WO2020195255A1 - イオン除去システム - Google Patents

イオン除去システム Download PDF

Info

Publication number
WO2020195255A1
WO2020195255A1 PCT/JP2020/005183 JP2020005183W WO2020195255A1 WO 2020195255 A1 WO2020195255 A1 WO 2020195255A1 JP 2020005183 W JP2020005183 W JP 2020005183W WO 2020195255 A1 WO2020195255 A1 WO 2020195255A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
water
mode
valve
return
Prior art date
Application number
PCT/JP2020/005183
Other languages
English (en)
French (fr)
Inventor
綾音 竹久
卓矢 神田
朋弘 穐田
前田 康成
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019139359A external-priority patent/JP7365618B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/442,391 priority Critical patent/US20220169542A1/en
Priority to EP20778763.1A priority patent/EP3950604A4/en
Priority to CN202080023938.9A priority patent/CN113631519A/zh
Publication of WO2020195255A1 publication Critical patent/WO2020195255A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow

Definitions

  • the present invention relates to an ion removal system.
  • Patent Document 1 Conventionally, an ion removal system for removing metal ions in hard water has been disclosed (see, for example, Patent Document 1).
  • the ion removal system of Patent Document 1 includes a hard water accommodating portion for accommodating hard water and a fine bubble generating means for generating fine bubbles and supplying them to the hard water accommodating portion.
  • the metal ions in the hard water are adsorbed on the fine bubbles in the hard water accommodating portion to remove the metal ions from the hard water.
  • an object of the present invention is to provide an ion removal system capable of enhancing the effect of removing metal ions in solving the above problems.
  • the ion removal system of the present invention is connected to an electrolyzer that produces alkaline water and acidic water by electrolysis and the electrolyzer, and supplies hard water to the electrolyzer.
  • a fine bubble generator that generates fine bubbles in the return flow path to be connected, the batch processing tank, the electrolysis device, and the circulation flow path including the return flow path, and the generated fine bubbles generate metal in water. It is provided with a fine bubble generator that adsorbs and removes ions.
  • the effect of removing metal ions can be enhanced.
  • FIG. 1 Schematic of the ion removal system according to the first embodiment
  • the figure which shows the flow of water of the 2nd crystallization treatment mode in Embodiment 3. The figure which shows the flow of the water of the 1st treated water supply mode in Embodiment 3.
  • FIG. 1 is a schematic view of the ion removal system 2 according to the first embodiment.
  • the ion removal system 2 is a system that removes metal ions from hard water using fine bubbles.
  • the metal ions here are calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ).
  • the ion removal system 2 according to the first embodiment is a water softening device for producing soft water by removing metal ions from hard water and separating them to reduce the concentration (hardness) of metal ions in hard water to a predetermined concentration or less.
  • the definition of hard water and soft water for example, the definition of WHO may be used. That is, a hardness of less than 120 mg / L may be defined as soft water, and a hardness of 120 mg / L or more may be defined as hard water.
  • the fine bubbles in the first embodiment are bubbles having a diameter of 100 ⁇ m or less.
  • the microbubbles include microbubbles (for example, 1 ⁇ m or more and 100 ⁇ m or less in diameter) and nanobubbles (for example, less than 1 ⁇ m in diameter).
  • the microbubbles may be bubbles that can be recognized by those skilled in the art of water treatment as micro-order bubble diameters.
  • the nanobubbles may be bubbles that can be recognized by those skilled in the art in the field of water treatment as nano-order bubble diameters. Fine bubbles have different properties from ordinary bubbles, such as long residence time in water, difficulty in increasing the diameter of a single bubble and difficulty in combining with other bubbles, and large contact area and easy chemical reaction. Has.
  • the fine bubbles may include bubbles having a diameter of 100 ⁇ m or more (millimeter bubbles, etc.) in a small proportion. For example, those having a diameter of 100 ⁇ m or less and a ratio of 90% or more may be defined as fine bubbles. In addition to this, conditions such as 50% or more having a diameter of 60 ⁇ m or less and 5% or more having a diameter of 20 ⁇ m or less may be added.
  • the diameter of a bubble for example, hard water containing fine bubbles may be directly photographed with a high-speed camera, and the bubble diameter may be calculated by a three-point method by image processing. , It may be measured by any other method.
  • the timing for measuring the bubble diameter may be any timing as long as the fine bubbles are retained for a certain period of time.
  • An example of the conditions of the measurement method using the high-speed camera described above is as follows.
  • High-speed camera FASTCAM 1024 PCI (Photron Co., Ltd.)
  • Lens system Z16 APO (Leica)
  • Objective lens Planapo 2.0x (Leica)
  • Shooting speed 1000 fps Shutter speed: 1/50 5000 sec
  • Image area 1024 x 1024 pixel (micro bubble photography area 1.42 mm x 1.42 mm, millibubble photography area 5.69 mm x 5.69 mm)
  • Image processing software Image-Pro Plus (Media Cybernetics)
  • the ion removal system 2 shown in FIG. 1 includes a hard water flow path 4, a batch processing tank 6, an electrolysis device 8, fine bubble generators 10A and 10B, a separation device 12, and a control unit 13.
  • the hard water flow path 4 is a flow path for supplying hard water to the electrolyzer 8.
  • the hard water flow path 4 is connected to a water source of hard water (not shown).
  • the hard water flow path 4 of the first embodiment is connected to the electrolyzer 8 so as to supply the hard water to the electrolyzer 8 via the batch processing tank 6.
  • the hard water flow path 4 is branched into two flow paths. These flow paths correspond to the fine bubble generators 10A and 10B described later, respectively.
  • a valve 11 In addition to the batch processing tank 6, a valve 11, a pump 14, a flow rate sensor 16, a valve 18, and a valve 20 are provided in the middle of the hard water flow path 4.
  • the batch processing tank 6 is a tank provided in the middle of the hard water flow path 4.
  • the batch processing tank 6 accommodates hard water supplied from the hard water flow path 4. By providing the batch processing tank 6, batch processing becomes possible.
  • the valve 11 is a valve that controls the flow of water from the hard water flow path 4 to the batch processing tank 6 (solenoid valve in the first embodiment).
  • the pump 14 is a pump for supplying the hard water contained in the batch processing tank 6 to the electrolyzer 8.
  • the flow rate sensor 16 is a sensor that measures the flow rate of hard water supplied from the batch processing tank 6 to the electrolyzer 8.
  • the electrolysis device 8 is a device that generates alkaline water and acidic water by electrolyzing the hard water supplied from the hard water flow path 4.
  • the first flow path 22 and the second flow path 24 are connected to the electrolyzer 8 as two flow paths.
  • the first flow path 22 and the second flow path 24 are flow paths through which alkaline water and acidic water generated by the electrolyzer 8 can alternately pass.
  • the first flow path 22 passes alkaline water
  • the second flow path 24 passes acidic water
  • the first flow path 22 passes acidic water
  • the second flow path 24 passes alkaline water. Pass water.
  • a fine bubble generator 10A is provided in the middle of the first flow path 22.
  • a fine bubble generator 10B is provided in the middle of the second flow path 24.
  • the fine bubble generators 10A and 10B are devices that generate and supply fine bubbles in the first flow path 22 and the second flow path 24, respectively. By supplying the fine bubbles to each flow path, the metal ions contained in the water flowing through the flow path can be adsorbed on the fine bubbles and removed from the water.
  • the fine bubble generators 10A and 10B of the first embodiment are devices that generate fine bubbles by a cavitation action. The fine bubble generators 10A and 10B automatically supply fine bubbles to the water passing through the fine bubble generators 10A and 10B.
  • the first return flow path 26 and the first drainage flow path 28 are connected to the first flow path 22.
  • the first return flow path 26 is a flow path connected from the first flow path 22 to the batch processing tank 6.
  • the first drainage flow path 28 is a flow path that extends from the first flow path 22 to the outside of the ion removal system 2 without passing through the batch processing tank 6.
  • a valve 30 is provided at a position where the first return flow path 26 and the first drainage flow path 28 are connected to the first flow path 22.
  • the valve 30 is a valve for switching water flow from the first flow path 22 to the first return flow path 26 or the first drainage flow path 28 (electric valve in the first embodiment).
  • the second return flow path 31 and the second drainage flow path 32 are connected to the second flow path 24.
  • the second return flow path 31 is a flow path connected from the second flow path 24 to the batch processing tank 6.
  • the second drainage flow path 32 is a flow path that extends from the second flow path 24 to the outside of the ion removal system 2 without passing through the batch processing tank 6.
  • a valve 34 is provided at a position where the second return flow path 31 and the second drainage flow path 32 are connected to the second flow path 24.
  • the valve 34 is a valve for switching water flow from the second flow path 24 to the second return flow path 31 or the second drainage flow path 32 (electric valve in the first embodiment).
  • connection point at which the first return flow path 26 and the second return flow path 31 described above are connected to the hard water flow path 4 corresponds to the batch processing tank 6 in the first embodiment.
  • a branch flow path 36 is connected to the hard water flow path 4 on the downstream side of the batch processing tank 6 corresponding to the connection point.
  • the branch flow path 36 is a flow path that branches from the hard water flow path 4 between the batch processing tank 6 and the electrolyzer 8.
  • the valve 18 described above is provided at a position where the branch flow path 36 is connected to the hard water flow path 4.
  • the valve 18 is a valve for switching between water flow and water stoppage from the hard water flow path 4 to the branch flow path 36 (electric valve in the first embodiment).
  • the valve 20 provided on the downstream side of the valve 18 is a valve capable of adjusting the ratio of the flow rates of water passing through each of the first flow path 22 and the second flow path 24 (electrically in the first embodiment). valve).
  • the separation device 12 is connected to the branch flow path 36.
  • the separation device 12 is a device that separates crystals of metal components from water.
  • the separation device 12 of the first embodiment is a cyclone type separation device that separates solids such as crystals contained in water by centrifugation.
  • a third flow path 38 and a third drainage flow path 40 are connected to the separation device 12 as two flow paths.
  • the third flow path 38 is a flow path through which the treated water from which the crystals have been separated by the separation device 12 passes.
  • the drainage flow path 40 is a flow path through which drainage containing crystals separated by the separation device 12 passes.
  • the drainage flow path 40 extends out of the system of the ion removal system 2 together with the first drainage flow path 28 and the second drainage flow path 32 described above without passing through the batch processing tank 6.
  • a pH sensor 42 and a turbidity sensor 44 are provided in the middle of the third flow path 38.
  • the pH sensor 42 and the turbidity sensor 44 are sensors that measure the pH value and turbidity of the treated water that is passed through the third flow path 38, respectively.
  • a third return flow path 46 is further connected in the middle of the third flow path 38.
  • the third return flow path 46 is a flow path connected between the third flow path 38 and the batch processing tank 6.
  • a valve 47 is provided at a position where the third return flow path 46 is connected to the third flow path 38.
  • the valve 47 is a valve for switching between water flow and water stoppage from the third flow path 38 to the third return flow path 46 (electric valve in the first embodiment).
  • a water storage tank 48 is further connected to the third flow path 38.
  • the water storage tank 48 is a tank for storing treated water supplied from the third flow path 38.
  • the treated water stored in the water storage tank 48 is supplied to the faucet 52 by the pump 50.
  • the treated water that is, soft water obtained by treating the hard water with the ion removal system 2 can be supplied to the faucet 52 and used.
  • the control unit 13 is a member that controls each component of the ion removal system 2 described above.
  • the control unit 13 executes opening / closing control of each valve, ON / OFF control of each pump, ON / OFF control of the electrolysis device 8, ON / OFF control of the separation device 12, and the like.
  • the control unit 13 is, for example, a microcomputer.
  • the control unit 13 operates the ion removal system 2 in a plurality of operation modes. These operation modes will be described.
  • the raw water injection mode is a mode in which hard water, which is raw water, is injected into each flow path when the operation of the ion removal system 2 is started.
  • the control unit 13 controls so as to generate the flow as shown in FIGS. 2A and 2B.
  • the flow of water is represented by an arrow, and it is assumed that no water flow occurs in the flow path without the arrow.
  • FIG. 2A shows a mode in which the residual water remaining in the flow path is drained as the first stage of the raw water injection mode.
  • the control unit 13 opens the valve 11 so that the hard water passes through the hard water flow path 4, and drives the pump 14 so as to supply the hard water of the batch processing tank 6 to the electrolyzer 8. To do.
  • the control unit 13 acquires the flow rate of the hard water flowing from the batch processing tank 6 to the electrolyzer 8 based on the detection result of the flow rate sensor 16.
  • the control unit 13 further controls the opening and closing of the valve 18 so that the water is stopped from the hard water flow path 4 to the branch flow path 36 and the hard water does not flow.
  • the control unit 13 further controls the electrolysis device 8 so that the hard water passing through the hard water flow path 4 is passed through the first flow path 22 and the second flow path 24 as it is without operating the electrolysis device 8.
  • the control unit 13 further controls the opening and closing of the valve 30 so that the hard water that has passed through the first flow path 22 is passed through the first drainage flow path 28, and the hard water that has passed through the second flow path 24 is second.
  • the opening and closing of the valve 34 is controlled so that water flows through the drainage channel 32. As a result, the flow of the arrow as shown in FIG. 2A is generated, and the residual water remaining in each flow path is drained.
  • FIG. 2B shows a mode in which new hard water is injected into the batch processing tank 6 as the second stage of the raw water injection mode.
  • the control unit 13 changes the opening and closing of the valves 30 and 34 from the state shown in FIG. 2A. Specifically, the opening and closing of the valve 30 is controlled so that the hard water passed through the first flow path 22 is passed through the first return flow path 26, and the hard water passed through the second flow path 24 is the first. 2
  • the opening and closing of the valve 34 is controlled so that water flows through the return flow path 31. As a result, the flow of the arrow as shown in FIG. 2B is generated, and new hard water is injected into the batch processing tank 6.
  • the first crystallization treatment mode or the second crystallization treatment mode described below is executed.
  • FIG. 3A shows the first crystallization treatment mode.
  • the control unit 13 closes the valve 11 and drives the pump 14 so as to supply the hard water contained in the batch processing tank 6 to the electrolyzer 8.
  • the control unit 13 controls the valve 18 so that water does not flow from the hard water flow path 4 to the branch flow path 36.
  • the control unit 13 further drives the electrolyzer 8 to generate alkaline water and acidic water.
  • the electrolysis device 8 electrolyzes the hard water supplied from the batch processing tank 6 to generate alkaline water and acidic water.
  • the control unit 13 controls the ratio of the flow rates of alkaline water and acidic water generated by the electrolyzer 8 by the opening degree of the valve 20.
  • the alkaline water is passed through the first flow path 22 and the acidic water is passed through the second flow path 24.
  • the control unit 13 controls the electrolyzer 8.
  • the control unit 13 further controls the valve 30 so that the alkaline water that has passed through the first flow path 22 is passed through the first return flow path 26, and the acidic water that has passed through the second flow path 24 is second.
  • the valve 34 is controlled so that water flows through the drainage channel 32. This causes the flow of arrows as shown in FIG. 3A.
  • a circulation flow path in which alkaline water flows in a loop in the order of the batch processing tank 6, the electrolyzer 8, the first flow path 22, and the first return flow path 26 is formed.
  • the first flow path 22 functions as a return flow path together with the first return flow path 26.
  • fine bubbles are supplied from the fine bubble generator 10A to the alkaline water passed through the first flow path 22.
  • the metal ions contained in the alkaline water are adsorbed by the fine bubbles and removed from the alkaline water. The principle of removing metal ions by fine bubbles will be described later.
  • Hard water that has been treated to remove metal ions becomes "treated water” and is stored in the batch processing tank 6.
  • the treated water is then sucked by the pump 14 and sent to the electrolyzer 8 and the fine bubbles are supplied again by the fine bubble generator 10A.
  • fine bubbles are continuously supplied to the treated water, and the metal ion removal treatment is continuously performed.
  • metal ions are continuously removed by fine bubbles while increasing the pH value of the water flowing in the circulation flow path.
  • the negatively charged OH ⁇ present on the surface of the fine bubbles increases, and Ca 2+ is easily adsorbed by the fine bubbles.
  • crystallization of metal ions can be promoted, and the effect of removing metal ions can be enhanced.
  • metal ions contained in water can be crystallized in a form of adhering to the crystals, and crystallization of metal ions can be further promoted.
  • the acidic water flowing through the second flow path 24 is drained to the outside of the ion removal system 2 via the second drainage flow path 32.
  • FIG. 3B shows the second crystallization treatment mode.
  • the second crystallization treatment mode unlike the first crystallization treatment mode shown in FIG. 3A, of the alkaline water and the acidic water generated by the electrolyzer 8, the acidic water is passed through the first flow path 22.
  • the control unit 13 controls the electrolyzer 8 so that alkaline water passes through the second flow path 24.
  • the valve 30 is controlled so that the acidic water that has passed through the first flow path 22 is passed through the first drainage flow path 28, and the alkaline water that has passed through the second flow path 24 is passed through the second return flow path 31.
  • the valve 34 is controlled so that water can flow through the valve 34. This causes the flow of arrows as shown in FIG. 3B.
  • a circulation flow path in which alkaline water flows in a loop in the order of the batch processing tank 6, the electrolyzer 8, the second flow path 24, and the second return flow path 31 is formed.
  • the second flow path 24 functions as a return flow path together with the second return flow path 31.
  • the fine bubbles are supplied from the fine bubble generator 10B to the alkaline water passed through the second flow path 24.
  • the metal ions contained in the alkaline water are adsorbed by the fine bubbles and removed from the alkaline water.
  • the hard water that has been treated to remove metal ions becomes "treated water" and is stored in the batch processing tank 6.
  • the treated water is then sucked by the pump 14 and sent to the electrolyzer 8 and the fine bubbles are supplied again by the fine bubble generator 10B. As the treated water flows through the circulation flow path, fine bubbles are continuously supplied to the treated water, and the metal ion removal treatment is continuously performed.
  • the acidic water flowing through the first flow path 22 is drained to the outside of the ion removal system 2 via the first drainage flow path 28.
  • the treated water supply mode described below is executed.
  • FIG. 4 shows a treated water supply mode.
  • the treated water supply mode is an operation mode in which the treated water obtained by treating the hard water in the first crystallization treatment mode and the second crystallization treatment mode is supplied to the faucet 52.
  • the control unit 13 first controls the opening and closing of the valve 18 so that water flows through the branch flow path 36. By driving the pump 14 in this state, the treated water stored in the batch processing tank 6 is passed through the branch flow path 36. At this time, the control unit 13 controls the opening and closing of the valve 20 so that water does not pass through the electrolyzer 8.
  • the treated water passed through the branch flow path 36 is sent to the separation device 12.
  • the separation device 12 separates crystals of metal components contained in the treated water.
  • the separation device 12 further supplies the treated water from which the crystals have been separated to the third flow path 38, and allows the wastewater containing the crystals to pass through the third drainage flow path 40.
  • the treated water passed through the third flow path 38 is stored in the water storage tank 48. After that, by operating the pump 50, the treated water (that is, soft water) stored in the water storage tank 48 is supplied to the faucet 52, and the treated water becomes available at the faucet 52.
  • the treated water that is, soft water
  • the control unit 13 alternately controls the raw water injection mode, the first crystallization treatment mode, and the treated water supply mode described above in order, and controls the raw water injection mode, the second crystallization treatment mode, and the treated water supply mode in order. Do. In both the first crystallization mode and the second crystallization mode, a circulation flow path is formed in the flow path including the batch processing tank 6, the electrolyzer 8, and the return flow paths 26 and 31, and alkaline water is circulated in the circulation flow path. The acidic water is drained to the outside of the ion removal system 2 while being allowed to flow.
  • the flow path through which alkaline water has passed can be washed with acidic water, and the flow path in the ion removal system 2 can be treated with metal ions. It can be kept in a state suitable for the removal process of. Thereby, the effect of removing metal ions by fine bubbles can be enhanced.
  • the control unit 13 can execute the first cleaning mode, the second cleaning mode, and the abnormality occurrence mode described below as modes other than the plurality of modes described above.
  • FIG. 5A shows the first cleaning mode.
  • the control unit 13 controls the valve 18 so that water flows from the hard water flow path 4 to both the electrolyzer 8 and the branch flow path 36.
  • the control unit 13 further drives the electrolyzer 8 to generate alkaline water and acidic water.
  • the acidic water is electrolyzed so as to pass through the first flow path 22 and the alkaline water through the second flow path 24.
  • the device 8 is controlled.
  • the valve 30 is controlled so that the acidic water that has passed through the first flow path 22 is passed through the first return flow path 26, and the alkaline water that has passed through the second flow path 24 is passed through the second drainage flow path 32.
  • the valve 34 is controlled so as to allow water to pass through. This causes the flow of arrows as shown in FIG. 5A.
  • a circulation flow path through which acidic water flows is formed in the order of the batch processing tank 6, the electrolyzer 8, the first flow path 22, and the first return flow path 26, and the batch processing tank 6 is filled with acidic water. Is continuously supplied. A part of the acidic water flowing through the circulation flow path is passed through the branch flow path 36. By passing acidic water through the first return flow path 26 and the branch flow path 36 in which the acidic water did not flow in the first crystallization treatment mode and the second crystallization treatment mode described above, these flow paths are washed. It can be maintained in a state suitable for the removal treatment of metal ions.
  • the acidic water passed through the branch flow path 36 reaches the separation device 12.
  • the separation device 12 is controlled so that the separation device 12 does not perform the crystal separation process. Further, the separation device 12 is controlled so that the acidic water sent to the separation device 12 does not pass through the third flow path 38 but flows through the third drainage flow path 40. As a result, acidic water is passed through the third drainage channel 40, so that the third drainage channel 40 can be washed.
  • each flow path can be washed while circulating acidic water in the circulation flow path. Further, the acidic water used for cleaning can be appropriately drained from the third drainage channel 40 via the branch channel 36.
  • FIG. 5B shows the second cleaning mode.
  • the control unit 13 passes the alkaline water through the first flow path 22 and the acidic water through the second flow path 24 among the alkaline water and the acidic water generated by the electrolyzer 8.
  • the electrolyzer 8 is controlled to be watery.
  • the control unit 13 further controls the valve 30 so that the alkaline water that has passed through the first flow path 22 is passed through the first drainage flow path 28, and the acidic water that has passed through the second flow path 24 is second.
  • the valve 34 is controlled so that water flows through the return flow path 31. This causes the flow of arrows as shown in FIG. 5B.
  • a circulation flow path through which acidic water flows is formed in the order of the batch processing tank 6, the electrolyzer 8, the second flow path 24, and the second return flow path 31, and the batch processing tank 6 is filled with acidic water. Is continuously supplied. A part of the acidic water flowing through the circulation flow path is passed through the branch flow path 36. In the first crystallization treatment mode and the second crystallization treatment mode described above, acidic water can be passed through the second return flow path 31 and the branch flow path 36 in which the acidic water did not flow for cleaning.
  • each flow path can be washed while circulating acidic water in the circulation flow path as in the first washing mode, and the acidic water used for washing can be appropriately drained to the third drainage. It can be drained from the flow path 40.
  • the above-mentioned first cleaning mode and second cleaning mode may be executed at a predetermined timing or an arbitrary timing.
  • the measured values of the pH sensor 42 and the turbidity sensor 44 may be detected as abnormal values for the treated water passed from the third flow path 38 to the water storage tank 48. is there. In such a case, in order to stop the flow of the treated water to the water storage tank 48, the abnormality occurrence mode described below is executed.
  • FIG. 6 shows the mode when an abnormality occurs.
  • the control unit 13 changes the opening / closing control of the valve 47 from the treated water supply mode shown in FIG. Specifically, the opening and closing of the valve 47 is controlled so that the flow path from the third flow path 38 to the water storage tank 48 is stopped and water flows from the third flow path 38 to the third return flow path 46. This causes the flow of arrows as shown in FIG.
  • the ion removal system 2 having the above-described configuration includes a hard water flow path 4, a batch processing tank 6, an electrolysis device 8, fine bubble generators 10A and 10B, and return flow paths 26 and 31.
  • the hard water flow path 4 is a flow path connected to the electrolyzer 8 and supplies hard water to the electrolyzer 8.
  • the batch processing tank 6 is provided in the middle of the hard water flow path 4 and is a tank for accommodating hard water.
  • the electrolysis device 8 is a device that produces alkaline water and acidic water by electrolysis.
  • the return flow paths 26 and 31 are flow paths connected to the batch processing tank 6 so as to return the alkaline water or acidic water generated by the electrolyzer 8 to the batch processing tank 6.
  • the fine bubble generators 10A and 10B are devices for generating and supplying fine bubbles in the circulation flow path including the batch processing tank 6, the electrolyzer 8 and the return flow paths 26 and 31, and the generated fine bubbles. Adsorbs and removes metal ions in water.
  • the ion removal system 2 of the first embodiment further includes a first flow path 22 and a second flow path 24 capable of alternately passing alkaline water and acidic water generated by the electrolyzer 8.
  • the return flow paths 26 and 31 are branched from the first flow path 22 and connected to the batch processing tank 6, and are connected to the batch processing tank 6 by branching from the second flow path 24. It is provided with a second return flow path 31.
  • alkaline water and acidic water are alternately passed through the first flow path 22 and the second flow path 24, so that alkaline water is passed through each flow path and then acidic water is passed through. It can be watered and the flow path can be cleaned.
  • the ion removal system 2 of the first embodiment is connected to a first drainage flow path 28 connected to a first flow path 22 and extending out of the system without passing through a batch processing tank 6, and a batch connected to a second flow path 24.
  • a second drainage flow path 32 extending out of the system without passing through the treatment tank 6 is further provided.
  • the ion removal system 2 further includes a valve (first valve) 30 for switching water flow from the first flow path 22 to the first return flow path 26 or the first drainage flow path 28, and a second return from the second flow path 24.
  • a valve (second valve) 34 for switching water flow to the flow path 31 or the second drainage flow path 32 is further provided.
  • alkaline water can be passed through one of the return channels 26 and 31 while acid water is supplied. It is possible to control the drainage by passing water through one of the drainage channels 28 and 32. Further, such flows of alkaline water and acidic water can be alternately generated in the first flow path 22 and the second flow path 24.
  • the ion removal system 2 of the first embodiment further includes a branch flow path 36 and a valve (third valve) 18.
  • the branch flow path 36 is a flow path that branches from the hard water flow path 4 on the downstream side of the batch processing tank 6, which is a connection point to which the return flow paths 26 and 31 are connected in the hard water flow path 4.
  • the valve 18 is a valve for switching between water flow and water stoppage from the hard water flow path 4 to the branch flow path 36.
  • the water accumulated in the batch processing tank 6 is passed through the branch flow path 36, so that the treated water processed in the circulation flow path and accumulated in the batch processing tank 6 is discharged to the outside of the circulation flow path. Can be passed through. As a result, the treated water can be supplied to the faucet 52 and used.
  • the ion removal system 2 of the first embodiment further includes a separation device 12 connected to the branch flow path 36 to separate crystals of metal components contained in water flowing through the branch flow path 36.
  • the soft water from which the crystals are separated can be taken out.
  • the control unit 13 executes the first crystallization processing mode (first mode) and the second crystallization processing mode (second mode).
  • the first crystallization treatment mode is a mode in which alkaline water is passed through the first flow path 22 and acidic water is passed through the second flow path 24.
  • the second crystallization treatment mode is a mode in which acidic water is passed through the first flow path 22 and alkaline water is passed through the second flow path 24.
  • alkaline water and acidic water are alternately passed through the first flow path 22 and the second flow path 24, so that the alkaline water is passed through the respective flow paths and then the acidic water is passed.
  • Water can pass through and the flow path can be cleaned.
  • each flow path can be maintained in a state suitable for the metal ion removal treatment, and the effect of removing metal ions by fine bubbles can be enhanced.
  • the control unit 13 in the first crystallization processing mode, passes water from the first flow path 22 to the first return flow path 26, and from the second flow path 24 to the first. 2
  • the valves 30 and 34 are controlled so as to stop water from the return flow path 31.
  • the control unit 13 stops water from the first flow path 22 to the first return flow path 26 and passes water from the second flow path 24 to the second return flow path 31.
  • the valves 30 and 34 are controlled in such a manner.
  • the first return flow path 26 and the second return flow path 31 are provided to form a circulation flow path, and alkaline water is circulated in the circulation flow path in both the first mode and the second mode.
  • metal ions can be removed by fine bubbles while increasing the pH value of water flowing through the circulation flow path.
  • the crystallization of the metal ions removed by the fine bubbles can be promoted, and the effect of removing the metal ions can be enhanced.
  • the control unit 13 controls the valve 18 so as to stop the water in the branch flow path 36 in the first crystallization treatment mode and the second crystallization treatment mode.
  • the control unit 13 further sets a treated water supply mode (third mode) that controls the valve 18 so that water flows through the branch flow path 36 as a mode different from the first crystallization treatment mode and the second crystallization treatment mode. Execute.
  • the treated water can be used by the faucet 52 by passing the treated water through the branch flow path 36.
  • Ca 2+ which has a positive charge, is adsorbed on OH ⁇ existing on the surface of fine bubbles by the action of intermolecular force (ion-ion interaction). In this way, Ca 2+ can be adsorbed on the fine bubbles.
  • H + that repels Ca 2+ exists on the surface of the fine cells, it is considered that OH ⁇ acts preferentially over H + to adsorb Ca 2+ .
  • CaCO 3 calcium carbonate
  • Ca (HCO 3 ) 2 is precipitated as crystals of the metal component.
  • CaCO 3 which is precipitated by crystallizing the metal ion Ca 2+ can be separated from the hard water.
  • air is used as the gas of fine bubbles in the water softening treatment, but the present invention is not limited to this case.
  • nitrogen may be used instead of air as the gas of fine bubbles.
  • Equation 2 When nitrogen is used as in this modification, the reaction of Equation 2 can be promoted as compared with the case where air is used, so that the adsorption of metal ions is further promoted. As a result, more metal ions can be separated and removed from the hard water.
  • the principle is not limited to nitrogen, it reacts with H + ions, OH - if a gas that can reduce the number of H + ions relative to the number of ions is estimated to apply analogously.
  • Nitrogen is an inert gas different from air, so when it is supplied into hard water, the partial pressure of the gas contained in the hard water is out of balance. .. This promotes the reaction as shown in FIG.
  • CO 2 acts to replace other gas components dissolved in hard water with respect to fine bubbles composed of nitrogen.
  • CO 2 is contained in Ca (HCO 3 ) 2 existing around the fine bubbles, and this CO 2 acts to be extracted and replaced with nitrogen. That is, the following reactions are promoted.
  • the metal ions contained as Ca 2+ of Ca (HCO 3 ) 2 can be crystallized and precipitated in hard water. Thereby, crystals of the metal component can be removed from the hard water.
  • the second embodiment is different from the first embodiment in that fine bubbles of carbon dioxide can be supplied to the first flow path 22, the second flow path 24, and the third flow path 38.
  • FIG. 11 is a schematic view of the ion removal system 60 according to the second embodiment.
  • the ion removal system 60 of the second embodiment shown in FIG. 11 includes a carbon dioxide input device 62, supply channels 64, 66, 68, valves 70, 72, and a fine bubble generator 74.
  • the carbon dioxide input device 62 is a device capable of inputting carbon dioxide into the supply channels 64, 66, 68.
  • the carbon dioxide input device 62 may itself be a tank that houses carbon dioxide, or a device that is connected to a carbon dioxide source (not shown).
  • the supply channels 64, 66, and 68 are channels connected from the carbon dioxide input device 62 to the fine bubble generators 10A, 10B, and 74, respectively.
  • the valve 70 is a valve for controlling the flow rate of carbon dioxide supplied from the carbon dioxide input device 62 (electric valve in the second embodiment).
  • the valve 72 is a valve for controlling the flow rate of carbon dioxide supplied from the carbon dioxide input device 62 to the supply flow path 64 or the supply flow path 68 (electric valve in the second embodiment).
  • the fine bubble generator 74 is a device that generates carbon dioxide supplied from the supply flow path 68 as fine bubbles.
  • the fine bubble generator 74 is connected to the third flow path 38 so as to supply the fine bubbles of carbon dioxide to the third flow path 38.
  • fine bubbles of carbon dioxide can be supplied to the first flow path 22, the second flow path 24, and the third flow path 38.
  • the flow path can be cleaned more effectively by supplying fine bubbles of carbon dioxide when cleaning the flow path with acidic water.
  • a regeneration process is performed as a process for returning the CaCO 3 to Ca (HCO3) 2 .
  • the following reaction is promoted by supplying fine bubbles of carbon dioxide to CaCO 3 adhering to the inner wall surface of the flow path.
  • the case where the fine bubbles of carbon dioxide can be supplied to the first flow path 22, the second flow path 24, and the third flow path 38 has been described, but the case is not limited to such a case.
  • the supply flow path 68 and the fine bubble generator 74 shown in FIG. 11 may be omitted, and carbon dioxide fine bubbles may be supplied only to the first flow path 22 and the second flow path 24.
  • the ion removal system 80 of the third embodiment shown in FIG. 13 includes a hard water flow path 4, a batch processing tank 6, a fine bubble generator 82, an electrolysis device 8, separation devices 84A and 84B, and a control unit 86. To be equipped.
  • the fine bubble generator 82 is a device that generates fine bubbles in the hard water supplied from the hard water flow path 4.
  • the fine bubble generator 82 of the third embodiment is provided on the upstream side of the electrolysis device 8.
  • the hard water flow path 4 is branched into two flow paths. These flow paths correspond to the first flow path 88 and the second flow path 90, which will be described later.
  • the first flow path 88 and the second flow path 90 are connected to the downstream side of the electrolyzer 8.
  • the first flow path 88 and the second flow path 90 are flow paths through which alkaline water and acidic water generated by the electrolyzer 8 can alternately pass.
  • a branch flow path 89 is connected in the middle of the first flow path 88.
  • a branch flow path 91 is connected in the middle of the second flow path 90.
  • the branch flow path 89 is a flow path connected between the first flow path 88 and the hard water flow path 4.
  • the branch flow path 91 is a flow path connected between the second flow path 90 and the hard water flow path 4. Both the branch flow paths 89 and 91 are connected to the positions between the batch processing tank 6 and the fine bubble generator 82 in the hard water flow path 4.
  • Valves 93 and 95 are provided in the middle of the branch flow paths 89 and 91, respectively.
  • the valves 93 and 95 are valves for switching between water flow and water stoppage of the branch flow paths 89 and 91, respectively (electromagnetic valve in the third embodiment).
  • a separation device 84A is connected to the downstream side of the first flow path 88. Similarly, the separation device 84B is connected to the downstream side of the second flow path 90. Separation devices 84A and 84B are devices for centrifuging crystals of metal components flowing in water.
  • a third flow path 92 is connected to the separation device 84A.
  • the third flow path 92 is a flow path through which the treated water from which the crystals have been separated by the separation device 84A passes.
  • a first return flow path 94 is connected in the middle of the third flow path 92.
  • the first return flow path 94 is a flow path connected from the third flow path 92 to the batch processing tank 6.
  • a valve 96 is provided at a position where the first return flow path 94 is connected to the third flow path 92 (electric valve in the third embodiment).
  • the fourth flow path 98 is connected to the separation device 84B.
  • the fourth flow path 98 is a flow path through which the treated water from which the crystals have been separated by the separation device 84B passes.
  • a second return flow path 100 is connected in the middle of the fourth flow path 98.
  • the second return flow path 100 is a flow path connected from the fourth flow path 98 to the batch processing tank 6.
  • a valve 101 is provided at a position where the second return flow path 100 is connected to the fourth flow path 98 (electric valve in the third embodiment).
  • the third return flow path 102 and the fourth return flow path 104 are further connected to the separation devices 84A and 84B, respectively.
  • the third return flow path 102 is a flow path connected from the separation device 84A to the hard water flow path 4
  • the fourth return flow path 104 is a flow path connected from the separation device 84B to the hard water flow path 4.
  • the third return flow path 102 is a flow path through which water containing the crystals of the metal component separated by the separation device 84A is passed
  • the fourth return flow path 104 is the crystal of the metal component separated by the separation device 84B. It is a flow path through which water containing water passes.
  • Both the third return flow path 102 and the fourth return flow path 104 are connected to the hard water flow path 4 at a position between the batch processing tank 6 and the pump 14.
  • the connection point where the third return flow path 102 and the fourth return flow path 104 are connected to the hard water flow path 4 is on the downstream side of the batch processing tank 6, and the branch flow path 89 and the branch flow path 91 are hard water flow paths. It is located upstream of the connection point connected to 4.
  • the first drainage flow path 106 is connected in the middle of the third return flow path 102.
  • a second drainage flow path 108 is connected in the middle of the fourth return flow path 104.
  • the first drainage flow path 106 and the second drainage flow path 108 are flow paths that extend outside the system of the ion removal system 80 without passing through the batch processing tank 6.
  • a valve 110 is provided at a position where the first drainage flow path 106 is connected to the third return flow path 102 (electric valve in the third embodiment).
  • a valve 112 is provided at a position where the second drainage flow path 108 is connected to the fourth return flow path 104 (electric valve in the third embodiment).
  • a pH sensor 42 and a turbidity sensor 44 are provided in the middle of the third flow path 92.
  • a fifth return flow path 111 is further connected in the middle of the third flow path 92.
  • a valve 47 is provided at a position where the fifth return flow path 111 connects to the third flow path 92 (electric valve in the third embodiment).
  • the control unit 86 operates the ion removal system 80 having the above-described configuration in a plurality of operation modes. These operation modes will be described.
  • the raw water injection mode is a mode in which hard water, which is raw water, is injected into each flow path when the operation of the ion removal system 80 is started.
  • the control unit 86 controls so as to generate the flow as shown in FIGS. 14A and 14B.
  • FIG. 14A shows a mode in which the residual water remaining in the flow path is drained as the first stage of the raw water injection mode.
  • the control unit 86 opens the valve 11 so that the hard water passes through the hard water flow path 4, and drives the pump 14 so as to supply the hard water of the batch processing tank 6 to the electrolyzer 8. To do.
  • the control unit 86 controls the opening and closing of the valves 93 and 95 so that water does not flow from the hard water flow path 4 to the branch flow paths 89 and 91. Further, the control unit 86 does not operate the electrolyzer 8 and allows the hard water flowing through the hard water flow path 4 to pass through the first flow path 88 and the second flow path 90 as it is.
  • the control unit 86 further controls the opening and closing of the valve 110 so that the hard water that has passed through the first flow path 88 is passed from the separation device 84A to the first drainage flow path 106, and is passed through the second flow path 90.
  • the opening and closing of the valve 112 is controlled so that the hard water flows from the separation device 84B to the second drainage flow path 108. As a result, the flow of the arrow as shown in FIG. 14A is generated, and the residual water remaining in each flow path is drained.
  • FIG. 14B shows a mode in which new hard water is injected into the batch processing tank 6 as the second stage of the raw water injection mode.
  • the control unit 86 changes the opening and closing of the valves 96, 101, 110, and 112 from the state shown in FIG. 14A.
  • the valves 96 and 110 are controlled so that the hard water passed through the first flow path 88 is passed from the separation device 84A to both the first return flow path 94 and the third return flow path 102.
  • the valves 101 and 112 are controlled so that the hard water passed through the second flow path 90 is passed from the separation device 84B to both the second return flow path 100 and the fourth return flow path 104.
  • the flow of the arrow as shown in FIG. 14B is generated, and new hard water is injected into the batch processing tank 6.
  • the hard water from which the metal component crystals are separated is supplied to the batch processing tank 6, and the hard water containing the metal component crystals is supplied to the batch processing tank 6 in a hard water flow on the downstream side of the batch processing tank 6. Supply to road 4.
  • the first crystallization treatment mode or the second crystallization treatment mode described below is executed.
  • FIG. 15A shows the first crystallization treatment mode.
  • the control unit 86 closes the valve 11 and drives the pump 14 so as to supply the hard water contained in the batch processing tank 6 to the fine bubble generator 82 and the electrolyzer 8.
  • the control unit 86 further drives the electrolyzer 8 to generate alkaline water and acidic water.
  • the alkaline water is passed through the first flow path 88 and the acidic water is passed through the second flow path 90.
  • the control unit 86 controls the electrolyzer 8.
  • the fine bubbles are supplied to the alkaline water and the acidic water by the fine bubble generator 82 provided on the upstream side of the electrolyzer 8.
  • the fine bubble generator 82 provided on the upstream side of the electrolyzer 8.
  • the metal ions contained in the alkaline water that is passed through the first flow path 88 are adsorbed by the fine bubbles and are sent to the separation device 84A in a state of being precipitated as crystals of the metal component.
  • the control unit 86 drives the separation device 84A.
  • the separation device 84A separates crystals of the metal component contained in the treated water.
  • the separation device 84A is controlled so as to supply the treated water from which the crystals have been separated to the first return flow path 94 via the third flow path 92 and supply the treated water containing the crystals to the third return flow path 102.
  • the treated water from which the crystals have been separated is stored in the batch processing tank 6, and the treated water containing the crystals is returned to the hard water flow path 4 on the downstream side of the batch processing tank 6. This causes the flow of arrows as shown in FIG. 15A.
  • a circulation flow path in which alkaline water flows in a loop in the order of the batch processing tank 6, the electrolyzer 8, the first flow path 88, and the first return flow path 94 is formed.
  • the treated water from which the crystals of the metal component are separated is passed through the first return flow path 94. Therefore, in the treated water stored in the batch processing tank 6, the proportion of crystals of the metal component decreases.
  • a circulation flow path different from the circulation flow path a circulation flow path in which alkaline water flows in a loop in the order of the batch processing tank 6, the electrolyzer 8, the first flow path 88, and the third return flow path 102 is formed. To. In the circulation path, treated water containing crystals of metal components is passed through the third return flow path 102.
  • the proportion of the crystals of the metal component contained in the treated water of the batch processing tank 6 is reduced. be able to.
  • the alkaline water containing the crystals of the metal component circulates in the circulation flow path other than the batch processing tank 6 to promote the crystallization of the metal component by newly adhering the crystals to the crystals of the metal component. it can.
  • the acidic water passed through the second flow path 90 is drained from the separation device 84B to the outside of the ion removal system 2 via the second drainage flow path 108.
  • FIG. 15B shows the second crystallization treatment mode.
  • the acidic water is passed through the first flow path 88.
  • the electrolyzer 8 is controlled so that alkaline water passes through the second flow path 90.
  • the fine bubbles are supplied to the alkaline water and the acidic water by the fine bubble generator 82 provided on the upstream side of the electrolyzer 8.
  • the fine bubble generator 82 provided on the upstream side of the electrolyzer 8.
  • the metal ions contained in the alkaline water that is passed through the second flow path 90 are adsorbed by the fine bubbles and are sent to the separation device 84B in a state of being precipitated as crystals of the metal component.
  • the control unit 86 drives the separation device 84B to separate the crystals of the metal component contained in the treated water.
  • the separation device 84B is controlled so as to supply the treated water from which the crystals have been separated to the second return flow path 100 via the fourth flow path 98 and supply the treated water containing the crystals to the fourth return flow path 104.
  • the treated water from which the crystals have been separated is stored in the batch processing tank 6, and the treated water containing the crystals is returned to the hard water flow path 4 on the downstream side of the batch processing tank 6. This causes the flow of arrows as shown in FIG. 15B.
  • a circulation flow path in which alkaline water flows in a loop in the order of the batch processing tank 6, the electrolyzer 8, the second flow path 90, and the second return flow path 100 is formed.
  • treated water from which crystals of metal components are separated is passed through the second return flow path 100. Therefore, in the treated water stored in the batch processing tank 6, the proportion of crystals of the metal component decreases.
  • a circulation flow path different from the circulation flow path a circulation flow path in which alkaline water flows in a loop in the order of the batch processing tank 6, the electrolyzer 8, the second flow path 90, and the fourth return flow path 104 is formed. To. In the circulation path, treated water containing crystals of metal components is passed through the fourth return flow path 104.
  • the batch processing tank 6 stores the treated water in which the metal component crystals are separated, and the treated water containing the metal component crystals circulates in the circulation flow path other than the batch processing tank 6. As a result, the same effect as that of the first crystallization treatment mode can be obtained.
  • the acidic water passed through the first flow path 88 is drained to the outside of the ion removal system 2 via the first drainage flow path 106.
  • the control unit 86 executes the first treated water supply mode or the second treated water supply mode described below. Specifically, the first treated water supply mode is executed after the first crystallization treatment mode, and the second treated water supply mode is executed after the second crystallization treatment mode.
  • FIG. 16A shows the first treated water supply mode.
  • the first treated water supply mode is an operation mode in which the treated water obtained by treating the hard water in the first crystallization treatment mode is supplied to the faucet 52.
  • the control unit 86 first controls the opening and closing of the valve 93 so that water flows through the branch flow path 89. By driving the pump 14 in this state, the treated water stored in the batch processing tank 6 is passed through the branch flow path 89. At this time, the control unit 13 controls the opening and closing of the valves 20 and 95 so as to stop the flow to the fine bubble generator 82 and the branch flow path 91.
  • the treated water passed through the branch flow path 89 is sent to the separation device 84A.
  • the separation device 84A separates crystals of the metal component contained in the treated water.
  • the separation device 84A supplies the treated water from which the crystals have been separated to the third flow path 92, and drains the treated water containing the crystals through the first drainage flow path 106.
  • the treated water passed through the third flow path 92 is stored in the water storage tank 48. After that, by operating the pump 50, the treated water stored in the water storage tank 48, that is, soft water can be supplied to the faucet 52 for use.
  • the separation device 84A By separating the crystals of the metal component by the separation device 84A as described above, the ratio of the crystals of the metal component in the treated water supplied from the batch processing tank 6 to the faucet 52 can be further reduced.
  • FIG. 16B shows the second treated water supply mode.
  • the second treated water supply mode is an operation mode in which the treated water obtained by treating the hard water in the second crystallization treatment mode is supplied to the faucet 52.
  • the control unit 86 first controls the opening and closing of the valve 95 so that water passes through the branch flow path 91. By driving the pump 14 in this state, the treated water stored in the batch processing tank 6 is passed through the branch flow path 91. At this time, the control unit 13 controls the opening and closing of the valves 20 and 93 so as to stop the flow to the fine bubble generator 82 and the branch flow path 89.
  • the treated water passed through the branch flow path 19 is sent to the separation device 84B.
  • the separation device 84B separates crystals of the metal component contained in the treated water.
  • the separation device 84B is controlled so as to supply the treated water from which the crystals have been separated to the fourth flow path 98 and drain the treated water containing the crystals through the second drainage flow path 108.
  • the treated water passed through the fourth flow path 98 is stored in the water storage tank 48. After that, by operating the pump 50, the treated water stored in the water storage tank 48, that is, soft water can be supplied to the faucet 52 for use.
  • the separation device 84B By separating the crystals of the metal component by the separation device 84B as described above, the ratio of the crystals of the metal component in the treated water supplied from the batch processing tank 6 to the faucet 52 can be further reduced.
  • the control unit 86 controls the raw water injection mode, the first crystallization treatment mode, and the first treated water supply mode in this order, and performs the raw water injection mode, the second crystallization treatment mode, and the second treated water supply mode in order. Control is performed alternately. By alternately performing the first crystallization treatment mode and the second crystallization treatment mode, the flow path through which alkaline water has passed can be washed with acidic water, and the flow path in the ion removal system 2 can be treated with metal ions. It can be kept in a state suitable for the removal process of.
  • the control unit 86 can execute the first cleaning mode, the second cleaning mode, and the abnormality occurrence mode described below as modes different from the above-mentioned modes.
  • FIG. 17A shows the first cleaning mode.
  • the first cleaning mode shown in FIG. 17A produces the same flow as the second crystallization treatment mode shown in FIG. 15B.
  • the difference from the second crystallization treatment mode shown in FIG. 15B is that, of the alkaline water and acidic water generated by the electrolyzer 8, the alkaline water is passed through the first flow path 88, and the acidic water is passed through the second flow.
  • the electrolyzer 8 is controlled so that water flows through the road 90.
  • the acidic water passed through the second flow path 90 is passed from the fourth flow path 98 to the second return flow path 100 via the separation device 84B, and further to the fourth return flow path 104. To. By passing acidic water through the second return flow path 100 and the fourth return flow path 104, in which the acidic water did not flow in the first crystallization treatment mode and the second crystallization treatment mode described above, these flow paths are passed. Can be washed.
  • FIG. 17B shows the second cleaning mode.
  • the second cleaning mode shown in FIG. 17B produces the same flow as the first crystallization treatment mode shown in FIG. 15A.
  • the difference from the first crystallization treatment mode shown in FIG. 15A is that, of the alkaline water and acidic water generated by the electrolyzer 8, the acidic water is passed through the first flow path 88, and the alkaline water is passed through the second flow.
  • the electrolyzer 8 is controlled so that water flows through the road 90.
  • the acidic water passed through the first flow path 88 is passed through the separation device 84A from the third flow path 92 to the first return flow path 94, and further to the third return flow path 102. To. By passing acidic water through the first return flow path 94 and the third return flow path 102, in which the acidic water did not flow in the first crystallization treatment mode and the second crystallization treatment mode described above, these flow paths are passed. Can be washed.
  • the above-mentioned first cleaning mode and second cleaning mode may be executed at a predetermined timing or an arbitrary timing.
  • the measured values of the pH sensor 42 and the turbidity sensor 44 may be detected as abnormal values with respect to the treated water passed through the third flow path 92. .. In such a case, in order to stop the flow of the treated water to the water storage tank 48, the abnormality occurrence mode described below is executed.
  • FIG. 18 shows the mode when an abnormality occurs.
  • the control unit 86 changes the opening / closing control of the valve 47 from the treated water supply mode shown in FIG. 16A. Specifically, the opening and closing of the valve 47 is controlled so that the flow path from the third flow path 92 to the water storage tank 48 is stopped and water is passed from the third flow path 92 to the fifth return flow path 111. This causes the flow of arrows as shown in FIG.
  • the same action and effect as the ion removal system 2 of the first embodiment can be obtained.
  • the hard water flow path 4 is connected to the electrolyzer 8 by one flow path, the flow rates of the valves 204, 206, 208 and 210 can be adjusted, the degassing devices 202A and 202B and
  • the main difference from the first embodiment is that the additive charging device 212 is provided.
  • FIG. 19 is a schematic view of the ion removal system 200 according to the fourth embodiment.
  • the ion removal system 200 of the fourth embodiment shown in FIG. 19 includes degassing devices 202A and 202B as a configuration different from the ion removal system 2 of the first embodiment.
  • the degassing devices 202A and 202B are devices for discharging bubbles contained in the water flowing through the first flow path 22 and the second flow path 24 to the outside, respectively.
  • the degassing devices 202A and 202B of the fourth embodiment discharge the bubbles to the outside by centrifuging the water flowing through the first flow path 22 and the second flow path 24, respectively.
  • the amount of bubbles contained in the water sent to the fine bubble generators 10A and 10B can be reduced.
  • the ion removal system 200 of the fourth embodiment further includes valves 204, 206, 208, 210.
  • Each of the valves 204, 206, 208, 210 is an electric valve corresponding to the valves 18, 30, 34, 47 of the first embodiment (see FIG. 1 and the like).
  • Each of the valves 204, 206, 208, and 210 has a function of closing one flow path and opening the other flow path, and a function of adjusting the opening degree of opening the other flow path to make the flow rate variable.
  • the valve 204 can make the flow rate of the hard water / treated water supplied from the batch processing tank 6 to the electrolyzer 8 variable, and similarly, the branch flow from the hard water flow path 4.
  • the flow rate of the treated water supplied to the road 36 can be made variable. The same applies to the valves 206, 208 and 210.
  • the ion removal system 200 of the fourth embodiment further includes an additive charging device 212 as a configuration different from the ion removal system 2 of the first embodiment.
  • the additive charging device 212 is a device for charging the additive into the third flow path 38 through which the treated water passes.
  • the additive charging device 212 of the fourth embodiment inputs carbon dioxide as an additive. By adding carbon dioxide, the pH of the treated water flowing through the third flow path 38 can be lowered and the turbidity can be lowered. Specifically, it will be described later.
  • the control unit 214 operates the ion removal system 200 having the above-described configuration in a plurality of operation modes. Specifically, similarly to the ion removal system 2 of the first embodiment, the raw water injection mode, the first crystallization treatment mode, the second crystallization treatment mode, the treated water supply mode, the first washing mode, and the second washing mode are set. Execute. In the fourth embodiment, unlike the ion removal system 2 of the first embodiment, two types of abnormality occurrence modes are executed. The flow of water in these modes is shown in FIGS. 20A-24B.
  • FIG. 20A shows the first stage of the raw water injection mode
  • FIG. 20B shows the second stage of the raw water injection mode
  • 21A shows the first crystallization treatment mode
  • FIG. 21B shows the second crystallization treatment mode
  • FIG. 22 shows the treated water supply mode
  • FIG. 23A shows the first cleaning mode
  • FIG. 23B shows the second cleaning mode
  • FIG. 24A shows the first abnormality occurrence mode
  • FIG. 24B shows the second abnormality occurrence mode.
  • FIGS. 20A to 24A The flow of water in FIGS. 20A to 24A is the same as that in FIGS. 2A to 6 of the first embodiment, and the description thereof will be omitted.
  • control contents common to the first to third embodiments will be omitted, and the control of the control unit 214 in the fourth embodiment will be described.
  • control unit 214 supplies hard water / treated water from the batch processing tank 6 to the electrolyzer 8 in the modes shown in FIGS. 20A, 20B, 21A, 21B, 23A, and 23B
  • the control unit 214 of the valve 204 The flow rate is adjusted by adjusting the opening degree.
  • the control unit 214 adjusts the flow rate by adjusting the opening degree of the valve 204 when supplying the treated water from the batch processing tank 6 to the branch flow path 36. ..
  • the control unit 214 adjusts the flow rate by adjusting the opening degree of the valve 206 when flowing alkaline water from the first flow path 22 to the first return flow path 26 in the modes shown in FIGS. 21A and 23A. Similarly, the control unit 214 adjusts the flow rate by adjusting the opening degree of the valve 208 when flowing acidic water from the second flow path 24 to the second drainage flow path 32. By such control, the flow rates of alkaline water and acidic water generated by the electrolyzer 8 can be adjusted.
  • control unit 214 adjusts the flow rate by adjusting the opening degree of the valve 206 when flowing acidic water from the first flow path 22 to the first drainage flow path 28 in the modes shown in FIGS. 21B and 23B. To do. Similarly, in the modes shown in FIGS. 21B and 23B, the control unit 214 adjusts the opening degree of the valve 208 when flowing alkaline water from the second flow path 24 to the second return flow path 31 to increase the flow rate. adjust. By such control, the flow rates of alkaline water and acidic water generated by the electrolyzer 8 can be adjusted.
  • the control unit 214 of the fourth embodiment adjusts the opening degrees of the valves 206 and 208 so that the flow rate of the acidic water is reduced when the electrolyzer 8 is operated to generate alkaline water and acidic water. ing. Specifically, when the valve 206 flows acidic water as shown in FIGS. 21B and 23B, the opening degree of the valve 206 is set smaller than that when alkaline water flows as shown in FIGS. 21A and 23A. , Reduce the flow rate of acidic water. Similarly, when the valve 208 allows acidic water to pass as shown in FIGS. 21A and 23A, the opening degree of the valve 208 is set smaller than that when alkaline water is allowed to flow as shown in FIGS. 21B and 23B.
  • the opening degree when the valves 206 and 208 flow acidic water is set small to reduce the flow rate of the acidic water.
  • the acidity of acidic water in each flow path can be increased.
  • the cleaning effect of the flow path by the acidic water can be enhanced.
  • FIG. 24A shows the first abnormality occurrence mode
  • FIG. 24B shows the second abnormality occurrence mode.
  • the first abnormality occurrence mode is the same as the abnormality occurrence mode of the first embodiment, and the water flow shown in FIG. 24A is the same as the water flow shown in FIG.
  • the measured values of the pH sensor 42 and the turbidity sensor 44 may be detected as abnormal values for the treated water supplied from the third flow path 38 to the water storage tank 48. is there.
  • the control unit 214 stores a normal numerical range in advance for each measured value of the pH sensor 42 and the turbidity sensor 44, and detects as an abnormal value when a measured value outside the numerical range is detected. ..
  • the control unit 214 controls to switch the opening and closing of the valve 210 when an abnormal value is detected in at least one of the measured values of the pH sensor 42 and the turbidity sensor 44. Specifically, when water was passed from the third flow path 38 to the water storage tank 48 and stopped at the third return flow path 46, water was passed from the third flow path 38 to the third return flow path 46. The opening and closing of the valve 210 is controlled so that the water storage tank 48 is stopped. As a result, the flow of the arrow shown in FIG. 22 is switched to the flow of the arrow shown in FIG. 24A.
  • the circulation flow path is configured as a series of flow paths including the third return flow path 46. Specifically, a circulation flow path through which the treated water flows in the order of the third return flow path 46, the batch processing tank 6, the hard water flow path 4, the branch flow path 36, the separation device 12, and the third flow path 38 is configured.
  • Carbon dioxide is charged by the additive charging device 212 in the circulation flow path.
  • the carbon dioxide dissolves in the treated water and the acidity of the treated water increases.
  • the pH of the treated water in the circulation flow path can be lowered.
  • Carbon dioxide further acts to react with the insoluble CaCO 3 precipitated as crystals to produce soluble Ca (HCO 3 ) 2 , as described in FIG.
  • the turbidity of the treated water in the circulation flow path can be reduced.
  • carbon dioxide has a function of lowering both the pH and turbidity of the treated water.
  • the measured value of the pH sensor 42 or the turbidity sensor 44 is detected as an abnormal value, the measured value is returned to the normal value while circulating the treated water. You can try to get closer.
  • control unit 214 controls the opening and closing of the valve 210 so that water flows from the third flow path 38 to the water storage tank 48 and the third return flow path 46 stops. As a result, the flow of water is switched from the first abnormality occurrence mode shown in FIG. 24A to the flow of the treated water supply mode shown in FIG.
  • the position where the pH sensor 42 and the turbidity sensor 44 are provided is not limited to the position shown in FIG. 24A or the like.
  • a pH sensor and a turbidity sensor may be provided in the water storage tank 48.
  • the third return flow path 46 and the valve 210 may be omitted, and a valve and a drainage flow path connected to the valve may be provided between the pump 50 and the faucet 52.
  • the control unit 214 controls the opening and closing of the valve provided between the pump 50 and the faucet 52 based on the measured values of the pH sensor or the turbidity sensor provided in the water storage tank 48. May be good.
  • the control unit 214 causes the valve to pass water through the drainage flow path without passing water through the faucet 52. Control the opening and closing of. According to such control, the supply of the treated water to the faucet 52, which is the treated water supply point, is controlled based on the measured value regarding the characteristics of the treated water, as in the first abnormality occurrence mode of the fourth embodiment. .. As a result, treated water having desired characteristics can be supplied to the user, and the reliability of the ion removal system 200 can be improved.
  • the turbidity of the treated water changes in the branch flow path 36 and the third flow path 38, and the turbidity of the third flow path 38 is higher. Becomes smaller.
  • the turbidity sensor 44 in the third flow path 38 the turbidity of the treated water supplied to the water storage tank 48 can be observed with high accuracy.
  • carbon dioxide is charged by the additive charging device 212
  • the turbidity and pH of the treated water change between the upstream side and the downstream side of the additive charging device 212.
  • the pH sensor 42 and the turbidity sensor 44 on the downstream side of the additive charging device 212, the turbidity and pH of the treated water supplied to the water storage tank 48 can be observed with high accuracy.
  • the additive added by the additive input device 212 may be other than carbon dioxide as long as it lowers the pH or turbidity of the treated water. Further, it may be a case where a plurality of types of additives are added.
  • the additive charging device 212 may not be provided. If there is no means for lowering the pH and turbidity of the treated water without providing the additive charging device 212, instead of controlling the treated water to circulate in the circulation flow path including the third return flow path 46, simply ion removal Control to stop the operation of the system 200 may be executed. Even with such control, the treatment to the faucet 52, which is the treatment water supply point, is performed by stopping the supply of the treated water to the water storage tank 48 based on the measured value of the pH sensor 42 or the turbidity sensor 44. The water supply can be controlled and treated water having desired characteristics can be supplied to the faucet 52.
  • the ion removal systems 2 and 80 that execute the abnormality occurrence mode of the first to third embodiments are described below. It is possible to provide an ion removal system according to the first to tenth aspects as described above.
  • the first aspect of the present invention is an electrolysis device 8 that generates alkaline water and acidic water by electrolysis, a hard water flow path 4 that is connected to the electrolysis device 8 and supplies hard water to the electrolysis device 8, and electricity. Pass the fine bubble generators 10A and 10B that generate fine bubbles in the flow path on the upstream side or the downstream side of the decomposition device 8 and the treated water after supplying the fine bubbles containing the alkaline water generated by the electrolysis device 8.
  • the ion removal system 200 controls the supply of treated water to the treated water supply point.
  • the desired treated water can be supplied to the user by controlling the supply of the treated water to the treated water supply point based on the measured value regarding the characteristics of the treated water or the hard water.
  • the reliability of the ion removal system 200 can be improved.
  • a second aspect of the present invention further includes a valve 210 for switching between passing and stopping the treated water to the water storage tank 48, and the control unit 214 is based on the measured values of the sensors (pH sensor 42, turbidity sensor 44).
  • the ion removal system 200 according to the first aspect, wherein the supply of the treated water to the treated water supply point is controlled by controlling the opening and closing of the valve 210.
  • the treated water is supplied to the water storage tank 48 or the treated water supply point based on the measured value of the sensor, and the treated water is supplied when the measured value is an abnormal value. It can be controlled not to send treated water to the point.
  • the valve 210 is provided on the upstream side of the water storage tank 48, and further includes a bypass flow path (third return flow path 46) connected from the valve 210 to the middle of the hard water flow path 4.
  • a bypass flow path third return flow path 46
  • the control unit 214 allows water to pass through the water storage tank 48 without passing through the bypass flow path.
  • the ion removal system according to the second aspect which switches between a first mode (treated water supply mode) and a second mode (first abnormal occurrence mode) in which water is passed through a bypass flow path without passing through the water storage tank 48. It is 200.
  • the treated water when the measured value of the sensor is an abnormal value, the treated water can be circulated in the circulation flow path including the bypass flow path by passing water through the bypass flow path. This makes it possible to take measures to change the characteristics of the treated water in the circulation flow path.
  • a fourth aspect of the present invention is described in the third aspect, further comprising an additive charging device 212 for charging an additive that changes the characteristics of treated water into a circulation flow path including a bypass flow path (branch flow path 36).
  • the ion removal system 200 is described in the third aspect, further comprising an additive charging device 212 for charging an additive that changes the characteristics of treated water into a circulation flow path including a bypass flow path (branch flow path 36).
  • the ion removal system 200 is described in the third aspect, further comprising an additive charging device 212 for charging an additive that changes the characteristics of treated water into a circulation flow path including a bypass flow path (branch flow path 36).
  • the characteristics of the treated water can be adjusted in the circulation flow path including the bypass flow path.
  • the fifth aspect of the present invention is the ion removal system 200 according to the fourth aspect, wherein the additive is carbon dioxide.
  • the pH and turbidity of the treated water can be lowered by adding carbon dioxide to the treated water.
  • a sixth aspect of the present invention is a separation device 12 that separates crystals of metal components contained in the treated water flowing through the first treated water flow path (branch flow path 36), and is connected between the separation device 12 and the water storage tank 48.
  • the valve 210 is provided in the second treated water flow path, further comprising a second treated water flow path (third flow path 38) through which the treated water from which the crystals of the metal component have been removed by the separation device 12 is passed.
  • the ion removal system 200 according to any one of the second to fifth aspects.
  • the desired treated water can be stored in the water storage tank 48 by supplying the treated water from which the crystals of the metal component have been removed to the water storage tank 48.
  • the ion according to the sixth aspect wherein the sensor (pH sensor 42, turbidity sensor 44) is provided on the upstream side of the valve 210 in the second treated water flow path (third flow path 38).
  • the removal system 200 is provided on the upstream side of the valve 210 in the second treated water flow path (third flow path 38).
  • An eighth aspect of the present invention further includes return flow paths 26 and 31 for returning alkaline water or acidic water generated by the electrolyzer 8 to the hard water flow path 4, and the first treated water flow path (branch flow path 36) is provided.
  • the return flow paths 26 and 31 are flow paths that branch from the hard water flow path 4 between the connection point (batch processing tank 6) connected to the hard water flow path 4 and the electrolyzer 8 and are fine bubble generators 10A.
  • the ion removal system 200 according to any one of the first to seventh aspects, wherein the 10B generates fine bubbles in a circulation flow path including the hard water flow path 4, the electrolyzer 8 and the return flow paths 26 and 31. Is.
  • the operation of circulating alkaline water in the circulation flow path including the return flow paths 26 and 31 becomes possible, and the pH value of the water flowing through the circulation flow path is increased while the metal ions due to the fine bubbles are generated. Removal can be done. As a result, the crystallization of the metal ions removed by the fine bubbles can be promoted, and the effect of removing the metal ions can be enhanced.
  • a ninth aspect of the present invention is an eighth aspect in which a batch processing tank 6 provided in the middle of the hard water flow path 4 and accommodating hard water is further provided, and the return flow paths 26 and 31 are connected to the batch processing tank 6.
  • the ion removal system 200 according to the above.
  • a tenth aspect of the present invention is the ion removal system 200 according to any one of the first to ninth aspects, wherein the sensor is at least one of a pH sensor 42 and a turbidity sensor 44.
  • the pH and turbidity of the treated water can be monitored.
  • an ion sensor ISFET: ion-sensitive electrolytic effect transistor
  • an infrared sensor that detects light transmittance or an ultrasonic sensor that detects the velocity of particles in water may be used.
  • the second abnormality occurrence mode controls the supply of treated water to the faucet 52, which is the treated water supply point, based on the measured values of the flow rate sensor 16, which is a sensor different from the pH sensor 42 and the turbidity sensor 44. It is a thing.
  • the measured value of the flow rate sensor 16 may be detected as an abnormal value with respect to the treated water flowing from the batch processing tank 6.
  • the control unit 214 stores a normal numerical range in advance with respect to the measured value of the flow sensor 16, and when it detects a measured value outside the numerical range, it detects it as an abnormal value.
  • the control unit 214 When the control unit 214 detects the measured value of the flow rate sensor 16 as an abnormal value, the control unit 214 stops the operation of the ion removal system 200, particularly the operation of the electrolysis device 8. As a result, the electrolysis device 8 does not perform the electrolysis treatment and controls so as not to generate alkaline water and acidic water, so that water does not flow in any of the flow paths as shown in FIG. 24B. In this way, the supply of the treated water to the faucet 52, which is the treated water supply point, is controlled to be stopped.
  • the measured value of the flow rate sensor 16 is higher than the normal range, there is a possibility that one of the flow paths of the ion removal system 200 is clogged. In such a case, by stopping the operation of the ion removal system 200, it is possible to perform restoration work such as clearing the clogging of the flow path while stopping the supply of the treated water to the faucet 52. As a result, the treated water having desired characteristics can be controlled to be supplied to the faucet 52, and the reliability of the ion removal system 200 can be improved.
  • a pressure sensor may be used instead of the flow rate sensor 16. Even when controlled based on the pressure sensor, it is possible to detect an abnormality such as clogging in the flow path.
  • the positions where the fine bubble generators 10A and 10B and the flow rate sensor 16 are provided are not limited to the positions shown in FIG. 24B.
  • the fine bubble generators 10A and 10B are not limited to the downstream side of the electrolyzer 8 and may be provided on the upstream side of the electrolyzer 8. Further, if it is a circulation flow path including the batch processing tank 6, the electrolysis device 8, the first flow path 22, the second flow path 24, the first return flow path 26, and the second return flow path 31, the fine bubble generator.
  • the 10A and 10B and the flow rate sensor 16 may be provided at arbitrary positions.
  • the ion removal system 200 that executes the second abnormality occurrence mode described above provides the ion removal system that is the first aspect of the present invention, similarly to the ion removal system 200 that executes the first abnormality occurrence mode.
  • an electrolysis device 8 that generates alkaline water and acidic water by electrolysis a hard water flow path 4 that is connected to the electrolysis device 8 and supplies hard water to the electrolysis device 8, and an electrolysis device 8.
  • the first treatment of passing the treated water after supplying the fine bubbles containing the alkaline water generated by the fine bubble generators 10A and 10B and the electrolysis device 8 for generating fine bubbles in the flow path on the upstream side or the downstream side of the above.
  • a water storage tank that stores the treated water supplied from the water flow path (branch flow path 36) and the first treated water flow path, and can supply the treated water to the treated water supply point (water faucet 52) to the user.
  • a 48, a sensor (flow sensor 16) for acquiring measured values related to the characteristics of treated water or hard water, and a control unit 214 are provided, and the control unit 214 sends to the treated water supply point based on the measured values of the sensor.
  • the ion removal system 200 controls the supply of treated water.
  • the desired treated water can be supplied to the user by controlling the supply of the treated water to the treated water supply point based on the measured value regarding the characteristics of the treated water or the hard water.
  • the reliability of the ion removal system 200 can be improved.
  • the ion removal system 200 that executes the above-mentioned second abnormality occurrence mode, it is possible to provide the ion removal system according to the eleventh to seventeenth modes as described below.
  • control unit 214 controls the ON / OFF of the electrolyzer 8 based on the measured value of the sensor (flow sensor 16) to the treated water supply point (water faucet 52).
  • the ion removal system according to the first aspect, which controls the supply of treated water.
  • the operation of the electrolyzer 8 can be automatically stopped so that the treated water is not supplied to the water storage tank 48 and the treated water supply point.
  • a twelfth aspect of the present invention further includes return flow paths 26 and 31 connected to the hard water flow path 4 so as to return the alkaline water or acidic water generated by the electrolyzer 8 to the hard water flow path 4, and the first treatment.
  • the water flow path (branch flow path 36) is a flow path that branches from the hard water flow path 4 on the downstream side of the connection point to which the return flow paths 26 and 31 are connected in the hard water flow path 4, and is provided at the branch point.
  • the valve 204 is configured to switch between water flow and water stoppage from the hard water flow path 4 to the first treated water flow path, and the fine bubble generators 10A and 10B and the sensor (flow rate sensor 16) are the hard water flow path. 4.
  • the ion removal system according to the eleventh aspect, which is provided in a circulation flow path including the electrolyzer 8 and the return flow paths 26 and 31.
  • the operation of circulating alkaline water in the circulation flow path becomes possible, and while increasing the pH value of the water flowing through the circulation flow path, the metal ions due to the fine bubbles are generated. Removal can be done. As a result, the crystallization of the metal ions removed by the fine bubbles can be promoted, and the effect of removing the metal ions can be enhanced.
  • a thirteenth aspect of the present invention is the twelfth aspect, which is provided in the middle of the hard water flow path 4 and further includes a batch processing tank 6 for accommodating hard water, and the return flow paths 26 and 31 are connected to the batch processing tank 6.
  • the ion removal system according to.
  • a fourteenth aspect of the present invention is the ion removal system according to the thirteenth aspect, wherein the sensor (flow rate sensor 16) is provided between the batch processing tank 6 and the valve 204 in the hard water flow path 4.
  • the measured value can be acquired at a position close to the electrolyzer 8 and the ON / OFF control of the electrolyzer 8 can be executed more accurately.
  • a fifteenth aspect of the present invention further includes a pump 14 provided between the batch processing tank 6 and the valve 204 in the hard water flow path 4, and a sensor (flow rate sensor 16) is provided between the pump 14 and the valve 204.
  • a sensor flow rate sensor 16
  • the measured value can be acquired at a position close to the electrolyzer 8 and the ON / OFF control of the electrolyzer 8 can be executed more accurately.
  • the 16th aspect of the present invention is the ion removal system according to any one of the 11th to 15th aspects, wherein the sensor is a flow rate sensor 16 or a pressure sensor.
  • the present invention is not limited to the above embodiment, and can be implemented in various other aspects.
  • the fine bubble generators 10A and 10B automatically generate fine bubbles in the water passing through the fine bubble generators 10A and 10B has been described, but only in such a case. Absent.
  • the fine bubble generators 10A and 10B may be electrically operated, and the fine bubbles may be supplied only when the control unit 13 drives the fine bubble generators 10A and 10B.
  • the present invention is useful for both household ion removal systems and commercial ion removal systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

イオン除去システムは、電気分解によりアルカリ水と酸性水とを生成する電気分解装置と、電気分解装置に硬水を供給する硬水流路と、電気分解装置が生成したアルカリ水と酸性水を交互に通水可能な第1流路および第2流路と、微細気泡を発生させて硬水流路、第1流路又は第2流路に供給する微細気泡発生装置であって、発生させた微細気泡により水中の金属イオンを吸着して除去する、微細気泡発生装置と、制御部と、を備え、制御部は、第1流路にアルカリ水を通水して第2流路に酸性水を通水する第1モードと、第1流路に酸性水を通水して第2流路にアルカリ水を通水する第2モードを実行するように、電気分解装置を制御する。

Description

イオン除去システム
 本発明は、イオン除去システムに関する。
 従来より、硬水中の金属イオンを除去するイオン除去システムが開示されている(例えば、特許文献1参照)。
 特許文献1のイオン除去システムは、硬水を収容する硬水収容部と、微細気泡を発生させて硬水収容部に供給する微細気泡発生手段とを備える。硬水収容部において硬水中の金属イオンを微細気泡に吸着させて、硬水中から金属イオンを除去する。
国際公開第2018-159693号公報
 昨今では、微細気泡による金属イオンの除去効果を高めることが求められている。特許文献1に開示されるような構成を含めて、微細気泡による金属イオンの除去効果を高めることに関して未だ改善の余地がある。
 従って、本発明の目的は、上記問題を解決することにあって、金属イオンの除去効果を高めることができるイオン除去システムを提供することにある。
 上記目的を達成するために、本発明のイオン除去システムは、電気分解によりアルカリ水と酸性水とを生成する電気分解装置と、前記電気分解装置に接続され、前記電気分解装置に硬水を供給する硬水流路と、前記硬水流路の途中に設けられ、硬水を収容するバッチ処理タンクと、前記電気分解装置が生成したアルカリ水又は酸性水を前記バッチ処理タンクに戻すように前記バッチ処理タンクに接続される戻し流路と、前記バッチ処理タンク、前記電気分解装置および前記戻し流路を含む循環流路に微細気泡を発生させる微細気泡発生装置であって、発生させた微細気泡により水中の金属イオンを吸着して除去する、微細気泡発生装置と、を備える。
 本発明のイオン除去システムによれば、金属イオンの除去効果を高めることができる。
実施形態1におけるイオン除去システムの概略図 実施形態1における原水注水モードの第1段階の水の流れを示す図 実施形態1における原水注水モードの第2段階の水の流れを示す図 実施形態1における第1結晶化処理モードの水の流れを示す図 実施形態1における第2結晶化処理モードの水の流れを示す図 実施形態1における処理水供給モードの水の流れを示す図 実施形態1における第1洗浄モードの水の流れを示す図 実施形態1における第2洗浄モードの水の流れを示す図 実施形態1における異常発生時モードの水の流れを示す図 イオン除去装置による金属イオンの吸着の仮説原理を説明するための模式図 イオン除去装置による金属イオンの結晶化の仮説原理を説明するための模式図 イオン除去装置による金属イオンの吸着の仮説原理を説明するための模式図 イオン除去装置による金属イオンの結晶化の仮説原理を説明するための模式図 実施形態2におけるイオン除去システムの概略図 イオン除去装置による再生処理の仮説原理を説明するための模式図 実施形態3におけるイオン除去システムの概略図 実施形態3における原水注水モードの第1段階の水の流れを示す図 実施形態3における原水注水モードの第2段階の水の流れを示す図 実施形態3における第1結晶化処理モードの水の流れを示す図 実施形態3における第2結晶化処理モードの水の流れを示す図 実施形態3における第1処理水供給モードの水の流れを示す図 実施形態3における第2処理水供給モードの水の流れを示す図 実施形態3における第1洗浄モードの水の流れを示す図 実施形態3における第2洗浄モードの水の流れを示す図 実施形態3における異常発生時モードの水の流れを示す図 実施形態4におけるイオン除去システムの概略図 実施形態4における原水注水モードの第1段階の水の流れを示す図 実施形態4における原水注水モードの第2段階の水の流れを示す図 実施形態4における第1結晶化処理モードの水の流れを示す図 実施形態4における第2結晶化処理モードの水の流れを示す図 実施形態4における処理水供給モードの水の流れを示す図 実施形態4における第1洗浄モードの水の流れを示す図 実施形態4における第2洗浄モードの水の流れを示す図 実施形態4における第1異常発生時モードの水の流れを示す図 実施形態4における第2異常発生時モードの水の流れがない状態を示す図
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によって本発明が限定されるものではない。
 (実施形態1)
 図1は、実施形態1におけるイオン除去システム2の概略図である。
 イオン除去システム2は、微細気泡を用いて硬水中から金属イオンを除去するシステムである。ここでの金属イオンとは、カルシウムイオン(Ca2+)とマグネシウムイオン(Mg2+)である。実施形態1におけるイオン除去システム2は、硬水中から金属イオンを除去して分離することにより、硬水中における金属イオンの濃度(硬度)を所定濃度以下まで低下させて、軟水を製造する軟水化装置である。なお、硬水及び軟水の定義としては、例えば、WHOの定義を用いてもよい。すなわち、硬度120mg/L未満を軟水と定義し、硬度120mg/L以上を硬水と定義してもよい。
 実施形態1における微細気泡とは、直径100μm以下の気泡である。微細気泡には、マイクロバブル(直径が例えば1μm以上100μm以下)と、ナノバブル(直径が例えば1μm未満)が含まれる。マイクロバブルは、水処理の分野における当業者がマイクロオーダーの気泡径と認識できる気泡としてもよい。また、ナノバブルは、水処理の分野における当業者がナノオーダーの気泡径と認識できる気泡としてもよい。微細気泡は、水中での滞留時間が長いこと、気泡単体として直径が大きくなりにくく他の気泡と合体しにくいこと、接触面積が大きく化学反応が生じやすいこと等、通常の気泡とは異なった性質を有する。
 なお、微細気泡としては、直径100μm以上の気泡(ミリバブルなど)を少しの割合で含むものでもよい。例えば、直径100μm以下の割合が90%以上のものを微細気泡と定義してもよい。これに加えて、直径60μm以下の割合が50%以上、直径20μm以下の割合が5%以上などの条件を加えてもよい。また、気泡の直径(気泡径)を測定する際には、例えば、高速度カメラで微細気泡を含む硬水を直接撮影して、画像処理により3点法で気泡径を算出してもよく、あるいは、それ以外の任意の方法で測定してもよい。気泡径を測定するタイミングは、微細気泡が滞留している時間であれば任意のタイミングであってもよい。なお、前述した高速度カメラを用いた測定方法の条件の一例は、以下の通りである。
 高速度カメラ  :FASTCAM 1024 PCI (株式会社フォトロン)
 レンズシステム :Z16 APO (Leica社)
 対物レンズ   :Planapo 2.0x(Leica社)
 撮影速度    :1000fps
 シャッター速度 :1/505000sec
 画像領域    :1024×1024 pixel(マイクロバブル撮影領域 1.42mm×1.42mm、ミリバブル撮影領域 5.69mm×5.69mm)
 画像処理ソフト :Image-Pro Plus (Media Cybermetics社)
 図1に示すイオン除去システム2は、硬水流路4と、バッチ処理タンク6と、電気分解装置8と、微細気泡発生装置10A、10Bと、分離装置12と、制御部13とを備える。
 硬水流路4は、電気分解装置8に硬水を供給する流路である。硬水流路4は、図示しない硬水の水源に接続されている。実施形態1の硬水流路4は、バッチ処理タンク6を経由して電気分解装置8に硬水を供給するように電気分解装置8に接続されている。
 硬水流路4が電気分解装置8に接続される箇所では、硬水流路4が2つの流路に分岐している。これらの流路は、後述する微細気泡発生装置10A、10Bのそれぞれに対応している。
 硬水流路4の途中には、バッチ処理タンク6に加えて、バルブ11、ポンプ14、流量センサ16、バルブ18、バルブ20が設けられている。
 バッチ処理タンク6は、硬水流路4の途中に設けられたタンクである。バッチ処理タンク6は、硬水流路4から供給される硬水を収容する。バッチ処理タンク6を設けることにより、バッチ処理が可能となる。
 バルブ11は、硬水流路4からバッチ処理タンク6への通水を制御する弁である(実施形態1では電磁弁)。ポンプ14は、バッチ処理タンク6に収容されている硬水を電気分解装置8へ供給するためのポンプである。流量センサ16は、バッチ処理タンク6から電気分解装置8へ供給される硬水の流量を測定するセンサである。
 電気分解装置8は、硬水流路4から供給される硬水を電気分解することによりアルカリ水と酸性水を生成する装置である。電気分解装置8には2つの流路として、第1流路22と第2流路24とが接続されている。
 第1流路22と第2流路24は、電気分解装置8が生成するアルカリ水と酸性水を交互に通水可能な流路である。第1流路22がアルカリ水を通水するときは第2流路24が酸性水を通水し、第1流路22が酸性水を通水するときは第2流路24がアルカリ水を通水する。
 第1流路22の途中には微細気泡発生装置10Aが設けられている。同様に、第2流路24の途中には微細気泡発生装置10Bが設けられている。
 微細気泡発生装置10A、10Bはそれぞれ、第1流路22、第2流路24に微細気泡を発生させて供給する装置である。微細気泡をそれぞれの流路に供給することにより、流路を流れる水に含まれる金属イオンを微細気泡に吸着して水中から除去することができる。実施形態1の微細気泡発生装置10A、10Bは、キャビテーション作用により微細気泡を発生させる装置である。微細気泡発生装置10A、10Bは、微細気泡発生装置10A、10Bを通過する水に対して自動的に微細気泡を供給する。
 第1流路22には、第1戻し流路26と、第1排水流路28とが接続されている。第1戻し流路26は、第1流路22からバッチ処理タンク6に接続される流路である。第1排水流路28は、第1流路22からバッチ処理タンク6を経由せずにイオン除去システム2の系外に延びる流路である。
 第1戻し流路26と第1排水流路28が第1流路22に接続する箇所にはバルブ30が設けられている。バルブ30は、第1流路22から第1戻し流路26又は第1排水流路28への通水を切り替えるための弁である(実施形態1では電動弁)。
 第2流路24には、第2戻し流路31と、第2排水流路32とが接続されている。第2戻し流路31は、第2流路24からバッチ処理タンク6に接続される流路である。第2排水流路32は、第2流路24からバッチ処理タンク6を経由せずにイオン除去システム2の系外に延びる流路である。
 第2戻し流路31と第2排水流路32が第2流路24に接続する箇所にはバルブ34が設けられている。バルブ34は、第2流路24から第2戻し流路31又は第2排水流路32への通水を切り替えるための弁である(実施形態1では電動弁)。
 上述した第1戻し流路26と第2戻し流路31が硬水流路4に接続される接続ポイントは、実施形態1ではバッチ処理タンク6に相当する。接続ポイントに相当するバッチ処理タンク6よりも下流側において硬水流路4には分岐流路36が接続されている。分岐流路36は、バッチ処理タンク6と電気分解装置8の間で硬水流路4から分岐する流路である。
 分岐流路36が硬水流路4に接続する箇所には前述したバルブ18が設けられている。バルブ18は、硬水流路4から分岐流路36への通水および止水を切り替えるための弁である(実施形態1では電動弁)。バルブ18の下流側に設けられたバルブ20は、第1の流路22と第2の流路24のそれぞれに通水される流量の割合を調整可能とする弁である(実施形態1では電動弁)。
 分岐流路36には分離装置12が接続されている。分離装置12は、金属成分の結晶を水中から分離する装置である。実施形態1の分離装置12は、水中に含まれる結晶等の固体を遠心分離により分離するサイクロン方式の分離装置である。
 分離装置12には2つの流路として、第3流路38と第3排水流路40が接続されている。第3流路38は、分離装置12により結晶が分離された処理水を通水する流路である。排水流路40は、分離装置12で分離された結晶を含む排水を通水する流路である。排水流路40は、前述した第1排水流路28、第2排水流路32とともに、バッチ処理タンク6を経由せずにイオン除去システム2の系外に延びている。
 第3流路38の途中には、pHセンサ42と濁度センサ44とが設けられている。pHセンサ42および濁度センサ44は、第3流路38に通水される処理水のpH値と濁度をそれぞれ測定するセンサである。
 第3流路38の途中にはさらに、第3戻し流路46が接続されている。第3戻し流路46は、第3流路38とバッチ処理タンク6の間に接続される流路である。
 第3戻し流路46が第3流路38に接続する箇所にはバルブ47が設けられている。バルブ47は、第3流路38から第3戻し流路46への通水および止水を切り替えるための弁である(実施形態1では電動弁)。
 第3流路38にはさらに、貯水タンク48が接続されている。貯水タンク48は、第3流路38から供給される処理水を貯水するタンクである。貯水タンク48に貯水された処理水はポンプ50により水栓52に供給される。ポンプ50を駆動することで、イオン除去システム2で硬水を処理することにより得られた処理水(すなわち、軟水)を水栓52に供給して利用することができる。
 制御部13は、上述したイオン除去システム2の各構成要素を制御する部材である。制御部13は、各バルブの開閉制御、各ポンプのON/OFF制御、電気分解装置8のON/OFF制御、分離装置12のON/OFF制御等を実行する。制御部13は例えば、マイクロコンピュータである。
 制御部13は、イオン除去システム2を複数の運転モードで運転する。これらの運転モードについて説明する。
(原水注水モード)
 原水注水モードは、イオン除去システム2の運転を開始する際に、原水である硬水を各流路に注入するモードである。具体的には、図2A、図2Bに示すような流れを生じさせるように制御部13が制御する。図2A、図2B以降の図面では、水の流れを矢印で表し、矢印のない流路には水の流れは生じていないものとする。
 図2Aは、原水注水モードの第1段階として、流路に残存している残水を排水するモードを示す。図2Aに示すように、制御部13は、硬水流路4に硬水を通水するようにバルブ11を開くとともに、バッチ処理タンク6の硬水を電気分解装置8に供給するようにポンプ14を駆動する。制御部13はこのとき、バッチ処理タンク6から電気分解装置8に流れる硬水の流量を、流量センサ16の検知結果に基づいて取得する。制御部13はさらに、硬水流路4から分岐流路36へは止水して硬水が流れないようにバルブ18の開閉を制御する。制御部13はさらに、電気分解装置8を運転せず、硬水流路4に通水する硬水を第1流路22と第2流路24にそのまま通水するように制御する。制御部13はさらに、第1流路22に通水した硬水を第1排水流路28に通水するようにバルブ30の開閉を制御し、第2流路24に通水した硬水を第2排水流路32に通水するようにバルブ34の開閉を制御する。これにより、図2Aに示すような矢印の流れが生じ、各流路に残存している残水が排水される。
 図2Bは、原水注水モードの第2段階として、バッチ処理タンク6に新たな硬水を注入するモードを示す。制御部13は、図2Aに示す状態からバルブ30、34の開閉を変更する。具体的には、第1流路22に通水される硬水を第1戻し流路26へ通水するようにバルブ30の開閉を制御し、第2流路24に通水される硬水を第2戻し流路31へ通水するようにバルブ34の開閉を制御する。これにより、図2Bに示すような矢印の流れが生じ、バッチ処理タンク6に新たな硬水が注入される。
 上述した原水注水モードを実行した後、以下で説明する第1結晶化処理モードあるいは第2結晶化処理モードを実行する。
(第1結晶化処理モード(第1モード))
 図3Aは、第1結晶化処理モードを示す。制御部13はバルブ11を閉じるとともに、バッチ処理タンク6に収容された硬水を電気分解装置8に供給するようにポンプ14を駆動する。制御部13は、硬水流路4から分岐流路36に通水しないようにバルブ18を制御する。制御部13はさらに、電気分解装置8を駆動して、アルカリ水と酸性水を生成させる。具体的には、電気分解装置8がバッチ処理タンク6から供給される硬水を電気分解することにより、アルカリ水と酸性水を生成する。制御部13は、電気分解装置8が生成するアルカリ水と酸性水の流量の割合をバルブ20の開度によって制御する。
 電気分解装置8が生成するアルカリ水と酸性水のうち、第1結晶化処理モードでは、アルカリ水を第1流路22に通水し、酸性水を第2流路24に通水するように制御部13が電気分解装置8を制御する。
 制御部13はさらに、第1流路22に通水したアルカリ水を第1戻し流路26に通水するようにバルブ30を制御し、第2流路24に通水した酸性水を第2排水流路32に通水するようにバルブ34を制御する。これにより、図3Aに示すような矢印の流れが生じる。
 図3Aに示す流れにおいては、バッチ処理タンク6、電気分解装置8、第1流路22、第1戻し流路26の順にアルカリ水がループして流れる循環流路が形成される。第1流路22は、第1戻し流路26とともに戻し流路として機能する。当該循環流路において、第1流路22に通水されるアルカリ水に対して微細気泡発生装置10Aから微細気泡が供給される。微細気泡の供給により、アルカリ水中に含まれる金属イオンが微細気泡に吸着されて、アルカリ水中から除去される。微細気泡による金属イオンの除去の原理については後述する。
 金属イオンの除去処理が行われた硬水は「処理水」となり、バッチ処理タンク6に溜められる。処理水はその後、ポンプ14により吸引されて電気分解装置8に送られ、微細気泡発生装置10Aにより再度、微細気泡が供給される。処理水が循環流路を流れることにより、処理水に微細気泡が継続的に供給され、金属イオンの除去処理が継続的に行われる。
 循環流路にアルカリ水を循環させることにより、循環流路を流れる水のpH値を上昇させながら、微細気泡による金属イオンの除去が継続的に行われる。pH値を上昇させることで、微細気泡の表面に存在する負の電荷を持つOHが増加し、Ca2+が微細気泡に吸着されやすくなる。その結果、後述するように金属イオンの結晶化を促進することができ、金属イオンの除去効果を高めることができる。また、金属成分の結晶を含むアルカリ水を循環させることで、水中に含まれる金属イオンを結晶に付着させる形で結晶化させることができ、金属イオンの結晶化をさらに促進することができる。
 なお、第2流路24を流れる酸性水は、第2排水流路32を経由してイオン除去システム2の系外に排水される。
(第2結晶化処理モード(第2モード))
 図3Bは、第2結晶化処理モードを示す。第2結晶化処理モードでは、図3Aに示した第1結晶化処理モードと異なり、電気分解装置8が生成したアルカリ水と酸性水のうち、酸性水を第1流路22に通水し、アルカリ水を第2流路24に通水するように制御部13が電気分解装置8を制御する。さらに、第1流路22に通水した酸性水を第1排水流路28に通水するようにバルブ30を制御し、第2流路24に通水したアルカリ水を第2戻し流路31に通水するようにバルブ34を制御する。これにより、図3Bに示すような矢印の流れが生じる。
 図3Bに示す流れにおいては、バッチ処理タンク6、電気分解装置8、第2流路24、第2戻し流路31の順にアルカリ水がループして流れる循環流路が形成される。第2流路24は、第2戻し流路31とともに戻し流路として機能する。当該循環流路において、第2流路24に通水されるアルカリ水に対して微細気泡発生装置10Bから微細気泡が供給される。微細気泡の供給により、アルカリ水中に含まれる金属イオンが微細気泡に吸着されて、アルカリ水中から除去される。金属イオンの除去処理が行われた硬水は「処理水」となり、バッチ処理タンク6に溜められる。処理水はその後、ポンプ14により吸引されて電気分解装置8に送られ、微細気泡発生装置10Bにより再度、微細気泡が供給される。処理水が循環流路を流れることにより、処理水に微細気泡が継続的に供給され、金属イオンの除去処理が継続的に行われる。
 第1結晶化処理モードと同様に、循環流路にアルカリ水を循環させることで、循環流路を流れる水のpH値を上昇させながら、微細気泡による金属イオンの除去を継続的に行うことができる。これにより、第1結晶化処理モードと同様の効果を奏することができる。
 なお、第1流路22を流れる酸性水は、第1排水流路28を経由してイオン除去システム2の系外に排水される。
 上述した第1結晶化処理モードあるいは第2結晶化処理モードを実行した後、以下で説明する処理水供給モードを実行する。
(処理水供給モード(第3モード))
 図4は、処理水供給モードを示す。処理水供給モードは、第1結晶化処理モードと第2結晶化処理モードで硬水を処理することにより得られた処理水を水栓52に供給する運転モードである。
 制御部13はまず、分岐流路36へ通水するようにバルブ18の開閉を制御する。この状態でポンプ14を駆動することにより、バッチ処理タンク6に溜められた処理水を分岐流路36に通水する。制御部13はこのとき、電気分解装置8へ通水しないようにバルブ20の開閉を制御する。
 分岐流路36に通水された処理水は分離装置12に送られる。分離装置12は、処理水に含まれる金属成分の結晶を分離する。分離装置12はさらに、結晶が分離された処理水を第3流路38に供給し、結晶を含む排水を第3排水流路40に通水する。
 第3流路38に通水された処理水は、貯水タンク48に溜められる。その後、ポンプ50を作動させることにより、貯水タンク48に溜められた処理水(すなわち軟水)を水栓52に供給して、水栓52で処理水が利用可能となる。
 制御部13は、上述した原水注水モード、第1結晶化処理モード、処理水供給モードを順に行う制御と、原水注水モード、第2結晶化処理モード、処理水供給モードを順に行う制御を交互に行う。第1結晶化モードと第2結晶化モードはともに、バッチ処理タンク6、電気分解装置8、戻し流路26、31を含む流路に循環流路を構成し、循環流路にアルカリ水を循環させながら、酸性水をイオン除去システム2の系外に排水するものである。第1結晶化処理モードと第2結晶化処理モードを交互に実施することにより、アルカリ水を通水した流路を酸性水で洗浄することができ、イオン除去システム2内の流路を金属イオンの除去処理に適した状態に保つことができる。これにより、微細気泡による金属イオンの除去効果を高めることができる。
 制御部13は、上述した複数のモードとは別のモードとして、以下で説明する第1洗浄モード、第2洗浄モードおよび異常発生時モードを実行可能である。
(第1洗浄モード)
 図5Aは、第1洗浄モードを示す。制御部13は、硬水流路4から電気分解装置8と分岐流路36の両方へ通水するようにバルブ18を制御する。制御部13はさらに、電気分解装置8を駆動してアルカリ水と酸性水を生成させる。
 電気分解装置8が生成するアルカリ水と酸性水のうち、第1洗浄モードでは、酸性水を第1流路22に通水し、アルカリ水を第2流路24に通水するように電気分解装置8が制御される。さらに、第1流路22に通水した酸性水を第1戻し流路26に通水するようにバルブ30が制御され、第2流路24に通水したアルカリ水を第2排水流路32に通水するようにバルブ34が制御される。これにより、図5Aに示すような矢印の流れが生じる。
 図5Aに示す流れにおいては、バッチ処理タンク6、電気分解装置8、第1流路22、第1戻し流路26の順に酸性水が流れる循環流路が形成され、バッチ処理タンク6に酸性水が継続的に供給される。循環流路を流れる酸性水の一部は分岐流路36に通水される。前述した第1結晶化処理モードと第2結晶化処理モードでは酸性水の流れなかった第1戻し流路26や分岐流路36に酸性水を通水することで、これらの流路を洗浄することができ、金属イオンの除去処理に適した状態に保つことができる。
 分岐流路36に通水された酸性水は分離装置12に到達する。第1洗浄モードでは、分離装置12において結晶の分離処理を行わないように分離装置12が制御される。さらに、分離装置12に送られた酸性水を第3流路38には通水せず、第3排水流路40に通水するように分離装置12が制御される。これにより、第3排水流路40に酸性水が通水されるため、第3排水流路40を洗浄することができる。
 上述した制御によれば、循環流路に酸性水を循環させながら、各流路を洗浄することができる。さらに、洗浄に使用した酸性水を適宜、分岐流路36を介して第3排水流路40から排水することができる。
(第2洗浄モード)
 図5Bは、第2洗浄モードを示す。制御部13は、第1洗浄モードと異なり、電気分解装置8が生成したアルカリ水と酸性水のうち、アルカリ水を第1流路22に通水し、酸性水を第2流路24に通水するように電気分解装置8を制御する。制御部13はさらに、第1流路22に通水したアルカリ水を第1排水流路28に通水するようにバルブ30を制御し、第2流路24に通水した酸性水を第2戻し流路31に通水するようにバルブ34を制御する。これにより、図5Bに示すような矢印の流れが生じる。
 図5Bに示す流れにおいては、バッチ処理タンク6、電気分解装置8、第2流路24、第2戻し流路31の順に酸性水が流れる循環流路が形成され、バッチ処理タンク6に酸性水が継続的に供給される。循環流路を流れる酸性水の一部は分岐流路36に通水される。前述した第1結晶化処理モードと第2結晶化処理モードでは酸性水の流れなかった第2戻し流路31や分岐流路36に酸性水を通水して洗浄することができる。
 上述した制御によれば、第1洗浄モードと同様に、循環流路に酸性水を循環させながら、各流路を洗浄することができ、さらに、洗浄に使用した酸性水を適宜、第3排水流路40から排水することができる。
 上述した第1洗浄モードと第2洗浄モードは所定のタイミングあるいは任意のタイミングで実行してもよい。
(異常発生時モード)
 図4に示した処理水供給モードにおいて、第3流路38から貯水タンク48に通水される処理水に関してpHセンサ42と濁度センサ44のそれぞれの測定値が異常値として検出される場合がある。そのような場合に、貯水タンク48への処理水の通水を停止するために、以下で説明する異常発生時モードを実行する。
 図6は、異常発生時モードを示す。制御部13は、図4に示す処理水供給モードからバルブ47の開閉制御を変更する。具体的には、第3流路38から貯水タンク48への流路を止水し、第3流路38から第3戻し流路46へ通水するようにバルブ47の開閉を制御する。これにより、図6に示すような矢印の流れが生じる。
 第3流路38から貯水タンク48への流れを止水することで、pH値あるいは濁度の異常値が検出された処理水の供給を停止することができる。
<作用・効果1>
 上述した構成を有するイオン除去システム2は、硬水流路4と、バッチ処理タンク6と、電気分解装置8と、微細気泡発生装置10A、10Bと、戻し流路26、31とを備える。硬水流路4は、電気分解装置8に接続される流路であり、電気分解装置8に硬水を供給する。バッチ処理タンク6は、硬水流路4の途中に設けられ、硬水を収容するタンクである。電気分解装置8は、電気分解によりアルカリ水と酸性水とを生成する装置である。戻し流路26、31は、電気分解装置8が生成したアルカリ水又は酸性水をバッチ処理タンク6に戻すようにバッチ処理タンク6に接続される流路である。微細気泡発生装置10A、10Bは、バッチ処理タンク6と電気分解装置8と戻し流路26、31とを含む循環流路に微細気泡を発生させて供給する装置であって、発生させた微細気泡により水中の金属イオンを吸着して除去する。
 このような構成によれば、循環流路にアルカリ水を通水して循環させることで、循環流路を流れる水のpH値を上昇させながら、微細気泡による金属イオンの除去を行うことができる。これにより、微細気泡により除去した金属イオンの結晶化を促進することができ、金属イオンの除去効果を高めることができる。
 実施形態1のイオン除去システム2はさらに、電気分解装置8が生成したアルカリ水と酸性水を交互に通水可能な第1流路22および第2流路24を備える。戻し流路26、31は、第1流路22から分岐してバッチ処理タンク6に接続される第1戻し流路26と、第2流路24から分岐してバッチ処理タンク6に接続される第2戻し流路31とを備える。
 このような構成によれば、第1流路22と第2流路24にアルカリ水と酸性水を交互に通水することで、それぞれの流路でアルカリ水を通水した後に酸性水を通水することができ、流路の洗浄を行うことができる。
 実施形態1のイオン除去システム2は、第1流路22に接続されてバッチ処理タンク6を経由せずに系外に延びる第1排水流路28と、第2流路24に接続されてバッチ処理タンク6を経由せずに系外に延びる第2排水流路32とをさらに備える。イオン除去システム2はさらに、第1流路22から第1戻し流路26又は第1排水流路28への通水を切り替えるバルブ(第1バルブ)30と、第2流路24から第2戻し流路31又は第2排水流路32への通水を切り替えるバルブ(第2バルブ)34とをさらに備える。
 このような構成によれば、戻し流路26、31に加えて排水流路28、32を設けることで、アルカリ水を戻し流路26、31のうちの一方に通水しながら、酸性水を排水流路28、32のうちの一方に通水して排水するという制御が可能となる。さらに、そのようなアルカリ水と酸性水の流れを第1流路22と第2流路24で交互に生じさせることができる。
 実施形態1のイオン除去システム2はさらに、分岐流路36とバルブ(第3バルブ)18とをさらに備える。分岐流路36は、硬水流路4において戻し流路26、31が接続される接続ポイントであるバッチ処理タンク6よりも下流側で硬水流路4から分岐する流路である。バルブ18は、硬水流路4から分岐流路36への通水および止水を切り替える弁である。
 このような構成によれば、バッチ処理タンク6に溜まった水を分岐流路36に通水することで、循環流路で処理されてバッチ処理タンク6に溜まった処理水を循環流路の外部に通水することができる。これにより、水栓52に処理水を供給して利用することができる。
 実施形態1のイオン除去システム2はさらに、分岐流路36に接続されて、分岐流路36を流れる水に含まれる金属成分の結晶を分離する分離装置12を備える。
 このような構成によれば、処理水から金属成分の結晶を分離することで、結晶が分離された軟水を取り出すことができる。
<作用・効果2>
 上述したイオン除去システム2によれば、制御部13は、第1結晶化処理モード(第1モード)と、第2結晶化処理モード(第2モード)を実行する。第1結晶化処理モードは、第1流路22にアルカリ水を通水して第2流路24に酸性水を通水するモードである。第2結晶化処理モードは、第1流路22に酸性水を通水して第2流路24にアルカリ水を通水するモードである。
 このような制御によれば、第1流路22と第2流路24にアルカリ水と酸性水をそれぞれ交互に通水することで、それぞれの流路でアルカリ水を通水した後に酸性水を通水することができ、流路の洗浄を行うことができる。これにより、各流路を金属イオンの除去処理に適した状態に保つことができ、微細気泡による金属イオンの除去効果を高めることができる。
 実施形態1のイオン除去システム2によれば、第1結晶化処理モードにおいては、制御部13は、第1流路22から第1戻し流路26へ通水し、第2流路24から第2戻し流路31へは止水するようにバルブ30、34を制御する。さらに、第2結晶化処理モードにおいては、制御部13は、第1流路22から第1戻し流路26へは止水し、第2流路24から第2戻し流路31へ通水するようにバルブ30、34を制御する。
 このように、第1戻し流路26と第2戻し流路31を設けて循環流路を構成し、当該循環流路に第1モードと第2モードの両方においてアルカリ水を循環させている。このような制御によれば、循環流路を流れる水のpH値を上昇させながら、微細気泡による金属イオンの除去を行うことができる。これにより、微細気泡によって除去する金属イオンの結晶化を促進することができ、金属イオンの除去効果を高めることができる。
 実施形態1のイオン除去システム2によれば、制御部13は、第1結晶化処理モードおよび第2結晶化処理モードでは、分岐流路36を止水するようにバルブ18を制御する。制御部13はさらに、第1結晶化処理モードおよび第2結晶化処理モードとは異なるモードとして、分岐流路36に通水するようにバルブ18を制御する処理水供給モード(第3モード)を実行する。
 このような制御によれば、分岐流路36に処理水を通水することで水栓52で処理水を利用することができる。
<軟水化処理(金属イオンの除去処理)>
 上述した微細気泡による金属イオンの除去処理、すなわち「軟水化処理」の原理についてより詳しく説明する。
 空気を含む微細気泡が硬水中に供給されることで、硬水中の金属イオンに対して以下の(1)、(2)の欄に記載するような作用が生じると推測される。具体的には、硬水中の金属イオンを微細気泡に吸着させるとともに、吸着した金属イオンを結晶化させて、硬水中から金属成分の結晶を除去することができると推測される。より具体的には、以下の通りである。なお、以下の(1)、(2)の欄に記載する特定の原理に拘束される訳ではない。
(1)金属イオンの吸着
 図7に示すように、空気を含む微細気泡が硬水中に供給されると、微細気泡の表面にはH(水素イオン)とOH(水酸化物イオン)が混在し、Hは正の電荷に帯電し、OHは負の電荷に帯電する(図7ではOHのみを図示)。一方で、硬水中には、正の電荷に帯電した金属イオンとして、Ca2+及びMg2+が存在する。以降の説明では、金属イオンとしてCa2+を例として説明する。
 正の電荷を持つCa2+は、分子間力の作用(イオン間相互作用)によって、微細気泡の表面に存在するOHに吸着される。このようにしてCa2+を微細気泡に吸着させることができる。なお、微細気泡の表面にはCa2+に反発するHが存在するが、HよりもOHが優先的に作用してCa2+を吸着すると考えられる。
(2)金属イオンの結晶化
 図7で示した反応に加えて、空気を含む微細気泡を硬水中に供給することにより、図8で示す反応が促進される。具体的には、硬水中に供給された微細気泡は通常の気泡とは異なり浮上しにくく、硬水中に溶け出していくため、表面張力が増加して、図8に示すように徐々に収縮していく。前述したように、微細気泡の表面にはCa2+が吸着されている。より具体的には、可溶性のCa(HCO(炭酸水素カルシウム)のカルシウムイオンとして存在している。ここで、微細気泡が徐々に収縮していくと、微細気泡の表面におけるCa2+の溶解濃度が上昇する。溶解濃度の上昇により、ある時点で過飽和の状態となり、Ca2+が結晶化して析出する。具体的な化学式で表すと、以下の式1の通りである。
(式1)
 Ca(HCO→CaCO+CO+H
 CaCO(炭酸カルシウム)は不溶性(非水溶性)であるため、金属成分の結晶として析出する。これにより、Ca(HCOのCa2+として溶解していたものが、金属成分の結晶として析出される。このような反応が促進されることにより、硬水中から金属イオンのCa2+を結晶化して析出したCaCOを分離することができる。
 なお、同じ水の中で式1とは逆向きの反応も生じうるが、微細気泡を継続的に供給することにより、当該平衡関係において式1の向きの反応が優先的に行われるものと推測される。また、式1の逆向きの反応は基本的にはCOガスを外部から吹きかけないと起こらない反応であるため、式1の向きの反応が優先的に生じるものと考えられる。
 実施形態1では、軟水化処理における微細気泡の気体として空気を用いたが、このような場合に限らない。微細気泡の気体として例えば、空気に代えて窒素を用いてもよい。微細気泡発生装置10A、10Bから窒素の微細気泡を発生させて硬水中に供給することで、前述した「(1)金属イオンの吸着」、「(2)金属イオンの結晶化」の作用に加えて、以下の(3)、(4)の欄に記載するような作用が促進されると推測される。なお、以下の(3)、(4)の欄に記載する特定の原理に拘束される訳ではない。
(3)金属イオンの吸着の促進
 図9(a)に示すように、微細気泡の周囲には、HとOHが帯電している。前述したように、負の電荷に帯電したOHには、正の電荷に帯電したCa2+が吸着される。このような状況下で、微細気泡として窒素を用いた場合、以下の式2の反応が促進される。
(式2)
 N+6H+6e-→2NH
 NH+HO→NH +OH
 式2の反応が促進されることにより、図9(b)に示すように、OHイオンの数に対してHイオンの数が減少する。これにより、微細気泡としては負の電荷が強くなり、正の電荷をもつCa2+が吸着されやすくなる。
 本変形例のように窒素を用いた場合では、空気を用いた場合と比較して、式2の反応を促進できるため、金属イオンの吸着がより促進される。これにより、硬水中からより多くの金属イオンを分離して除去することができる。
 なお、前記原理は窒素に限らず、Hイオンと反応し、OHイオンの数に対してHイオンの数を減少させることができる気体であれば、同様に当てはまると推測される。
(4)金属イオンの結晶化の促進
 窒素は、空気とは異なる不活性ガスであるため、硬水中に供給されたときに、硬水中に含まれる気体の分圧のバランスが崩れた状態となる。これにより、図10に示すような反応が促進される。
 図10に示すように、窒素で構成される微細気泡に対して、硬水中に溶けた他の気体成分が置き換わろうと作用する。図10に示す例では、微細気泡の周囲に存在するCa(HCOにCOが含まれており、このCOが抽出されて窒素に置き換わろうと作用する。すなわち、以下の反応が促進される。
(式3)
 Ca(HCO→CaCO+CO+H
 このように、可溶性のCa(HCOから不溶性のCaCOが生じる反応が生じる。このとき、COとHOが生じる。CaCOは不溶性であるため、金属成分の結晶として析出する。
 前記反応により、硬水中にCa(HCOのCa2+として含まれていた金属イオンを結晶化して析出させることができる。これにより、硬水中から金属成分の結晶を除去することができる。
 なお、前記原理は窒素に限らず、硬水中に溶けている気体の分圧のバランスを崩れさせる空気以外の気体であれば、同様に当てはまると推測される。
 前述したように、窒素を取り込んで微細気泡を発生させて硬水中に供給することで、空気を用いた場合に比べて、「(3)金属イオンの吸着の促進」、「(4)金属イオンの結晶化の促進」の欄で説明した反応を促進することができる。これにより、硬水中から金属イオンを除去する精度を向上させることができる。
 なお、前記では、金属イオンとしてCa2+を例として説明したが、Mg2+についても同様の反応が起こると推測される。
(実施形態2)
 本発明に係る実施形態2のイオン除去システムについて説明する。なお、実施形態2では、主に実施形態1と異なる点について説明し、実施形態1と重複する記載は省略する。
 実施形態2では、第1流路22、第2流路24、第3流路38に対して、二酸化炭素の微細気泡を供給可能である点が、実施の形態1と異なる。
 図11は、実施形態2におけるイオン除去システム60の概略図である。
 図11に示す実施形態2のイオン除去システム60は、二酸化炭素投入装置62と、供給流路64、66、68と、バルブ70、72と、微細気泡発生装置74とを備える。
 二酸化炭素投入装置62は、供給流路64、66、68に二酸化炭素を投入可能な装置である。二酸化炭素投入装置62は、それ自体が二酸化炭素を収容するタンク、あるいは、図示しない二酸化炭素の供給源に接続された装置であってもよい。
 供給流路64、66、68はそれぞれ、二酸化炭素投入装置62から微細気泡発生装置10A、10B、74に接続される流路である。
 バルブ70は、二酸化炭素投入装置62から供給される二酸化炭素の流量を制御するための弁である(実施形態2では電動弁)。バルブ72は、二酸化炭素投入装置62から供給流路64又は供給流路68に供給する二酸化炭素の流量を制御するための弁である(実施形態2では電動弁)。
 微細気泡発生装置74は、供給流路68から供給される二酸化炭素を微細気泡として発生させる装置である。微細気泡発生装置74は、二酸化炭素の微細気泡を第3流路38に供給するように第3流路38に接続されている。
 このような構成によれば、第1流路22、第2流路24、第3流路38に二酸化炭素の微細気泡が供給可能となる。実施形態1の欄で前述した洗浄モード等において、酸性水により流路を洗浄する際に二酸化炭素の微細気泡を供給することで、流路をより効果的に洗浄することができる。
<再生処理(洗浄処理)>
 二酸化炭素の微細気泡による流路の洗浄処理、すなわち「再生処理」の原理について詳しく説明する。
 軟水化処理を行うことで、金属イオンを結晶化して析出したCaCOの一部は、流路の内壁面に付着する。このCaCOをCa(HCO3)に戻すための処理として、再生処理を行う。
 図12に示すように、流路の内壁面に付着したCaCOに対して二酸化炭素の微細気泡を供給することで、以下の反応が促進される。
(式4)
 CaCO+CO+HO→Ca(HCO
 当該反応により、不溶性のCaCOから可溶性(水溶性)のCa(HCOが生成される。Ca(HCOは水の中に溶け出していく。これにより、流路の内壁面に付着していた不溶性のCaCOを外部に排出し、元の状態に戻すことができる。
 なお、上記実施形態2では、第1流路22、第2流路24、第3流路38に二酸化炭素の微細気泡を供給可能である場合について説明したが、このような場合に限らない。例えば、図11に示した供給流路68および微細気泡発生装置74を省略して、第1流路22および第2流路24にのみ二酸化炭素の微細気泡を供給可能としてもよい。
(実施形態3)
 本発明に係る実施形態3のイオン除去システムについて説明する。なお、実施形態3では、主に実施形態1と異なる点について説明し、実施形態1と重複する記載は省略する。
 図13に示す実施形態3のイオン除去システム80は、硬水流路4と、バッチ処理タンク6と、微細気泡発生装置82と、電気分解装置8と、分離装置84A、84Bと、制御部86とを備える。
 微細気泡発生装置82は、硬水流路4から供給される硬水に微細気泡を発生させる装置である。実施形態3の微細気泡発生装置82は、電気分解装置8の上流側に設けられている。
 硬水流路4が微細気泡発生装置82に接続される箇所では、硬水流路4が2つの流路に分岐している。これらの流路は、後述する第1流路88、第2流路90のそれぞれに対応している。
 電気分解装置8の下流側には、第1流路88と第2流路90とが接続されている。第1流路88と第2流路90は、電気分解装置8が生成するアルカリ水と酸性水を交互に通水可能な流路である。
 第1流路88の途中には分岐流路89が接続されている。同様に、第2流路90の途中には分岐流路91が接続されている。
 分岐流路89は、第1流路88と硬水流路4の間に接続される流路である。分岐流路91は、第2流路90と硬水流路4の間に接続される流路である。分岐流路89、91はともに、硬水流路4におけるバッチ処理タンク6と微細気泡発生装置82の間の位置に接続される。
 分岐流路89、91の途中にはそれぞれ、バルブ93、95が設けられている。バルブ93、95はそれぞれ、分岐流路89、91の通水および止水を切り替えるための弁である(実施形態3では電磁弁)。
 第1流路88の下流側には分離装置84Aが接続されている。同様に、第2流路90の下流側には分離装置84Bが接続されている。分離装置84A、84Bは、水中を流れる金属成分の結晶を遠心分離する装置である。
 分離装置84Aには、第3流路92が接続されている。第3流路92は、分離装置84Aにより結晶が分離された処理水を通水する流路である。第3流路92の途中には第1戻し流路94が接続されている。第1戻し流路94は、第3流路92からバッチ処理タンク6に接続された流路である。第1戻し流路94が第3流路92に接続される箇所にはバルブ96が設けられている(実施形態3では電動弁)。
 分離装置84Bにも同様に、第4流路98が接続されている。第4流路98は、分離装置84Bにより結晶が分離された処理水を通水する流路である。第4流路98の途中には第2戻し流路100が接続されている。第2戻し流路100は、第4流路98からバッチ処理タンク6に接続された流路である。第2戻し流路100が第4流路98に接続される箇所にはバルブ101が設けられている(実施形態3では電動弁)。
 分離装置84A、84Bにはさらに、第3戻し流路102、第4戻し流路104がそれぞれ接続されている。第3戻し流路102は、分離装置84Aから硬水流路4に接続される流路であり、第4戻し流路104は、分離装置84Bから硬水流路4に接続される流路である。第3戻し流路102は、分離装置84Aにより分離された金属成分の結晶を含む水を通水する流路であり、第4戻し流路104は、分離装置84Bにより分離された金属成分の結晶を含む水を通水する流路である。
 第3戻し流路102と第4戻し流路104はともに、バッチ処理タンク6とポンプ14の間の位置で硬水流路4に接続される。第3戻し流路102と第4戻し流路104が硬水流路4に接続される接続ポイントは、バッチ処理タンク6よりも下流側、かつ、分岐流路89と分岐流路91が硬水流路4に接続される接続ポイントよりも上流側に位置する。
 第3戻し流路102の途中には、第1排水流路106が接続されている。同様に、第4戻し流路104の途中には、第2排水流路108が接続されている。第1排水流路106、第2排水流路108は、バッチ処理タンク6を経由せずにイオン除去システム80の系外に延びる流路である。
 第1排水流路106が第3戻し流路102に接続される箇所にはバルブ110が設けられている(実施形態3では電動弁)。同様に、第2排水流路108が第4戻し流路104に接続される箇所にはバルブ112が設けられている(実施形態3では電動弁)。
 図13に示すように、第3流路92の途中には、pHセンサ42と濁度センサ44とが設けられている。第3流路92の途中にはさらに、第5戻し流路111が接続されている。第5戻し流路111が第3流路92に接続する箇所にはバルブ47が設けられている(実施形態3では電動弁)。
 制御部86は、上述した構成を有するイオン除去システム80を複数の運転モードで運転する。これらの運転モードについて説明する。
(原水注水モード)
 原水注水モードは、イオン除去システム80の運転を開始する際に、原水である硬水を各流路に注入するモードである。具体的には、図14A、図14Bに示すような流れを生じさせるように制御部86が制御する。
 図14Aは、原水注水モードの第1段階として、流路に残存している残水を排水するモードを示す。図14Aに示すように、制御部86は、硬水流路4に硬水を通水するようにバルブ11を開くとともに、バッチ処理タンク6の硬水を電気分解装置8に供給するようにポンプ14を駆動する。制御部86は、硬水流路4から分岐流路89、91に通水しないようにバルブ93、95の開閉を制御する。制御部86はさらに、電気分解装置8を運転せず、硬水流路4に通水する硬水を第1流路88と第2流路90にそのまま通水する。制御部86はさらに、第1流路88に通水した硬水を分離装置84Aから第1排水流路106に通水するようにバルブ110の開閉を制御し、第2流路90に通水した硬水を分離装置84Bから第2排水流路108に通水するようにバルブ112の開閉を制御する。これにより、図14Aに示すような矢印の流れが生じ、各流路に残存している残水が排水される。
 図14Bは、原水注水モードの第2段階として、バッチ処理タンク6に新たな硬水を注入するモードを示す。制御部86は、図14Aに示す状態からバルブ96、101、110、112の開閉を変更する。具体的には、第1流路88に通水される硬水を分離装置84Aから第1戻し流路94と第3戻し流路102の両方へ通水するようにバルブ96、110を制御する。同様に、第2流路90に通水される硬水を分離装置84Bから第2戻し流路100と第4戻し流路104の両方へ通水するようにバルブ101、112を制御する。これにより、図14Bに示すような矢印の流れが生じ、バッチ処理タンク6に新たな硬水が注入される。
 また、分離装置84A、84Bをそれぞれ駆動することで、金属成分の結晶が分離された硬水をバッチ処理タンク6に供給し、金属成分の結晶を含む硬水をバッチ処理タンク6の下流側における硬水流路4に供給する。
 上述した原水注水モードを実行した後、以下で説明する第1結晶化処理モードあるいは第2結晶化処理モードを実行する。
(第1結晶化処理モード(第1モード))
 図15Aは、第1結晶化処理モードを示す。制御部86はバルブ11を閉じるとともに、バッチ処理タンク6に収容された硬水を微細気泡発生装置82および電気分解装置8に供給するようにポンプ14を駆動する。制御部86はさらに、電気分解装置8を駆動して、アルカリ水と酸性水を生成させる。
 電気分解装置8が生成するアルカリ水と酸性水のうち、第1結晶化処理モードでは、アルカリ水を第1流路88に通水し、酸性水を第2流路90に通水するように制御部86が電気分解装置8を制御する。
 電気分解装置8の上流側に設けられた微細気泡発生装置82により、アルカリ水と酸性水には微細気泡が供給される。微細気泡の供給により、特に第1流路88に通水されるアルカリ水中に含まれる金属イオンが微細気泡に吸着されるとともに、金属成分の結晶として析出した状態で、分離装置84Aに送られる。
 制御部86は、分離装置84Aを駆動する。分離装置84Aは、処理水に含まれる金属成分の結晶を分離する。分離装置84Aは、結晶が分離された処理水を第3流路92を介して第1戻し流路94へ供給し、結晶を含む処理水を第3戻し流路102に供給するように制御される。このような制御によれば、結晶が分離された処理水はバッチ処理タンク6に溜められ、結晶を含む処理水は、バッチ処理タンク6の下流側で硬水流路4に戻される。これにより、図15Aに示すような矢印の流れが生じる。
 図15Aに示す流れにおいては、バッチ処理タンク6、電気分解装置8、第1流路88、第1戻し流路94の順にアルカリ水がループして流れる循環流路が形成される。当該循環流路では、金属成分の結晶が分離された処理水が第1戻し流路94に通水される。このため、バッチ処理タンク6に溜められる処理水では金属成分の結晶の割合が少なくなっていく。当該循環流路とは別の循環流路として、バッチ処理タンク6、電気分解装置8、第1流路88、第3戻し流路102の順にアルカリ水がループして流れる循環流路が形成される。当該循環経路では、第3戻し流路102において金属成分の結晶を含む処理水が通水される。
 上記制御によれば、バッチ処理タンク6には金属成分の結晶が分離された処理水を溜めていくことで、バッチ処理タンク6の処理水に含まれる金属成分の結晶の割合を少なくしていくことができる。一方で、金属成分の結晶を含むアルカリ水はバッチ処理タンク6を除く循環流路を循環させることで、金属成分の結晶に新たに結晶を付着させる形で金属成分の結晶化を促進することができる。
 なお、第2流路90に通水される酸性水は、分離装置84Bから第2排水流路108を経由してイオン除去システム2の系外に排水される。
(第2結晶化処理モード(第2モード))
 図15Bは、第2結晶化処理モードを示す。第2結晶化処理モードでは、図15Aに示した第1結晶化処理モードと異なり、電気分解装置8が生成したアルカリ水と酸性水のうち、酸性水を第1流路88に通水し、アルカリ水を第2流路90に通水するように電気分解装置8が制御される。
 電気分解装置8の上流側に設けられた微細気泡発生装置82により、アルカリ水と酸性水には微細気泡が供給される。微細気泡の供給により、特に第2流路90に通水されるアルカリ水中に含まれる金属イオンが微細気泡に吸着されるとともに、金属成分の結晶として析出した状態で、分離装置84Bに送られる。
 制御部86は、分離装置84Bを駆動して、処理水に含まれる金属成分の結晶を分離する。分離装置84Bは、結晶が分離された処理水を第4流路98を介して第2戻し流路100へ供給し、結晶を含む処理水を第4戻し流路104に供給するように制御される。このような制御によれば、結晶が分離された処理水はバッチ処理タンク6に溜められ、結晶を含む処理水は、バッチ処理タンク6の下流側で硬水流路4に戻される。これにより、図15Bに示すような矢印の流れが生じる。
 図15Bに示す流れにおいては、バッチ処理タンク6、電気分解装置8、第2流路90、第2戻し流路100の順にアルカリ水がループして流れる循環流路が形成される。当該循環流路では、第2戻し流路100において金属成分の結晶が分離された処理水が通水される。このため、バッチ処理タンク6に溜められる処理水では金属成分の結晶の割合が少なくなっていく。当該循環流路とは別の循環流路として、バッチ処理タンク6、電気分解装置8、第2流路90、第4戻し流路104の順にアルカリ水がループして流れる循環流路が形成される。当該循環経路では、第4戻し流路104において金属成分の結晶を含む処理水が通水される。
 上記制御によれば、バッチ処理タンク6には金属成分の結晶が分離された処理水を溜めつつ、金属成分の結晶を含む処理水はバッチ処理タンク6を除く循環流路を循環させている。これにより、第1結晶化処理モードと同様の効果を奏することができる。
 なお、第1流路88に通水される酸性水は、第1排水流路106を経由してイオン除去システム2の系外に排水される。
 制御部86は、上述した第1結晶化処理モード又は第2結晶化処理モードを実行した後、以下で説明する第1処理水供給モード又は第2処理水供給モードを実行する。具体的には、第1結晶化処理モードの後に第1処理水供給モードを実行し、第2結晶化処理モードの後に第2処理水供給モードを実行する。
(第1処理水供給モード)
 図16Aは、第1処理水供給モードを示す。第1処理水供給モードは、第1結晶化処理モードで硬水を処理することにより得られた処理水を水栓52に供給する運転モードである。
 制御部86はまず、分岐流路89へ通水するようにバルブ93の開閉を制御する。この状態でポンプ14を駆動することにより、バッチ処理タンク6に溜められた処理水を分岐流路89に通水する。制御部13はこのとき、微細気泡発生装置82および分岐流路91への流れを止水するように、バルブ20、95の開閉を制御する。
 分岐流路89に通水された処理水は分離装置84Aに送られる。分離装置84Aは、処理水に含まれる金属成分の結晶を分離する。分離装置84Aは、結晶が分離された処理水を第3流路92に供給し、結晶を含む処理水を第1排水流路106を介して排水する。
 第3流路92に通水された処理水は、貯水タンク48に溜められる。その後、ポンプ50を作動させることにより、貯水タンク48に溜められた処理水、すなわち軟水を水栓52に供給して利用することができる。
 上述のように分離装置84Aにより金属成分の結晶の分離を行うことで、バッチ処理タンク6から水栓52に供給される処理水における金属成分の結晶の割合をさらに少なくすることができる。
(第2処理水供給モード)
 図16Bは、第2処理水供給モードを示す。第2処理水供給モードは、第2結晶化処理モードで硬水を処理することにより得られた処理水を水栓52に供給する運転モードである。
 制御部86はまず、分岐流路91へ通水するようにバルブ95の開閉を制御する。この状態でポンプ14を駆動することにより、バッチ処理タンク6に溜められた処理水を分岐流路91に通水する。制御部13はこのとき、微細気泡発生装置82および分岐流路89への流れを止水するように、バルブ20、93の開閉を制御する。
 分岐流路19に通水された処理水は分離装置84Bに送られる。分離装置84Bは、処理水に含まれる金属成分の結晶を分離する。分離装置84Bは、結晶が分離された処理水を第4流路98に供給し、結晶を含む処理水を第2排水流路108を介して排水するように制御される。
 第4流路98に通水された処理水は、貯水タンク48に溜められる。その後、ポンプ50を作動させることにより、貯水タンク48に溜められた処理水、すなわち軟水を水栓52に供給して利用することができる。
 上述のように分離装置84Bにより金属成分の結晶の分離を行うことで、バッチ処理タンク6から水栓52に供給される処理水における金属成分の結晶の割合をさらに少なくすることができる。
 制御部86は、上述した原水注水モード、第1結晶化処理モード、第1処理水供給モードを順に行う制御と、原水注水モード、第2結晶化処理モード、第2処理水供給モードを順に行う制御を交互に行う。第1結晶化処理モードと第2結晶化処理モードを交互に実施することにより、アルカリ水を通水した流路を酸性水で洗浄することができ、イオン除去システム2内の流路を金属イオンの除去処理に適した状態に保つことができる。
 制御部86は、上述したモードとは別のモードとして、以下で説明する第1洗浄モード、第2洗浄モード、異常発生時モードを実行可能である。
(第1洗浄モード)
 図17Aは、第1洗浄モードを示す。図17Aに示す第1洗浄モードは、図15Bに示した第2結晶化処理モードと同じ流れを生じさせるものである。図15Bに示した第2結晶化処理モードと異なる点は、電気分解装置8が生成するアルカリ水と酸性水のうち、アルカリ水を第1流路88に通水し、酸性水を第2流路90に通水するように電気分解装置8が制御される点である。
 第2流路90に通水された酸性水は、分離装置84Bを経由して、第4流路98から第2戻し流路100へ通水され、さらに第4戻し流路104へ通水される。前述した第1結晶化処理モードと第2結晶化処理モードでは酸性水の流れなかった第2戻し流路100や第4戻し流路104に酸性水を通水することで、これらの流路を洗浄することができる。
(第2洗浄モード)
 図17Bは、第2洗浄モードを示す。図17Bに示す第2洗浄モードは、図15Aに示した第1結晶化処理モードと同じ流れを生じさせるものである。図15Aに示した第1結晶化処理モードと異なる点は、電気分解装置8が生成するアルカリ水と酸性水のうち、酸性水を第1流路88に通水し、アルカリ水を第2流路90に通水するように電気分解装置8が制御される点である。
 第1流路88に通水された酸性水は、分離装置84Aを経由して、第3流路92から第1戻し流路94へ通水され、さらに第3戻し流路102へ通水される。前述した第1結晶化処理モードと第2結晶化処理モードでは酸性水の流れなかった第1戻し流路94や第3戻し流路102に酸性水を通水することで、これらの流路を洗浄することができる。
 上述した第1洗浄モードと第2洗浄モードは、所定のタイミングあるいは任意のタイミングで実行してもよい。
(異常発生時モード)
 図16A、図16Bに示した処理水供給モードにおいて、第3流路92に通水される処理水に関してpHセンサ42と濁度センサ44のそれぞれの測定値が異常値として検出される場合がある。そのような場合に、貯水タンク48への処理水の通水を停止するために、以下で説明する異常発生時モードを実行する。
 図18は、異常発生時モードを示す。制御部86は、図16Aに示す処理水供給モードからバルブ47の開閉制御を変更する。具体的には、第3流路92から貯水タンク48への流路を止水し、第3流路92から第5戻し流路111へ通水するようにバルブ47の開閉を制御する。これにより、図18に示すような矢印の流れが生じる。
 第3流路92から貯水タンク48への流れを止水することで、pH値あるいは濁度の異常値が検出された処理水の供給を停止することができる。
 上述した実施形態2のイオン除去システム80によれば、実施形態1のイオン除去システム2と同様の作用効果を奏することができる。
(実施形態4)
 本発明に係る実施形態4のイオン除去システムについて説明する。なお、実施形態4では、主に実施形態1と異なる点について説明し、実施形態1と重複する記載は省略する。
 実施形態4では、電気分解装置8に対して硬水流路4を1本の流路で接続した点、バルブ204、206、208、210が流量調整可能である点、脱気泡装置202A、202Bおよび添加物投入装置212を備える点が主に、実施の形態1と異なる。
 図19は、実施形態4におけるイオン除去システム200の概略図である。
 図19に示す実施形態4のイオン除去システム200は、実施形態1のイオン除去システム2と異なる構成として、脱気泡装置202A、202Bを備える。
 脱気泡装置202A、202Bはそれぞれ、第1流路22、第2流路24を流れる水に含まれる気泡を外部に排出するための装置である。実施形態4の脱気泡装置202A、202Bは、第1流路22、第2流路24を流れる水に対してそれぞれ遠心分離を行うことにより、気泡を外部に排出する。脱気泡装置202A、202Bによって気泡を排出することにより、微細気泡発生装置10A、10Bに送られる水に含まれる気泡の量を低減することができる。
 電気分解装置8を運転するとアルカリ水および酸性水が生成されると同時に、HやO等の気泡が発生する。このような気泡を多く含む水が微細気泡発生装置10A、10Bに送られると、図8等を用いて説明した微細気泡による気泡収縮の効果が妨げられ、結果として金属イオンの結晶化が阻害されるおそれがある。これに対して、脱気泡装置202A、202Bを設けて第1流路22、第2流路24の中の気泡を排出することで、微細気泡による金属イオンの結晶化を促進することができる。
 実施形態4のイオン除去システム200はさらに、バルブ204、206、208、210を備える。バルブ204、206、208、210のそれぞれは、実施形態1のバルブ18、30、34、47に対応する電動弁である(図1等を参照)。バルブ204、206、208、210のそれぞれは、一方の流路を閉じて他方の流路を開くという機能に加えて、当該他方の流路を開く開度を調整して流量を可変にする機能を有する。
 このような流量調整機能によれば、バルブ204は、バッチ処理タンク6から電気分解装置8に供給する硬水/処理水の流量を可変とすることができ、同様に、硬水流路4から分岐流路36に供給する処理水の流量を可変とすることができる。バルブ206、208、210についても同様である。
 実施形態4のイオン除去システム200はさらに、実施形態1のイオン除去システム2と異なる構成として、添加物投入装置212を備える。添加物投入装置212は、処理水を通水する第3流路38に添加物を投入する装置である。実施形態4の添加物投入装置212は、添加物として二酸化炭素を投入する。二酸化炭素を投入することにより、第3流路38を流れる処理水のpHを低下させるとともに濁度を低下させることができる。具体的には後述する。
 制御部214は、上述した構成を有するイオン除去システム200を複数の運転モードで運転する。具体的には、実施形態1のイオン除去システム2と同様に、原水注水モード、第1結晶化処理モード、第2結晶化処理モード、処理水供給モード、第1洗浄モード、第2洗浄モードを実行する。実施形態4では、実施形態1のイオン除去システム2と異なり、2種類の異常発生時モードを実行する。これらのモードにおける水の流れを図20A~図24Bに示す。
 図20Aは、原水注入モードの第1段階を示し、図20Bは、原水注入モードの第2段階を示す。図21Aは、第1結晶化処理モード示し、図21Bは、第2結晶化処理モードを示す。図22は、処理水供給モードを示す。図23Aは、第1洗浄モードを示し、図23Bは、第2洗浄モードを示す。図24Aは、第1異常発生時モードを示し、図24Bは、第2異常発生時モードを示す。
 図20A~図24Aにおける水の流れは、実施形態1の図2A~図6と同様であり、説明を省略する。
 実施形態1~3と共通する制御内容については説明を省略し、実施形態4における制御部214の制御について説明する。
 制御部214は、図20A、図20B、図21A、図21B、図23A、図23Bに示すモードにおいて、バッチ処理タンク6から電気分解装置8に硬水/処理水を供給する際に、バルブ204の開度を調整することにより流量を調整する。同様に、制御部214は、図22、図24Aに示すモードにおいて、バッチ処理タンク6から分岐流路36に処理水を供給する際に、バルブ204の開度を調整することにより流量を調整する。
 制御部214は、図21A、図23Aに示すモードにおいて、第1流路22から第1戻し流路26にアルカリ水を流す際に、バルブ206の開度を調整することにより流量を調整する。同様に、制御部214は、第2流路24から第2排水流路32に酸性水を流す際に、バルブ208の開度を調整することにより流量を調整する。このような制御により、電気分解装置8が発生させるアルカリ水と酸性水の流量を調整することができる。
 また、制御部214は、図21B、図23Bに示すモードにおいて、第1流路22から第1排水流路28に酸性水を流す際に、バルブ206の開度を調整することにより流量を調整する。同様に、制御部214は、図21B、図23Bに示すモードにおいて、第2流路24から第2戻し流路31にアルカリ水を流す際に、バルブ208の開度を調整することにより流量を調整する。このような制御により、電気分解装置8が発生させるアルカリ水と酸性水の流量を調整することができる。
 ここで、実施形態4の制御部214は、電気分解装置8を運転してアルカリ水と酸性水を発生させる際に、酸性水の流量が少なくなるようにバルブ206、208の開度を調整している。具体的には、図21B、図23Bに示すようにバルブ206が酸性水を流す場合は、図21A、図23Aに示すようにアルカリ水を流す場合よりもバルブ206の開度を小さく設定して、酸性水の流量を少なくする。同様に、図21A、図23Aに示すようにバルブ208が酸性水を通過させる場合は、図21B、図23Bに示すようにアルカリ水を流す場合よりもバルブ208の開度を小さく設定して、酸性水の流量を少なくする。このように、第1、第2結晶化処理モードと第1、第2洗浄処理モードにおいてバルブ206、208が酸性水を流す場合の開度をそれぞれ小さく設定して、酸性水の流量を少なくすることで、各流路における酸性水の酸性度を高めることができる。これにより、酸性水による流路の洗浄効果を高めることができる。
 次に、2種類の異常発生時モードについて、図24A、図24Bを用いて説明する。図24Aは、第1異常発生時モードを示し、図24Bは、第2異常発生時モードを示す。
(第1異常発生時モード)
 第1異常発生時モードは、実施形態1の異常発生時モードと同様であり、図24Aに示す水の流れは、図6に示す水の流れと同様である。
 図22に示した処理水供給モードにおいて、第3流路38から貯水タンク48に供給される処理水に関して、pHセンサ42と濁度センサ44のそれぞれの測定値が異常値として検出される場合がある。制御部214は例えば、pHセンサ42と濁度センサ44のそれぞれの測定値に関して予め、正常な数値範囲を記憶しており、当該数値範囲から外れた測定値を検出したときに異常値として検出する。
 制御部214は、pHセンサ42と濁度センサ44の測定値のうちの少なくとも1つに異常値を検出した場合に、バルブ210の開閉を切り替えるように制御する。具体的には、第3流路38から貯水タンク48へ通水して第3戻し流路46には止水していたところ、第3流路38から第3戻し流路46へ通水して貯水タンク48には止水するように、バルブ210の開閉を制御する。これにより、図22に示す矢印の流れから、図24Aに示す矢印の流れに切り替わる。
 図24Aに示す第1異常発生時モードでは、第3戻し流路46を含んだ一連の流路として循環流路が構成される。具体的には、第3戻し流路46、バッチ処理タンク6、硬水流路4、分岐流路36、分離装置12、第3流路38の順に処理水が流れる循環流路が構成される。
 当該循環流路において、添加物投入装置212によって二酸化炭素が投入される。処理水に二酸化炭素を投入することで、二酸化炭素が処理水に溶けて、処理水の酸性度が高まる。これにより、循環流路における処理水のpHを低下させることができる。二酸化炭素はさらに、図12で説明したように、結晶として析出している不溶性のCaCOと反応して可溶性のCa(HCOを生成するように作用する。これにより、循環流路における処理水の濁度を低下させることができる。このように、二酸化炭素は処理水のpHと濁度の両方を低下させる機能を有する。
 循環流路に二酸化炭素を継続的に供給することで、pHセンサ42あるいは濁度センサ44の測定値が異常値として検出された場合でも、処理水を循環させながら、当該測定値を正常値に近付けるようにすることができる。
 測定値が正常値に戻ると、制御部214は、第3流路38から貯水タンク48へ通水して第3戻し流路46は止水するように、バルブ210の開閉を制御する。これにより、水の流れは、図24Aに示す第1異常発生時モードから、図22に示す処理水供給モードの流れに切り替わる。
 上述した制御によれば、処理水のpHと濁度に関して異常値が検出された場合に、貯水タンク48へ処理水を供給しないようにしながら、循環流路に二酸化炭素を投入して処理水のpHと濁度を低下させて、処理水の特性を変化させることができる。これにより、所望の特性を有する処理水を貯水タンク48へ供給するように制御することができる。
 pHセンサ42と濁度センサ44を設ける位置は、図24A等に示す位置に限らない。例えば、貯水タンク48の中にpHセンサと濁度センサを設けてもよい。この場合、第3戻し流路46とバルブ210を省略するとともに、ポンプ50と水栓52の間にバルブおよび当該バルブに接続した排水流路を設けてもよい。このような構成において、貯水タンク48の中に設けたpHセンサあるいは濁度センサの測定値に基づいて、制御部214は、ポンプ50と水栓52の間に設けたバルブの開閉を制御してもよい。具体的には、pHセンサあるいは濁度センサの測定値が異常値として検出された場合に、制御部214は、水栓52へは通水せずに排水流路に通水するように当該バルブの開閉を制御する。このような制御によれば、実施形態4の第1異常発生時モードと同様に、処理水の特性に関する測定値に基づいて処理水供給ポイントである水栓52への処理水の供給を制御する。これにより、所望の特性を有する処理水をユーザに供給することができ、イオン除去システム200の信頼性を向上させることができる。
 図24Aに示すような構成では、分離装置12によって結晶が分離されるため、分岐流路36と第3流路38では処理水の濁度が変化し、第3流路38の方が濁度が小さくなる。濁度センサ44を第3流路38に設けることで、貯水タンク48に供給される処理水の濁度を精度良く観察することができる。また、添加物投入装置212によって二酸化炭素が投入されるため、添加物投入装置212の上流側と下流側では処理水の濁度とpHが変化する。pHセンサ42と濁度センサ44を添加物投入装置212の下流側に設けることで、貯水タンク48に供給される処理水の濁度とpHを精度良く観察することができる。
 添加物投入装置212が添加する添加物は、処理水のpHあるいは濁度を低下させるものであれば、二酸化炭素以外であってもよい。また、複数種類の添加物を投入する場合であってもよい。
 あるいは、添加物投入装置212を設けない場合であってもよい。添加物投入装置212を設けずに処理水のpHと濁度を下げる手段がない場合は、第3戻し流路46を含む循環流路に処理水を循環させる制御に代えて、単に、イオン除去システム200の運転を停止する制御を実行してもよい。このような制御であっても、pHセンサ42あるいは濁度センサ44の測定値に基づいて貯水タンク48への処理水の供給を停止することで、処理水供給ポイントである水栓52への処理水の供給を制御し、所望の特性を有する処理水を水栓52へ供給できる。
 pHセンサ42と濁度センサ44の両方を設ける場合に限らず、pHセンサ42と濁度センサ44のうち少なくとも一方を設ける場合であってもよい。
 上述した実施形態4の第1異常発生時モードを実行するイオン除去システム200によれば、実施形態1~3の異常発生時モードを実行するイオン除去システム2、80と同様に、以下に記載するような第1態様~第10態様によるイオン除去システムを提供できる。
 本発明の第1態様は、電気分解によりアルカリ水と酸性水とを生成する電気分解装置8と、電気分解装置8に接続され、電気分解装置8に硬水を供給する硬水流路4と、電気分解装置8の上流側又は下流側の流路で微細気泡を発生させる微細気泡発生装置10A、10Bと、電気分解装置8が生成したアルカリ水を含んだ微細気泡供給後の処理水を通水する第1処理水流路(分岐流路36)と、第1処理水流路から供給される処理水を貯留するタンクであって、ユーザへの処理水供給ポイント(水栓52)へ処理水を供給可能な貯水タンク48と、処理水又は硬水の特性に関する測定値を取得するセンサ(pHセンサ42、濁度センサ44)と、制御部214と、を備え、制御部214は、センサの測定値に基づいて、処理水供給ポイントへの処理水の供給を制御する、イオン除去システム200である。
 このような構成によれば、処理水又は硬水の特性に関する測定値に基づいて処理水供給ポイントへの処理水の供給を制御することにより、所望の処理水をユーザに供給することができる。これにより、イオン除去システム200の信頼性を向上させることができる。
 本発明の第2態様は、貯水タンク48への処理水の通水および止水を切り替えるバルブ210をさらに備え、制御部214は、センサ(pHセンサ42、濁度センサ44)の測定値に基づいて、バルブ210の開閉を制御することにより、処理水供給ポイントへの処理水の供給を制御する、第1態様に記載のイオン除去システム200である。
 このような構成によれば、センサの測定値に基づいて貯水タンク48又は処理水供給ポイントへの処理水の通水および止水を切り替えることにより、測定値が異常値である場合は処理水供給ポイントに処理水を送らないように制御することができる。
 本発明の第3態様は、バルブ210は、貯水タンク48の上流側に設けられており、バルブ210から硬水流路4の途中に接続されるバイパス流路(第3戻し流路46)をさらに備え、制御部214は、センサ(pHセンサ42、濁度センサ44)の測定値に基づいてバルブ210の開閉を制御することにより、バイパス流路へ通水せずに貯水タンク48へ通水する第1モード(処理水供給モード)と、貯水タンク48へ通水せずにバイパス流路へ通水する第2モード(第1異常発生時モード)を切り替える、第2態様に記載のイオン除去システム200である。
 このような構成によれば、センサの測定値が異常値である場合にバイパス流路に通水することで、バイパス流路を含む循環流路で処理水を循環させることができる。これにより、循環流路で処理水の特性を変化させる手段をとることができる。
 本発明の第4態様は、バイパス流路(分岐流路36)を含む循環流路に処理水の特性を変化させる添加物を投入する添加物投入装置212をさらに備える、第3態様に記載のイオン除去システム200である。
 このような構成によれば、バイパス流路を含む循環流路で処理水の特性を調整することができる。
 本発明の第5態様は、添加物は二酸化炭素である、第4態様に記載のイオン除去システム200である。
 このような構成によれば、処理水に二酸化炭素を投入することで処理水のpHと濁度を低下させることができる。
 本発明の第6態様は、第1処理水流路(分岐流路36)を流れる処理水に含まれる金属成分の結晶を分離する分離装置12と、分離装置12と貯水タンク48の間に接続され、分離装置12により金属成分の結晶が取り除かれた処理水を通水する第2処理水流路(第3流路38)と、をさらに備え、バルブ210は、第2処理水流路に設けられる、第2態様から第5態様のいずれか1つに記載のイオン除去システム200である。
 このような構成によれば、貯水タンク48に対して金属成分の結晶を取り除いた処理水を供給することで、所望の処理水を貯水タンク48に貯水することができる。
 本発明の第7態様は、センサ(pHセンサ42、濁度センサ44)は、第2処理水流路(第3流路38)におけるバルブ210の上流側に設けられる、第6態様に記載のイオン除去システム200である。
 このような構成によれば、センサを第2処理水流路におけるバルブ210の上流側に設けることで、貯水タンク48に近い位置で処理水の特性を監視しながらバルブ210の開閉を切り替えることができる。これにより、所望の処理水を貯水タンク48へ供給することができる。
 本発明の第8態様は、電気分解装置8が生成したアルカリ水又は酸性水を硬水流路4に戻す戻し流路26、31をさらに備え、第1処理水流路(分岐流路36)は、戻し流路26、31が硬水流路4に接続される接続ポイント(バッチ処理タンク6)と電気分解装置8との間で硬水流路4から分岐する流路であり、微細気泡発生装置10A、10Bは、硬水流路4、電気分解装置8および戻し流路26、31を含む循環流路で微細気泡を発生させる、第1態様から第7態様のいずれか1つに記載のイオン除去システム200である。
 このような構成によれば、戻し流路26、31を含む循環流路でアルカリ水を循環させる運転が可能となり、循環流路を流れる水のpH値を上昇させながら、微細気泡による金属イオンの除去を行うことができる。これにより、微細気泡によって除去する金属イオンの結晶化を促進することができ、金属イオンの除去効果を高めることができる。
 本発明の第9態様は、硬水流路4の途中に設けられ、硬水を収容するバッチ処理タンク6をさらに備え、戻し流路26、31は、バッチ処理タンク6に接続される、第8態様に記載のイオン除去システム200である。
 このような構成によれば、バッチ処理が可能となる。
 本発明の第10態様は、センサは、pHセンサ42および濁度センサ44のうちの少なくとも1つである、第1態様から第9態様のいずれか1つに記載のイオン除去システム200である。
 このような構成によれば、処理水のpHと濁度を監視することができる。なお、pHセンサ42に代えて、イオン量を測定するイオンセンサ(ISFET:イオン感応性電解効果トランジスタ)を用いてもよい。また、濁度センサ44に代えて、光透過率を検出する赤外線センサ、あるいは水中粒子の速度を検出する超音波センサを用いてもよい。
(第2異常発生時モード)
 次に、図24Bを用いて、第2異常発生時モードについて説明する。
 第2異常発生時モードは、pHセンサ42および濁度センサ44とは異なるセンサである流量センサ16の測定値に基づいて、処理水供給ポイントである水栓52への処理水の供給を制御するものである。
 図20A~図23Bに示すモードのいずれかにおいて、バッチ処理タンク6から流れる処理水に関して、流量センサ16の測定値が異常値として検出される場合がある。制御部214は例えば、流量センサ16の測定値に関して予め、正常な数値範囲を記憶しており、当該数値範囲から外れた測定値を検出した場合に異常値として検出する。
 制御部214は、流量センサ16の測定値を異常値として検出した場合に、イオン除去システム200の運転、特に電気分解装置8の運転を停止する。これにより、電気分解装置8で電気分解処理を行わず、アルカリ水と酸性水を生成しないように制御し、図24Bに示すようにいずれの流路にも水が流れないようにする。このようにして、処理水供給ポイントである水栓52への処理水の供給を停止するように制御する。
 流量センサ16の測定値が正常な範囲よりも高い場合には、イオン除去システム200のいずれかの流路に詰まり等が生じている可能性がある。このような場合にイオン除去システム200の運転を停止することで、水栓52への処理水の供給を停止しながら、流路の詰まりを解消する等、復旧作業を行うことができる。これにより、所望の特性を有する処理水を水栓52へ供給するように制御することができ、イオン除去システム200の信頼性を向上させることができる。
 なお、流量センサ16に代えて、圧力センサを用いてもよい。圧力センサに基づいて制御した場合であっても、流路における詰まり等の異常を検出することができる。
 微細気泡発生装置10A、10Bおよび流量センサ16を設ける位置は、図24Bに示す位置に限らない。微細気泡発生装置10A、10Bは、電気分解装置8の下流側に限らず、電気分解装置8の上流側に設けてもよい。また、バッチ処理タンク6、電気分解装置8、第1流路22、第2流路24、第1戻し流路26および第2戻し流路31を含む循環流路であれば、微細気泡発生装置10A、10Bおよび流量センサ16を任意の位置に設けてもよい。
 上述した第2異常発生時モードを実行するイオン除去システム200は、第1異常発生時モードを実行するイオン除去システム200と同様に、本発明の第1態様であるイオン除去システムを提供する。具体的には、電気分解によりアルカリ水と酸性水とを生成する電気分解装置8と、電気分解装置8に接続され、電気分解装置8に硬水を供給する硬水流路4と、電気分解装置8の上流側又は下流側の流路で微細気泡を発生させる微細気泡発生装置10A、10Bと、電気分解装置8が生成したアルカリ水を含んだ微細気泡供給後の処理水を通水する第1処理水流路(分岐流路36)と、第1処理水流路から供給される処理水を貯留するタンクであって、ユーザへの処理水供給ポイント(水栓52)へ処理水を供給可能な貯水タンク48と、処理水又は硬水の特性に関する測定値を取得するセンサ(流量センサ16)と、制御部214と、を備え、制御部214は、センサの測定値に基づいて、処理水供給ポイントへの処理水の供給を制御するイオン除去システム200である。
 このような構成によれば、処理水又は硬水の特性に関する測定値に基づいて処理水供給ポイントへの処理水の供給を制御することにより、所望の処理水をユーザに供給することができる。これにより、イオン除去システム200の信頼性を向上させることができる。
 また、上述した第2異常発生時モードを実行するイオン除去システム200によれば、以下に記載するような第11態様~第17態様によるイオン除去システムを提供できる。
 本発明の第11態様は、制御部214は、センサ(流量センサ16)の測定値に基づいて、電気分解装置8のON/OFFを制御することにより、処理水供給ポイント(水栓52)への処理水の供給を制御する、第1態様に記載のイオン除去システムである。
 このような構成によれば、異常が発生したときに電気分解装置8の運転を自動で停止させて、貯水タンク48および処理水供給ポイントへ処理水を供給しないようにすることができる。
 本発明の第12態様は、電気分解装置8が生成したアルカリ水又は酸性水を硬水流路4に戻すように硬水流路4に接続される戻し流路26、31をさらに備え、第1処理水流路(分岐流路36)は、硬水流路4において戻し流路26、31が接続される接続ポイントよりも下流側で硬水流路4から分岐する流路であり、当該分岐点に設けたバルブ204によって、硬水流路4から第1処理水流路への通水および止水が切り替えられるように構成されており、微細気泡発生装置10A、10Bおよびセンサ(流量センサ16)は、硬水流路4、電気分解装置8および戻し流路26、31を含む循環流路に設けられる、第11態様に記載のイオン除去システムである。
 このような構成によれば、循環流路を設けることで、循環流路にアルカリ水を循環させる運転が可能となり、循環流路を流れる水のpH値を上昇させながら、微細気泡による金属イオンの除去を行うことができる。これにより、微細気泡によって除去する金属イオンの結晶化を促進することができ、金属イオンの除去効果を高めることができる。
 本発明の第13態様は、硬水流路4の途中に設けられ、硬水を収容するバッチ処理タンク6をさらに備え、戻し流路26、31は、バッチ処理タンク6に接続される、第12態様に記載のイオン除去システムである。
 このような構成によれば、バッチ処理が可能となる。
 本発明の第14態様は、センサ(流量センサ16)は、硬水流路4におけるバッチ処理タンク6とバルブ204の間に設けられる、第13態様に記載のイオン除去システムである。
 このような構成によれば、電気分解装置8に近い位置で測定値を取得することができ、電気分解装置8のON/OFF制御をより精度良く実行することができる。
 本発明の第15態様は、硬水流路4におけるバッチ処理タンク6とバルブ204の間に設けられたポンプ14をさらに備え、センサ(流量センサ16)は、ポンプ14とバルブ204の間に設けられる、第14態様に記載のイオン除去システムである。
 このような構成によれば、電気分解装置8に近い位置で測定値を取得することができ、電気分解装置8のON/OFF制御をより精度良く実行することができる。
 本発明の第16態様は、センサは流量センサ16あるいは圧力センサである、第11態様から第15態様のいずれか1つに記載のイオン除去システムである。
 このような構成によれば、流路における詰まり等の異常を検出することができる。
 なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、実施形態1では、微細気泡発生装置10A、10Bが、微細気泡発生装置10A、10Bを通過する水に対して微細気泡を自動的に発生させる場合について説明したが、このような場合に限らない。微細気泡発生装置10A、10Bを電動式とし、制御部13が微細気泡発生装置10A、10Bを駆動したときにのみ微細気泡を供給するようにしてもよい。
 なお、上記様々な形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、実施形態における要素の組み合わせや順序の変化は、本発明の範囲および思想を逸脱することなく実現し得るものである。
 本発明は、家庭用のイオン除去システムにも業務用のイオン除去システムにも有用である。
 2 イオン除去システム
 4 硬水流路
 6 バッチ処理タンク
 8 電気分解装置
10A、10B 微細気泡発生装置
11 バルブ
12 分離装置
13 制御部
14 ポンプ
16 流量センサ
18 バルブ(第3バルブ)
20 バルブ
22 第1流路
24 第2流路
26 第1戻し流路
28 第1排水流路
30 バルブ(第1バルブ)
31 第2戻し流路
32 第2排水流路
34 バルブ(第2バルブ)
36 分岐流路(第1処理水流路)
38 第3流路(第2処理水流路)
40 第3排水流路
42 pHセンサ
44 濁度センサ
46 第3戻し流路
47 バルブ
48 貯水タンク
50 ポンプ
52 水栓(処理水供給ポイント)
60 イオン除去システム
62 二酸化炭素投入装置
64、66、68 供給流路
70、72 バルブ
74 微細気泡発生装置
80 イオン除去システム
82 微細気泡発生装置
84A、84B 分離装置
86 制御部
88 第1流路
89 分岐流路
90 第2流路
91 分岐流路
92 第3流路
93 バルブ
94 第1戻し流路
95 バルブ
96 バルブ
98 第4流路
100 第2戻し流路
101 バルブ
102 第3戻し流路
104 第4戻し流路
106 第1排水流路
108 第2排水流路
110 バルブ
111 第5戻し流路
112 バルブ
200 イオン除去システム
202A、202B 脱気泡装置
204、206、208、210 バルブ
212 添加物投入装置
214 制御部

Claims (5)

  1.  電気分解によりアルカリ水と酸性水とを生成する電気分解装置と、
     前記電気分解装置に接続され、前記電気分解装置に硬水を供給する硬水流路と、
     前記電気分解装置に接続され、前記電気分解装置が生成したアルカリ水と酸性水を交互に通水可能な第1流路および第2流路と、
     微細気泡を発生させて前記硬水流路、前記第1流路又は前記第2流路に供給する微細気泡発生装置であって、発生させた微細気泡により水中の金属イオンを吸着して除去する、微細気泡発生装置と、
     制御部と、を備え、
     前記制御部は、前記第1流路にアルカリ水を通水して前記第2流路に酸性水を通水する第1モードと、前記第1流路に酸性水を通水して前記第2流路にアルカリ水を通水する第2モードを実行するように、前記電気分解装置を制御する、イオン除去システム。
  2.  前記第1流路から前記硬水流路に接続される第1戻し流路と、
     前記第2流路から前記硬水流路に接続される第2戻し流路と、
     前記第1流路から前記第1戻し流路への通水および止水を切り替える第1バルブと、
     前記第2流路から前記第2戻し流路への通水および止水を切り替える第2バルブと、をさらに備え、
     前記制御部は、前記第1モードにおいては前記第1流路から前記第1戻し流路へ通水して前記第2流路から前記第2戻し流路へは止水し、かつ、前記第2モードにおいては前記第1流路から前記第1戻し流路へは止水して前記第2流路から前記第2戻し流路へ通水するように、前記第1バルブおよび前記第2バルブを制御する、請求項1に記載のイオン除去システム。
  3.  前記硬水流路において前記第1戻し流路および前記第2戻し流路が接続される接続ポイントよりも下流側で前記硬水流路から分岐する分岐流路と、
     前記硬水流路における前記分岐流路への通水および止水を切り替える第3バルブと、をさらに備え、
     前記制御部は、前記第1モードおよび前記第2モードでは前記分岐流路を止水するように前記第3バルブを制御し、さらに、前記第1モードおよび前記第2モードとは異なるモードとして、前記分岐流路に通水するように前記第3バルブを制御する第3モードを実行する、請求項2に記載のイオン除去システム。
  4.  前記分岐流路に接続され、前記分岐流路を流れる水に含まれる金属成分の結晶を分離する分離装置をさらに備える、請求項3に記載のシステム。
  5.  前記硬水流路の途中に設けられたバッチ処理タンクをさらに備え、
     前記第1戻し流路および前記第2戻し流路は前記バッチ処理タンクに接続される、請求項2から4のいずれか1つに記載のイオン除去システム。
PCT/JP2020/005183 2019-03-27 2020-02-10 イオン除去システム WO2020195255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/442,391 US20220169542A1 (en) 2019-03-27 2020-02-10 Ion removal system
EP20778763.1A EP3950604A4 (en) 2019-03-27 2020-02-10 ION ELIMINATION SYSTEM
CN202080023938.9A CN113631519A (zh) 2019-03-27 2020-02-10 离子除去系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-061704 2019-03-27
JP2019061704 2019-03-27
JP2019-139359 2019-07-30
JP2019139359A JP7365618B2 (ja) 2019-03-27 2019-07-30 イオン除去システム

Publications (1)

Publication Number Publication Date
WO2020195255A1 true WO2020195255A1 (ja) 2020-10-01

Family

ID=72610766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005183 WO2020195255A1 (ja) 2019-03-27 2020-02-10 イオン除去システム

Country Status (3)

Country Link
US (1) US20220169542A1 (ja)
EP (1) EP3950604A4 (ja)
WO (1) WO2020195255A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221127A (ja) * 2009-03-24 2010-10-07 Amano Corp 配管洗浄機能を備えた電解水生成装置
JP2011161407A (ja) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd 陽イオン金属または陽イオン化合物の分離方法と装置
JP2014076421A (ja) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp ミネラル成分除去装置および給湯装置
JP2015213569A (ja) * 2014-05-08 2015-12-03 株式会社熊本アイディーエム 多目的入浴兼治療装置
WO2018159693A1 (ja) 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 イオン除去装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015052840A1 (ja) * 2013-10-11 2017-03-09 三菱電機株式会社 水処理装置、給湯装置及び暖房装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221127A (ja) * 2009-03-24 2010-10-07 Amano Corp 配管洗浄機能を備えた電解水生成装置
JP2011161407A (ja) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd 陽イオン金属または陽イオン化合物の分離方法と装置
JP2014076421A (ja) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp ミネラル成分除去装置および給湯装置
JP2015213569A (ja) * 2014-05-08 2015-12-03 株式会社熊本アイディーエム 多目的入浴兼治療装置
WO2018159693A1 (ja) 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 イオン除去装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950604A4

Also Published As

Publication number Publication date
US20220169542A1 (en) 2022-06-02
EP3950604A1 (en) 2022-02-09
EP3950604A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US11242273B2 (en) Ion removal device
JP2020163365A (ja) イオン除去システム
WO2020195255A1 (ja) イオン除去システム
WO2020195254A1 (ja) イオン除去システム
US20210114908A1 (en) Ion removing system
US11939250B2 (en) Ion removing system
JP2020163364A (ja) イオン除去システム
KR20120082754A (ko) 수처리장치와 수처리장치의 역삼투막필터 세정방법
WO2021019892A1 (ja) イオン除去システム
US11339072B2 (en) Ion removing system
JP2020032321A (ja) イオン除去システム
WO2020044695A1 (ja) イオン除去システム
WO2019207901A1 (ja) イオン除去システム
JP2022072527A (ja) 軟水化装置
JP2019147126A (ja) イオン除去システム
JP2023023302A (ja) 軟水化装置
JP2019147127A (ja) イオン除去システム
JP2019147125A (ja) イオン除去システム
JP2019147128A (ja) イオン除去システム
WO2020039731A1 (ja) イオン交換樹脂再生システム
JP2020001007A (ja) イオン除去システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020778763

Country of ref document: EP

Effective date: 20211027