WO2020195199A1 - Contact lens, aqueous humor raman spectroscopic measurement device, aqueous humor raman spectroscopic measurement system, and aqueous humor raman spectroscopic measurement method - Google Patents

Contact lens, aqueous humor raman spectroscopic measurement device, aqueous humor raman spectroscopic measurement system, and aqueous humor raman spectroscopic measurement method Download PDF

Info

Publication number
WO2020195199A1
WO2020195199A1 PCT/JP2020/004395 JP2020004395W WO2020195199A1 WO 2020195199 A1 WO2020195199 A1 WO 2020195199A1 JP 2020004395 W JP2020004395 W JP 2020004395W WO 2020195199 A1 WO2020195199 A1 WO 2020195199A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
contact lens
guide window
eye
incident
Prior art date
Application number
PCT/JP2020/004395
Other languages
French (fr)
Japanese (ja)
Inventor
卓 木下
慎 久保田
Original Assignee
株式会社シード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シード filed Critical 株式会社シード
Priority to JP2020519450A priority Critical patent/JPWO2020195199A1/ja
Publication of WO2020195199A1 publication Critical patent/WO2020195199A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/125Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes with contact lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to a contact lens, an aqueous humor Raman spectroscopic measurement device, an aqueous humor Raman spectroscopic measurement system, and an aqueous humor Raman spectroscopic measurement method.
  • Non-Patent Document 1 discloses a technique for non-invasively inspecting an eye to be inspected.
  • this technique as described in FIGURE 3 of Non-Patent Document 1, light is incidented laterally from the nasal side or the ear side of the eye to be inspected, and the inside of the aqueous humor is the axis of the eye to be inspected (the apex of the cornea and the fovea centralis). It is transmitted along a direction that is substantially orthogonal to the direction of the line).
  • Non-Patent Document 1 In order to realize the optical path shown by, it is necessary to control the incident angle of light with respect to the eye to be inspected with an error smaller than 1 °, which is considered to be difficult to realize.
  • the present invention has been made in view of the above, and is a contact lens, an aqueous humor Raman spectrophotometer, and an aqueous humor Raman spectrophotometric measurement capable of non-invasively analyzing substances contained in the aqueous humor of an eye to be inspected. It provides a system and an aqueous humor Raman spectrometric measurement method.
  • the contact lens according to the present invention is a contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, and the contact lens is provided from the outer surface to the inner surface side.
  • the direction in which light incident from a direction substantially orthogonal to the lens geometric center axis is formed so as to be substantially orthogonal to the lens geometric center axis in the aqueous humor of the eye to be inspected wearing the contact lens. It is characterized by providing an incident side light guide window that guides the light so as to proceed along the line.
  • the contact lens according to the present invention is characterized in that, in the above invention, the incident side light guide window has an angle formed by the lens geometric center axis of 8 ° or more and 28 ° or less.
  • the contact lens according to the present invention is characterized in that, in the above invention, the refractive index of the contact lens is 1.36 or more and 1.46 or less.
  • the contact lens according to the present invention is the exit side light guide window formed at a position line-symmetrical with the incident side light guide window with the lens geometric center axis as the axis of symmetry in the above invention. It is provided with a light emitting side light guide window which is formed by being cut out from the outer surface to the inner surface side and guides the light transmitted through the bunch of water of the eye to be inspected wearing the contact lens to the outside of the contact lens. It is characterized by.
  • the contact lens according to the present invention is characterized in that, in the above invention, it is arranged around the incident side light guide window and includes a light shielding portion that blocks light.
  • the contact lens according to the present invention is characterized in that, in the above invention, a through hole is formed in the central portion of the contact lens.
  • the aqueous Raman spectroscopic measuring apparatus transmits the first light source unit that emits excitation light, a half mirror arranged in a direction substantially orthogonal to the optical axis of the excitation light, and the half mirror.
  • the excitation light is arranged on one of the light paths of the scattered light due to the substance contained in the aqueous humor of the eye to be inspected or the scattered light reflected by the half mirror, and the Rayleigh scattered light contained in the scattered light.
  • a filter that blocks light of the same wavelength and transmits Raman scattered light contained in the scattered light, a spectroscope that spectroscopically measures the light transmitted through the filter, and the scattered light or the half mirror transmitted through the half mirror. It is characterized in that it is arranged on the other optical path of the scattered light reflected by the above, and includes a second light source unit for emitting light to fix the eye to be inspected.
  • the aqueous humor Raman spectroscopic measuring apparatus is characterized in that, in the above invention, the second light source unit emits light having a wavelength shaded by the filter.
  • the aqueous humor Raman spectroscopic measuring apparatus is characterized in that, in the above invention, the second light source unit emits white light.
  • the optical axis of the light emitted by the second light source unit is incident on the spectroscope between the eye to be inspected and the half mirror. It is characterized by being deviated from the optical axis of light by approximately 5 °.
  • the aqueous Raman spectroscopic measurement system is a contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, and is formed by being cut out from the outer surface to the inner surface side.
  • Light that is incident from a direction substantially orthogonal to the geometric center axis of the lens travels along a direction substantially orthogonal to the geometric center axis of the lens in the aqueous humor of the eye to be inspected wearing the contact lens.
  • a contact lens having an incident side light guide window, a first light source unit that emits excitation light so as to be incident on the incident side light guide window from a direction substantially orthogonal to the lens geometric center axis, and the excitation light.
  • the half mirror is arranged in a direction substantially orthogonal to the optical axis of the above, and the excitation light transmitted through the half mirror is reflected by the scattered light by the substance contained in the aqueous chamber of the eye to be inspected or the half mirror.
  • a filter that is arranged on one of the scattered light paths, blocks light having the same wavelength as Rayleigh scattered light contained in the scattered light, and transmits Raman scattered light contained in the scattered light, and the filter.
  • the spectroscope that spectroscopically measures the transmitted light and the scattered light transmitted through the half mirror or the scattered light reflected by the half mirror are arranged on the other optical path, and emit light to emit the light to the eye to be inspected. It is characterized by including a second light source unit for fixing the image.
  • the aqueous Raman spectroscopic measurement method is a contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, and is formed by being cut out from the outer surface to the inner surface side.
  • Light that is incident from a direction substantially orthogonal to the geometric center axis of the lens travels along a direction substantially orthogonal to the geometric center axis of the lens in the aqueous humor of the eye to be inspected wearing the contact lens.
  • the contact lens is formed at a position line-symmetrical with the light guide window on the incident side with the geometric center axis of the lens as the axis of symmetry.
  • a side light guide window which is formed by being cut out from the outer surface to the inner surface side, and guides light transmitted through the aqueous humor of the eye to be inspected wearing the contact lens to the outside of the contact lens.
  • the transmission inspection light having a light guide window on the exit side and having a transmission inspection light having a light intensity smaller than that of the excitation light is emitted from the first light source unit before the measurement step, and the transmission inspection is incident on the light guide window on the incident side. It is characterized by including a transmission inspection step for inspecting whether or not light is emitted from the light emitting side light guide window.
  • a contact lens an aqueous humor Raman spectrometric apparatus, an aqueous humor Raman spectrometric measurement system, and an aqueous humor Raman spectrometric measurement method capable of non-invasively analyzing substances contained in the aqueous humor of an eye to be inspected.
  • an aqueous humor Raman spectrometric measurement method capable of non-invasively analyzing substances contained in the aqueous humor of an eye to be inspected.
  • FIG. 1 is a schematic diagram of an aqueous humor Raman spectroscopic measurement system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a contact lens according to an embodiment of the present invention.
  • FIG. 3 is a view taken along the line B1 of FIG.
  • FIG. 4 is a schematic view of a contact lens worn on the eye to be inspected.
  • FIG. 5 is a diagram showing physical property values used in the simulation.
  • FIG. 6 is a diagram showing the state of refraction at the interface.
  • FIG. 7 is a diagram showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed.
  • FIG. 1 is a schematic diagram of an aqueous humor Raman spectroscopic measurement system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a contact lens according to an embodiment of the present invention.
  • FIG. 3 is a view taken along the
  • FIG. 8 is a diagram showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed.
  • FIG. 9 is a diagram showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed.
  • FIG. 10 is a diagram showing an optical path of light when the positions of the light guide window on the incident side and the light guide window on the exit side are changed.
  • FIG. 11 is a diagram showing an optical path of light when the refractive index of a contact lens is changed.
  • FIG. 12 is a diagram showing an optical path of light when the refractive index of a contact lens is changed.
  • FIG. 13 is a diagram showing an optical path of light when the angle of incidence on the contact lens is changed.
  • FIG. 14 is a diagram showing an optical path of light when the angle of incidence on a contact lens is changed.
  • FIG. 15 is a cross-sectional view showing the contact lens according to the modified example 1-1.
  • FIG. 16 is a view taken along the line B2 of FIG.
  • FIG. 17 is a cross-sectional view showing the contact lens according to the modified example 1-2.
  • FIG. 18 is a view taken along the line B3 of FIG.
  • FIG. 19 is a cross-sectional view showing the contact lens according to the modified example 1-3.
  • FIG. 20 is a view taken along the line B4 of FIG.
  • FIG. 21 is a cross-sectional view showing the contact lens according to the modified example 1-4.
  • FIG. 22 is a view taken along the line B5 of FIG. 21.
  • FIG. 23 is a cross-sectional view showing the contact lens according to the modified example 1-5.
  • FIG. 24 is a view taken along the line B6 of FIG. 23.
  • FIG. 25 is a cross-sectional view showing the contact lens according to the modified example 1-6.
  • FIG. 26 is a view taken along the line B7 of FIG. 25.
  • FIG. 27 is a cross-sectional view showing the contact lens according to the modified example 1-7.
  • FIG. 28 is a view taken along the line B8 of FIG. 27.
  • FIG. 29 is a cross-sectional view showing the contact lens according to the modified example 1-8.
  • FIG. 30 is a view taken along the line B9 of FIG. 29.
  • FIG. 31 is a schematic diagram of the aqueous humor Raman spectroscopic measurement system according to the modified example 2-1.
  • the details of the contact lens, the aqueous humor Raman spectroscopic measurement device, the aqueous humor Raman spectroscopic measurement system, and the aqueous humor Raman spectroscopic measurement method of the present invention will be described in accordance with the embodiments, but these limit the present invention. It's not a thing.
  • FIG. 1 is a schematic diagram of an aqueous humor Raman spectroscopic measurement system according to an embodiment of the present invention.
  • the aqueous humor Raman spectroscopic measurement system 100 performs measurement for analyzing a substance contained in the aqueous humor 12 inside the cornea 11 of the eye 10 to be examined by Raman spectroscopy.
  • the Raman spectroscopic measurement system 100 irradiates the contact lens 1 worn on the eye 10 to be inspected and the contact lens 1 with excitation light, and Raman scattering from the tuft 12 of the eye 10 to be inspected.
  • a bunch of Raman spectroscopic measurement device 20 for spectroscopically measuring light is provided.
  • FIG. 2 is a cross-sectional view showing a contact lens according to an embodiment of the present invention.
  • FIG. 3 is a view taken along the line B1 of FIG.
  • FIG. 2 is a cross-sectional view corresponding to line C1-C1 of FIG.
  • the contact lens 1 includes a concave inner surface 1a in contact with the eye 10 to be inspected and a convex outer surface 1b. Further, the contact lens 1 includes an incident side light guide window 2, an exit side light guide window 3, and an edge portion 4.
  • the contact lens 1 is a soft contact lens made of, for example, pHEMA (polyhydroxyethyl methacrylate) and has a refractive index of 1.406. Further, the contact lens 1 may be a soft contact lens made of SHG (silicone hydrogel), and in this case, the refractive index is 1.385. However, the contact lens 1 may be a hard contact lens.
  • pHEMA polyhydroxyethyl methacrylate
  • SHG silicone hydrogel
  • the contact lens 1 is preferably a toric contact lens.
  • the contact lens 1 is such that the light guide window 2 on the incident side is located on the ear side of the subject and the light guide window 3 on the exit side is located on the nose side of the subject by blinking. Rotates.
  • the light guide window 2 on the incident side is formed by being cut out from the outer surface 1b to the inner surface 1a side, and the light incident from a direction substantially orthogonal to the lens geometric central axis (hereinafter, referred to as “central axis A1”) is the said.
  • central axis A1 the lens geometric central axis
  • the light is guided so as to proceed in a direction substantially orthogonal to the central axis A1.
  • the incident side light guide window 2 the light enters the inside of the eye 10 to be inspected and prevents the eye 10 to be injured. be able to.
  • the exit side light guide window 3 is formed at a position line-symmetrical with the incident side light guide window 2 with the central axis A1 as the axis of symmetry. Further, the light emitting side light guide window 3 is formed by being cut out from the outer surface 1b to the inner surface 1a side, and the light transmitted through the aqueous humor 12 of the eye 10 to be inspected wearing the contact lens 1 is transmitted to the outside of the contact lens 1. Guide light. By guiding the light transmitted through the aqueous humor 12 to the outside of the contact lens 1 by the light emitting window 3, it is possible to more reliably prevent the light from damaging the eye 10 to be inspected.
  • the edge portion 4 is a thin portion formed incidentally to the incident side light guide window 2 and the exit side light guide window 3.
  • FIG. 4 is a schematic view of a contact lens worn on the eye to be inspected.
  • the horizontal axis orthogonal to the central axis A1 is x
  • the vertical axis along the central axis A1 is y
  • the incident side light guide window 2 and the exit side light guide window 3 are formed by the central axis A1.
  • the angle was ⁇ .
  • the radius r c to the end of the entrance-side light guide window 2 and the exit side guide window 3 was set to be 5.65 mm.
  • the value of the radius r c, based on the average value of the cornea radius men is 5.5 mm, the light incident from the incident side light guide window 2 is set to be incident on the cornea.
  • the contact lens 1 is worn on the surface of the cornea 11 of the eye 10 to be inspected.
  • the curves representing the corneal epithelium 11a and the corneal endothelium 11b can be represented by the following equations (1), respectively.
  • R is the radius of curvature
  • K is the cornic constant
  • A, B, C, and D are coefficients.
  • FIG. 5 is a diagram showing physical property values used in the simulation. As shown in FIG. 5, if the physical property values of the corneal epithelium 11a, the corneal endothelium 11b, and the outer surface 1b are determined, the figure shown in FIG. 4 can be drawn. Note that D is the y-intercept in FIG. Further, the origin O in FIG. 4 is the center of rotation in the adduction or abduction of the eye 10 to be inspected.
  • FIG. 6 is a diagram showing the state of refraction at the interface.
  • the vector i 1 corresponding to the incident light
  • the normal vector N at the interface and the normal vector N
  • the vector i 2 corresponding to the light refracted at the interface using the angle ⁇ formed by the vector i 1 is expressed by Snell's law shown in the following equation (3).
  • the refractive index n air of air is 1.00
  • the refractive index n c of contact lens 1 is 1.406
  • the refractive index n cor of the cornea is 1.37
  • the refractive index n ah of aqueous humor is 1. It was set to 1.33.
  • the beam diameter of the incident light was 400 ⁇ m.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is 15 °.
  • the optical path of the light incident from the incident side light guide window 2 is the optical path along the most horizontal direction.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is 8 °.
  • the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is smaller than 8 °, the light incident from the incident side light guide window 2 is transmitted from the exit side light guide window 3 to the outside of the contact lens 1. Cannot guide light to.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is 28 °.
  • the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is larger than 28 °, the light incident from the incident side light guide window 2 is transmitted from the exit side light guide window 3 to the outside of the contact lens 1. Cannot guide light to.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is most preferably 15 °, and the inclination angle ⁇ is 8 ° or more. It is preferably 28 ° or less. In this case, the light incident from the incident side light guide window 2 is guided to the outside from the exit side light guide window 3, so that the safety is high.
  • FIG. 10 is a diagram showing an optical path of light when the positions of the light guide window on the incident side and the light guide window on the exit side are changed.
  • the radius r c was set to 4.65 mm.
  • the optical path of the light incident on the incident side light guide window 2 from the horizontal direction is the optical path along the most horizontal direction.
  • the radius r c by varying the radius r c, the light incident from the incident side light guide window 2 is guided to the outside from the outgoing side light guide window 3 High sex.
  • FIGS. 11 and 12 are diagrams showing the optical path of light when the refractive index of the contact lens is changed.
  • the refractive index of the contact lens 1 is 1.36. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3. If the refractive index of the contact lens 1 is smaller than 1.36, the light incident from the incident side light guide window 2 cannot be guided to the outside of the contact lens 1 from the exit side light guide window 3.
  • the refractive index of the contact lens 1 is 1.46. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3. If the refractive index of the contact lens 1 is larger than 1.46, the light incident from the incident side light guide window 2 cannot be guided to the outside of the contact lens 1 from the exit side light guide window 3.
  • the refractive index of the contact lens 1 is preferably 1.36 or more and 1.46 or less.
  • the light incident from the incident side light guide window 2 is guided to the outside from the exit side light guide window 3, so that the safety is high.
  • FIG. 13 and 14 are diagrams showing the optical path of light when the angle of incidence on the contact lens is changed.
  • the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3 is 0 °, and the incident angle ⁇ of light is ⁇ 5 °.
  • the incident angle ⁇ is positive on the ear side of the subject and negative on the side opposite to the ear side of the subject. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3.
  • the angle of inclination ⁇ of the light guide window 2 on the incident side and the light guide window 3 on the exit side is 30 °, and the incident angle ⁇ of light is 4 °.
  • the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3.
  • the incident side light guide window 2 and the exit side light guide window 3 As described above, although it depends on the inclination angle ⁇ of the incident side light guide window 2 and the exit side light guide window 3, when the light incident angle ⁇ is -4 ° or more and 5 ° or less, the incident side light guide Since the light incident from the window 2 is guided to the outside through the light emitting side light guide window 3, the safety is high. That is, even if the incident angle ⁇ of the light with respect to the contact lens 1 deviates from the horizontal direction, safety is maintained as long as the light is small.
  • the Fusamizu Raman spectrophotometer 20 includes a first light source unit 21, a light-shielding member 22, a half mirror 23, an objective lens 24, a notch filter 25, a condensing lens 26, and light. It includes a fiber coupler 27, an optical fiber 28, a spectroscope 29, a second light source unit 30, and a camera 31.
  • the aqueous humor Raman spectroscopic measurement device 20 measures the light L3 in a direction substantially orthogonal to the excitation light L1 emitted from the first light source unit 21. This is because the Raman scattered light has the same light intensity regardless of the direction measured, whereas the Rayleigh scattered light has the weakest light intensity in the direction substantially orthogonal to the excitation light, so that the Raman scattered light is efficiently used. This is because it can be measured. Even if a light absorber that absorbs this light is arranged on the optical path of the light L2 that has passed through the bunch of water 12 of the eye 10 to be inspected and is guided to the outside of the contact lens 1 by the light emitting side light guide window 3. Good.
  • the first light source unit 21 emits excitation light L1 for spectroscopically measuring Raman scattered light in the aqueous humor 12 of the eye 10 to be inspected. Further, the first light source unit 21 emits transmission inspection light having a light intensity smaller than that of the excitation light L1. The transmission inspection light is used for inspecting whether or not the transmission inspection light incident on the incident side light guide window 2 is emitted from the exit side light guide window 3 before the measurement is performed.
  • the wavelengths of the excitation light L1 and the transmission inspection light are, for example, 532 nm, but are not particularly limited.
  • the transmission inspection light preferably has the same wavelength as the excitation light.
  • the first light source unit 21 may be a light source that emits light having a predetermined wavelength, and is, for example, an LED (Light Emitting Diode).
  • the light-shielding member 22 is made of an elastic member such as rubber.
  • the light-shielding member 22 covers the periphery of the eye 10 to be inspected and shields external light from entering the housing of the aqueous humor Raman spectroscopic measurement device 20.
  • the half mirror 23 is arranged in a direction substantially orthogonal to the optical axis of the excitation light L1.
  • the half mirror 23 transmits a part of the scattered light L3 by the substance contained in the aqueous humor 12 of the eye 10 to be inspected for the excitation light L1 and reflects a part of the scattered light L3.
  • the objective lens 24 collects scattered light L3.
  • the notch filter 25 corresponds to the filter according to the present invention.
  • the notch filter 25 is a band-stop filter that is arranged on the optical path of the light L4 that has passed through the half mirror 23 and selectively blocks light having the same wavelength as the Rayleigh scattered light contained in the scattered light L3. Therefore, the notch filter 25 blocks the Rayleigh scattered light contained in the scattered light L3 and transmits the Raman scattered light.
  • the filter may be a filter that selectively blocks light having the same wavelength as the Rayleigh scattered light contained in the scattered light L3 and transmits the Raman scattered light contained in the scattered light L3. For example, when measuring Stoke Raman scattering, a filter that transmits on the wavelength side longer than the excitation light L1 may be used.
  • a filter that transmits on the wavelength side shorter than the excitation light L1 may be used.
  • a bandpass filter that selectively transmits Raman scattered light may be used.
  • the condensing lens 26 condenses the light L4 that has passed through the notch filter 25 and couples it to the optical fiber coupler 27.
  • the optical fiber coupler 27 guides the light L4 collected by the condensing lens 26 to the optical fiber 28.
  • the optical fiber 28 guides the light guided to the optical fiber coupler 27.
  • the spectroscope 29 spectroscopically measures the light transmitted through the filter.
  • the light collected by the condensing lens 26 may be directly incident on the spectroscope. In this case, the optical fiber coupler 27 and the optical fiber 28 are unnecessary.
  • the second light source unit 30 is arranged on the optical path of the scattered light reflected by the half mirror 23, and emits the light to fix the eye 10 to be inspected. That is, the second light source unit can be used as a fixation target for fixing the eye 10 to be inspected.
  • the optical axis of the light E emitted by the second light source unit 30 between the eye 10 to be inspected and the half mirror 23 is deviated by approximately 5 ° from the optical axis of the light L3 incident on the spectroscope 29.
  • the line of sight (the line of sight of the eye 10 to be inspected and the fovea centralis) that is substantially the same as the light E with respect to the axis of the eye 10 to be inspected (the line connecting the apex of the cornea 11 and the fovea centralis). This is because the line connecting the lights) is shifted inward (nose side) by 5 °.
  • the wavelength of the light emitted from the second light source unit 30 is a wavelength shaded by the notch filter 25, for example, 532 nm. Further, the second light source unit 30 may be capable of emitting white light. In this case, the second light source unit 30 can be used as the illumination when observing the state of the eye 10 to be inspected by the camera 31.
  • the camera 31 captures the eye 10 to be inspected.
  • the state of the eye 10 to be inspected such as whether the conjunctiva of the eye to be inspected 10 is hyperemic or the eyelashes do not affect the measurement.
  • the contact lens 1 is worn on the eye 10 to be inspected.
  • the contact lens 1 is a toric contact lens
  • the incident side light guide window 2 is located on the subject's ear side
  • the exit side light guide window 3 is located on the subject's nose side by blinking.
  • the contact lens 1 rotates.
  • the excitation light emitted from the first light source unit 21 is aligned so as to enter the incident side light guide window 2 from a direction substantially orthogonal to the lens geometric center axis (alignment step). Specifically, by adjusting the relative positions of the eye 10 to be inspected and the aqueous humor Raman spectroscopic measurement device 20, the optical axis of the eye 10 to be inspected and the optical path of the light L3 are substantially aligned.
  • fixation step Further, light is emitted from the second light source unit 30 to the eye 10 to be inspected to fix the eye to be inspected (fixation step).
  • the transmission inspection light is emitted from the first light source unit 21, and it is inspected whether or not the transmission inspection light incident on the incident side light guide window 2 is emitted from the exit side light guide window 3 (transmission inspection step).
  • the excitation light is emitted from the first light source unit 21, and the light transmitted through the notch filter 25 is spectrally measured by the spectroscope 29 (measurement step). ).
  • the substance contained in the aqueous humor 12 of the eye 10 to be inspected can be analyzed.
  • the Raman scattered light from the aqueous humor 12 of the eye 10 to be inspected can be measured non-invasively by using the contact lens 1 provided with the incident side light guide window 2. .. Therefore, according to the embodiment, it is possible to analyze the substance contained in the aqueous humor 12 of the eye 10 to be examined non-invasively.
  • the incident side light guide window 2 and the exit side light guide window 3 are formed so as to diagonally intersect the optical axis of the excitation light L1, the incident side light guide window 2 and It is possible to prevent the reflected light from the light emitting side light guide window 3 from returning to the first light source unit 21 and making the operation of the first light source unit 21 unstable.
  • the light guide window provided in the container is the light of the excitation light. Since it is orthogonal to the axis, the reflected light in the light guide window returns to the first light source unit 21, and the operation of the first light source unit 21 may become unstable.
  • FIG. 15 is a cross-sectional view showing the contact lens according to the modified example 1-1.
  • FIG. 16 is a view taken along the line B2 of FIG.
  • FIG. 15 is a cross-sectional view corresponding to line C2-C2 of FIG.
  • the axis A2 is the lens geometric center axis of the contact lens 1A.
  • the contact lens 1A has an incident side light guide window 2 and does not have an exit side light guide window. As described above, the contact lens does not have to have a light guide window on the exit side.
  • FIG. 17 is a cross-sectional view showing the contact lens according to the modified example 1-2.
  • FIG. 18 is a view taken along the line B3 of FIG.
  • FIG. 17 is a cross-sectional view corresponding to line C3-C3 of FIG.
  • the axis A3 is the lens geometric center axis of the contact lens 1B.
  • the contact lens 1B includes a series of light guide windows 2B and an edge 4B in an annular shape.
  • the light guide window 2B also serves as a light guide window on the incident side and a light guide window on the exit side.
  • the contact lens 1B does not have to be a toric contact lens because the contact lens 1B may rotate in the eye 10 to be inspected.
  • FIG. 19 is a cross-sectional view showing the contact lens according to the modified example 1-3.
  • FIG. 20 is a view taken along the line B4 of FIG.
  • FIG. 19 is a cross-sectional view corresponding to line C4-C4 of FIG.
  • the axis A4 is the lens geometric center axis of the contact lens 1C.
  • the contact lens 1C includes a semicircular incident side light guide window 2C and an edge portion 4C. As described above, the contact lens does not have to have a light guide window on the exit side.
  • FIG. 21 is a cross-sectional view showing the contact lens according to the modified example 1-4.
  • FIG. 22 is a view taken along the line B5 of FIG. 21.
  • FIG. 21 is a cross-sectional view corresponding to line C5-C5 of FIG.
  • the axis A5 is the lens geometric center axis of the contact lens 1D.
  • the contact lens 1D includes an exit side light guide window 3D having a different inclination angle from the incident side light guide window 2.
  • the tilt angle ⁇ of the light emitting window 3D is larger than the tilt angle ⁇ of the light guide window 2 on the incident side.
  • FIG. 23 is a cross-sectional view showing the contact lens according to the modified example 1-5.
  • FIG. 24 is a view taken along the line B6 of FIG. 23.
  • FIG. 23 is a cross-sectional view corresponding to line C6-C6 of FIG. 24.
  • the axis A6 is the lens geometric center axis of the contact lens 1E.
  • the contact lens 1E includes a semicircular incident side light guide window 2C and a semicircular exit side light guide window 3E having different inclination angles. Further, the contact lens 1E includes an edge portion 4E formed incidentally to the light emitting side light guide window 3E.
  • the inclination angle ⁇ of the light emitting window 3E is larger than the inclination angle ⁇ of the light guide window 2C on the incident side.
  • FIG. 25 is a cross-sectional view showing the contact lens according to the modified example 1-6.
  • FIG. 26 is a view taken along the line B7 of FIG. 25.
  • FIG. 25 is a cross-sectional view corresponding to line C7-C7 of FIG.
  • the axis A7 is the lens geometric center axis of the contact lens 1F.
  • the contact lens 1F includes a continuously formed incident side light guide window 2F and an exit side light guide window 3F. Further, the contact lens 1F includes an incident side light guide window 2F and an edge portion 4F formed incidentally to the exit side light guide window 3F.
  • the light guide window 2F on the incident side is formed in the region indicated by the central angle ⁇ , and the inclination angle is constant at ⁇ in this portion.
  • the inclination angle gradually increases from the portion connected to the light guide window 2F on the incident side, and the maximum value is ⁇ at the end facing the light guide window 2F on the incident side. As a result, it is possible to prevent the generation of stray light due to the light from the light emitting window 3E on the exit side traveling in the direction away from the subject and irradiating the eyelashes and the like.
  • FIG. 27 is a cross-sectional view showing the contact lens according to the modified example 1-7.
  • FIG. 28 is a view taken along the line B8 of FIG. 27.
  • FIG. 27 is a cross-sectional view corresponding to line C8-C8 of FIG. 28.
  • the axis A8 is the lens geometric center axis of the contact lens 1G.
  • the contact lens 1G is arranged around the incident side light guide window 2 and the exit side light guide window 3, and includes a light shielding portion 5G that blocks light.
  • the excitation light from the first light source unit 21 deviates from the incident side light guide window 2
  • the excitation light is shielded by the light shielding unit 5G, so that the safety is high.
  • the light shielding portion 5G blocks the light, so that it is possible to prevent unexpected stray light from being generated.
  • FIG. 29 is a cross-sectional view showing the contact lens according to the modified example 1-8.
  • FIG. 30 is a view taken along the line B9 of FIG. 29.
  • FIG. 29 is a cross-sectional view corresponding to line C9-C9 of FIG.
  • the axis A9 is the lens geometric center axis of the contact lens 1H.
  • a through hole 6H is formed in the central portion of the contact lens 1H.
  • the Raman scattered light in the aqueous humor 12 is prevented from being attenuated by the contact lens 1H, and the measurement accuracy is improved.
  • FIG. 31 is a schematic diagram of the aqueous humor Raman spectroscopic measurement system according to the modified example 2-1.
  • the aqueous humor Raman spectroscopic measuring device 20A includes a collimating lens 32A.
  • the position of the notch filter 25 may be a portion where the light between the half mirror 23 and the optical fiber coupler 27 is substantially parallel.
  • the light transmitted through the half mirror 23 is measured by the spectroscope 29, but the light reflected by the half mirror 23 may be measured by the spectroscope 29.
  • the excitation light may be incident on the incident side light guide window 2 from a direction substantially orthogonal to the central axis A1, and the light guided to the outside of the contact lens 1 by the exit side light guide window 3 may be measured.
  • the substance contained in the aqueous humor 12 may be analyzed by infrared spectroscopy.

Abstract

This contact lens is provided with a concave inner surface that comes into contact with a subject's eye, and a convex outer surface, and is provided with an incidence-side light guiding window that is formed to be cut from the outer surface to the inner surface side, and guides light incident from a direction approximately orthogonal to a lens geometric center axis such that the light travels along the direction approximately orthogonal to the lens geometric center axis in the aqueous humor of the subject's eye wearing the contact lens. Consequently, provided is the contact lens that makes it possible to noninvasively analyze a substance contained in the aqueous humor of the subject's eye.

Description

コンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法Contact lens, aqueous humor Raman spectroscopic measurement device, aqueous humor Raman spectroscopic measurement system, and aqueous humor Raman spectroscopic measurement method
 本発明は、コンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法に関する。 The present invention relates to a contact lens, an aqueous humor Raman spectroscopic measurement device, an aqueous humor Raman spectroscopic measurement system, and an aqueous humor Raman spectroscopic measurement method.
 従来、被検眼における房水に含まれる物質を分析し、被検眼の診断に役立てる技術が知られている。この技術では、穿刺により角膜下の房水を抽出する必要があり、被検査者の負担が大きかった。 Conventionally, a technique has been known that analyzes substances contained in aqueous humor in an eye to be inspected and is useful for diagnosing the eye to be inspected. In this technique, it is necessary to extract the aqueous humor under the cornea by puncture, which imposes a heavy burden on the subject.
 非特許文献1には、非侵襲で被検眼の検査を行う技術が開示されている。この技術では、非特許文献1のFIGURE3に記載されているように、被検眼の鼻側あるいは耳側から光を横向きに入射させ、房水内を被検眼の眼軸(角膜の頂点と中心窩とを結ぶ線)の方向と略直交する方向に沿って透過させる。その結果、光は、被検眼の前方角膜と房水と後方角膜とをこの順に透過することでノイズ源となる透過組織の数を減らし、房水代謝産物の濃度計測を実施することが提案されている。また、その結果として、光が瞳孔を通過し眼球内部に進入して網膜に損傷を与えることを防止している。 Non-Patent Document 1 discloses a technique for non-invasively inspecting an eye to be inspected. In this technique, as described in FIGURE 3 of Non-Patent Document 1, light is incidented laterally from the nasal side or the ear side of the eye to be inspected, and the inside of the aqueous humor is the axis of the eye to be inspected (the apex of the cornea and the fovea centralis). It is transmitted along a direction that is substantially orthogonal to the direction of the line). As a result, it has been proposed that light transmits through the anterior cornea, aqueous humor, and posterior cornea of the eye to be inspected in this order to reduce the number of transmitting tissues that become noise sources and measure the concentration of aqueous humor metabolites. ing. As a result, it prevents light from passing through the pupil and entering the inside of the eyeball to damage the retina.
 しかしながら、本発明者らの角膜輪部における形状の解剖学的研究結果及び導入する光束の広がりや眼球運動に関するデータを基礎とした試算によると、多くの被検者の眼において、非特許文献1が示す光路を実現するには、被検眼に対する光の入射角を1°より小さい誤差で制御する必要があり、実現することが困難であると考えられる。 However, according to a trial calculation based on the anatomical study results of the shape of the corneal ring portion of the present inventors and the data on the spread of the luminous flux to be introduced and the eye movement, in the eyes of many subjects, Non-Patent Document 1 In order to realize the optical path shown by, it is necessary to control the incident angle of light with respect to the eye to be inspected with an error smaller than 1 °, which is considered to be difficult to realize.
 本発明は、上記に鑑みてなされたものであって、非侵襲で被検眼の房水に含まれる物質を分析することを可能とするコンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法を提供するものである。 The present invention has been made in view of the above, and is a contact lens, an aqueous humor Raman spectrophotometer, and an aqueous humor Raman spectrophotometric measurement capable of non-invasively analyzing substances contained in the aqueous humor of an eye to be inspected. It provides a system and an aqueous humor Raman spectrometric measurement method.
 上述した課題を解決し、目的を達成するために、本発明にかかるコンタクトレンズは、被検眼に接する凹型の内面と、凸型の外面とを備えるコンタクトレンズであって、前記外面から前記内面側に切り欠かれて形成されており、レンズ幾何中心軸と略直交する方向から入射した光が、当該コンタクトレンズを装用した前記被検眼の房水内において、前記レンズ幾何中心軸と略直交する方向に沿って進むように導光する入射側導光窓を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the contact lens according to the present invention is a contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, and the contact lens is provided from the outer surface to the inner surface side. The direction in which light incident from a direction substantially orthogonal to the lens geometric center axis is formed so as to be substantially orthogonal to the lens geometric center axis in the aqueous humor of the eye to be inspected wearing the contact lens. It is characterized by providing an incident side light guide window that guides the light so as to proceed along the line.
 また、本発明にかかるコンタクトレンズは、上記発明において、前記入射側導光窓は、前記レンズ幾何中心軸とのなす角が8°以上28°以下であることを特徴とする。 Further, the contact lens according to the present invention is characterized in that, in the above invention, the incident side light guide window has an angle formed by the lens geometric center axis of 8 ° or more and 28 ° or less.
 また、本発明にかかるコンタクトレンズは、上記発明において、当該コンタクトレンズの屈折率は、1.36以上1.46以下であることを特徴とする。 Further, the contact lens according to the present invention is characterized in that, in the above invention, the refractive index of the contact lens is 1.36 or more and 1.46 or less.
 また、本発明にかかるコンタクトレンズは、上記発明において、前記レンズ幾何中心軸を対称軸として、前記入射側導光窓と線対称の位置に形成されている出射側導光窓であって、前記外面から前記内面側に切り欠かれて形成されており、当該コンタクトレンズを装用した前記被検眼の前記房水を透過した光を当該コンタクトレンズの外部に導光する出射側導光窓を備えることを特徴とする。 Further, the contact lens according to the present invention is the exit side light guide window formed at a position line-symmetrical with the incident side light guide window with the lens geometric center axis as the axis of symmetry in the above invention. It is provided with a light emitting side light guide window which is formed by being cut out from the outer surface to the inner surface side and guides the light transmitted through the bunch of water of the eye to be inspected wearing the contact lens to the outside of the contact lens. It is characterized by.
 また、本発明にかかるコンタクトレンズは、上記発明において、前記入射側導光窓の周囲に配置されており、光を遮光する遮光部を備えることを特徴とする。 Further, the contact lens according to the present invention is characterized in that, in the above invention, it is arranged around the incident side light guide window and includes a light shielding portion that blocks light.
 また、本発明にかかるコンタクトレンズは、上記発明において、当該コンタクトレンズの中央部に貫通孔が形成されていることを特徴とする。 Further, the contact lens according to the present invention is characterized in that, in the above invention, a through hole is formed in the central portion of the contact lens.
 また、本発明にかかる房水ラマン分光計測装置は、励起光を出射する第1光源部と、前記励起光の光軸と略直交する方向に配置されているハーフミラーと、前記ハーフミラーを透過した前記励起光の被検眼の房水に含まれている物質による散乱光又は前記ハーフミラーで反射した前記散乱光の一方の光路上に配置されており、前記散乱光に含まれるレイリー散乱光と同じ波長の光を遮光し、前記散乱光に含まれるラマン散乱光を透過するフィルタと、前記フィルタを透過した光を分光計測する分光器と、前記ハーフミラーを透過した前記散乱光又は前記ハーフミラーで反射した前記散乱光の他方の光路上に配置されており、光を出射して前記被検眼を固視させるための第2光源部と、を備えることを特徴とする。 Further, the aqueous Raman spectroscopic measuring apparatus according to the present invention transmits the first light source unit that emits excitation light, a half mirror arranged in a direction substantially orthogonal to the optical axis of the excitation light, and the half mirror. The excitation light is arranged on one of the light paths of the scattered light due to the substance contained in the aqueous humor of the eye to be inspected or the scattered light reflected by the half mirror, and the Rayleigh scattered light contained in the scattered light. A filter that blocks light of the same wavelength and transmits Raman scattered light contained in the scattered light, a spectroscope that spectroscopically measures the light transmitted through the filter, and the scattered light or the half mirror transmitted through the half mirror. It is characterized in that it is arranged on the other optical path of the scattered light reflected by the above, and includes a second light source unit for emitting light to fix the eye to be inspected.
 また、本発明にかかる房水ラマン分光計測装置は、上記発明において、前記第2光源部は、前記フィルタに遮光される波長の光を出射することを特徴とする。 Further, the aqueous humor Raman spectroscopic measuring apparatus according to the present invention is characterized in that, in the above invention, the second light source unit emits light having a wavelength shaded by the filter.
 また、本発明にかかる房水ラマン分光計測装置は、上記発明において、前記第2光源部は、白色光を出射することを特徴とする。 Further, the aqueous humor Raman spectroscopic measuring apparatus according to the present invention is characterized in that, in the above invention, the second light source unit emits white light.
 また、本発明にかかる房水ラマン分光計測装置は、上記発明において、前記被検眼と前記ハーフミラーとの間において、前記第2光源部が出射する光の光軸は、前記分光器に入射する光の光軸から略5°ずれていることを特徴とする。 Further, in the Abomizu Raman spectroscopic measurement apparatus according to the present invention, in the above invention, the optical axis of the light emitted by the second light source unit is incident on the spectroscope between the eye to be inspected and the half mirror. It is characterized by being deviated from the optical axis of light by approximately 5 °.
 また、本発明にかかる房水ラマン分光計測システムは、被検眼に接する凹型の内面と、凸型の外面とを備えるコンタクトレンズであって、前記外面から前記内面側に切り欠かれて形成されており、レンズ幾何中心軸と略直交する方向から入射した光が、当該コンタクトレンズを装用した前記被検眼の房水内において、前記レンズ幾何中心軸と略直交する方向に沿って進むように導光する入射側導光窓を有するコンタクトレンズと、前記入射側導光窓に対して前記レンズ幾何中心軸と略直交する方向から入射するように励起光を出射する第1光源部と、前記励起光の光軸と略直交する方向に配置されているハーフミラーと、前記ハーフミラーを透過した前記励起光の前記被検眼の前記房水に含まれている物質による散乱光又は前記ハーフミラーで反射した前記散乱光の一方の光路上に配置されており、前記散乱光に含まれるレイリー散乱光と同じ波長の光を遮光し、前記散乱光に含まれるラマン散乱光を透過するフィルタと、前記フィルタを透過した光を分光計測する分光器と、前記ハーフミラーを透過した前記散乱光又は前記ハーフミラーで反射した前記散乱光の他方の光路上に配置されており、光を出射して前記被検眼を固視させるための第2光源部と、を備えることを特徴とする。 Further, the aqueous Raman spectroscopic measurement system according to the present invention is a contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, and is formed by being cut out from the outer surface to the inner surface side. Light that is incident from a direction substantially orthogonal to the geometric center axis of the lens travels along a direction substantially orthogonal to the geometric center axis of the lens in the aqueous humor of the eye to be inspected wearing the contact lens. A contact lens having an incident side light guide window, a first light source unit that emits excitation light so as to be incident on the incident side light guide window from a direction substantially orthogonal to the lens geometric center axis, and the excitation light. The half mirror is arranged in a direction substantially orthogonal to the optical axis of the above, and the excitation light transmitted through the half mirror is reflected by the scattered light by the substance contained in the aqueous chamber of the eye to be inspected or the half mirror. A filter that is arranged on one of the scattered light paths, blocks light having the same wavelength as Rayleigh scattered light contained in the scattered light, and transmits Raman scattered light contained in the scattered light, and the filter. The spectroscope that spectroscopically measures the transmitted light and the scattered light transmitted through the half mirror or the scattered light reflected by the half mirror are arranged on the other optical path, and emit light to emit the light to the eye to be inspected. It is characterized by including a second light source unit for fixing the image.
 また、本発明にかかる房水ラマン分光計測方法は、被検眼に接する凹型の内面と、凸型の外面とを備えるコンタクトレンズであって、前記外面から前記内面側に切り欠かれて形成されており、レンズ幾何中心軸と略直交する方向から入射した光が、当該コンタクトレンズを装用した前記被検眼の房水内において、前記レンズ幾何中心軸と略直交する方向に沿って進むように導光する入射側導光窓を有するコンタクトレンズを装用した前記被検眼の前記房水に含まれている物質によるラマン散乱光を計測する房水ラマン分光計測方法であって、第1光源部から出射した励起光が前記入射側導光窓に対して前記レンズ幾何中心軸と略直交する方向から入射するように位置合わせを行う位置合わせステップと、第2光源部から前記被検眼に光を出射して前記被検眼を固視させる固視ステップと、前記第1光源部から前記励起光を出射し、前記励起光の前記被検眼の前記房水に含まれている物質による散乱光に含まれるレイリー散乱光と同じ波長の光を遮光し、前記散乱光に含まれるラマン散乱光を透過するフィルタを透過した光を分光器により分光計測する計測ステップと、を含むことを特徴とする。 Further, the aqueous Raman spectroscopic measurement method according to the present invention is a contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, and is formed by being cut out from the outer surface to the inner surface side. Light that is incident from a direction substantially orthogonal to the geometric center axis of the lens travels along a direction substantially orthogonal to the geometric center axis of the lens in the aqueous humor of the eye to be inspected wearing the contact lens. A bunch of water Raman spectroscopic measurement method for measuring Raman scattered light by a substance contained in the bunch of water of the eye to be inspected wearing a contact lens having a light guide window on the incident side, which is emitted from a first light source unit. A positioning step in which the excitation light is aligned so as to enter the incident side light guide window from a direction substantially orthogonal to the lens geometric center axis, and light is emitted from the second light source unit to the eye to be inspected. Rayleigh scattering of the excitation light emitted from the first light source unit and the fixation step of fixing the eye to be inspected, and the scattered light of the excitation light by a substance contained in the aqueous humor of the eye to be inspected. It is characterized by including a measurement step of blocking light having the same wavelength as light and spectroscopically measuring the light transmitted through a filter that transmits the Raman scattered light contained in the scattered light with a spectroscope.
 また、本発明にかかる房水ラマン分光計測方法は、上記発明において、前記コンタクトレンズは、前記レンズ幾何中心軸を対称軸として、前記入射側導光窓と線対称の位置に形成されている出射側導光窓であって、前記外面から前記内面側に切り欠かれて形成されており、当該コンタクトレンズを装用した前記被検眼の前記房水を透過した光を当該コンタクトレンズの外部に導光する出射側導光窓を有し、前記計測ステップの前に、前記第1光源部から前記励起光より光強度が小さい透過検査光を出射し、前記入射側導光窓に入射した前記透過検査光が前記出射側導光窓から出射するか否かを検査する透過検査ステップを含むことを特徴とする。 Further, in the aqueous Raman spectroscopic measurement method according to the present invention, in the above invention, the contact lens is formed at a position line-symmetrical with the light guide window on the incident side with the geometric center axis of the lens as the axis of symmetry. A side light guide window, which is formed by being cut out from the outer surface to the inner surface side, and guides light transmitted through the aqueous humor of the eye to be inspected wearing the contact lens to the outside of the contact lens. The transmission inspection light having a light guide window on the exit side and having a transmission inspection light having a light intensity smaller than that of the excitation light is emitted from the first light source unit before the measurement step, and the transmission inspection is incident on the light guide window on the incident side. It is characterized by including a transmission inspection step for inspecting whether or not light is emitted from the light emitting side light guide window.
 本発明によれば、非侵襲で被検眼の房水に含まれる物質を分析することを可能とするコンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法を実現することができる。 According to the present invention, a contact lens, an aqueous humor Raman spectrometric apparatus, an aqueous humor Raman spectrometric measurement system, and an aqueous humor Raman spectrometric measurement method capable of non-invasively analyzing substances contained in the aqueous humor of an eye to be inspected. Can be realized.
図1は、本発明の実施の形態にかかる房水ラマン分光計測システムの模式図である。FIG. 1 is a schematic diagram of an aqueous humor Raman spectroscopic measurement system according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかるコンタクトレンズを示す断面図である。FIG. 2 is a cross-sectional view showing a contact lens according to an embodiment of the present invention. 図3は、図2のB1矢視図である。FIG. 3 is a view taken along the line B1 of FIG. 図4は、被検眼に装用されたコンタクトレンズの模式図である。FIG. 4 is a schematic view of a contact lens worn on the eye to be inspected. 図5は、シミュレーションに用いた物性値を表す図である。FIG. 5 is a diagram showing physical property values used in the simulation. 図6は、界面における屈折の様子を表す図である。FIG. 6 is a diagram showing the state of refraction at the interface. 図7は、入射側導光窓及び出射側導光窓の傾斜角を変化させた場合の光の光路を表す図である。FIG. 7 is a diagram showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed. 図8は、入射側導光窓及び出射側導光窓の傾斜角を変化させた場合の光の光路を表す図である。FIG. 8 is a diagram showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed. 図9は、入射側導光窓及び出射側導光窓の傾斜角を変化させた場合の光の光路を表す図である。FIG. 9 is a diagram showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed. 図10は、入射側導光窓及び出射側導光窓の位置を変化させた場合の光の光路を表す図である。FIG. 10 is a diagram showing an optical path of light when the positions of the light guide window on the incident side and the light guide window on the exit side are changed. 図11は、コンタクトレンズの屈折率を変化させた場合の光の光路を表す図である。FIG. 11 is a diagram showing an optical path of light when the refractive index of a contact lens is changed. 図12は、コンタクトレンズの屈折率を変化させた場合の光の光路を表す図である。FIG. 12 is a diagram showing an optical path of light when the refractive index of a contact lens is changed. 図13は、コンタクトレンズへの入射角度を変化させた場合の光の光路を表す図である。FIG. 13 is a diagram showing an optical path of light when the angle of incidence on the contact lens is changed. 図14は、コンタクトレンズへの入射角度を変化させた場合の光の光路を表す図である。FIG. 14 is a diagram showing an optical path of light when the angle of incidence on a contact lens is changed. 図15は、変形例1-1にかかるコンタクトレンズを示す断面図である。FIG. 15 is a cross-sectional view showing the contact lens according to the modified example 1-1. 図16は、図15のB2矢視図である。FIG. 16 is a view taken along the line B2 of FIG. 図17は、変形例1-2にかかるコンタクトレンズを示す断面図である。FIG. 17 is a cross-sectional view showing the contact lens according to the modified example 1-2. 図18は、図17のB3矢視図である。FIG. 18 is a view taken along the line B3 of FIG. 図19は、変形例1-3にかかるコンタクトレンズを示す断面図である。FIG. 19 is a cross-sectional view showing the contact lens according to the modified example 1-3. 図20は、図19のB4矢視図である。FIG. 20 is a view taken along the line B4 of FIG. 図21は、変形例1-4にかかるコンタクトレンズを示す断面図である。FIG. 21 is a cross-sectional view showing the contact lens according to the modified example 1-4. 図22は、図21のB5矢視図である。FIG. 22 is a view taken along the line B5 of FIG. 21. 図23は、変形例1-5にかかるコンタクトレンズを示す断面図である。FIG. 23 is a cross-sectional view showing the contact lens according to the modified example 1-5. 図24は、図23のB6矢視図である。FIG. 24 is a view taken along the line B6 of FIG. 23. 図25は、変形例1-6にかかるコンタクトレンズを示す断面図である。FIG. 25 is a cross-sectional view showing the contact lens according to the modified example 1-6. 図26は、図25のB7矢視図である。FIG. 26 is a view taken along the line B7 of FIG. 25. 図27は、変形例1-7にかかるコンタクトレンズを示す断面図である。FIG. 27 is a cross-sectional view showing the contact lens according to the modified example 1-7. 図28は、図27のB8矢視図である。FIG. 28 is a view taken along the line B8 of FIG. 27. 図29は、変形例1-8にかかるコンタクトレンズを示す断面図である。FIG. 29 is a cross-sectional view showing the contact lens according to the modified example 1-8. 図30は、図29のB9矢視図である。FIG. 30 is a view taken along the line B9 of FIG. 29. 図31は、変形例2-1にかかる房水ラマン分光計測システムの模式図である。FIG. 31 is a schematic diagram of the aqueous humor Raman spectroscopic measurement system according to the modified example 2-1.
 以下、本発明のコンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法の詳細について実施の形態に即して説明するが、これらは本発明を限定するものではない。 Hereinafter, the details of the contact lens, the aqueous humor Raman spectroscopic measurement device, the aqueous humor Raman spectroscopic measurement system, and the aqueous humor Raman spectroscopic measurement method of the present invention will be described in accordance with the embodiments, but these limit the present invention. It's not a thing.
(実施の形態)
〔房水ラマン分光計測システムの構成〕
 図1は、本発明の実施の形態にかかる房水ラマン分光計測システムの模式図である。房水ラマン分光計測システム100は、被検眼10の角膜11の内側にある房水12に含まれる物質をラマン分光法により分析するための計測を行う。房水ラマン分光計測システム100は、図1に示すように、被検眼10に装用されるコンタクトレンズ1と、コンタクトレンズ1に励起光を照射するとともに、被検眼10の房水12からのラマン散乱光を分光計測する房水ラマン分光計測装置20と、を備える。
(Embodiment)
[Aqueous humor Raman spectroscopic measurement system configuration]
FIG. 1 is a schematic diagram of an aqueous humor Raman spectroscopic measurement system according to an embodiment of the present invention. The aqueous humor Raman spectroscopic measurement system 100 performs measurement for analyzing a substance contained in the aqueous humor 12 inside the cornea 11 of the eye 10 to be examined by Raman spectroscopy. As shown in FIG. 1, the Raman spectroscopic measurement system 100 irradiates the contact lens 1 worn on the eye 10 to be inspected and the contact lens 1 with excitation light, and Raman scattering from the tuft 12 of the eye 10 to be inspected. A bunch of Raman spectroscopic measurement device 20 for spectroscopically measuring light is provided.
〔コンタクトレンズの構成〕
 図2は、本発明の実施の形態にかかるコンタクトレンズを示す断面図である。図3は、図2のB1矢視図である。図2は、図3のC1-C1線に対応する断面図である。
[Construction of contact lenses]
FIG. 2 is a cross-sectional view showing a contact lens according to an embodiment of the present invention. FIG. 3 is a view taken along the line B1 of FIG. FIG. 2 is a cross-sectional view corresponding to line C1-C1 of FIG.
 コンタクトレンズ1は、図2に示すように、被検眼10に接する凹型の内面1aと、凸型の外面1bと、を備える。また、コンタクトレンズ1は、入射側導光窓2と、出射側導光窓3と、縁部4と、を備える。 As shown in FIG. 2, the contact lens 1 includes a concave inner surface 1a in contact with the eye 10 to be inspected and a convex outer surface 1b. Further, the contact lens 1 includes an incident side light guide window 2, an exit side light guide window 3, and an edge portion 4.
 コンタクトレンズ1は、例えばpHEMA(ポリヒドロキシエチルメタクリレート)からなるソフトコンタクトレンズであり、屈折率は1.406である。また、コンタクトレンズ1は、SHG(シリコーンハイドロゲル)からなるソフトコンタクトレンズであってもよく、この場合、屈折率は1.385である。ただし、コンタクトレンズ1は、ハードコンタクトレンズであってもよい。 The contact lens 1 is a soft contact lens made of, for example, pHEMA (polyhydroxyethyl methacrylate) and has a refractive index of 1.406. Further, the contact lens 1 may be a soft contact lens made of SHG (silicone hydrogel), and in this case, the refractive index is 1.385. However, the contact lens 1 may be a hard contact lens.
 また、コンタクトレンズ1は、トーリックコンタクトレンズであることが好ましい。コンタクトレンズ1がトーリックコンタクトレンズである場合、瞬きによって入射側導光窓2が被検査者の耳側に、出射側導光窓3が被検査者の鼻側にそれぞれ位置するようにコンタクトレンズ1が回転する。 Further, the contact lens 1 is preferably a toric contact lens. When the contact lens 1 is a toric contact lens, the contact lens 1 is such that the light guide window 2 on the incident side is located on the ear side of the subject and the light guide window 3 on the exit side is located on the nose side of the subject by blinking. Rotates.
 入射側導光窓2は、外面1bから内面1a側に切り欠かれて形成されており、レンズ幾何中心軸(以下、「中心軸A1」という)と略直交する方向から入射した光が、当該コンタクトレンズ1を装用した被検眼10の房水12内において、中心軸A1と略直交する方向に沿って進むように導光する。入射側導光窓2により房水12内において光が中心軸A1と略直交する方向に沿って進むと、光が被検眼10の内部に進入し、被検眼10に損傷を与えることを防止することができる。 The light guide window 2 on the incident side is formed by being cut out from the outer surface 1b to the inner surface 1a side, and the light incident from a direction substantially orthogonal to the lens geometric central axis (hereinafter, referred to as “central axis A1”) is the said. In the aqueous humor 12 of the eye 10 to be inspected wearing the contact lens 1, the light is guided so as to proceed in a direction substantially orthogonal to the central axis A1. When the light travels in the aqueous humor 12 in the aqueous humor 12 in a direction substantially orthogonal to the central axis A1 by the incident side light guide window 2, the light enters the inside of the eye 10 to be inspected and prevents the eye 10 to be injured. be able to.
 出射側導光窓3は、中心軸A1を対称軸として、入射側導光窓2と線対称の位置に形成されている。また、出射側導光窓3は、外面1bから内面1a側に切欠かれて形成されており、当該コンタクトレンズ1を装用した被検眼10の房水12を透過した光をコンタクトレンズ1の外部に導光する。出射側導光窓3により房水12を透過した光がコンタクトレンズ1の外部に導光されることにより、より確実に光が被検眼10に損傷を与えることを防止することができる。 The exit side light guide window 3 is formed at a position line-symmetrical with the incident side light guide window 2 with the central axis A1 as the axis of symmetry. Further, the light emitting side light guide window 3 is formed by being cut out from the outer surface 1b to the inner surface 1a side, and the light transmitted through the aqueous humor 12 of the eye 10 to be inspected wearing the contact lens 1 is transmitted to the outside of the contact lens 1. Guide light. By guiding the light transmitted through the aqueous humor 12 to the outside of the contact lens 1 by the light emitting window 3, it is possible to more reliably prevent the light from damaging the eye 10 to be inspected.
 縁部4は、入射側導光窓2及び出射側導光窓3に付随して形成される厚さが薄い部分である。 The edge portion 4 is a thin portion formed incidentally to the incident side light guide window 2 and the exit side light guide window 3.
〔コンタクトレンズに入射した光の光路のシミュレーション〕
 次に、被検眼10に装用されたコンタクトレンズ1に入射した光の光路をシミュレーションする。図4は、被検眼に装用されたコンタクトレンズの模式図である。図4に示すように、中心軸A1に直交する横軸をx、中心軸A1に沿った縦軸をyとし、入射側導光窓2及び出射側導光窓3と中心軸A1とのなす角をγとした。入射側導光窓2及び出射側導光窓3の位置は、入射側導光窓2及び出射側導光窓3の端部までの半径rが5.65mmとなるように設定した。半径rの値は、男性の角膜半径の平均値が5.5mmであることに基づいて、入射側導光窓2から入射した光が角膜に入射するように設定した。
[Simulation of the optical path of light incident on a contact lens]
Next, the optical path of the light incident on the contact lens 1 worn on the eye 10 to be inspected is simulated. FIG. 4 is a schematic view of a contact lens worn on the eye to be inspected. As shown in FIG. 4, the horizontal axis orthogonal to the central axis A1 is x, the vertical axis along the central axis A1 is y, and the incident side light guide window 2 and the exit side light guide window 3 are formed by the central axis A1. The angle was γ. Position of the incident-side light guide window 2 and the exit-side light guide window 3, the radius r c to the end of the entrance-side light guide window 2 and the exit side guide window 3 was set to be 5.65 mm. The value of the radius r c, based on the average value of the cornea radius men is 5.5 mm, the light incident from the incident side light guide window 2 is set to be incident on the cornea.
 コンタクトレンズ1は、被検眼10の角膜11の表面に装用される。そして、角膜上皮11a及び角膜内皮11bを表す曲線は、それぞれ以下の式(1)により表すことができる。
Figure JPOXMLDOC01-appb-M000001
The contact lens 1 is worn on the surface of the cornea 11 of the eye 10 to be inspected. The curves representing the corneal epithelium 11a and the corneal endothelium 11b can be represented by the following equations (1), respectively.
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Rは曲率半径、aはRの逆数(a=1/R)、Kはコーニック定数、A、B、C、Dは係数である。ここで、A、B、Cは微少量としてゼロに近似すると、以下の式(2)が導かれる。
Figure JPOXMLDOC01-appb-M000002
In equation (1), R is the radius of curvature, a is the reciprocal of R (a = 1 / R), K is the cornic constant, and A, B, C, and D are coefficients. Here, if A, B, and C are approximated to zero with a very small amount, the following equation (2) is derived.
Figure JPOXMLDOC01-appb-M000002
 図5は、シミュレーションに用いた物性値を表す図である。図5に示すように、角膜上皮11a、角膜内皮11b、外面1bの物性値を定めると、図4に示す図を描くことができる。なお、Dは、図4いおけるy切片である。また、図4の原点Oは、被検眼10の内転や外転における回転中心である。 FIG. 5 is a diagram showing physical property values used in the simulation. As shown in FIG. 5, if the physical property values of the corneal epithelium 11a, the corneal endothelium 11b, and the outer surface 1b are determined, the figure shown in FIG. 4 can be drawn. Note that D is the y-intercept in FIG. Further, the origin O in FIG. 4 is the center of rotation in the adduction or abduction of the eye 10 to be inspected.
 ここで、界面における光の屈折について説明する。図6は、界面における屈折の様子を表す図である。図6に示すように、屈折率nの媒質Iから屈折率nの媒質IIへ光が入射する場合、入射光に対応するベクトルi、界面の法線ベクトルN、法線ベクトルNとベクトルiとのなす角θを用いて、界面で屈折した光に対応するベクトルiは、以下の式(3)に示すスネルの法則により表される。
Figure JPOXMLDOC01-appb-M000003
Here, the refraction of light at the interface will be described. FIG. 6 is a diagram showing the state of refraction at the interface. As shown in FIG. 6, when light is incident on the medium II having a refractive index n 2 from the medium I having a refractive index n 1 , the vector i 1 corresponding to the incident light, the normal vector N at the interface, and the normal vector N The vector i 2 corresponding to the light refracted at the interface using the angle θ formed by the vector i 1 is expressed by Snell's law shown in the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 図4に示すコンタクトレンズ1及び被検眼10の各界面において、式(3)を適用することにより、被検眼10に装用されたコンタクトレンズ1に入射した光の光路をシミュレーションすることができる。なお、以下のシミュレーションにおいて、空気の屈折率nairは1.00、コンタクトレンズ1の屈折率nは1.406、角膜の屈折率ncorは1.37、房水の屈折率nahは1.33とした。また、入射する光のビーム径は、400μmとした。 By applying the equation (3) at each interface between the contact lens 1 and the eye 10 shown in FIG. 4, it is possible to simulate the optical path of the light incident on the contact lens 1 worn on the eye 10. In the following simulation, the refractive index n air of air is 1.00, the refractive index n c of contact lens 1 is 1.406, the refractive index n cor of the cornea is 1.37, and the refractive index n ah of aqueous humor is 1. It was set to 1.33. The beam diameter of the incident light was 400 μm.
〔コンタクトレンズの入射側導光窓及び出射側導光窓の傾斜角〕
 次に、入射側導光窓2及び出射側導光窓3の傾斜角γを変化させた場合の光の光路をシミュレーションする。図7~図9は、入射側導光窓及び出射側導光窓の傾斜角を変化させた場合の光の光路を表す図である。図7~図9において、光は水平方向(入射角α=0°)から入射するものとする。
[Inclination angle of the light guide window on the incident side and the light guide window on the exit side of the contact lens]
Next, the optical path of light when the inclination angle γ of the light guide window 2 on the incident side and the light guide window 3 on the exit side is changed is simulated. 7 to 9 are views showing an optical path of light when the inclination angles of the light guide window on the incident side and the light guide window on the exit side are changed. In FIGS. 7 to 9, it is assumed that the light is incident from the horizontal direction (incident angle α = 0 °).
 図7では、入射側導光窓2及び出射側導光窓3の傾斜角γが15°である。この場合、入射側導光窓2から入射した光の光路が最も水平方向に沿った光路となる。 In FIG. 7, the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is 15 °. In this case, the optical path of the light incident from the incident side light guide window 2 is the optical path along the most horizontal direction.
 図8では、入射側導光窓2及び出射側導光窓3の傾斜角γが8°である。この場合、入射側導光窓2から入射した光は、出射側導光窓3からコンタクトレンズ1の外部に導光された。そして、入射側導光窓2及び出射側導光窓3の傾斜角γが8°より小さいと、入射側導光窓2から入射した光を、出射側導光窓3からコンタクトレンズ1の外部に導光することができない。 In FIG. 8, the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is 8 °. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3. When the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is smaller than 8 °, the light incident from the incident side light guide window 2 is transmitted from the exit side light guide window 3 to the outside of the contact lens 1. Cannot guide light to.
 図9では、入射側導光窓2及び出射側導光窓3の傾斜角γが28°である。この場合、入射側導光窓2から入射した光は、出射側導光窓3からコンタクトレンズ1の外部に導光された。そして、入射側導光窓2及び出射側導光窓3の傾斜角γが28°より大きいと、入射側導光窓2から入射した光を、出射側導光窓3からコンタクトレンズ1の外部に導光することができない。 In FIG. 9, the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is 28 °. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3. When the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is larger than 28 °, the light incident from the incident side light guide window 2 is transmitted from the exit side light guide window 3 to the outside of the contact lens 1. Cannot guide light to.
 以上説明したように、光を略水平方向から入射する場合、入射側導光窓2及び出射側導光窓3の傾斜角γが15°であることが最も好ましく、傾斜角γが8°以上28°以下であることが好ましい。この場合、入射側導光窓2から入射した光が出射側導光窓3から外部に導光されるので安全性が高い。 As described above, when light is incident from a substantially horizontal direction, the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is most preferably 15 °, and the inclination angle γ is 8 ° or more. It is preferably 28 ° or less. In this case, the light incident from the incident side light guide window 2 is guided to the outside from the exit side light guide window 3, so that the safety is high.
〔コンタクトレンズの入射側導光窓及び出射側導光窓の位置〕
 次に、入射側導光窓2及び出射側導光窓3の位置を変化させた場合の光の光路をシミュレーションする。図7において、入射側導光窓2及び出射側導光窓3の位置は、男性の角膜半径の平均値5.5mmに応じて、半径rが5.65mmとなるように設定されている。しかしながら、角膜半径の大きさには個人差があるため、角膜半径が小さい人に対応するには、半径rを小さく設定する必要がある。
[Position of light guide window on the incident side and light guide window on the exit side of the contact lens]
Next, the optical path of light when the positions of the light guide window 2 on the incident side and the light guide window 3 on the exit side are changed is simulated. 7, the position of the incident-side light guide window 2 and the exit-side light guide window 3, in accordance with the average value 5.5mm corneal radius men, radius r c is set to be 5.65mm .. However, because of individual differences in the size of the cornea radius to correspond to the human cornea radius is small, it is necessary to set a small radius r c.
 図10は、入射側導光窓及び出射側導光窓の位置を変化させた場合の光の光路を表す図である。図10において、半径rは、4.65mmに設定した。また、入射側導光窓2及び出射側導光窓3の傾斜角γは15°、光は水平方向(入射角α=0°)から入射するものとする。この場合、入射側導光窓2及び出射側導光窓3の傾斜角γが22°のとき、水平方向から入射側導光窓2に入射した光の光路が最も水平方向に沿った光路となる。 FIG. 10 is a diagram showing an optical path of light when the positions of the light guide window on the incident side and the light guide window on the exit side are changed. 10, the radius r c was set to 4.65 mm. Further, it is assumed that the inclination angle γ of the light guide window 2 on the incident side and the light guide window 3 on the exit side is 15 °, and the light is incident from the horizontal direction (incident angle α = 0 °). In this case, when the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is 22 °, the optical path of the light incident on the incident side light guide window 2 from the horizontal direction is the optical path along the most horizontal direction. Become.
 同様に、半径rを5.05mmに設定した場合、入射側導光窓2及び出射側導光窓3の傾斜角γが18°のとき、水平方向から入射側導光窓2に入射した光の光路が最も水平方向に沿った光路となる。 Similarly, if you set the radius r c to 5.05 mm, when the inclination angle of the incident side light guide window 2 and the exit-side light guide window 3 gamma is 18 °, incident from the horizontal direction to the incident side light guide window 2 The optical path of light is the most horizontal optical path.
 以上説明したように、角膜半径の大きさに応じて、半径rを変化させることにより、入射側導光窓2から入射した光が出射側導光窓3から外部に導光されるので安全性が高い。このとき、半径rに応じて入射側導光窓2及び出射側導光窓3の傾斜角γを適切な値に設定することが好ましい。 Safety As described above, according to the size of the corneal radius, by varying the radius r c, the light incident from the incident side light guide window 2 is guided to the outside from the outgoing side light guide window 3 High sex. In this case, it is preferable to set the appropriate value γ inclination angle of the incident side light guide window 2 and the exit side light guide window 3 in accordance with the radius r c.
〔コンタクトレンズの屈折率〕
 次に、コンタクトレンズ1の屈折率を変化させた場合の光の光路をシミュレーションする。図11、図12は、コンタクトレンズの屈折率を変化させた場合の光の光路を表す図である。図11、図12において、入射側導光窓2及び出射側導光窓3の傾斜角γは15°、光は水平方向(入射角α=0°)から入射するものとする。
[Refractive index of contact lenses]
Next, the optical path of light when the refractive index of the contact lens 1 is changed is simulated. 11 and 12 are diagrams showing the optical path of light when the refractive index of the contact lens is changed. In FIGS. 11 and 12, it is assumed that the angle of inclination γ of the light guide window 2 on the incident side and the light guide window 3 on the exit side is 15 °, and the light is incident from the horizontal direction (incident angle α = 0 °).
 図11では、コンタクトレンズ1の屈折率が1.36である。この場合、入射側導光窓2から入射した光は、出射側導光窓3からコンタクトレンズ1の外部に導光された。そして、コンタクトレンズ1の屈折率が1.36より小さいと、入射側導光窓2から入射した光を、出射側導光窓3からコンタクトレンズ1の外部に導光することができない。 In FIG. 11, the refractive index of the contact lens 1 is 1.36. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3. If the refractive index of the contact lens 1 is smaller than 1.36, the light incident from the incident side light guide window 2 cannot be guided to the outside of the contact lens 1 from the exit side light guide window 3.
 図12では、コンタクトレンズ1の屈折率が1.46である。この場合、入射側導光窓2から入射した光は、出射側導光窓3からコンタクトレンズ1の外部に導光された。そして、コンタクトレンズ1の屈折率が1.46より大きいと、入射側導光窓2から入射した光を、出射側導光窓3からコンタクトレンズ1の外部に導光することができない。 In FIG. 12, the refractive index of the contact lens 1 is 1.46. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3. If the refractive index of the contact lens 1 is larger than 1.46, the light incident from the incident side light guide window 2 cannot be guided to the outside of the contact lens 1 from the exit side light guide window 3.
 以上説明したように、光を略水平方向から入射する場合、コンタクトレンズ1の屈折率が1.36以上1.46以下であることが好ましい。この場合、入射側導光窓2から入射した光が出射側導光窓3から外部に導光されるので安全性が高い。 As described above, when light is incident from a substantially horizontal direction, the refractive index of the contact lens 1 is preferably 1.36 or more and 1.46 or less. In this case, the light incident from the incident side light guide window 2 is guided to the outside from the exit side light guide window 3, so that the safety is high.
〔コンタクトレンズ1への光の入射角〕
 次に、コンタクトレンズ1に入射する光の入射角を変化させた場合の光の光路をシミュレーションする。コンタクトレンズ1に対して光を水平方向(入射角α=0°)から入射することが好ましいが、実際には入射角αが水平方向からずれる場合があるため、光の入射角αのずれに対する許容量をシミュレーションにより算出する。
[Angle of light incident on contact lens 1]
Next, the optical path of the light when the incident angle of the light incident on the contact lens 1 is changed is simulated. It is preferable that the light is incident on the contact lens 1 from the horizontal direction (incident angle α = 0 °), but in reality, the incident angle α may deviate from the horizontal direction, so that the light is incident on the deviation of the incident angle α. Calculate the allowable amount by simulation.
 図13、図14は、コンタクトレンズへの入射角度を変化させた場合の光の光路を表す図である。 13 and 14 are diagrams showing the optical path of light when the angle of incidence on the contact lens is changed.
 図13では、入射側導光窓2及び出射側導光窓3の傾斜角γが0°、光の入射角αが-5°である。なお、入射角αは、被検査者の耳側を正、被検査者の耳側と反対側を負とする。この場合、入射側導光窓2から入射した光は、出射側導光窓3からコンタクトレンズ1の外部に導光された。 In FIG. 13, the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3 is 0 °, and the incident angle α of light is −5 °. The incident angle α is positive on the ear side of the subject and negative on the side opposite to the ear side of the subject. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3.
 図14では、入射側導光窓2及び出射側導光窓3の傾斜角γが30°、光の入射角αが4°である。この場合、入射側導光窓2から入射した光は、出射側導光窓3からコンタクトレンズ1の外部に導光された。 In FIG. 14, the angle of inclination γ of the light guide window 2 on the incident side and the light guide window 3 on the exit side is 30 °, and the incident angle α of light is 4 °. In this case, the light incident from the incident side light guide window 2 is guided to the outside of the contact lens 1 from the exit side light guide window 3.
 以上説明したように、入射側導光窓2及び出射側導光窓3の傾斜角γにも依存するが、光の入射角αが-4°以上5°以下であると、入射側導光窓2から入射した光が出射側導光窓3から外部に導光されるので安全性が高い。すなわち、コンタクトレンズ1に対する光の入射角αが水平方向からずれても、すれが小さければ安全性が保たれる。 As described above, although it depends on the inclination angle γ of the incident side light guide window 2 and the exit side light guide window 3, when the light incident angle α is -4 ° or more and 5 ° or less, the incident side light guide Since the light incident from the window 2 is guided to the outside through the light emitting side light guide window 3, the safety is high. That is, even if the incident angle α of the light with respect to the contact lens 1 deviates from the horizontal direction, safety is maintained as long as the light is small.
〔房水ラマン分光計測装置の構成〕
 房水ラマン分光計測装置20は、図1に示すように、第1光源部21と、遮光部材22と、ハーフミラー23と、対物レンズ24と、ノッチフィルタ25と、集光レンズ26と、光ファイバ結合器27と、光ファイバ28と、分光器29と、第2光源部30と、カメラ31と、を備える。
[Structure of aqueous humor Raman spectroscopic measurement device]
As shown in FIG. 1, the Fusamizu Raman spectrophotometer 20 includes a first light source unit 21, a light-shielding member 22, a half mirror 23, an objective lens 24, a notch filter 25, a condensing lens 26, and light. It includes a fiber coupler 27, an optical fiber 28, a spectroscope 29, a second light source unit 30, and a camera 31.
 房水ラマン分光計測装置20は、第1光源部21から出射する励起光L1と略直交する方向の光L3を計測する。これは、ラマン散乱光がどの方向で計測しても同じ光強度であるのに対して、レイリー散乱光が励起光と略直交する方向において光強度が最も弱くなるため、ラマン散乱光を効率よく計測することができるためである。なお、被検眼10の房水12を透過し、出射側導光窓3によりコンタクトレンズ1の外部に導光された光L2の光路上に、この光を吸収する光吸収体を配置してもよい。 The aqueous humor Raman spectroscopic measurement device 20 measures the light L3 in a direction substantially orthogonal to the excitation light L1 emitted from the first light source unit 21. This is because the Raman scattered light has the same light intensity regardless of the direction measured, whereas the Rayleigh scattered light has the weakest light intensity in the direction substantially orthogonal to the excitation light, so that the Raman scattered light is efficiently used. This is because it can be measured. Even if a light absorber that absorbs this light is arranged on the optical path of the light L2 that has passed through the bunch of water 12 of the eye 10 to be inspected and is guided to the outside of the contact lens 1 by the light emitting side light guide window 3. Good.
 第1光源部21は、被検眼10の房水12におけるラマン散乱光を分光計測するための励起光L1を出射する。また、第1光源部21は、励起光L1より光強度が小さい透過検査光を出射する。透過検査光は、測定を行う前に入射側導光窓2に入射した透過検査光が出射側導光窓3から出射するか否かを検査するために用いられる。励起光L1及び透過検査光の波長は、例えば532nmであるが、特に限定されない。透過検査光は、励起光と同じ波長であることが好ましい。第1光源部21は、所定の波長の光を出射する光源であればよく、例えばLED(Light Emitting Diode)である。 The first light source unit 21 emits excitation light L1 for spectroscopically measuring Raman scattered light in the aqueous humor 12 of the eye 10 to be inspected. Further, the first light source unit 21 emits transmission inspection light having a light intensity smaller than that of the excitation light L1. The transmission inspection light is used for inspecting whether or not the transmission inspection light incident on the incident side light guide window 2 is emitted from the exit side light guide window 3 before the measurement is performed. The wavelengths of the excitation light L1 and the transmission inspection light are, for example, 532 nm, but are not particularly limited. The transmission inspection light preferably has the same wavelength as the excitation light. The first light source unit 21 may be a light source that emits light having a predetermined wavelength, and is, for example, an LED (Light Emitting Diode).
 遮光部材22は、ゴム等の弾性部材からなる。遮光部材22は、被検眼10の周囲を覆い、外光が房水ラマン分光計測装置20の筐体内に入射しないよう遮光する。 The light-shielding member 22 is made of an elastic member such as rubber. The light-shielding member 22 covers the periphery of the eye 10 to be inspected and shields external light from entering the housing of the aqueous humor Raman spectroscopic measurement device 20.
 ハーフミラー23は、励起光L1の光軸と略直交する方向に配置されている。ハーフミラー23は、励起光L1の被検眼10の房水12に含まれている物質による散乱光L3の一部を透過するとともに、散乱光L3の一部を反射する。 The half mirror 23 is arranged in a direction substantially orthogonal to the optical axis of the excitation light L1. The half mirror 23 transmits a part of the scattered light L3 by the substance contained in the aqueous humor 12 of the eye 10 to be inspected for the excitation light L1 and reflects a part of the scattered light L3.
 対物レンズ24は、散乱光L3を集光する。 The objective lens 24 collects scattered light L3.
 ノッチフィルタ25は、本発明に係るフィルタに相当する。ノッチフィルタ25は、ハーフミラー23を透過した光L4の光路上に配置されており、散乱光L3に含まれているレイリー散乱光と同じ波長の光を選択的に遮光するバンドストップフィルタである。従って、ノッチフィルタ25は、散乱光L3に含まれているレイリー散乱光を遮光し、ラマン散乱光を透過する。ただし、フィルタは、散乱光L3に含まれているレイリー散乱光と同じ波長の光を選択的に遮光し、散乱光L3に含まれているラマン散乱光を透過するフィルタであればよい。例えば、ストークスラマン散乱を計測する場合には、励起光L1より長波長側を透過するフィルタを用いてもよい。また、反ストークス散乱を計測する場合には、励起光L1より短波長側を透過するフィルタを用いてもよい。また、波長が既知のラマン散乱光を計測する場合には、ラマン散乱光を選択的に透過するバンドパスフィルタを用いてもよい。 The notch filter 25 corresponds to the filter according to the present invention. The notch filter 25 is a band-stop filter that is arranged on the optical path of the light L4 that has passed through the half mirror 23 and selectively blocks light having the same wavelength as the Rayleigh scattered light contained in the scattered light L3. Therefore, the notch filter 25 blocks the Rayleigh scattered light contained in the scattered light L3 and transmits the Raman scattered light. However, the filter may be a filter that selectively blocks light having the same wavelength as the Rayleigh scattered light contained in the scattered light L3 and transmits the Raman scattered light contained in the scattered light L3. For example, when measuring Stoke Raman scattering, a filter that transmits on the wavelength side longer than the excitation light L1 may be used. Further, when measuring anti-Stokes scattering, a filter that transmits on the wavelength side shorter than the excitation light L1 may be used. Further, when measuring Raman scattered light having a known wavelength, a bandpass filter that selectively transmits Raman scattered light may be used.
 集光レンズ26は、ノッチフィルタ25を透過した光L4を集光し、光ファイバ結合器27に結合させる。 The condensing lens 26 condenses the light L4 that has passed through the notch filter 25 and couples it to the optical fiber coupler 27.
 光ファイバ結合器27は、集光レンズ26が集光した光L4を光ファイバ28に導く。 The optical fiber coupler 27 guides the light L4 collected by the condensing lens 26 to the optical fiber 28.
 光ファイバ28は、光ファイバ結合器27に導かれた光を導光する。 The optical fiber 28 guides the light guided to the optical fiber coupler 27.
 分光器29は、フィルタを透過した光を分光計測する。なお、集光レンズ26により集光した光を直接分光器に入射させてもよい。この場合、光ファイバ結合器27及び光ファイバ28は、不要である。 The spectroscope 29 spectroscopically measures the light transmitted through the filter. The light collected by the condensing lens 26 may be directly incident on the spectroscope. In this case, the optical fiber coupler 27 and the optical fiber 28 are unnecessary.
 第2光源部30は、ハーフミラー23で反射した散乱光の光路上に配置されており、光を出射して被検眼10を固視させる。すなわち、第2光源部は、被検眼10を固視させる固視標として用いることができる。なお、被検眼10とハーフミラー23との間において、第2光源部30が出射する光Eの光軸は、分光器29に入射する光L3の光軸から略5°ずれている。これは、光L3と略一致する被検眼10の眼軸(角膜11の頂点と中心窩とを結ぶ線)に対して、光Eと略一致する視線(被検眼10の注視点と中心窩とを結ぶ線)が5°内側(鼻側)にずれていることによる。第2光源部30から出射する光の波長は、ノッチフィルタ25に遮光される波長であり、例えば532nmである。また、第2光源部30は、白色光を出射可能であってもよい。この場合、カメラ31により被検眼10の状態を観察する際の照明として第2光源部30を用いることができる。 The second light source unit 30 is arranged on the optical path of the scattered light reflected by the half mirror 23, and emits the light to fix the eye 10 to be inspected. That is, the second light source unit can be used as a fixation target for fixing the eye 10 to be inspected. The optical axis of the light E emitted by the second light source unit 30 between the eye 10 to be inspected and the half mirror 23 is deviated by approximately 5 ° from the optical axis of the light L3 incident on the spectroscope 29. This is the line of sight (the line of sight of the eye 10 to be inspected and the fovea centralis) that is substantially the same as the light E with respect to the axis of the eye 10 to be inspected (the line connecting the apex of the cornea 11 and the fovea centralis). This is because the line connecting the lights) is shifted inward (nose side) by 5 °. The wavelength of the light emitted from the second light source unit 30 is a wavelength shaded by the notch filter 25, for example, 532 nm. Further, the second light source unit 30 may be capable of emitting white light. In this case, the second light source unit 30 can be used as the illumination when observing the state of the eye 10 to be inspected by the camera 31.
 カメラ31は、被検眼10を撮像する。カメラ31により被検眼10を観察することにより、被検眼10の結膜が充血しているか、睫毛が計測に影響を及ぼさないかなど、被検眼10の状態を観察することができる。 The camera 31 captures the eye 10 to be inspected. By observing the eye 10 to be inspected with the camera 31, it is possible to observe the state of the eye 10 to be inspected, such as whether the conjunctiva of the eye to be inspected 10 is hyperemic or the eyelashes do not affect the measurement.
〔房水ラマン分光計測システムによる房水ラマン分光計測方法〕
 次に、房水ラマン分光計測システム100による房水ラマン分光計測方法について説明する。まず、コンタクトレンズ1を被検眼10に装用する。このとき、コンタクトレンズ1がトーリックコンタクトレンズであると、瞬きによって入射側導光窓2が被検査者の耳側に、出射側導光窓3が被検査者の鼻側にそれぞれ位置するようにコンタクトレンズ1が回転する。
[Aqueous humor Raman spectroscopic measurement method by aqueous humor Raman spectroscopic measurement system]
Next, the aqueous humor Raman spectroscopic measurement method by the aqueous humor Raman spectroscopic measurement system 100 will be described. First, the contact lens 1 is worn on the eye 10 to be inspected. At this time, if the contact lens 1 is a toric contact lens, the incident side light guide window 2 is located on the subject's ear side and the exit side light guide window 3 is located on the subject's nose side by blinking. The contact lens 1 rotates.
 続いて、第1光源部21から出射した励起光が入射側導光窓2に対してレンズ幾何中心軸と略直交する方向から入射するように位置合わせを行う(位置合わせステップ)。具体的には、被検眼10と房水ラマン分光計測装置20との相対的な位置を調整することにより、被検眼10の光軸と光L3の光路とを略一致させる。 Subsequently, the excitation light emitted from the first light source unit 21 is aligned so as to enter the incident side light guide window 2 from a direction substantially orthogonal to the lens geometric center axis (alignment step). Specifically, by adjusting the relative positions of the eye 10 to be inspected and the aqueous humor Raman spectroscopic measurement device 20, the optical axis of the eye 10 to be inspected and the optical path of the light L3 are substantially aligned.
 さらに、第2光源部30から被検眼10に光を出射して被検眼を固視させる(固視ステップ)。 Further, light is emitted from the second light source unit 30 to the eye 10 to be inspected to fix the eye to be inspected (fixation step).
 その後、第1光源部21から透過検査光を出射し、入射側導光窓2に入射した透過検査光が出射側導光窓3から出射するか否かを検査する(透過検査ステップ)。 After that, the transmission inspection light is emitted from the first light source unit 21, and it is inspected whether or not the transmission inspection light incident on the incident side light guide window 2 is emitted from the exit side light guide window 3 (transmission inspection step).
 透過検査光が出射側導光窓3から出射することが確認されると、第1光源部21から励起光を出射し、ノッチフィルタ25を透過した光を分光器29により分光計測する(計測ステップ)。 When it is confirmed that the transmission inspection light is emitted from the light guide window 3 on the exit side, the excitation light is emitted from the first light source unit 21, and the light transmitted through the notch filter 25 is spectrally measured by the spectroscope 29 (measurement step). ).
 そして、分光計測された光のスペクトルを分析することにより、被検眼10の房水12に含まれる物質を分析することができる。 Then, by analyzing the spectrum of the spectroscopically measured light, the substance contained in the aqueous humor 12 of the eye 10 to be inspected can be analyzed.
 以上説明した房水ラマン分光計測方法によれば、入射側導光窓2を備えるコンタクトレンズ1を用いることにより、非侵襲で被検眼10の房水12からのラマン散乱光を計測することができる。従って、実施の形態によれば、非侵襲で被検眼10の房水12に含まれる物質を分析することが可能となる。 According to the aqueous humor Raman spectroscopic measurement method described above, the Raman scattered light from the aqueous humor 12 of the eye 10 to be inspected can be measured non-invasively by using the contact lens 1 provided with the incident side light guide window 2. .. Therefore, according to the embodiment, it is possible to analyze the substance contained in the aqueous humor 12 of the eye 10 to be examined non-invasively.
 また、実施の形態によれば、励起光L1の光軸に対して入射側導光窓2及び出射側導光窓3が斜め交差するように形成されているため、入射側導光窓2及び出射側導光窓3における反射光が第1光源部21に戻り、第1光源部21の動作が不安定になることを防止することができる。これに対して、被検眼10を生理食塩水等の液体で満たした容器で覆い、被検眼10を液体に浸した状態で計測する方法では、容器に設けられた導光窓が励起光の光軸に直交するため、導光窓における反射光が第1光源部21に戻り、第1光源部21の動作が不安定になる場合がある。 Further, according to the embodiment, since the incident side light guide window 2 and the exit side light guide window 3 are formed so as to diagonally intersect the optical axis of the excitation light L1, the incident side light guide window 2 and It is possible to prevent the reflected light from the light emitting side light guide window 3 from returning to the first light source unit 21 and making the operation of the first light source unit 21 unstable. On the other hand, in the method in which the eye 10 to be inspected is covered with a container filled with a liquid such as physiological saline and the eye 10 to be inspected is immersed in the liquid for measurement, the light guide window provided in the container is the light of the excitation light. Since it is orthogonal to the axis, the reflected light in the light guide window returns to the first light source unit 21, and the operation of the first light source unit 21 may become unstable.
〔コンタクトレンズの変形例〕
(変形例1-1)
 図15は、変形例1-1にかかるコンタクトレンズを示す断面図である。図16は、図15のB2矢視図である。図15は、図16のC2-C2線に対応する断面図である。軸A2は、コンタクトレンズ1Aのレンズ幾何中心軸である。
[Modification of contact lenses]
(Modification 1-1)
FIG. 15 is a cross-sectional view showing the contact lens according to the modified example 1-1. FIG. 16 is a view taken along the line B2 of FIG. FIG. 15 is a cross-sectional view corresponding to line C2-C2 of FIG. The axis A2 is the lens geometric center axis of the contact lens 1A.
 図15、図16に示すように、コンタクトレンズ1Aは、入射側導光窓2を有し、出射側導光窓を有しない。このように、コンタクトレンズは、出射側導光窓を有していなくてもよい。 As shown in FIGS. 15 and 16, the contact lens 1A has an incident side light guide window 2 and does not have an exit side light guide window. As described above, the contact lens does not have to have a light guide window on the exit side.
(変形例1-2)
 図17は、変形例1-2にかかるコンタクトレンズを示す断面図である。図18は、図17のB3矢視図である。図17は、図18のC3-C3線に対応する断面図である。軸A3は、コンタクトレンズ1Bのレンズ幾何中心軸である。
(Modification 1-2)
FIG. 17 is a cross-sectional view showing the contact lens according to the modified example 1-2. FIG. 18 is a view taken along the line B3 of FIG. FIG. 17 is a cross-sectional view corresponding to line C3-C3 of FIG. The axis A3 is the lens geometric center axis of the contact lens 1B.
 図17、図18に示すように、コンタクトレンズ1Bは、円環状に一連の導光窓2B及び縁部4Bを備える。導光窓2Bは、入射側の導光窓と、出射側の導光窓とを兼ねる。この場合、被検眼10においてコンタクトレンズ1Bが回転しても構わないため、コンタクトレンズ1Bは、トーリックコンタクトレンズでなくてよい。 As shown in FIGS. 17 and 18, the contact lens 1B includes a series of light guide windows 2B and an edge 4B in an annular shape. The light guide window 2B also serves as a light guide window on the incident side and a light guide window on the exit side. In this case, the contact lens 1B does not have to be a toric contact lens because the contact lens 1B may rotate in the eye 10 to be inspected.
(変形例1-3)
 図19は、変形例1-3にかかるコンタクトレンズを示す断面図である。図20は、図19のB4矢視図である。図19は、図20のC4-C4線に対応する断面図である。軸A4は、コンタクトレンズ1Cのレンズ幾何中心軸である。
(Modification 1-3)
FIG. 19 is a cross-sectional view showing the contact lens according to the modified example 1-3. FIG. 20 is a view taken along the line B4 of FIG. FIG. 19 is a cross-sectional view corresponding to line C4-C4 of FIG. The axis A4 is the lens geometric center axis of the contact lens 1C.
 図19、図20に示すように、コンタクトレンズ1Cは、半円状の入射側導光窓2C及び縁部4Cを備える。このように、コンタクトレンズは、出射側導光窓を有していなくてもよい。 As shown in FIGS. 19 and 20, the contact lens 1C includes a semicircular incident side light guide window 2C and an edge portion 4C. As described above, the contact lens does not have to have a light guide window on the exit side.
(変形例1-4)
 図21は、変形例1-4にかかるコンタクトレンズを示す断面図である。図22は、図21のB5矢視図である。図21は、図22のC5-C5線に対応する断面図である。軸A5は、コンタクトレンズ1Dのレンズ幾何中心軸である。
(Modification 1-4)
FIG. 21 is a cross-sectional view showing the contact lens according to the modified example 1-4. FIG. 22 is a view taken along the line B5 of FIG. 21. FIG. 21 is a cross-sectional view corresponding to line C5-C5 of FIG. The axis A5 is the lens geometric center axis of the contact lens 1D.
 図21、図22に示すように、コンタクトレンズ1Dは、入射側導光窓2と傾斜角が異なる出射側導光窓3Dを備える。出射側導光窓3Dの傾斜角δは、入射側導光窓2の傾斜角γより大きい。その結果、出射側導光窓3Dからの光が被検体から離れる方向に進んで睫毛等に照射されることにより、迷光が発生することを防止することができる。 As shown in FIGS. 21 and 22, the contact lens 1D includes an exit side light guide window 3D having a different inclination angle from the incident side light guide window 2. The tilt angle δ of the light emitting window 3D is larger than the tilt angle γ of the light guide window 2 on the incident side. As a result, it is possible to prevent stray light from being generated by the light from the light emitting window 3D on the exit side traveling in the direction away from the subject and irradiating the eyelashes and the like.
(変形例1-5)
 図23は、変形例1-5にかかるコンタクトレンズを示す断面図である。図24は、図23のB6矢視図である。図23は、図24のC6-C6線に対応する断面図である。軸A6は、コンタクトレンズ1Eのレンズ幾何中心軸である。
(Modification example 1-5)
FIG. 23 is a cross-sectional view showing the contact lens according to the modified example 1-5. FIG. 24 is a view taken along the line B6 of FIG. 23. FIG. 23 is a cross-sectional view corresponding to line C6-C6 of FIG. 24. The axis A6 is the lens geometric center axis of the contact lens 1E.
 図23、図24に示すように、コンタクトレンズ1Eは、半円状の入射側導光窓2Cと傾斜角が異なる半円状の出射側導光窓3Eを備える。また、コンタクトレンズ1Eは、出射側導光窓3Eに付随して形成されている縁部4Eを備える。出射側導光窓3Eの傾斜角δは、入射側導光窓2Cの傾斜角γより大きい。その結果、出射側導光窓3Eからの光が被検体から離れる方向に進んで睫毛等に照射されることにより、迷光が発生することを防止することができる。 As shown in FIGS. 23 and 24, the contact lens 1E includes a semicircular incident side light guide window 2C and a semicircular exit side light guide window 3E having different inclination angles. Further, the contact lens 1E includes an edge portion 4E formed incidentally to the light emitting side light guide window 3E. The inclination angle δ of the light emitting window 3E is larger than the inclination angle γ of the light guide window 2C on the incident side. As a result, it is possible to prevent stray light from being generated by the light from the light emitting window 3E on the exit side traveling in the direction away from the subject and irradiating the eyelashes and the like.
(変形例1-6)
 図25は、変形例1-6にかかるコンタクトレンズを示す断面図である。図26は、図25のB7矢視図である。図25は、図26のC7-C7線に対応する断面図である。軸A7は、コンタクトレンズ1Fのレンズ幾何中心軸である。
(Modification example 1-6)
FIG. 25 is a cross-sectional view showing the contact lens according to the modified example 1-6. FIG. 26 is a view taken along the line B7 of FIG. 25. FIG. 25 is a cross-sectional view corresponding to line C7-C7 of FIG. The axis A7 is the lens geometric center axis of the contact lens 1F.
 図25、図26に示すように、コンタクトレンズ1Fは、連続的に形成されている入射側導光窓2F及び出射側導光窓3Fを備える。また、コンタクトレンズ1Fは、入射側導光窓2F及び出射側導光窓3Fに付随して形成されている縁部4Fを備える。入射側導光窓2Fは、中心角εで示す領域に形成されており、この部分では傾斜角はγで一定である。一方、出射側導光窓3Fでは、入射側導光窓2Fと接続する部分から徐々に傾斜角が大きくなり、入射側導光窓2Fと対向する端部で最大値のδとなる。その結果、出射側導光窓3Eからの光が被検体から離れる方向に進んで睫毛等に照射されることにより、迷光が発生することを防止することができる。 As shown in FIGS. 25 and 26, the contact lens 1F includes a continuously formed incident side light guide window 2F and an exit side light guide window 3F. Further, the contact lens 1F includes an incident side light guide window 2F and an edge portion 4F formed incidentally to the exit side light guide window 3F. The light guide window 2F on the incident side is formed in the region indicated by the central angle ε, and the inclination angle is constant at γ in this portion. On the other hand, in the light emitting window 3F, the inclination angle gradually increases from the portion connected to the light guide window 2F on the incident side, and the maximum value is δ at the end facing the light guide window 2F on the incident side. As a result, it is possible to prevent the generation of stray light due to the light from the light emitting window 3E on the exit side traveling in the direction away from the subject and irradiating the eyelashes and the like.
(変形例1-7)
 図27は、変形例1-7にかかるコンタクトレンズを示す断面図である。図28は、図27のB8矢視図である。図27は、図28のC8-C8線に対応する断面図である。軸A8は、コンタクトレンズ1Gのレンズ幾何中心軸である。
(Modification example 1-7)
FIG. 27 is a cross-sectional view showing the contact lens according to the modified example 1-7. FIG. 28 is a view taken along the line B8 of FIG. 27. FIG. 27 is a cross-sectional view corresponding to line C8-C8 of FIG. 28. The axis A8 is the lens geometric center axis of the contact lens 1G.
 図27、図28に示すように、コンタクトレンズ1Gは、入射側導光窓2及び出射側導光窓3の周囲に配置されており、光を遮光する遮光部5Gを備える。第1光源部21からの励起光が入射側導光窓2から外れた場合、遮光部5Gによって励起光が遮光されるため、安全性が高い。また、房水12を透過した光が出射側導光窓3から外れた場合、その光を遮光部5Gが遮光するため、予期しない迷光が発生することを防止することができる。 As shown in FIGS. 27 and 28, the contact lens 1G is arranged around the incident side light guide window 2 and the exit side light guide window 3, and includes a light shielding portion 5G that blocks light. When the excitation light from the first light source unit 21 deviates from the incident side light guide window 2, the excitation light is shielded by the light shielding unit 5G, so that the safety is high. Further, when the light transmitted through the aqueous humor 12 deviates from the light emitting side light guide window 3, the light shielding portion 5G blocks the light, so that it is possible to prevent unexpected stray light from being generated.
(変形例1-8)
 図29は、変形例1-8にかかるコンタクトレンズを示す断面図である。図30は、図29のB9矢視図である。図29は、図30のC9-C9線に対応する断面図である。軸A9は、コンタクトレンズ1Hのレンズ幾何中心軸である。
(Modification example 1-8)
FIG. 29 is a cross-sectional view showing the contact lens according to the modified example 1-8. FIG. 30 is a view taken along the line B9 of FIG. 29. FIG. 29 is a cross-sectional view corresponding to line C9-C9 of FIG. The axis A9 is the lens geometric center axis of the contact lens 1H.
 図29、図30に示すように、コンタクトレンズ1Hの中央部には、貫通孔6Hが形成されている。その結果、房水12におけるラマン散乱光がコンタクトレンズ1Hで減衰することが防止されており、測定の精度が向上する。 As shown in FIGS. 29 and 30, a through hole 6H is formed in the central portion of the contact lens 1H. As a result, the Raman scattered light in the aqueous humor 12 is prevented from being attenuated by the contact lens 1H, and the measurement accuracy is improved.
〔房水ラマン分光計測装置の変形例〕
(変形例2-1)
 図31は、変形例2-1にかかる房水ラマン分光計測システムの模式図である。図31に示すように、房水ラマン分光計測装置20Aは、コリメートレンズ32Aを備える。このように、ノッチフィルタ25の位置は、ハーフミラー23と光ファイバ結合器27との間の光が略平行な部分であればよい。
[Modification example of aqueous humor Raman spectroscopic measurement device]
(Modification 2-1)
FIG. 31 is a schematic diagram of the aqueous humor Raman spectroscopic measurement system according to the modified example 2-1. As shown in FIG. 31, the aqueous humor Raman spectroscopic measuring device 20A includes a collimating lens 32A. As described above, the position of the notch filter 25 may be a portion where the light between the half mirror 23 and the optical fiber coupler 27 is substantially parallel.
 なお、上述した実施の形態では、ハーフミラー23を透過した光を分光器29により計測する例を示したが、ハーフミラー23が反射した光を分光器29により計測してもよい。 In the above-described embodiment, the light transmitted through the half mirror 23 is measured by the spectroscope 29, but the light reflected by the half mirror 23 may be measured by the spectroscope 29.
 また、上述した実施の形態では、コンタクトレンズ1を用いて、ラマン散乱光を計測する例を説明したが、これに限られない。中心軸A1と略直交する方向から入射側導光窓2に励起光を入射し、出射側導光窓3によってコンタクトレンズ1の外部に導光された光を計測してもよい。この計測方法により、例えば、赤外分光法によって房水12に含まれる物質を分析してもよい。 Further, in the above-described embodiment, an example of measuring Raman scattered light using the contact lens 1 has been described, but the present invention is not limited to this. The excitation light may be incident on the incident side light guide window 2 from a direction substantially orthogonal to the central axis A1, and the light guided to the outside of the contact lens 1 by the exit side light guide window 3 may be measured. By this measurement method, for example, the substance contained in the aqueous humor 12 may be analyzed by infrared spectroscopy.
 1、1A、1B、1C、1D、1E、1F、1G、1H コンタクトレンズ
 1a 内面
 1b 外面
 2、2C、2F 入射側導光窓
 2B 導光窓
 3、3D、3E、3F 出射側導光窓
 4、4B、4C、4E、4F 縁部
 5G 遮光部
 6H 貫通孔
 10 被検眼
 11 角膜
 11a 角膜上皮
 11b 角膜内皮
 12 房水
 20 房水ラマン分光計測装置
 21 第1光源部
 22 遮光部材
 23 ハーフミラー
 24 対物レンズ
 25 ノッチフィルタ
 26 集光レンズ
 27 光ファイバ結合器
 28 光ファイバ
 29 分光器
 30 第2光源部
 31 カメラ
 32A コリメートレンズ
 100 房水ラマン分光計測システム
1, 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H Contact lens 1a Inner surface 1b Outer surface 2, 2C, 2F Incident side light guide window 2B Light guide window 3, 3D, 3E, 3F Exit side light guide window 4 4B, 4C, 4E, 4F Edge 5G Light-shielding part 6H Through-hole 10 Eye to be inspected 11 Corneal 11a Corneal epithelium 11b Corneal endothelium 12 Tufts 20 Tufts Raman spectrophotometer 21 First light source 22 Shading member 23 Half mirror 24 Objective Lens 25 Notch filter 26 Condensing lens 27 Optical fiber coupler 28 Optical fiber 29 Spectrometer 30 Second light source 31 Camera 32A Collimating lens 100 Bunched Raman spectroscopic measurement system

Claims (13)

  1.  被検眼に接する凹型の内面と、凸型の外面とを備えるコンタクトレンズであって、
     前記外面から前記内面側に切り欠かれて形成されており、レンズ幾何中心軸と略直交する方向から入射した光が、当該コンタクトレンズを装用した前記被検眼の房水内において、前記レンズ幾何中心軸と略直交する方向に沿って進むように導光する入射側導光窓を備えることを特徴とするコンタクトレンズ。
    A contact lens having a concave inner surface and a convex outer surface in contact with the eye to be inspected.
    Light that is cut out from the outer surface to the inner surface side and is incident from a direction substantially orthogonal to the lens geometric center axis is emitted from the lens geometric center in the aqueous humor of the eye to be inspected wearing the contact lens. A contact lens characterized by including an incident side light guide window that guides light so as to travel in a direction substantially orthogonal to the axis.
  2.  前記入射側導光窓は、前記レンズ幾何中心軸とのなす角が8°以上28°以下であることを特徴とする請求項1に記載のコンタクトレンズ。 The contact lens according to claim 1, wherein the incident side light guide window has an angle formed by the lens geometric center axis of 8 ° or more and 28 ° or less.
  3.  当該コンタクトレンズの屈折率は、1.36以上1.46以下であることを特徴とする請求項1又は2に記載のコンタクトレンズ。 The contact lens according to claim 1 or 2, wherein the refractive index of the contact lens is 1.36 or more and 1.46 or less.
  4.  前記レンズ幾何中心軸を対称軸として、前記入射側導光窓と線対称の位置に形成されている出射側導光窓であって、前記外面から前記内面側に切り欠かれて形成されており、当該コンタクトレンズを装用した前記被検眼の前記房水を透過した光を当該コンタクトレンズの外部に導光する出射側導光窓を備えることを特徴とする請求項1~3のいずれか1つに記載のコンタクトレンズ。 An exit-side light guide window formed at a position line-symmetrical with the incident-side light guide window with the lens geometric center axis as the axis of symmetry, and is formed by being cut out from the outer surface to the inner surface side. One of claims 1 to 3, further comprising an exit-side light guide window that guides light transmitted through the aqueous humor of the eye to be inspected wearing the contact lens to the outside of the contact lens. Contact lenses described in.
  5.  前記入射側導光窓の周囲に配置されており、光を遮光する遮光部を備えることを特徴とする請求項1~4のいずれか1つに記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 4, which is arranged around the light guide window on the incident side and includes a light-shielding portion that blocks light.
  6.  当該コンタクトレンズの中央部に貫通孔が形成されていることを特徴とする請求項1~5のいずれか1つに記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 5, wherein a through hole is formed in the central portion of the contact lens.
  7.  励起光を出射する第1光源部と、
     前記励起光の光軸と略直交する方向に配置されているハーフミラーと、
     前記ハーフミラーを透過した前記励起光の被検眼の房水に含まれている物質による散乱光又は前記ハーフミラーで反射した前記散乱光の一方の光路上に配置されており、前記散乱光に含まれるレイリー散乱光と同じ波長の光を遮光し、前記散乱光に含まれるラマン散乱光を透過するフィルタと、
     前記フィルタを透過した光を分光計測する分光器と、
     前記ハーフミラーを透過した前記散乱光又は前記ハーフミラーで反射した前記散乱光の他方の光路上に配置されており、光を出射して前記被検眼を固視させるための第2光源部と、
     を備えることを特徴とする房水ラマン分光計測装置。
    The first light source unit that emits excitation light and
    A half mirror arranged in a direction substantially orthogonal to the optical axis of the excitation light, and
    The excitation light transmitted through the half mirror is arranged on one of the scattered light by a substance contained in the aqueous humor of the eye to be inspected or the scattered light reflected by the half mirror, and is included in the scattered light. A filter that blocks light of the same wavelength as Rayleigh scattered light and transmits Raman scattered light contained in the scattered light.
    A spectroscope that spectroscopically measures the light transmitted through the filter and
    A second light source unit which is arranged on the other light path of the scattered light transmitted through the half mirror or the scattered light reflected by the half mirror and for emitting light to fix the eye to be inspected.
    Aqueous humor Raman spectroscopic measurement device characterized by being equipped with.
  8.  前記第2光源部は、前記フィルタに遮光される波長の光を出射することを特徴とする請求項7に記載の房水ラマン分光計測装置。 The aqueous humor Raman spectroscopic measurement device according to claim 7, wherein the second light source unit emits light having a wavelength that is shielded from light by the filter.
  9.  前記第2光源部は、白色光を出射することを特徴とする請求項7又は8に記載の房水ラマン分光計測装置。 The aqueous humor Raman spectroscopic measurement device according to claim 7 or 8, wherein the second light source unit emits white light.
  10.  前記被検眼と前記ハーフミラーとの間において、前記第2光源部が出射する光の光軸は、前記分光器に入射する光の光軸から略5°ずれていることを特徴とする請求項7~9のいずれか1つに記載の房水ラマン分光計測装置。 The claim is characterized in that the optical axis of the light emitted by the second light source unit is deviated by approximately 5 ° from the optical axis of the light incident on the spectroscope between the eye to be inspected and the half mirror. The aqueous Raman spectroscopic measuring apparatus according to any one of 7 to 9.
  11.  被検眼に接する凹型の内面と、凸型の外面とを備えるコンタクトレンズであって、前記外面から前記内面側に切り欠かれて形成されており、レンズ幾何中心軸と略直交する方向から入射した光が、当該コンタクトレンズを装用した前記被検眼の房水内において、前記レンズ幾何中心軸と略直交する方向に沿って進むように導光する入射側導光窓を有するコンタクトレンズと、
     前記入射側導光窓に対して前記レンズ幾何中心軸と略直交する方向から入射するように励起光を出射する第1光源部と、
     前記励起光の光軸と略直交する方向に配置されているハーフミラーと、
     前記ハーフミラーを透過した前記励起光の前記被検眼の前記房水に含まれている物質による散乱光又は前記ハーフミラーで反射した前記散乱光の一方の光路上に配置されており、前記散乱光に含まれるレイリー散乱光と同じ波長の光を遮光し、前記散乱光に含まれるラマン散乱光を透過するフィルタと、
     前記フィルタを透過した光を分光計測する分光器と、
     前記ハーフミラーを透過した前記散乱光又は前記ハーフミラーで反射した前記散乱光の他方の光路上に配置されており、光を出射して前記被検眼を固視させるための第2光源部と、
     を備えることを特徴とする房水ラマン分光計測システム。
    A contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, which is formed by being cut out from the outer surface to the inner surface side, and is incident from a direction substantially orthogonal to the geometric center axis of the lens. A contact lens having an incident side light guide window that guides light so as to travel in a bunch of water of the eye to be inspected wearing the contact lens in a direction substantially orthogonal to the geometric center axis of the lens.
    A first light source unit that emits excitation light so as to be incident on the incident side light guide window from a direction substantially orthogonal to the lens geometric center axis.
    A half mirror arranged in a direction substantially orthogonal to the optical axis of the excitation light, and
    The excitation light transmitted through the half mirror is arranged on one of the light paths of the scattered light due to the substance contained in the bunch of water of the eye to be inspected or the scattered light reflected by the half mirror, and the scattered light. A filter that blocks light of the same wavelength as the Rayleigh scattered light contained in the above and transmits the Raman scattered light contained in the scattered light.
    A spectroscope that spectroscopically measures the light transmitted through the filter and
    A second light source unit which is arranged on the other light path of the scattered light transmitted through the half mirror or the scattered light reflected by the half mirror and for emitting light to fix the eye to be inspected.
    Aqueous humor Raman spectroscopic measurement system characterized by being equipped with.
  12.  被検眼に接する凹型の内面と、凸型の外面とを備えるコンタクトレンズであって、前記外面から前記内面側に切り欠かれて形成されており、レンズ幾何中心軸と略直交する方向から入射した光が、当該コンタクトレンズを装用した前記被検眼の房水内において、前記レンズ幾何中心軸と略直交する方向に沿って進むように導光する入射側導光窓を有するコンタクトレンズを装用した前記被検眼の前記房水に含まれている物質によるラマン散乱光を計測する房水ラマン分光計測方法であって、
     第1光源部から出射した励起光が前記入射側導光窓に対して前記レンズ幾何中心軸と略直交する方向から入射するように位置合わせを行う位置合わせステップと、
     第2光源部から前記被検眼に光を出射して前記被検眼を固視させる固視ステップと、
     前記第1光源部から前記励起光を出射し、前記励起光の前記被検眼の前記房水に含まれている物質による散乱光に含まれるレイリー散乱光と同じ波長の光を遮光し、前記散乱光に含まれるラマン散乱光を透過するフィルタを透過した光を分光器により分光計測する計測ステップと、
     を含むことを特徴とする房水ラマン分光計測方法。
    A contact lens having a concave inner surface in contact with an eye to be inspected and a convex outer surface, which is formed by being cut out from the outer surface to the inner surface side, and is incident from a direction substantially orthogonal to the geometric center axis of the lens. The contact lens having an incident side light guide window that guides light so as to travel along a direction substantially orthogonal to the geometric center axis of the lens in the aqueous chamber of the eye to be inspected wearing the contact lens. It is a bunch water Raman spectroscopic measurement method for measuring Raman scattered light by a substance contained in the bunch water of the eye to be inspected.
    An alignment step of aligning the excitation light emitted from the first light source unit so that the excitation light is incident on the incident side light guide window from a direction substantially orthogonal to the lens geometric center axis.
    A fixation step in which light is emitted from the second light source unit to the eye to be inspected to fix the eye to be inspected.
    The excitation light is emitted from the first light source unit, and the light having the same wavelength as the Rayleigh scattered light contained in the scattered light by the substance contained in the bunch of water of the eye to be inspected is blocked, and the scattering is performed. A measurement step of spectroscopically measuring the light transmitted through a filter that transmits Raman scattered light contained in the light with a spectroscope, and
    Aqueous humor Raman spectroscopic measurement method, which comprises.
  13.  前記コンタクトレンズは、前記レンズ幾何中心軸を対称軸として、前記入射側導光窓と線対称の位置に形成されている出射側導光窓であって、前記外面から前記内面側に切り欠かれて形成されており、当該コンタクトレンズを装用した前記被検眼の前記房水を透過した光を当該コンタクトレンズの外部に導光する出射側導光窓を有し、
     前記計測ステップの前に、前記第1光源部から前記励起光より光強度が小さい透過検査光を出射し、前記入射側導光窓に入射した前記透過検査光が前記出射側導光窓から出射するか否かを検査する透過検査ステップを含むことを特徴とする請求項12に記載の房水ラマン分光計測方法。
    The contact lens is an exit-side light guide window formed at a position line-symmetrical with the incident-side light guide window with the lens geometric center axis as the axis of symmetry, and is cut out from the outer surface to the inner surface side. It has an exit side light guide window that guides the light transmitted through the bunch of water of the eye to be inspected to the outside of the contact lens.
    Prior to the measurement step, transmission inspection light having a light intensity smaller than that of the excitation light is emitted from the first light source unit, and the transmission inspection light incident on the incident side light guide window is emitted from the exit side light guide window. The aqueous Raman spectroscopic measurement method according to claim 12, further comprising a permeation inspection step of inspecting whether or not to do so.
PCT/JP2020/004395 2019-03-27 2020-02-05 Contact lens, aqueous humor raman spectroscopic measurement device, aqueous humor raman spectroscopic measurement system, and aqueous humor raman spectroscopic measurement method WO2020195199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519450A JPWO2020195199A1 (en) 2019-03-27 2020-02-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061597 2019-03-27
JP2019061597 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195199A1 true WO2020195199A1 (en) 2020-10-01

Family

ID=72611773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004395 WO2020195199A1 (en) 2019-03-27 2020-02-05 Contact lens, aqueous humor raman spectroscopic measurement device, aqueous humor raman spectroscopic measurement system, and aqueous humor raman spectroscopic measurement method

Country Status (2)

Country Link
JP (1) JPWO2020195199A1 (en)
WO (1) WO2020195199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286745A1 (en) * 2021-07-14 2023-01-19 株式会社シード Light intensity measurement system, raman scattering spectroscopy system and light intensity measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034478A1 (en) * 1998-07-13 2001-10-25 Lambert James L. Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing raman spectrum signals of selected regions in the eye
JP2003534087A (en) * 2000-05-31 2003-11-18 ミューラー−デトレフス,クラオス Method and apparatus for detecting substances in body fluids using Raman spectroscopy
JP2015018179A (en) * 2013-07-12 2015-01-29 株式会社ユニバーサルビュー Contact lens
JP2016200596A (en) * 2015-04-12 2016-12-01 台医光電科技股▲ふん▼有限公司 Optical measurement module, optical measurement device, and method of measurement
WO2018096979A1 (en) * 2016-11-25 2018-05-31 株式会社ユニバーサルビュー Pinhole contact lens and smart contact system
WO2019008968A1 (en) * 2017-07-05 2019-01-10 株式会社トプコン Ophthalmological device
WO2019027051A1 (en) * 2017-08-03 2019-02-07 ソニー株式会社 Contact lens and detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034478A1 (en) * 1998-07-13 2001-10-25 Lambert James L. Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing raman spectrum signals of selected regions in the eye
JP2003534087A (en) * 2000-05-31 2003-11-18 ミューラー−デトレフス,クラオス Method and apparatus for detecting substances in body fluids using Raman spectroscopy
JP2015018179A (en) * 2013-07-12 2015-01-29 株式会社ユニバーサルビュー Contact lens
JP2016200596A (en) * 2015-04-12 2016-12-01 台医光電科技股▲ふん▼有限公司 Optical measurement module, optical measurement device, and method of measurement
JP2016198506A (en) * 2015-04-12 2016-12-01 台医光電科技股▲ふん▼有限公司 Alignment device and method of the same
WO2018096979A1 (en) * 2016-11-25 2018-05-31 株式会社ユニバーサルビュー Pinhole contact lens and smart contact system
WO2019008968A1 (en) * 2017-07-05 2019-01-10 株式会社トプコン Ophthalmological device
WO2019027051A1 (en) * 2017-08-03 2019-02-07 ソニー株式会社 Contact lens and detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COTE, GERARD L.: "Noninvasive and Minimally Invasive Optical Monitoring Technologies", THE JOURNAL OF NUTRITION, vol. 13, no. 5, 1 May 2001 (2001-05-01), pages 1596s - 1604s, XP055742805 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286745A1 (en) * 2021-07-14 2023-01-19 株式会社シード Light intensity measurement system, raman scattering spectroscopy system and light intensity measurement method

Also Published As

Publication number Publication date
JPWO2020195199A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US7427135B2 (en) Adaptive photoscreening system
Burns et al. Direct measurement of human-cone-photoreceptor alignment
US8403480B2 (en) Adaptive photoscreening system
KR102356580B1 (en) Determination of changes in the refractive error of the eye
US7896498B2 (en) Apparatus and method for optical measurements
US20090079937A1 (en) Adaptive Photoscreening System
US8488851B2 (en) System and method for measuring light scattering in the eyeball or eye region by recording and processing retinal images
WO2020195199A1 (en) Contact lens, aqueous humor raman spectroscopic measurement device, aqueous humor raman spectroscopic measurement system, and aqueous humor raman spectroscopic measurement method
Aguilar et al. Automated instrument designed to determine visual photosensitivity thresholds
JP6161693B2 (en) Fluorescence measuring apparatus and fluorescence measuring method
Christaras et al. Objective method for measuring the macular pigment optical density in the eye
Ermakov et al. Macular pigment Raman detector for clinical applications
US10018530B2 (en) System for measuring transmission of light through glasses
JP2010268900A (en) Method of measuring diameter of pupil and pupillometer
Miller et al. Glare sensitivity related to use of contact lenses
CN104921701A (en) Living body detection device and living body detection method
Di Cecilia et al. Hyperspectral imaging of the human iris
CN109431453B (en) Eye vision instrument for objective vision general survey
WO2023286746A1 (en) Ocular optical lens, light measuring system, and light measuring method
Katz et al. Glare disability in nephropathic cystinosis
KR101757917B1 (en) Ophthalmoscope
RU2793528C1 (en) Retinal camera for examination of the state of the retina and eye fundus
CN113331782B (en) Computer optometry instrument
Di Cecilia et al. An improved imaging system for hyperspectral analysis of the human iris
Schramm et al. A modified Hartmann–Shack aberrometer for measuring stray light in the anterior segment of the human eye

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020519450

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778160

Country of ref document: EP

Kind code of ref document: A1