the circumferential direction around the central axis J.
  • the coil 29 is attached to the teeth portion 21b via the insulator 22.
  • the end of the coil 29 is connected to a bus bar 80 located below the stator 20.
  • the bus bar 80 is connected to a control device (not shown). Electric power is supplied to the coil 29 from the control device via the bus bar 80.
  • the insulator 22 is made of an insulating member.
  • the insulator 22 is, for example, a resin member.
  • the insulator 22 is attached to the teeth portion 21b.
  • the insulator 22 is interposed between the teeth portion 21b and the coil 29.
  • the insulator 22 has an upper piece 22A and a lower piece 22B.
  • the upper piece 22A is attached to the stator core 21 from above.
  • the upper piece 22A surrounds the upper end surface of the core back portion 21a and the upper half region of both end faces in the circumferential direction of the teeth portion 21b.
  • the lower piece 22B is attached to the stator core 21 from below.
  • the lower piece 22B surrounds the lower end surface of the core back portion 21a and the lower half region of both end faces in the circumferential direction of the teeth portion 21b.
  • the distal end surface of the teeth portion 21b is the surface of the teeth portions 21b that are orthogonal to the radial direction and the axial direction and face the circumferential direction, and the teeth portions 21b arranged along the circumferential direction face each other. It is a face.
  • the insulator 22 has an insulator main body portion 25, an inner wall portion 23, and an outer wall portion 24, respectively.
  • the insulator main body 25 surrounds the entire outer peripheral surface of the teeth portion 21b.
  • the insulator main body 25 is interposed between the outer peripheral surface of the teeth 21b and the coil 29.
  • the inner wall portion 23 is located inside the insulator main body portion 25 in the radial direction and extends along the circumferential direction.
  • the inner wall portion 23 overlaps with the radial inner end portion of the teeth portion 21b when viewed from the axial direction.
  • the inner wall portion 23 is located radially inside the coil 29.
  • the inner wall portion 23 restricts the coil 29 wound around the teeth portion 21b from moving inward in the radial direction.
  • the inner wall portion 23 is provided on the upper piece 22A and the lower piece 22B, respectively.
  • the inner wall portion 23 of the upper piece 22A will be referred to as the upper inner wall portion 23A.
  • the inner wall portion 23 of the lower piece 22B is referred to as a lower inner wall portion 23B.
  • the upper inner wall portion 23A extends upward with respect to the insulator main body portion 25.
  • the lower inner wall portion 23B extends downward with respect to the insulator main body portion 25.
  • the outer wall portion 24 is located on the outer side in the radial direction of the insulator main body portion 25 and extends along the circumferential direction.
  • the outer wall portion 24 overlaps with the core back portion 21a when viewed from the axial direction.
  • the outer wall portion 24 is located radially outside the coil 29.
  • the outer wall portion 24 restricts the coil 29 wound around the teeth portion 21b from moving outward in the radial direction.
  • the outer wall portion 24 is provided on the upper piece 22A and the lower piece 22B, respectively.
  • the outer wall portion 24 of the upper piece 22A will be referred to as the upper outer wall portion 24A.
  • the outer wall portion 24 of the lower piece 22B is referred to as a lower outer wall portion 24B.
  • the upper outer wall portion 24A extends upward with respect to the insulator main body portion 25.
  • the lower outer wall portion 24B extends downward with respect to the insulator main body portion 25.
  • the lower outer wall portion 24B is provided with a recess 24c into which the bus bar 80 is inserted.
  • the housing 30 is made of a resin material.
  • the resin material may be a composite material reinforced with a fiber material such as glass fiber or carbon fiber. That is, the housing 30 may be a fiber reinforced resin material. Further, the housing 30 may be a thermosetting resin or a thermoplastic resin.
  • a stator 20, a bus bar 80, and an upper bearing holder 40 are embedded in the housing 30.
  • the housing 30 holds the bus bar 80, the stator 20, and the upper bearing holder 40.
  • the housing 30 is insert-molded with the stator 20, the bus bar 80, and the upper bearing holder 40 held in the mold. That is, since the stator 20, the bus bar 80, and the upper bearing holder 40 can be embedded in the housing 30 at once, the assembly process of the motor 1 is simplified.
  • the housing 30 includes a main body 31 that holds the stator 20, an upper annular portion 32 that is located above the main body 31, a bus bar holder 36 that holds the bus bar 80, and a lower portion that extends downward from the lower surface of the main body 31.
  • the stator 20 is embedded in the main body 31.
  • the main body 31 surrounds the upper side, the lower side, and the radial outer side with respect to the stator 20.
  • the main body 31 surrounds the teeth portion 21b and the coil 29, and is also provided between the teeth portions 21b and the coil 29 that are adjacent to each other in the circumferential direction.
  • the inner peripheral surface of the stator core 21 is exposed from the housing 30.
  • the upper annular portion 32 extends annularly in the circumferential direction.
  • the upper annular portion 32 has a plurality of ribs 35 extending in the circumferential direction and the radial direction. As a result, the upper annular portion 32 reinforces the housing 30.
  • the lower cylinder portion 37 has a cylindrical shape centered on the central axis J.
  • the lower cylinder portion 37 extends downward from the main body portion 31.
  • the outer peripheral surface 37b of the lower cylinder portion 37 is continuous with the outer peripheral surface of the main body portion 31.
  • the lower cylinder portion 37 surrounds the lower end portions of the plurality of bus bars 80 protruding from the housing 30 from the outside in the radial direction.
  • a control device 9 for controlling the motor 1 is attached to the lower cylinder portion 37.
  • a socket portion 9a is provided on the upper surface of the control device 9.
  • the socket portion 9a is a hole portion extending downward from the upper surface.
  • the bus bar 80 is electrically connected to the control device 9 by being inserted into the socket portion 9a.
  • the control device 9 has a mounting surface 9b facing outward in the radial direction.
  • the mounting surface 9b is a cylindrical surface centered on the central axis J.
  • the mounting surface 9b fits into the inner peripheral surface 37a of the lower cylinder portion 37. Therefore, the inner peripheral surface 37a of the lower cylinder portion 37 functions as a surface for aligning the motor 1 and the control device 9 with each other.
  • the holding wall portion 39 projects downward from the lower surface of the main body portion 31. That is, the holding wall portion 39 is located below the stator 20.
  • the holding wall portion 39 extends along the circumferential direction.
  • the holding wall portion 39 is located inside the lower cylinder portion 37 and the bus bar holder portion 36 in the radial direction.
  • a concave groove 39 g is provided between the holding wall portion 39 and the bus bar holder portion 36 on the surface facing the lower side of the housing 30.
  • the lower bearing holder 70 is fixed to the holding wall portion 39 by means such as heat caulking.
  • the lower bearing holder 70 fits into the inner peripheral surface 39a of the holding wall portion 39.
  • the lower bearing holder 70 is positioned in the radial direction with respect to the housing 30.
  • the bus bar holder portion 36 is located below the main body portion 31.
  • the bus bar holder portion 36 is located inside the lower cylinder portion 37 in the radial direction.
  • Six bus bars 80 are embedded inside the bus bar holder portion 36.
  • the bus bar 80 projects downward from the lower surface of the bus bar holder portion 36.
  • the bus bar 80 is located below the stator 20.
  • the bus bar 80 is made of a highly conductive metal material (for example, a copper-based alloy).
  • the bus bar 80 has a plate shape.
  • the bus bar 80 is formed by pressing a plate material.
  • the bus bar 80 is connected to a leader line 28 extending from the coil 29.
  • the leader wire 28 is the end of the winding end of the coil 29 or the end of the winding end, and in the present embodiment, the leader wire 28 is the end of the winding end of the coil 29.
  • the winding start end of the coil 29 is connected to a neutral point bus bar (not shown).
  • the bus bar 80 includes a leader wire connecting portion 81 connected to the leader wire 28, an external connecting terminal portion 82 extending downward from the leader wire connecting portion 81, and a supported portion 83 extending upward from the leader wire connecting portion 81. Has.
  • the leader wire connecting portion 81 has a base portion 81a, a folded-back portion 81b folded back from the upper end portion of the base portion 81a, and a bent portion 81c located at the lower end of the folded-back portion 81b.
  • the leader wire connecting portion 81 is connected to the external connecting terminal portion 82 and the supported portion 83 at the base portion 81a.
  • the base portion 81a and the folded portion 81b extend substantially parallel to the axial direction with the radial direction as the plate thickness direction.
  • the base portion 81a and the folded portion 81b face each other in the radial direction.
  • the folded-back portion 81b is located radially outward with respect to the base portion 81a.
  • Two leader lines 28 are sandwiched between the base portion 81a and the folded-back portion 81b.
  • the bent portion 81c extends downward from the lower end of the folded portion 81b.
  • the bent portion 81c inclines toward the base portion 81a side toward the lower side.
  • the distance between the lower end of the bent portion 81c and the base portion 81a is smaller than the wire diameter of the leader wire 28.
  • the lower end of the bent portion 81c may be in contact with the base portion 81a.
  • the bent portion 81c suppresses the leader line 28 from coming off from the region sandwiched between the base portion 81a and the folded portion 81b.
  • the base portion 81a, the folded-back portion 81b, and the two leader wires 28 are fixed to each other by welding, for example, and are electrically connected to each other. Specifically, with the leader wire 28 sandwiched between the base portion 81a and the folded-back portion 81b, the base portion 81a and the folded-back portion 81b are sandwiched between two electrodes and welded by passing an electric current.
  • the connection between the leader wire connecting portion 81 and the leader wire 28 is not limited to resistance welding. For example, it may be fixed by welding other than resistance welding such as arc welding, soldering, or adhesion with a conductive adhesive.
  • the external connection terminal portion 82 extends along the axial direction with the radial direction as the plate thickness direction.
  • the upper end of the external connection terminal portion 82 is connected to the base portion 81a of the leader wire connection portion 81.
  • the upper end of the external connection terminal portion is embedded in the housing 30. Further, the lower end of the external connection terminal portion 82 is exposed from the housing 30.
  • the supported portion 83 is supported by the insulator 22. Therefore, the bus bar 80 can be temporarily fixed to the stator 20 in a state before the housing 30 is molded. As a result, the work of holding the stator 20 and the bus bar 80 before molding in the mold for molding the housing 30 becomes easy.
  • FIG. 2 is a perspective view of the bus bar 80 and the stator 20 and shows a state in which they are disassembled from each other.
  • FIG. 3 is a perspective view of the bus bar 80 and the stator 20 and shows a state in which they are assembled to each other.
  • the supported portion 83 has a pair of leg portions 83a.
  • the leg portion 83a extends axially from the base portion 81a with the radial direction as the plate thickness direction.
  • the pair of legs 83a are arranged along the circumferential direction.
  • the pair of legs 83a each have an outer surface 83ab facing away from each other.
  • the insulator 22 has a recess 24c that opens downward.
  • the recess 24c of the present embodiment is a through hole that penetrates the insulator 22 in the axial direction.
  • the recess 24c has a rectangular shape in which the long side extends along the circumferential direction and the short side extends along the radial direction when viewed from the axial direction.
  • the recess 24c has a pair of facing surfaces 24cc that face each other in the circumferential direction.
  • the pair of facing surfaces 24cc form the short side of the recess 24c when viewed from the axial direction.
  • the distance dimension between the pair of facing surfaces 24 cc is slightly smaller than the distance dimension between the pair of outer surface 83 abs.
  • the pair of leg portions 83a are inserted into the recess 24c of the insulator 22.
  • the pair of facing surfaces 24cc of the recess 24c come into contact with the outer surfaces 83ab of the different legs 83a.
  • the pair of legs 83a are pressed against different facing surfaces 24cc and elastically deformed in a direction approaching each other. Surface pressure is applied to the outer side surface 83ab and the facing surface 24cc, and the supported portion 83 is stably supported by the insulator 22 in the recess 24c due to frictional resistance. Therefore, in the manufacturing process, it is possible to prevent the bus bar 80 from being separated from the stator 20 until the molding process of embedding the bus bar 80 in the housing 30 is performed.
  • FIG. 4 is a partial cross-sectional view showing a state of the mold 90 for molding the housing 30 and the stator 20 in the mold 90.
  • the mold 90 has a first mold 91 and a second mold 92 that surround the cavity C.
  • the first type 91 and the second type 92 are arranged so as to face each other in the axial direction.
  • the second type 92 is located below the first type 91.
  • the first type 91 and the second type 92 are relatively separable vertically on the parting line PL.
  • the parting line PL is arranged on the same plane as the lower end surface of the stator core 21.
  • the first type 91 is an area on the upper side of the parting line PL, and forms the main body portion 31, the upper annular portion 32, and the holder holding portion 38.
  • the second type 92 is a region below the parting line PL and forms the bus bar holder portion 36 and the lower cylinder portion 37.
  • the second type 92 has a first annular groove 92a, a second annular groove 92c, and a holding recess 92b that open upward. Further, the second type 92 has an inner block 92h and an outer block 92j that can be separated from each other on the separation surface 92p extending downward from the bottom surface of the first annular groove 92a.
  • the inner block 92h has a circular outer peripheral surface in a plan view
  • the outer block 92j has an inner peripheral surface in a circular shape in a plan view.
  • the second type 92 is configured by fitting the inner peripheral surface of the inner block 92h to the outer peripheral surface of the outer block 92j. As a result, the inner block 92h and the outer block 92j are aligned with each other with high accuracy.
  • the first annular groove 92a is recessed downward and extends along the circumferential direction.
  • the resin filled in the first annular groove 92a constitutes the lower cylinder portion 37 of the housing 30.
  • the first inner wall surface 92aa facing the radial outer side of the first annular groove 92a is one surface of the inner block 92h.
  • the second inner wall surface 92ab facing the radial inward side of the first annular groove 92a is one surface of the outer block 92j.
  • the inner block 92h forms the inner peripheral surface 37a of the lower cylinder portion 37 on the first inner wall surface 92aa.
  • the outer block 92j forms the outer peripheral surface 37b of the second inner wall surface 92ab lower cylinder portion 37.
  • the holding recess 92b is arranged inside the first annular groove 92a in the radial direction.
  • the holding recess 92b is provided in the inner block 92h.
  • the holding recess 92b holds the recessed bus bar 80 on the lower side.
  • the shape of the holding recess 92b substantially matches the cross-sectional shape of the external connection terminal portion 82 of the bus bar 80.
  • the housing 30 is formed in a state where the tip of the external connection terminal portion 82 is held by the holding recess 92b of the mold 90. As a result, the tip of the bus bar 80 can be exposed from the housing 30, and the positioning accuracy of the bus bar 80 with respect to the housing 30 can be improved.
  • the second type has a tapered surface 92ba located at the opening of the holding recess 92b.
  • the tapered surface 92ba surrounds the opening of the holding recess 92b when viewed from the axial direction.
  • the tapered surface 92ba is inclined downward as it approaches the opening of the holding recess 92b.
  • the tapered surface 92ba invites the external connection terminal portion 82 into the holding recess 92b in the step of inserting and holding the bus bar 80 into the holding recess 92b. Therefore, by providing the tapered surface 92ba, the external connection terminal portion 82 can be inserted into the holding recess 92b without causing damage.
  • the bus bar holder portion 36 of the housing 30 has a raised portion 36a that protrudes downward (one side in the axial direction).
  • the raised portion 36a is a region formed by the tapered surface 92ba. Therefore, the external connection terminal portion 82 projects downward from the bus bar holder portion 36 at the raised portion 36a. Further, in the present embodiment, the external connection terminal portion 82 projects downward from the bus bar holder portion 36 at the top of the raised portion 36a.
  • the bus bar 80 has an external connection terminal portion 82 exposed from the housing 30. Further, the lower cylinder portion 37 surrounds the external connection terminal portion 82 from the outside in the radial direction. The inner peripheral surface 37a of the lower cylinder portion 37 comes into contact with the mounting surface 9b of the control device 9 and functions as a surface for aligning the control device 9 with respect to the motor 1. According to the present embodiment, since the lower cylinder portion 37 surrounds the external connection terminal portion 82 from the outside in the radial direction, the external connection terminal portion 82 is formed while molding the lower cylinder portion 37 by one mold (second type 92). Can be retained.
  • the external connection terminal portion 82 is held while forming the inner peripheral surface 37a of the lower cylinder portion 37 by the same block (inner block 92h).
  • the positional accuracy of the external connection terminal portion 82 with respect to the inner peripheral surface 37a of the lower cylinder portion 37 can be improved, and the bus bar 80 can be smoothly inserted into the socket portion 9a of the control device 9.
  • the second annular groove 92c is arranged inside the first annular groove 92a and the holding recess 92b in the radial direction.
  • the second annular groove 92c is recessed downward and extends along the circumferential direction.
  • the second annular groove 92c is provided in the inner block 92h.
  • the resin filled in the second annular groove 92c constitutes the holding wall portion 39 of the housing 30.
  • the lower bearing holder 70 fits into the inner peripheral surface 39a of the holding wall portion 39. Therefore, the holding wall portion 39 supports the shaft 11 via the lower bearing holder 70 and the lower bearing 16.
  • the inner peripheral surface of the holding wall portion 39 and the inner peripheral surface 37a of the lower cylinder portion 37 can be formed by the same block (inner block 92h). Therefore, the positional accuracy of the inner peripheral surface 37a of the lower cylinder portion 37 can be improved with respect to the inner peripheral surface 37a of the lower cylinder portion 37. As a result, the positional accuracy of the shaft 11 with respect to the control device 9 attached to the lower cylinder portion 37 can be improved.
  • FIG. 5 is a schematic plan view of the stator 20 and the bus bar 80 as viewed from below.
  • the stator 20 of the present embodiment has four systems of three-phase circuits. Each three-phase circuit is composed of star connections. The terminals at the beginning of winding of all the coils 29 are connected to the neutral point bus bar (not shown) as the neutral point of the four-system three-phase circuit, and have the same potential.
  • the stator 20 has 12 coils 29.
  • the 12 coils 29 consist of 4 U-phase coils (1st phase coil) 29U, 4 V-phase coils (2nd phase coil) 29V, and 4 W-phase coils (3rd phase coil) 29W. And, it is classified into.
  • the U-phase coil 29U, the V-phase coil 29V, and the W-phase coil 29W are arranged in this order toward the other side in the circumferential direction (clockwise in FIG. 1) around the central axis J.
  • Each of the plurality of coils 29 has a leader wire 28 extending from the leader portion 27 of the coil 29.
  • the extraction portions 27 of all the coils 29 are located on one side in the circumferential direction with respect to the coil 29.
  • the extraction portions 27 of all the coils 29 are located on one side in the circumferential direction with respect to the coils 29. Further, the leader wire 28 drawn from these leaders 27 is a terminal at the end of winding of the coil 29. Therefore, the winding configurations such as the winding direction and the winding end position of all the coils 29 can be the same. As a result, the winding can be performed without distinguishing the plurality of coils 29, and the manufacturing process can be simplified.
  • the six bus bars 80 are attached to the stator 20.
  • the six busbars 80 are two U-phase busbars (first-phase busbars) 80U, two V-phase busbars (second-phase busbars) 80V, and two W-phase busbars (third-phase busbars) 80W. And, it is classified into.
  • the U-phase bus bar 80U, the V-phase bus bar 80V, and the W-phase bus bar 80W are arranged in the following order toward the other side in the circumferential direction around the central axis J.
  • Two leader wires 28 having the same phase are connected to the bus bar 80 at the leader wire connecting portion 81. That is, two leader wires 28 extending from two in-phase coils 29 are connected to the leader wire connecting portion 81 of one bus bar 80.
  • the U-phase bus bar 80U, the V-phase bus bar 80V, and the W-phase bus bar 80W are compatible bus bars.
  • the control device 9 supplies an alternating current to each bus bar 80.
  • the phases of the alternating current supplied to each bus bar 80 are 120 ° out of phase.
  • the two three-phase circuits are connected in parallel by the bus bar 80. Therefore, a group of bus bars 80 composed of one U-phase bus bar 80U, one V-phase bus bar 80V, and one W-phase bus bar 80W supplies power to two three-phase circuits at the same time. Further, a group of bus bars 80 composed of one U-phase bus bar 80U, one V-phase bus bar 80V, and one W-phase bus bar 80W constitutes one input system. Therefore, the motor 1 of the present embodiment has two input systems.
  • the U-phase bus bar 80U is supported by the insulator 22 on which the V-phase coil 29V is mounted.
  • the first leader line 28Ua is drawn from the U-phase coil 29U located on one side in the circumferential direction with respect to the connected U-phase bus bar 80U.
  • the first leader line 28Ua is routed from the leader portion 27 toward the other side in the circumferential direction and is connected to the U-phase bus bar 80U.
  • the first leader wire 28Ua passes under the drawn U-phase coil 29U, is routed radially outward of the V-phase coil 29V, and is connected to the U-phase bus bar 80U. Therefore, the length of the first leader line 28Ua extending along the circumferential direction is 1.5 of the length (coil width) of the coils 29 in the circumferential direction.
  • the second leader line 28Ub is drawn from the U-phase coil 29U located on the opposite side in the circumferential direction with respect to the connected U-phase bus bar 80U.
  • the second leader line 28Ub is routed from the leader portion 27 toward one side in the circumferential direction and is connected to the U-phase bus bar 80U.
  • the second leader wire 28Ub passes through the radially outer side of the drawn W-phase coil 29W, is routed outward in the radial direction of the V-phase coil 29V, and is connected to the U-phase bus bar 80U. Therefore, the length of the second leader line 28Ub extending along the circumferential direction is 1.5 of the length (coil width) of the coils 29 in the circumferential direction.
  • the position of the leader line connecting portion 81 of the U-phase bus bar 80U in the circumferential direction is an intermediate point between the leader portions 27 of the two leader lines (first leader line 28Ua and second leader line 28Ub). Therefore, the distances from the leader line connecting portion 81 to the two leader portions 27 are the same. As a result, the lengths of the first leader line 28Ua and the second leader line 28Ub can be made substantially the same.
  • the V-phase bus bar 80V is supported by the insulator 22 on which the W-phase coil 29W is mounted.
  • the leader line 28 connected to the V-phase bus bar 80V has the same configuration as the leader line 28 connected to the U-phase bus bar 80U described above.
  • Two leader lines 28, a first leader line 28V extending from one side in the circumferential direction and a second leader line 28Vb extending from the other side in the circumferential direction, are connected to the V-phase bus bar 80V.
  • the first leader line 28V is drawn from the V-phase coil 29V located on one side in the circumferential direction with respect to the connected V-phase bus bar 80V.
  • the first leader line 28V passes under the V-phase coil 29V and is connected to the V-phase bus bar 80V.
  • the second leader line 28Vb is drawn from the V-phase coil 29V located on the opposite side in the circumferential direction with respect to the connected V-phase bus bar 80V.
  • the second leader wire 28Vb passes through the radial outside of the U-phase coil 29U and is connected to the V-phase bus bar 80V.
  • the position of the leader line connecting portion 81 of the V-phase bus bar 80V in the circumferential direction is an intermediate point between the leader portions 27 of the two leader lines (first leader line 28V and second leader line 28Vb). Therefore, the lengths of the first leader line 28Va and the second leader line 28Vb can be made substantially the same.
  • the W-phase bus bar 80W is supported by the insulator 22 on which the U-phase coil 29U is mounted.
  • the leader line 28 connected to the W-phase bus bar 80W has the same configuration as the leader line 28 connected to the U-phase bus bar 80U described above.
  • Two leader lines 28, a first leader line 28W extending from one side in the circumferential direction and a second leader line 28Wb extending from the other side in the circumferential direction, are connected to the W-phase bus bar 80W.
  • the first leader line 28W is drawn from the W-phase coil 29W located on one side in the circumferential direction with respect to the connected W-phase bus bar 80W.
  • the first leader line 28W passes under the W-phase coil 29W and is connected to the W-phase bus bar 80W.
  • the second leader line 28Wb is drawn from the W-phase coil 29W located on the opposite side in the circumferential direction with respect to the connected W-phase bus bar 80W.
  • the second leader wire 28Wb passes through the radial outside of the V-phase coil 29V and is connected to the W-phase bus bar 80W.
  • the position of the leader line connecting portion 81 of the W-phase bus bar 80W in the circumferential direction is an intermediate point between the leader portions 27 of the two leader lines (first leader line 28W and second leader line 28Wb). Therefore, the lengths of the first leader line 28Wa and the second leader line 28Wb can be made substantially the same.
  • the lengths of the leader lines 28 connected to the bus bars 80 of different phases are the same. Since the electrical resistance of the leader line 28 is proportional to the length, the amplitudes of the magnetic fields of the coils 29 having different phases can be brought close to each other. As a result, the rotation of the motor 1 can be stabilized.
  • the lengths of the two leader lines 28 connected to the bus bars 80 of the same phase can be matched with each other. Therefore, the amplitudes of the magnetic fields of the coils 29 having the same phase can be brought close to each other, and the rotation of the motor 1 can be stabilized.
  • the leader line 28 is embedded in the housing 30 together with the stator 20 and the bus bar 80. Therefore, if the path of the leader line 28 becomes complicated, the resin cannot sufficiently wrap around between the leader lines 28, and there is a possibility that the leader line 28 is not sufficiently fixed by the housing 30.
  • the present embodiment by connecting the coils 29 having the same phase in parallel, the path of the leader line 28 can be shortened and the path of the leader line 28 can be simplified as compared with the case where the coils 29 are connected in series. .. As a result, the resin can be sufficiently wrapped around the leader wire 28.
  • two in-phase coils 29 are connected in parallel by one bus bar 80. Therefore, the number of bus bars 80 can be reduced and the number of parts of the motor 1 can be reduced as compared with the case where one bus bar 80 is connected to one coil 29.
  • one extending from one side in the circumferential direction passes under the coil 29 having the same phase, and the other extending from the other side in the circumferential direction is many. It passes the radial outside of the phase coil 29. This point will be described in detail focusing on the first leader line 28Va and the second leader line 28Vb connected to the V-phase bus bar 80V.
  • the first leader line 28V passes under the in-phase V-phase coil 29V. That is, the first leader line 28V overlaps with the V-phase coil 29V when viewed from the axial direction. Since the first leader line 28V is a V-phase coil 29V and a V-phase, by arranging the first leader wire 28V close to the V-phase coil 29V, no electrical problem occurs even if a short circuit occurs. On the other hand, the leader wire 28 of the other phase is arranged sufficiently away from the V-phase coil 29V in order to prevent short-circuiting with the V-phase coil 29V. Therefore, according to the present embodiment, it is possible to secure the distance between the first leader line 28Va and the leader line 28 of the other phase. Therefore, not only the short circuit with the other phase can be suppressed, but also the leader wires 28 can be suppressed from being densely packed, and the resin filling rate can be increased in the molding process of the housing 30.
  • the second leader wire 28Vb passes outside in the radial direction of the U-phase coil 29U of the other phase. That is, the second leader line 28Vb passes through a position different from that of the coil 29 of the other phase when viewed from the axial direction. As a result, it is possible to prevent the second leader wire 28Vb from being short-circuited with the coil 29 of the other phase.
  • the two leader lines 28 connected to the bus bar 80 extend along the circumferential direction and line up in the axial direction.
  • the leader line 28 routed along the circumferential direction can be smoothly connected to the bus bar 80, and the route of the leader line 28 can be simplified.
  • the two leader wires 28 are lined up in the axial direction, it is possible to prevent the leader wire connecting portion 81 of the bus bar 80 from becoming enlarged in the radial direction, and it becomes easier to secure a distance from the leader wires 28 of other phases. ..
  • the bus bar 80 is located outside the radial outer end of the coil 29.
  • the rotor 10 is arranged inside the stator 20 in the radial direction. Therefore, when the bus bar 80 is arranged inside the coil 29 in the radial direction, a structure for suppressing the leader wire 28 from protruding toward the rotor 10 is required. According to this embodiment, by arranging the bus bar 80 on the radial side of the coil 29, the interference between the leader wire 28 and the rotor 10 can be easily suppressed.
  • the folded-back portion 81b of the bus bar 80 is located radially outside the base portion 81a. Therefore, it is possible to secure a distance between the bus bar 80 and the coil 29 located inside the bus bar in the radial direction at the folded-back portion to prevent short-circuiting with each other.
  • FIG. 6 is a partial cross-sectional view of a motor having a modified bus bar 180.
  • the bus bar 180 of this modification is mainly different in the configuration of the leader line connecting portion 181 as compared with the above-described embodiment.
  • the bus bar 180 of the present modification has a leader wire connection portion 181 connected to the leader wire 28, an external connection terminal portion 82 extending downward from the leader wire connection portion 181 and a leader wire connection. It has a supported portion 83 extending upward from the portion 181.
  • the leader wire connecting portion 181 has a base portion 181a, a folded-back portion 181b folded back from the upper end portion of the base portion 181a, and a bent portion 181c located at the lower end of the folded-back portion 181b.
  • the base portion 181a and the folded portion 181b extend substantially in parallel along the axial direction with the radial direction as the plate thickness direction.
  • the folded-back portion 181b is located radially inward with respect to the base portion 181a.
  • Two leader lines 28 are sandwiched between the base portion 181a and the folded-back portion 181b.
  • the bent portion 181c suppresses the leader line 28 from coming off from the region sandwiched between the base portion 181a and the folded portion 181b.
  • the folded-back portion 181b is located radially inward with respect to the base portion 181a. Therefore, the leader wire connecting portion 181 can be brought closer to the coil 29 in the radial direction, and the leader wire 28 extending from the coil 29 can be shortened.
  • the use of the motor unit of the above-described embodiment and its modified example is not particularly limited.
  • the motor unit of the above-described embodiment and its modification is mounted on, for example, an electric pump, an electric power steering, and the like.

Abstract

One embodiment of the motor according to the present invention is provided with: a stator having a plurality of coils; a housing comprising a resin and having the stator embedded therein; and a plurality of bus bars located on one side of the stator in the axial direction. The plurality of coils include a first phase coil, a second phase coil, and a third phase coil arranged in this order toward the other side in the circumferential direction around the central axis. The first phase coil, the second phase coil, and the third phase coil have lead-out wires extending from lead-out portions located on one side in the circumferential direction with respect to the coils. The plurality of bus bars are categorized into a first phase bus bar connected to the lead-out wire of the first phase coil, a second phase bus bar connected to the lead-out wire of the second phase coil, and a third phase bus bar connected to the lead-out wire of the third phase coil. The first phase bus bar is supported by an insulator on which the second phase coil is mounted. The second phase bus bar is supported by an insulator on which the third phase coil is mounted. The third phase bus bar is supported by an insulator on which the first phase coil is mounted.

Description

モータmotor
 本発明は、モータに関する。 The present invention relates to a motor.
 近年、組み立て工程を簡素化するなどの目的で、ステータを樹脂でモールドしたモータが開発されている。特許文献1には、ステータをモールドする樹脂部分がハウジングを構成するモータが開示されている。 In recent years, motors in which the stator is molded with resin have been developed for the purpose of simplifying the assembly process. Patent Document 1 discloses a motor in which a resin portion for molding a stator constitutes a housing.
日本国公開公報:特開2007-267568号公報Japanese Publication: Japanese Patent Application Laid-Open No. 2007-267568
 モータは、コイルから引き出された引出線に接続されるバスバーを介して制御装置に接続され、制御装置からステータに電力を供給する。ステータを樹脂材料でモールドする場合、ステータとともにバスバーをモールドさせることでより一層組み立て工程を簡素化することができる。しかしながら、コイルからバスバーに至る引出線の長さが不均一であると、バスバーからコイルに至る電流経路の電気抵抗が不均一となり、モータの回転の安定性が損なわれる虞がある。 The motor is connected to the control device via a bus bar connected to the leader wire drawn from the coil, and power is supplied from the control device to the stator. When the stator is molded from a resin material, the assembly process can be further simplified by molding the bus bar together with the stator. However, if the length of the leader wire from the coil to the bus bar is non-uniform, the electrical resistance of the current path from the bus bar to the coil becomes non-uniform, which may impair the rotational stability of the motor.
 本発明は、上記事情に鑑みて、複数の引出線の長さを均一に近づけることで回転の安定性を高めたモータを提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a motor having improved rotational stability by making the lengths of a plurality of leader wires uniform.
 本発明のモータの一つの態様は、中心軸周りに回転するロータと、インシュレータおよび当該インシュレータに装着された複数のコイルを有し前記ロータと径方向に対向するステータと、樹脂からなり前記ステータが埋め込まれるハウジングと、前記ステータの軸方向一方側に位置する複数のバスバーと、を備える。複数の前記コイルは、前記中心軸周りの周方向他方側に向かって以下の順で並ぶ、第1相コイルと、第2相コイルと、第3相コイルと、に分類される三相モータである。前記第1相コイル、第2相コイルおよび第3相コイルは、当該コイルに対し周方向一方側に位置する引出部から延びる引出線を有する。複数の前記バスバーは、第1相コイルの引出線に接続される第1相バスバーと、第2相コイルの引出線に接続される第2相バスバーと、第3相コイルの引出線に接続される第3相バスバーと、に分類される。前記第1相バスバーは、前記第2相コイルが装着される前記インシュレータに支持される。前記第2相バスバーは、前記第3相コイルが装着される前記インシュレータに支持される。前記第3相バスバーは、前記第1相コイルが装着される前記インシュレータに支持される。 One embodiment of the motor of the present invention comprises a rotor that rotates around a central axis, an insulator, a stator having a plurality of coils mounted on the insulator and facing the rotor in the radial direction, and a resin. A housing to be embedded and a plurality of bus bars located on one side in the axial direction of the stator are provided. The plurality of the coils are three-phase motors classified into a first-phase coil, a second-phase coil, and a third-phase coil, which are arranged in the following order toward the other side in the circumferential direction around the central axis. is there. The first-phase coil, the second-phase coil, and the third-phase coil have a leader wire extending from a leader portion located on one side in the circumferential direction with respect to the coil. The plurality of the bus bars are connected to the first phase bus bar connected to the leader wire of the first phase coil, the second phase bus bar connected to the leader wire of the second phase coil, and the leader wire of the third phase coil. It is classified into a phase 3 busbar. The first phase bus bar is supported by the insulator to which the second phase coil is mounted. The second phase bus bar is supported by the insulator to which the third phase coil is mounted. The third-phase busbar is supported by the insulator to which the first-phase coil is mounted.
 本発明の一つの態様によれば、複数の引出線の長さを均一に近づけることで回転の安定性を高めたモータが提供される。 According to one aspect of the present invention, a motor having improved rotational stability is provided by making the lengths of a plurality of leader wires uniformly close to each other.
図1は、一実施形態のモータの断面図である。FIG. 1 is a cross-sectional view of the motor of one embodiment. 図2は、一実施形態のバスバーおよびステータの斜視図であり、互いに分解した状態を示す図である。FIG. 2 is a perspective view of the bus bar and the stator of one embodiment, and is a view showing a state in which they are disassembled from each other. 図3は、一実施形態のバスバーおよびステータの斜視図であり、互いに組付けた状態を示す図である。FIG. 3 is a perspective view of the bus bar and the stator of one embodiment, and is a diagram showing a state in which they are assembled to each other. 図4は、一実施形態のハウジングを成形する金型および金型内のステータの状態を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a mold for molding the housing of one embodiment and a state of a stator in the mold. 図5は、一実施形態のステータおよびバスバーを下側から見た模式的な平面図である。FIG. 5 is a schematic plan view of the stator and bus bar of one embodiment as viewed from below. 図6は、変形例のバスバーを有するモータの部分断面図である。FIG. 6 is a partial cross-sectional view of a motor having a modified bus bar.
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。
 以下の説明において、中心軸J(図1参照)に平行な方向を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。また、本明細書では、中心軸Jに沿った軸方向の一方側を単に「下側」と呼び、他方側を単に「上側」と呼ぶ。なお、本明細書における上下方向は、単に説明のために用いられる方向であって、モータの使用時および流通時の姿勢を限定するものではない。
Hereinafter, embodiments to which the present invention has been applied will be described in detail with reference to the drawings.
In the following description, the direction parallel to the central axis J (see FIG. 1) is simply referred to as "axial direction" or "vertical direction", and the radial direction centered on the central axis J is simply referred to as "radial direction". The circumferential direction around the axis J, that is, the circumference of the central axis J is simply referred to as the "circumferential direction". Further, in the present specification, one side in the axial direction along the central axis J is simply referred to as "lower side", and the other side is simply referred to as "upper side". It should be noted that the vertical direction in the present specification is merely a direction used for explanation, and does not limit the posture during use and distribution of the motor.
 本明細書において、下側から見て反時計回りに進む側、すなわち矢印θの向きに進む側を「周方向一方側」と呼ぶ。周方向における上側から下側に向かって見て時計回りに進む側、すなわち矢印θの向きと逆に進む側を「周方向他方側」と呼ぶ。 In the present specification, the side that advances counterclockwise when viewed from below, that is, the side that advances in the direction of arrow θ is referred to as "one side in the circumferential direction". The side that advances clockwise when viewed from the upper side to the lower side in the circumferential direction, that is, the side that advances in the direction opposite to the direction of the arrow θ is called "the other side in the circumferential direction".
 図1は、一実施形態のモータ1の断面図である。図1に仮想線(二点鎖線)で示すように、モータ1の下側には、制御装置9が取り付けられる。制御装置9は、モータ1に電力を供給する。本実施形態のモータ1は、三相モータである。制御装置9は、モータ1に交流電流を供給する。 FIG. 1 is a cross-sectional view of the motor 1 of one embodiment. As shown by a virtual line (dashed line) in FIG. 1, a control device 9 is attached to the lower side of the motor 1. The control device 9 supplies electric power to the motor 1. The motor 1 of this embodiment is a three-phase motor. The control device 9 supplies an alternating current to the motor 1.
 モータ1は、ロータ10と、ロータ10を囲むステータ20と、ステータ20に対してロータ10を回転可能に保持する上側ベアリング15および下側ベアリング(ベアリング)16と、上側ベアリング15を保持する上側ベアリングホルダ40と、下側ベアリング16を保持する下側ベアリングホルダ(ベアリングホルダ)70と、ハウジング30と、複数のバスバー80と、を有する。 The motor 1 includes a rotor 10, a stator 20 that surrounds the rotor 10, an upper bearing 15 and a lower bearing (bearing) 16 that rotatably hold the rotor 10 with respect to the stator 20, and an upper bearing that holds the upper bearing 15. It has a holder 40, a lower bearing holder (bearing holder) 70 for holding the lower bearing 16, a housing 30, and a plurality of bus bars 80.
 ロータ10は、上下方向に沿って延びる中心軸Jを中心として回転する。ロータ10は、中心軸Jに沿って延びるシャフト11と、ロータコア12と、ロータマグネット13と、を有する。 The rotor 10 rotates about a central axis J extending in the vertical direction. The rotor 10 has a shaft 11 extending along the central axis J, a rotor core 12, and a rotor magnet 13.
 シャフト11は、上側ベアリング15、および下側ベアリング16により、中心軸J周りに回転可能に支持される。シャフト11の外周面には、ロータコア12が固定される。また、ロータコア12の外周面には、ロータマグネット13が固定される。なお、複数のロータマグネット13は、ロータコア12の内部に埋め込まれていてもよい。 The shaft 11 is rotatably supported around the central axis J by the upper bearing 15 and the lower bearing 16. The rotor core 12 is fixed to the outer peripheral surface of the shaft 11. Further, the rotor magnet 13 is fixed to the outer peripheral surface of the rotor core 12. The plurality of rotor magnets 13 may be embedded inside the rotor core 12.
 上側ベアリング15は、ステータ20の上側に位置し、下側ベアリング16は、ステータ20の下側に位置する。上側ベアリング15は、シャフト11の上端部を支持し、下側ベアリング16は、シャフト11の下端部を支持する。すなわち、上側ベアリング15および下側ベアリング16は、ロータ10を回転可能に支持する。本実施形態の上側ベアリング15および下側ベアリング16は、ボールベアリングである。なお、上側ベアリング15および下側ベアリング16は、ニードルベアリング等の他種のベアリングであってもよい。 The upper bearing 15 is located above the stator 20, and the lower bearing 16 is located below the stator 20. The upper bearing 15 supports the upper end of the shaft 11, and the lower bearing 16 supports the lower end of the shaft 11. That is, the upper bearing 15 and the lower bearing 16 rotatably support the rotor 10. The upper bearing 15 and the lower bearing 16 of the present embodiment are ball bearings. The upper bearing 15 and the lower bearing 16 may be other types of bearings such as needle bearings.
 上側ベアリングホルダ40は、ステータ20の上側に位置する。上側ベアリングホルダ40は、金属製である。上側ベアリングホルダ40は、ホルダ筒部41と、ホルダ筒部41の上端から径方向内側に延びる上板部42と、ホルダ筒部41の下端から径方向外側に延びるホルダフランジ部43と、を有する。 The upper bearing holder 40 is located above the stator 20. The upper bearing holder 40 is made of metal. The upper bearing holder 40 has a holder cylinder portion 41, an upper plate portion 42 extending radially inward from the upper end of the holder cylinder portion 41, and a holder flange portion 43 extending radially outward from the lower end of the holder cylinder portion 41. ..
 ホルダ筒部41は、中心軸Jを中心とする円筒状である。ホルダ筒部41の径方向内側には、上側ベアリング15が配置される。上板部42は、上側ベアリング15の外輪の上側を覆う。上板部42には、軸方向に貫通する中央孔42aが設けられる。中央孔42aには、シャフト11が挿通される。ホルダフランジ部43の径方向外側の縁部は、ハウジング30に埋め込まれる。すなわち、上側ベアリングホルダ40は、少なくも一部がハウジング30に埋め込まれる。 The holder cylinder portion 41 has a cylindrical shape centered on the central axis J. The upper bearing 15 is arranged inside the holder cylinder portion 41 in the radial direction. The upper plate portion 42 covers the upper side of the outer ring of the upper bearing 15. The upper plate portion 42 is provided with a central hole 42a penetrating in the axial direction. The shaft 11 is inserted through the central hole 42a. The radial outer edge of the holder flange 43 is embedded in the housing 30. That is, at least a part of the upper bearing holder 40 is embedded in the housing 30.
 下側ベアリングホルダ70は、ステータ20の下側に位置する。下側ベアリングホルダ70は、樹脂製である。下側ベアリングホルダ70は、軸方向から見て円板状である。下側ベアリングホルダ70は、外縁部においてハウジング30に固定される。 The lower bearing holder 70 is located below the stator 20. The lower bearing holder 70 is made of resin. The lower bearing holder 70 has a disk shape when viewed from the axial direction. The lower bearing holder 70 is fixed to the housing 30 at the outer edge.
 下側ベアリングホルダ70の軸方向から見た中央には、中央孔72aが設けられる。中央孔72aには、シャフト11の下端部が挿通される。中央孔72aの周囲には、下側ベアリング16を径方向外側から囲み下側ベアリング16を保持する内壁面71aが設けられる。 A central hole 72a is provided in the center of the lower bearing holder 70 when viewed from the axial direction. The lower end of the shaft 11 is inserted into the central hole 72a. An inner wall surface 71a that surrounds the lower bearing 16 from the outside in the radial direction and holds the lower bearing 16 is provided around the central hole 72a.
 ステータ20は、ロータ10を径方向外側から囲む。ステータ20は、ロータ10と径方向に対向する。ステータ20は、ステータコア21と、複数のインシュレータ22と、インシュレータに装着された複数のコイル29と、を有する。 The stator 20 surrounds the rotor 10 from the outside in the radial direction. The stator 20 faces the rotor 10 in the radial direction. The stator 20 includes a stator core 21, a plurality of insulators 22, and a plurality of coils 29 mounted on the insulators.
 ステータコア21は、中心軸Jを中心とする環状のコアバック部21aおよびコアバック部21aから径方向内側に延びる複数のティース部21bを有する。ティース部21bは、中心軸J周りの周方向に等間隔で複数設けられる。 The stator core 21 has an annular core back portion 21a centered on the central axis J and a plurality of teeth portions 21b extending radially inward from the core back portion 21a. A plurality of tooth portions 21b are provided at equal intervals in the circumferential direction around the central axis J.
 コイル29は、インシュレータ22を介してティース部21bに装着される。コイル29の端部は、ステータ20の下側に配置されるバスバー80に接続される。バスバー80は、図示略の制御装置に接続される。コイル29には、バスバー80を介して制御装置から電力が供給される。 The coil 29 is attached to the teeth portion 21b via the insulator 22. The end of the coil 29 is connected to a bus bar 80 located below the stator 20. The bus bar 80 is connected to a control device (not shown). Electric power is supplied to the coil 29 from the control device via the bus bar 80.
 インシュレータ22は、絶縁部材からなる。インシュレータ22は、例えば樹脂部材である。インシュレータ22は、ティース部21bに取り付けられる。インシュレータ22は、ティース部21bとコイル29との間に介在される。インシュレータ22は、上ピース22Aおよび下ピース22Bを有する。上ピース22Aは、ステータコア21に対して上側から取り付けられる。上ピース22Aは、コアバック部21aの上端面とティース部21bの周方向両端面の上半分の領域とを囲む。下ピース22Bは、ステータコア21に対して下側から取り付けられる。下ピース22Bは、コアバック部21aの下端面とティース部21bの周方向両端面の下半分の領域とを囲む。
 なお、本明細書においてティース部21bの周方向の端面とは、径方向および軸方向と直交し周方向を向くティース部21bの面であり、周方向に沿って並ぶティース部21b同士が互いに向かい合う面である。
The insulator 22 is made of an insulating member. The insulator 22 is, for example, a resin member. The insulator 22 is attached to the teeth portion 21b. The insulator 22 is interposed between the teeth portion 21b and the coil 29. The insulator 22 has an upper piece 22A and a lower piece 22B. The upper piece 22A is attached to the stator core 21 from above. The upper piece 22A surrounds the upper end surface of the core back portion 21a and the upper half region of both end faces in the circumferential direction of the teeth portion 21b. The lower piece 22B is attached to the stator core 21 from below. The lower piece 22B surrounds the lower end surface of the core back portion 21a and the lower half region of both end faces in the circumferential direction of the teeth portion 21b.
In the present specification, the distal end surface of the teeth portion 21b is the surface of the teeth portions 21b that are orthogonal to the radial direction and the axial direction and face the circumferential direction, and the teeth portions 21b arranged along the circumferential direction face each other. It is a face.
 インシュレータ22は、それぞれインシュレータ本体部25と、内壁部23と、外壁部24と、を有する。インシュレータ本体部25は、ティース部21bの外周面の全体を囲む。インシュレータ本体部25は、ティース部21bの外周面とコイル29との間に介在される。 The insulator 22 has an insulator main body portion 25, an inner wall portion 23, and an outer wall portion 24, respectively. The insulator main body 25 surrounds the entire outer peripheral surface of the teeth portion 21b. The insulator main body 25 is interposed between the outer peripheral surface of the teeth 21b and the coil 29.
 内壁部23は、インシュレータ本体部25の径方向内側に位置し、周方向に沿って延びる。内壁部23は、軸方向から見て、ティース部21bの径方向内端部と重なる。内壁部23は、コイル29に対し径方向内側に位置する。内壁部23は、ティース部21bに巻き付けられたコイル29が径方向内側に移動することを制限する。 The inner wall portion 23 is located inside the insulator main body portion 25 in the radial direction and extends along the circumferential direction. The inner wall portion 23 overlaps with the radial inner end portion of the teeth portion 21b when viewed from the axial direction. The inner wall portion 23 is located radially inside the coil 29. The inner wall portion 23 restricts the coil 29 wound around the teeth portion 21b from moving inward in the radial direction.
 内壁部23は、上ピース22Aと下ピース22Bとにそれぞれ設けられる。以下の説明において、上ピース22Aの内壁部23を上側内壁部23Aと呼ぶ。また、下ピース22Bの内壁部23を下側内壁部23Bと呼ぶ。上側内壁部23Aは、インシュレータ本体部25に対して上側に延びる。下側内壁部23Bは、インシュレータ本体部25に対して下側に延びる。 The inner wall portion 23 is provided on the upper piece 22A and the lower piece 22B, respectively. In the following description, the inner wall portion 23 of the upper piece 22A will be referred to as the upper inner wall portion 23A. Further, the inner wall portion 23 of the lower piece 22B is referred to as a lower inner wall portion 23B. The upper inner wall portion 23A extends upward with respect to the insulator main body portion 25. The lower inner wall portion 23B extends downward with respect to the insulator main body portion 25.
 外壁部24は、インシュレータ本体部25の径方向外側に位置し、周方向に沿って延びる。外壁部24は、軸方向から見て、コアバック部21aと重なる。外壁部24は、コイル29に対し径方向外側に位置する。外壁部24は、ティース部21bに巻き付けられたコイル29が径方向外側に移動することを制限する。 The outer wall portion 24 is located on the outer side in the radial direction of the insulator main body portion 25 and extends along the circumferential direction. The outer wall portion 24 overlaps with the core back portion 21a when viewed from the axial direction. The outer wall portion 24 is located radially outside the coil 29. The outer wall portion 24 restricts the coil 29 wound around the teeth portion 21b from moving outward in the radial direction.
 外壁部24は、上ピース22Aと下ピース22Bとにそれぞれ設けられる。以下の説明において、上ピース22Aの外壁部24を上側外壁部24Aと呼ぶ。また、下ピース22Bの外壁部24を下側外壁部24Bと呼ぶ。上側外壁部24Aは、インシュレータ本体部25に対して上側に延びる。下側外壁部24Bは、インシュレータ本体部25に対して下側に延びる。なお、後段において詳しく説明するように、下側外壁部24Bには、バスバー80が挿入される凹部24cが設けられる。 The outer wall portion 24 is provided on the upper piece 22A and the lower piece 22B, respectively. In the following description, the outer wall portion 24 of the upper piece 22A will be referred to as the upper outer wall portion 24A. Further, the outer wall portion 24 of the lower piece 22B is referred to as a lower outer wall portion 24B. The upper outer wall portion 24A extends upward with respect to the insulator main body portion 25. The lower outer wall portion 24B extends downward with respect to the insulator main body portion 25. As will be described in detail later, the lower outer wall portion 24B is provided with a recess 24c into which the bus bar 80 is inserted.
 ハウジング30は、樹脂材料からなる。本明細書において樹脂材料とは、例えばガラス繊維や炭素繊維のような繊維材によって強化された複合材料であってもよい。すなわち、ハウジング30は、繊維強化樹脂材料であってもよい。また、ハウジング30は、熱硬化性樹脂であってもよいし、熱可塑性樹脂であってもよい。 The housing 30 is made of a resin material. In the present specification, the resin material may be a composite material reinforced with a fiber material such as glass fiber or carbon fiber. That is, the housing 30 may be a fiber reinforced resin material. Further, the housing 30 may be a thermosetting resin or a thermoplastic resin.
 ハウジング30には、ステータ20、バスバー80、および上側ベアリングホルダ40が埋め込まれる。これにより、ハウジング30は、バスバー80、ステータ20、および上側ベアリングホルダ40を保持する。ハウジング30は、ステータ20、バスバー80、および上側ベアリングホルダ40を金型内で保持した状態でインサート成形される。すなわち、ステータ20、バスバー80、および上側ベアリングホルダ40をハウジング30に対して一度に埋め込むことができるので、モータ1の組み立て工程が簡素化される。 A stator 20, a bus bar 80, and an upper bearing holder 40 are embedded in the housing 30. As a result, the housing 30 holds the bus bar 80, the stator 20, and the upper bearing holder 40. The housing 30 is insert-molded with the stator 20, the bus bar 80, and the upper bearing holder 40 held in the mold. That is, since the stator 20, the bus bar 80, and the upper bearing holder 40 can be embedded in the housing 30 at once, the assembly process of the motor 1 is simplified.
 ハウジング30は、ステータ20を保持する本体部31と、本体部31の上側に位置する上側環状部32と、バスバー80を保持するバスバーホルダ部36と、本体部31の下面から下側に延びる下筒部(筒部)37と、本体部31の下側に位置し下側ベアリングホルダ70が固定される保持壁部(壁部)39と、上側ベアリングホルダ40を保持するホルダ保持部38と、を有する。 The housing 30 includes a main body 31 that holds the stator 20, an upper annular portion 32 that is located above the main body 31, a bus bar holder 36 that holds the bus bar 80, and a lower portion that extends downward from the lower surface of the main body 31. A cylinder portion (cylinder portion) 37, a holding wall portion (wall portion) 39 located below the main body portion 31 and to which the lower bearing holder 70 is fixed, and a holder holding portion 38 for holding the upper bearing holder 40. Has.
 本体部31には、ステータ20が埋め込まれる。本体部31は、ステータ20に対し上側、下側および径方向外側を囲む。本体部31は、ティース部21bおよびコイル29を囲むとともに、周方向で互いに隣り合うティース部21bおよびコイル29の間にも設けられる。ステータコア21の内周面は、ハウジング30から露出する。 The stator 20 is embedded in the main body 31. The main body 31 surrounds the upper side, the lower side, and the radial outer side with respect to the stator 20. The main body 31 surrounds the teeth portion 21b and the coil 29, and is also provided between the teeth portions 21b and the coil 29 that are adjacent to each other in the circumferential direction. The inner peripheral surface of the stator core 21 is exposed from the housing 30.
 上側環状部32は、周方向に環状に延びる。上側環状部32は、周方向および径方向に延びる複数のリブ35を有する。これにより、上側環状部32は、ハウジング30を補強する。 The upper annular portion 32 extends annularly in the circumferential direction. The upper annular portion 32 has a plurality of ribs 35 extending in the circumferential direction and the radial direction. As a result, the upper annular portion 32 reinforces the housing 30.
 下筒部37は、中心軸Jを中心とする円筒状である。下筒部37は、本体部31から下側に延びる。下筒部37の外周面37bは、本体部31の外周面と連続する。下筒部37は、ハウジング30から突出する複数のバスバー80の下端部を径方向外側から囲む。 The lower cylinder portion 37 has a cylindrical shape centered on the central axis J. The lower cylinder portion 37 extends downward from the main body portion 31. The outer peripheral surface 37b of the lower cylinder portion 37 is continuous with the outer peripheral surface of the main body portion 31. The lower cylinder portion 37 surrounds the lower end portions of the plurality of bus bars 80 protruding from the housing 30 from the outside in the radial direction.
 下筒部37には、モータ1を制御する制御装置9が取り付けられる。制御装置9の上面には、ソケット部9aが設けられる。ソケット部9aは、上面から下側に延びる穴部である。バスバー80は、ソケット部9aに挿入されることで制御装置9に電気的に接続される。また、制御装置9は、径方向外側を向く取り付け面9bを有する。取り付け面9bは、中心軸Jを中心とする円柱面である。取り付け面9bは、下筒部37の内周面37aに嵌合する。このため、下筒部37の内周面37aは、モータ1と制御装置9とを互いに位置合わせする面として機能する。 A control device 9 for controlling the motor 1 is attached to the lower cylinder portion 37. A socket portion 9a is provided on the upper surface of the control device 9. The socket portion 9a is a hole portion extending downward from the upper surface. The bus bar 80 is electrically connected to the control device 9 by being inserted into the socket portion 9a. Further, the control device 9 has a mounting surface 9b facing outward in the radial direction. The mounting surface 9b is a cylindrical surface centered on the central axis J. The mounting surface 9b fits into the inner peripheral surface 37a of the lower cylinder portion 37. Therefore, the inner peripheral surface 37a of the lower cylinder portion 37 functions as a surface for aligning the motor 1 and the control device 9 with each other.
 保持壁部39は、本体部31の下面から下側に突出する。すなわち、保持壁部39は、ステータ20の下側に位置する。保持壁部39は、周方向に沿って延びる。保持壁部39は、下筒部37およびバスバーホルダ部36の径方向内側に位置する。ハウジング30の下側を向く面において、保持壁部39とバスバーホルダ部36との間には凹溝39gが設けられる。これにより、保持壁部39とバスバーホルダ部36とが繋がっている場合と比較して、ハウジング30の肉厚が局所的に大きくなることを抑制することができ、ハウジング30のヒケを抑制できる。 The holding wall portion 39 projects downward from the lower surface of the main body portion 31. That is, the holding wall portion 39 is located below the stator 20. The holding wall portion 39 extends along the circumferential direction. The holding wall portion 39 is located inside the lower cylinder portion 37 and the bus bar holder portion 36 in the radial direction. A concave groove 39 g is provided between the holding wall portion 39 and the bus bar holder portion 36 on the surface facing the lower side of the housing 30. As a result, it is possible to suppress the local increase in the wall thickness of the housing 30 as compared with the case where the holding wall portion 39 and the bus bar holder portion 36 are connected, and it is possible to suppress sink marks on the housing 30.
 保持壁部39には、熱かしめ等の手段によって、下側ベアリングホルダ70が固定される。保持壁部39の内周面39aには、下側ベアリングホルダ70が嵌る。これにより、ハウジング30に対し下側ベアリングホルダ70が径方向に位置決めされる。 The lower bearing holder 70 is fixed to the holding wall portion 39 by means such as heat caulking. The lower bearing holder 70 fits into the inner peripheral surface 39a of the holding wall portion 39. As a result, the lower bearing holder 70 is positioned in the radial direction with respect to the housing 30.
 バスバーホルダ部36は、本体部31の下側に位置する。バスバーホルダ部36は、下筒部37の径方向内側に位置する。バスバーホルダ部36の内部には、6つのバスバー80が埋め込まれる。バスバー80は、バスバーホルダ部36の下面から下側に突出する。 The bus bar holder portion 36 is located below the main body portion 31. The bus bar holder portion 36 is located inside the lower cylinder portion 37 in the radial direction. Six bus bars 80 are embedded inside the bus bar holder portion 36. The bus bar 80 projects downward from the lower surface of the bus bar holder portion 36.
 バスバー80は、ステータ20の下側に位置する。バスバー80は、導電性が高い金属材料(例えば銅系合金)からなる。バスバー80は、板状である。バスバー80は、板材をプレス加工することで成形される。 The bus bar 80 is located below the stator 20. The bus bar 80 is made of a highly conductive metal material (for example, a copper-based alloy). The bus bar 80 has a plate shape. The bus bar 80 is formed by pressing a plate material.
 バスバー80は、コイル29から延びる引出線28に接続される。引出線28は、コイル29の巻き始めの末端、又は巻き終わりの末端であり、本実施形態において、引出線28は、コイル29の巻き終わりの末端である。本実施形態において、コイル29の巻き始めの末端は、図示略の中性点バスバーに接続される。 The bus bar 80 is connected to a leader line 28 extending from the coil 29. The leader wire 28 is the end of the winding end of the coil 29 or the end of the winding end, and in the present embodiment, the leader wire 28 is the end of the winding end of the coil 29. In the present embodiment, the winding start end of the coil 29 is connected to a neutral point bus bar (not shown).
 バスバー80は、引出線28に接続される引出線接続部81と、引出線接続部81から下側に延びる外部接続端子部82と、引出線接続部81から上側に延びる被支持部83と、を有する。 The bus bar 80 includes a leader wire connecting portion 81 connected to the leader wire 28, an external connecting terminal portion 82 extending downward from the leader wire connecting portion 81, and a supported portion 83 extending upward from the leader wire connecting portion 81. Has.
 引出線接続部81は、基部81aと、基部81aの上側の端部から折り返される折り返し部81bと、折り返し部81bの下端に位置する屈曲部81cと、を有する。引出線接続部81は、基部81aにおいて、外部接続端子部82および被支持部83に繋がる。 The leader wire connecting portion 81 has a base portion 81a, a folded-back portion 81b folded back from the upper end portion of the base portion 81a, and a bent portion 81c located at the lower end of the folded-back portion 81b. The leader wire connecting portion 81 is connected to the external connecting terminal portion 82 and the supported portion 83 at the base portion 81a.
 基部81aと折り返し部81bとは、径方向を板厚方向として軸方向に沿って略平行に延びる。基部81aと折り返し部81bとは、径方向において互いに対向する。本実施形態において、折り返し部81bは、基部81aに対し径方向外側に位置する。基部81aと折り返し部81bとの間には、2本の引出線28が挟まれる。 The base portion 81a and the folded portion 81b extend substantially parallel to the axial direction with the radial direction as the plate thickness direction. The base portion 81a and the folded portion 81b face each other in the radial direction. In the present embodiment, the folded-back portion 81b is located radially outward with respect to the base portion 81a. Two leader lines 28 are sandwiched between the base portion 81a and the folded-back portion 81b.
 屈曲部81cは、折り返し部81bの下端から下側に延びる。屈曲部81cは、下側に向かうに従い基部81a側に向かって傾斜する。屈曲部81cの下端と基部81aとの距離寸法は、引出線28の線径より小さい。また、屈曲部81cの下端は、基部81aに接触していてもよい。屈曲部81cは、基部81aと折り返し部81bとで挟まれた領域から引出線28が離脱することを抑制する。 The bent portion 81c extends downward from the lower end of the folded portion 81b. The bent portion 81c inclines toward the base portion 81a side toward the lower side. The distance between the lower end of the bent portion 81c and the base portion 81a is smaller than the wire diameter of the leader wire 28. Further, the lower end of the bent portion 81c may be in contact with the base portion 81a. The bent portion 81c suppresses the leader line 28 from coming off from the region sandwiched between the base portion 81a and the folded portion 81b.
 基部81a、折り返し部81bおよび2本の引出線28は、例えば、溶接によって互いに固定され、電気的に接続される。具体的には、基部81aと折り返し部81bとによって引出線28を挟んだ状態で、基部81aと折り返し部81bとを2つの電極で挟み電流を流すことで溶接する。ただし、引出線接続部81と引出線28との接続は、抵抗溶接に限られるものではない。例えば、アーク溶接等の抵抗溶接以外の溶接、はんだ付け、導電性接着剤による接着等により固定してもよい。 The base portion 81a, the folded-back portion 81b, and the two leader wires 28 are fixed to each other by welding, for example, and are electrically connected to each other. Specifically, with the leader wire 28 sandwiched between the base portion 81a and the folded-back portion 81b, the base portion 81a and the folded-back portion 81b are sandwiched between two electrodes and welded by passing an electric current. However, the connection between the leader wire connecting portion 81 and the leader wire 28 is not limited to resistance welding. For example, it may be fixed by welding other than resistance welding such as arc welding, soldering, or adhesion with a conductive adhesive.
 外部接続端子部82は、径方向を板厚方向として軸方向に沿って延びる。外部接続端子部82の上端は、引出線接続部81の基部81aに接続される。外部接続端子部の上端は、ハウジング30に埋め込まれる。また、外部接続端子部82の下端は、ハウジング30から露出する。 The external connection terminal portion 82 extends along the axial direction with the radial direction as the plate thickness direction. The upper end of the external connection terminal portion 82 is connected to the base portion 81a of the leader wire connection portion 81. The upper end of the external connection terminal portion is embedded in the housing 30. Further, the lower end of the external connection terminal portion 82 is exposed from the housing 30.
 被支持部83は、インシュレータ22に支持される。このため、ハウジング30を成形する前の状態で、バスバー80をステータ20に仮固定することができる。結果的に、成形前のステータ20およびバスバー80を、ハウジング30成形用の金型に保持させる作業が容易となる。 The supported portion 83 is supported by the insulator 22. Therefore, the bus bar 80 can be temporarily fixed to the stator 20 in a state before the housing 30 is molded. As a result, the work of holding the stator 20 and the bus bar 80 before molding in the mold for molding the housing 30 becomes easy.
 図2は、バスバー80およびステータ20の斜視図であり互いに分解した状態を示す図である。また、図3は、バスバー80およびステータ20の斜視図であり互いに組付けた状態を示す図である。 FIG. 2 is a perspective view of the bus bar 80 and the stator 20 and shows a state in which they are disassembled from each other. Further, FIG. 3 is a perspective view of the bus bar 80 and the stator 20 and shows a state in which they are assembled to each other.
 図2に示すように、被支持部83は、一対の脚部83aを有する。脚部83aは、径方向を板厚方向として基部81aから軸方向に延びる。一対の脚部83aは、周方向に沿って並ぶ。一対の脚部83aは、それぞれ互いに反対側を向く外側面83abを有する。 As shown in FIG. 2, the supported portion 83 has a pair of leg portions 83a. The leg portion 83a extends axially from the base portion 81a with the radial direction as the plate thickness direction. The pair of legs 83a are arranged along the circumferential direction. The pair of legs 83a each have an outer surface 83ab facing away from each other.
 インシュレータ22は、下側に開口する凹部24cを有する。本実施形態の凹部24cは、インシュレータ22を軸方向に貫通する貫通孔である。凹部24cは、軸方向から見て、長辺が周方向に沿って延び、短辺が径方向に沿って延びる矩形状である。凹部24cは、周方向において互いに対向する一対の対向面24cbを有する。一対の対向面24cbは、軸方向から見て凹部24cの短辺を構成する。一対の対向面24cb同士の距離寸法は、一対の外側面83ab同士の距離寸法より若干小さい。 The insulator 22 has a recess 24c that opens downward. The recess 24c of the present embodiment is a through hole that penetrates the insulator 22 in the axial direction. The recess 24c has a rectangular shape in which the long side extends along the circumferential direction and the short side extends along the radial direction when viewed from the axial direction. The recess 24c has a pair of facing surfaces 24cc that face each other in the circumferential direction. The pair of facing surfaces 24cc form the short side of the recess 24c when viewed from the axial direction. The distance dimension between the pair of facing surfaces 24 cc is slightly smaller than the distance dimension between the pair of outer surface 83 abs.
 図3に示すように、一対の脚部83aは、インシュレータ22の凹部24cに挿入される。凹部24cの一対の対向面24cbは、それぞれ異なる脚部83aの外側面83abに接触する。一対の脚部83aは、それぞれ異なる対向面24cbに押し付けられて、互いに近づく方向に弾性変形する。外側面83abと対向面24cbとには、面圧が加わり、摩擦抵抗によって被支持部83が凹部24c内においてインシュレータ22に安定的に支持される。このため、製造工程において、ハウジング30にバスバー80を埋め込む成形工程行う前まで、バスバー80がステータ20から離脱することを抑制できる。 As shown in FIG. 3, the pair of leg portions 83a are inserted into the recess 24c of the insulator 22. The pair of facing surfaces 24cc of the recess 24c come into contact with the outer surfaces 83ab of the different legs 83a. The pair of legs 83a are pressed against different facing surfaces 24cc and elastically deformed in a direction approaching each other. Surface pressure is applied to the outer side surface 83ab and the facing surface 24cc, and the supported portion 83 is stably supported by the insulator 22 in the recess 24c due to frictional resistance. Therefore, in the manufacturing process, it is possible to prevent the bus bar 80 from being separated from the stator 20 until the molding process of embedding the bus bar 80 in the housing 30 is performed.
 図4は、ハウジング30を成形する金型90および金型90内のステータ20の状態を示す部分断面図である。 FIG. 4 is a partial cross-sectional view showing a state of the mold 90 for molding the housing 30 and the stator 20 in the mold 90.
 金型90の内部には、ハウジング30を構成する樹脂材料が充填されるキャビティCが設けられる。金型90は、キャビティCを囲む第1型91と第2型92とを有する。第1型91と第2型92とは、軸方向に互いに向かい合って配置される。第2型92は、第1型91に対し下側に位置する。第1型91と第2型92とは、パーティングラインPLにおいて上下に相対的に分離可能である。本実施形態において、パーティングラインPLはステータコア21の下端面と同一平面上に配置される。 Inside the mold 90, a cavity C filled with a resin material constituting the housing 30 is provided. The mold 90 has a first mold 91 and a second mold 92 that surround the cavity C. The first type 91 and the second type 92 are arranged so as to face each other in the axial direction. The second type 92 is located below the first type 91. The first type 91 and the second type 92 are relatively separable vertically on the parting line PL. In the present embodiment, the parting line PL is arranged on the same plane as the lower end surface of the stator core 21.
 第1型91は、パーティングラインPLの上側の領域であって、本体部31、上側環状部32、およびホルダ保持部38を成形する。一方で、第2型92は、パーティングラインPLの下側の領域であって、バスバーホルダ部36および下筒部37を成形する。 The first type 91 is an area on the upper side of the parting line PL, and forms the main body portion 31, the upper annular portion 32, and the holder holding portion 38. On the other hand, the second type 92 is a region below the parting line PL and forms the bus bar holder portion 36 and the lower cylinder portion 37.
 第2型92は、上側に開口する第1環状溝92a、第2環状溝92c、および保持凹部92bを有する。また、第2型92は、第1環状溝92aの底面から下側に延びる分離面92pにおいて互いに分離可能な内側ブロック92hと外側ブロック92jとを有する。内側ブロック92hは、平面視円形の外周面を有し、外側ブロック92jは、平面視円形の内周面を有する。第2型92は、内側ブロック92hの内周面を外側ブロック92jの外周面に嵌合させることで構成される。これにより、内側ブロック92hと外側ブロック92jとは、互いに高精度に位置合わせされる。 The second type 92 has a first annular groove 92a, a second annular groove 92c, and a holding recess 92b that open upward. Further, the second type 92 has an inner block 92h and an outer block 92j that can be separated from each other on the separation surface 92p extending downward from the bottom surface of the first annular groove 92a. The inner block 92h has a circular outer peripheral surface in a plan view, and the outer block 92j has an inner peripheral surface in a circular shape in a plan view. The second type 92 is configured by fitting the inner peripheral surface of the inner block 92h to the outer peripheral surface of the outer block 92j. As a result, the inner block 92h and the outer block 92j are aligned with each other with high accuracy.
 第1環状溝92aは、下側に凹み周方向に沿って延びる。第1環状溝92aに充填された樹脂は、ハウジング30の下筒部37を構成する。第1環状溝92aの径方向外側を向く第1内壁面92aaは、内側ブロック92hの一面である。また、第1環状溝92aの径方向内側を向く第2内壁面92abは、外側ブロック92jの一面である。内側ブロック92hは、第1内壁面92aaにおいて下筒部37の内周面37aを成形する。また、外側ブロック92jは、第2内壁面92ab下筒部37の外周面37bを成形する。 The first annular groove 92a is recessed downward and extends along the circumferential direction. The resin filled in the first annular groove 92a constitutes the lower cylinder portion 37 of the housing 30. The first inner wall surface 92aa facing the radial outer side of the first annular groove 92a is one surface of the inner block 92h. Further, the second inner wall surface 92ab facing the radial inward side of the first annular groove 92a is one surface of the outer block 92j. The inner block 92h forms the inner peripheral surface 37a of the lower cylinder portion 37 on the first inner wall surface 92aa. Further, the outer block 92j forms the outer peripheral surface 37b of the second inner wall surface 92ab lower cylinder portion 37.
 保持凹部92bは、第1環状溝92aの径方向内側に配置される。保持凹部92bは、内側ブロック92hに設けられる。保持凹部92bは、下側に凹みバスバー80を保持する。軸方向から見て、保持凹部92bの形状は、バスバー80の外部接続端子部82の断面形状と略一致する。ハウジング30は、外部接続端子部82の先端を金型90の保持凹部92bで保持した状態で成形される。これにより、バスバー80の先端をハウジング30から露出させるとともに、ハウジング30に対するバスバー80の位置精度を高めることができる。 The holding recess 92b is arranged inside the first annular groove 92a in the radial direction. The holding recess 92b is provided in the inner block 92h. The holding recess 92b holds the recessed bus bar 80 on the lower side. When viewed from the axial direction, the shape of the holding recess 92b substantially matches the cross-sectional shape of the external connection terminal portion 82 of the bus bar 80. The housing 30 is formed in a state where the tip of the external connection terminal portion 82 is held by the holding recess 92b of the mold 90. As a result, the tip of the bus bar 80 can be exposed from the housing 30, and the positioning accuracy of the bus bar 80 with respect to the housing 30 can be improved.
 第2型は、保持凹部92bの開口に位置するテーパ面92baを有する。テーパ面92baは、軸方向から見て保持凹部92bの開口を囲む。テーパ面92baは、保持凹部92bの開口に近づくに従い下側に向かうように傾斜する。テーパ面92baは、バスバー80を保持凹部92bに挿入して保持させる工程において、外部接続端子部82を保持凹部92bに誘い込む。したがって、テーパ面92baが設けられることで、損傷を生じさせることなく外部接続端子部82を保持凹部92bに挿入することができる。 The second type has a tapered surface 92ba located at the opening of the holding recess 92b. The tapered surface 92ba surrounds the opening of the holding recess 92b when viewed from the axial direction. The tapered surface 92ba is inclined downward as it approaches the opening of the holding recess 92b. The tapered surface 92ba invites the external connection terminal portion 82 into the holding recess 92b in the step of inserting and holding the bus bar 80 into the holding recess 92b. Therefore, by providing the tapered surface 92ba, the external connection terminal portion 82 can be inserted into the holding recess 92b without causing damage.
 図1に示すように、ハウジング30のバスバーホルダ部36は、下側(軸方向一方側)に突出する盛り上がり部36aを有する。盛り上がり部36aは、テーパ面92baによって成型される領域である。このため、外部接続端子部82は、盛り上がり部36aにおいてバスバーホルダ部36から下側に突出する。また、本実施形態において、外部接続端子部82は、盛り上がり部36aの頂部においてバスバーホルダ部36から下側に突出する。 As shown in FIG. 1, the bus bar holder portion 36 of the housing 30 has a raised portion 36a that protrudes downward (one side in the axial direction). The raised portion 36a is a region formed by the tapered surface 92ba. Therefore, the external connection terminal portion 82 projects downward from the bus bar holder portion 36 at the raised portion 36a. Further, in the present embodiment, the external connection terminal portion 82 projects downward from the bus bar holder portion 36 at the top of the raised portion 36a.
 本実施形態によれば、バスバー80は、ハウジング30から露出する外部接続端子部82を有する。また、下筒部37が、外部接続端子部82を径方向外側から囲む。下筒部37の内周面37aは、制御装置9の取り付け面9bと接触して、モータ1に対して制御装置9を位置合わせする面として機能する。本実施形態によれば、下筒部37が、外部接続端子部82を径方向外側から囲むため、1つの型(第2型92)によって下筒部37を成形しつつ外部接続端子部82を保持できる。特に、本実施形態では、同一のブロック(内側ブロック92h)によって下筒部37の内周面37aを成形しつつ外部接続端子部82を保持する。結果的に、下筒部37の内周面37aに対する外部接続端子部82の位置精度を高めることができ、バスバー80を制御装置9のソケット部9aにスムーズに挿入できる。 According to the present embodiment, the bus bar 80 has an external connection terminal portion 82 exposed from the housing 30. Further, the lower cylinder portion 37 surrounds the external connection terminal portion 82 from the outside in the radial direction. The inner peripheral surface 37a of the lower cylinder portion 37 comes into contact with the mounting surface 9b of the control device 9 and functions as a surface for aligning the control device 9 with respect to the motor 1. According to the present embodiment, since the lower cylinder portion 37 surrounds the external connection terminal portion 82 from the outside in the radial direction, the external connection terminal portion 82 is formed while molding the lower cylinder portion 37 by one mold (second type 92). Can be retained. In particular, in the present embodiment, the external connection terminal portion 82 is held while forming the inner peripheral surface 37a of the lower cylinder portion 37 by the same block (inner block 92h). As a result, the positional accuracy of the external connection terminal portion 82 with respect to the inner peripheral surface 37a of the lower cylinder portion 37 can be improved, and the bus bar 80 can be smoothly inserted into the socket portion 9a of the control device 9.
 第2環状溝92cは、第1環状溝92aおよび保持凹部92bの径方向内側に配置される。第2環状溝92cは、下側に凹み周方向に沿って延びる。第2環状溝92cは、内側ブロック92hに設けられる。第2環状溝92cに充填された樹脂は、ハウジング30の保持壁部39を構成する。 The second annular groove 92c is arranged inside the first annular groove 92a and the holding recess 92b in the radial direction. The second annular groove 92c is recessed downward and extends along the circumferential direction. The second annular groove 92c is provided in the inner block 92h. The resin filled in the second annular groove 92c constitutes the holding wall portion 39 of the housing 30.
 上述したように、保持壁部39の内周面39aには、下側ベアリングホルダ70が嵌る。したがって、保持壁部39は、下側ベアリングホルダ70および下側ベアリング16を介してシャフト11を支持する。本実施形態によれば、同一のブロック(内側ブロック92h)によって保持壁部39の内周面と下筒部37の内周面37aとを成形できる。このため、下筒部37の内周面37aに対して下筒部37の内周面37aの位置精度を高めることができる。結果的に、下筒部37に取り付けられる制御装置9に対するシャフト11の位置精度高めることができる。 As described above, the lower bearing holder 70 fits into the inner peripheral surface 39a of the holding wall portion 39. Therefore, the holding wall portion 39 supports the shaft 11 via the lower bearing holder 70 and the lower bearing 16. According to this embodiment, the inner peripheral surface of the holding wall portion 39 and the inner peripheral surface 37a of the lower cylinder portion 37 can be formed by the same block (inner block 92h). Therefore, the positional accuracy of the inner peripheral surface 37a of the lower cylinder portion 37 can be improved with respect to the inner peripheral surface 37a of the lower cylinder portion 37. As a result, the positional accuracy of the shaft 11 with respect to the control device 9 attached to the lower cylinder portion 37 can be improved.
 次に、本実施形態のステータ20における引出線28が配置されている状態について詳細に説明する。
 図5は、ステータ20およびバスバー80を下側から見た模式的な平面図である。本実施形態のステータ20は、4系統の三相回路を有する。それぞれの三相回路は、スター結線により構成されている。全てのコイル29の巻き始めの端末は、4系統の三相回路の中性点として中性点バスバー(図示略)に結線されており、互いに同電位となっている。
Next, the state in which the leader line 28 is arranged in the stator 20 of the present embodiment will be described in detail.
FIG. 5 is a schematic plan view of the stator 20 and the bus bar 80 as viewed from below. The stator 20 of the present embodiment has four systems of three-phase circuits. Each three-phase circuit is composed of star connections. The terminals at the beginning of winding of all the coils 29 are connected to the neutral point bus bar (not shown) as the neutral point of the four-system three-phase circuit, and have the same potential.
 本実施形態において、ステータ20は、12個のコイル29を有する。12個のコイル29は、4個のU相コイル(第1相コイル)29Uと、4個のV相コイル(第2相コイル)29Vと、4個のW相コイル(第3相コイル)29Wと、に分類される。U相コイル29U、V相コイル29V、およびW相コイル29Wは、中心軸J周りの周方向他方側(図1において時計回り方向)に向かってこの順で並ぶ。 In this embodiment, the stator 20 has 12 coils 29. The 12 coils 29 consist of 4 U-phase coils (1st phase coil) 29U, 4 V-phase coils (2nd phase coil) 29V, and 4 W-phase coils (3rd phase coil) 29W. And, it is classified into. The U-phase coil 29U, the V-phase coil 29V, and the W-phase coil 29W are arranged in this order toward the other side in the circumferential direction (clockwise in FIG. 1) around the central axis J.
 複数のコイル29は、それぞれコイル29の引出部27から延びる引出線28を有する。本実施形態において、全てのコイル29(U相コイル29U、V相コイル29V、およびW相コイル29W)の引出部27は、当該コイル29に対し周方向一方側に位置する。 Each of the plurality of coils 29 has a leader wire 28 extending from the leader portion 27 of the coil 29. In the present embodiment, the extraction portions 27 of all the coils 29 (U-phase coil 29U, V-phase coil 29V, and W-phase coil 29W) are located on one side in the circumferential direction with respect to the coil 29.
 本実施形態によれば、全てのコイル29の引出部27は、当該コイル29に対し周方向の一方側に位置する。また、これらの引出部27から引き出される引出線28は、当該コイル29の巻き終わりの端末である。したがって、全てのコイル29の巻き線方向および巻き終わり位置等の巻き線構成を同一とすることができる。結果的に、複数のコイル29を区別することなく巻き線を行うことができ、製造工程を簡素化することができる。 According to the present embodiment, the extraction portions 27 of all the coils 29 are located on one side in the circumferential direction with respect to the coils 29. Further, the leader wire 28 drawn from these leaders 27 is a terminal at the end of winding of the coil 29. Therefore, the winding configurations such as the winding direction and the winding end position of all the coils 29 can be the same. As a result, the winding can be performed without distinguishing the plurality of coils 29, and the manufacturing process can be simplified.
 本実施形態において、ステータ20には、6個のバスバー80が取り付けられる。6個のバスバー80は、2個のU相バスバー(第1相バスバー)80Uと、2個のV相バスバー(第2相バスバー)80Vと、2個のW相バスバー(第3相バスバー)80Wと、に分類される。U相バスバー80UとV相バスバー80VとW相バスバー80Wとは、中心軸J周りの周方向他方側に向かって以下の順で並ぶ。 In the present embodiment, six bus bars 80 are attached to the stator 20. The six busbars 80 are two U-phase busbars (first-phase busbars) 80U, two V-phase busbars (second-phase busbars) 80V, and two W-phase busbars (third-phase busbars) 80W. And, it is classified into. The U-phase bus bar 80U, the V-phase bus bar 80V, and the W-phase bus bar 80W are arranged in the following order toward the other side in the circumferential direction around the central axis J.
 バスバー80には、引出線接続部81において、互いに同じ相の2本の引出線28が接続される。すなわち、1つのバスバー80の引出線接続部81には、2つの同相のコイル29から延びる2本の引出線28が接続される。 Two leader wires 28 having the same phase are connected to the bus bar 80 at the leader wire connecting portion 81. That is, two leader wires 28 extending from two in-phase coils 29 are connected to the leader wire connecting portion 81 of one bus bar 80.
 U相バスバー80U、V相バスバー80V、およびW相バスバー80Wは、相用バスバーである。制御装置9は、各バスバー80に交流電流を供給する。各バスバー80に供給される交流電流の位相は、それぞれ120°ずれている。 The U-phase bus bar 80U, the V-phase bus bar 80V, and the W-phase bus bar 80W are compatible bus bars. The control device 9 supplies an alternating current to each bus bar 80. The phases of the alternating current supplied to each bus bar 80 are 120 ° out of phase.
 2つの三相回路は、バスバー80によって並列接続されている。したがって、1個のU相バスバー80U、1個のV相バスバー80V、および1個のW相バスバー80Wから構成されるバスバー80のグループは、2つの三相回路に同時に電力を供給する。また、1個のU相バスバー80U、1個のV相バスバー80V、および1個のW相バスバー80Wから構成されるバスバー80のグループは、1つの入力系統を構成する。したがって、本実施形態のモータ1は、2つの入力系統を有する。 The two three-phase circuits are connected in parallel by the bus bar 80. Therefore, a group of bus bars 80 composed of one U-phase bus bar 80U, one V-phase bus bar 80V, and one W-phase bus bar 80W supplies power to two three-phase circuits at the same time. Further, a group of bus bars 80 composed of one U-phase bus bar 80U, one V-phase bus bar 80V, and one W-phase bus bar 80W constitutes one input system. Therefore, the motor 1 of the present embodiment has two input systems.
 U相バスバー80Uは、V相コイル29Vが装着されるインシュレータ22に支持される。U相バスバー80Uには、周方向一方側から延びる第1引出線28Uaと、周方向他方側から延びる第2引出線28Ubと、の2本の引出線28が接続される。 The U-phase bus bar 80U is supported by the insulator 22 on which the V-phase coil 29V is mounted. Two leader lines 28, a first leader line 28Ua extending from one side in the circumferential direction and a second leader line 28Ub extending from the other side in the circumferential direction, are connected to the U-phase bus bar 80U.
 第1引出線28Uaは、接続されるU相バスバー80Uに対し周方向一方側に位置するU相コイル29Uから引き出される。第1引出線28Uaは、引出部27から周方向他方側に向かって引き回されU相バスバー80Uに接続される。第1引出線28Uaは、引き出されたU相コイル29Uの下側を通過してV相コイル29Vの径方向外側に引き回されU相バスバー80Uに接続される。したがって、周方向に沿って延びる第1引出線28Uaの長さは、周方向におけるコイル29の長さ(コイル幅)の1.5個分である。 The first leader line 28Ua is drawn from the U-phase coil 29U located on one side in the circumferential direction with respect to the connected U-phase bus bar 80U. The first leader line 28Ua is routed from the leader portion 27 toward the other side in the circumferential direction and is connected to the U-phase bus bar 80U. The first leader wire 28Ua passes under the drawn U-phase coil 29U, is routed radially outward of the V-phase coil 29V, and is connected to the U-phase bus bar 80U. Therefore, the length of the first leader line 28Ua extending along the circumferential direction is 1.5 of the length (coil width) of the coils 29 in the circumferential direction.
 第2引出線28Ubは、接続されるU相バスバー80Uに対し周方向他方側に位置するU相コイル29Uから引き出される。第2引出線28Ubは、引出部27から周方向一方側に向かって引き回されU相バスバー80Uに接続される。第2引出線28Ubは、引き出されたW相コイル29Wの径方向外側を通過してV相コイル29Vの径方向外側に引き回されU相バスバー80Uに接続される。したがって、周方向に沿って延びる第2引出線28Ubの長さは、周方向におけるコイル29の長さ(コイル幅)の1.5個分である。 The second leader line 28Ub is drawn from the U-phase coil 29U located on the opposite side in the circumferential direction with respect to the connected U-phase bus bar 80U. The second leader line 28Ub is routed from the leader portion 27 toward one side in the circumferential direction and is connected to the U-phase bus bar 80U. The second leader wire 28Ub passes through the radially outer side of the drawn W-phase coil 29W, is routed outward in the radial direction of the V-phase coil 29V, and is connected to the U-phase bus bar 80U. Therefore, the length of the second leader line 28Ub extending along the circumferential direction is 1.5 of the length (coil width) of the coils 29 in the circumferential direction.
 周方向におけるU相バスバー80Uの引出線接続部81の位置は、2本の引出線(第1引出線28Uaおよび第2引出線28Ub)の引出部27同士の中間点である。このため、引出線接続部81から2つの引出部27への距離が互いに同じとなる。結果的に、第1引出線28Uaおよび第2引出線28Ubの長さを略同一とすることができる。 The position of the leader line connecting portion 81 of the U-phase bus bar 80U in the circumferential direction is an intermediate point between the leader portions 27 of the two leader lines (first leader line 28Ua and second leader line 28Ub). Therefore, the distances from the leader line connecting portion 81 to the two leader portions 27 are the same. As a result, the lengths of the first leader line 28Ua and the second leader line 28Ub can be made substantially the same.
 V相バスバー80Vは、W相コイル29Wが装着されるインシュレータ22に支持される。V相バスバー80Vに接続される引出線28は、上述のU相バスバー80Uに接続される引出線28と同様の構成を有する。 The V-phase bus bar 80V is supported by the insulator 22 on which the W-phase coil 29W is mounted. The leader line 28 connected to the V-phase bus bar 80V has the same configuration as the leader line 28 connected to the U-phase bus bar 80U described above.
 V相バスバー80Vには、周方向一方側から延びる第1引出線28Vaと、周方向他方側から延びる第2引出線28Vbと、の2本の引出線28が接続される。第1引出線28Vaは、接続されるV相バスバー80Vに対し周方向一方側に位置するV相コイル29Vから引き出される。第1引出線28Vaは、V相コイル29Vの下側を通過してV相バスバー80Vに接続される。第2引出線28Vbは、接続されるV相バスバー80Vに対し周方向他方側に位置するV相コイル29Vから引き出される。第2引出線28Vbは、U相コイル29Uの径方向外側を通過してV相バスバー80Vに接続される。周方向におけるV相バスバー80Vの引出線接続部81の位置は、2本の引出線(第1引出線28Vaおよび第2引出線28Vb)の引出部27同士の中間点である。したがって、第1引出線28Vaおよび第2引出線28Vbの長さを略同一とすることができる。 Two leader lines 28, a first leader line 28V extending from one side in the circumferential direction and a second leader line 28Vb extending from the other side in the circumferential direction, are connected to the V-phase bus bar 80V. The first leader line 28V is drawn from the V-phase coil 29V located on one side in the circumferential direction with respect to the connected V-phase bus bar 80V. The first leader line 28V passes under the V-phase coil 29V and is connected to the V-phase bus bar 80V. The second leader line 28Vb is drawn from the V-phase coil 29V located on the opposite side in the circumferential direction with respect to the connected V-phase bus bar 80V. The second leader wire 28Vb passes through the radial outside of the U-phase coil 29U and is connected to the V-phase bus bar 80V. The position of the leader line connecting portion 81 of the V-phase bus bar 80V in the circumferential direction is an intermediate point between the leader portions 27 of the two leader lines (first leader line 28V and second leader line 28Vb). Therefore, the lengths of the first leader line 28Va and the second leader line 28Vb can be made substantially the same.
 W相バスバー80Wは、U相コイル29Uが装着されるインシュレータ22に支持される。W相バスバー80Wに接続される引出線28は、上述のU相バスバー80Uに接続される引出線28と同様の構成を有する。 The W-phase bus bar 80W is supported by the insulator 22 on which the U-phase coil 29U is mounted. The leader line 28 connected to the W-phase bus bar 80W has the same configuration as the leader line 28 connected to the U-phase bus bar 80U described above.
 W相バスバー80Wには、周方向一方側から延びる第1引出線28Waと、周方向他方側から延びる第2引出線28Wbと、の2本の引出線28が接続される。第1引出線28Waは、接続されるW相バスバー80Wに対し周方向一方側に位置するW相コイル29Wから引き出される。第1引出線28Waは、W相コイル29Wの下側を通過してW相バスバー80Wに接続される。第2引出線28Wbは、接続されるW相バスバー80Wに対し周方向他方側に位置するW相コイル29Wから引き出される。第2引出線28Wbは、V相コイル29Vの径方向外側を通過してW相バスバー80Wに接続される。周方向におけるW相バスバー80Wの引出線接続部81の位置は、2本の引出線(第1引出線28Waおよび第2引出線28Wb)の引出部27同士の中間点である。したがって、第1引出線28Waおよび第2引出線28Wbの長さを略同一とすることができる。 Two leader lines 28, a first leader line 28W extending from one side in the circumferential direction and a second leader line 28Wb extending from the other side in the circumferential direction, are connected to the W-phase bus bar 80W. The first leader line 28W is drawn from the W-phase coil 29W located on one side in the circumferential direction with respect to the connected W-phase bus bar 80W. The first leader line 28W passes under the W-phase coil 29W and is connected to the W-phase bus bar 80W. The second leader line 28Wb is drawn from the W-phase coil 29W located on the opposite side in the circumferential direction with respect to the connected W-phase bus bar 80W. The second leader wire 28Wb passes through the radial outside of the V-phase coil 29V and is connected to the W-phase bus bar 80W. The position of the leader line connecting portion 81 of the W-phase bus bar 80W in the circumferential direction is an intermediate point between the leader portions 27 of the two leader lines (first leader line 28W and second leader line 28Wb). Therefore, the lengths of the first leader line 28Wa and the second leader line 28Wb can be made substantially the same.
 本実施形態によれば、異なる相のバスバー80に接続される引出線28の長さが互いに同じとなる。引出線28の電気抵抗は、長さに比例するため、互いに異なる相のコイル29の磁場の振幅を互いに近づけることができる。結果的に、モータ1の回転を安定させることができる。 According to this embodiment, the lengths of the leader lines 28 connected to the bus bars 80 of different phases are the same. Since the electrical resistance of the leader line 28 is proportional to the length, the amplitudes of the magnetic fields of the coils 29 having different phases can be brought close to each other. As a result, the rotation of the motor 1 can be stabilized.
 本実施形態によれば、同一の相のバスバー80に接続される2本の引出線28の長さを互いに一致させることができる。このため、同一相のコイル29の磁場の振幅を互いに近づけることができ、モータ1の回転を安定させることができる。 According to this embodiment, the lengths of the two leader lines 28 connected to the bus bars 80 of the same phase can be matched with each other. Therefore, the amplitudes of the magnetic fields of the coils 29 having the same phase can be brought close to each other, and the rotation of the motor 1 can be stabilized.
 引出線28は、ステータ20およびバスバー80とともに、ハウジング30に埋め込まれる。このため、引出線28の経路が複雑になると引出線28同士の間に樹脂が十分に回り込むことができず、ハウジング30による引出線28の固定が不十分となる虞がある。本実施形態によれば、同相のコイル29を並列で接続することで、直列に接続する場合と比較して、引出線28の経路を短くすることができ、引出線28の経路を単純化できる。結果的に、引出線28の周囲に樹脂を十分に回り込ませることができる。 The leader line 28 is embedded in the housing 30 together with the stator 20 and the bus bar 80. Therefore, if the path of the leader line 28 becomes complicated, the resin cannot sufficiently wrap around between the leader lines 28, and there is a possibility that the leader line 28 is not sufficiently fixed by the housing 30. According to the present embodiment, by connecting the coils 29 having the same phase in parallel, the path of the leader line 28 can be shortened and the path of the leader line 28 can be simplified as compared with the case where the coils 29 are connected in series. .. As a result, the resin can be sufficiently wrapped around the leader wire 28.
 本実施形態によれば、2つの同相のコイル29を1つのバスバー80で並列に繋ぐ。このため、1つのコイル29に1つのバスバー80を接続する場合と比較して、バスバー80の数を少なくすることができ、モータ1の部品点数を削減できる。 According to this embodiment, two in-phase coils 29 are connected in parallel by one bus bar 80. Therefore, the number of bus bars 80 can be reduced and the number of parts of the motor 1 can be reduced as compared with the case where one bus bar 80 is connected to one coil 29.
 本実施形態によれば、バスバー80に接続される2本の引出線28のうち、周方向一方側から延びる一方は同相のコイル29の下側を通過し、周方向他方側から延びる他方は多相のコイル29の径方向外側を通過する。この点について、V相バスバー80Vに接続される第1引出線28Vaおよび第2引出線28Vbに着目して詳細に説明する。 According to the present embodiment, of the two leader wires 28 connected to the bus bar 80, one extending from one side in the circumferential direction passes under the coil 29 having the same phase, and the other extending from the other side in the circumferential direction is many. It passes the radial outside of the phase coil 29. This point will be described in detail focusing on the first leader line 28Va and the second leader line 28Vb connected to the V-phase bus bar 80V.
 第1引出線28Vaは、同相のV相コイル29Vの下側を通過する。すなわち、第1引出線28Vaは、軸方向から見てV相コイル29Vと重なる。第1引出線28Vaは、V相コイル29VとV相であるため、V相コイル29Vに近づけて配置したことで、仮に短絡しても電気的に問題が生じることはない。一方で、他相の引出線28は、V相コイル29Vと短絡することを抑制するために、V相コイル29Vから十分に離れて配置される。したがって本実施形態によれば、第1引出線28Vaと他相の引出線28との距離を確保することができる。このため、他相との短絡を抑制できるのみならず、引出線28同士が密集することを抑制し、ハウジング30の成形工程において樹脂の充填率を高めることができる。 The first leader line 28V passes under the in-phase V-phase coil 29V. That is, the first leader line 28V overlaps with the V-phase coil 29V when viewed from the axial direction. Since the first leader line 28V is a V-phase coil 29V and a V-phase, by arranging the first leader wire 28V close to the V-phase coil 29V, no electrical problem occurs even if a short circuit occurs. On the other hand, the leader wire 28 of the other phase is arranged sufficiently away from the V-phase coil 29V in order to prevent short-circuiting with the V-phase coil 29V. Therefore, according to the present embodiment, it is possible to secure the distance between the first leader line 28Va and the leader line 28 of the other phase. Therefore, not only the short circuit with the other phase can be suppressed, but also the leader wires 28 can be suppressed from being densely packed, and the resin filling rate can be increased in the molding process of the housing 30.
 第2引出線28Vbは、他相のU相コイル29Uの径方向外側を通過する。すなわち、第2引出線28Vbは、軸方向から見て他相のコイル29と異なる位置を通過する。これにより、第2引出線28Vbが他相のコイル29と短絡することを抑制できる。 The second leader wire 28Vb passes outside in the radial direction of the U-phase coil 29U of the other phase. That is, the second leader line 28Vb passes through a position different from that of the coil 29 of the other phase when viewed from the axial direction. As a result, it is possible to prevent the second leader wire 28Vb from being short-circuited with the coil 29 of the other phase.
 図3に示すように、バスバー80に接続される2本の引出線28は、周方向に沿って延び軸方向に並ぶ。本実施形態によれば、周方向に沿って引き回される引出線28をバスバー80にスムーズに接続することができ、引出線28の経路を単純化することができる。加えて、2本の引出線28が軸方向に並ぶため、バスバー80の引出線接続部81が径方向に肥大化することを抑制でき、他相の引出線28との距離を確保しやすくなる。 As shown in FIG. 3, the two leader lines 28 connected to the bus bar 80 extend along the circumferential direction and line up in the axial direction. According to the present embodiment, the leader line 28 routed along the circumferential direction can be smoothly connected to the bus bar 80, and the route of the leader line 28 can be simplified. In addition, since the two leader wires 28 are lined up in the axial direction, it is possible to prevent the leader wire connecting portion 81 of the bus bar 80 from becoming enlarged in the radial direction, and it becomes easier to secure a distance from the leader wires 28 of other phases. ..
 図1に示すように、バスバー80は、コイル29の径方向外端より外側に位置する。ステータ20の径方向内側には、ロータ10が配置される。このため、コイル29の径方向内側にバスバー80を配置すると、引出線28がロータ10側に突出することを抑制する構造が必要となる。本実施形態によれば、バスバー80をコイル29の径方向外側に配置することで引出線28とロータ10との干渉を容易に抑制することができる。 As shown in FIG. 1, the bus bar 80 is located outside the radial outer end of the coil 29. The rotor 10 is arranged inside the stator 20 in the radial direction. Therefore, when the bus bar 80 is arranged inside the coil 29 in the radial direction, a structure for suppressing the leader wire 28 from protruding toward the rotor 10 is required. According to this embodiment, by arranging the bus bar 80 on the radial side of the coil 29, the interference between the leader wire 28 and the rotor 10 can be easily suppressed.
 本実施形態によれば、バスバー80の折り返し部81bは、基部81aに対し径方向外側に位置する。このため、折り返し部においてバスバー80と、当該バスバーの径方向内側に位置するコイル29との距離を確保して互いに短絡することを抑制できる。 According to the present embodiment, the folded-back portion 81b of the bus bar 80 is located radially outside the base portion 81a. Therefore, it is possible to secure a distance between the bus bar 80 and the coil 29 located inside the bus bar in the radial direction at the folded-back portion to prevent short-circuiting with each other.
 次に、上述の実施形態の変形例について説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 <バスバーの変形例>
 図6は、変形例のバスバー180を有するモータの部分断面図である。
 本変形例のバスバー180は、上述の実施形態と比較して引出線接続部181の構成が主に異なる。
Next, a modified example of the above-described embodiment will be described. The components having the same aspects as those of the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
<Modification example of bus bar>
FIG. 6 is a partial cross-sectional view of a motor having a modified bus bar 180.
The bus bar 180 of this modification is mainly different in the configuration of the leader line connecting portion 181 as compared with the above-described embodiment.
 上述の実施形態と同様に、本変形例のバスバー180は、引出線28に接続される引出線接続部181と、引出線接続部181から下側に延びる外部接続端子部82と、引出線接続部181から上側に延びる被支持部83と、を有する。 Similar to the above-described embodiment, the bus bar 180 of the present modification has a leader wire connection portion 181 connected to the leader wire 28, an external connection terminal portion 82 extending downward from the leader wire connection portion 181 and a leader wire connection. It has a supported portion 83 extending upward from the portion 181.
 引出線接続部181は、基部181aと、基部181aの上側の端部から折り返される折り返し部181bと、折り返し部181bの下端に位置する屈曲部181cと、を有する。基部181aと折り返し部181bとは、径方向を板厚方向として軸方向に沿って略平行に延びる。折り返し部181bは、基部181aに対し径方向内側に位置する。基部181aと折り返し部181bとの間には、2本の引出線28が挟まれる。屈曲部181cは、基部181aと折り返し部181bとで挟まれた領域から引出線28が離脱することを抑制する。 The leader wire connecting portion 181 has a base portion 181a, a folded-back portion 181b folded back from the upper end portion of the base portion 181a, and a bent portion 181c located at the lower end of the folded-back portion 181b. The base portion 181a and the folded portion 181b extend substantially in parallel along the axial direction with the radial direction as the plate thickness direction. The folded-back portion 181b is located radially inward with respect to the base portion 181a. Two leader lines 28 are sandwiched between the base portion 181a and the folded-back portion 181b. The bent portion 181c suppresses the leader line 28 from coming off from the region sandwiched between the base portion 181a and the folded portion 181b.
 本変形例によれば、折り返し部181bが基部181aに対し径方向内側に位置する。このため、径方向において引出線接続部181をコイル29に近づけることができ、コイル29から延び出る引出線28を短くすることができる。 According to this modification, the folded-back portion 181b is located radially inward with respect to the base portion 181a. Therefore, the leader wire connecting portion 181 can be brought closer to the coil 29 in the radial direction, and the leader wire 28 extending from the coil 29 can be shortened.
 以上に、本発明の一実施形態およびその変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although one embodiment of the present invention and a modification thereof have been described above, each configuration and a combination thereof in the embodiment and the modified example are examples, and the configuration is added within a range not deviating from the gist of the present invention. , Omission, replacement and other changes are possible. Moreover, the present invention is not limited to the embodiments.
 例えば、上述した実施形態およびその変形例のモータユニットの用途は、特に限定されない。上述した実施形態およびその変形例のモータユニットは、例えば、電動ポンプ、および電動パワーステアリング等に搭載される。 For example, the use of the motor unit of the above-described embodiment and its modified example is not particularly limited. The motor unit of the above-described embodiment and its modification is mounted on, for example, an electric pump, an electric power steering, and the like.
 1…モータ、10…ロータ、20…ステータ、22…インシュレータ、27…引出部、28…引出線、29…コイル、29U…U相コイル(第1相コイル)、29V…V相コイル(第2相コイル)、29W…W相コイル(第3相コイル)、30…ハウジング、80,180…バスバー、80U…U相バスバー(第1相バスバー)、80V…V相バスバー(第2相バスバー)、80W…W相バスバー(第3相バスバー)、81,181…引出線接続部、81a,181a…基部、81b,181b…折り返し部、J…中心軸 1 ... motor, 10 ... rotor, 20 ... stator, 22 ... insulator, 27 ... leader, 28 ... leader wire, 29 ... coil, 29U ... U-phase coil (first phase coil), 29V ... V-phase coil (second phase coil) Phase coil), 29W ... W phase coil (third phase coil), 30 ... housing, 80, 180 ... bus bar, 80U ... U phase bus bar (first phase bus bar), 80V ... V phase bus bar (second phase bus bar), 80W ... W phase bus bar (third phase bus bar), 81,181 ... Leader connection part, 81a, 181a ... Base part, 81b, 181b ... Folded part, J ... Central axis

Claims (9)

  1.  中心軸周りに回転するロータと、
     インシュレータおよび当該インシュレータに装着された複数のコイルを有し前記ロータと径方向に対向するステータと、
     樹脂からなり前記ステータが埋め込まれるハウジングと、
     前記ステータの軸方向一方側に位置する複数のバスバーと、を備え、
     複数の前記コイルは、前記中心軸周りの周方向他方側に向かって以下の順で並ぶ、第1相コイルと、第2相コイルと、第3相コイルと、に分類される三相モータであって、
     前記第1相コイル、第2相コイルおよび第3相コイルは、当該コイルに対し周方向一方側に位置する引出部から延びる引出線を有し、
     複数の前記バスバーは、
      第1相コイルの引出線に接続される第1相バスバーと、
      第2相コイルの引出線に接続される第2相バスバーと、
      第3相コイルの引出線に接続される第3相バスバーと、に分類され、
     前記第1相バスバーは、前記第2相コイルが装着される前記インシュレータに支持され、
     前記第2相バスバーは、前記第3相コイルが装着される前記インシュレータに支持され、
     前記第3相バスバーは、前記第1相コイルが装着される前記インシュレータに支持される、
    モータ。
    A rotor that rotates around the central axis and
    An insulator and a stator having a plurality of coils mounted on the insulator and facing the rotor in the radial direction,
    A housing made of resin and in which the stator is embedded,
    A plurality of bus bars located on one side in the axial direction of the stator are provided.
    The plurality of the coils are three-phase motors classified into a first-phase coil, a second-phase coil, and a third-phase coil, which are arranged in the following order toward the other side in the circumferential direction around the central axis. There,
    The first-phase coil, second-phase coil, and third-phase coil have a leader wire extending from a leader portion located on one side in the circumferential direction with respect to the coil.
    The plurality of busbars
    The first phase bus bar connected to the leader wire of the first phase coil,
    The second phase bus bar connected to the leader wire of the second phase coil,
    It is classified into a phase 3 bus bar connected to the leader wire of the phase 3 coil.
    The first phase bus bar is supported by the insulator to which the second phase coil is mounted.
    The second phase bus bar is supported by the insulator to which the third phase coil is mounted.
    The third-phase busbar is supported by the insulator to which the first-phase coil is mounted.
    motor.
  2.  前記第1相バスバーには、当該第1相バスバーに対し周方向一方側に位置する前記第1相コイルの前記引出線と、当該第1相バスバーに対し周方向他方側に位置する前記第1相コイルの前記引出線とが接続され、
     前記第2相バスバーには、当該第2相バスバーに対し周方向一方側に位置する前記第2相コイルの前記引出線と、当該第2相バスバーに対し周方向他方側に位置する前記第2相コイルの前記引出線とが接続され、
     前記第3相バスバーには、当該第3相バスバーに対し周方向一方側に位置する前記第3相コイルの前記引出線と、当該第3相バスバーに対し周方向他方側に位置する前記第3相コイルの前記引出線が接続される、請求項1に記載のモータ。
    The first phase bus bar includes the leader wire of the first phase coil located on one side in the circumferential direction with respect to the first phase bus bar, and the first line located on the other side in the circumferential direction with respect to the first phase bus bar. The leader wire of the phase coil is connected and
    The second phase bus bar includes the leader wire of the second phase coil located on one side in the circumferential direction with respect to the second phase bus bar, and the second line located on the other side in the circumferential direction with respect to the second phase bus bar. The leader wire of the phase coil is connected and
    The third phase bus bar includes the leader wire of the third phase coil located on one side in the circumferential direction with respect to the third phase bus bar, and the third phase position on the other side in the circumferential direction with respect to the third phase bus bar. The motor according to claim 1, wherein the leader wire of the phase coil is connected.
  3.  前記バスバーには、周方向に沿って延び軸方向に並ぶ2本の前記引出線が接続される、請求項2に記載のモータ。 The motor according to claim 2, wherein the bus bar is connected to the two leader wires extending along the circumferential direction and lining up in the axial direction.
  4.  前記バスバーは、前記コイルの径方向外端より外側に位置する、請求項1~3の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 3, wherein the bus bar is located outside the radial outer end of the coil.
  5.  前記第1相バスバーに対し、
      周方向一方側に位置する前記第1相コイルの前記引出線は、当該第1相コイルの軸方向一方側を通過して前記第1相バスバーに接続され、
      周方向他方側に位置する前記第1相コイルの前記引出線は、前記第3相コイルの径方向外側を通過して前記第1相バスバーに接続され、
     前記第2相バスバーに対し、
      周方向一方側に位置する前記第2相コイルの前記引出線は、当該第2相コイルの軸方向一方側を通過して前記第2相バスバーに接続され、
      周方向他方側に位置する前記第2相コイルの前記引出線は、前記第1相コイルの径方向外側を通過して前記第2相バスバーに接続され、
     前記第3相バスバーに対し、
      周方向一方側に位置する前記第3相コイルの前記引出線は、当該第3相コイルの軸方向一方側を通過して前記第3相バスバーに接続され、
      周方向他方側に位置する前記第3相コイルの前記引出線は、第2相コイルの径方向外側を通過して前記第1相バスバーに接続される、請求項4に記載のモータ。
    For the first phase busbar
    The leader wire of the first phase coil located on one side in the circumferential direction passes through one side in the axial direction of the first phase coil and is connected to the first phase bus bar.
    The leader wire of the first phase coil located on the other side in the circumferential direction passes through the radial outside of the third phase coil and is connected to the first phase bus bar.
    For the phase 2 busbar
    The leader wire of the second phase coil located on one side in the circumferential direction passes through one side in the axial direction of the second phase coil and is connected to the second phase bus bar.
    The leader wire of the second phase coil located on the other side in the circumferential direction passes through the radial outside of the first phase coil and is connected to the second phase bus bar.
    For the phase 3 busbar
    The leader wire of the third-phase coil located on one side in the circumferential direction passes through one side in the axial direction of the third-phase coil and is connected to the third-phase bus bar.
    The motor according to claim 4, wherein the leader wire of the third phase coil located on the other side in the circumferential direction passes through the radial outside of the second phase coil and is connected to the first phase bus bar.
  6.  前記バスバーは、板状であり、基部と、前記基部の端部から折り返される折り返し部とを有し、
     前記引出線は、前記基部と前記折り返し部とに挟まれる、請求項1~5の何れか一項に記載のモータ。
    The bus bar is plate-shaped and has a base and a folded portion that is folded back from the end of the base.
    The motor according to any one of claims 1 to 5, wherein the leader wire is sandwiched between the base portion and the folded portion.
  7.  前記折り返し部は、前記基部に対し径方向外側に位置する、請求項6に記載のモータ。 The motor according to claim 6, wherein the folded-back portion is located radially outside the base portion.
  8.  前記折り返し部は、前記基部に対し径方向内側に位置する、請求項6に記載のモータ。 The motor according to claim 6, wherein the folded-back portion is located radially inside the base portion.
  9.  前記引出線は、前記コイルの巻き終わりの末端である、請求項1~8の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 8, wherein the leader wire is the end of the winding end of the coil.
PCT/JP2020/006706 2019-03-28 2020-02-20 Motor WO2020195399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080014727.9A CN113439378B (en) 2019-03-28 2020-02-20 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-064536 2019-03-28
JP2019064536 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195399A1 true WO2020195399A1 (en) 2020-10-01

Family

ID=72610482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006706 WO2020195399A1 (en) 2019-03-28 2020-02-20 Motor

Country Status (2)

Country Link
CN (1) CN113439378B (en)
WO (1) WO2020195399A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142845A1 (en) * 2017-02-06 2018-08-09 日本電産株式会社 Stator manufacturing method and motor
WO2018155006A1 (en) * 2017-02-23 2018-08-30 日本電産株式会社 Motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5837182B2 (en) * 2012-03-27 2015-12-24 三菱電機株式会社 Stator and rotating electric machine having the same
US10903711B2 (en) * 2015-08-10 2021-01-26 Nidec Corporation Motor
JP6844540B2 (en) * 2015-11-06 2021-03-17 日本電産株式会社 motor
KR102614031B1 (en) * 2016-02-23 2023-12-14 엘지이노텍 주식회사 Motor
JP6834479B2 (en) * 2016-12-28 2021-02-24 日本電産株式会社 motor
JPWO2018181927A1 (en) * 2017-03-31 2020-02-06 日本電産株式会社 motor
JP2019022312A (en) * 2017-07-14 2019-02-07 日本電産株式会社 Motor manufacturing method and motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142845A1 (en) * 2017-02-06 2018-08-09 日本電産株式会社 Stator manufacturing method and motor
WO2018155006A1 (en) * 2017-02-23 2018-08-30 日本電産株式会社 Motor

Also Published As

Publication number Publication date
CN113439378A (en) 2021-09-24
CN113439378B (en) 2023-10-27

Similar Documents

Publication Publication Date Title
US11336146B2 (en) Motor
US11557936B2 (en) Motor including a bearing holder with through-holes
US10903711B2 (en) Motor
JP5872807B2 (en) Connection structure of coil winding in motor and motor
US20210320545A1 (en) Stator and motor
JP2015133772A (en) Bus bar module and rotary electric machine
US11323002B2 (en) Rotary electric machine
JPWO2020039961A1 (en) Motors, electric power steering devices, motor manufacturing methods, busbar units, and busbar unit manufacturing methods
WO2019082665A1 (en) Stator, motor, stator production method, and motor production method
US11239719B2 (en) Transducer for converting between electrical energy and mechanical energy
JP7318654B2 (en) motor
JP2019030143A (en) Connector and motor with connector
WO2020195399A1 (en) Motor
WO2020195401A1 (en) Motor
WO2020195397A1 (en) Motor
US11677290B2 (en) Motor
WO2019082708A1 (en) Stator and motor
WO2019102641A1 (en) Motor
JPWO2020080548A1 (en) motor
WO2019102640A1 (en) Motor
JP2021016293A (en) motor
WO2019082667A1 (en) Stator and motor
JP7433429B2 (en) Insulators, stators, and rotating electrical machines
JP2019030144A (en) Connector and motor with connector
JP2012005326A (en) Wiring component of vehicle rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP