WO2020194787A1 - Manufacturing method for armature core, manufacturing method for electric machine, and electric machine - Google Patents

Manufacturing method for armature core, manufacturing method for electric machine, and electric machine Download PDF

Info

Publication number
WO2020194787A1
WO2020194787A1 PCT/JP2019/034986 JP2019034986W WO2020194787A1 WO 2020194787 A1 WO2020194787 A1 WO 2020194787A1 JP 2019034986 W JP2019034986 W JP 2019034986W WO 2020194787 A1 WO2020194787 A1 WO 2020194787A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
core piece
teeth
portions
back yoke
Prior art date
Application number
PCT/JP2019/034986
Other languages
French (fr)
Japanese (ja)
Inventor
啓生 大藤
興起 仲
隆之 鬼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021508689A priority Critical patent/JP7046265B2/en
Publication of WO2020194787A1 publication Critical patent/WO2020194787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a method for manufacturing an armature iron core formed by laminating a plurality of iron core pieces, a method for manufacturing an electric machine, and an electric machine.
  • a stator core of an electric motor is formed by punching out a plurality of annular core pieces to which a part of the outer circumference is connected from a steel plate sheet, and alternately folding back the core pieces in opposite directions at each connecting portion and laminating them. It is formed (see, for example, Patent Document 1).
  • the present invention has been made to solve the above problems, and obtains an armature iron core manufacturing method, an electric machine manufacturing method, and an electric machine capable of reducing material loss of a steel plate sheet.
  • a plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and the plurality of iron core pieces are connected.
  • Each connecting portion in the iron core piece set is partially provided between the back yoke portions of two adjacent iron core pieces, and each back yoke portion in the iron core piece set is a connecting portion.
  • an armature iron core in the method for manufacturing an armature iron core according to the present invention, a plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of iron core pieces are arranged.
  • Each back yoke portion has a yoke end portion which is an end portion on the opposite side to the tooth portion, and each tooth portion is on the opposite side to the back yoke portion. It has a tooth tip that is an end, and the plurality of iron core pieces in the iron core piece set are arranged so that the yoke ends and the tooth tips are alternately butted against each other, and the plurality of connecting portions are arranged so as to alternately abut each other. It has a plurality of yoke connecting portions and a plurality of teeth connecting portions, and each yoke connecting portion in the iron core piece set is provided between two adjacent yoke ends, and each teeth connecting portion in the iron core piece set is provided.
  • each tooth portion in the iron core piece set is separated from the adjacent teeth portion except for the teeth connecting portion.
  • a plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of iron core pieces are arranged.
  • a process of cutting out a series of iron core piece sets in which a plurality of iron core piece sets in which a plurality of connecting portions are provided between the iron core pieces are further connected from a steel plate sheet, and a plurality of cut out series of iron core piece sets.
  • each of the connecting portions has a step of bending at a connecting portion provided between the iron core piece sets and laminating each iron core piece set to form a linear laminated iron core.
  • the connecting portion is partially provided between the back yoke portions of two adjacent iron core pieces, and each back yoke portion in each iron core piece set is separated from the adjacent back yoke portion in the portion other than the connecting portion.
  • the electric machine according to the present invention has an armature having an armature core and a field that faces the armature through a gap and moves relative to the armature.
  • the armature core has a plurality of divided laminated iron cores arranged along the moving direction of the field, and each divided laminated iron core is configured by laminating a plurality of iron core pieces, and each armature piece is , A back yoke portion and a teeth portion protruding from the back yoke portion to the field side, and each divided laminated iron core has a plurality of bent core pieces connected to each other in the stacking direction. Bent portions are provided, and each bent portion is partially provided at the end of the back yoke portion in the direction of movement of the field magnet.
  • the electric machine according to the present invention has an armature having an armature core and a field that faces the armature through a gap and moves relative to the armature.
  • the armature core has a plurality of divided laminated iron cores arranged along the moving direction of the field, and each divided laminated iron core is configured by laminating a plurality of iron core pieces, and each armature piece is , A back yoke portion and a teeth portion protruding from the back yoke portion to the field side, and each back yoke portion has a yoke end portion which is an end portion on the opposite side to the teeth portion.
  • Each tooth portion has a tooth tip portion that is an end portion on the opposite side to the back yoke portion, and each divided laminated iron core is bent by connecting between adjacent iron core pieces in the stacking direction.
  • a plurality of inter-yoke folds and a plurality of tooth-to-teeth folds are provided, each yoke-to-yoke fold is provided at the yoke end, and each tooth-to-teeth fold is partially provided at the tooth tip. Has been done.
  • the method for manufacturing an armature core According to the method for manufacturing an armature core, the method for manufacturing an electric machine, and an electric machine of the present invention, it is possible to reduce material loss when manufacturing an armature core.
  • FIG. 3 is a plan view showing a state in which three divided laminated iron cores formed in FIG. 3 are connected in the circumferential direction.
  • FIG. 3 shows the steel plate sheet in which two sets of iron core pieces of FIG. 2 are arranged.
  • FIG. 2 shows the steel plate sheet in which the iron core piece set in Embodiment 2 of this invention is arranged.
  • FIG. 5 is a plan view showing a state in which four iron core piece sets of FIG. 6 are arranged in the circumferential direction and arranged on a steel plate sheet.
  • FIG. 5 is a perspective view showing a state in which four iron core piece sets cut out from the steel plate sheet of FIG. 8 are bent. It is a figure which shows the relationship between the number of iron core piece sets arranged in a steel plate sheet, and the material yield of a steel plate sheet. It is a top view which shows the steel plate sheet which arranged two iron core piece sets in Embodiment 3 of this invention.
  • FIG. 5 is a plan view showing a state in which two divided laminated iron cores of FIG. 15 are connected. It is a top view which shows the steel plate sheet in which the iron core piece set in Embodiment 5 of this invention is arranged.
  • FIG. 5 is a plan view showing a state in which the side end forming portions of the iron core pieces constituting the divided laminated iron core of FIG. 18 are rotationally moved toward the back yoke portion. It is a top view which shows the divided laminated iron core in Embodiment 5 of this invention. It is a top view which shows the modification of the iron core piece set in Embodiment 5 of this invention. It is a top view which shows the steel plate sheet which arranged two iron core piece sets of Embodiment 6 of this invention in the opposite direction, and staggered.
  • FIG. 7 shows the rotary electric machine according to Embodiment 7 of this invention. It is a top view which shows the rotary electric machine of FIG. It is a top view which shows the iron core piece set which comprises the divided laminated iron core of FIG. 27. It is a top view which shows the main part of FIG. 28 enlarged. It is a perspective view which shows the process of forming the divided laminated iron core by the iron core piece set of FIG.
  • FIG. 3 is an enlarged plan view showing a main part of FIG. 33. It is a top view which shows the iron core piece set according to Embodiment 9 of this invention. It is a top view which shows the part A of FIG. 35 enlarged. It is a top view which shows the part B of FIG. 35 enlarged. It is a top view which shows the iron core piece set by Embodiment 10 of this invention. It is a top view which shows the C part of FIG. 38 enlarged.
  • FIG. 38 It is a top view which shows the part D of FIG. 38 enlarged. It is a perspective view which shows the process of forming the divided laminated iron core by the iron core piece set of FIG. 38. It is a top view which shows the stator core of Embodiment 10. It is a top view which shows the main part of FIG. 42 enlarged. It is a top view which shows the modification of the stator core of Embodiment 10. It is a top view which shows the iron core piece of FIG. 44. It is a top view which shows the modification of the stator core of Embodiment 3. FIG. It is a top view which shows the iron core piece of FIG. It is a top view which shows the two iron core pieces set by Embodiment 11 of this invention.
  • FIG. It is a top view which shows the 1st modification of Embodiment 11.
  • FIG. It is a top view which shows the 2nd modification of Embodiment 11.
  • FIG. It is a top view which shows the 3rd modification of Embodiment 11.
  • FIG. It is a top view which shows the 4th modification of Embodiment 11.
  • FIG. It is a perspective view which shows an example of the linear motor to which this invention is applied.
  • FIG. 1 is a plan view showing a stator core 1 manufactured by the method for manufacturing a stator core according to the first embodiment of the present invention.
  • the stator core 1 as an armature core 1 is formed in an annular shape by connecting a plurality of divided laminated iron cores 2 equally divided in the circumferential direction in the circumferential direction centered on the rotation axis of the stator core 1. ..
  • the direction along the rotation axis of the stator core 1 is referred to as "axial direction”.
  • the circumferential direction around the rotation axis of the stator core 1 is called the "circumferential direction”.
  • the radial direction centered on the rotation axis of the stator core 1 is called the "diameter direction”.
  • FIG. 2 is a plan view showing an iron core piece set 20 constituting the divided laminated iron core 2 of FIG.
  • the iron core piece set 20 is composed of seven iron core pieces 21.
  • Each iron core piece 21 has a back yoke portion 21B and a teeth portion 21T, respectively.
  • Each tooth portion 21T protrudes from the back yoke portion 21B.
  • a plurality of connecting portions 201 for connecting a plurality of iron core pieces 21 are provided between the iron core pieces 21 in the iron core piece set 20. That is, the seven iron core pieces 21 are connected to the adjacent iron core pieces 21 by the connecting portion 201, respectively.
  • Each connecting portion 201 is provided between adjacent back yoke portions 21B at the circumferential end of each iron core piece 21.
  • the iron core pieces 21 are arranged so that the back yoke portions 21B are directed in the same direction and the radial outer ends of the back yoke portions 21B are aligned in a straight line.
  • Each connecting portion 201 in the iron core piece set 20 is partially provided between the back yoke portions 21B of two adjacent iron core pieces 21.
  • Each back yoke portion 21B in the iron core piece set 20 is separated from the adjacent back yoke portion 21B except for the connecting portion 201.
  • FIG. 3 is a perspective view showing a process of forming the divided laminated iron core 2 from the iron core piece set 20 of FIG.
  • Each iron core piece 21 constituting the iron core piece set 20 is bent in different directions at each connecting portion 201.
  • the iron core piece set 20 is bent so that one surface of the iron core piece 21 faces each other.
  • Each iron core piece 21 bent at each connecting portion 201 is laminated in the axial direction to form a divided laminated iron core 2.
  • forming the divided laminated iron core 2 by bending and laminating the iron core piece set 20 corresponds to the "step of laminating the iron core pieces to form the divided laminated iron core".
  • a bent portion 21a is formed in each of the bent connecting portions 201.
  • the bent portions 21a are formed on the side surfaces 2C on both sides of the divided laminated iron core 2 in the circumferential direction.
  • No connecting portion is provided on the radial end faces of the back yoke portion 21B and the teeth portion 21T of the divided laminated iron core 2. Therefore, the back yoke portion 21B and the teeth portion 21T are not formed with a bent portion. Therefore, the split laminated iron core 2 of the first embodiment can improve the flatness of the end faces of the back yoke portion 21B and the teeth portion 21T.
  • FIG. 4 is a plan view showing a state in which three divided laminated iron cores 2 of FIG. 3 are connected in the circumferential direction.
  • the annular stator core 1 is formed by connecting a plurality of the divided laminated iron cores 2 in the circumferential direction.
  • forming an annular stator core 1 by connecting a plurality of the divided laminated iron cores 2 in the circumferential direction corresponds to a "step of connecting a plurality of the divided laminated iron cores in an annular shape".
  • FIG. 5 is a plan view showing a steel plate sheet 200 in which two iron core piece sets 20 of FIG. 2 are arranged.
  • the two iron core piece sets 20 are alternately arranged on the steel plate sheet 200 with the back yoke portions 21B facing outward.
  • the radial outer ends of the back yoke portion 21B of each iron core piece 21 constituting each iron core piece set 20 are linearly arranged. Therefore, unnecessary portions 8 are not generated at both ends of the steel sheet sheet 200 along the longitudinal direction.
  • the two iron core piece sets 20 are arranged so that their respective teeth portions 21T are inserted into the space between the two adjacent teeth portions 21T of the other iron core piece set 20. Therefore, the width of the steel sheet sheet 200 in the direction perpendicular to the longitudinal direction is smaller than the sum of the radial lengths of the two iron core piece sets 20.
  • the two iron core piece sets 20 are punched from the steel plate sheet 200 by a pressing device or the like.
  • punching the two iron core piece sets 20 from the steel plate sheet 200 corresponds to the "step of cutting out the iron core piece set from the steel plate sheet".
  • the steel plate sheet 200 is divided into a portion where the iron core piece set 20 is punched out and an unnecessary portion 8 other than that.
  • the unnecessary portion 8 is a portion that is discarded after the iron core piece set 20 is punched out, and is a portion that causes material loss. In this example, the unnecessary portion 8 is between the adjacent teeth portions 21T of each iron core piece set 20.
  • the method for manufacturing the stator core in the first embodiment includes a step of forming the split laminated iron core 2 from the iron core piece set 20 and a step of connecting a plurality of the divided laminated iron cores 2 in an annular shape.
  • the stator core 1 is composed of a plurality of divided laminated iron cores 2.
  • the divided laminated iron core 2 is composed of an iron core piece set 20 in which a plurality of iron core pieces 21 are arranged in a straight line.
  • two iron core piece sets 20 are arranged in opposite directions and alternately. Therefore, the unnecessary portion 8 of the steel plate sheet 200 is formed only in the region between the teeth portions 21T of the two iron core piece sets 20. Therefore, the material loss can be reduced as compared with the case where the annular iron core piece is punched from the steel plate sheet.
  • each core piece set 20 is cut out from the steel plate sheet 200 by punching.
  • the method of cutting out each iron core piece set 20 from the steel plate sheet 200 is not limited to the punching process.
  • each iron core piece set 20 may be cut out from the steel plate sheet 200 by laser processing.
  • the iron core piece set 20 is composed of seven iron core pieces 21.
  • the number of iron core pieces 21 constituting the iron core piece set 20 may be 6 or less, or 8 or more.
  • Embodiment 2 Next, the method for manufacturing the stator core according to the second embodiment will be described.
  • the position where the connecting portion for connecting the plurality of iron core pieces 21 constituting the iron core piece set 20 is provided is different from the method for manufacturing the stator core of the first embodiment.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 6 is a plan view showing a steel plate sheet 200 in which the iron core piece set 20 of the second embodiment is arranged.
  • the iron core piece set 20 in which 16 iron core pieces 21 are linearly connected in the radial direction is arranged on the steel plate sheet 200.
  • the number of iron core pieces 21 constituting the iron core piece set 20 is not limited to 16. That is, the number of iron core pieces 21 may be 15 or less or 17 or more.
  • the iron core pieces 21 constituting the iron core piece set 20 are arranged alternately with the back yoke portions 21B and the teeth portions 21T abutting each other.
  • each of the iron core pieces 21 other than the iron core pieces 21 at both ends in the longitudinal direction of the steel sheet sheet 200 is supported by the connecting portion 202 provided on the back yoke portion 21B and the connecting portion 203 provided on the teeth portion 21T. It is connected to the iron core piece 21 of.
  • the iron core pieces 21 at both ends of the steel plate sheet 200 in the longitudinal direction are connected to the other iron core pieces 21 by the connecting portion 203 provided on the teeth portion 21T.
  • unnecessary portions 8 are formed on both sides of the teeth portion 21T in the circumferential direction.
  • FIG. 7 is a perspective view showing a process of forming a split laminated iron core 2 from the iron core piece set 20 after cutting out the iron core piece set 20 from the steel plate sheet 200 of FIG.
  • Each iron core piece 21 constituting the iron core piece set 20 is bent in different directions at the connecting portions 202 and 203. At this time, the iron core piece set 20 is bent so that one surface of the iron core piece 21 faces each other.
  • the divided laminated iron core 2 is formed by laminating the iron core pieces 21 bent at the connecting portions 202 and 203.
  • a bent portion 21a is formed on each of the bent connecting portions 202 and 203.
  • the bent portion 21a is formed on the radial end faces of the back yoke portion 21B and the teeth portion 21T of the divided laminated iron core 2.
  • FIG. 8 is a plan view showing a state in which four iron core piece sets 20 of FIG. 6 are arranged in a direction perpendicular to the longitudinal direction and arranged on the steel plate sheet 200.
  • FIG. 9 is a perspective view showing a state in which the four iron core piece sets 20 cut out from the steel plate sheet 200 of FIG. 8 are bent without being separated.
  • the iron core pieces 21 of the iron core piece set 20 arranged on the steel plate sheet 200 have the back yoke portions 21B and the teeth portions 21T butted against each other. , Are arranged in a straight line and staggered. Therefore, the unnecessary portion 8 of the steel sheet sheet 200 is formed only at the end portion in the direction perpendicular to the longitudinal direction of the steel sheet sheet 200. Therefore, the amount of material loss generated when the iron core piece set 20 is cut out from the steel plate sheet 200 can be further reduced.
  • the number of iron core piece sets 20 arranged on the steel plate sheet 200 is not limited to four.
  • the number of iron core piece sets 20 arranged on the steel plate sheet 200 may be two, three, or five or more.
  • FIG. 10 is a diagram showing the relationship between the number of iron core piece sets 20 arranged on the steel plate sheet 200 and the material yield of the steel plate sheet 200.
  • the horizontal axis of FIG. 10 shows the number of iron core piece sets 20 arranged on the steel plate sheet 200.
  • the vertical axis of FIG. 10 shows the material yield of the steel sheet sheet 200.
  • the larger the number of the iron core piece sets 20 arranged on the steel plate sheet 200 the higher the material yield. That is, the larger the number of the iron core piece sets 20 arranged on the steel plate sheet 200, the more the material loss is reduced.
  • Embodiment 3 Next, the method for manufacturing the stator core according to the third embodiment will be described.
  • the shape of the iron core piece 21 is different from that of the first and second embodiments.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 11 is a plan view showing a steel plate sheet 200 in which two iron core piece sets 20 according to the third embodiment of the present invention are arranged.
  • the two iron core piece sets 20 are alternately arranged on the steel plate sheets 200 with the back yoke portions 21B facing outward.
  • the radial outer ends of the back yoke portions 21B are linearly arranged.
  • the two iron core piece sets 20 are arranged so that their respective teeth portions 21T are inserted into the space between the two adjacent teeth portions 21T of the other iron core piece set 20. Therefore, the width of the steel sheet sheet 200 in the direction perpendicular to the longitudinal direction is smaller than the sum of the radial lengths of the two iron core piece sets 20.
  • the unnecessary portion 8 is between the adjacent teeth portions 21T of each iron core piece set 20.
  • a semicircular convex portion 25 is formed at one end in the circumferential direction of the back yoke portion 21B of each iron core piece 21 constituting the iron core piece set 20. Further, a semicircular fitting recess 26 is formed at the other end of the back yoke portion 21B of each iron core piece 21 in the circumferential direction.
  • the convex portion 25 and the fitting concave portion 26 of each iron core piece 21 are formed in a shape that allows them to be fitted to each other.
  • Each iron core piece 21 is connected to each other by a connecting portion 205 provided in the convex portion 25 and a connecting portion 206 provided in the fitting recess 26.
  • the connecting portion 205 on one side in the width direction of each back yoke portion 21B and the connecting portion 206 on the other side are provided at different positions in the protruding direction of the teeth portion 21T from the back yoke portion 21B.
  • FIG. 12 is a perspective view showing a split laminated iron core 2 formed by one iron core piece set 20 cut out from the steel plate sheet 200 of FIG.
  • Each iron core piece 21 constituting the iron core piece set 20 is bent in different directions at the connecting portions 205 and 206.
  • the iron core pieces 21 bent at the connecting portions 205 and 206 are laminated to form the divided laminated iron core 2.
  • FIG. 13 is a plan view showing a state in which two divided laminated iron cores 2 of FIG. 12 are connected in the circumferential direction.
  • the divided laminated iron cores 2 are positioned with each other by fitting the convex portion 25 into the fitting recess 26 of the other divided laminated iron core 2. Therefore, in the work of joining the plurality of divided laminated iron cores 2 in the circumferential direction, the positioning of each divided laminated iron core 2 in the radial direction becomes easy.
  • the divided laminated iron core 2 is composed of the iron core piece set 20 in which a plurality of iron core pieces 21 are linearly arranged.
  • the steel sheet sheet 200 two iron core piece sets 20 are arranged in opposite directions and alternately. Therefore, the unnecessary portion 8 of the steel plate sheet 200 is formed only in the region between the teeth portions 21T of the two iron core piece sets 20. Therefore, the material loss can be reduced as compared with the case where the annular iron core piece is punched from the steel plate sheet.
  • a convex portion 25 is formed at one end of the back yoke portion 21B of each iron core piece 21 in the circumferential direction, and a fitting recess 26 is formed at the other end. Then, when the iron core pieces 21 are arranged in the circumferential direction, the convex portion 25 and the fitting concave portion 26 are fitted to each other so that the iron core pieces 21 are positioned in the radial direction. Therefore, the iron core pieces 21 can be easily arranged in the circumferential direction.
  • the convex portion 25 and the fitting concave portion 26 of each iron core piece 21 have a semicircular shape.
  • the shapes of the convex portion 25 and the fitting concave portion 26 are not limited to this.
  • the shape of the convex portion 25 and the fitting concave portion 26 may be trapezoidal.
  • each iron core piece 21 can be appropriately changed.
  • the sizes of the convex portion 25 and the fitting concave portion 26 may be increased. Thereby, the radial positioning of each iron core piece 21 can be further facilitated.
  • the convex portion 25 and the fitting concave portion 26 in the iron core piece 21 of the third embodiment can also be applied to the iron core piece 21 of the first embodiment.
  • Embodiment 4 Next, the method for manufacturing the stator core according to the fourth embodiment will be described.
  • the fourth embodiment is different from the first to third embodiments in that the iron core piece is further divided. Other configurations are the same as in the second embodiment.
  • FIG. 14 is a plan view showing a steel plate sheet 300 in which two split iron core piece sets 30 according to the fourth embodiment of the present invention are arranged.
  • the divided iron core piece set 30 has a shape in which the iron core piece set 20 of the second embodiment is bisected by a straight line extending in the radial direction about the rotation axis of the stator core 1. That is, the divided iron core piece set 30 of the fourth embodiment is composed of the two divided iron core pieces 31 obtained by dividing the iron core piece 21 of the second embodiment into two along the radial direction.
  • the split iron core piece set 30 is configured by connecting five split iron core pieces 31 in a linear shape in the radial direction.
  • the two-split iron core pieces 31 are arranged alternately with the back yoke portions 31B and the teeth portions 31T abutting each other.
  • the number of the two-divided iron core pieces 31 constituting the divided iron core piece set 30 is not limited to five.
  • a pair of divided iron core piece sets 30 are arranged in a state of being meshed with each other with the divided linear end portions 30a of each of the two divided iron core pieces 31 facing outward.
  • each of the two-divided iron core pieces 31 other than the two-divided iron core pieces 31 at both ends of the steel plate sheet 300 in the longitudinal direction is connected to the connecting portion 301 provided in the back yoke portion 31B and the teeth portion 31T. It is connected to the other two-part steel core piece 31 by the portion 302.
  • the two-divided iron core pieces 31 at both ends of the steel plate sheet 300 in the longitudinal direction are connected to the other two-divided iron core pieces 31 by the connecting portion 301 provided in the back yoke portion 31B or the connecting portion 302 provided in the teeth portion 31T. Has been done.
  • Each of the two divided iron core pieces 31 constituting the divided iron core piece set 30 is bent in different directions at the connecting portions 301 and 302, respectively.
  • the two-divided laminated iron core 3A as shown in FIG. 15 is formed.
  • the two-divided laminated iron core 3A has a side surface 3C composed of each divided end portion 30a of each of the two-divided core pieces 31 laminated.
  • a pair of two-divided laminated iron cores 3A are formed from one steel plate sheet 300.
  • the divided iron core piece set 30 arranged on the steel plate sheet 300 is not limited to a pair.
  • a plurality of a pair of divided iron core piece sets 30 shown in FIG. 14 may be arranged side by side in a direction perpendicular to the longitudinal direction of the divided iron core piece set 30 and arranged on the steel plate sheet 300.
  • one divided laminated iron core 3 is formed by abutting and joining the side surfaces 3C of the pair of two divided laminated iron cores 3A.
  • the stator core 1 is formed by connecting a plurality of the divided laminated iron cores 3 in the circumferential direction in an annular shape.
  • Bending portions 31a are formed at the connecting portions 301 and 302 of the two-divided laminated iron cores 3A constituting the divided laminated iron cores 3.
  • the bent portion 31a is formed in the back yoke portion 31B and the teeth portion 31T of each of the two-divided laminated iron cores 3A.
  • Bent portions are not provided on the side surfaces of each of the two-divided laminated iron cores 3A in the circumferential direction. Therefore, the dimensional accuracy of the side surfaces of each of the two-divided laminated iron cores 3A in the circumferential direction can be improved. Therefore, when the side surfaces 3C of the pair of two-divided laminated iron cores 3A are butted and joined, they can be joined with high accuracy.
  • the split core piece set 30 divides the iron core piece 21 of the second embodiment into two in the radial direction. It is composed of pieces 31.
  • the two-divided iron core pieces 31 constituting the divided iron core piece set 30 are connected to each other by abutting the back yoke portions 31B and the teeth portions 31T.
  • a pair of divided iron core piece sets 30 are arranged in a state of being meshed with each other with the divided linear end portions 30a of each of the two divided iron core pieces 31 facing outward. Therefore, both ends of the steel sheet sheet 300 in the direction perpendicular to the longitudinal direction are linear.
  • Embodiment 5 Next, the method for manufacturing the stator core according to the fifth embodiment will be described.
  • each iron core piece 41 is different from that of the first to fourth embodiments.
  • Other configurations are the same as in the second embodiment.
  • FIG. 17 is a plan view showing a steel plate sheet 400 in which the iron core piece set 40 according to the fifth embodiment of the present invention is arranged.
  • one iron core piece set 40 in which eight iron core pieces 41 are linearly connected in the radial direction is arranged on the steel plate sheet 400.
  • the iron core pieces 41 are arranged alternately so that the back yoke portions 41B and the teeth portions 41T are butted against each other.
  • Each iron core piece 41 arranged other than both ends in the longitudinal direction of the iron core piece set 40 has another iron core piece 41 by the connecting portion 401 provided in the back yoke portion 41B and the connecting portion 402 provided in the teeth portion 41T. Is connected with.
  • the iron core pieces 41 arranged at both ends in the longitudinal direction of the iron core piece set 40 are connected to the other iron core pieces 41 by the connecting portions 401 provided in the back yoke portion 41B.
  • each iron core piece 41 constituting the iron core piece set 40 is rectangular.
  • Each iron core piece 41 is linearly connected along the radial direction. Therefore, the outer shape of the iron core piece set 40 is rectangular.
  • the width of the iron core piece set 40 in the direction perpendicular to the longitudinal direction is equivalent to the width of the steel plate sheet 400.
  • the length of the iron core piece set 40 in the longitudinal direction is equivalent to the length of the steel plate sheet 400 in the longitudinal direction. Therefore, the iron core piece set 40 substantially overlaps with the steel plate sheet 400.
  • FIG. 18 is a plan view showing a divided laminated iron core 4 formed by alternately bending the connecting portions 401 and 402 of the iron core piece set 40 of FIG. 17 and laminating the iron core pieces 41.
  • Side end forming portions 42 and 43 constituting the side end portions of the back yoke portion 41B are provided on both side portions in the circumferential direction of the teeth portion 41T of each iron core piece 41 constituting the divided laminated iron core 4.
  • One end side of the side end forming portions 42 and 43 is connected to the iron core piece 41 by connecting portions 42a and 43a formed near the root of the tooth portion 41T of the iron core piece 41.
  • the other ends of the side end forming portions 42 and 43 are free ends, respectively.
  • the side end forming portions 42 and 43 are moved after the connecting portions 401 and 402 of the iron core piece set 40 are alternately bent and laminated.
  • FIG. 19 is a plan view showing a state in which the side end forming portions 42 and 43 of each iron core piece 41 constituting the divided laminated iron core 4 of FIG. 18 are rotationally moved toward the back yoke portion 41B side.
  • each of the side end forming portions 42 and 43 is rotationally moved by 180 ° or approximately 180 ° from the teeth portion 41T side to the back yoke portion 41B side with the connecting portions 42a and 43a as the center. Then, the side end forming portions 42 and 43 are moved to both side portions in the circumferential direction on the back yoke portion 41B side. As a result, as shown in FIG. 20, the shape of the divided laminated iron core 4 becomes the same as the shape of the divided laminated iron core 2 formed in the first embodiment.
  • the other ends of the side end forming portions 42 and 43 are rotationally moved to the back yoke portion 41B side around the connecting portions 42a and 43a.
  • the other end side of each side end forming portion is connected to the connecting portion. It corresponds to the process of rotating the back yoke portion toward the back yoke portion as a center and moving the back yoke portion to both sides in the circumferential direction.
  • each iron core piece 41 has side ends constituting the side ends of the back yoke portion 41B on both side portions in the circumferential direction of the tooth portion 41T.
  • the forming portions 42 and 43 are provided and formed in a rectangular shape.
  • the iron core piece set 40 is formed by connecting each iron core piece 41 in a straight line along the longitudinal direction to form a rectangle.
  • the outer shape of the iron core piece set 40 substantially overlaps with the outer diameter of the steel plate sheet 400.
  • the unnecessary portion 8 is not formed on the steel plate sheet 400 on which the iron core piece set 40 is arranged. Therefore, the material loss generated when the iron core piece set 40 is cut out from the steel plate sheet 400 can be significantly reduced.
  • the iron core piece set 40 connects each iron core piece 41 in a straight line along the radial direction.
  • the arrangement of each iron core piece 41 constituting the iron core piece set 40 is not limited to this.
  • each iron core piece 41 constituting the iron core piece set 40 may be arranged linearly along the circumferential direction as in the modified example shown in FIG.
  • Each iron core piece 41 is connected by a connecting portion 403 provided on the side portion of the adjacent iron core piece 41 in the circumferential direction. Also in the case of this modification, the iron core piece set 40 is formed in a rectangular shape. Further, the outer shape of the iron core piece set 40 substantially overlaps with the outer shape of the steel plate sheet 400. Therefore, the unnecessary portion 8 is not formed on the steel plate sheet 400 on which the iron core piece set 40 is arranged. Therefore, the same effect as that of the iron core piece set 40 of the fifth embodiment can be obtained.
  • the iron core piece set 40 is cut out from the steel plate sheet 400 and bent alternately at the connecting portion 403 to form the divided laminated iron core 4.
  • the side end forming portions 42 and 43 of each iron core piece 41 are moved to both side portions in the circumferential direction on the back yoke portion 41B side.
  • the divided laminated iron core 4 of the modified example has the same shape as the divided laminated iron core 2 formed in the first embodiment.
  • Embodiment 6 Next, the method for manufacturing the stator core according to the sixth embodiment will be described.
  • the sixth embodiment is different from the first to fifth embodiments in that a plurality of iron core piece sets 50a are connected to form a series of iron core pieces 50.
  • FIG. 22 is a plan view showing a steel plate sheet 500 in which two series of iron core pieces 50 according to the sixth embodiment are arranged.
  • the two series of iron core pieces 50 are alternately arranged on the steel sheet sheet 500 with the back yoke portion 51B facing outward.
  • radial outer ends of each back yoke portion 51B constituting a series of iron core pieces 50 are lined up. Therefore, the unnecessary portions 8a generated on both end sides along the longitudinal direction of the steel sheet sheet 200 can be reduced.
  • each tooth portion 51T is inserted and arranged in the space between two adjacent tooth portions 51T of the other series of iron core pieces 50. Therefore, the width of the steel plate sheet 500 in the direction perpendicular to the longitudinal direction can be made smaller than the sum of the radial lengths of the two iron core pieces 51.
  • FIG. 23 is a plan view showing a series of iron core pieces 50 cut out from the steel plate sheet 500 of FIG. 22.
  • the series of iron core pieces 50 is composed of a plurality of iron core piece sets 50a in which nine iron core pieces 51 are a set.
  • Each iron core piece set 50a is connected by a connecting portion 501 provided for each of the nine iron core pieces 51.
  • Each iron core piece 51 constituting a series of iron core pieces 50 is linearly connected in the circumferential direction.
  • An iron core piece notch 502 is formed between the iron core pieces 51.
  • FIG. 24 is a perspective view showing a linear laminated iron core 5 formed by using the series of iron core pieces 50 of FIG. 23.
  • a series of iron core pieces 50 cut out from the steel plate sheet 500 are alternately bent and laminated at each connecting portion 501. As a result, the linear laminated iron core 5 is formed.
  • FIG. 25 is a plan view showing a process of forming an annular stator core from the linear laminated core 5 of FIG. 24.
  • the linear laminated iron core 5 is formed into an annular shape by bending each core piece notch 502 inward in the radial direction. As a result, an annular stator core is formed.
  • a series of iron core pieces 50 in which a plurality of iron core pieces 51 are linearly connected in the circumferential direction are arranged on the steel plate sheet 500.
  • a series of iron core pieces 50 cut out from the steel plate sheet 500 are alternately bent and laminated at each connecting portion 501 to form a linear laminated iron core 5.
  • the linear laminated iron core 5 is formed into an annular shape to form a stator core. Therefore, the material loss can be significantly reduced as compared with the case where the annular core piece is punched from the steel plate sheet as in the conventional stator core.
  • an iron core piece notch 502 is formed between each iron core piece 51 constituting a series of iron core pieces 50. Therefore, it is possible to easily form the linear laminated iron core 5 into an annular shape.
  • a series of iron core pieces 50 are alternately bent and laminated at each connecting portion 501 to form a linear laminated iron core 5.
  • the method for forming the linear laminated iron core 5 is not limited to this.
  • the linear laminated iron core 5 may be formed by cutting a series of iron core pieces 50 at each connecting portion 501 and laminating each of the cut iron core piece sets.
  • the linear laminated iron core 5 may be formed by individually cutting out each set of iron core pieces from the steel plate sheet 500 and laminating them.
  • FIG. 26 is a perspective view showing a rotary electric machine according to the seventh embodiment of the present invention.
  • FIG. 27 is a plan view showing the rotary electric machine of FIG. 26. 26 and 27 show a permanent magnet type rotary electric machine with 8 poles and 48 slots. However, the number of poles and the number of slots can be increased or decreased as appropriate.
  • the rotary electric machine as an electric machine has a cylindrical stator 101 as an armature, a cylindrical rotor 102 as a field magnet, and a shaft 103.
  • the stator 101 has a cylindrical stator core 1 and an armature winding 11.
  • the stator 101 is composed of a plurality of divided laminated iron cores 2 as in the first to fifth embodiments.
  • the winding method of the armature winding 11 may be either a distributed winding method or a centralized winding method. Further, the stator core 1 can be configured in the same manner as in the sixth embodiment.
  • the rotor 102 is arranged inside the stator 101.
  • An annular gap 104 is interposed between the stator 101 and the rotor 102.
  • the rotor 102 faces the stator 101 via the gap 104.
  • the rotor 102 has a cylindrical rotor core 12 and a plurality of permanent magnets 13.
  • the shaft 103 is inserted into the axial center of the rotor core 12.
  • the rotor 102 moves relative to the stator 101.
  • the rotor 102 rotates about the axis of the shaft 103 with respect to the stator 101 together with the shaft 103.
  • the shaft 103 is fixed to the rotor core 12 by a method such as adhesion, shrink fitting, or press fitting.
  • the rotor 102 of the present embodiment is an Interior Permanent Magnet type rotor.
  • each permanent magnet 13 is embedded in the rotor core 12.
  • it may be a Surface Permanent Magnet type rotor.
  • each permanent magnet 13 is fixed to the outer circumference of the rotor core 12.
  • FIG. 28 is a plan view showing an iron core piece set 20 constituting the divided laminated iron core 2 of FIG. 27.
  • the back yoke portion 21B has a yoke end portion 21Ba.
  • the yoke end portion 21Ba is an end portion of the back yoke portion 21B and is an end portion on the opposite side of the teeth portion 21T.
  • the teeth portion 21T has a teeth tip portion 21Ta.
  • the tooth tip portion 21Ta is an end portion of the tooth portion 21T and is an end portion on the opposite side of the back yoke portion 21B.
  • the plurality of iron core pieces 21 in the iron core piece set 20 are arranged so that the yoke end portions 21Ba and the tooth tip portions 21Ta are alternately butted against each other. As a result, in the iron core piece set 20, the plurality of iron core pieces 21 are arranged along the direction parallel to the X axis of FIG. 28.
  • the adjacent iron core pieces 21 in the iron core piece set 20 are connected at the yoke end portion 21Ba or the tooth tip portion 21Ta.
  • FIG. 29 is an enlarged plan view showing a main part of FIG. 28.
  • a plurality of connecting portions are provided between the iron core pieces 21 in the iron core piece set 20. Each connecting portion connects two adjacent iron core pieces 21. Further, the plurality of connecting portions have a plurality of yoke connecting portions 207 and a plurality of teeth connecting portions 208.
  • Each yoke connecting portion 207 in the iron core piece set 20 is partially provided between two adjacent yoke end portions 21Ba.
  • Each tooth connecting portion 208 in the iron core piece set 20 is partially provided between two adjacent tooth tip portions 21Ta.
  • An inter-yoke slit 20a and two yoke connecting portions 207 are provided between each yoke end portion 21Ba and the adjacent yoke end portion 21Ba in the iron core piece set 20.
  • Each yoke-to-yoke slit 20a is provided between two corresponding yoke connecting portions 207.
  • the inter-yoke slit 20a is arranged at the center of the back yoke portion 21B in the width direction. Further, the inter-yoke slit 20a is formed in a straight line parallel to the width direction of the back yoke portion 21B.
  • the width direction of the back yoke portion 21B is a direction perpendicular to the protruding direction of the teeth portion 21T from the back yoke portion 21B, and is a direction parallel to the Y axis in FIG. 29. Further, the width direction of the back yoke portion 21B is a direction perpendicular to the connecting direction of the iron core pieces 21.
  • the connecting direction of the iron core pieces 21 is the direction in which a plurality of iron core pieces 21 are lined up in the iron core piece set 20.
  • each back yoke portion 21B in the iron core piece set 20 is separated from the adjacent back yoke portion 21B at a portion other than the yoke connecting portion 207.
  • An inter-teeth slit 20b and two tooth connecting portions 208 are provided between each tooth tip 21Ta in the iron core piece set 20 and the adjacent tooth tip 21Ta.
  • Each tooth-to-teeth slit 20b is provided between the two corresponding tooth-connecting portions 208.
  • the inter-teeth slit 20b is arranged at the center of the teeth portion 21T in the width direction. Further, the inter-teeth slit 20b is formed in a straight line parallel to the width direction of the tooth portion 21T.
  • the width direction of the tooth portion 21T is a direction parallel to the width direction of the back yoke portion 21B, that is, a direction parallel to the Y axis in FIG. 29.
  • each tooth portion 21T in the iron core piece set 20 is separated from the adjacent tooth portion 21T except for the tooth connecting portion 208.
  • FIG. 30 is a perspective view showing a process of forming the divided laminated iron core 2 by the iron core piece set 20 of FIG. 28. Further, FIG. 31 is a perspective view showing the divided laminated iron core 2 of FIG. 27.
  • the plurality of teeth connecting portions 208 are bent so that the plurality of inter-teeth bent portions 22 are arranged in two rows along the laminating direction of the iron core pieces 21. Then, a tooth recess 2a is formed between the two rows of the plurality of inter-teeth bending portions 22, that is, in a portion corresponding to the plurality of inter-teeth slits 20b.
  • the plurality of yoke connecting portions 207 are bent to form the plurality of inter-yoke bent portions 23 in a state of being aligned in two rows along the laminating direction of the iron core pieces 21.
  • a yoke recess 2b is formed between the two rows of the plurality of inter-yoke bending portions 23, that is, in a portion corresponding to the plurality of inter-yoke slits 20a.
  • FIG. 32 is a flowchart showing a process of forming the divided laminated iron core 2 of the seventh embodiment. In the step of forming the divided laminated iron core 2, the steps S1 to S4 are repeatedly carried out.
  • Step S101 is a step of fixing and positioning the first iron core piece. At this time, the first iron core piece is fixed by a fixing jig or a fixing device.
  • Step S102 is a step in which the connecting portion between the first iron core piece and the second iron core piece, that is, the yoke connecting portion 207 or the tooth connecting portion 208 is used as a reference for bending.
  • Step S103 is a step of bending the connecting portion between the first iron core piece and the second iron core piece and superimposing the second iron core piece on the first iron core piece. At this time, the connecting portion is bent by a bending jig or a bending device.
  • Step S104 is a step of releasing the first iron core piece and pressing the second iron core piece against the first iron core piece again in a state where the second iron core piece is overlapped with the first iron core piece. At this time, the second iron core piece is pressed until the bent portion, that is, the bent portion 23 between the yokes or the bent portion 22 between the teeth is in a bent state without expanding.
  • Such a method for manufacturing the divided laminated iron core 2 is called a vertical folding method.
  • the assembly method of the rotary electric machine that is, the manufacturing method will be described.
  • the rotor core 12 is fixed to the shaft 103 by a method such as adhesion, shrink fitting, or press fitting.
  • the plurality of permanent magnets 13 are fixed to the rotor core 12 by a method such as adhesion, gap fitting, or press fitting.
  • a plurality of insulators (not shown) are fitted into the stator core 1 by a method such as adhesion or gap fitting. After that, the armature winding 11 is wound around the stator core 1. Finally, by inserting the rotor 102 into the stator 101, the rotary electric machine is assembled.
  • each tooth connecting portion 208 in the iron core piece set 20 is partially provided between two adjacent tooth tip portions 21Ta. Therefore, the bent portion 22 between the teeth can be made smaller.
  • the divided laminated iron core 2 is formed with tooth recesses 2a adjacent to a plurality of bent portions 22 between teeth. As a result, a part of the member located inside the stator core 1 in the radial direction can be released to the tooth recess 2a.
  • each yoke connecting portion 207 in the iron core piece set 20 is partially provided between two adjacent yoke end portions 21Ba. Therefore, the bent portion 23 between the yokes can be made smaller.
  • the divided laminated iron core 2 is formed with yoke recesses 2b adjacent to the plurality of bent portions 23 between the yokes. As a result, a part of the member located on the radial outer side of the stator core 1 can be released to the yoke recess 2b.
  • the step of forming the divided laminated iron core 2 includes the steps of steps S101 to S104 described above. Therefore, the gap between the iron core pieces 21 can be suppressed and the shape of the divided laminated iron core 2 can be stabilized.
  • a plurality of bent portions 21a are formed in a state of being arranged in two rows along the laminating direction of the iron core pieces 21. There is. Further, the plurality of bent portions 21a are provided at both ends in the width direction of each tooth tip portion. A tooth recess is formed between the two rows of the plurality of bent portions 21a.
  • FIG. 33 is a plan view showing the stator core 1 according to the eighth embodiment of the present invention. Further, FIG. 34 is an enlarged plan view showing a main part of FIG. 33.
  • An annular frame 105 is fixed to the outer periphery of the stator core 1 of the eighth embodiment.
  • the yoke end 21Ba of each iron core piece 21 is in contact with the inner peripheral surface of the frame 105.
  • the frame 105 is fixed to the stator core 1 by, for example, shrink fitting.
  • a plurality of frame grooves 105a are provided on the inner peripheral surface of the frame 105.
  • the frame grooves 105a are provided at equal intervals in the circumferential direction of the frame 105. Further, each frame groove 105a is continuously provided along the axial direction of the frame 105.
  • the axial direction of the frame 105 is a direction parallel to the stacking direction of the iron core pieces 21.
  • the plurality of bending portions 23 between the yokes are arranged in two rows along the stacking direction of the iron core pieces 21 at the center of the back yoke portion 21B in the width direction.
  • Each frame groove 105a allows all the yoke-bent portions 23 in the corresponding divided laminated iron core 2 to escape. That is, all the yoke-to-yoke bent portions 23 in each divided laminated iron core 2 are located in the corresponding frame groove 105a.
  • the method for manufacturing the stator core 1 in the eighth embodiment includes a step of fixing the frame 105 to a plurality of divided laminated iron cores 2 connected in an annular shape. At this time, the yoke end portion 21Ba of each iron core piece 21 is brought into contact with the frame.
  • Other configurations and manufacturing methods are the same as in the seventh embodiment.
  • FIG. 35 is a plan view showing the iron core piece set 20 according to the ninth embodiment of the present invention.
  • FIG. 36 is a plan view showing an enlarged portion A of FIG. 35.
  • FIG. 37 is an enlarged plan view showing a portion B of FIG. 35.
  • only one yoke connecting portion 207 is provided between the two adjacent back yoke portions 21B. Further, only one teeth connecting portion 208 is provided between two adjacent teeth portions 21T.
  • At least two teeth connecting portions 208 adjacent to each other in the connecting direction of the iron core pieces 21 are provided at different positions in the width direction of the teeth portions 21T.
  • at least two yoke connecting portions 207 adjacent to each other in the connecting direction of the iron core piece 21 are provided at different positions in the width direction of the back yoke portion 21B.
  • the width direction of the tooth portion 21T and the width direction of the back yoke portion 21B are the directions perpendicular to the connecting direction of the iron core pieces 21, that is, the vertical direction in FIG. 35.
  • the seven iron core pieces 21 shown in FIG. 35 are designated as the first to seventh iron core pieces in order from the left.
  • the yoke connecting portion 207 between the first iron core piece and the second iron core piece is provided on one side of the center of the back yoke portion 21B in the width direction, that is, on the upper side of FIG. 35.
  • the yoke connecting portion 207 between the third iron core piece and the fourth iron core piece is provided on the other side of the center of the back yoke portion 21B in the width direction, that is, on the lower side of FIG. 35. ing.
  • the teeth connecting portion 208 between the second iron core piece and the third iron core piece is provided on one side with respect to the center in the width direction of the teeth portion 21T.
  • the teeth connecting portion 208 between the fourth iron core piece and the fifth iron core piece is provided on the other side with respect to the center in the width direction of the teeth portion 21T.
  • the teeth connecting portion 208 between the sixth iron core piece and the seventh iron core piece is provided on one side with respect to the center in the width direction of the teeth portion 21T.
  • At least one set of two yoke-bending portions 23 adjacent to each other in the stacking direction are provided so as to be displaced at different positions in the moving direction of the rotor 102.
  • Other configurations and manufacturing methods are the same as in the seventh or eighth embodiment.
  • all two adjacent teeth connecting portions 208 are provided at different positions in the width direction of the teeth portions 21T.
  • the teeth connecting portions 208 are alternately arranged on one side and the other side of the center in the width direction of the teeth portion 21T from one end to the other end of the iron core piece set 20.
  • all two adjacent yoke connecting portions 207 are provided at different positions in the width direction of the back yoke portion 21B.
  • the yoke connecting portions 207 are alternately arranged on one side and the other side of the center of the back yoke portion 21B in the width direction from one end to the other end of the iron core piece set 20.
  • the yoke connecting portions 207 are dispersedly arranged at two locations in the width direction of the back yoke portion 21B, but may be dispersedly arranged at three or more locations.
  • the teeth connecting portions 208 may be dispersedly arranged at three or more locations in the width direction of the teeth portions 21T.
  • two or more yoke connecting portions 207 may be provided between two adjacent back yoke portions 21B. Also in this case, at least two yoke connecting portions 207 adjacent to each other in the connecting direction of the iron core piece 21 can be arranged at different positions in the width direction of the back yoke portion 21B.
  • two or more teeth connecting portions 208 may be provided between two adjacent teeth portions 21T. Also in this case, at least two teeth connecting portions 208 adjacent to each other in the connecting direction of the iron core pieces 21 can be arranged at different positions in the width direction of the teeth portions 21T.
  • At least two yoke connecting portions 207 adjacent to each other in the connecting direction of the iron core piece 21 may be arranged at different positions in the width direction of the back yoke portion 21B.
  • FIG. 38 is a plan view showing the iron core piece set 20 according to the tenth embodiment of the present invention.
  • a plurality of connecting portions 209 are provided between the iron core pieces 21 in the iron core piece set 20.
  • Each connecting portion 209 connects two adjacent iron core pieces 21.
  • each connecting portion 209 in the iron core piece set 20 is partially provided between the back yoke portions 21B of two adjacent iron core pieces 21.
  • Each back yoke portion 21B in the iron core piece set 20 is separated from the adjacent back yoke portion 21B except for the connecting portion 209.
  • each iron core piece 21 includes a back yoke main body 21Bg, a trapezoidal first protrusion 21Bc, a trapezoidal second protrusion 21Bd, a first yoke notch 21Be, and a second yoke notch. It has a portion 21Bf.
  • the first protruding portion 21Bc protrudes from the back yoke main body 21Bg to one side in the width direction of the back yoke portion 21B.
  • the second protruding portion 21Bd protrudes from the back yoke main body 21Bg toward the other side in the width direction of the back yoke portion 21B.
  • the width direction of the back yoke portion 21B is the connecting direction of the iron core pieces 21, and is the direction parallel to the X axis in FIG. 38.
  • the connecting direction of the iron core pieces 21 is the direction in which a plurality of iron core pieces 21 are lined up in the iron core piece set 20.
  • the first protruding portion 21Bc and the second protruding portion 21Bd are arranged at different positions with respect to the protruding direction of the teeth portion 21T.
  • the protruding direction of the teeth portion 21T is the direction in which the teeth portion 21T protrudes from the back yoke portion 21B, and is a direction parallel to the Y axis in FIG. 38.
  • the first yoke notch 21Be is arranged on the same side as the first protrusion 21Bc in the width direction of the back yoke 21B. Further, the first yoke notch 21Be is adjacent to the first protrusion 21Bc.
  • first yoke notch 21Be is located at the same position as the second protrusion 21Bd in the protruding direction of the teeth portion 21T. Further, the first yoke notch 21Be has a shape into which the second protrusion 21Bd can be fitted.
  • the second yoke notch 21Bf is arranged on the same side as the second protrusion 21Bd in the width direction of the back yoke portion 21B. Further, the second yoke notch 21Bf is adjacent to the second protrusion 21Bd.
  • the second yoke notch 21Bf is located at the same position as the first protruding portion 21Bc in the protruding direction of the teeth portion 21T. Further, the second yoke notch 21Bf has a shape into which the first protrusion 21Bc can be fitted.
  • two adjacent iron core pieces 21 have a symmetrical shape centered on the connecting portion 209.
  • two types of iron core pieces 21 having a symmetrical shape are alternately arranged in the connecting direction of the iron core pieces 21. That is, in the two adjacent iron core pieces 21, one side and the other side in the width direction of the back yoke portion 21B are opposite to each other.
  • a plurality of connecting portions 209 in the iron core piece set 20 are provided between the first protruding portion 21Bc and between the second protruding portions 21Bd, respectively.
  • the connecting portion 209 on one side in the width direction and the connecting portion 209 on the other side in the width direction of each back yoke portion 21B are provided at different positions in the protruding direction of the teeth portion 21T from the back yoke portion 21B.
  • FIG. 39 is a plan view showing an enlarged portion C of FIG. 38.
  • FIG. 40 is a plan view showing an enlarged portion D of FIG. 38.
  • FIG. 41 is a perspective view showing a process of forming the divided laminated iron core 2 by the iron core piece set 20 of FIG. 38.
  • Each iron core piece 21 is bent in different directions at each connecting portion 209 as in the first embodiment.
  • the plurality of iron core pieces 21 are laminated to form the divided laminated iron core 2.
  • the specific steps for forming the divided laminated iron core 2 are the same as in FIG. 32.
  • Such a method for manufacturing the divided laminated iron core 2 is called a horizontal folding method.
  • FIG. 42 is a plan view showing the stator core 1 of the tenth embodiment. Further, FIG. 43 is an enlarged plan view showing a main part of FIG. 42.
  • the stator core 1 is formed by combining a plurality of divided laminated iron cores 2 in an annular shape.
  • each iron core piece set 20 By bending each iron core piece set 20 with a plurality of connecting portions 209, a plurality of bent portions 24 are formed in each divided laminated iron core 2.
  • Each bent portion 24 is partially provided at both ends of the back yoke portion 21B in the moving direction of the rotor 102 with respect to the stator 101, that is, in the rotating direction.
  • a second protruding portion 21Bd of the iron core piece 21 adjacent to the stator core 1 in the circumferential direction is fitted to the first yoke notch 21Be of each iron core piece 21.
  • the first protruding portion 21Bc of the iron core piece 21 adjacent to the stator core 1 in the circumferential direction is fitted to the second yoke notch 21Bf of each iron core piece 21.
  • the first protruding portion 21Bc and the second protruding portion 21Bd also serve as a convex portion.
  • the first yoke notch 21Be and the second yoke notch 21Bf also serve as fitting recesses.
  • the first protruding portion 21Bc and the second protruding portion 21Bd are provided at different positions in the radial direction of the stator core 1.
  • a gap 110 is provided between each bent portion 24 and the back yoke portion 21B of the adjacent split laminated iron core 2.
  • each connecting portion 209 in the iron core piece set 20 is partially provided between two adjacent back yoke portions 21B. Therefore, each bent portion 24 can be made smaller.
  • each iron core piece 21 is provided with a first protruding portion 21Bc, a second protruding portion 21Bd, a first yoke notch 21Be, and a second yoke notch 21Bf. Therefore, positioning between the divided laminated iron cores 2 can be easily performed.
  • the distance between the centers of two adjacent iron core pieces 21 can be increased.
  • the two iron core piece sets 20 can be easily arranged on the steel plate sheet 200.
  • each bent portion 24 is located in the first yoke notch 21Be or the second yoke notch 21Bf. Therefore, a gap 110 can be provided between each bent portion 24 and the adjacent divided laminated iron core 2. That is, the plurality of bent portions 24 do not hit the adjacent divided laminated iron cores 2. As a result, the shape of the stator core 1 can be prevented from collapsing, and the shape accuracy of the stator core 1 can be improved.
  • each connecting portion in each core piece set is partially provided between the back yoke portions of two adjacent iron core pieces. Then, each back yoke portion in each iron core piece set is separated from the adjacent back yoke portion except for the connecting portion.
  • the iron core piece 21 of the third embodiment may also be provided with a first protruding portion, a second protruding portion, a first yoke notch, and a second yoke notch. it can.
  • FIG. 44 is a plan view showing a modified example of the stator core 1 of the tenth embodiment. Further, FIG. 45 is a plan view showing the iron core piece 21 of FIG. 44. In this modification, the shape of the second protruding portion 21Bd and the shape of the first yoke notched portion 21Be are semicircular, respectively.
  • the shape of the first protruding portion 21Bc and the shape of the second protruding portion 21Bd are not limited to the shapes shown in FIGS. 38 and 45.
  • the shape of the first yoke notch 21Be and the shape of the second yoke notch 21Bf are not limited to the shapes shown in FIGS. 38 and 45.
  • FIG. 46 is a plan view showing a modified example of the stator core 1 of the third embodiment. Further, FIG. 47 is a plan view showing the iron core piece 21 of FIG. 46. In this modification, the shape of the convex portion 25 and the shape of the fitting concave portion 26 are rectangular, respectively.
  • the shape of the convex portion 25 and the shape of the fitting concave portion 26 are not limited to the semicircular shape and the rectangular shape.
  • FIG. 48 is a plan view showing the two iron core piece sets 20 according to the eleventh embodiment of the present invention, and shows the layout of the two iron core piece sets 20 with respect to the steel plate sheet 600.
  • two iron core piece sets 20 are arranged so as to mesh with each other's teeth portions 21T. That is, as shown in FIG. 48, two iron core piece sets 20 are punched out from the steel plate sheet 600.
  • each iron core piece 21 in each iron core piece set 20 is the same as that of the tenth embodiment.
  • One of the two core piece sets 20 arranged on the steel sheet sheet 600 is the first iron core piece set, and the other is the second iron core piece set.
  • Each tooth portion 21T in the first iron core piece set is arranged next to the back yoke portion 21B in the second iron core piece set. Further, each tooth portion 21T in the second iron core piece set is arranged next to the back yoke portion 21B in the first iron core piece set.
  • each tooth portion 21T in the first iron core piece set is arranged between two adjacent back yoke portions 21B in the second iron core piece set. Further, each tooth portion 21T in the second iron core piece set is arranged between two adjacent back yoke portions 21B in the first iron core piece set.
  • the distance between two adjacent connecting portions 209 in the first iron core piece set is larger than the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the second iron core piece set.
  • the distance between the two adjacent connecting portions 209 in the second iron core piece set is larger than the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the first iron core piece set.
  • L1 is the distance from the center line in the width direction of the iron core piece 21 to one connecting portion 209.
  • L2 is the distance from the center line in the width direction of the iron core piece 21 to the other connecting portion 209.
  • L2 has the same or substantially the same size as L1.
  • the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T is W1. Therefore, L1 + L2> W1 holds.
  • the distance between the two adjacent connecting portions 209 in the first iron core piece set is the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the second iron core piece set and the maximum width of the teeth portion 21T. It is larger than the sum of the large dimensions.
  • the distance between the two adjacent connecting portions 209 in the second iron core piece set is the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the first iron core piece set and the maximum width of the teeth portion 21T. It is larger than the sum of the large dimensions.
  • the maximum width dimension of the tooth portion 21T is the width dimension of the tooth tip portion 21Ta.
  • the width dimension of the tooth tip portion 21Ta is W2. Therefore, L1 + L2> W1 + W2 holds.
  • ⁇ 1 is an angle formed by both end faces in the width direction of the back yoke main body 21 Bg.
  • N is the total number of teeth laminated portions in the stator core 1.
  • FIG. 48 two straight lines along both end faces in the width direction of the back yoke main body 21Bg are extended to the teeth portion 21T side, and the point where the two straight lines intersect is set as the center point.
  • the center point is not shown in FIG. In the stator core 1, the center point coincides with the axial center of the stator core 1. Further, in the rotary electric machine, the center point coincides with the rotation center of the rotor 102.
  • ⁇ 2 is an angle formed by a straight line connecting the center point and the tip of the first protrusion 21Bc and a straight line connecting the center point and the tip of the second protrusion 21Bd. Further, ⁇ 2 corresponds to the length of L1 + L2. ⁇ 1 is smaller than ⁇ 2.
  • each iron core piece set 20 all the connecting portions 209 are parallel to each other and parallel to the center line in the width direction of the iron core piece 21. That is, all the connecting portions 209 are bent along a straight line parallel to the center line in the width direction of the iron core piece 21.
  • the steel plate sheet 600 is provided with a plurality of pilot holes 601 for feeding the steel plate sheet 600.
  • the shape of each pilot hole 601 is circular. Further, each pilot hole 601 is provided in a region other than the region of the iron core piece set 20 in the steel plate sheet 600.
  • the method for manufacturing the stator core 1 of the eleventh embodiment includes a step of providing a plurality of pilot holes 601 in the steel plate sheet 600.
  • the feed direction of the steel plate sheet 600 is a direction parallel to the X axis in FIG. 48.
  • the direction perpendicular to the feeding direction of the steel sheet sheet 600 is defined as the width direction of the steel sheet sheet 600.
  • the plurality of pilot holes 601 are provided in the outer region of the connecting portion 209 in the width direction of the steel sheet sheet 600 and in the region between the teeth portion 21T and the connecting portion 209.
  • a plurality of pilot holes 601 are provided on both sides of the steel plate sheet 600 with respect to the center in the width direction. Further, the plurality of pilot holes 601 are provided evenly on both sides with respect to the center in the width direction of the steel sheet sheet 600.
  • the steel sheet sheet 600 is moved by the feed length, that is, the feed pitch, and processed by using a feed device (not shown). At this time, the variation in the feed pitch affects the accuracy of the product.
  • the pilot hole 601 is used for the purpose of correcting the feed error immediately before machining. Specifically, the feed error is corrected by inserting a pilot punch (not shown) into the pilot hole 601.
  • the pilot punch is a pointed shaft. As a result, the misalignment between the steel sheet sheet 600 and the press die (not shown) can be suppressed.
  • a plurality of pilot holes 601 are punched out from the steel plate sheet 600 in advance. After that, the two iron core piece sets 20 are punched out at the same time or one by one while performing positioning using the pilot hole 601 as described above.
  • Other configurations and manufacturing methods are the same as in the tenth embodiment.
  • each tooth portion 21T in each iron core piece set 20 can be arranged next to the back yoke portion 21B in the iron core piece set 20 arranged in mesh with each other.
  • the width dimension of the steel sheet sheet 600 can be further reduced, and the area of the unnecessary portion 8b can be reduced.
  • the material yield can be improved and the material cost can be reduced.
  • L1 L2 or L1 ⁇ L2, so that the tool shape of the device used for bending can be unified.
  • all connecting portions 209 are bent along straight lines parallel to each other. As a result, the misalignment between the iron core pieces 21 adjacent to each other in the stacking direction can be suppressed.
  • all the teeth portions 21T can be punched out by arranging them in parallel, all the teeth portions 21T can be punched out at a constant angle including 0 degrees with respect to the rolling direction of the steel sheet sheet 600. As a result, it is possible to suppress variations in the magnetic characteristics of each iron core piece 21 with respect to the rolling direction of the steel sheet sheet 600, and it is possible to reduce the torque pulsation of the rotary electric machine.
  • pilot holes 601 are provided in the unnecessary portion 8b of the steel plate sheet 600, it is possible to prevent an increase in the amount of material used.
  • the iron core piece 21 has only two types having a symmetrical shape, only two types of press dies are required for punching the iron core piece 21.
  • each iron core piece 21 is cut out in a state of being connected to the adjacent iron core piece 21. Therefore, it is not necessary to secure a distance between the adjacent iron core pieces 21 of the steel plate sheet 600, and from this point as well, the area of the unnecessary portion 8b can be reduced, and the material yield can be improved.
  • the bending pitch corresponds to L1 + L2.
  • the first protruding portion 21Bc is fitted into the second yoke notch 21Bf
  • the second protruding portion 21Bd is fitted into the first yoke notch 21Be. .. Therefore, when a plurality of divided laminated iron cores 2 are arranged side by side, it is possible to easily detect an error in the orientation of the divided laminated iron cores 2.
  • the arrows ⁇ 1 and the arrows ⁇ 2 in FIG. 48 indicate the main flow of magnetic flux flowing through each iron core piece 21 when incorporated in the rotary electric machine. As shown in FIG. 48, the magnetic flux flows through the portion of the back yoke portion 21B close to the teeth portion 21T.
  • each connecting portion 209 is provided in a portion of the back yoke portion 21B far from the teeth portion 21T. Further, as shown in FIG. 43, a gap 110 is provided between each bent portion 24 and the back yoke portion 21B of the adjacent split laminated iron core 2.
  • the adjacent back yoke portions 21B are in contact with each other at a portion where the magnetic flux easily passes, and a gap 110 is provided at the portion where the magnetic flux is difficult to pass.
  • the magnetic loss can be suppressed and the efficiency of the rotary electric machine can be improved.
  • the shape of the pilot hole 601 is not limited to a circle, and may be, for example, a rectangle or a shape that follows the shape of the unnecessary portion 8b.
  • pilot holes 601 are not limited to the example of FIG. 48.
  • FIG. 49 is a plan view showing a first modification of the eleventh embodiment.
  • the shape of the first protruding portion 21Bc and the shape of the second protruding portion 21Bd are rectangular, respectively.
  • FIG. 50 is a plan view showing a second modification of the eleventh embodiment.
  • the shape of the first protrusion 21Bc is an elongated rectangle.
  • the shape of the second protruding portion 21Bd is semi-circular.
  • the shape of the first protruding portion 21Bc and the shape of the second protruding portion 21Bd can be changed respectively.
  • the shape of the first yoke notch 21Be and the shape of the second yoke notch 21Bf can also be changed.
  • the pilot hole 601 is omitted.
  • FIG. 51 is a plan view showing a third modification of the eleventh embodiment.
  • the maximum width dimension of the teeth portion 21T is not the width dimension W2 of the teeth tip portion 21Ta, but the width dimension W3 of the portion of the teeth portion 21T adjacent to the back yoke portion 21B.
  • each tooth portion 21T in each iron core piece set 20 is arranged next to the tooth portion 21T in the iron core piece set 20 which is arranged in mesh with each other.
  • FIG. 52 is a plan view showing a fourth modification of the eleventh embodiment.
  • each tooth portion 21T in each iron core piece set 20 is arranged next to the tooth portion 21T in the iron core piece set 20 which is arranged in mesh.
  • a circular punch hole 602 is provided in the back yoke portion 21B of some of the iron core pieces 21.
  • the punch hole 602 is provided at the end of the back yoke portion 21B opposite to the teeth portion 21T.
  • the pilot hole 601 is omitted.
  • the present invention can also be applied to an outer rotor type rotary electric machine in which the rotor is arranged outside the stator.
  • the iron core pieces 21 of the first to eleventh embodiments are made of an electromagnetic steel plate.
  • the material of the iron core piece 21 is not limited to the electromagnetic steel plate.
  • the rotary electric machine is shown as the electric machine, but the present invention can be applied to an electric machine other than the rotary electric machine, for example, a linear motor.
  • FIG. 53 is a perspective view showing an example of a linear motor to which the present invention is applied.
  • a linear motor as an electric machine has a linear stator 111 which is a field magnet and a pair of movers 112 which are armatures. Note that FIG. 53 shows only a part of the configurations of the stator 111 and the mover 112 in order to facilitate understanding of the configurations.
  • the pair of movers 112 face each other with the stator 111 in between.
  • a gap is provided between the pair of movers 112 and the stator 111, respectively.
  • the mover 112 is movable with respect to the stator 111 in the Y-axis direction of FIG. 53.
  • Each mover 112 has a plurality of divided laminated iron cores 113 and a plurality of armature windings 114.
  • the divided laminated iron cores 2 of the first to fifth and seventh to eleventh embodiments are combined in an annular shape, but in the linear motor, a plurality of divided laminated iron cores 113 are linearly combined.
  • a linear laminated iron core similar to that of the sixth embodiment can be used.
  • each divided laminated iron core 113 are the same as those of any of the first to fifth and seventh to eleventh embodiments.
  • Each armature winding 114 is wound around a teeth laminated portion of a corresponding split laminated iron core 113.
  • Stator core (armature core), 2-4 split laminated core, 2a teeth recess, 2b yoke recess, 3A two-split laminated core, 5 linear laminated core, 8 unnecessary parts, 20 core piece set, 20a between yokes Slit, 20b inter-teeth slit, 21 iron core piece, 21T teeth part, 21Ta teeth tip, 21B back yoke, 21Ba yoke end, 21Bc first protrusion, 21Bd second protrusion, 21Be first yoke notch Part, 21Bf second yoke notch, 21Bg back yoke body, 22 tooth-bending part, 23 yoke-bending part, 25 convex part, 26 fitting recess, 30 split iron core piece set, 31 two-split iron core piece, 40 iron core One set, 41 iron core piece, 42, 43 side end forming part, 50 series of iron core pieces, 50a iron core piece set, 101 stator (armature), 102 rotor (field),

Abstract

This manufacturing method for an armature core has a step of cutting out a core piece set from a steel sheet and a step of folding the cut-out core piece set at connecting sections and laminating core pieces to form a split laminated core. In the core piece set, the plurality of connecting sections are provided between the plurality of core pieces and connect the core pieces together. A portion of each of the connecting sections of the core piece set is provided between back yoke sections of two adjacent core pieces. Each of the back yoke sections in the core piece set is separated from adjacent back yoke sections at portions other than the connecting sections.

Description

電機子鉄心の製造方法、電気機械の製造方法、及び電気機械Armature core manufacturing method, electric machine manufacturing method, and electric machine
 この発明は、複数の鉄心片を積層して形成される電機子鉄心の製造方法、電気機械の製造方法、及び電気機械に関する。 The present invention relates to a method for manufacturing an armature iron core formed by laminating a plurality of iron core pieces, a method for manufacturing an electric machine, and an electric machine.
 従来、電動機の固定子鉄心は、外周の一部が連結された複数の円環状の鉄心片を鋼板シートから打ち抜いて、各鉄心片を各連結部で交互に反対方向に折り返して積層することによって形成されている(例えば、特許文献1参照)。 Conventionally, a stator core of an electric motor is formed by punching out a plurality of annular core pieces to which a part of the outer circumference is connected from a steel plate sheet, and alternately folding back the core pieces in opposite directions at each connecting portion and laminating them. It is formed (see, for example, Patent Document 1).
実開昭62-145450号公報Jitsukaisho 62-145450
 上記のような従来の固定子鉄心は、複数の円環状の鉄心片を1枚の鋼板シートから打ち抜いている。このため、各鉄心片の中央部分の材料が廃棄され、材料ロスが多いという課題がある。 In the conventional stator core as described above, a plurality of annular iron core pieces are punched out from one steel plate sheet. Therefore, there is a problem that the material in the central portion of each iron core piece is discarded and the material loss is large.
 本発明は、上記のような課題を解決するためになされたものであり、鋼板シートの材料ロスを削減することのできる電機子鉄心の製造方法、電気機械の製造方法、及び電気機械を得る。 The present invention has been made to solve the above problems, and obtains an armature iron core manufacturing method, an electric machine manufacturing method, and an electric machine capable of reducing material loss of a steel plate sheet.
 本発明に係る電機子鉄心の製造方法は、バックヨーク部と、バックヨーク部から突出しているティース部とをそれぞれ有する複数の鉄心片が直線状に配置されており、かつ複数の鉄心片を連結する複数の連結部が鉄心片間に設けられている鉄心片セットを鋼板シートから切出す工程と、切出した鉄心片セットを、各連結部で折り曲げて、各鉄心片を積層して分割積層鉄心を形成する工程とを有し、鉄心片セットにおける各連結部は、隣接する2つの鉄心片のバックヨーク部間に部分的に設けられており、鉄心片セットにおける各バックヨーク部は、連結部以外の部分では、隣のバックヨーク部から離れている。
 また、本発明に係る電機子鉄心の製造方法は、バックヨーク部と、バックヨーク部から突出しているティース部とをそれぞれ有する複数の鉄心片が直線状に配置されており、かつ複数の鉄心片を連結する複数の連結部が鉄心片間に設けられている鉄心片セットを鋼板シートから切出す工程と、切出した鉄心片セットを、各連結部で折り曲げて、各鉄心片を積層して分割積層鉄心を形成する工程とを有し、各バックヨーク部は、ティース部とは反対側の端部であるヨーク端部を有しており、各ティース部は、バックヨーク部とは反対側の端部であるティース先端部を有しており、鉄心片セットにおける複数の鉄心片は、ヨーク端部同士及びティース先端部同士を交互に突き合わせるように配置されており、複数の連結部は、複数のヨーク連結部と、複数のティース連結部とを有しており、鉄心片セットにおける各ヨーク連結部は、隣り合う2つのヨーク端部間に設けられており、鉄心片セットにおける各ティース連結部は、隣り合う2つのティース先端部間に部分的に設けられており、鉄心片セットにおける各ティース部は、ティース連結部以外の部分では、隣のティース部から離れている。
 また、本発明に係る電機子鉄心の製造方法は、バックヨーク部と、バックヨーク部から突出しているティース部とをそれぞれ有する複数の鉄心片が直線状に配置されており、かつ複数の鉄心片を連結する複数の連結部が鉄心片間に設けられている鉄心片セットがさらに複数個連結された一連の鉄心片セットを鋼板シートから切出す工程と、切出した一連の鉄心片セットを、複数の連結部のうち、各鉄心片セットの間に設けられた連結部で折り曲げて、各鉄心片セットを積層して直線状の積層鉄心を形成する工程とを有し、各鉄心片セットにおける各連結部は、隣接する2つの鉄心片のバックヨーク部間に部分的に設けられており、各鉄心片セットにおける各バックヨーク部は、連結部以外の部分では、隣のバックヨーク部から離れている。
 また、本発明に係る電気機械は、電機子鉄心を有している電機子、及び電機子に空隙を介して対向しており、電機子に対して相対的に移動する界磁を備え、電機子鉄心は、界磁の移動方向に沿って並べられている複数の分割積層鉄心を有しており、各分割積層鉄心は、複数の鉄心片を積層して構成されており、各鉄心片は、バックヨーク部と、バックヨーク部から界磁側に突出しているティース部とを有しており、各分割積層鉄心には、積層方向に隣接する鉄心片間を連結し折り曲げられている複数の折り曲げ部が設けられており、各折り曲げ部は、界磁の移動方向におけるバックヨーク部の端部に部分的に設けられている。
 また、本発明に係る電気機械は、電機子鉄心を有している電機子、及び電機子に空隙を介して対向しており、電機子に対して相対的に移動する界磁を備え、電機子鉄心は、界磁の移動方向に沿って並べられている複数の分割積層鉄心を有しており、各分割積層鉄心は、複数の鉄心片を積層して構成されており、各鉄心片は、バックヨーク部と、バックヨーク部から界磁側に突出しているティース部とを有しており、各バックヨーク部は、ティース部とは反対側の端部であるヨーク端部を有しており、各ティース部は、バックヨーク部とは反対側の端部であるティース先端部を有しており、各分割積層鉄心には、積層方向に隣接する鉄心片間を連結し折り曲げられている複数のヨーク間折り曲げ部及び複数のティース間折り曲げ部が設けられており、各ヨーク間折り曲げ部は、ヨーク端部に設けられており、各ティース間折り曲げ部は、ティース先端部に部分的に設けられている。
In the method for manufacturing an armature core according to the present invention, a plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and the plurality of iron core pieces are connected. The process of cutting out an iron core piece set in which a plurality of connecting portions are provided between the iron core pieces from a steel plate sheet, and bending the cut out iron core piece set at each connecting portion, laminating each iron core piece, and dividing and laminating the iron core. Each connecting portion in the iron core piece set is partially provided between the back yoke portions of two adjacent iron core pieces, and each back yoke portion in the iron core piece set is a connecting portion. Other than that, it is far from the adjacent back yoke.
Further, in the method for manufacturing an armature iron core according to the present invention, a plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of iron core pieces are arranged. A process of cutting out an iron core piece set in which a plurality of connecting portions are provided between the iron core pieces from a steel plate sheet, and a process of bending the cut out iron core piece set at each connecting portion and laminating and dividing each iron core piece. Each back yoke portion has a yoke end portion which is an end portion on the opposite side to the tooth portion, and each tooth portion is on the opposite side to the back yoke portion. It has a tooth tip that is an end, and the plurality of iron core pieces in the iron core piece set are arranged so that the yoke ends and the tooth tips are alternately butted against each other, and the plurality of connecting portions are arranged so as to alternately abut each other. It has a plurality of yoke connecting portions and a plurality of teeth connecting portions, and each yoke connecting portion in the iron core piece set is provided between two adjacent yoke ends, and each teeth connecting portion in the iron core piece set is provided. The portion is partially provided between two adjacent tooth tips, and each tooth portion in the iron core piece set is separated from the adjacent teeth portion except for the teeth connecting portion.
Further, in the method for manufacturing an armature iron core according to the present invention, a plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of iron core pieces are arranged. A process of cutting out a series of iron core piece sets in which a plurality of iron core piece sets in which a plurality of connecting portions are provided between the iron core pieces are further connected from a steel plate sheet, and a plurality of cut out series of iron core piece sets. Among the connecting portions of the above, each of the connecting portions has a step of bending at a connecting portion provided between the iron core piece sets and laminating each iron core piece set to form a linear laminated iron core. The connecting portion is partially provided between the back yoke portions of two adjacent iron core pieces, and each back yoke portion in each iron core piece set is separated from the adjacent back yoke portion in the portion other than the connecting portion. There is.
Further, the electric machine according to the present invention has an armature having an armature core and a field that faces the armature through a gap and moves relative to the armature. The armature core has a plurality of divided laminated iron cores arranged along the moving direction of the field, and each divided laminated iron core is configured by laminating a plurality of iron core pieces, and each armature piece is , A back yoke portion and a teeth portion protruding from the back yoke portion to the field side, and each divided laminated iron core has a plurality of bent core pieces connected to each other in the stacking direction. Bent portions are provided, and each bent portion is partially provided at the end of the back yoke portion in the direction of movement of the field magnet.
Further, the electric machine according to the present invention has an armature having an armature core and a field that faces the armature through a gap and moves relative to the armature. The armature core has a plurality of divided laminated iron cores arranged along the moving direction of the field, and each divided laminated iron core is configured by laminating a plurality of iron core pieces, and each armature piece is , A back yoke portion and a teeth portion protruding from the back yoke portion to the field side, and each back yoke portion has a yoke end portion which is an end portion on the opposite side to the teeth portion. Each tooth portion has a tooth tip portion that is an end portion on the opposite side to the back yoke portion, and each divided laminated iron core is bent by connecting between adjacent iron core pieces in the stacking direction. A plurality of inter-yoke folds and a plurality of tooth-to-teeth folds are provided, each yoke-to-yoke fold is provided at the yoke end, and each tooth-to-teeth fold is partially provided at the tooth tip. Has been done.
 本発明の電機子鉄心の製造方法、電気機械の製造方法、及び電気機械によれば、電機子鉄心を製造する際の材料ロスを削減することができる。 According to the method for manufacturing an armature core, the method for manufacturing an electric machine, and an electric machine of the present invention, it is possible to reduce material loss when manufacturing an armature core.
本発明の実施の形態1における固定子鉄心の製造方法によって製造される固定子鉄心を示す平面図である。It is a top view which shows the stator core manufactured by the manufacturing method of the stator core in Embodiment 1 of this invention. 図1の固定子鉄心を構成する1つの分割積層鉄心が形成される鉄心片セットを示す平面図である。It is a top view which shows the iron core piece set in which one divided laminated iron core which constitutes the stator core of FIG. 1 is formed. 図2の鉄心片セットによって分割積層鉄心を形成する過程を示す斜視図である。It is a perspective view which shows the process of forming the divided laminated iron core by the iron core piece set of FIG. 図3で形成された分割積層鉄心を周方向に3つ結合した状態を示す平面図である。FIG. 3 is a plan view showing a state in which three divided laminated iron cores formed in FIG. 3 are connected in the circumferential direction. 図2の鉄心片セットが2つ配置された鋼板シートを示す平面図である。It is a top view which shows the steel plate sheet in which two sets of iron core pieces of FIG. 2 are arranged. 本発明の実施の形態2における鉄心片セットが配置された鋼板シートを示す平面図である。It is a top view which shows the steel plate sheet in which the iron core piece set in Embodiment 2 of this invention is arranged. 図6の鉄心片セットによって分割積層鉄心を形成する過程を示す斜視図である。It is a perspective view which shows the process of forming the divided laminated iron core by the iron core piece set of FIG. 図6の鉄心片セットを4つ、周方向に並べて鋼板シートに配置した状態を示す平面図である。FIG. 5 is a plan view showing a state in which four iron core piece sets of FIG. 6 are arranged in the circumferential direction and arranged on a steel plate sheet. 図8の鋼板シートから切り出された、4つの鉄心片セットを折り曲げた状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which four iron core piece sets cut out from the steel plate sheet of FIG. 8 are bent. 鋼板シートに配置される鉄心片セットの数と、鋼板シートの材料歩留まりとの関係を示す図である。It is a figure which shows the relationship between the number of iron core piece sets arranged in a steel plate sheet, and the material yield of a steel plate sheet. 本発明の実施の形態3における鉄心片セットを2つ配置した鋼板シートを示す平面図である。It is a top view which shows the steel plate sheet which arranged two iron core piece sets in Embodiment 3 of this invention. 図11の鋼板シートから切出された1つの鉄心片セットによって形成された分割積層鉄心を示す斜視図である。It is a perspective view which shows the divided laminated iron core formed by one set of iron core pieces cut out from the steel plate sheet of FIG. 図12の分割積層鉄心を2つ結合した状態を示す平面図である。It is a top view which shows the state which connected two the divided laminated iron cores of FIG. 本発明の実施の形態4における鉄心片セットを2つ配置した鋼板シートを示す平面図である。It is a top view which shows the steel plate sheet which arranged two iron core piece sets in Embodiment 4 of this invention. 図14の鋼板シートから切り出された1つの鉄心片セットによって分割積層鉄心が形成される過程を示す斜視図である。It is a perspective view which shows the process of forming the divided laminated iron core by one set of iron core pieces cut out from the steel plate sheet of FIG. 図15の分割積層鉄心を2つ結合した状態を示す平面図である。FIG. 5 is a plan view showing a state in which two divided laminated iron cores of FIG. 15 are connected. 本発明の実施の形態5における鉄心片セットが配置された鋼板シートを示す平面図である。It is a top view which shows the steel plate sheet in which the iron core piece set in Embodiment 5 of this invention is arranged. 図17の鉄心片セットの各連結部を互い違いに折り曲げて形成された分割積層鉄心を示す平面図である。It is a top view which shows the split laminated iron core formed by bending each connecting part of the iron core piece set of FIG. 17 alternately. 図18の分割積層鉄心を構成する各鉄心片の側端形成部を、バックヨーク部側に回転移動させている状態を示す平面図である。FIG. 5 is a plan view showing a state in which the side end forming portions of the iron core pieces constituting the divided laminated iron core of FIG. 18 are rotationally moved toward the back yoke portion. 本発明の実施の形態5における分割積層鉄心を示す平面図である。It is a top view which shows the divided laminated iron core in Embodiment 5 of this invention. 本発明の実施の形態5における鉄心片セットの変形例を示す平面図である。It is a top view which shows the modification of the iron core piece set in Embodiment 5 of this invention. 本発明の実施の形態6の鉄心片セットを2つ、逆向きで互い違いに配置した鋼板シートを示す平面図である。It is a top view which shows the steel plate sheet which arranged two iron core piece sets of Embodiment 6 of this invention in the opposite direction, and staggered. 図22の鋼板シートから切出された鉄心片セットを示す平面図である。It is a top view which shows the iron core piece set cut out from the steel plate sheet of FIG. 図23の鉄心片セットによって形成された積層鉄心を示す斜視図である。It is a perspective view which shows the laminated iron core formed by the iron core piece set of FIG. 図24の積層鉄心を用いて円環状の固定子鉄心を形成する過程を示す平面図である。It is a top view which shows the process of forming an annular stator core using the laminated iron core of FIG. 本発明の実施の形態7による回転電機を示す斜視図である。It is a perspective view which shows the rotary electric machine according to Embodiment 7 of this invention. 図26の回転電機を示す平面図である。It is a top view which shows the rotary electric machine of FIG. 図27の分割積層鉄心を構成する鉄心片セットを示す平面図である。It is a top view which shows the iron core piece set which comprises the divided laminated iron core of FIG. 27. 図28の要部を拡大して示す平面図である。It is a top view which shows the main part of FIG. 28 enlarged. 図28の鉄心片セットによって分割積層鉄心を形成する過程を示す斜視図である。It is a perspective view which shows the process of forming the divided laminated iron core by the iron core piece set of FIG. 図27の分割積層鉄心を示す斜視図である。It is a perspective view which shows the divided laminated iron core of FIG. 実施の形態7の分割積層鉄心を形成する工程を示すフローチャートである。It is a flowchart which shows the process of forming the divided laminated iron core of Embodiment 7. 本発明の実施の形態8による固定子鉄心を示す平面図である。It is a top view which shows the stator core by Embodiment 8 of this invention. 図33の要部を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing a main part of FIG. 33. 本発明の実施の形態9による鉄心片セットを示す平面図である。It is a top view which shows the iron core piece set according to Embodiment 9 of this invention. 図35のA部を拡大して示す平面図である。It is a top view which shows the part A of FIG. 35 enlarged. 図35のB部を拡大して示す平面図である。It is a top view which shows the part B of FIG. 35 enlarged. 本発明の実施の形態10による鉄心片セットを示す平面図である。It is a top view which shows the iron core piece set by Embodiment 10 of this invention. 図38のC部を拡大して示す平面図である。It is a top view which shows the C part of FIG. 38 enlarged. 図38のD部を拡大して示す平面図である。It is a top view which shows the part D of FIG. 38 enlarged. 図38の鉄心片セットによって分割積層鉄心を形成する過程を示す斜視図である。It is a perspective view which shows the process of forming the divided laminated iron core by the iron core piece set of FIG. 38. 実施の形態10の固定子鉄心を示す平面図である。It is a top view which shows the stator core of Embodiment 10. 図42の要部を拡大して示す平面図である。It is a top view which shows the main part of FIG. 42 enlarged. 実施の形態10の固定子鉄心の変形例を示す平面図である。It is a top view which shows the modification of the stator core of Embodiment 10. 図44の鉄心片を示す平面図である。It is a top view which shows the iron core piece of FIG. 44. 実施の形態3の固定子鉄心の変形例を示す平面図である。It is a top view which shows the modification of the stator core of Embodiment 3. FIG. 図46の鉄心片を示す平面図である。It is a top view which shows the iron core piece of FIG. 本発明の実施の形態11による2つの鉄心片セットを示す平面図である。It is a top view which shows the two iron core pieces set by Embodiment 11 of this invention. 実施の形態11の第1の変形例を示す平面図である。It is a top view which shows the 1st modification of Embodiment 11. FIG. 実施の形態11の第2の変形例を示す平面図である。It is a top view which shows the 2nd modification of Embodiment 11. FIG. 実施の形態11の第3の変形例を示す平面図である。It is a top view which shows the 3rd modification of Embodiment 11. FIG. 実施の形態11の第4の変形例を示す平面図である。It is a top view which shows the 4th modification of Embodiment 11. FIG. 本発明が適用されるリニアモータの一例を示す斜視図である。It is a perspective view which shows an example of the linear motor to which this invention is applied.
 以下、この発明を実施するための形態について、図面を参照して説明する。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1における固定子鉄心の製造方法によって製造される固定子鉄心1を示す平面図である。電機子鉄心としての固定子鉄心1は、周方向に等分された複数の分割積層鉄心2を固定子鉄心1の回転軸を中心とする周方向に結合することによって円環状に形成されている。なお、以下の説明では、固定子鉄心1の回転軸に沿う方向を「軸方向」という。固定子鉄心1の回転軸を中心とする周方向を「周方向」という。固定子鉄心1の回転軸を中心とする半径方向を「径方向」という。
Embodiment 1.
FIG. 1 is a plan view showing a stator core 1 manufactured by the method for manufacturing a stator core according to the first embodiment of the present invention. The stator core 1 as an armature core 1 is formed in an annular shape by connecting a plurality of divided laminated iron cores 2 equally divided in the circumferential direction in the circumferential direction centered on the rotation axis of the stator core 1. .. In the following description, the direction along the rotation axis of the stator core 1 is referred to as "axial direction". The circumferential direction around the rotation axis of the stator core 1 is called the "circumferential direction". The radial direction centered on the rotation axis of the stator core 1 is called the "diameter direction".
 図2は、図1の分割積層鉄心2を構成する鉄心片セット20を示す平面図である。この例では、鉄心片セット20は、7枚の鉄心片21によって構成されている。各鉄心片21は、それぞれバックヨーク部21Bとティース部21Tとを有している。各ティース部21Tは、バックヨーク部21Bから突出している。鉄心片セット20における鉄心片21間には、複数の鉄心片21を連結する複数の連結部201が設けられている。即ち、7枚の鉄心片21は、それぞれ隣り合う鉄心片21と連結部201によって連結されている。各連結部201は、各鉄心片21の周方向の端部において、隣り合うバックヨーク部21Bの間に設けられている。各鉄心片21は、同一方向にバックヨーク部21Bを向けて、各バックヨーク部21Bの径方向外側の端部が直線状に並ぶように配置されている。 FIG. 2 is a plan view showing an iron core piece set 20 constituting the divided laminated iron core 2 of FIG. In this example, the iron core piece set 20 is composed of seven iron core pieces 21. Each iron core piece 21 has a back yoke portion 21B and a teeth portion 21T, respectively. Each tooth portion 21T protrudes from the back yoke portion 21B. A plurality of connecting portions 201 for connecting a plurality of iron core pieces 21 are provided between the iron core pieces 21 in the iron core piece set 20. That is, the seven iron core pieces 21 are connected to the adjacent iron core pieces 21 by the connecting portion 201, respectively. Each connecting portion 201 is provided between adjacent back yoke portions 21B at the circumferential end of each iron core piece 21. The iron core pieces 21 are arranged so that the back yoke portions 21B are directed in the same direction and the radial outer ends of the back yoke portions 21B are aligned in a straight line.
 鉄心片セット20における各連結部201は、隣接する2つの鉄心片21のバックヨーク部21B間に部分的に設けられている。鉄心片セット20における各バックヨーク部21Bは、連結部201以外の部分では、隣のバックヨーク部21Bから離れている。 Each connecting portion 201 in the iron core piece set 20 is partially provided between the back yoke portions 21B of two adjacent iron core pieces 21. Each back yoke portion 21B in the iron core piece set 20 is separated from the adjacent back yoke portion 21B except for the connecting portion 201.
 図3は、図2の鉄心片セット20から分割積層鉄心2を形成する過程を示す斜視図である。鉄心片セット20を構成する各鉄心片21は、各連結部201で互いに異なる方向に折り曲げられる。このとき、鉄心片21の一方の面同士を対向させるように、鉄心片セット20を折り曲げる。各連結部201で折り曲げられた各鉄心片21は、軸方向に積層されて、分割積層鉄心2が形成される。ここで、鉄心片セット20を折り曲げて積層することによって分割積層鉄心2を形成することは、「鉄心片を積層して分割積層鉄心を形成する工程」に相当する。 FIG. 3 is a perspective view showing a process of forming the divided laminated iron core 2 from the iron core piece set 20 of FIG. Each iron core piece 21 constituting the iron core piece set 20 is bent in different directions at each connecting portion 201. At this time, the iron core piece set 20 is bent so that one surface of the iron core piece 21 faces each other. Each iron core piece 21 bent at each connecting portion 201 is laminated in the axial direction to form a divided laminated iron core 2. Here, forming the divided laminated iron core 2 by bending and laminating the iron core piece set 20 corresponds to the "step of laminating the iron core pieces to form the divided laminated iron core".
 折り曲げられた各連結部201には、折り曲げ部21aが形成される。この例では、分割積層鉄心2の周方向の両側の側面2Cに折り曲げ部21aが形成される。分割積層鉄心2のバックヨーク部21B及びティース部21Tの径方向の端面には連結部が設けられていない。よって、バックヨーク部21B及びティース部21Tには折り曲げ部が形成されない。このため、実施の形態1の分割積層鉄心2は、バックヨーク部21B及びティース部21Tの端面の平面性を高めることができる。 A bent portion 21a is formed in each of the bent connecting portions 201. In this example, the bent portions 21a are formed on the side surfaces 2C on both sides of the divided laminated iron core 2 in the circumferential direction. No connecting portion is provided on the radial end faces of the back yoke portion 21B and the teeth portion 21T of the divided laminated iron core 2. Therefore, the back yoke portion 21B and the teeth portion 21T are not formed with a bent portion. Therefore, the split laminated iron core 2 of the first embodiment can improve the flatness of the end faces of the back yoke portion 21B and the teeth portion 21T.
 図4は、図3の分割積層鉄心2を周方向に3つ結合した状態を示す平面図である。図4に示すように、分割積層鉄心2を周方向に複数個結合することによって、円環状の固定子鉄心1が形成される。ここで、分割積層鉄心2を周方向に複数個結合することによって、円環状の固定子鉄心1を形成することは、「分割積層鉄心を円環状に複数個結合する工程」に相当する。 FIG. 4 is a plan view showing a state in which three divided laminated iron cores 2 of FIG. 3 are connected in the circumferential direction. As shown in FIG. 4, the annular stator core 1 is formed by connecting a plurality of the divided laminated iron cores 2 in the circumferential direction. Here, forming an annular stator core 1 by connecting a plurality of the divided laminated iron cores 2 in the circumferential direction corresponds to a "step of connecting a plurality of the divided laminated iron cores in an annular shape".
 図5は、図2の鉄心片セット20が2つ配置された鋼板シート200を示す平面図である。この例では、2つの鉄心片セット20は、それぞれバックヨーク部21Bを外側に向けて、互い違いに鋼板シート200に配置されている。鋼板シート200の長手方向に沿う両端部には、各鉄心片セット20を構成する各鉄心片21のバックヨーク部21Bの径方向外側の端部がそれぞれ直線状に並ぶ。このため、鋼板シート200の長手方向に沿う両端部には、不要部分8が発生しない。 FIG. 5 is a plan view showing a steel plate sheet 200 in which two iron core piece sets 20 of FIG. 2 are arranged. In this example, the two iron core piece sets 20 are alternately arranged on the steel plate sheet 200 with the back yoke portions 21B facing outward. At both ends of the steel sheet sheet 200 along the longitudinal direction, the radial outer ends of the back yoke portion 21B of each iron core piece 21 constituting each iron core piece set 20 are linearly arranged. Therefore, unnecessary portions 8 are not generated at both ends of the steel sheet sheet 200 along the longitudinal direction.
 2つの鉄心片セット20は、それぞれのティース部21Tが、他方の鉄心片セット20の隣接する2つのティース部21Tの間のスペースに挿入されて配置される。このため、鋼板シート200の長手方向に垂直な方向の幅は、2つの鉄心片セット20の径方向の長さを加算したものよりも小さくなる。 The two iron core piece sets 20 are arranged so that their respective teeth portions 21T are inserted into the space between the two adjacent teeth portions 21T of the other iron core piece set 20. Therefore, the width of the steel sheet sheet 200 in the direction perpendicular to the longitudinal direction is smaller than the sum of the radial lengths of the two iron core piece sets 20.
 2つの鉄心片セット20は、プレス装置などによって鋼板シート200から打ち抜かれる。ここで、2つの鉄心片セット20を鋼板シート200から打ち抜くことは、「鉄心片セットを鋼板シートから切出す工程」に相当する。鋼板シート200は、鉄心片セット20が打ち抜かれる部分と、それ以外の不要部分8とに分けられる。不要部分8は、鉄心片セット20が打ち抜かれた後に廃棄される部分であり、材料ロスとなる部分である。この例では、各鉄心片セット20の隣り合うティース部21T間が不要部分8となる。 The two iron core piece sets 20 are punched from the steel plate sheet 200 by a pressing device or the like. Here, punching the two iron core piece sets 20 from the steel plate sheet 200 corresponds to the "step of cutting out the iron core piece set from the steel plate sheet". The steel plate sheet 200 is divided into a portion where the iron core piece set 20 is punched out and an unnecessary portion 8 other than that. The unnecessary portion 8 is a portion that is discarded after the iron core piece set 20 is punched out, and is a portion that causes material loss. In this example, the unnecessary portion 8 is between the adjacent teeth portions 21T of each iron core piece set 20.
 なお、以下の説明では、各鉄心片の連結部で発生する微小な不要部分、及び各鉄心片のバックヨーク部21Bの径方向外側などに形成された凹凸形状によって発生する微小な不要部分については、不要部分としての説明を省略する。 In the following description, the minute unnecessary part generated at the connecting portion of each iron core piece and the minute unnecessary part generated by the uneven shape formed on the radial outer side of the back yoke portion 21B of each iron core piece will be described. , The description as an unnecessary part is omitted.
 このように、実施の形態1における固定子鉄心の製造方法は、鉄心片セット20から分割積層鉄心2を形成する工程と、分割積層鉄心2を円環状に複数個結合する工程と、を有する。固定子鉄心1は、複数の分割積層鉄心2によって構成されている。分割積層鉄心2は、複数の鉄心片21を直線状に配置した鉄心片セット20によって構成されている。鋼板シート200には、2つの鉄心片セット20が逆向きで互い違いに配置されている。このため、鋼板シート200の不要部分8は、2つの鉄心片セット20の各ティース部21Tの間の領域のみに形成される。よって、鋼板シートから環状の鉄心片を打ち抜く場合よりも材料ロスを削減することができる。 As described above, the method for manufacturing the stator core in the first embodiment includes a step of forming the split laminated iron core 2 from the iron core piece set 20 and a step of connecting a plurality of the divided laminated iron cores 2 in an annular shape. The stator core 1 is composed of a plurality of divided laminated iron cores 2. The divided laminated iron core 2 is composed of an iron core piece set 20 in which a plurality of iron core pieces 21 are arranged in a straight line. On the steel sheet sheet 200, two iron core piece sets 20 are arranged in opposite directions and alternately. Therefore, the unnecessary portion 8 of the steel plate sheet 200 is formed only in the region between the teeth portions 21T of the two iron core piece sets 20. Therefore, the material loss can be reduced as compared with the case where the annular iron core piece is punched from the steel plate sheet.
 なお、実施の形態1の固定子鉄心の製造方法は、打ち抜き加工によって鋼板シート200から各鉄心片セット20を切り出している。しかし、鋼板シート200から各鉄心片セット20を切り出す方法は、打ち抜き加工に限るものではない。例えば、各鉄心片セット20は、レーザ加工によって鋼板シート200から切り出してもよい。 In the method for manufacturing the stator core of the first embodiment, each core piece set 20 is cut out from the steel plate sheet 200 by punching. However, the method of cutting out each iron core piece set 20 from the steel plate sheet 200 is not limited to the punching process. For example, each iron core piece set 20 may be cut out from the steel plate sheet 200 by laser processing.
 また、実施の形態1では、鉄心片セット20は、7枚の鉄心片21によって構成されている。しかし、鉄心片セット20を構成する鉄心片21は、6枚以下であってもよいし、8枚以上であってもよい。 Further, in the first embodiment, the iron core piece set 20 is composed of seven iron core pieces 21. However, the number of iron core pieces 21 constituting the iron core piece set 20 may be 6 or less, or 8 or more.
 実施の形態2.
 次に、実施の形態2における固定子鉄心の製造方法について説明する。
Embodiment 2.
Next, the method for manufacturing the stator core according to the second embodiment will be described.
 実施の形態2では、鉄心片セット20を構成する複数の鉄心片21を連結する連結部が設けられている位置が、実施の形態1の固定子鉄心の製造方法とは異なる。他の構成は、実施の形態1と同様である。 In the second embodiment, the position where the connecting portion for connecting the plurality of iron core pieces 21 constituting the iron core piece set 20 is provided is different from the method for manufacturing the stator core of the first embodiment. Other configurations are the same as those in the first embodiment.
 図6は、実施の形態2の鉄心片セット20が配置された鋼板シート200を示す平面図である。この例では、鋼板シート200に、16個の鉄心片21を径方向に直線状に連結した鉄心片セット20が配置されている。なお、鉄心片セット20を構成する鉄心片21の数は、16個に限定されるものではない。つまり鉄心片21は15枚以下であっても17枚以上であってもよい。鉄心片セット20を構成する各鉄心片21は、バックヨーク部21B同士、及びティース部21T同士を突き合わせて互い違いに配置されている。 FIG. 6 is a plan view showing a steel plate sheet 200 in which the iron core piece set 20 of the second embodiment is arranged. In this example, the iron core piece set 20 in which 16 iron core pieces 21 are linearly connected in the radial direction is arranged on the steel plate sheet 200. The number of iron core pieces 21 constituting the iron core piece set 20 is not limited to 16. That is, the number of iron core pieces 21 may be 15 or less or 17 or more. The iron core pieces 21 constituting the iron core piece set 20 are arranged alternately with the back yoke portions 21B and the teeth portions 21T abutting each other.
 この例では、鋼板シート200の長手方向の両端部の鉄心片21以外の各鉄心片21は、バックヨーク部21Bに設けられた連結部202、及びティース部21Tに設けられた連結部203によって他の鉄心片21と連結されている。鋼板シート200の長手方向の両端部の鉄心片21は、ティース部21Tに設けられた連結部203によって他の鉄心片21と連結されている。この例では、ティース部21Tの周方向の両側に、不要部分8が形成される。 In this example, each of the iron core pieces 21 other than the iron core pieces 21 at both ends in the longitudinal direction of the steel sheet sheet 200 is supported by the connecting portion 202 provided on the back yoke portion 21B and the connecting portion 203 provided on the teeth portion 21T. It is connected to the iron core piece 21 of. The iron core pieces 21 at both ends of the steel plate sheet 200 in the longitudinal direction are connected to the other iron core pieces 21 by the connecting portion 203 provided on the teeth portion 21T. In this example, unnecessary portions 8 are formed on both sides of the teeth portion 21T in the circumferential direction.
 図7は、図6の鋼板シート200から鉄心片セット20を切出した後に、鉄心片セット20から分割積層鉄心2を形成する過程を示す斜視図である。鉄心片セット20を構成する各鉄心片21は、各連結部202,203で互いに異なる方向に折り曲げられる。このとき、鉄心片21の一方の面同士を対向させるように、鉄心片セット20を折り曲げる。各連結部202,203で折り曲げられた各鉄心片21を積層することによって、分割積層鉄心2が形成される。 FIG. 7 is a perspective view showing a process of forming a split laminated iron core 2 from the iron core piece set 20 after cutting out the iron core piece set 20 from the steel plate sheet 200 of FIG. Each iron core piece 21 constituting the iron core piece set 20 is bent in different directions at the connecting portions 202 and 203. At this time, the iron core piece set 20 is bent so that one surface of the iron core piece 21 faces each other. The divided laminated iron core 2 is formed by laminating the iron core pieces 21 bent at the connecting portions 202 and 203.
 折り曲げられた各連結部202,203には、折り曲げ部21aが形成される。この例では、分割積層鉄心2のバックヨーク部21B及びティース部21Tの径方向の端面に折り曲げ部21aが形成される。 A bent portion 21a is formed on each of the bent connecting portions 202 and 203. In this example, the bent portion 21a is formed on the radial end faces of the back yoke portion 21B and the teeth portion 21T of the divided laminated iron core 2.
 図8は、図6の鉄心片セット20を4つ、長手方向に垂直な方向に並べて鋼板シート200に配置した状態を示す平面図である。図9は、図8の鋼板シート200から切り出された4つの鉄心片セット20を切り離さずに折り曲げた状態を示す斜視図である。 FIG. 8 is a plan view showing a state in which four iron core piece sets 20 of FIG. 6 are arranged in a direction perpendicular to the longitudinal direction and arranged on the steel plate sheet 200. FIG. 9 is a perspective view showing a state in which the four iron core piece sets 20 cut out from the steel plate sheet 200 of FIG. 8 are bent without being separated.
 このように、実施の形態2における固定子鉄心の製造方法によれば、鋼板シート200に配置する鉄心片セット20の各鉄心片21は、バックヨーク部21B同士、及びティース部21T同士を突き合わせて、直線状に互い違いに配置されている。このため、鋼板シート200の不要部分8は、鋼板シート200の長手方向に垂直な方向の端部のみに形成される。よって、鋼板シート200から鉄心片セット20を切出したときに発生する材料ロスの量をさらに削減することができる。 As described above, according to the method for manufacturing the stator core in the second embodiment, the iron core pieces 21 of the iron core piece set 20 arranged on the steel plate sheet 200 have the back yoke portions 21B and the teeth portions 21T butted against each other. , Are arranged in a straight line and staggered. Therefore, the unnecessary portion 8 of the steel sheet sheet 200 is formed only at the end portion in the direction perpendicular to the longitudinal direction of the steel sheet sheet 200. Therefore, the amount of material loss generated when the iron core piece set 20 is cut out from the steel plate sheet 200 can be further reduced.
 また、分割積層鉄心2の周方向両側の側面2Cには連結部が設けられていない。よって、周方向両側の側面2Cには折り曲げ部が形成されない。このため、分割積層鉄心2は、周方向両側の側面2Cの寸法精度を高くすることができる。従って、複数の分割積層鉄心2を周方向の側面2Cによって互いに結合して円環状の固定子鉄心1を形成する場合に、複数の分割積層鉄心2を精度良く結合することができる。 Further, no connecting portion is provided on the side surfaces 2C on both sides of the divided laminated iron core 2 in the circumferential direction. Therefore, no bent portion is formed on the side surfaces 2C on both sides in the circumferential direction. Therefore, the divided laminated iron core 2 can improve the dimensional accuracy of the side surfaces 2C on both sides in the circumferential direction. Therefore, when the plurality of divided laminated iron cores 2 are connected to each other by the side surface 2C in the circumferential direction to form the annular stator core 1, the plurality of divided laminated iron cores 2 can be accurately connected.
 なお、鋼板シート200に配置する鉄心片セット20は、4つに限るものではない。例えば、鋼板シート200に配置する鉄心片セット20は、2つ、3つ、または5つ以上であってもよい。 The number of iron core piece sets 20 arranged on the steel plate sheet 200 is not limited to four. For example, the number of iron core piece sets 20 arranged on the steel plate sheet 200 may be two, three, or five or more.
 図10は、鋼板シート200に配置される鉄心片セット20の数と、鋼板シート200の材料歩留まりとの関係を示す図である。図10の横軸は、鋼板シート200に配置される鉄心片セット20の数を示している。図10の縦軸は、鋼板シート200の材料歩留まりを示している。図10に示すように、鋼板シート200に配置される鉄心片セット20の数が多いほど、材料歩留まりが高くなっている。すなわち、鋼板シート200に配置される鉄心片セット20の数が多いほど材料ロスは削減される。 FIG. 10 is a diagram showing the relationship between the number of iron core piece sets 20 arranged on the steel plate sheet 200 and the material yield of the steel plate sheet 200. The horizontal axis of FIG. 10 shows the number of iron core piece sets 20 arranged on the steel plate sheet 200. The vertical axis of FIG. 10 shows the material yield of the steel sheet sheet 200. As shown in FIG. 10, the larger the number of the iron core piece sets 20 arranged on the steel plate sheet 200, the higher the material yield. That is, the larger the number of the iron core piece sets 20 arranged on the steel plate sheet 200, the more the material loss is reduced.
 実施の形態3.
 次に、実施の形態3における固定子鉄心の製造方法について説明する。
Embodiment 3.
Next, the method for manufacturing the stator core according to the third embodiment will be described.
 実施の形態3では、鉄心片21の形状が実施の形態1,2とは異なる。他の構成は、実施の形態1と同様である。 In the third embodiment, the shape of the iron core piece 21 is different from that of the first and second embodiments. Other configurations are the same as those in the first embodiment.
 図11は、本発明の実施の形態3における鉄心片セット20を2つ配置した鋼板シート200を示す平面図である。2つの鉄心片セット20は、それぞれバックヨーク部21Bを外側に向けて、互い違いに鋼板シート200に配置されている。鋼板シート200の長手方向に沿う両端部には、各バックヨーク部21Bの径方向外側の端部が直線状に並ぶ。 FIG. 11 is a plan view showing a steel plate sheet 200 in which two iron core piece sets 20 according to the third embodiment of the present invention are arranged. The two iron core piece sets 20 are alternately arranged on the steel plate sheets 200 with the back yoke portions 21B facing outward. At both ends of the steel sheet sheet 200 along the longitudinal direction, the radial outer ends of the back yoke portions 21B are linearly arranged.
 2つの鉄心片セット20は、それぞれのティース部21Tが、他方の鉄心片セット20の隣接する2つのティース部21Tの間のスペースに挿入されて配置される。このため、鋼板シート200の長手方向に垂直な方向の幅は、2つの鉄心片セット20の径方向の長さを加算したものよりも小さくなる。 The two iron core piece sets 20 are arranged so that their respective teeth portions 21T are inserted into the space between the two adjacent teeth portions 21T of the other iron core piece set 20. Therefore, the width of the steel sheet sheet 200 in the direction perpendicular to the longitudinal direction is smaller than the sum of the radial lengths of the two iron core piece sets 20.
 この例では、実施の形態1の鋼板シート200と同様に、各鉄心片セット20の隣り合うティース部21T間が不要部分8となる。 In this example, as in the steel plate sheet 200 of the first embodiment, the unnecessary portion 8 is between the adjacent teeth portions 21T of each iron core piece set 20.
 鉄心片セット20を構成する各鉄心片21のバックヨーク部21Bの周方向の一方の端部には、半円状の凸部25が形成されている。また、各鉄心片21のバックヨーク部21Bの周方向の他方の端部には、半円状の嵌合凹部26が形成されている。各鉄心片21の凸部25と嵌合凹部26とは、互いに嵌合可能な形状に形成されている。 A semicircular convex portion 25 is formed at one end in the circumferential direction of the back yoke portion 21B of each iron core piece 21 constituting the iron core piece set 20. Further, a semicircular fitting recess 26 is formed at the other end of the back yoke portion 21B of each iron core piece 21 in the circumferential direction. The convex portion 25 and the fitting concave portion 26 of each iron core piece 21 are formed in a shape that allows them to be fitted to each other.
 各鉄心片21は、凸部25に設けられた連結部205と、嵌合凹部26に設けられた連結部206とによって互いに連結されている。各バックヨーク部21Bの幅方向の一側の連結部205と他側の連結部206とは、バックヨーク部21Bからのティース部21Tの突出方向について異なる位置に設けられている。 Each iron core piece 21 is connected to each other by a connecting portion 205 provided in the convex portion 25 and a connecting portion 206 provided in the fitting recess 26. The connecting portion 205 on one side in the width direction of each back yoke portion 21B and the connecting portion 206 on the other side are provided at different positions in the protruding direction of the teeth portion 21T from the back yoke portion 21B.
 図12は、図11の鋼板シート200から切出された1つの鉄心片セット20によって形成された分割積層鉄心2を示す斜視図である。 FIG. 12 is a perspective view showing a split laminated iron core 2 formed by one iron core piece set 20 cut out from the steel plate sheet 200 of FIG.
 鉄心片セット20を構成する各鉄心片21は、各連結部205,206で互いに異なる方向に折り曲げられる。各連結部205,206で折り曲げられた各鉄心片21は、積層されて分割積層鉄心2を形成する。 Each iron core piece 21 constituting the iron core piece set 20 is bent in different directions at the connecting portions 205 and 206. The iron core pieces 21 bent at the connecting portions 205 and 206 are laminated to form the divided laminated iron core 2.
 図13は、図12の分割積層鉄心2を、周方向に2つ結合した状態を示す平面図である。各分割積層鉄心2は、凸部25を他の分割積層鉄心2の嵌合凹部26に嵌合させることによって互いに位置決めされる。このため、複数の分割積層鉄心2を周方向に結合する作業において、各分割積層鉄心2の径方向の位置決めが容易になる。 FIG. 13 is a plan view showing a state in which two divided laminated iron cores 2 of FIG. 12 are connected in the circumferential direction. The divided laminated iron cores 2 are positioned with each other by fitting the convex portion 25 into the fitting recess 26 of the other divided laminated iron core 2. Therefore, in the work of joining the plurality of divided laminated iron cores 2 in the circumferential direction, the positioning of each divided laminated iron core 2 in the radial direction becomes easy.
 このように、実施の形態3における固定子鉄心の製造方法によれば、分割積層鉄心2が、複数の鉄心片21を直線状に配置した鉄心片セット20によって構成されている。鋼板シート200には、2つの鉄心片セット20が逆向きで互い違いに配置されている。このため、鋼板シート200の不要部分8は、2つの鉄心片セット20の各ティース部21Tの間の領域のみに形成される。よって、鋼板シートから環状の鉄心片を打ち抜く場合よりも材料ロスを削減することができる。 As described above, according to the method for manufacturing the stator core in the third embodiment, the divided laminated iron core 2 is composed of the iron core piece set 20 in which a plurality of iron core pieces 21 are linearly arranged. On the steel sheet sheet 200, two iron core piece sets 20 are arranged in opposite directions and alternately. Therefore, the unnecessary portion 8 of the steel plate sheet 200 is formed only in the region between the teeth portions 21T of the two iron core piece sets 20. Therefore, the material loss can be reduced as compared with the case where the annular iron core piece is punched from the steel plate sheet.
 さらに、各鉄心片21のバックヨーク部21Bの周方向の一方の端部に凸部25が形成され、他方の端部に嵌合凹部26が形成されている。そして、各鉄心片21を周方向に並べる際に、凸部25と嵌合凹部26とを互いに嵌合させて、各鉄心片21の径方向の位置決めがされている。このため、各鉄心片21を周方向に容易に並べることができる。 Further, a convex portion 25 is formed at one end of the back yoke portion 21B of each iron core piece 21 in the circumferential direction, and a fitting recess 26 is formed at the other end. Then, when the iron core pieces 21 are arranged in the circumferential direction, the convex portion 25 and the fitting concave portion 26 are fitted to each other so that the iron core pieces 21 are positioned in the radial direction. Therefore, the iron core pieces 21 can be easily arranged in the circumferential direction.
 実施の形態3では、各鉄心片21の凸部25及び嵌合凹部26の形状は、それぞれ半円状である。しかし、凸部25及び嵌合凹部26の形状はこれに限るものではない。例えば、凸部25及び嵌合凹部26の形状は、台形状であってもよい。凸部25の頂部を直線状にすることによって、連結部205の長さを長くすることができる。これにより、連結部205の剛性を高くすることができる。 In the third embodiment, the convex portion 25 and the fitting concave portion 26 of each iron core piece 21 have a semicircular shape. However, the shapes of the convex portion 25 and the fitting concave portion 26 are not limited to this. For example, the shape of the convex portion 25 and the fitting concave portion 26 may be trapezoidal. By making the top of the convex portion 25 linear, the length of the connecting portion 205 can be increased. As a result, the rigidity of the connecting portion 205 can be increased.
 また、各鉄心片21に形成される凸部25及び嵌合凹部26の大きさは適宜変更可能である。例えば、各鉄心片21間の間隔が大きい固定子鉄心1の場合には、凸部25及び嵌合凹部26の大きさを大きくしてもよい。これにより、各鉄心片21の径方向の位置決めをさらに容易にすることができる。 Further, the sizes of the convex portion 25 and the fitting concave portion 26 formed on each iron core piece 21 can be appropriately changed. For example, in the case of the stator core 1 in which the distance between the iron core pieces 21 is large, the sizes of the convex portion 25 and the fitting concave portion 26 may be increased. Thereby, the radial positioning of each iron core piece 21 can be further facilitated.
 なお、実施の形態3の鉄心片21における凸部25及び嵌合凹部26は、実施の形態1の鉄心片21にも適用可能である。 The convex portion 25 and the fitting concave portion 26 in the iron core piece 21 of the third embodiment can also be applied to the iron core piece 21 of the first embodiment.
 実施の形態4.
 次に、実施の形態4における固定子鉄心の製造方法について説明する。
Embodiment 4.
Next, the method for manufacturing the stator core according to the fourth embodiment will be described.
 実施の形態4では、鉄心片がさらに分割されている点が実施の形態1~3とは異なる。他の構成は、実施の形態2と同様である。 The fourth embodiment is different from the first to third embodiments in that the iron core piece is further divided. Other configurations are the same as in the second embodiment.
 図14は、本発明の実施の形態4における分割鉄心片セット30が2つ配置された鋼板シート300を示す平面図である。分割鉄心片セット30は、実施の形態2の鉄心片セット20を、固定子鉄心1の回転軸を中心とする径方向に延びる直線によって二等分した形状を有している。すなわち、実施の形態4の分割鉄心片セット30は、実施の形態2の鉄心片21を径方向に沿って二つに分割した二分割鉄心片31によって構成されている。 FIG. 14 is a plan view showing a steel plate sheet 300 in which two split iron core piece sets 30 according to the fourth embodiment of the present invention are arranged. The divided iron core piece set 30 has a shape in which the iron core piece set 20 of the second embodiment is bisected by a straight line extending in the radial direction about the rotation axis of the stator core 1. That is, the divided iron core piece set 30 of the fourth embodiment is composed of the two divided iron core pieces 31 obtained by dividing the iron core piece 21 of the second embodiment into two along the radial direction.
 分割鉄心片セット30は、5個の二分割鉄心片31が径方向に直線状に連結されて構成されている。各二分割鉄心片31は、バックヨーク部31B同士、及びティース部31T同士を突き合わせて互い違いに配置されている。なお、分割鉄心片セット30を構成する二分割鉄心片31の数は、5個に限定されるものではない。 The split iron core piece set 30 is configured by connecting five split iron core pieces 31 in a linear shape in the radial direction. The two-split iron core pieces 31 are arranged alternately with the back yoke portions 31B and the teeth portions 31T abutting each other. The number of the two-divided iron core pieces 31 constituting the divided iron core piece set 30 is not limited to five.
 鋼板シート300には、一対の分割鉄心片セット30が、各二分割鉄心片31の分割された直線状の端部30aを外側に向けて、互いに噛み合わせられた状態で配置されている。 On the steel plate sheet 300, a pair of divided iron core piece sets 30 are arranged in a state of being meshed with each other with the divided linear end portions 30a of each of the two divided iron core pieces 31 facing outward.
 この例では、鋼板シート300の長手方向の両端部の二分割鉄心片31以外の各二分割鉄心片31は、バックヨーク部31Bに設けられた連結部301、及びティース部31Tに設けられた連結部302によって他の二分割鉄心片31と連結されている。鋼板シート300の長手方向の両端部の二分割鉄心片31は、バックヨーク部31Bに設けられた連結部301、またはティース部31Tに設けられた連結部302によって他の二分割鉄心片31と連結されている。 In this example, each of the two-divided iron core pieces 31 other than the two-divided iron core pieces 31 at both ends of the steel plate sheet 300 in the longitudinal direction is connected to the connecting portion 301 provided in the back yoke portion 31B and the teeth portion 31T. It is connected to the other two-part steel core piece 31 by the portion 302. The two-divided iron core pieces 31 at both ends of the steel plate sheet 300 in the longitudinal direction are connected to the other two-divided iron core pieces 31 by the connecting portion 301 provided in the back yoke portion 31B or the connecting portion 302 provided in the teeth portion 31T. Has been done.
 分割鉄心片セット30を構成する各二分割鉄心片31は、それぞれ連結部301,302で互いに異なる方向に折り曲げられる。各連結部301,302で折り曲げられた各二分割鉄心片31を積層することによって、図15に示すような二分割積層鉄心3Aが形成される。二分割積層鉄心3Aは、積層された各二分割鉄心片31の分割された各端部30aによって構成される側面3Cを有する。 Each of the two divided iron core pieces 31 constituting the divided iron core piece set 30 is bent in different directions at the connecting portions 301 and 302, respectively. By stacking the two-divided core pieces 31 bent at the connecting portions 301 and 302, the two-divided laminated iron core 3A as shown in FIG. 15 is formed. The two-divided laminated iron core 3A has a side surface 3C composed of each divided end portion 30a of each of the two-divided core pieces 31 laminated.
 1枚の鋼板シート300からは、一対の二分割積層鉄心3Aが形成される。なお、鋼板シート300に配置される分割鉄心片セット30は、一対に限るものではない。例えば、図14に示す一対の分割鉄心片セット30を、分割鉄心片セット30の長手方向に垂直な方向に複数並べて鋼板シート300に配置してもよい。 A pair of two-divided laminated iron cores 3A are formed from one steel plate sheet 300. The divided iron core piece set 30 arranged on the steel plate sheet 300 is not limited to a pair. For example, a plurality of a pair of divided iron core piece sets 30 shown in FIG. 14 may be arranged side by side in a direction perpendicular to the longitudinal direction of the divided iron core piece set 30 and arranged on the steel plate sheet 300.
 図16に示すように、一対の二分割積層鉄心3Aの各側面3Cを突き合わせて結合することによって、1つの分割積層鉄心3が形成される。分割積層鉄心3を周方向に複数、円環状に連結することによって、固定子鉄心1が形成される。 As shown in FIG. 16, one divided laminated iron core 3 is formed by abutting and joining the side surfaces 3C of the pair of two divided laminated iron cores 3A. The stator core 1 is formed by connecting a plurality of the divided laminated iron cores 3 in the circumferential direction in an annular shape.
 ここで、二分割鉄心片31を折り曲げて二分割積層鉄心3Aを形成し、一対の二分割積層鉄心3Aの各側面3Cを突き合わせて結合することによって、1つの分割積層鉄心3を形成することは、「各二分割鉄心片を積層して一対の二分割積層鉄心を形成し、一対の二分割積層鉄心の各側面を結合することによって分割積層鉄心を形成する工程」に相当する。 Here, it is possible to form one divided laminated iron core 3 by bending the two-divided core piece 31 to form the two-divided laminated iron core 3A and abutting and joining the side surfaces 3C of the pair of two-divided laminated iron cores 3A. , "A step of forming a pair of two-divided laminated iron cores by laminating each of the two-divided core pieces and joining each side surface of the pair of two-divided laminated iron cores to form a divided laminated iron core".
 なお、分割積層鉄心3を構成する各二分割積層鉄心3Aの各連結部301,302には、折り曲げ部31aが形成される。この例では、各二分割積層鉄心3Aのバックヨーク部31B及びティース部31Tに折り曲げ部31aが形成される。各二分割積層鉄心3Aの周方向両側の側面には、折り曲げ部が設けられていない。このため、各二分割積層鉄心3Aの周方向両側の側面は、寸法精度を高くすることができる。よって、一対の二分割積層鉄心3Aの各側面3Cを突き合わせて結合する場合に、精度良く結合することができる。 Bending portions 31a are formed at the connecting portions 301 and 302 of the two-divided laminated iron cores 3A constituting the divided laminated iron cores 3. In this example, the bent portion 31a is formed in the back yoke portion 31B and the teeth portion 31T of each of the two-divided laminated iron cores 3A. Bent portions are not provided on the side surfaces of each of the two-divided laminated iron cores 3A in the circumferential direction. Therefore, the dimensional accuracy of the side surfaces of each of the two-divided laminated iron cores 3A in the circumferential direction can be improved. Therefore, when the side surfaces 3C of the pair of two-divided laminated iron cores 3A are butted and joined, they can be joined with high accuracy.
 このように、実施の形態4おける固定子鉄心の製造方法によれば、分割鉄心片セット30が、実施の形態2の鉄心片21を径方向に沿って二つに分割した複数の二分割鉄心片31によって構成されている。分割鉄心片セット30を構成する各二分割鉄心片31は、バックヨーク部31B同士、及びティース部31T同士を突き合わせて互い違いに連結されている。 As described above, according to the method for manufacturing the stator core in the fourth embodiment, the split core piece set 30 divides the iron core piece 21 of the second embodiment into two in the radial direction. It is composed of pieces 31. The two-divided iron core pieces 31 constituting the divided iron core piece set 30 are connected to each other by abutting the back yoke portions 31B and the teeth portions 31T.
 鋼板シート300には、一対の分割鉄心片セット30が、各二分割鉄心片31の分割された直線状の端部30aを外側に向けて、互いに噛み合わせられた状態で配置されている。このため、鋼板シート300の長手方向に垂直な方向の両端部は、直線状になっている。 On the steel plate sheet 300, a pair of divided iron core piece sets 30 are arranged in a state of being meshed with each other with the divided linear end portions 30a of each of the two divided iron core pieces 31 facing outward. Therefore, both ends of the steel sheet sheet 300 in the direction perpendicular to the longitudinal direction are linear.
 また、鋼板シート300に配置された一対の分割鉄心片セット30の間には隙間が形成されない。よって、鋼板シート300には、不要部分8が形成されない。この結果、鋼板シート300から分割鉄心片セット30を切出したときに発生する材料ロスを大幅に削減することができる。なお、図14では分割鉄心片セット30が2つ配置されているが、2つ以上であってもよい。 Further, no gap is formed between the pair of divided iron core piece sets 30 arranged on the steel plate sheet 300. Therefore, the unnecessary portion 8 is not formed on the steel plate sheet 300. As a result, the material loss generated when the divided iron core piece set 30 is cut out from the steel plate sheet 300 can be significantly reduced. In FIG. 14, two split iron core piece sets 30 are arranged, but two or more may be used.
 実施の形態5.
 次に、実施の形態5における固定子鉄心の製造方法について説明する。
Embodiment 5.
Next, the method for manufacturing the stator core according to the fifth embodiment will be described.
 実施の形態5では、各鉄心片41の形状が実施の形態1~4とは異なる。他の構成は、実施の形態2と同様である。 In the fifth embodiment, the shape of each iron core piece 41 is different from that of the first to fourth embodiments. Other configurations are the same as in the second embodiment.
 図17は、本発明の実施の形態5の鉄心片セット40が配置された鋼板シート400を示す平面図である。 FIG. 17 is a plan view showing a steel plate sheet 400 in which the iron core piece set 40 according to the fifth embodiment of the present invention is arranged.
 この例では、鋼板シート400に、8個の鉄心片41が径方向に直線状に連結された鉄心片セット40を1つ配置している。各鉄心片41は、バックヨーク部41B同士、及びティース部41T同士を突き合わせて互い違いに配置されている。 In this example, one iron core piece set 40 in which eight iron core pieces 41 are linearly connected in the radial direction is arranged on the steel plate sheet 400. The iron core pieces 41 are arranged alternately so that the back yoke portions 41B and the teeth portions 41T are butted against each other.
 鉄心片セット40の長手方向の両端部以外に配置された各鉄心片41は、バックヨーク部41Bに設けられた連結部401、及びティース部41Tに設けられた連結部402によって他の鉄心片41と連結されている。鉄心片セット40の長手方向の両端部に配置された鉄心片41は、バックヨーク部41Bに設けられた連結部401によって他の鉄心片41と連結されている。 Each iron core piece 41 arranged other than both ends in the longitudinal direction of the iron core piece set 40 has another iron core piece 41 by the connecting portion 401 provided in the back yoke portion 41B and the connecting portion 402 provided in the teeth portion 41T. Is connected with. The iron core pieces 41 arranged at both ends in the longitudinal direction of the iron core piece set 40 are connected to the other iron core pieces 41 by the connecting portions 401 provided in the back yoke portion 41B.
 図17に示すように、鉄心片セット40を構成する各鉄心片41の外形形状は長方形である。各鉄心片41は、径方向に沿って直線状に連結されている。このため、鉄心片セット40の外形形状は長方形になっている。 As shown in FIG. 17, the outer shape of each iron core piece 41 constituting the iron core piece set 40 is rectangular. Each iron core piece 41 is linearly connected along the radial direction. Therefore, the outer shape of the iron core piece set 40 is rectangular.
 鉄心片セット40の長手方向に垂直な方向の幅は、鋼板シート400の幅と同等である。鉄心片セット40の長手方向の長さは、鋼板シート400の長手方向の長さと同等である。このため、鉄心片セット40は、鋼板シート400とほぼ重なっている。 The width of the iron core piece set 40 in the direction perpendicular to the longitudinal direction is equivalent to the width of the steel plate sheet 400. The length of the iron core piece set 40 in the longitudinal direction is equivalent to the length of the steel plate sheet 400 in the longitudinal direction. Therefore, the iron core piece set 40 substantially overlaps with the steel plate sheet 400.
 図18は、図17の鉄心片セット40の各連結部401,402を互い違いに折り曲げて、各鉄心片41を積層して形成された分割積層鉄心4を示す平面図である。 FIG. 18 is a plan view showing a divided laminated iron core 4 formed by alternately bending the connecting portions 401 and 402 of the iron core piece set 40 of FIG. 17 and laminating the iron core pieces 41.
 分割積層鉄心4を構成する各鉄心片41のティース部41Tの周方向の両側部には、それぞれバックヨーク部41Bの側端部を構成する側端形成部42,43が設けられている。側端形成部42,43の一端側は、鉄心片41のティース部41Tの根元付近に形成された接続部42a,43aで鉄心片41と繋がっている。側端形成部42,43の他端側は、それぞれ自由端となっている。 Side end forming portions 42 and 43 constituting the side end portions of the back yoke portion 41B are provided on both side portions in the circumferential direction of the teeth portion 41T of each iron core piece 41 constituting the divided laminated iron core 4. One end side of the side end forming portions 42 and 43 is connected to the iron core piece 41 by connecting portions 42a and 43a formed near the root of the tooth portion 41T of the iron core piece 41. The other ends of the side end forming portions 42 and 43 are free ends, respectively.
 側端形成部42,43は、鉄心片セット40の各連結部401,402を互い違いに折り曲げて積層した後に、移動させられる。 The side end forming portions 42 and 43 are moved after the connecting portions 401 and 402 of the iron core piece set 40 are alternately bent and laminated.
 図19は、図18の分割積層鉄心4を構成する各鉄心片41の側端形成部42,43を、バックヨーク部41B側に回転移動させている状態を示す平面図である。 FIG. 19 is a plan view showing a state in which the side end forming portions 42 and 43 of each iron core piece 41 constituting the divided laminated iron core 4 of FIG. 18 are rotationally moved toward the back yoke portion 41B side.
 側端形成部42,43のそれぞれの他端側は、接続部42a,43aを中心としてティース部41T側からバックヨーク部41B側に180°あるいはほぼ180°回転移動される。そして、側端形成部42,43をバックヨーク部41B側の周方向両側部に移動させる。この結果、図20に示すように、分割積層鉄心4の形状は、実施の形態1で形成された分割積層鉄心2の形状と同様になる。 The other end side of each of the side end forming portions 42 and 43 is rotationally moved by 180 ° or approximately 180 ° from the teeth portion 41T side to the back yoke portion 41B side with the connecting portions 42a and 43a as the center. Then, the side end forming portions 42 and 43 are moved to both side portions in the circumferential direction on the back yoke portion 41B side. As a result, as shown in FIG. 20, the shape of the divided laminated iron core 4 becomes the same as the shape of the divided laminated iron core 2 formed in the first embodiment.
 ここで、各鉄心片41を積層して分割積層鉄心4を形成した後に、側端形成部42,43のそれぞれの他端側を接続部42a,43aを中心としてバックヨーク部41B側に回転移動させて、側端形成部42,43をバックヨーク部41B側の周方向両側部に移動させることは、「各鉄心片を積層した後に、各側端形成部の他端側を、接続部を中心としてバックヨーク部側に回転させて、バックヨーク部の周方向の両側部に移動させる工程」に相当する。 Here, after the iron core pieces 41 are laminated to form the divided laminated iron core 4, the other ends of the side end forming portions 42 and 43 are rotationally moved to the back yoke portion 41B side around the connecting portions 42a and 43a. To move the side end forming portions 42 and 43 to both sides in the circumferential direction on the back yoke portion 41B side, "after laminating the iron core pieces, the other end side of each side end forming portion is connected to the connecting portion. It corresponds to the process of rotating the back yoke portion toward the back yoke portion as a center and moving the back yoke portion to both sides in the circumferential direction.
 このように、実施の形態5における固定子鉄心の製造方法によれば、各鉄心片41は、ティース部41Tの周方向の両側部に、それぞれバックヨーク部41Bの側端部を構成する側端形成部42,43が設けられて、長方形に形成されている。鉄心片セット40は、各鉄心片41が、長手方向に沿って直線状に連結されて構成され、長方形に形成されている。鉄心片セット40の外形は、鋼板シート400の外径とほぼ重なっている。 As described above, according to the method for manufacturing the stator core according to the fifth embodiment, each iron core piece 41 has side ends constituting the side ends of the back yoke portion 41B on both side portions in the circumferential direction of the tooth portion 41T. The forming portions 42 and 43 are provided and formed in a rectangular shape. The iron core piece set 40 is formed by connecting each iron core piece 41 in a straight line along the longitudinal direction to form a rectangle. The outer shape of the iron core piece set 40 substantially overlaps with the outer diameter of the steel plate sheet 400.
 このため、鉄心片セット40が配置された鋼板シート400には不要部分8が形成されない。よって、鋼板シート400から鉄心片セット40を切出したときに発生する材料ロスを大幅に削減することができる。 Therefore, the unnecessary portion 8 is not formed on the steel plate sheet 400 on which the iron core piece set 40 is arranged. Therefore, the material loss generated when the iron core piece set 40 is cut out from the steel plate sheet 400 can be significantly reduced.
 なお、実施の形態5では、鉄心片セット40は、各鉄心片41を径方向に沿って直線状に連結している。しかし、鉄心片セット40を構成する各鉄心片41の配置は、これに限るものではない。例えば、鉄心片セット40を構成する各鉄心片41は、図21に示す変形例のように周方向に沿って直線状に配置してもよい。 In the fifth embodiment, the iron core piece set 40 connects each iron core piece 41 in a straight line along the radial direction. However, the arrangement of each iron core piece 41 constituting the iron core piece set 40 is not limited to this. For example, each iron core piece 41 constituting the iron core piece set 40 may be arranged linearly along the circumferential direction as in the modified example shown in FIG.
 各鉄心片41は、隣接する鉄心片41の周方向の側部に設けられた連結部403によって連結される。この変形例の場合にも、鉄心片セット40は長方形に形成される。また、鉄心片セット40の外形は、鋼板シート400の外形とほぼ重なる。このため、鉄心片セット40が配置された鋼板シート400には不要部分8が形成されない。よって、実施の形態5の鉄心片セット40と同様の効果が得られる。 Each iron core piece 41 is connected by a connecting portion 403 provided on the side portion of the adjacent iron core piece 41 in the circumferential direction. Also in the case of this modification, the iron core piece set 40 is formed in a rectangular shape. Further, the outer shape of the iron core piece set 40 substantially overlaps with the outer shape of the steel plate sheet 400. Therefore, the unnecessary portion 8 is not formed on the steel plate sheet 400 on which the iron core piece set 40 is arranged. Therefore, the same effect as that of the iron core piece set 40 of the fifth embodiment can be obtained.
 この変形例の場合には、鋼板シート400から鉄心片セット40を切出して、連結部403で互い違いに折り曲げて分割積層鉄心4を形成する。その後、各鉄心片41の側端形成部42,43をバックヨーク部41B側の周方向両側部に移動させる。この結果、変形例の分割積層鉄心4は、実施の形態1で形成された分割積層鉄心2の形状と同様の形状になる。 In the case of this modification, the iron core piece set 40 is cut out from the steel plate sheet 400 and bent alternately at the connecting portion 403 to form the divided laminated iron core 4. After that, the side end forming portions 42 and 43 of each iron core piece 41 are moved to both side portions in the circumferential direction on the back yoke portion 41B side. As a result, the divided laminated iron core 4 of the modified example has the same shape as the divided laminated iron core 2 formed in the first embodiment.
 実施の形態6.
 次に、実施の形態6における固定子鉄心の製造方法について説明する。
Embodiment 6.
Next, the method for manufacturing the stator core according to the sixth embodiment will be described.
 実施の形態6では、複数の鉄心片セット50aが連結されて一連の鉄心片50を構成している点が実施の形態1~5とは異なる。 The sixth embodiment is different from the first to fifth embodiments in that a plurality of iron core piece sets 50a are connected to form a series of iron core pieces 50.
 図22は、実施の形態6の一連の鉄心片50が2つ配置された鋼板シート500を示す平面図である。この例では、2つの一連の鉄心片50は、それぞれバックヨーク部51Bを外側に向けて、互い違いに鋼板シート500に配置されている。鋼板シート500の長手方向に沿う両端部には、それぞれ一連の鉄心片50を構成する各バックヨーク部51Bの径方向外側の端部が並ぶ。このため、鋼板シート200の長手方向に沿う両端部側に発生する不要部分8aを小さくすることができる。 FIG. 22 is a plan view showing a steel plate sheet 500 in which two series of iron core pieces 50 according to the sixth embodiment are arranged. In this example, the two series of iron core pieces 50 are alternately arranged on the steel sheet sheet 500 with the back yoke portion 51B facing outward. At both ends of the steel sheet sheet 500 along the longitudinal direction, radial outer ends of each back yoke portion 51B constituting a series of iron core pieces 50 are lined up. Therefore, the unnecessary portions 8a generated on both end sides along the longitudinal direction of the steel sheet sheet 200 can be reduced.
 2つの一連の鉄心片50は、それぞれのティース部51Tが、他方の一連の鉄心片50の隣接する2つのティース部51Tの間のスペースに挿入されて配置される。このため、鋼板シート500の長手方向に垂直な方向の幅を、2つの鉄心片51の径方向の長さを加算したものよりも小さくすることができる。 In the two series of iron core pieces 50, each tooth portion 51T is inserted and arranged in the space between two adjacent tooth portions 51T of the other series of iron core pieces 50. Therefore, the width of the steel plate sheet 500 in the direction perpendicular to the longitudinal direction can be made smaller than the sum of the radial lengths of the two iron core pieces 51.
 図23は、図22の鋼板シート500から切出された一連の鉄心片50を示す平面図である。一連の鉄心片50は、9個の鉄心片51を1組とした複数の鉄心片セット50aによって構成されている。各鉄心片セット50aは、9個の鉄心片51ごとに設けられた連結部501によって連結されている。一連の鉄心片50を構成する各鉄心片51は、周方向に直線状に連結されている。各鉄心片51の間には、鉄心片切欠部502が形成されている。 FIG. 23 is a plan view showing a series of iron core pieces 50 cut out from the steel plate sheet 500 of FIG. 22. The series of iron core pieces 50 is composed of a plurality of iron core piece sets 50a in which nine iron core pieces 51 are a set. Each iron core piece set 50a is connected by a connecting portion 501 provided for each of the nine iron core pieces 51. Each iron core piece 51 constituting a series of iron core pieces 50 is linearly connected in the circumferential direction. An iron core piece notch 502 is formed between the iron core pieces 51.
 図24は、図23の一連の鉄心片50を用いて形成された直線状の積層鉄心5を示す斜視図である。鋼板シート500から切出された一連の鉄心片50は、各連結部501で互い違いに折り曲げて積層される。これにより、直線状の積層鉄心5が形成される。 FIG. 24 is a perspective view showing a linear laminated iron core 5 formed by using the series of iron core pieces 50 of FIG. 23. A series of iron core pieces 50 cut out from the steel plate sheet 500 are alternately bent and laminated at each connecting portion 501. As a result, the linear laminated iron core 5 is formed.
 図25は、図24の直線状の積層鉄心5から環状の固定子鉄心を形成する過程を示す平面図である。直線状の積層鉄心5は、各鉄心片切欠部502を径方向内側に折り曲げることによって環状に成形される。この結果、円環状の固定子鉄心が形成される。 FIG. 25 is a plan view showing a process of forming an annular stator core from the linear laminated core 5 of FIG. 24. The linear laminated iron core 5 is formed into an annular shape by bending each core piece notch 502 inward in the radial direction. As a result, an annular stator core is formed.
 このように、実施の形態6における固定子鉄心の製造方法によれば、複数の鉄心片51を周方向に直線状に連結した一連の鉄心片50を鋼板シート500に配置している。鋼板シート500から切出された一連の鉄心片50は、各連結部501で互い違いに折り曲げて積層されて直線状の積層鉄心5を形成している。そして、直線状の積層鉄心5を環状に成形して固定子鉄心を形成している。このため、従来の固定子鉄心のように、円環状の鉄心片を鋼板シートから打ち抜く場合と比較して、材料ロスを大幅に削減することができる。 As described above, according to the method for manufacturing the stator core in the sixth embodiment, a series of iron core pieces 50 in which a plurality of iron core pieces 51 are linearly connected in the circumferential direction are arranged on the steel plate sheet 500. A series of iron core pieces 50 cut out from the steel plate sheet 500 are alternately bent and laminated at each connecting portion 501 to form a linear laminated iron core 5. Then, the linear laminated iron core 5 is formed into an annular shape to form a stator core. Therefore, the material loss can be significantly reduced as compared with the case where the annular core piece is punched from the steel plate sheet as in the conventional stator core.
 また、一連の鉄心片50を構成する各鉄心片51の間に鉄心片切欠部502を形成している。このため、直線状の積層鉄心5を環状に成形し易くすることができる。 Further, an iron core piece notch 502 is formed between each iron core piece 51 constituting a series of iron core pieces 50. Therefore, it is possible to easily form the linear laminated iron core 5 into an annular shape.
 なお、実施の形態6では、一連の鉄心片50を各連結部501で互い違いに折り曲げて積層することによって直線状の積層鉄心5を形成している。しかし、直線状の積層鉄心5の形成方法は、これに限るものではない。例えば、直線状の積層鉄心5は、一連の鉄心片50を各連結部501で切断して、切断された各鉄心片セットを積層することによって形成してもよい。また、直線状の積層鉄心5は、鋼板シート500から各鉄心片セットを個別に切出して積層することによって形成してもよい。 In the sixth embodiment, a series of iron core pieces 50 are alternately bent and laminated at each connecting portion 501 to form a linear laminated iron core 5. However, the method for forming the linear laminated iron core 5 is not limited to this. For example, the linear laminated iron core 5 may be formed by cutting a series of iron core pieces 50 at each connecting portion 501 and laminating each of the cut iron core piece sets. Further, the linear laminated iron core 5 may be formed by individually cutting out each set of iron core pieces from the steel plate sheet 500 and laminating them.
 実施の形態7.
 次に、図26は、本発明の実施の形態7による回転電機を示す斜視図である。また、図27は、図26の回転電機を示す平面図である。図26及び図27では、8極48スロットの永久磁石型の回転電機を示している。しかし、極数及びスロット数は、適宜増減可能である。
Embodiment 7.
Next, FIG. 26 is a perspective view showing a rotary electric machine according to the seventh embodiment of the present invention. Further, FIG. 27 is a plan view showing the rotary electric machine of FIG. 26. 26 and 27 show a permanent magnet type rotary electric machine with 8 poles and 48 slots. However, the number of poles and the number of slots can be increased or decreased as appropriate.
 電気機械としての回転電機は、電機子としての円筒状の固定子101、界磁としての円筒状の回転子102、及びシャフト103を有している。 The rotary electric machine as an electric machine has a cylindrical stator 101 as an armature, a cylindrical rotor 102 as a field magnet, and a shaft 103.
 固定子101は、円筒状の固定子鉄心1、及び電機子巻線11を有している。固定子101は、実施の形態1~5と同様に、複数の分割積層鉄心2により構成されている。電機子巻線11の巻き付け方式は、分布巻き方式、集中巻き方式のどちらでもよい。また、固定子鉄心1は、実施の形態6と同様に構成することもできる。 The stator 101 has a cylindrical stator core 1 and an armature winding 11. The stator 101 is composed of a plurality of divided laminated iron cores 2 as in the first to fifth embodiments. The winding method of the armature winding 11 may be either a distributed winding method or a centralized winding method. Further, the stator core 1 can be configured in the same manner as in the sixth embodiment.
 回転子102は、固定子101の内側に配置されている。固定子101と回転子102との間には、円環状の空隙104が介在している。回転子102は、空隙104を介して固定子101に対向している。 The rotor 102 is arranged inside the stator 101. An annular gap 104 is interposed between the stator 101 and the rotor 102. The rotor 102 faces the stator 101 via the gap 104.
 また、回転子102は、円筒状の回転子鉄心12、及び複数の永久磁石13を有している。シャフト103は、回転子鉄心12の軸心に挿入されている。回転子102は、固定子101に対して相対的に移動する。この例では、回転子102は、シャフト103の軸心を中心として、シャフト103とともに固定子101に対して回転する。 Further, the rotor 102 has a cylindrical rotor core 12 and a plurality of permanent magnets 13. The shaft 103 is inserted into the axial center of the rotor core 12. The rotor 102 moves relative to the stator 101. In this example, the rotor 102 rotates about the axis of the shaft 103 with respect to the stator 101 together with the shaft 103.
 シャフト103は、接着、焼き嵌め、圧入等の方法によって、回転子鉄心12に固定されている。 The shaft 103 is fixed to the rotor core 12 by a method such as adhesion, shrink fitting, or press fitting.
 本実施の形態の回転子102は、Interior Permanent Magnet式の回転子である。Interior Permanent Magnet式の回転子では、各永久磁石13が回転子鉄心12に埋め込まれている。しかし、Surface Permanent Magnet式の回転子であってもよい。Surface Permanent Magnet式の回転子では、各永久磁石13が回転子鉄心12の外周に固定されている。 The rotor 102 of the present embodiment is an Interior Permanent Magnet type rotor. In the Interior Permanent Magnet type rotor, each permanent magnet 13 is embedded in the rotor core 12. However, it may be a Surface Permanent Magnet type rotor. In the Surface Permanent Magnet type rotor, each permanent magnet 13 is fixed to the outer circumference of the rotor core 12.
 図28は、図27の分割積層鉄心2を構成する鉄心片セット20を示す平面図である。各鉄心片21において、バックヨーク部21Bは、ヨーク端部21Baを有している。ヨーク端部21Baは、バックヨーク部21Bの端部であって、ティース部21Tとは反対側の端部である。 FIG. 28 is a plan view showing an iron core piece set 20 constituting the divided laminated iron core 2 of FIG. 27. In each iron core piece 21, the back yoke portion 21B has a yoke end portion 21Ba. The yoke end portion 21Ba is an end portion of the back yoke portion 21B and is an end portion on the opposite side of the teeth portion 21T.
 各鉄心片21において、ティース部21Tは、ティース先端部21Taを有している。ティース先端部21Taは、ティース部21Tの端部であって、バックヨーク部21Bとは反対側の端部である。 In each iron core piece 21, the teeth portion 21T has a teeth tip portion 21Ta. The tooth tip portion 21Ta is an end portion of the tooth portion 21T and is an end portion on the opposite side of the back yoke portion 21B.
 鉄心片セット20における複数の鉄心片21は、ヨーク端部21Ba同士及びティース先端部21Ta同士を交互に突き合わせるように配置されている。これにより、鉄心片セット20において、複数の鉄心片21は、図28のX軸に平行な方向に沿って並べられている。 The plurality of iron core pieces 21 in the iron core piece set 20 are arranged so that the yoke end portions 21Ba and the tooth tip portions 21Ta are alternately butted against each other. As a result, in the iron core piece set 20, the plurality of iron core pieces 21 are arranged along the direction parallel to the X axis of FIG. 28.
 また、鉄心片セット20における隣り合う鉄心片21は、ヨーク端部21Ba又はティース先端部21Taにおいて連結されている。 Further, the adjacent iron core pieces 21 in the iron core piece set 20 are connected at the yoke end portion 21Ba or the tooth tip portion 21Ta.
 図29は、図28の要部を拡大して示す平面図である。鉄心片セット20における鉄心片21間には、複数の連結部が設けられている。各連結部は、隣接する2つの鉄心片21を連結している。また、複数の連結部は、複数のヨーク連結部207と、複数のティース連結部208とを有している。 FIG. 29 is an enlarged plan view showing a main part of FIG. 28. A plurality of connecting portions are provided between the iron core pieces 21 in the iron core piece set 20. Each connecting portion connects two adjacent iron core pieces 21. Further, the plurality of connecting portions have a plurality of yoke connecting portions 207 and a plurality of teeth connecting portions 208.
 鉄心片セット20における各ヨーク連結部207は、隣り合う2つのヨーク端部21Ba間に部分的に設けられている。鉄心片セット20における各ティース連結部208は、隣り合う2つのティース先端部21Ta間に部分的に設けられている。 Each yoke connecting portion 207 in the iron core piece set 20 is partially provided between two adjacent yoke end portions 21Ba. Each tooth connecting portion 208 in the iron core piece set 20 is partially provided between two adjacent tooth tip portions 21Ta.
 鉄心片セット20における各ヨーク端部21Baと隣のヨーク端部21Baとの間には、ヨーク間スリット20aと、2つのヨーク連結部207とが設けられている。各ヨーク間スリット20aは、対応する2つのヨーク連結部207の間に設けられている。 An inter-yoke slit 20a and two yoke connecting portions 207 are provided between each yoke end portion 21Ba and the adjacent yoke end portion 21Ba in the iron core piece set 20. Each yoke-to-yoke slit 20a is provided between two corresponding yoke connecting portions 207.
 この例では、ヨーク間スリット20aは、バックヨーク部21Bの幅方向の中央に配置されている。また、ヨーク間スリット20aは、バックヨーク部21Bの幅方向に平行な直線状に形成されている。 In this example, the inter-yoke slit 20a is arranged at the center of the back yoke portion 21B in the width direction. Further, the inter-yoke slit 20a is formed in a straight line parallel to the width direction of the back yoke portion 21B.
 バックヨーク部21Bの幅方向は、バックヨーク部21Bからのティース部21Tの突出方向に直角な方向であり、図29のY軸に平行な方向である。また、バックヨーク部21Bの幅方向は、鉄心片21の連結方向に直角な方向である。鉄心片21の連結方向は、鉄心片セット20において複数の鉄心片21が並んでいる方向である。 The width direction of the back yoke portion 21B is a direction perpendicular to the protruding direction of the teeth portion 21T from the back yoke portion 21B, and is a direction parallel to the Y axis in FIG. 29. Further, the width direction of the back yoke portion 21B is a direction perpendicular to the connecting direction of the iron core pieces 21. The connecting direction of the iron core pieces 21 is the direction in which a plurality of iron core pieces 21 are lined up in the iron core piece set 20.
 また、2つのヨーク連結部207は、バックヨーク部21Bの幅方向の両端に配置されている。ヨーク間スリット20aが設けられていることにより、鉄心片セット20における各バックヨーク部21Bは、ヨーク連結部207以外の部分で、隣のバックヨーク部21Bから離れている。 Further, the two yoke connecting portions 207 are arranged at both ends of the back yoke portion 21B in the width direction. Since the inter-yoke slit 20a is provided, each back yoke portion 21B in the iron core piece set 20 is separated from the adjacent back yoke portion 21B at a portion other than the yoke connecting portion 207.
 鉄心片セット20における各ティース先端部21Taと隣のティース先端部21Taとの間には、ティース間スリット20bと、2つのティース連結部208とが設けられている。各ティース間スリット20bは、対応する2つのティース連結部208の間に設けられている。 An inter-teeth slit 20b and two tooth connecting portions 208 are provided between each tooth tip 21Ta in the iron core piece set 20 and the adjacent tooth tip 21Ta. Each tooth-to-teeth slit 20b is provided between the two corresponding tooth-connecting portions 208.
 この例では、ティース間スリット20bは、ティース部21Tの幅方向の中央に配置されている。また、ティース間スリット20bは、ティース部21Tの幅方向に平行な直線状に形成されている。ティース部21Tの幅方向は、バックヨーク部21Bの幅方向に平行な方向、即ち図29のY軸に平行な方向である。 In this example, the inter-teeth slit 20b is arranged at the center of the teeth portion 21T in the width direction. Further, the inter-teeth slit 20b is formed in a straight line parallel to the width direction of the tooth portion 21T. The width direction of the tooth portion 21T is a direction parallel to the width direction of the back yoke portion 21B, that is, a direction parallel to the Y axis in FIG. 29.
 また、2つのティース連結部208は、ティース部21Tの幅方向の両端に配置されている。ティース間スリット20bが設けられていることにより、鉄心片セット20における各ティース部21Tは、ティース連結部208以外の部分では、隣のティース部21Tから離れている。 Further, the two teeth connecting portions 208 are arranged at both ends in the width direction of the teeth portions 21T. By providing the inter-teeth slit 20b, each tooth portion 21T in the iron core piece set 20 is separated from the adjacent tooth portion 21T except for the tooth connecting portion 208.
 次に、実施の形態7の分割積層鉄心2の製造方法について説明する。図30は、図28の鉄心片セット20によって分割積層鉄心2を形成する過程を示す斜視図である。また、図31は、図27の分割積層鉄心2を示す斜視図である。 Next, the method for manufacturing the divided laminated iron core 2 according to the seventh embodiment will be described. FIG. 30 is a perspective view showing a process of forming the divided laminated iron core 2 by the iron core piece set 20 of FIG. 28. Further, FIG. 31 is a perspective view showing the divided laminated iron core 2 of FIG. 27.
 分割積層鉄心2を形成する工程では、複数のティース連結部208を折り曲げることにより複数のティース間折り曲げ部22が、鉄心片21の積層方向に沿って2列に整列された状態で形成される。そして、複数のティース間折り曲げ部22による2つの列の間、即ち複数のティース間スリット20bに対応する部分には、ティース凹部2aが形成される。 In the step of forming the divided laminated iron core 2, the plurality of teeth connecting portions 208 are bent so that the plurality of inter-teeth bent portions 22 are arranged in two rows along the laminating direction of the iron core pieces 21. Then, a tooth recess 2a is formed between the two rows of the plurality of inter-teeth bending portions 22, that is, in a portion corresponding to the plurality of inter-teeth slits 20b.
 また、分割積層鉄心2を形成する工程では、複数のヨーク連結部207を折り曲げることにより複数のヨーク間折り曲げ部23が、鉄心片21の積層方向に沿って2列に整列された状態で形成される。そして、複数のヨーク間折り曲げ部23による2つの列の間、即ち複数のヨーク間スリット20aに対応する部分には、ヨーク凹部2bが形成される。 Further, in the step of forming the divided laminated iron core 2, the plurality of yoke connecting portions 207 are bent to form the plurality of inter-yoke bent portions 23 in a state of being aligned in two rows along the laminating direction of the iron core pieces 21. To. A yoke recess 2b is formed between the two rows of the plurality of inter-yoke bending portions 23, that is, in a portion corresponding to the plurality of inter-yoke slits 20a.
 図32は、実施の形態7の分割積層鉄心2を形成する工程を示すフローチャートである。分割積層鉄心2を形成する工程では、ステップS1~S4の工程が繰り返し実施される。 FIG. 32 is a flowchart showing a process of forming the divided laminated iron core 2 of the seventh embodiment. In the step of forming the divided laminated iron core 2, the steps S1 to S4 are repeatedly carried out.
 鉄心片セット20において隣接する2つの鉄心片21の一方を第1の鉄心片とし、他方を第2の鉄心片とする。ステップS101は、第1の鉄心片を固定して位置決めする工程である。このとき、第1の鉄心片は、固定治具又は固定装置により固定される。 In the iron core piece set 20, one of the two adjacent iron core pieces 21 is the first iron core piece, and the other is the second iron core piece. Step S101 is a step of fixing and positioning the first iron core piece. At this time, the first iron core piece is fixed by a fixing jig or a fixing device.
 ステップS102は、第1の鉄心片と第2の鉄心片との間の連結部、即ちヨーク連結部207又はティース連結部208を折り曲げの基準とする工程である。 Step S102 is a step in which the connecting portion between the first iron core piece and the second iron core piece, that is, the yoke connecting portion 207 or the tooth connecting portion 208 is used as a reference for bending.
 ステップS103は、第1の鉄心片と第2の鉄心片との間の連結部を折り曲げて第1の鉄心片に第2の鉄心片を重ねる工程である。このとき、連結部は、折り曲げ治具又は折り曲げ装置により折り曲げられる。 Step S103 is a step of bending the connecting portion between the first iron core piece and the second iron core piece and superimposing the second iron core piece on the first iron core piece. At this time, the connecting portion is bent by a bending jig or a bending device.
 ステップS104は、第1の鉄心片を解放し、第2の鉄心片が第1の鉄心片に重ねられた状態で、第2の鉄心片を第1の鉄心片に再度押し付ける工程である。このとき、折り曲げ部、即ちヨーク間折り曲げ部23又はティース間折り曲げ部22が膨らまず折り曲がった状態になるまで、第2の鉄心片が加圧される。 Step S104 is a step of releasing the first iron core piece and pressing the second iron core piece against the first iron core piece again in a state where the second iron core piece is overlapped with the first iron core piece. At this time, the second iron core piece is pressed until the bent portion, that is, the bent portion 23 between the yokes or the bent portion 22 between the teeth is in a bent state without expanding.
 他の構成及び製造方法は、実施の形態2と同様である。このような分割積層鉄心2の製造方法を、縦折り方式と称する。 Other configurations and manufacturing methods are the same as in the second embodiment. Such a method for manufacturing the divided laminated iron core 2 is called a vertical folding method.
 次に、回転電機の組み立て方法、即ち製造方法を説明する。まず、接着、焼き嵌め、圧入等の方法によって、シャフト103に回転子鉄心12を固定する。続いて、接着、隙間嵌め、圧入等の方法によって、回転子鉄心12に複数の永久磁石13を固定する。 Next, the assembly method of the rotary electric machine, that is, the manufacturing method will be described. First, the rotor core 12 is fixed to the shaft 103 by a method such as adhesion, shrink fitting, or press fitting. Subsequently, the plurality of permanent magnets 13 are fixed to the rotor core 12 by a method such as adhesion, gap fitting, or press fitting.
 また、接着、隙間嵌め等の方法によって、固定子鉄心1に図示しない複数のインシュレータを嵌め込む。この後、固定子鉄心1に電機子巻線11を巻き付ける。最後に、回転子102を固定子101に挿入することによって、回転電機が組み立てられる。 Further, a plurality of insulators (not shown) are fitted into the stator core 1 by a method such as adhesion or gap fitting. After that, the armature winding 11 is wound around the stator core 1. Finally, by inserting the rotor 102 into the stator 101, the rotary electric machine is assembled.
 このような実施の形態7の構成及び製造方法では、鉄心片セット20における各ティース連結部208は、隣り合う2つのティース先端部21Ta間に部分的に設けられている。このため、各ティース間折り曲げ部22を小さくすることができる。 In the configuration and manufacturing method of the seventh embodiment, each tooth connecting portion 208 in the iron core piece set 20 is partially provided between two adjacent tooth tip portions 21Ta. Therefore, the bent portion 22 between the teeth can be made smaller.
 また、分割積層鉄心2には、複数のティース間折り曲げ部22に隣接するティース凹部2aが形成される。これにより、固定子鉄心1の径方向内側に位置する部材の一部をティース凹部2aに逃がすことができる。 Further, the divided laminated iron core 2 is formed with tooth recesses 2a adjacent to a plurality of bent portions 22 between teeth. As a result, a part of the member located inside the stator core 1 in the radial direction can be released to the tooth recess 2a.
 この例では、固定子鉄心1の径方向内側における分割積層鉄心2の端部と、回転子102の外周面との干渉を、抑制することができる。これにより、空隙104の寸法をより小さくすることができる。 In this example, it is possible to suppress the interference between the end portion of the split laminated iron core 2 inside the stator core 1 in the radial direction and the outer peripheral surface of the rotor 102. As a result, the size of the gap 104 can be made smaller.
 また、鉄心片セット20における各ヨーク連結部207は、隣り合う2つのヨーク端部21Ba間に部分的に設けられている。このため、ヨーク間折り曲げ部23を小さくすることができる。 Further, each yoke connecting portion 207 in the iron core piece set 20 is partially provided between two adjacent yoke end portions 21Ba. Therefore, the bent portion 23 between the yokes can be made smaller.
 また、分割積層鉄心2には、複数のヨーク間折り曲げ部23に隣接するヨーク凹部2bが形成される。これにより、固定子鉄心1の径方向外側に位置する部材の一部をヨーク凹部2bに逃がすことができる。 Further, the divided laminated iron core 2 is formed with yoke recesses 2b adjacent to the plurality of bent portions 23 between the yokes. As a result, a part of the member located on the radial outer side of the stator core 1 can be released to the yoke recess 2b.
 また、実施の形態2と同様の効果を得ることができる。 Further, the same effect as that of the second embodiment can be obtained.
 また、分割積層鉄心2を形成する工程は、上記のステップS101~S104の工程を有している。このため、鉄心片21間の隙間を抑制し、分割積層鉄心2の形状を安定させることができる。 Further, the step of forming the divided laminated iron core 2 includes the steps of steps S101 to S104 described above. Therefore, the gap between the iron core pieces 21 can be suppressed and the shape of the divided laminated iron core 2 can be stabilized.
 なお、実施の形態2の説明では省略したが、図7の分割積層鉄心2においても、複数の折り曲げ部21aが、鉄心片21の積層方向に沿って2列に整列された状態で形成されている。また、複数の折り曲げ部21aは、各ティース先端部の幅方向の両端部に設けられている。そして、複数の折り曲げ部21aによる2つの列の間に、ティース凹部が形成されている。 Although omitted in the description of the second embodiment, also in the divided laminated iron core 2 of FIG. 7, a plurality of bent portions 21a are formed in a state of being arranged in two rows along the laminating direction of the iron core pieces 21. There is. Further, the plurality of bent portions 21a are provided at both ends in the width direction of each tooth tip portion. A tooth recess is formed between the two rows of the plurality of bent portions 21a.
 実施の形態8.
 次に、図33は、本発明の実施の形態8による固定子鉄心1を示す平面図である。また、図34は、図33の要部を拡大して示す平面図である。実施の形態8の固定子鉄心1の外周には、円環状のフレーム105が固定されている。各鉄心片21のヨーク端部21Baは、フレーム105の内周面に接している。フレーム105は、例えば焼き嵌めにより、固定子鉄心1に固定されている。
Embodiment 8.
Next, FIG. 33 is a plan view showing the stator core 1 according to the eighth embodiment of the present invention. Further, FIG. 34 is an enlarged plan view showing a main part of FIG. 33. An annular frame 105 is fixed to the outer periphery of the stator core 1 of the eighth embodiment. The yoke end 21Ba of each iron core piece 21 is in contact with the inner peripheral surface of the frame 105. The frame 105 is fixed to the stator core 1 by, for example, shrink fitting.
 フレーム105の内周面には、複数のフレーム溝105aが設けられている。フレーム溝105aは、フレーム105の周方向に等間隔をおいて設けられている。また、各フレーム溝105aは、フレーム105の軸方向に沿って連続して設けられている。フレーム105の軸方向は、鉄心片21の積層方向に平行な方向である。 A plurality of frame grooves 105a are provided on the inner peripheral surface of the frame 105. The frame grooves 105a are provided at equal intervals in the circumferential direction of the frame 105. Further, each frame groove 105a is continuously provided along the axial direction of the frame 105. The axial direction of the frame 105 is a direction parallel to the stacking direction of the iron core pieces 21.
 複数のヨーク間折り曲げ部23は、バックヨーク部21Bの幅方向の中央において、鉄心片21の積層方向に沿って2列に整列されている。各フレーム溝105aは、対応する分割積層鉄心2における全てのヨーク間折り曲げ部23をそれぞれ逃がしている。即ち、各分割積層鉄心2における全てのヨーク間折り曲げ部23は、対応するフレーム溝105a内に位置している。 The plurality of bending portions 23 between the yokes are arranged in two rows along the stacking direction of the iron core pieces 21 at the center of the back yoke portion 21B in the width direction. Each frame groove 105a allows all the yoke-bent portions 23 in the corresponding divided laminated iron core 2 to escape. That is, all the yoke-to-yoke bent portions 23 in each divided laminated iron core 2 are located in the corresponding frame groove 105a.
 実施の形態8における固定子鉄心1の製造方法は、円環状に結合された複数の分割積層鉄心2にフレーム105を固定する工程を有している。このとき、各鉄心片21のヨーク端部21Baをフレームに接触させる。他の構成及び製造方法は、実施の形態7と同様である。 The method for manufacturing the stator core 1 in the eighth embodiment includes a step of fixing the frame 105 to a plurality of divided laminated iron cores 2 connected in an annular shape. At this time, the yoke end portion 21Ba of each iron core piece 21 is brought into contact with the frame. Other configurations and manufacturing methods are the same as in the seventh embodiment.
 このような構成及び製造方法によれば、複数のヨーク間折り曲げ部23とフレーム105との干渉を避けることができ、組立精度を向上させることができる。 According to such a configuration and a manufacturing method, it is possible to avoid interference between the plurality of yoke-bent portions 23 and the frame 105, and it is possible to improve the assembly accuracy.
 実施の形態9.
 次に、図35は、本発明の実施の形態9による鉄心片セット20を示す平面図である。図36は、図35のA部を拡大して示す平面図である。図37は、図35のB部を拡大して示す平面図である。
Embodiment 9.
Next, FIG. 35 is a plan view showing the iron core piece set 20 according to the ninth embodiment of the present invention. FIG. 36 is a plan view showing an enlarged portion A of FIG. 35. FIG. 37 is an enlarged plan view showing a portion B of FIG. 35.
 実施の形態9では、隣り合う2つのバックヨーク部21Bの間に、ヨーク連結部207が1つのみ設けられている。また、隣り合う2つのティース部21Tの間に、ティース連結部208が1つのみ設けられている。 In the ninth embodiment, only one yoke connecting portion 207 is provided between the two adjacent back yoke portions 21B. Further, only one teeth connecting portion 208 is provided between two adjacent teeth portions 21T.
 そして、鉄心片セット20において鉄心片21の連結方向に隣り合う少なくとも2つのティース連結部208は、ティース部21Tの幅方向の異なる位置にずらして設けられている。また、鉄心片セット20において鉄心片21の連結方向に隣り合うる少なくとも2つのヨーク連結部207は、バックヨーク部21Bの幅方向の異なる位置にずらして設けられている。 Then, in the iron core piece set 20, at least two teeth connecting portions 208 adjacent to each other in the connecting direction of the iron core pieces 21 are provided at different positions in the width direction of the teeth portions 21T. Further, in the iron core piece set 20, at least two yoke connecting portions 207 adjacent to each other in the connecting direction of the iron core piece 21 are provided at different positions in the width direction of the back yoke portion 21B.
 ティース部21Tの幅方向及びバックヨーク部21Bの幅方向は、鉄心片21の連結方向に直角の方向、即ち図35の上下方向である。 The width direction of the tooth portion 21T and the width direction of the back yoke portion 21B are the directions perpendicular to the connecting direction of the iron core pieces 21, that is, the vertical direction in FIG. 35.
 例えば、図35に示されている7つの鉄心片21を、左から順に、第1~第7の鉄心片とする。第1の鉄心片と第2の鉄心片との間のヨーク連結部207は、バックヨーク部21Bの幅方向の中心に対して一側、即ち図35の上側に設けられている。これに対して、第3の鉄心片と第4の鉄心片との間のヨーク連結部207は、バックヨーク部21Bの幅方向の中心に対して他側、即ち図35の下側に設けられている。 For example, the seven iron core pieces 21 shown in FIG. 35 are designated as the first to seventh iron core pieces in order from the left. The yoke connecting portion 207 between the first iron core piece and the second iron core piece is provided on one side of the center of the back yoke portion 21B in the width direction, that is, on the upper side of FIG. 35. On the other hand, the yoke connecting portion 207 between the third iron core piece and the fourth iron core piece is provided on the other side of the center of the back yoke portion 21B in the width direction, that is, on the lower side of FIG. 35. ing.
 また、第2の鉄心片と第3の鉄心片との間のティース連結部208は、ティース部21Tの幅方向の中心に対して一側に設けられている。これに対して、第4の鉄心片と第5の鉄心片との間のティース連結部208は、ティース部21Tの幅方向の中心に対して他側に設けられている。また、第6の鉄心片と第7の鉄心片との間のティース連結部208は、ティース部21Tの幅方向の中心に対して一側に設けられている。 Further, the teeth connecting portion 208 between the second iron core piece and the third iron core piece is provided on one side with respect to the center in the width direction of the teeth portion 21T. On the other hand, the teeth connecting portion 208 between the fourth iron core piece and the fifth iron core piece is provided on the other side with respect to the center in the width direction of the teeth portion 21T. Further, the teeth connecting portion 208 between the sixth iron core piece and the seventh iron core piece is provided on one side with respect to the center in the width direction of the teeth portion 21T.
 このような鉄心片セット20により形成された分割積層鉄心2では、積層方向に隣り合う少なくとも1組の2つのティース間折り曲げ部22は、回転子102の移動方向の異なる位置にずらして設けられている。 In the divided laminated iron core 2 formed by such an iron core piece set 20, at least one set of two tooth-to-teeth bending portions 22 adjacent to each other in the laminating direction are provided at different positions in the moving direction of the rotor 102. There is.
 また、積層方向に隣り合う少なくとも1組の2つのヨーク間折り曲げ部23は、回転子102の移動方向の異なる位置にずらして設けられている。他の構成及び製造方法は、実施の形態7又は8と同様である。 Further, at least one set of two yoke-bending portions 23 adjacent to each other in the stacking direction are provided so as to be displaced at different positions in the moving direction of the rotor 102. Other configurations and manufacturing methods are the same as in the seventh or eighth embodiment.
 このような構成及び製造方法によれば、ティース間折り曲げ部22同士が積層方向に重なることが抑制される。このため、ティース間折り曲げ部22に、鉄心片21の積層方向への膨らみが生じた場合でも、鉄心片21間の隙間を抑制し、分割積層鉄心2の形状を安定させることができる。 According to such a configuration and a manufacturing method, it is possible to prevent the bent portions 22 between the teeth from overlapping each other in the stacking direction. Therefore, even if the bent portion 22 between the teeth bulges in the stacking direction of the iron core pieces 21, the gap between the iron core pieces 21 can be suppressed and the shape of the divided laminated iron core 2 can be stabilized.
 同様に、ヨーク間折り曲げ部23同士が積層方向に重なることも抑制される。このため、ヨーク間折り曲げ部23に、鉄心片21の積層方向への膨らみが生じた場合でも、鉄心片21間の隙間を抑制し、分割積層鉄心2の形状を安定させることができる。 Similarly, it is also possible to prevent the bent portions 23 between the yokes from overlapping each other in the stacking direction. Therefore, even if the bent portion 23 between the yokes bulges in the stacking direction of the iron core pieces 21, the gap between the iron core pieces 21 can be suppressed and the shape of the divided laminated iron core 2 can be stabilized.
 なお、全ての隣り合う2つのティース連結部208が、ティース部21Tの幅方向の異なる位置にずらして設けられていることが望ましい。例えば、鉄心片セット20の一端から他端へ向けて、ティース部21Tの幅方向の中心の一側と他側とにティース連結部208を交互に配置することが望ましい。 It is desirable that all two adjacent teeth connecting portions 208 are provided at different positions in the width direction of the teeth portions 21T. For example, it is desirable that the teeth connecting portions 208 are alternately arranged on one side and the other side of the center in the width direction of the teeth portion 21T from one end to the other end of the iron core piece set 20.
 また、全ての隣り合う2つのヨーク連結部207が、バックヨーク部21Bの幅方向の異なる位置にずらして設けられていることが望ましい。例えば、鉄心片セット20の一端から他端へ向けて、バックヨーク部21Bの幅方向の中心の一側と他側とにヨーク連結部207を交互に配置することが望ましい。 Further, it is desirable that all two adjacent yoke connecting portions 207 are provided at different positions in the width direction of the back yoke portion 21B. For example, it is desirable that the yoke connecting portions 207 are alternately arranged on one side and the other side of the center of the back yoke portion 21B in the width direction from one end to the other end of the iron core piece set 20.
 また、上記の例では、ヨーク連結部207を、バックヨーク部21Bの幅方向の2箇所に分散して配置したが、3箇所以上に分散して配置してもよい。同様に、ティース連結部208を、ティース部21Tの幅方向の3箇所以上に分散して配置してもよい。 Further, in the above example, the yoke connecting portions 207 are dispersedly arranged at two locations in the width direction of the back yoke portion 21B, but may be dispersedly arranged at three or more locations. Similarly, the teeth connecting portions 208 may be dispersedly arranged at three or more locations in the width direction of the teeth portions 21T.
 また、隣り合う2つのバックヨーク部21Bの間に、2つ以上のヨーク連結部207を設けてもよい。この場合も、鉄心片21の連結方向に隣り合う少なくとも2つのヨーク連結部207を、バックヨーク部21Bの幅方向の異なる位置にずらして配置することができる。 Further, two or more yoke connecting portions 207 may be provided between two adjacent back yoke portions 21B. Also in this case, at least two yoke connecting portions 207 adjacent to each other in the connecting direction of the iron core piece 21 can be arranged at different positions in the width direction of the back yoke portion 21B.
 同様に、隣り合う2つのティース部21Tの間に、2つ以上のティース連結部208を設けてもよい。この場合も、鉄心片21の連結方向に隣り合う少なくとも2つのティース連結部208を、ティース部21Tの幅方向の異なる位置にずらして配置することができる。 Similarly, two or more teeth connecting portions 208 may be provided between two adjacent teeth portions 21T. Also in this case, at least two teeth connecting portions 208 adjacent to each other in the connecting direction of the iron core pieces 21 can be arranged at different positions in the width direction of the teeth portions 21T.
 また、実施の形態8において、鉄心片21の連結方向に隣り合う少なくとも2つのヨーク連結部207を、バックヨーク部21Bの幅方向の異なる位置にずらして配置してもよい。 Further, in the eighth embodiment, at least two yoke connecting portions 207 adjacent to each other in the connecting direction of the iron core piece 21 may be arranged at different positions in the width direction of the back yoke portion 21B.
 実施の形態10.
 次に、図38は、本発明の実施の形態10による鉄心片セット20を示す平面図である。鉄心片セット20における鉄心片21間には、複数の連結部209が設けられている。各連結部209は、隣接する2つの鉄心片21を連結している。
Embodiment 10.
Next, FIG. 38 is a plan view showing the iron core piece set 20 according to the tenth embodiment of the present invention. A plurality of connecting portions 209 are provided between the iron core pieces 21 in the iron core piece set 20. Each connecting portion 209 connects two adjacent iron core pieces 21.
 また、鉄心片セット20における各連結部209は、隣接する2つの鉄心片21のバックヨーク部21B間に部分的に設けられている。鉄心片セット20における各バックヨーク部21Bは、連結部209以外の部分では、隣のバックヨーク部21Bから離れている。 Further, each connecting portion 209 in the iron core piece set 20 is partially provided between the back yoke portions 21B of two adjacent iron core pieces 21. Each back yoke portion 21B in the iron core piece set 20 is separated from the adjacent back yoke portion 21B except for the connecting portion 209.
 各鉄心片21のバックヨーク部21Bは、バックヨーク本体21Bg、台形状の第1の突出部21Bc、台形状の第2の突出部21Bd、第1のヨーク切欠部21Be、及び第2のヨーク切欠部21Bfを有している。 The back yoke portion 21B of each iron core piece 21 includes a back yoke main body 21Bg, a trapezoidal first protrusion 21Bc, a trapezoidal second protrusion 21Bd, a first yoke notch 21Be, and a second yoke notch. It has a portion 21Bf.
 第1の突出部21Bcは、バックヨーク本体21Bgから、バックヨーク部21Bの幅方向一側へ突出している。第2の突出部21Bdは、バックヨーク本体21Bgから、バックヨーク部21Bの幅方向他側へ突出している。 The first protruding portion 21Bc protrudes from the back yoke main body 21Bg to one side in the width direction of the back yoke portion 21B. The second protruding portion 21Bd protrudes from the back yoke main body 21Bg toward the other side in the width direction of the back yoke portion 21B.
 バックヨーク部21Bの幅方向は、鉄心片21の連結方向であり、図38のX軸に平行な方向である。鉄心片21の連結方向は、鉄心片セット20において複数の鉄心片21が並んでいる方向である。 The width direction of the back yoke portion 21B is the connecting direction of the iron core pieces 21, and is the direction parallel to the X axis in FIG. 38. The connecting direction of the iron core pieces 21 is the direction in which a plurality of iron core pieces 21 are lined up in the iron core piece set 20.
 第1の突出部21Bcと第2の突出部21Bdとは、ティース部21Tの突出方向について異なる位置にずらして配置されている。ティース部21Tの突出方向は、バックヨーク部21Bからティース部21Tが突出している方向であり、図38のY軸に平行な方向である。 The first protruding portion 21Bc and the second protruding portion 21Bd are arranged at different positions with respect to the protruding direction of the teeth portion 21T. The protruding direction of the teeth portion 21T is the direction in which the teeth portion 21T protrudes from the back yoke portion 21B, and is a direction parallel to the Y axis in FIG. 38.
 第1のヨーク切欠部21Beは、バックヨーク部21Bの幅方向について、第1の突出部21Bcと同じ側に配置されている。また、第1のヨーク切欠部21Beは、第1の突出部21Bcに隣接している。 The first yoke notch 21Be is arranged on the same side as the first protrusion 21Bc in the width direction of the back yoke 21B. Further, the first yoke notch 21Be is adjacent to the first protrusion 21Bc.
 また、第1のヨーク切欠部21Beは、ティース部21Tの突出方向について、第2の突出部21Bdと同じ位置に位置している。また、第1のヨーク切欠部21Beは、第2の突出部21Bdを嵌合可能な形状を有している。 Further, the first yoke notch 21Be is located at the same position as the second protrusion 21Bd in the protruding direction of the teeth portion 21T. Further, the first yoke notch 21Be has a shape into which the second protrusion 21Bd can be fitted.
 第2のヨーク切欠部21Bfは、バックヨーク部21Bの幅方向について、第2の突出部21Bdと同じ側に配置されている。また、第2のヨーク切欠部21Bfは、第2の突出部21Bdに隣接している。 The second yoke notch 21Bf is arranged on the same side as the second protrusion 21Bd in the width direction of the back yoke portion 21B. Further, the second yoke notch 21Bf is adjacent to the second protrusion 21Bd.
 また、第2のヨーク切欠部21Bfは、ティース部21Tの突出方向について、第1の突出部21Bcと同じ位置に位置している。また、第2のヨーク切欠部21Bfは、第1の突出部21Bcを嵌合可能な形状を有している。 Further, the second yoke notch 21Bf is located at the same position as the first protruding portion 21Bc in the protruding direction of the teeth portion 21T. Further, the second yoke notch 21Bf has a shape into which the first protrusion 21Bc can be fitted.
 鉄心片セット20において、隣接する2つの鉄心片21は、連結部209を中心として左右対称の形状を有している。鉄心片セット20では、左右対称の形状を有する2種類の鉄心片21が、鉄心片21の連結方向に交互に配置されている。即ち、隣接する2つの鉄心片21では、バックヨーク部21Bの幅方向の一側と他側とが反対になっている。 In the iron core piece set 20, two adjacent iron core pieces 21 have a symmetrical shape centered on the connecting portion 209. In the iron core piece set 20, two types of iron core pieces 21 having a symmetrical shape are alternately arranged in the connecting direction of the iron core pieces 21. That is, in the two adjacent iron core pieces 21, one side and the other side in the width direction of the back yoke portion 21B are opposite to each other.
 鉄心片セット20における複数の連結部209は、第1の突出部21Bc間と、第2の突出部21Bd間とにそれぞれ設けられている。各バックヨーク部21Bにおける幅方向一側の連結部209と幅方向他側の連結部209とは、バックヨーク部21Bからのティース部21Tの突出方向について異なる位置に設けられている。 A plurality of connecting portions 209 in the iron core piece set 20 are provided between the first protruding portion 21Bc and between the second protruding portions 21Bd, respectively. The connecting portion 209 on one side in the width direction and the connecting portion 209 on the other side in the width direction of each back yoke portion 21B are provided at different positions in the protruding direction of the teeth portion 21T from the back yoke portion 21B.
 なお、図39は、図38のC部を拡大して示す平面図である。また、図40は、図38のD部を拡大して示す平面図である。 Note that FIG. 39 is a plan view showing an enlarged portion C of FIG. 38. Further, FIG. 40 is a plan view showing an enlarged portion D of FIG. 38.
 図41は、図38の鉄心片セット20によって分割積層鉄心2を形成する過程を示す斜視図である。各鉄心片21は、実施の形態1と同様に、各連結部209で互いに異なる方向に折り曲げられる。これにより、複数の鉄心片21が積層されて、分割積層鉄心2が形成される。また、分割積層鉄心2を形成する具体的な工程は、図32と同様である。 FIG. 41 is a perspective view showing a process of forming the divided laminated iron core 2 by the iron core piece set 20 of FIG. 38. Each iron core piece 21 is bent in different directions at each connecting portion 209 as in the first embodiment. As a result, the plurality of iron core pieces 21 are laminated to form the divided laminated iron core 2. The specific steps for forming the divided laminated iron core 2 are the same as in FIG. 32.
 他の構成及び製造方法は、実施の形態1と同様である。このような分割積層鉄心2の製造方法を、横折り方式と称する。 Other configurations and manufacturing methods are the same as in the first embodiment. Such a method for manufacturing the divided laminated iron core 2 is called a horizontal folding method.
 図42は、実施の形態10の固定子鉄心1を示す平面図である。また、図43は、図42の要部を拡大して示す平面図である。複数の分割積層鉄心2を円環状に組み合わせることにより、固定子鉄心1が形成されている。 FIG. 42 is a plan view showing the stator core 1 of the tenth embodiment. Further, FIG. 43 is an enlarged plan view showing a main part of FIG. 42. The stator core 1 is formed by combining a plurality of divided laminated iron cores 2 in an annular shape.
 各鉄心片セット20を複数の連結部209で折り曲げることにより、各分割積層鉄心2には、複数の折り曲げ部24が形成されている。各折り曲げ部24は、固定子101に対する回転子102の移動方向、即ち回転方向におけるバックヨーク部21Bの両端部に部分的に設けられている。 By bending each iron core piece set 20 with a plurality of connecting portions 209, a plurality of bent portions 24 are formed in each divided laminated iron core 2. Each bent portion 24 is partially provided at both ends of the back yoke portion 21B in the moving direction of the rotor 102 with respect to the stator 101, that is, in the rotating direction.
 固定子鉄心1においては、各鉄心片21の第1のヨーク切欠部21Beに、固定子鉄心1の周方向に隣接する鉄心片21の第2の突出部21Bdが嵌め合わされている。また、各鉄心片21の第2のヨーク切欠部21Bfに、固定子鉄心1の周方向に隣接する鉄心片21の第1の突出部21Bcが嵌め合わされている。 In the stator core 1, a second protruding portion 21Bd of the iron core piece 21 adjacent to the stator core 1 in the circumferential direction is fitted to the first yoke notch 21Be of each iron core piece 21. Further, the first protruding portion 21Bc of the iron core piece 21 adjacent to the stator core 1 in the circumferential direction is fitted to the second yoke notch 21Bf of each iron core piece 21.
 第1の突出部21Bc及び第2の突出部21Bdは、凸部を兼ねている。第1のヨーク切欠部21Be及び第2のヨーク切欠部21Bfは、嵌合凹部を兼ねている。 The first protruding portion 21Bc and the second protruding portion 21Bd also serve as a convex portion. The first yoke notch 21Be and the second yoke notch 21Bf also serve as fitting recesses.
 各鉄心片21において、第1の突出部21Bc及び第2の突出部21Bdは、固定子鉄心1の径方向に異なる位置に設けられている。 In each iron core piece 21, the first protruding portion 21Bc and the second protruding portion 21Bd are provided at different positions in the radial direction of the stator core 1.
 各折り曲げ部24と隣接する分割積層鉄心2のバックヨーク部21Bとの間には、隙間110が設けられている。 A gap 110 is provided between each bent portion 24 and the back yoke portion 21B of the adjacent split laminated iron core 2.
 このような実施の形態10の構成及び製造方法では、鉄心片セット20における各連結部209は、隣り合う2つのバックヨーク部21B間に部分的に設けられている。このため、各折り曲げ部24を小さくすることができる。 In the configuration and manufacturing method of the tenth embodiment, each connecting portion 209 in the iron core piece set 20 is partially provided between two adjacent back yoke portions 21B. Therefore, each bent portion 24 can be made smaller.
 また、各鉄心片21に、第1の突出部21Bc、第2の突出部21Bd、第1のヨーク切欠部21Be、及び第2のヨーク切欠部21Bfが設けられている。このため、分割積層鉄心2間の位置決めを容易に行うことができる。 Further, each iron core piece 21 is provided with a first protruding portion 21Bc, a second protruding portion 21Bd, a first yoke notch 21Be, and a second yoke notch 21Bf. Therefore, positioning between the divided laminated iron cores 2 can be easily performed.
 また、鉄心片セット20において隣接する2つの鉄心片21の中心間距離を大きくすることができる。これにより、鋼板シート200に、2つの鉄心片セット20を容易に配置することができる。 Further, in the iron core piece set 20, the distance between the centers of two adjacent iron core pieces 21 can be increased. As a result, the two iron core piece sets 20 can be easily arranged on the steel plate sheet 200.
 また、実施の形態1と同様の効果を得ることができる。 Further, the same effect as that of the first embodiment can be obtained.
 また、各折り曲げ部24が第1のヨーク切欠部21Be又は第2のヨーク切欠部21Bf内に位置している。このため、各折り曲げ部24と隣接する分割積層鉄心2との間には、隙間110を設けることができる。即ち、複数の折り曲げ部24が、隣接する分割積層鉄心2に当たることがない。これにより、固定子鉄心1の形状の崩れが防止され、固定子鉄心1の形状精度を向上させることができる。 Further, each bent portion 24 is located in the first yoke notch 21Be or the second yoke notch 21Bf. Therefore, a gap 110 can be provided between each bent portion 24 and the adjacent divided laminated iron core 2. That is, the plurality of bent portions 24 do not hit the adjacent divided laminated iron cores 2. As a result, the shape of the stator core 1 can be prevented from collapsing, and the shape accuracy of the stator core 1 can be improved.
 なお、実施の形態1、3、6においても、各鉄心片セットにおける各連結部は、隣接する2つの鉄心片のバックヨーク部間に部分的に設けられている。そして、各鉄心片セットにおける各バックヨーク部は、連結部以外の部分では、隣のバックヨーク部から離れている。 Also in the first, third, and sixth embodiments, each connecting portion in each core piece set is partially provided between the back yoke portions of two adjacent iron core pieces. Then, each back yoke portion in each iron core piece set is separated from the adjacent back yoke portion except for the connecting portion.
 また、図11に示すように、実施の形態3の鉄心片21にも、第1の突出部、第2の突出部、第1のヨーク切欠部、及び第2のヨーク切欠部を設けることができる。 Further, as shown in FIG. 11, the iron core piece 21 of the third embodiment may also be provided with a first protruding portion, a second protruding portion, a first yoke notch, and a second yoke notch. it can.
 図44は、実施の形態10の固定子鉄心1の変形例を示す平面図である。また、図45は、図44の鉄心片21を示す平面図である。この変形例では、第2の突出部21Bdの形状と第1のヨーク切欠部21Beの形状とがそれぞれ半円状となっている。 FIG. 44 is a plan view showing a modified example of the stator core 1 of the tenth embodiment. Further, FIG. 45 is a plan view showing the iron core piece 21 of FIG. 44. In this modification, the shape of the second protruding portion 21Bd and the shape of the first yoke notched portion 21Be are semicircular, respectively.
 第1の突出部21Bcの形状及び第2の突出部21Bdの形状は、図38及び図45に示す形状に限定されない。同様に、第1のヨーク切欠部21Beの形状及び第2のヨーク切欠部21Bfの形状も、図38及び図45に示す形状に限定されない。 The shape of the first protruding portion 21Bc and the shape of the second protruding portion 21Bd are not limited to the shapes shown in FIGS. 38 and 45. Similarly, the shape of the first yoke notch 21Be and the shape of the second yoke notch 21Bf are not limited to the shapes shown in FIGS. 38 and 45.
 図46は、実施の形態3の固定子鉄心1の変形例を示す平面図である。また、図47は、図46の鉄心片21を示す平面図である。この変形例では、凸部25の形状と嵌合凹部26の形状とがそれぞれ矩形となっている。 FIG. 46 is a plan view showing a modified example of the stator core 1 of the third embodiment. Further, FIG. 47 is a plan view showing the iron core piece 21 of FIG. 46. In this modification, the shape of the convex portion 25 and the shape of the fitting concave portion 26 are rectangular, respectively.
 凸部25の形状及び嵌合凹部26の形状は、半円状及び矩形に限定されるものではない。 The shape of the convex portion 25 and the shape of the fitting concave portion 26 are not limited to the semicircular shape and the rectangular shape.
 実施の形態11.
 次に、図48は、本発明の実施の形態11による2つの鉄心片セット20を示す平面図であり、鋼板シート600に対する2つの鉄心片セット20のレイアウトを示している。鋼板シート600には、2つの鉄心片セット20が、互いのティース部21Tを噛み合わせるように配置されている。即ち、鋼板シート600からは、図48に示すように、2つの鉄心片セット20が打ち抜かれる。
Embodiment 11.
Next, FIG. 48 is a plan view showing the two iron core piece sets 20 according to the eleventh embodiment of the present invention, and shows the layout of the two iron core piece sets 20 with respect to the steel plate sheet 600. On the steel plate sheet 600, two iron core piece sets 20 are arranged so as to mesh with each other's teeth portions 21T. That is, as shown in FIG. 48, two iron core piece sets 20 are punched out from the steel plate sheet 600.
 各鉄心片セット20における各鉄心片21の形状は、実施の形態10と同様である。鋼板シート600に配置されている2つの鉄心片セット20の一方を第1の鉄心片セットとし、他方を第2の鉄心片セットとする。第1の鉄心片セットにおける各ティース部21Tは、第2の鉄心片セットにおけるバックヨーク部21Bの隣に配置されている。また、第2の鉄心片セットにおける各ティース部21Tは、第1の鉄心片セットにおけるバックヨーク部21Bの隣に配置されている。 The shape of each iron core piece 21 in each iron core piece set 20 is the same as that of the tenth embodiment. One of the two core piece sets 20 arranged on the steel sheet sheet 600 is the first iron core piece set, and the other is the second iron core piece set. Each tooth portion 21T in the first iron core piece set is arranged next to the back yoke portion 21B in the second iron core piece set. Further, each tooth portion 21T in the second iron core piece set is arranged next to the back yoke portion 21B in the first iron core piece set.
 また、第1の鉄心片セットにおける各ティース部21Tは、第2の鉄心片セットにおける隣り合う2つのバックヨーク部21Bの間に配置されている。また、第2の鉄心片セットにおける各ティース部21Tは、第1の鉄心片セットにおける隣り合う2つのバックヨーク部21Bの間に配置されている。 Further, each tooth portion 21T in the first iron core piece set is arranged between two adjacent back yoke portions 21B in the second iron core piece set. Further, each tooth portion 21T in the second iron core piece set is arranged between two adjacent back yoke portions 21B in the first iron core piece set.
 第1の鉄心片セットにおける隣り合う2つの連結部209の間隔は、第2の鉄心片セットのティース部21Tに隣り合う部分におけるバックヨーク部21Bの最大幅寸法よりも大きい。第2の鉄心片セットにおける隣り合う2つの連結部209の間隔は、第1の鉄心片セットのティース部21Tに隣り合う部分におけるバックヨーク部21Bの最大幅寸法よりも大きい。 The distance between two adjacent connecting portions 209 in the first iron core piece set is larger than the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the second iron core piece set. The distance between the two adjacent connecting portions 209 in the second iron core piece set is larger than the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the first iron core piece set.
 図48において、隣り合う2つの連結部209の間隔は、L1+L2である。L1は、鉄心片21の幅方向の中心線から一方の連結部209までの距離である。L2は、鉄心片21の幅方向の中心線から他方の連結部209までの距離である。L2は、L1と同寸法又はほぼ同寸法である。 In FIG. 48, the distance between two adjacent connecting portions 209 is L1 + L2. L1 is the distance from the center line in the width direction of the iron core piece 21 to one connecting portion 209. L2 is the distance from the center line in the width direction of the iron core piece 21 to the other connecting portion 209. L2 has the same or substantially the same size as L1.
 また、ティース部21Tに隣り合う部分におけるバックヨーク部21Bの最大幅寸法は、W1である。従って、L1+L2>W1が成り立つ。 Further, the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T is W1. Therefore, L1 + L2> W1 holds.
 また、第1の鉄心片セットにおける隣り合う2つの連結部209の間隔は、第2の鉄心片セットのティース部21Tに隣り合う部分におけるバックヨーク部21Bの最大幅寸法と、ティース部21Tの最大幅寸法との和よりも大きい。 Further, the distance between the two adjacent connecting portions 209 in the first iron core piece set is the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the second iron core piece set and the maximum width of the teeth portion 21T. It is larger than the sum of the large dimensions.
 また、第2の鉄心片セットにおける隣り合う2つの連結部209の間隔は、第1の鉄心片セットのティース部21Tに隣り合う部分におけるバックヨーク部21Bの最大幅寸法と、ティース部21Tの最大幅寸法との和よりも大きい。 Further, the distance between the two adjacent connecting portions 209 in the second iron core piece set is the maximum width dimension of the back yoke portion 21B in the portion adjacent to the teeth portion 21T of the first iron core piece set and the maximum width of the teeth portion 21T. It is larger than the sum of the large dimensions.
 この例では、ティース部21Tの最大幅寸法は、ティース先端部21Taの幅寸法である。図48において、ティース先端部21Taの幅寸法は、W2である。従って、L1+L2>W1+W2が成り立つ。 In this example, the maximum width dimension of the tooth portion 21T is the width dimension of the tooth tip portion 21Ta. In FIG. 48, the width dimension of the tooth tip portion 21Ta is W2. Therefore, L1 + L2> W1 + W2 holds.
 また、図48において、θ1は、バックヨーク本体21Bgの幅方向両端面のなす角度である。複数の分割積層鉄心2が円環状に並べられたとき、バックヨーク本体21Bgは、隣接する鉄心片21のバックヨーク本体21Bgに接する。 Further, in FIG. 48, θ1 is an angle formed by both end faces in the width direction of the back yoke main body 21 Bg. When a plurality of divided laminated iron cores 2 are arranged in an annular shape, the back yoke main body 21Bg comes into contact with the back yoke main body 21Bg of the adjacent iron core pieces 21.
 このため、θ1は、360度/Nである。Nは、固定子鉄心1におけるティース積層部の総数である。ティース積層部は、各分割積層鉄心2において、全てのティース部21Tを積層した部分である。図27と同様にN=48とすると、θ1は、7.5度である。 Therefore, θ1 is 360 degrees / N. N is the total number of teeth laminated portions in the stator core 1. The teeth laminated portion is a portion in which all the teeth portions 21T are laminated in each divided laminated iron core 2. As in FIG. 27, assuming that N = 48, θ1 is 7.5 degrees.
 また、図48において、バックヨーク本体21Bgの幅方向両端面に沿う2本の直線をティース部21T側へ延長し、2本の直線が交わる点を中心点とする。但し、中心点は、図48には示されていない。固定子鉄心1において、中心点は、固定子鉄心1の軸心と一致する。また、回転電機において、中心点は、回転子102の回転中心と一致する。 Further, in FIG. 48, two straight lines along both end faces in the width direction of the back yoke main body 21Bg are extended to the teeth portion 21T side, and the point where the two straight lines intersect is set as the center point. However, the center point is not shown in FIG. In the stator core 1, the center point coincides with the axial center of the stator core 1. Further, in the rotary electric machine, the center point coincides with the rotation center of the rotor 102.
 図48において、θ2は、上記の中心点と第1の突出部21Bcの先端とを結ぶ直線と、上記の中心点と第2の突出部21Bdの先端とを結ぶ直線とがなす角度である。また、θ2はL1+L2の長さに対応している。θ1は、θ2よりも小さい。 In FIG. 48, θ2 is an angle formed by a straight line connecting the center point and the tip of the first protrusion 21Bc and a straight line connecting the center point and the tip of the second protrusion 21Bd. Further, θ2 corresponds to the length of L1 + L2. θ1 is smaller than θ2.
 各鉄心片セット20において、全ての連結部209は、互いに平行であり、鉄心片21の幅方向の中心線に平行である。即ち、全ての連結部209は、鉄心片21の幅方向の中心線に平行な直線に沿って折り曲げられる。 In each iron core piece set 20, all the connecting portions 209 are parallel to each other and parallel to the center line in the width direction of the iron core piece 21. That is, all the connecting portions 209 are bent along a straight line parallel to the center line in the width direction of the iron core piece 21.
 鋼板シート600には、鋼板シート600を送るための複数のパイロット穴601が設けられている。各パイロット穴601の形状は、円形である。また、各パイロット穴601は、鋼板シート600における鉄心片セット20の領域以外の領域に設けられている。実施の形態11の固定子鉄心1の製造方法は、鋼板シート600に複数のパイロット穴601を設ける工程を有している。 The steel plate sheet 600 is provided with a plurality of pilot holes 601 for feeding the steel plate sheet 600. The shape of each pilot hole 601 is circular. Further, each pilot hole 601 is provided in a region other than the region of the iron core piece set 20 in the steel plate sheet 600. The method for manufacturing the stator core 1 of the eleventh embodiment includes a step of providing a plurality of pilot holes 601 in the steel plate sheet 600.
 鋼板シート600の送り方向は、図48のX軸に平行な方向である。鋼板シート600の送り方向に直角な方向を鋼板シート600の幅方向とする。複数のパイロット穴601は、鋼板シート600の幅方向における連結部209の外側の領域、及びティース部21Tと連結部209との間の領域に設けられている。 The feed direction of the steel plate sheet 600 is a direction parallel to the X axis in FIG. 48. The direction perpendicular to the feeding direction of the steel sheet sheet 600 is defined as the width direction of the steel sheet sheet 600. The plurality of pilot holes 601 are provided in the outer region of the connecting portion 209 in the width direction of the steel sheet sheet 600 and in the region between the teeth portion 21T and the connecting portion 209.
 また、複数のパイロット穴601は、鋼板シート600の幅方向の中心に対して両側にそれぞれ設けられている。また、複数のパイロット穴601は、鋼板シート600の幅方向の中心に対して両側にそれぞれ均等に振り分けて設けられている。 Further, a plurality of pilot holes 601 are provided on both sides of the steel plate sheet 600 with respect to the center in the width direction. Further, the plurality of pilot holes 601 are provided evenly on both sides with respect to the center in the width direction of the steel sheet sheet 600.
 鋼板シート600から任意の形状を抜き出す場合、図示しない送り装置を用いて、送り長さ、即ち送りピッチずつ鋼板シート600を移動させて、加工を行う。このとき、送りピッチのバラツキは製品の精度に影響する。 When an arbitrary shape is extracted from the steel sheet sheet 600, the steel sheet sheet 600 is moved by the feed length, that is, the feed pitch, and processed by using a feed device (not shown). At this time, the variation in the feed pitch affects the accuracy of the product.
 パイロット穴601は、送り誤差を加工の直前に修正する目的で使用される。具体的には、図示しないパイロットパンチをパイロット穴601に挿入することにより、送り誤差が修正される。パイロットパンチは、先の尖った軸である。これにより、鋼板シート600と、図示しないプレス金型との位置ずれを抑制することができる。 The pilot hole 601 is used for the purpose of correcting the feed error immediately before machining. Specifically, the feed error is corrected by inserting a pilot punch (not shown) into the pilot hole 601. The pilot punch is a pointed shaft. As a result, the misalignment between the steel sheet sheet 600 and the press die (not shown) can be suppressed.
 このため、鉄心片セット20の打ち抜きを行う前に、複数のパイロット穴601が鋼板シート600から予め打ち抜かれる。この後、上記のようにパイロット穴601を利用して位置決めを行いつつ、2つの鉄心片セット20が同時に、又は片方ずつ打ち抜かれる。他の構成及び製造方法は、実施の形態10と同様である。 Therefore, before punching the iron core piece set 20, a plurality of pilot holes 601 are punched out from the steel plate sheet 600 in advance. After that, the two iron core piece sets 20 are punched out at the same time or one by one while performing positioning using the pilot hole 601 as described above. Other configurations and manufacturing methods are the same as in the tenth embodiment.
 このような構成及び製造方法では、L1+L2>W1となっているため、図5に示すレイアウトに比べて、鋼板シート600の幅寸法を小さくすることができる。また、L1+L2>W1+W2となっているため、各鉄心片セット20における各ティース部21Tは、噛み合わせて配置されている鉄心片セット20におけるバックヨーク部21Bの隣に配置することができる。 In such a configuration and manufacturing method, since L1 + L2> W1, the width dimension of the steel sheet sheet 600 can be reduced as compared with the layout shown in FIG. Further, since L1 + L2> W1 + W2, each tooth portion 21T in each iron core piece set 20 can be arranged next to the back yoke portion 21B in the iron core piece set 20 arranged in mesh with each other.
 このため、鋼板シート600の幅寸法をさらに小さくすることができるとともに、不要部分8bの面積を小さくすることができる。これにより、材料歩留りを向上させ、材料コストを低減することができる。 Therefore, the width dimension of the steel sheet sheet 600 can be further reduced, and the area of the unnecessary portion 8b can be reduced. As a result, the material yield can be improved and the material cost can be reduced.
 また、各鉄心片21に、第1の突出部21Bc、第2の突出部21Bd、第1のヨーク切欠部21Be、及び第2のヨーク切欠部21Bfが設けられている。このため、θ1<θ2とすることができる。これにより、θ1=θ2の場合に比べて、各鉄心片セット20における複数の鉄心片21の配置ピッチを大きくすることができる。従って、鋼板シート600の幅寸法をさらに小さくすることができるとともに、不要部分8bの面積を小さくすることができる。 Further, each iron core piece 21 is provided with a first protruding portion 21Bc, a second protruding portion 21Bd, a first yoke notch 21Be, and a second yoke notch 21Bf. Therefore, θ1 <θ2 can be set. As a result, the arrangement pitch of the plurality of iron core pieces 21 in each iron core piece set 20 can be increased as compared with the case of θ1 = θ2. Therefore, the width dimension of the steel sheet sheet 600 can be further reduced, and the area of the unnecessary portion 8b can be reduced.
 また、L1≠L2であれば、折り曲げに使用するツールが2種類になる場合がある。これに対して、本実施の形態ではL1=L2、又はL1≒L2であるため、折り曲げに使用する装置のツール形状を統一することができる。 Also, if L1 ≠ L2, there may be two types of tools used for bending. On the other hand, in the present embodiment, L1 = L2 or L1≈L2, so that the tool shape of the device used for bending can be unified.
 また、全ての連結部209は、互いに平行な直線に沿って折り曲げられる。これにより、積層方向に隣接する鉄心片21間の位置ずれを抑制することができる。 Also, all connecting portions 209 are bent along straight lines parallel to each other. As a result, the misalignment between the iron core pieces 21 adjacent to each other in the stacking direction can be suppressed.
 また、全てのティース部21Tを平行に並べて打ち抜くことができるため、鋼板シート600の圧延方向に対して、全てのティース部21Tを、0度を含む一定の角度を保って、打ち抜くことができる。これにより、鋼板シート600の圧延方向に対する各鉄心片21の磁気特性のばらつきを抑えることができ、回転電機のトルク脈動を低減することができる。  Further, since all the teeth portions 21T can be punched out by arranging them in parallel, all the teeth portions 21T can be punched out at a constant angle including 0 degrees with respect to the rolling direction of the steel sheet sheet 600. As a result, it is possible to suppress variations in the magnetic characteristics of each iron core piece 21 with respect to the rolling direction of the steel sheet sheet 600, and it is possible to reduce the torque pulsation of the rotary electric machine.
 また、複数のパイロット穴601が鋼板シート600の不要部分8bに設けられるため、材料使用量の増加を防止することができる。 Further, since a plurality of pilot holes 601 are provided in the unnecessary portion 8b of the steel plate sheet 600, it is possible to prevent an increase in the amount of material used.
 また、鉄心片21は、左右対称の形状を有する2種類のみであるため、鉄心片21を打ち抜くためのプレス金型は2種類のみでよい。 Further, since the iron core piece 21 has only two types having a symmetrical shape, only two types of press dies are required for punching the iron core piece 21.
 また、各鉄心片21は、隣接する鉄心片21に連結された状態で切り出される。このため、鋼板シート600の隣接する鉄心片21間に距離を確保する必要がなく、この点からも不要部分8bの面積を縮小することができ、材料歩留りを向上させることができる。 Further, each iron core piece 21 is cut out in a state of being connected to the adjacent iron core piece 21. Therefore, it is not necessary to secure a distance between the adjacent iron core pieces 21 of the steel plate sheet 600, and from this point as well, the area of the unnecessary portion 8b can be reduced, and the material yield can be improved.
 また、2種類の鉄心片21が交互に連結されているため、折り曲げピッチを容易に設定することができる。折り曲げピッチは、L1+L2に相当する。 Further, since the two types of iron core pieces 21 are alternately connected, the bending pitch can be easily set. The bending pitch corresponds to L1 + L2.
 また、複数の分割積層鉄心2を結合するときに、第1の突出部21Bcが第2のヨーク切欠部21Bfに嵌め合わされ、第2の突出部21Bdが第1のヨーク切欠部21Beに嵌め合わされる。このため、複数の分割積層鉄心2を並べたときに、分割積層鉄心2の向きの間違えを容易に検出することができる。 Further, when a plurality of divided laminated iron cores 2 are joined, the first protruding portion 21Bc is fitted into the second yoke notch 21Bf, and the second protruding portion 21Bd is fitted into the first yoke notch 21Be. .. Therefore, when a plurality of divided laminated iron cores 2 are arranged side by side, it is possible to easily detect an error in the orientation of the divided laminated iron cores 2.
 ここで、図48の矢印φ1及び矢印φ2は、回転電機に組み込まれたときに、各鉄心片21に流れる主な磁束の流れを示している。図48に示すように、磁束は、バックヨーク部21Bにおけるティース部21Tに近い部分を流れる。 Here, the arrows φ1 and the arrows φ2 in FIG. 48 indicate the main flow of magnetic flux flowing through each iron core piece 21 when incorporated in the rotary electric machine. As shown in FIG. 48, the magnetic flux flows through the portion of the back yoke portion 21B close to the teeth portion 21T.
 これに対して、本実施の形態では、各連結部209がバックヨーク部21Bにおけるティース部21Tから遠い部分に設けられている。また、図43に示したように、各折り曲げ部24と隣接する分割積層鉄心2のバックヨーク部21Bとの間には、隙間110が設けられている。 On the other hand, in the present embodiment, each connecting portion 209 is provided in a portion of the back yoke portion 21B far from the teeth portion 21T. Further, as shown in FIG. 43, a gap 110 is provided between each bent portion 24 and the back yoke portion 21B of the adjacent split laminated iron core 2.
 このように、隣接するバックヨーク部21B同士は、より磁束が通り易い部分で接触しており、磁束の通り難い部分に隙間110が設けられている。これにより、磁気損失が抑制され、回転電機の効率を向上させることができる。 In this way, the adjacent back yoke portions 21B are in contact with each other at a portion where the magnetic flux easily passes, and a gap 110 is provided at the portion where the magnetic flux is difficult to pass. As a result, the magnetic loss can be suppressed and the efficiency of the rotary electric machine can be improved.
 なお、パイロット穴601の形状は、円形に限定されず、例えば矩形、又は不要部分8bの形状に沿う形状であってもよい。 The shape of the pilot hole 601 is not limited to a circle, and may be, for example, a rectangle or a shape that follows the shape of the unnecessary portion 8b.
 また、パイロット穴601の位置及び数は、図48の例に限定されない。 Further, the position and number of pilot holes 601 are not limited to the example of FIG. 48.
 図49は、実施の形態11の第1の変形例を示す平面図である。この例では、第1の突出部21Bcの形状及び第2の突出部21Bdの形状がそれぞれ矩形となっている。 FIG. 49 is a plan view showing a first modification of the eleventh embodiment. In this example, the shape of the first protruding portion 21Bc and the shape of the second protruding portion 21Bd are rectangular, respectively.
 図50は、実施の形態11の第2の変形例を示す平面図である。この例では、第1の突出部21Bcの形状が細長い矩形となっている。また、第2の突出部21Bdの形状が半円形となっている。 FIG. 50 is a plan view showing a second modification of the eleventh embodiment. In this example, the shape of the first protrusion 21Bc is an elongated rectangle. Further, the shape of the second protruding portion 21Bd is semi-circular.
 このように、第1の突出部21Bcの形状及び第2の突出部21Bdの形状は、それぞれ変更可能である。これに伴い、第1のヨーク切欠部21Beの形状及び第2のヨーク切欠部21Bfの形状も、それぞれ変更可能である。なお、図49及び図50では、パイロット穴601が省略されている。 As described above, the shape of the first protruding portion 21Bc and the shape of the second protruding portion 21Bd can be changed respectively. Along with this, the shape of the first yoke notch 21Be and the shape of the second yoke notch 21Bf can also be changed. In addition, in FIG. 49 and FIG. 50, the pilot hole 601 is omitted.
 図51は、実施の形態11の第3の変形例を示す平面図である。この例では、ティース部21Tの最大幅寸法は、ティース先端部21Taの幅寸法W2ではなく、ティース部21Tにおけるバックヨーク部21Bに隣接する部分の幅寸法W3である。 FIG. 51 is a plan view showing a third modification of the eleventh embodiment. In this example, the maximum width dimension of the teeth portion 21T is not the width dimension W2 of the teeth tip portion 21Ta, but the width dimension W3 of the portion of the teeth portion 21T adjacent to the back yoke portion 21B.
 また、各鉄心片セット20における各ティース部21Tは、噛み合わせて配置されている鉄心片セット20におけるティース部21Tの隣に配置されている。 Further, each tooth portion 21T in each iron core piece set 20 is arranged next to the tooth portion 21T in the iron core piece set 20 which is arranged in mesh with each other.
 図52は、実施の形態11の第4の変形例を示す平面図である。この例では、各鉄心片セット20における各ティース部21Tは、噛み合わせて配置されている鉄心片セット20におけるティース部21Tの隣に配置されている。 FIG. 52 is a plan view showing a fourth modification of the eleventh embodiment. In this example, each tooth portion 21T in each iron core piece set 20 is arranged next to the tooth portion 21T in the iron core piece set 20 which is arranged in mesh.
 また、一部の鉄心片21のバックヨーク部21Bに、円形の抜き穴602が設けられている。抜き穴602は、バックヨーク部21Bのティース部21Tとは反対側の端部に設けられている。なお、図52では、パイロット穴601が省略されている。 Further, a circular punch hole 602 is provided in the back yoke portion 21B of some of the iron core pieces 21. The punch hole 602 is provided at the end of the back yoke portion 21B opposite to the teeth portion 21T. In FIG. 52, the pilot hole 601 is omitted.
 このような構成では、一部の鉄心片21に抜き穴602が設けられているため、分割積層鉄心2を軽量化することができる。 In such a configuration, since the punch holes 602 are provided in some of the iron core pieces 21, the weight of the divided laminated iron core 2 can be reduced.
 なお、上記の実施の形態1~11は、適宜組み合わせて実施することも可能である。 It should be noted that the above-described embodiments 1 to 11 can be implemented in combination as appropriate.
 また、本発明は、回転子が固定子の外側に配置されているアウタロータタイプの回転電機にも適用できる。 The present invention can also be applied to an outer rotor type rotary electric machine in which the rotor is arranged outside the stator.
 また、実施の形態1~11の鉄心片21は、電磁鋼板により構成されている。しかし、鉄心片21の材料は、電磁鋼板に限らない。 Further, the iron core pieces 21 of the first to eleventh embodiments are made of an electromagnetic steel plate. However, the material of the iron core piece 21 is not limited to the electromagnetic steel plate.
 また、実施の形態1~11では、電気機械として回転電機を示したが、本発明は、回転電機以外の電気機械、例えばリニアモータにも適用できる。 Further, in the first to eleventh embodiments, the rotary electric machine is shown as the electric machine, but the present invention can be applied to an electric machine other than the rotary electric machine, for example, a linear motor.
 図53は、本発明が適用されるリニアモータの一例を示す斜視図である。電気機械としてのリニアモータは、界磁である直線状の固定子111と、電機子である一対の可動子112とを有している。なお、図53では、構成の理解を容易にするために、固定子111及び可動子112の一部の構成のみを示している。 FIG. 53 is a perspective view showing an example of a linear motor to which the present invention is applied. A linear motor as an electric machine has a linear stator 111 which is a field magnet and a pair of movers 112 which are armatures. Note that FIG. 53 shows only a part of the configurations of the stator 111 and the mover 112 in order to facilitate understanding of the configurations.
 一対の可動子112は、固定子111を挟んで互いに対向している。一対の可動子112と固定子111との間には、それぞれ空隙が設けられている。可動子112は、固定子111に対して、図53のY軸方向へ移動可能になっている。 The pair of movers 112 face each other with the stator 111 in between. A gap is provided between the pair of movers 112 and the stator 111, respectively. The mover 112 is movable with respect to the stator 111 in the Y-axis direction of FIG. 53.
 各可動子112は、複数の分割積層鉄心113と、複数の電機子巻線114とを有している。実施の形態1~5、7~11の分割積層鉄心2は、円環状に組み合わせられたが、リニアモータでは、複数の分割積層鉄心113が直線状に組み合わせられている。なお、複数の分割積層鉄心113を直線状に組み合わせる代わりに、実施の形態6と同様の直線状の積層鉄心を用いることもできる。 Each mover 112 has a plurality of divided laminated iron cores 113 and a plurality of armature windings 114. The divided laminated iron cores 2 of the first to fifth and seventh to eleventh embodiments are combined in an annular shape, but in the linear motor, a plurality of divided laminated iron cores 113 are linearly combined. Instead of combining the plurality of divided laminated iron cores 113 in a straight line, a linear laminated iron core similar to that of the sixth embodiment can be used.
 各分割積層鉄心113の構成及び製造方法は、実施の形態1~5、7~11のいずれかと同様である。各電機子巻線114は、対応する分割積層鉄心113のティース積層部に巻き付けられている。 The configuration and manufacturing method of each divided laminated iron core 113 are the same as those of any of the first to fifth and seventh to eleventh embodiments. Each armature winding 114 is wound around a teeth laminated portion of a corresponding split laminated iron core 113.
 このようなリニアモータであっても、上述したような分割積層鉄心の効果を得ることができる。 Even with such a linear motor, the effect of the split laminated iron core as described above can be obtained.
 1 固定子鉄心(電機子鉄心)、2~4 分割積層鉄心、2a ティース凹部、2b ヨーク凹部、3A 二分割積層鉄心、5 直線状の積層鉄心、8 不要部分、20 鉄心片セット、20a ヨーク間スリット、20b ティース間スリット、21 鉄心片、21T ティース部、21Ta ティース先端部、21B バックヨーク部、21Ba ヨーク端部、21Bc 第1の突出部、21Bd 第2の突出部、21Be 第1のヨーク切欠部、21Bf 第2のヨーク切欠部、21Bg バックヨーク本体、22 ティース間折り曲げ部、23 ヨーク間折り曲げ部、25 凸部、26 嵌合凹部、30 分割鉄心片セット、31 二分割鉄心片、40 鉄心片セット、41 鉄心片、42,43 側端形成部、50 一連の鉄心片、50a 鉄心片セット、101 固定子(電機子)、102 回転子(界磁)、104 空隙、105 フレーム、105a フレーム溝、110 隙間、111 固定子(界磁)、112 可動子(電機子)、113 分割積層鉄心、200,300,400,500 鋼板シート、201~203,205,206,301,302,401~403,501 連結部、207 ヨーク連結部、208 ティース連結部、502 鉄心片切欠部。 1 Stator core (armature core), 2-4 split laminated core, 2a teeth recess, 2b yoke recess, 3A two-split laminated core, 5 linear laminated core, 8 unnecessary parts, 20 core piece set, 20a between yokes Slit, 20b inter-teeth slit, 21 iron core piece, 21T teeth part, 21Ta teeth tip, 21B back yoke, 21Ba yoke end, 21Bc first protrusion, 21Bd second protrusion, 21Be first yoke notch Part, 21Bf second yoke notch, 21Bg back yoke body, 22 tooth-bending part, 23 yoke-bending part, 25 convex part, 26 fitting recess, 30 split iron core piece set, 31 two-split iron core piece, 40 iron core One set, 41 iron core piece, 42, 43 side end forming part, 50 series of iron core pieces, 50a iron core piece set, 101 stator (armature), 102 rotor (field), 104 void, 105 frame, 105a frame Groove, 110 gap, 111 stator (field), 112 mover (armature), 113 divided laminated iron core, 200, 300, 400, 500 steel plate sheet, 201-203, 205, 206, 301, 302, 401- 403, 501 connection part, 207 yoke connection part, 208 teeth connection part, 502 iron core piece notch part.

Claims (29)

  1.  バックヨーク部と、前記バックヨーク部から突出しているティース部とをそれぞれ有する複数の鉄心片が直線状に配置されており、かつ前記複数の鉄心片を連結する複数の連結部が前記鉄心片間に設けられている鉄心片セットを鋼板シートから切出す工程と、
     切出した前記鉄心片セットを、各前記連結部で折り曲げて、前記鉄心片セットにおける各前記鉄心片を積層して分割積層鉄心を形成する工程と
    を有し、
     前記鉄心片セットにおける各前記連結部は、隣接する2つの前記鉄心片の前記バックヨーク部間に部分的に設けられており、
     前記鉄心片セットにおける各前記バックヨーク部は、前記連結部以外の部分では、隣の前記バックヨーク部から離れている電機子鉄心の製造方法。
    A plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of connecting portions connecting the plurality of iron core pieces are between the iron core pieces. The process of cutting out the iron core piece set provided in the steel plate sheet and
    It has a step of bending the cut-out iron core piece set at each of the connecting portions and laminating each of the iron core pieces in the iron core piece set to form a divided laminated iron core.
    Each of the connecting portions in the iron core piece set is partially provided between the back yoke portions of the two adjacent iron core pieces.
    A method for manufacturing an armature iron core in which each of the back yoke portions in the iron core piece set is separated from the adjacent back yoke portion in a portion other than the connecting portion.
  2.  各前記鉄心片の前記バックヨーク部には、凸部と、前記凸部と嵌合する嵌合凹部とが形成されている請求項1記載の電機子鉄心の製造方法。 The method for manufacturing an armature iron core according to claim 1, wherein a convex portion and a fitting concave portion that fits the convex portion are formed in the back yoke portion of each of the iron core pieces.
  3.  前記鋼板シートには、複数の前記鉄心片セットが、互いの前記ティース部を対向させて互い違いに噛み合わせて配置されている請求項1又は請求項2に記載の電機子鉄心の製造方法。 The method for manufacturing an armature core according to claim 1 or 2, wherein a plurality of sets of the iron core pieces are arranged on the steel plate sheet so that the teeth portions face each other and are alternately meshed with each other.
  4.  前記鋼板シートに配置されている2つの前記鉄心片セットの一方を第1の鉄心片セットとし、他方を第2の鉄心片セットとしたとき、
     前記第1の鉄心片セットにおける各前記ティース部は、前記第2の鉄心片セットにおける前記バックヨーク部の隣に配置されており、
     前記第2の鉄心片セットにおける各前記ティース部は、前記第1の鉄心片セットにおける前記バックヨーク部の隣に配置されている請求項3記載の電機子鉄心の製造方法。
    When one of the two iron core piece sets arranged on the steel plate sheet is used as the first iron core piece set and the other is used as the second iron core piece set.
    Each of the teeth portions in the first iron core piece set is arranged next to the back yoke portion in the second iron core piece set.
    The method for manufacturing an armature core according to claim 3, wherein each of the teeth portions in the second iron core piece set is arranged next to the back yoke portion in the first iron core piece set.
  5.  前記第1の鉄心片セットにおける隣り合う2つの前記連結部の間隔は、前記第2の鉄心片セットの前記ティース部に隣り合う部分における前記バックヨーク部の最大幅寸法よりも大きい請求項4記載の電機子鉄心の製造方法。 4. The fourth aspect of the present invention, wherein the distance between two adjacent connecting portions in the first iron core piece set is larger than the maximum width dimension of the back yoke portion in the portion adjacent to the teeth portion of the second iron core piece set. How to manufacture armature cores.
  6.  前記第1の鉄心片セットにおける隣り合う2つの前記連結部の間隔は、前記第2の鉄心片セットの前記ティース部に隣り合う部分における前記バックヨーク部の最大幅寸法と、前記ティース部の最大幅寸法との和よりも大きい請求項5記載の電機子鉄心の製造方法。 The distance between the two adjacent connecting portions in the first iron core piece set is the maximum width dimension of the back yoke portion in the portion adjacent to the teeth portion of the second iron core piece set and the maximum width of the teeth portion. The method for manufacturing an armature core according to claim 5, which is larger than the sum of the large dimensions.
  7.  前記鋼板シートにおける前記鉄心片セットの領域以外の領域に、前記鋼板シートを送るための複数のパイロット穴を設ける工程
     をさらに有し、
     前記鋼板シートの送り方向に直角な方向を前記鋼板シートの幅方向としたとき、
     前記複数のパイロット穴は、前記鋼板シートの幅方向における前記連結部の外側の領域、及び前記ティース部と前記連結部との間の領域の少なくともいずれか一方の領域に設けられており、かつ、前記鋼板シートの幅方向の中心に対して両側にそれぞれ設けられている請求項3から請求項6までのいずれか1項に記載の電機子鉄心の製造方法。
    Further having a step of providing a plurality of pilot holes for feeding the steel plate sheet in a region other than the region of the iron core piece set in the steel plate sheet.
    When the direction perpendicular to the feed direction of the steel plate sheet is the width direction of the steel plate sheet,
    The plurality of pilot holes are provided in at least one of a region outside the connecting portion in the width direction of the steel sheet sheet and a region between the teeth portion and the connecting portion, and the plurality of pilot holes are provided. The method for manufacturing an armature core according to any one of claims 3 to 6, which is provided on both sides of the center of the steel sheet in the width direction.
  8.  バックヨーク部と、前記バックヨーク部から突出しているティース部とをそれぞれ有する複数の鉄心片が直線状に配置されており、かつ前記複数の鉄心片を連結する複数の連結部が前記鉄心片間に設けられている鉄心片セットを鋼板シートから切出す工程と、
     切出した前記鉄心片セットを、各前記連結部で折り曲げて、前記鉄心片セットにおける各前記鉄心片を積層して分割積層鉄心を形成する工程と
    を有し、
     各前記バックヨーク部は、前記ティース部とは反対側の端部であるヨーク端部を有しており、
     各前記ティース部は、前記バックヨーク部とは反対側の端部であるティース先端部を有しており、
     前記鉄心片セットにおける前記複数の鉄心片は、前記ヨーク端部同士及び前記ティース先端部同士を交互に突き合わせるように配置されており、
     前記複数の連結部は、複数のヨーク連結部と、複数のティース連結部とを有しており、
     前記鉄心片セットにおける各前記ヨーク連結部は、隣り合う2つの前記ヨーク端部間に設けられており、
     前記鉄心片セットにおける各前記ティース連結部は、隣り合う2つの前記ティース先端部間に部分的に設けられており、
     前記鉄心片セットにおける各前記ティース部は、前記ティース連結部以外の部分では、隣の前記ティース部から離れている電機子鉄心の製造方法。
    A plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of connecting portions connecting the plurality of iron core pieces are between the iron core pieces. The process of cutting out the iron core piece set provided in the steel plate sheet and
    It has a step of bending the cut-out iron core piece set at each of the connecting portions and laminating each of the iron core pieces in the iron core piece set to form a divided laminated iron core.
    Each of the back yoke portions has a yoke end portion which is an end portion on the opposite side of the teeth portion.
    Each of the teeth portions has a teeth tip portion which is an end portion on the opposite side of the back yoke portion.
    The plurality of iron core pieces in the iron core piece set are arranged so that the yoke ends and the teeth tips are alternately butted against each other.
    The plurality of connecting portions have a plurality of yoke connecting portions and a plurality of teeth connecting portions.
    Each yoke connecting portion in the iron core piece set is provided between two adjacent yoke ends.
    Each of the teeth connecting portions in the iron core piece set is partially provided between two adjacent tooth tips.
    A method for manufacturing an armature iron core in which each of the teeth portions in the iron core piece set is separated from the adjacent teeth portion in a portion other than the teeth connecting portion.
  9.  前記鉄心片セットにおける各前記ティース先端部と隣の前記ティース先端部との間には、ティース間スリットと、2つの前記ティース連結部とが設けられており、
     各前記ティース間スリットは、対応する2つの前記ティース連結部の間に設けられており、
     前記分割積層鉄心を形成する工程では、
     前記複数のティース連結部を折り曲げることにより複数のティース間折り曲げ部が、前記鉄心片の積層方向に沿って2列に整列された状態で形成され、
     前記複数のティース間折り曲げ部による2つの列の間には、ティース凹部が形成される請求項8記載の電機子鉄心の製造方法。
    A slit between the teeth and two teeth connecting portions are provided between the tip of each tooth in the iron core piece set and the tip of the adjacent teeth.
    Each of the teeth-to-teeth slits is provided between the corresponding two teeth-to-teeth connecting portions.
    In the step of forming the divided laminated iron core,
    By bending the plurality of tooth connecting portions, the plurality of inter-teeth bent portions are formed in a state of being aligned in two rows along the stacking direction of the iron core pieces.
    The method for manufacturing an armature core according to claim 8, wherein a tooth recess is formed between the two rows formed by the plurality of bent portions between the teeth.
  10.  前記鉄心片セットにおける各前記ヨーク連結部は、隣り合う2つの前記ヨーク端部間に部分的に設けられており、
     前記鉄心片セットにおける各前記バックヨーク部は、前記ヨーク連結部以外の部分で、隣の前記バックヨーク部から離れている請求項8又は請求項9に記載の電機子鉄心の製造方法。
    Each yoke connecting portion in the iron core piece set is partially provided between two adjacent yoke ends.
    The method for manufacturing an armature core according to claim 8 or 9, wherein each of the back yoke portions in the iron core piece set is a portion other than the yoke connecting portion and is separated from the adjacent back yoke portion.
  11.  前記鉄心片セットにおける各前記ヨーク端部と隣の前記ヨーク端部との間には、ヨーク間スリットと、2つの前記ヨーク連結部とが設けられており、
     各前記ヨーク間スリットは、対応する2つのヨーク連結部の間に設けられており、
     前記分割積層鉄心を形成する工程では、
     前記複数のヨーク連結部を折り曲げることにより複数のヨーク間折り曲げ部が、前記鉄心片の積層方向に沿って2列に整列された状態で形成され、
     前記複数のヨーク間折り曲げ部による2つの列の間には、ヨーク凹部が形成される請求項10記載の電機子鉄心の製造方法。
    A slit between the yokes and two yoke connecting portions are provided between each yoke end portion in the iron core piece set and the adjacent yoke end portion.
    Each of the yoke slits is provided between two corresponding yoke connecting portions.
    In the step of forming the divided laminated iron core,
    By bending the plurality of yoke connecting portions, the plurality of bent portions between the yokes are formed in a state of being aligned in two rows along the stacking direction of the iron core pieces.
    The method for manufacturing an armature core according to claim 10, wherein a yoke recess is formed between the two rows of the plurality of bent portions between the yokes.
  12.  前記鉄心片セットにおいて前記鉄心片の連結方向に隣り合う少なくとも2つの前記ティース連結部は、前記ティース部の幅方向の異なる位置にずらして設けられており、
     前記鉄心片セットにおいて前記鉄心片の連結方向に隣り合う少なくとも2つの前記ヨーク連結部は、前記バックヨーク部の幅方向の異なる位置にずらして設けられている請求項8記載の電機子鉄心の製造方法。
    In the iron core piece set, at least two teeth connecting portions adjacent to each other in the connecting direction of the iron core pieces are provided at different positions in the width direction of the teeth portions.
    The manufacture of the armature core according to claim 8, wherein at least two yoke connecting portions adjacent to each other in the connecting direction of the iron core pieces in the iron core piece set are provided at different positions in the width direction of the back yoke portion. Method.
  13.  各前記鉄心片の前記ティース部の両側部には、それぞれ前記バックヨーク部の側端部を構成する側端形成部が設けられており、
     各前記側端形成部の一端側は、前記ティース部の根元に設けられた接続部で前記鉄心片と繋がっており、
     各前記側端形成部の他端側は、自由端となっており、
     前記分割積層鉄心を形成する工程は、
     各前記鉄心片を積層した後に、各前記側端形成部の他端側を、前記接続部を中心として前記バックヨーク部側に回転させて、前記バックヨーク部の両側部に移動させる工程を含む請求項8から請求項12までのいずれか1項に記載の電機子鉄心の製造方法。
    Side end forming portions forming the side end portions of the back yoke portion are provided on both side portions of the tooth portion of each of the iron core pieces.
    One end side of each of the side end forming portions is connected to the iron core piece by a connecting portion provided at the base of the teeth portion.
    The other end side of each of the side end forming portions is a free end.
    The step of forming the divided laminated iron core is
    After laminating the iron core pieces, the other end side of each side end forming portion is rotated toward the back yoke portion with the connection portion as a center and moved to both side portions of the back yoke portion. The method for manufacturing an armature core according to any one of claims 8 to 12.
  14.  前記鉄心片セットは、
     径方向に延びる直線によって各前記鉄心片が二等分された複数の二分割鉄心片を連結した一対の分割鉄心片セットによって構成されており、
     前記一対の分割鉄心片セットは、各前記二分割鉄心片の分割された直線状の端部を外側に向けて、互いに噛み合わせられて前記鋼板シートに配置されており、
     前記分割積層鉄心を形成する工程は、
     各前記二分割鉄心片を積層して一対の二分割積層鉄心を形成し、前記一対の二分割積層鉄心の各側面を結合することによって前記分割積層鉄心を形成する工程を含む請求項8から請求項13までのいずれか1項に記載の電機子鉄心の製造方法。
    The iron core piece set
    Each of the iron core pieces is divided into two equal parts by a straight line extending in the radial direction, and the iron core pieces are divided into two equal parts.
    The pair of divided iron core pieces are arranged on the steel plate sheet so as to be meshed with each other with the divided linear ends of the two divided iron core pieces facing outward.
    The step of forming the divided laminated iron core is
    The eighth aspect of the present invention includes a step of laminating the two-divided core pieces to form a pair of two-divided laminated iron cores and joining the side surfaces of the pair of two-divided laminated iron cores to form the divided laminated cores. Item 3. The method for manufacturing an armature core according to any one of items up to item 13.
  15.  前記鉄心片セットにおいて隣接する2つの前記鉄心片の一方を第1の鉄心片とし、他方を第2の鉄心片としたとき、
     前記分割積層鉄心を形成する工程は、
     前記第1の鉄心片を固定して位置決めする工程と、
     前記連結部を折り曲げの基準とする工程と、
     前記連結部を折り曲げて前記第1の鉄心片に前記第2の鉄心片を重ねる工程と、
     前記第1の鉄心片を解放し、前記第2の鉄心片を前記第1の鉄心片に再度押し付ける工程と
     を有している請求項1から請求項14までのいずれか1項に記載の電機子鉄心の製造方法。
    When one of the two adjacent iron core pieces is used as the first iron core piece and the other is used as the second iron core piece in the iron core piece set.
    The step of forming the divided laminated iron core is
    The process of fixing and positioning the first iron core piece and
    The process of using the connecting portion as a reference for bending and
    A step of bending the connecting portion and superimposing the second iron core piece on the first iron core piece,
    The electric machine according to any one of claims 1 to 14, further comprising a step of releasing the first iron core piece and pressing the second iron core piece against the first iron core piece again. Manufacturing method of armature core.
  16.  バックヨーク部と、前記バックヨーク部から突出しているティース部とをそれぞれ有する複数の鉄心片が直線状に配置されており、かつ前記複数の鉄心片を連結する複数の連結部が前記鉄心片間に設けられている鉄心片セットがさらに複数個連結された一連の鉄心片セットを鋼板シートから切出す工程と、
     切出した前記一連の鉄心片セットを、前記複数の連結部のうち、各前記鉄心片セットの間に設けられた連結部で折り曲げて、前記一連の鉄心片セットにおける各前記鉄心片セットを積層して直線状の積層鉄心を形成する工程と
    を有し、
     各前記鉄心片セットにおける各前記連結部は、隣接する2つの前記鉄心片の前記バックヨーク部間に部分的に設けられており、
     各前記鉄心片セットにおける各前記バックヨーク部は、前記連結部以外の部分では、隣の前記バックヨーク部から離れている電機子鉄心の製造方法。
    A plurality of iron core pieces each having a back yoke portion and a teeth portion protruding from the back yoke portion are linearly arranged, and a plurality of connecting portions connecting the plurality of iron core pieces are between the iron core pieces. A process of cutting out a series of iron core piece sets in which a plurality of iron core piece sets provided in the above are connected from a steel plate sheet, and
    The cut-out series of iron core piece sets is bent at a connecting portion provided between the respective iron core piece sets among the plurality of connecting portions, and each of the iron core piece sets in the series of iron core piece sets is laminated. It has a process of forming a linear laminated iron core.
    Each of the connecting portions in each of the iron core piece sets is partially provided between the back yoke portions of two adjacent iron core pieces.
    A method for manufacturing an armature iron core in which each of the back yoke portions in each of the iron core piece sets is separated from the adjacent back yoke portion in a portion other than the connecting portion.
  17.  請求項1から請求項16までのいずれか1項に記載の電機子鉄心の製造方法
     を含む電気機械の製造方法。
    A method for manufacturing an electric machine, which comprises the method for manufacturing an armature core according to any one of claims 1 to 16.
  18.  電機子鉄心を有している電機子、及び
     前記電機子に空隙を介して対向しており、前記電機子に対して相対的に移動する界磁
     を備え、
     前記電機子鉄心は、前記界磁の移動方向に沿って並べられている複数の分割積層鉄心を有しており、
     各前記分割積層鉄心は、複数の鉄心片を積層して構成されており、
     各前記鉄心片は、バックヨーク部と、前記バックヨーク部から前記界磁側に突出しているティース部とを有しており、
     各前記分割積層鉄心には、積層方向に隣接する前記鉄心片間を連結し折り曲げられている複数の折り曲げ部が設けられており、
     各前記折り曲げ部は、前記界磁の移動方向における前記バックヨーク部の端部に部分的に設けられている電気機械。
    An armature having an armature core and a field that faces the armature through a gap and moves relative to the armature.
    The armature core has a plurality of divided laminated iron cores arranged along the moving direction of the field.
    Each of the divided laminated iron cores is formed by laminating a plurality of iron core pieces.
    Each of the iron core pieces has a back yoke portion and a teeth portion protruding from the back yoke portion toward the field side.
    Each of the divided laminated iron cores is provided with a plurality of bent portions which are connected and bent between the iron core pieces adjacent to each other in the laminating direction.
    Each of the bent portions is an electric machine partially provided at an end portion of the back yoke portion in the moving direction of the field.
  19.  各前記折り曲げ部と、隣接する前記分割積層鉄心の前記バックヨーク部との間に隙間が設けられている請求項18記載の電気機械。 The electric machine according to claim 18, wherein a gap is provided between each of the bent portions and the back yoke portion of the adjacent divided laminated iron core.
  20.  各前記鉄心片の前記バックヨーク部は、バックヨーク本体と、前記バックヨーク本体から前記バックヨーク部の幅方向一側へ突出した第1の突出部と、前記バックヨーク本体から前記バックヨーク部の幅方向他側へ突出した第2の突出部とを有しており、
     前記複数の折り曲げ部は、積層方向に隣接する前記鉄心片の前記第1の突出部間と前記第2の突出部間とにそれぞれ設けられている請求項18又は請求項19に記載の電気機械。
    The back yoke portion of each of the iron core pieces includes a back yoke main body, a first protruding portion protruding from the back yoke main body to one side in the width direction of the back yoke portion, and the back yoke portion from the back yoke main body. It has a second protrusion that protrudes to the other side in the width direction.
    The electric machine according to claim 18 or 19, wherein the plurality of bent portions are provided between the first protrusions and the second protrusions of the iron core pieces adjacent to each other in the stacking direction. ..
  21.  各前記鉄心片における前記第1の突出部と前記第2の突出部とは、前記バックヨーク部からの前記ティース部の突出方向について異なる位置に設けられている請求項20記載の電気機械。 The electric machine according to claim 20, wherein the first protruding portion and the second protruding portion of each of the iron core pieces are provided at different positions in the protruding direction of the teeth portion from the back yoke portion.
  22.  各前記鉄心片の前記バックヨーク本体には、前記第2の突出部を嵌合可能な第1のヨーク切欠部と、前記第1の突出部を嵌合可能な第2のヨーク切欠部とが設けられている請求項21記載の電気機械。 The back yoke main body of each iron core piece has a first yoke notch into which the second protrusion can be fitted and a second yoke notch into which the first protrusion can be fitted. The electric machine according to claim 21 provided.
  23.  各前記鉄心片における前記第1の突出部と前記第2の突出部との間隔は、前記バックヨーク本体の幅寸法と、前記ティース部の最大幅寸法との和よりも大きい請求項20又は請求項21に記載の電気機械。 20 or claim that the distance between the first protruding portion and the second protruding portion in each of the iron core pieces is larger than the sum of the width dimension of the back yoke main body and the maximum width dimension of the teeth portion. Item 21.
  24.  電機子鉄心を有している電機子、及び
     前記電機子に空隙を介して対向しており、前記電機子に対して相対的に移動する界磁
     を備え、
     前記電機子鉄心は、前記界磁の移動方向に沿って並べられている複数の分割積層鉄心を有しており、
     各前記分割積層鉄心は、複数の鉄心片を積層して構成されており、
     各前記鉄心片は、バックヨーク部と、前記バックヨーク部から前記界磁側に突出しているティース部とを有しており、
     各前記バックヨーク部は、前記ティース部とは反対側の端部であるヨーク端部を有しており、
     各前記ティース部は、前記バックヨーク部とは反対側の端部であるティース先端部を有しており、
     各前記分割積層鉄心には、積層方向に隣接する前記鉄心片間を連結し折り曲げられている複数のヨーク間折り曲げ部及び複数のティース間折り曲げ部が設けられており、
     各前記ヨーク間折り曲げ部は、前記ヨーク端部に設けられており、
     各前記ティース間折り曲げ部は、前記ティース先端部に部分的に設けられている電気機械。
    An armature having an armature core and a field that faces the armature through a gap and moves relative to the armature.
    The armature core has a plurality of divided laminated iron cores arranged along the moving direction of the field.
    Each of the divided laminated iron cores is formed by laminating a plurality of iron core pieces.
    Each of the iron core pieces has a back yoke portion and a teeth portion protruding from the back yoke portion toward the field side.
    Each of the back yoke portions has a yoke end portion which is an end portion on the opposite side of the teeth portion.
    Each of the teeth portions has a teeth tip portion which is an end portion on the opposite side of the back yoke portion.
    Each of the divided laminated iron cores is provided with a plurality of yoke-to-yoke bent portions and a plurality of tooth-to-teeth bent portions that are bent by connecting the iron core pieces adjacent to each other in the laminating direction.
    The bent portion between the yokes is provided at the end of the yoke.
    The bent portion between the teeth is an electric machine partially provided at the tip of the teeth.
  25.  各前記ヨーク間折り曲げ部は、前記ヨーク端部に部分的に設けられている請求項24記載の電気機械。 The electric machine according to claim 24, wherein the bent portion between the yokes is partially provided at the end portion of the yoke.
  26.  前記複数のティース間折り曲げ部は、前記鉄心片の積層方向に沿って2列に整列された状態で形成されており、
     前記複数のティース間折り曲げ部による2つの列の間には、ティース凹部が形成されている請求項24又は請求項25に記載の電気機械。
    The plurality of bent portions between the teeth are formed in a state of being arranged in two rows along the stacking direction of the iron core pieces.
    The electric machine according to claim 24 or 25, wherein a tooth recess is formed between the two rows of the plurality of bent portions between the teeth.
  27.  前記複数のヨーク間折り曲げ部は、前記鉄心片の積層方向に沿って2列に整列された状態で形成されており、
     前記複数のヨーク間折り曲げ部による2つの列の間には、ヨーク凹部が形成されている請求項25記載の電気機械。
    The plurality of yoke-bent portions are formed in a state of being aligned in two rows along the stacking direction of the iron core pieces.
    25. The electromechanical machine according to claim 25, wherein a yoke recess is formed between the two rows of the plurality of yoke-bent portions.
  28.  積層方向に隣り合う少なくとも1組の2つの前記ティース間折り曲げ部は、前記界磁の移動方向の異なる位置にずらして設けられており、
     積層方向に隣り合う少なくとも1組の2つの前記ヨーク間折り曲げ部は、前記界磁の移動方向の異なる位置にずらして設けられている請求項25記載の電気機械。
    At least one set of two bent portions between the teeth adjacent to each other in the stacking direction are provided so as to be displaced at different positions in the moving direction of the field.
    25. The electric machine according to claim 25, wherein at least one set of two bending portions between the yokes adjacent to each other in the stacking direction are provided at different positions in the moving direction of the field.
  29.  前記電機子鉄心に固定されており、かつ各前記鉄心片の前記ヨーク端部が接しているフレーム
     をさらに備え、
     前記フレームには、前記複数のヨーク間折り曲げ部をそれぞれ逃がす複数のフレーム溝が設けられている請求項24から請求項28までのいずれか1項に記載の電気機械。
    Further provided with a frame fixed to the armature core and in contact with the yoke end of each of the core pieces.
    The electric machine according to any one of claims 24 to 28, wherein the frame is provided with a plurality of frame grooves for allowing the bent portions between the plurality of yokes to escape from each other.
PCT/JP2019/034986 2019-03-28 2019-09-05 Manufacturing method for armature core, manufacturing method for electric machine, and electric machine WO2020194787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508689A JP7046265B2 (en) 2019-03-28 2019-09-05 How to make an armature core, how to make an electric machine, and an electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062689 2019-03-28
JP2019-062689 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020194787A1 true WO2020194787A1 (en) 2020-10-01

Family

ID=72611284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034986 WO2020194787A1 (en) 2019-03-28 2019-09-05 Manufacturing method for armature core, manufacturing method for electric machine, and electric machine

Country Status (2)

Country Link
JP (1) JP7046265B2 (en)
WO (1) WO2020194787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137621A1 (en) * 2020-12-24 2022-06-30 三菱電機株式会社 Split core, dynamo-electric machine, method for manufacturing split core, and method for manufacturing dynamo-electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341914A (en) * 1999-05-28 2000-12-08 Toyota Motor Corp Stator core for motor and manufacture thereof
JP2015053806A (en) * 2013-09-06 2015-03-19 株式会社デンソー Manufacturing method for stator iron core for rotary electric machine
JP2015149894A (en) * 2015-05-29 2015-08-20 三菱電機株式会社 Manufacturing method for laminated iron core, and laminated iron core manufactured by the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150742A (en) * 1979-05-09 1980-11-22 Hitachi Ltd Interpole and manufacture thereof
JP4830251B2 (en) * 2000-09-26 2011-12-07 パナソニック株式会社 Linear actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341914A (en) * 1999-05-28 2000-12-08 Toyota Motor Corp Stator core for motor and manufacture thereof
JP2015053806A (en) * 2013-09-06 2015-03-19 株式会社デンソー Manufacturing method for stator iron core for rotary electric machine
JP2015149894A (en) * 2015-05-29 2015-08-20 三菱電機株式会社 Manufacturing method for laminated iron core, and laminated iron core manufactured by the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137621A1 (en) * 2020-12-24 2022-06-30 三菱電機株式会社 Split core, dynamo-electric machine, method for manufacturing split core, and method for manufacturing dynamo-electric machine
JP7357811B2 (en) 2020-12-24 2023-10-06 三菱電機株式会社 Split core, rotating electrical machine, split core manufacturing method, and rotating electrical machine manufacturing method

Also Published As

Publication number Publication date
JP7046265B2 (en) 2022-04-01
JPWO2020194787A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US8102092B2 (en) Split cores for motor stator, motor stator, permanent magnet type synchronous motor and punching method by split core punching die
TWI556548B (en) Rotary electric machine and stator core manufacturing apparatus for manufacturing a stator core therefor
US10333360B2 (en) Iron core member with divided yoke and tooth portions with V-shaped end joint portions
JP6659161B2 (en) Split core of rotary electric machine, method of manufacturing the split core, and rotary electric machine
WO2017090571A1 (en) Motor and method for manufacturing motor
KR20160006785A (en) Rotating electric machine iron core
JP6909003B2 (en) Manufacturing method of laminated iron core
US11411447B2 (en) Axial gap motor
JP6250149B2 (en) Armature core of rotating electrical machine and method for manufacturing armature
JP2007228720A (en) Core
JP2011019350A (en) Stator and method for manufacturing the same
EP3474427B1 (en) Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine
JP7046265B2 (en) How to make an armature core, how to make an electric machine, and an electric machine
JP6818476B2 (en) Stator iron core of rotary electric machine
TWI599142B (en) Stator of rotation electrical machine, rotation electrical machine, and method for manufacturing the stator of rotation electrical machine
JP6486545B2 (en) Stator for rotating electrical machine, rotating electrical machine using the same, and method for manufacturing stator for rotating electrical machine
JP2023098255A (en) Rotary electric machine
JP6486930B2 (en) Manufacturing method of laminated iron core of vehicle drive motor
JP2021040461A (en) Method for manufacturing armature core, method for manufacturing electric machine, and electric machine
JP2007166767A (en) Split skewed and stacked core and its manufacturing method
JP7316636B2 (en) Electric motor
JP2012217279A (en) Stator core for rotary electric machine, the rotary electric machine, and manufacturing method of the stator core for the rotary electric machine
JP5292134B2 (en) Stator and motor
JP2021044885A (en) Manufacturing method of laminated iron core, manufacturing method of electrical machine, manufacturing apparatus of laminated iron core, and electrical machine
JP5988955B2 (en) Rotating electric machine and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921490

Country of ref document: EP

Kind code of ref document: A1