JP2007166767A - Split skewed and stacked core and its manufacturing method - Google Patents

Split skewed and stacked core and its manufacturing method Download PDF

Info

Publication number
JP2007166767A
JP2007166767A JP2005359064A JP2005359064A JP2007166767A JP 2007166767 A JP2007166767 A JP 2007166767A JP 2005359064 A JP2005359064 A JP 2005359064A JP 2005359064 A JP2005359064 A JP 2005359064A JP 2007166767 A JP2007166767 A JP 2007166767A
Authority
JP
Japan
Prior art keywords
laminated core
magnetic pole
pole teeth
skew
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005359064A
Other languages
Japanese (ja)
Inventor
Hiroshi Takano
弘 高野
Oaki Nakamura
大明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAMURA KOGYOSHO KK
Original Assignee
NAKAMURA KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAMURA KOGYOSHO KK filed Critical NAKAMURA KOGYOSHO KK
Priority to JP2005359064A priority Critical patent/JP2007166767A/en
Publication of JP2007166767A publication Critical patent/JP2007166767A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make the easy winding work or the insertion work of formed coils or permanent magnets or the like by skewing a yoke of a core for an rotating electric machine and magnetic pole teeth to improve electromagnetic characteristics between a stator and a rotor and by splitting the yoke and the magnetic pole teeth by the unit of the magnetic pole tooth. <P>SOLUTION: The split skewed and stacked core is constituted of the yoke 10Y of a partially circular shape having dimensions corresponding to a shape obtained by dividing the cylindrical yoke of the stacked core of total stacked core element pieces 10<SB>-1</SB>, 10<SB>-2</SB>, to 10<SB>-n</SB>by the number of magnetic pole teeth, and a magnetic pole tooth 10T that protrudes from the side 10U of its front side of each yoke 10Y and that protrudes at an angle that differs by a unit angle obtained by dividing the skew angle by the number stacked pieces. These total stacked core element pieces 10<SB>-1</SB>, 10<SB>-2</SB>, to 10<SB>-n</SB>are stacked one by one in the order of protruding angles of the magnetic pole teeth 10T that increase by the unit angle from a skew starting point to an end point. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回転電機の固定子又は回転子或いはそのいずれかのための回転電機用分割スキュー積層コア及びその製造方法に関するものである。なおこの場合の用語「スキュー積層コア」は、主として電動機の固定子又は回転子の磁極歯(ティース)及び巻線溝(スロット)を円筒中心軸に対して適宜角度スキュー(傾斜)させるように形成した積層コア(鉄心)をさすものであり、始動トルクの不足やトルク脈動の原因となるコギングトルクを解消乃至低減するために有効な構造である。   The present invention relates to a split skew laminated core for a rotating electrical machine for a stator and / or rotor of a rotating electrical machine and a method for manufacturing the same. The term “skew laminated core” in this case is mainly formed so that the stator teeth or rotor magnetic teeth (teeth) and winding grooves (slots) are skewed (tilted) as appropriate with respect to the central axis of the cylinder. This is a structure effective for eliminating or reducing the cogging torque that causes insufficient starting torque and torque pulsation.

電動機や発電機である回転電機は、固定子と回転子との間に於ける電磁気作用に基づいて期待する効果を発揮する。通常の内転形電動機は、固定子及び回転子又はいずれか一方に供給される電気的入力に基づいて固定子からの磁気作用を回転子に伝えて回転させ、回転軸より動力を得る装置である。発電機は、固定子と回転子との間を電磁的に連係させ、回転子から供給される外部動力を電気的出力に変換する装置である。   A rotating electrical machine such as an electric motor or a generator exhibits an expected effect based on an electromagnetic action between a stator and a rotor. A typical internal motor is a device that obtains power from a rotating shaft by transmitting a magnetic action from the stator to the rotor based on an electrical input supplied to the stator and / or rotor, and rotating the rotor. is there. A generator is a device that electromagnetically links a stator and a rotor and converts external power supplied from the rotor into an electrical output.

このように回転電機に於いて所期の効果を得るためには、固定子−回転子間の磁束の授受が滑らかにかつ理想的形態で行われることが不可欠となる。磁束の授受が理想的に行われないと、始動困難、トルクムラ、磁気歪の助長、異音の発生、効率の低下等の不都合な事態を招来することになる。   Thus, in order to obtain the desired effect in the rotating electrical machine, it is indispensable that the transfer of magnetic flux between the stator and the rotor is performed smoothly and in an ideal form. If the magnetic flux is not exchanged ideally, inconveniences such as difficulty in starting, uneven torque, promotion of magnetostriction, generation of abnormal noise, and reduction in efficiency may be caused.

このような招かざる事態を回避するために、磁極歯(ティース)や巻線又は永久磁石を埋設するための溝(スロット)を回転機軸中心よりも所定角度傾斜(スキュー)させる対策が広く採用されている。   In order to avoid such an uninvited situation, measures to incline (skew) magnetic pole teeth (teeth), windings, or grooves (slots) for embedding permanent magnets at a predetermined angle from the center of the rotating machine shaft are widely adopted. ing.

電磁鋼板や珪素鋼板などの積層体である磁極歯やスロット等をスキューさせる場合は、スキュー磁極歯又はスキュースロットとするために積層コアの素片を所望幅ずつ変位させた打ち抜き加工が必要となる。このようなスキュー磁極歯又はスキュースロットは、巻線作業、型巻コイル或いは永久磁石片の挿入作業等が、通常の平行磁極歯又は平行溝の場合よりも遙かに難しくなる傾向があり、製造工程の自動化に障害となる。そのため、スキュー磁極歯及びスキュースロットを効率よく利用するための提案を含む先行技術がある。   When skewing magnetic pole teeth, slots, etc., which are laminates of electromagnetic steel sheets, silicon steel sheets, etc., it is necessary to perform punching by shifting the core pieces of the laminated core by a desired width in order to form skew magnetic pole teeth or skew slots. . Such skew magnetic pole teeth or skew slots tend to be much more difficult to perform winding work, die winding coil or permanent magnet piece insertion work than ordinary parallel magnetic pole teeth or parallel grooves. This is an obstacle to process automation. Therefore, there are prior arts including proposals for efficiently using skew pole teeth and skew slots.

特許文献1は、磁石式発電機や電動機等の起動トルクムラやコギングを軽減すると共に生産性に優れた構成を提供することを指向するものである。そのため、固定子との空隙部のスキュー形成に際し、回転子鉄心に放射状に磁石を挿入するスロットを設け、磁極歯数がnの場合にn角形の非磁性体でできたスペーサの辺に沿うように回転子コアの対峙面を形成し、長い直方体の磁石でもスロットとのギャップを生ずることなく挿入できるようにし、そしてスキュー幅Wを変える場合に、スペーサーの辺の長さLの1/2以内でスキュー幅W(0<W≦1/2L)を形成できるようにすることを開示している。   Patent Document 1 aims to provide a configuration with excellent productivity while reducing uneven starting torque and cogging of a magnet generator, an electric motor, and the like. For this reason, when the skew of the gap with the stator is formed, a slot for inserting a magnet radially is provided in the rotor core so that when the number of magnetic pole teeth is n, it follows the side of the spacer made of an n-gonal nonmagnetic material. In the case where the opposite face of the rotor core is formed so that a long rectangular magnet can be inserted without causing a gap with the slot, and when the skew width W is changed, it is within ½ of the length L of the spacer side. Discloses that a skew width W (0 <W ≦ 1 / 2L) can be formed.

この特許文献1の発明は、長い直方体の磁石でも容易に挿入可能なスキュー溝の構造を得ることを主たる目的とするものであり、磁極数nの場合に積層鉄心を軸方向にn等分となるように分割して直方体磁石の挿入を容易にする構成となっている。   The invention of this Patent Document 1 is mainly intended to obtain a skew groove structure that can be easily inserted even by a long rectangular magnet. When the number of magnetic poles is n, the laminated iron core is divided into n equal parts in the axial direction. It becomes the structure which makes it easy to insert a rectangular parallelepiped magnet.

特許文献2は、交流発電機や電動機等の固定子や回転子の巻線及び鉄心構造及びその構成により、鉄心構造・材質・構成による巻線構造の簡素化、起動特性の飛躍的改善による低出力時の効率向上、多種少量生産にも対応可能な鉄心や磁石の構造実現、高耐熱電機の実現及び小形軽量化を実現するための技術課題を解決することを目的としている。この特許文献2の発明は、軸に沿う方向に磁極数分に分割し、更に軸に垂直な方向にも細分化することにより、長い直方体永久磁石の挿入を容易にし、かつスキュー角度の調整も可能として、多種少量生産にも対応し得る構成となっている。   According to Patent Document 2, the winding structure and the structure of the stator and rotor of an AC generator, an electric motor, and the like, and the structure thereof are simplified, and the winding structure is simplified by the core structure, material and structure, and the start-up characteristics are greatly improved. The purpose is to solve the technical problems to improve the efficiency at the time of output, to realize the structure of iron cores and magnets that can cope with a variety of small volume production, to realize a high heat-resistant electric machine and to reduce the size and weight. The invention of this Patent Document 2 is divided into the number of magnetic poles in the direction along the axis, and further subdivided in the direction perpendicular to the axis, thereby facilitating insertion of a long cuboid permanent magnet and adjusting the skew angle. As possible, it has a configuration that can handle a variety of small-volume production.

特開2000‐354341号公報JP 2000-354341 A 特開2003‐153472号公報JP 2003-153472 A

本発明は、回転電機用コアの継鉄部及び磁極歯を所望角度スキューさせることにより固定子・回転子間の電磁特性の改善を図り、コギングの低減を可能にすると共に、該継鉄部及び磁極歯を磁極歯単位に分割することにより巻線作業、型巻コイル或いは永久磁石片の挿入作業等を容易にする回転電機用の分割スキュー積層コア及びその製造方法を提供することを解決の課題とする。   The present invention aims to improve the electromagnetic characteristics between the stator and the rotor by skewing the yoke portion and the magnetic pole teeth of the core for a rotating electrical machine by a desired angle, thereby enabling reduction of cogging, and the yoke portion and It is an object of the present invention to provide a split skew laminated core for a rotating electrical machine that facilitates winding work, insertion of a coiled coil or permanent magnet piece by dividing the magnetic pole teeth into units of magnetic pole teeth, and a method for manufacturing the same. And

本発明の1は、積層コア素片を積層して構成した分割スキュー積層コアであって、
前記全積層コア素片を、積層コアの円筒状継鉄部を磁極歯数で分割したのに相当する寸法形状の、積層枚数の部分円弧状の継鉄部と、該各継鉄部毎に、その背面側の辺又は正面側の辺から突出する、スキュー角を積層枚数で除して得られる単位角度ずつ異なる角度で突出する磁極歯とで構成し、
該全積層コア素片を、順次、それらの磁極歯の突出角度が、スキュー開始点から終了点まで、該単位角度ずつ変化するように積層してなる分割スキュー積層コアである。
1 of the present invention is a divided skew laminated core configured by laminating laminated core pieces,
For all the laminated core pieces, a partial arc-shaped yoke portion of the number of laminated layers having a size and shape corresponding to the cylindrical yoke portion of the laminated core divided by the number of magnetic pole teeth. , And projecting from the back side or the front side, the skew angle is divided by the number of stacked layers, and the magnetic pole teeth are projected at different angles by unit angles.
This is a divided skew laminated core in which all the laminated core pieces are sequentially laminated so that the projecting angle of the magnetic pole teeth changes from the skew start point to the end point by the unit angle.

本発明の2は、本発明の1の分割スキューコアに於いて、前記磁極歯の突出方向を、前記積層コア素片を積層してなる分割スキュー積層コアを組み合わせて製造する積層コアの中心から放射方向に延びる方向と一致させたものである。   According to 2 of the present invention, in the split skew core of 1 of the present invention, the protruding direction of the magnetic pole teeth is determined from the center of the stacked core manufactured by combining the split skew stacked core formed by stacking the stacked core pieces. This is the same as the direction extending in the radial direction.

本発明の3は、本発明の1の分割スキュー積層コアに於いて、前記スキュー角の中心に位置する又は中心に位置するものと想定した磁極歯の突出方向を、前記積層コア素片を積層してなる分割スキュー積層コアを組み合わせて製造する積層コアの中心から放射方向に延びる方向と一致させ、他の磁極歯の突出方向を、該スキュー角度の中心に位置する又は中心に位置するものと想定した磁極歯の突出方向と平行に構成したものである。   According to a third aspect of the present invention, in the divided skew laminated core according to the first aspect of the present invention, the protruding direction of the magnetic pole teeth is assumed to be located at the center or the center of the skew angle. And a direction in which the other magnetic pole teeth project in the radial direction from the center of the laminated core manufactured by combining the divided skew laminated cores, which are manufactured in combination. It is configured in parallel with the assumed magnetic pole tooth protruding direction.

本発明の4は、コア素材鋼板を順次プレス装置の複数の加工ステージに配し、
全積層コア素片に共通の形状である継鉄部の両端、継鉄部の背面側の辺及び磁極歯の先端は、前記複数の加工ステージの内、固定型を備えた加工ステージで打ち抜き加工し、
積層コア素片毎に位置の異なる磁極歯両側は、所定の変位単位で変位し得る可動型を備えた加工ステージで、スキュー開始点から終了点まで該変位単位量ずつ変位させて打ち抜き加工し、
次いで加工完了した積層コア素片を順次積層することによる分割スキュー積層コアの製造方法である。
4 of the present invention sequentially arranges the core material steel plates on a plurality of processing stages of the press device,
Both ends of the yoke part, the back side of the yoke part, and the tip of the magnetic pole teeth, which are common to all the laminated core pieces, are punched by a machining stage having a fixed die among the plurality of machining stages. And
Both sides of the magnetic pole teeth at different positions for each laminated core piece are punched by being displaced by the displacement unit amount from the skew start point to the end point on a processing stage equipped with a movable mold that can be displaced by a predetermined displacement unit,
Next, it is a method for manufacturing a divided skew laminated core by sequentially laminating processed laminated core pieces.

本発明の5は、帯状のコア素材鋼板を順次所定幅ずつ間欠的に送ってプレス装置の各加工ステージに配置させつつ通過させ、
該各加工ステージの一部では、該帯状のコア素材鋼板の各該当部位に、全積層コア素片に共通の形状を有する継鉄部の両端、継鉄部の背面側の辺及び磁極歯の先端を固定型で打ち抜き加工し、
かつ該各加工ステージの他の一部では、積層コア素片毎に位置の異なる磁極歯両側を、所定の変位単位で変位し得る可動型で、スキュー開始点から終了点まで該変位単位量ずつ変位させて打ち抜き加工し、
次いで加工完了した積層コア素片を順次積層することによる分割スキュー積層コアの製造方法である。
5 of the present invention, the belt-shaped core material steel plate is sequentially sent by a predetermined width and sequentially passed while being placed on each processing stage of the press device,
In a part of each processing stage, at each corresponding portion of the strip-shaped core material steel plate, both ends of the yoke portion having a shape common to all laminated core pieces, sides on the back side of the yoke portion, and magnetic pole teeth The tip is punched with a fixed mold,
And in the other part of each processing stage, it is a movable type capable of displacing both sides of the magnetic pole teeth at different positions for each laminated core element by a predetermined displacement unit, and each displacement unit amount from the skew start point to the end point. Displaced and punched,
Next, it is a method for manufacturing a divided skew laminated core by sequentially laminating processed laminated core pieces.

本発明の6は、本発明の5の分割スキュー積層コアの製造方法に於いて、前記固定型を、各々前記継鉄部の両端を打ち抜く端部抜き型、該継鉄部の背面側の辺又は正面の辺を打ち抜く辺抜き型及び磁極歯の先端を打ち抜く先端抜き型で構成し、
前記可動型を、磁極歯の両側を打ち抜く側部抜き型で構成し、かつ該側部抜き型を、磁極歯両側の打ち抜き用加工ステージにある打ち抜き途上の積層コア素片の継鉄部を端部方向に連設した場合に形成される円弧の中心に当たる点を回動中心として回動するベースに取り付け、該ベースをスキュー角を積層枚数で除して得た角度を単位角度として、一枚の積層コア素片毎に該単位角度ずつ変位させて打ち抜き動作できるように構成し、
前記加工ステージの内の先頭のステージに前記端部抜き型を配し、次のステージに前記側部抜き型を取り付けたベースを配し、最後のステージに前記辺抜き型及び先端抜き型を配して、これらを連動して動作するようにし、
前記コア素材鋼板を間欠的に送りながら、同時に、先頭の加工ステージでは継鉄部両端を打ち抜き、次の加工ステージでは磁極歯の両側を打ち抜き、最後の加工ステージでは継鉄部の背面又は正面の辺及び磁極歯の先端を打ち抜き、
その際、前記磁極歯の両側の打ち抜きは、前記ベースを、順次、該全積層コア素片の磁極歯の突出角度が、スキュー開始点から終了点まで該単位角度ずつ変化するように回動させながら行い、
前記最後の加工ステージでは、打ち抜きの完了した積層コア素片を該加工ステージの下方の積層位置に押し出し、打ち抜きの完了した積層コア素片を順次該積層位置で積層することとしたものである。
6 of the present invention is the method of manufacturing a split skew laminated core according to 5 of the present invention, wherein the fixed die is an end punching die for punching both ends of the yoke portion, and a side on the back side of the yoke portion. Or it consists of a punching die that punches out the front side and a tip punching die that punches out the tip of the magnetic pole tooth,
The movable die is constituted by a side punching die that punches both sides of the magnetic pole teeth, and the side punching die is formed with the yoke portion of the laminated core piece being punched in the punching processing stage on both sides of the magnetic pole teeth. One piece with the angle obtained by dividing the skew angle by the number of stacked layers as a unit angle. It is configured so that it can be punched by displacing the unit core angle for each laminated core piece of
The end punching die is placed on the first stage of the processing stage, the base on which the side punching die is attached is placed on the next stage, and the edge punching die and the tip punching die are placed on the last stage. So that they work together,
While feeding the core material steel plate intermittently, at the same time, punching both ends of the yoke part at the first machining stage, punching both sides of the magnetic pole teeth at the next machining stage, and at the back or front of the yoke part at the last machining stage Punch out the edges of the edges and pole teeth,
At this time, the punching on both sides of the magnetic pole teeth rotates the base sequentially so that the projecting angle of the magnetic pole teeth of all the laminated core pieces changes from the skew start point to the end point by the unit angle. While doing
In the last processing stage, the punched laminated core pieces are pushed out to a stacking position below the processing stage, and the punched stacked core pieces are sequentially stacked at the stacking position.

本発明の7は、本発明の5の分割スキュー積層コアの製造方法に於いて、前記固定型を、各々前記継鉄部の両端を打ち抜く両端抜き型、該継鉄部の背面側の辺又は正面の辺を打ち抜く辺抜き型及び磁極歯の先端を打ち抜く先端抜き型で構成し、
前記可動型を、磁極歯の両側を打ち抜く両側抜き型で構成し、かつ該両側抜き型を、磁極歯両側の打ち抜き用加工ステージにある打ち抜き途上の積層コア素片との関係で、少なくともその磁極歯突出部位の範囲で前記コア素材鋼板の送り方向と平行に往復動し得るベースに取り付け、該ベースを、一枚の積層コア素片毎に、スキュー角に対応する最上部と最下部の積層コア素片の磁極歯のズレ間隔を積層枚数で除して得た間隔を単位間隔として、一枚の積層コア素片毎に該単位間隔ずつ、前記コア素材鋼板の送り方向と平行に移動させ、その位置で打ち抜き動作できるように構成し、
前記加工ステージの内の先頭のステージに前記両端抜き型を配し、次のステージに前記両側抜き型を取り付けたベースを配し、最後のステージに前記辺抜き型及び先端抜き型を配して、これらを連動して動作するようにし、
前記コア素材鋼板を間欠的に送りながら、同時に、先頭の加工ステージでは継鉄部両端を打ち抜き、次の加工ステージでは磁極歯の両側を打ち抜き、最後の加工ステージでは継鉄部の背面又は正面の辺及び磁極歯の先端を打ち抜き、
その際、前記磁極歯の両側の打ち抜きは、前記ベースを、順次、該全積層コア素片の磁極歯の突出位置が、スキュー開始点から終了点まで該単位間隔ずつ変化するように移動させながら行い、
前記最後の加工ステージでは、打ち抜きの完了した積層コア素片を該加工ステージの下方の積層位置に押し出し、打ち抜きの完了した積層コア素片を順次該積層位置で積層することとしたものである。
7 of the present invention is the method of manufacturing a split skew laminated core according to 5 of the present invention, wherein the fixed mold is formed by punching both ends of each yoke part, a side on the back side of the yoke part, Consists of a punching die that punches the front edge and a tip punching die that punches the tip of the magnetic pole tooth.
The movable die is constituted by a double-side punching die that punches both sides of the magnetic pole teeth, and the double-side punching die is at least its magnetic pole in relation to the laminated core piece in the punching process on the punching processing stage on both sides of the magnetic pole teeth. Attached to a base that can reciprocate in parallel with the feeding direction of the core material steel plate in the range of the tooth protruding portion, the base is laminated on the uppermost and lowermost parts corresponding to the skew angle for each laminated core piece. The interval obtained by dividing the gap interval of the magnetic pole teeth of the core piece by the number of laminated layers is taken as a unit interval, and the unit interval is moved in parallel with the feeding direction of the core material steel sheet for each laminated core piece. Configured to allow punching operation at that position,
Arrange the die with both ends on the first stage of the processing stage, arrange the base with the die on both sides on the next stage, and arrange the edge die and tip die on the last stage. , Make them work together,
While feeding the core material steel plate intermittently, at the same time, punching both ends of the yoke part at the first machining stage, punching both sides of the magnetic pole teeth at the next machining stage, and at the back or front of the yoke part at the last machining stage Punch out the edges of the edges and pole teeth,
At that time, the punching on both sides of the magnetic pole teeth is performed by moving the base sequentially so that the protruding positions of the magnetic pole teeth of all the laminated core pieces change from the skew start point to the end point by the unit interval. Done
In the last processing stage, the punched laminated core pieces are pushed out to a stacking position below the processing stage, and the punched stacked core pieces are sequentially stacked at the stacking position.

本発明の1の分割スキュー積層コアによれば、磁極歯単位で分割し、更に継鉄部と磁極歯との相対位置を順次変位させた所定数の積層コア素片を積層して構成したスキュー磁極歯を有する回転電機用の分割スキュー積層コアであり、積層した積層コア素片の全てに於いて、継鉄部は同一形状であり、磁極歯のみを一枚ごとに変位させて構成したものである。そのため、継鉄部を正確に重ね合わせるのみで、容易に正確なスキュー磁極歯を備えた分割スキュー積層コアとすることができる。また積層コア素片自体も各々以上のような構成であるため、その製造が容易かつ正確に行えるものである。   According to the divided skew laminated core of 1 of the present invention, the skew is constituted by laminating a predetermined number of laminated core pieces, which are divided in units of magnetic pole teeth, and further, the relative positions of the yoke portion and the magnetic pole teeth are sequentially displaced. This is a split skew laminated core for rotating electrical machines with magnetic pole teeth, and in all the laminated core pieces, the yoke part has the same shape, and only the magnetic pole teeth are displaced one by one. It is. Therefore, it is possible to easily form a split skew laminated core having accurate skew magnetic pole teeth by simply superimposing the yoke portions. In addition, since the laminated core pieces themselves have the above-described configuration, their manufacture can be performed easily and accurately.

スキューした磁極歯を備えた積層コアは、前記したように、積層コアに組み立てる前、即ち、分割スキュー積層コアの段階でその磁極歯に巻線を巻き、又は型巻コイルを装着することができるため、その作業が極めて容易であり、かつその巻線作業や巻線の装着作業を自動化することも可能となる。   As described above, the laminated core having the skewed magnetic pole teeth can be wound around the magnetic pole teeth before being assembled into the laminated core, that is, at the stage of the divided skew laminated core, or can be fitted with a die-coil coil. Therefore, the work is extremely easy, and the winding work and the mounting work of the winding can be automated.

本発明の2の分割スキュー積層コアによれば、これを構成する各々の積層コア素片の磁極歯の突出方向を、分割スキュー積層コア中で、それが積層されるべき部位から突出すべき方向に正確に向けることができるため、理想的なスパイラルスキュー磁極歯を持ったものとすることができる。   According to the divided skew laminated core of 2 of the present invention, the protruding direction of the magnetic pole teeth of each laminated core piece constituting the divided skew laminated core is the direction in which the divided skew laminated core should protrude from the portion where it should be laminated. Therefore, it is possible to have an ideal spiral skew magnetic pole tooth.

本発明の3の分割スキュー積層コアによれば、これを構成する各々の積層コア素片の磁極歯の突出方向を、分割スキュー積層コア中で、それが積層されるべき部位から突出すべき方向に正確に向けることができるため、理想的なパラレルスキュー磁極歯を持ったものとすることができる。   According to the divided skew laminated core of 3 of the present invention, the protruding direction of the magnetic pole teeth of each laminated core piece constituting the divided skew laminated core is the direction in which it should protrude from the portion where the laminated skew laminated core is to be laminated. Therefore, it can have an ideal parallel skew magnetic pole tooth.

本発明の4の分割スキュー積層コアの製造方法によれば、積層すべき全積層コア素片の形状が異なるものであるにも拘わらず、単型を用いたプレス装置を用いて、容易かつ正確にそのような積層コア素片を積層した分割スキュー積層コアを製造することができる。   According to the method for manufacturing a split skew laminated core of 4 of the present invention, it is easy and accurate to use a single-type press device even though all the laminated core pieces to be laminated have different shapes. In addition, a divided skew laminated core in which such laminated core pieces are laminated can be manufactured.

本発明の5の分割スキュー積層コアの製造方法によれば、積層すべき全積層コア素片の形状が異なるものであるにも拘わらず、複合型を用いたプレス装置を用いて、容易かつ正確に、加えて能率的にそのような積層コア素片を積層した分割スキュー積層コアを製造することができる。   According to the manufacturing method of the split skew laminated core of 5 of the present invention, it is easy and accurate to use the press device using the composite mold even though the shapes of all the laminated core pieces to be laminated are different. In addition, a divided skew laminated core in which such laminated core pieces are laminated efficiently can be manufactured.

本発明の6の分割スキュー積層コアの製造方法によれば、理想的なスパイラルスキュー磁極歯を持った分割スキュー積層コアを、容易かつ正確に、更にはスピーディに製造することができる。   According to the method for manufacturing a divided skew laminated core according to the sixth aspect of the present invention, a divided skew laminated core having an ideal spiral skew magnetic pole tooth can be manufactured easily, accurately, and speedily.

本発明の7の分割スキュー積層コアの製造方法によれば、理想的なパラレルスキュー磁極歯を持った分割スキュー積層コアを、容易かつ正確に、更にはスピーディに製造することができる。   According to the manufacturing method of the divided skew laminated core according to the seventh aspect of the present invention, the divided skew laminated core having the ideal parallel skew magnetic pole teeth can be easily and accurately manufactured more quickly.

図1(a)、(b)、(c)は、各々本発明の回転電機用の分割スキュー積層コア10を構成する一部の積層コア素片の平面図であり、外部が継鉄部となる外部円筒状の、内転型回転電機の固定子又は外転型回転電機の回転子に適する積層コアを構成するための一部の積層コア素片を示している。即ち、図1(a)はn層からなる内の最下部の積層コア素片10-1(1枚目)を示し、図1(b)は中間部の積層コア素片10-(n+1)/2((n+1)/2枚目)を示し、図1(c)は最上部の積層コア素片10-n(n枚目)を示している。 1 (a), (b), and (c) are plan views of a part of laminated core pieces constituting a divided skew laminated core 10 for a rotating electrical machine according to the present invention. FIG. 2 shows a part of a laminated core piece for forming a laminated core suitable for an outer cylindrical stator of an internal rotation type rotary electric machine or a rotor of an external rotation type rotary electric machine. That is, FIG. 1A shows the lowermost laminated core piece 10 −1 (first sheet) of n layers, and FIG. 1B shows the laminated core piece 10 − (n + in the middle part. 1) / 2 ((n + 1) / 2nd sheet), and FIG. 1 (c) illustrates the uppermost laminated core element 10- n (nth sheet).

以上の図1(a)、(b)、(c)から明らかなように、積層コア素片10-1、10-2…は部分円弧状の継鉄部10Yから内側に突出する磁極歯10Tを有し、該磁極歯10Tの内端両側には図示しない巻線を係止するための係止突起10Eを備えている。なおこのように磁極歯10Tを突出させる該継鉄部10Yの内側の辺10Uは外側の辺の円弧状の膨らみに対応する円弧状の凹みに形成されている。 As is clear from FIGS. 1A, 1B, and 1C, the laminated core pieces 10 −1 , 10 −2 ... Are magnetic pole teeth 10T protruding inwardly from the partial arc-shaped yoke portion 10Y. And a locking projection 10E for locking a winding (not shown) on both inner ends of the magnetic pole tooth 10T. In this way, the inner side 10U of the yoke portion 10Y from which the magnetic pole teeth 10T protrude is formed in an arc-shaped recess corresponding to the arc-shaped bulge of the outer side.

また該継鉄部10Yの左端部には突起12Pが、右端部には凹部12Hが形成され、これらの突起12P及び凹部12H相互により隣接する積層コア素片の継鉄部10Y、10Y相互が嵌合できるようになっている。これらの突起12P及び凹部12Hは、積層コア素片10-1 、10-2…を積層して構成した、隣接する分割スキュー積層コア10、10相互の継鉄部10Y、10Yを結合して積層コア10C(図3及び図4参照)を構成する際に、合わせマークとなって組合わせ作業を容易にし、かつ連結作業時の位置ズレなどを防止する効果もある。 Further, a projection 12P is formed at the left end of the yoke portion 10Y, and a recess 12H is formed at the right end, and the yoke portions 10Y and 10Y of the laminated core pieces adjacent to each other are fitted by the projection 12P and the recess 12H. Can be combined. These protrusions 12P and recesses 12H are formed by stacking adjacent divided skew laminated cores 10 and laminated yoke portions 10Y and 10Y formed by laminating laminated core pieces 10 −1 , 10 −2 . When the core 10C (see FIGS. 3 and 4) is configured, it becomes an alignment mark to facilitate the assembling work, and also has an effect of preventing misalignment during the connecting work.

なおこれらの突起12P及び凹部12Hは、隣接する積層コア素片の継鉄部相互が適切に結合できる構成であれば、これらに限定される訳ではなく、種々の構成を自由に採用することが可能である。   The protrusions 12P and the recesses 12H are not limited to these as long as the yoke portions of the adjacent laminated core pieces can be appropriately coupled to each other, and various configurations can be freely adopted. Is possible.

また前記継鉄部10Yの外側の辺には図示していないバックヨークに連結固定するための楔14が形成してあるが、これも、前記突起12P及び凹部12Hと同様に、同様の機能を有する種々の構成を自由に採用することができる。   Further, a wedge 14 for connecting and fixing to a back yoke (not shown) is formed on the outer side of the yoke portion 10Y, and this also has the same function as the projection 12P and the recess 12H. Various configurations can be freely adopted.

以上の突起12P、凹部12H並びに楔14、或いはこれらに代わる構成は、積層コア素片10-1 、10-2…を積層して構成した分割スキュー積層コア10を、前記のように、組み立て、或いは固定するために重要な構成ではあるが、各積層コア素片に於いてすべて同様の構成であるため、以下の図示並びに関連する記述は省略する。 As described above, the protrusion 12P, the recess 12H, and the wedge 14, or a configuration in place of them, is an assembly of the divided skew laminated core 10 formed by laminating the laminated core pieces 10 -1 , 10 -2 . Or although it is a structure important for fixing, since it is the same structure in each laminated core piece, the following illustration and related description are abbreviate | omitted.

これらの図1(a)、(b)、(c)に示された積層コア素片10-1、10-(n+1)/2、10-nの間には、それらの継鉄部10Yに対する磁極歯10Tの相対位置を〔スキュー角/積層枚数n〕分ずつ変位させた(n−3)/2枚の積層コア素片が各々存在するが、煩雑さを避けるため詳細な図示は省略している。 Between these laminated core pieces 10 -1 , 10- (n + 1) / 2 , 10 -n shown in FIGS. 1 (a), (b), (c) There are (n−3) / 2 stacked core pieces, each of which is displaced by [skew angle / number of stacked layers n] by the relative position of the magnetic pole teeth 10T with respect to 10Y. Omitted.

なお、nが偶数の時には(n+1)/2は整数とならないので、現実には(n+1)/2枚目の積層コア素片は存在せず、正確には(n+1)/2枚目はnが奇数の場合にのみ有効である。nが偶数の場合は、(n+1)/2は(n+1)/2±1/2と読み替え、(n+1)/2±1/2枚目のいずれかの積層コア素片が積層コア素片10-(n+1)/2であると見なすものとする。このようにしても、これらの図は説明図であり、厳密に描かれているわけではないので差し支えない。なお以上の通りであるから、積層コア素片10-1、10-(n+1)/2、10-nの相互間に存在する積層コア素片の枚数が各々(n−3)/2枚であるというのもnが奇数の場合にのみ成り立つ。偶数の場合は、これを(n−3)/2±1/2枚と読み替えるものとする。これらについては、以下同様である。 Since (n + 1) / 2 is not an integer when n is an even number, in reality, there is no (n + 1) / 2-th laminated core element, and exactly (n + 1) / 2 is n-th. Valid only when is an odd number. When n is an even number, (n + 1) / 2 is read as (n + 1) / 2 ± 1/2, and any one of the (n + 1) / 2 ± 1/2 laminated core pieces is the laminated core piece 10. -(n + 1) / 2 is assumed. Even in this case, these drawings are explanatory diagrams, and are not drawn strictly, so they may be used. Since it is as described above, the number of the laminated core pieces existing between the laminated core pieces 10 −1 , 10 − (n + 1) / 2 , and 10 −n is (n−3) / 2. The number of sheets is valid only when n is an odd number. In the case of an even number, this is read as (n-3) / 2 ± 1/2. The same applies to the following.

以上のように、積層コア素片10-1及び10-nの間には、それらの継鉄部10Yに対する磁極歯10Tの相対位置を〔スキュー角/積層枚数n〕分ずつ変位させたn−2枚の積層コア素片が存在するが、この場合、いずれの積層コア素片の磁極歯10Tも、その内端は、これを備えた積層コア素片を積層した分割スキュー積層コア10で組み立てた積層コア10Cの中心方向に向かって延びるように構成する。即ち、継鉄部10Yの中心方向に向かって延びるように構成する。 As described above, between the laminated core pieces 10 −1 and 10 −n , the relative position of the magnetic pole teeth 10T with respect to the yoke portion 10Y is displaced by n− (skew angle / number of laminated sheets n). There are two laminated core pieces. In this case, the magnetic pole teeth 10T of any laminated core piece are assembled with the split skew laminated core 10 in which the inner ends of the laminated core pieces are laminated. The laminated core 10C is configured to extend toward the center. That is, it is configured to extend toward the center of the yoke portion 10Y.

図2は本発明の分割スキュー積層コア10を示している。この分割スキュー積層コア10は、図1(a)、(b)、(c)に示し、かつ先に説明した積層コア素片10-1…、10-(n+1)/2…、10-nを含むn枚の積層コア素片を積層して構成したものであり、一つの磁極歯が1スロット分スキューされたものである。これは、先に説明したように、所要数のこれを組み合わせて内転型回転電機の固定子用積層コア又は外転形回転電機の回転子用積層コアを構成することができるものである。 FIG. 2 shows a split skew laminated core 10 of the present invention. This divided skew laminated core 10 is shown in FIGS. 1 (a), (b), (c) and described above, and the laminated core pieces 10 −1 ... 10 − (n + 1) / 2 . It is configured by stacking n stacked core pieces including -n , and one magnetic pole tooth is skewed by one slot. As described above, a required number of these can be combined to form a stator laminated core for an adder-type rotating electrical machine or a rotor laminated core for an outer-rotor-type rotating electrical machine.

積層された各上下の積層コア素片10-1、10-2等相互は、図2に示すように、各々継鉄部10Yに形成された一対のカシメ部16、16を嵌合することで、それぞれ結合し、全積層コア素片10-1、10-2…が結合固定した分割スキュー積層コア10を構成している。積層コア素片10-1、10-2…は、先に述べたように、最下層のそれから最上層のそれまで継鉄部10Yに対して磁極歯10Tが一方から他方に前記所定角度ずつ変位した位置関係で形成され、これらが順次積層されることで、以上のように、例えば、1スロット分スキューした分割スキュー積層コア10が構成される。 As shown in FIG. 2, each of the laminated upper and lower laminated core pieces 10 -1 , 10 -2, etc. is engaged with a pair of caulking portions 16, 16 formed on the yoke portion 10 Y, respectively. .., Respectively, to form a divided skew laminated core 10 in which all laminated core pieces 10 −1 , 10 −2 . As described above, in the laminated core pieces 10 −1 , 10 −2 ..., The magnetic pole teeth 10T are displaced from the lowermost layer to that of the uppermost layer by one predetermined angle from one to the other with respect to the yoke portion 10Y. As described above, for example, the divided skew laminated core 10 that is skewed by one slot is configured.

このとき、積層コア素片10-1、10-2…が、以上のように、一枚毎に継鉄部10Yに対して磁極歯10Tのみが変位した構成であり、継鉄部10Yは変位しない構成であるため、単に上下の継鉄部10Y側を正確に重ね合わせるのみで、上下の積層コア素片10-1、10-2等の継鉄部10Y相互のカシメ部16、16の嵌合固定が容易かつ確実に行えるものである。またこのように単に上下の継鉄部10Y側を正しい順序で正確に重ね合わせるのみで、磁極歯10T側が順次正確にスキューすることとなる。そのため、精度の高い良好な分割スキュー積層コア10が容易に製造し得ることとなる。 At this time, the laminated core pieces 10 −1 , 10 −2 ... Have a configuration in which only the magnetic pole teeth 10T are displaced with respect to the yoke portion 10Y for each piece as described above, and the yoke portion 10Y is displaced. Since the upper and lower yoke portions 10Y are simply accurately overlapped, the fitting portions 16 and 16 of the upper and lower laminated core pieces 10 -1 , 10 -2, etc. It can be fixed and fixed easily and reliably. In addition, simply by accurately superimposing the upper and lower yoke portions 10Y side in the correct order, the magnetic pole teeth 10T side are sequentially skewed accurately. Therefore, a good split skew laminated core 10 with high accuracy can be easily manufactured.

このような分割スキュー積層コア10は、後述するように、プレス加工に於いて、いずれかの加工段階で継鉄部10Yに、例えば、方形状等のカシメ部16を形成して置き、該プレス加工工程の終了時点で、打ち抜きを完了した積層コア素片を押し出す際に、順次、先行する加工済積層コア素片上にこれを圧接積層し、これによってその継鉄部10Yのカシメ部16を該加工済積層コア素片の継鉄部10Yのカシメ部16に容易に嵌合させて構成することができる。   As will be described later, such a split skew laminated core 10 is formed by placing a crimped portion 16 of, for example, a square shape on the yoke portion 10Y at any processing stage in the pressing process. At the end of the processing step, when the laminated core piece that has been punched is pushed out, it is sequentially pressed and laminated on the preceding processed laminated core piece, thereby the caulking part 16 of the yoke part 10Y is It can be configured by being easily fitted to the crimped portion 16 of the yoke portion 10Y of the processed laminated core piece.

以上に示してきた分割スキュー積層コア10は、前記したように、内転形回転電機の固定子、或いは外転形回転電機の回転子を構成するそれの例であるが、またこれは、以上の固定子又は回転子の積層コアを磁極歯の数に分割したものである。図面上は、特に図4に示すように、24分割した例が示してある。   As described above, the divided skew laminated core 10 described above is an example of a rotor constituting an inner rotation type rotary electric machine or an outer rotation type rotary electric machine. The laminated core of the stator or rotor is divided into the number of magnetic pole teeth. In the drawing, as shown particularly in FIG. 4, an example of 24 divisions is shown.

以上のように分割されている分割スキュー積層コア10を組み合わせて回転子又は固定子を構成する積層コアを製造する場合は、全体を二つの組、三つの組、又は四つの組等に分けて、それぞれを平面から見て部分円環状に組み合わせた上で、各組の円環状体を平面から見て円環状になるように配列して全体を組み立てることも可能であり、或いは全分割スキュー積層コア10、10…を平面から見て円環状に配列して一度に全体を組み立てることも可能である。いずれにしても、全体を組み立てる際には、予定の径より僅かに大径になるように配列し、最後に外側から若干締め付けるようにして、所定径の回転子又は固定子を構成する積層コア10Cを組み立てることができる。   When manufacturing a laminated core constituting a rotor or a stator by combining the divided skew laminated cores 10 divided as described above, the whole is divided into two groups, three groups, or four groups. It is also possible to assemble each by combining each set of annular bodies so as to form an annular shape when viewed from the plane after combining them in a partial annular shape when viewed from the plane, or a fully divided skew lamination It is also possible to assemble the entire core at once by arranging the cores 10, 10. In any case, when assembling the whole, it is arranged so that the diameter is slightly larger than the planned diameter, and finally it is slightly tightened from the outside, and a laminated core constituting a rotor or stator of a predetermined diameter 10C can be assembled.

図面に示した例では、分割スキュー積層コア10は、前記のように、24分割であるから、24個のそれを組み合わせて回転子又は固定子の積層コア10Cを組み立てることになる。この場合は、例えば、それらの分割スキュー積層コア10を6個組合わせた四つの組の円環状体を予め構成し、これらを更に4個組合わせて完全な円環状の積層コア10Cを得ることができる。また、分割スキュー積層コア10を12個組合わせた二つの組の円環状体を予め構成し、これらを2個組合わせて完全な円環状の積層コア10Cを得るようにすることもできる。勿論、図5に示すように、分割スキュー積層コア10を同時に24個組合わせて当初より完全な円環状の積層コア10Cを組み立てることもできる。前記し、図5に示すように、全体を組み立てる際には、各分割スキュー積層コア10又はこれをいくつか組み合わせた円環状体を、予定の径より僅かに大径になるように配列し、最後に外側から中心に向かって若干締め付けるようにして、所定径の回転子又は固定子を構成する積層コア10Cを組み立てるようにすることができる。こうして、図4に示すように、回転子又は固定子を構成する積層コア10Cを組み立てることができる。   In the example shown in the drawing, since the divided skew laminated core 10 is divided into 24 as described above, the rotor or stator laminated core 10C is assembled by combining 24 pieces. In this case, for example, four sets of annular bodies in which six of the divided skew laminated cores 10 are combined are configured in advance, and four of these are further combined to obtain a complete annular laminated core 10C. Can do. It is also possible to construct two sets of annular bodies in which twelve divided skew laminated cores 10 are combined in advance, and to combine these two to obtain a complete annular laminated core 10C. Needless to say, as shown in FIG. 5, it is also possible to assemble a complete annular laminated core 10C from the beginning by combining 24 divided skew laminated cores 10 at the same time. As shown in FIG. 5, when assembling the whole, the divided skew laminated cores 10 or an annular body obtained by combining several of them are arranged so that the diameter is slightly larger than the planned diameter, Finally, it is possible to assemble the laminated core 10C constituting a rotor or stator having a predetermined diameter by slightly tightening from the outside toward the center. Thus, as shown in FIG. 4, the laminated core 10C constituting the rotor or the stator can be assembled.

前記したように、分割スキュー積層コア10には、これを構成する各積層コア素片の継鉄部10Yの両端から突出する突起12Pと凹部12Hによる突起及び凹部がその継鉄部の両端から突出しており、隣接する分割スキュー積層コア10、10相互は、これらが嵌合し合うことにより、正確に位置決めされつつ結合することになる。或いは、突起12Pと凹部12Hに類するものが構成されている場合には、それらにより、同様に正確に位置決めされつつ結合することになる。   As described above, the split skew laminated core 10 has protrusions 12P protruding from both ends of the yoke portion 10Y of each laminated core piece constituting the divided core and protrusions and recesses due to the recess 12H protruding from both ends of the yoke portion. The adjacent divided skew laminated cores 10 and 10 are coupled to each other while being accurately positioned by fitting each other. Alternatively, in the case where something similar to the protrusion 12P and the recess 12H is configured, they are coupled while being positioned accurately in the same manner.

なお、図3は分割スキュー積層コア10を組合わせて構成した積層コア10Cの一部を示しているが、一部を示したのは、隣接する相互の連結部を同時に示すという便宜上である。なおまた以上に於いて、分割スキュー積層コア10にコイルを装着していない状態で積層コア10Cに組み立てたように説明しているが、これは説明の便宜上であり、実際には分割スキュー積層コア10、10…には、それぞれ対応するコイルを巻き、或いは型巻コイルを装着した上で、以上の組み立て作業を行うものである。   FIG. 3 shows a part of the laminated core 10C formed by combining the divided skew laminated cores 10, but the part is shown for the convenience of showing adjacent mutual connecting portions at the same time. In the above description, it is described that the divided skew laminated core 10 is assembled to the laminated core 10C in a state where no coil is attached. However, this is for the convenience of explanation, and actually the divided skew laminated core. 10, 10,... Are each wound with a corresponding coil or mounted with a coiled coil, and then the above assembling work is performed.

このように積層コア10Cの段階ではなく、分割スキュー積層コア10の段階でコイルを巻き、或いは型巻コイルを装着する作業を行うことにより、その作業が極めて容易になり、巻線作業若しくは型巻コイルの装着作業の自動化等も可能となる。   Thus, by performing the work of winding the coil or mounting the die-winding coil not at the stage of the laminated core 10C but at the stage of the divided skew laminated core 10, the work becomes extremely easy, and the winding work or the mold winding is performed. Coil mounting work can be automated.

図6(a)、(b)、(c)は、各々本発明の他の例の回転電機用の分割スキュー積層コア20を構成する一部の積層コア素片の平面図であり、内部が継鉄部となる内部円筒状の、内転型回転電機の回転子又は外転型回転電機の固定子に適する積層コア20Cを構成するための一部の積層コア素片20-n、20-(n+1)/2、20-1を示している。即ち、図6(a)はn層からなる内の最上部の積層コア素片20-n(n枚目)を示し、図6(b)は中間部の積層コア素片20-(n+1)/2((n+1)/2枚目)を示し、図6(c)は最下部の積層コア素片20-1(1枚目)を示している。 6 (a), 6 (b), and 6 (c) are plan views of some laminated core pieces constituting the divided skew laminated core 20 for a rotating electrical machine according to another example of the present invention. internal cylindrical as a yoke portion, the inner rotor type rotating electric machine rotor or outer rotor type rotating electrical machine of the part of the laminated core segment 20 -n for constituting the laminated core 20C suitable for the stator, 20 - (n + 1) / 2 and 20 −1 are shown. That is, FIG. 6 (a) shows the uppermost laminated core piece 20- n (nth sheet) of n layers, and FIG. 6 (b) shows the middle laminated core piece 20- (n +). 1) / 2 ((n + 1) / 2nd sheet), and FIG. 6 (c) shows the lowermost laminated core piece 20 -1 (first sheet).

以上の図6(a)、(b)、(c)から明らかなように、積層コア素片20-1、20-2…は部分円弧状の継鉄部20Yから外側に突出する磁極歯20Tを有し、該磁極歯20Tの外端両側には図示しない巻線を係止するための係止突起20Eを備えている。なおこのように磁極歯20Tを突出させる該継鉄部20Yの外側の辺20Uは円弧状の膨らみに形成されている。 As apparent from FIGS. 6 (a), 6 (b), and 6 (c), the laminated core pieces 20 -1 , 20 -2 ... Are magnetic pole teeth 20T protruding outward from the partial arc-shaped yoke portion 20Y. And a locking projection 20E for locking a winding (not shown) on both sides of the outer end of the magnetic pole tooth 20T. In this way, the outer side 20U of the yoke portion 20Y from which the magnetic pole teeth 20T protrude is formed in an arcuate bulge.

また該継鉄部20Yの各端部には、図1に示した前記積層コア素片10-1等と同様に、突起12P又は凹部12H、或いはこれと同様の機能を有する構成を施しておくべきである。 Also each end of該継iron unit 20Y, similarly to the laminated core segment 10 1 and the like shown in FIG. 1, previously subjected to a configuration having the same function as protrusion 12P or recess 12H, or which Should.

これらの図6(a)、(b)、(c)に示された積層コア素片20-n、20-(n+1)/2、20-1の間には、それらの継鉄部20Yに対する磁極歯20Tの相対位置を〔スキュー角/積層枚数n〕分ずつ変位させた(n−3)/2枚の積層コア素片がそれぞれ存在するが、煩雑さを避けるため詳細な図示は省略している。これは図1に関して説明したのと同趣旨である。 Between these laminated core pieces 20 -n , 20- (n + 1) / 2 , 20 -1 shown in FIGS. 6 (a), (b) and (c) There are (n−3) / 2 stacked core pieces, each of which is displaced by [skew angle / number of stacked sheets n] by the relative position of the magnetic pole teeth 20T with respect to 20Y. Omitted. This is the same as described with reference to FIG.

以上のように、積層コア素片20-n及び20-1の間には、それらの継鉄部20Yに対する磁極歯20Tの相対位置を〔スキュー角/積層枚数n〕分ずつ変位させたn−2枚の積層コア素片が存在することになるが、この場合、いずれの積層コア素片の磁極歯20Tも、その内端は、これを備えた積層コア素片を積層した分割スキュー積層コア20で組み立てた積層コア20Cの中心から放射方向に向かって延びるように構成する。 As described above, between the laminated core pieces 20 -n and 20 −1 , the relative position of the magnetic pole teeth 20T with respect to the yoke portion 20Y is displaced by n− (skew angle / number of laminated sheets n). There are two laminated core pieces. In this case, the pole teeth 20T of any laminated core piece have split skew laminated cores in which the inner ends of the laminated core pieces are laminated. 20 is configured to extend in the radial direction from the center of the laminated core 20 </ b> C assembled in 20.

図7は本発明の他の例の分割スキュー積層コア20を示している。この分割スキュー積層コア20は、図6(a)、(b)、(c)に示し、かつ先に説明した積層コア素片20-1、20-(n+1)/2、20-nを含むn枚の積層コア素片を積層して構成したものであり、一つの分割コアの磁極歯が1スロット分スキューされたものである。これは、先に説明したように、所要数のこれを組み合わせて内転型回転電機の回転子用積層コア又は外転型回転電機の固定子用積層コアを構成することができるものである。 FIG. 7 shows a divided skew laminated core 20 of another example of the present invention. This split skew laminated core 20 is shown in FIGS. 6A, 6B, and 6C, and the laminated core pieces 20 −1 , 20 − (n + 1) / 2 , 20 −n described above. Are formed by laminating n laminated core pieces including the magnetic pole teeth of one divided core skewed by one slot. As described above, the required number of these can be combined to form a laminated core for a rotor of an inner rotary electric machine or a laminated core for a stator of an outer rotary electric machine.

積層された各上下の積層コア素片20-1、20-2等相互は、各々継鉄部20Y等に形成されたカシメ部等を嵌合することで、それぞれ結合し、全積層コア素片20-1、20-2…が結合固定した分割スキュー積層コア20を構成している。積層コア素片20-1、20-2…は、先に述べたように、最下層のそれから最上層のそれまで継鉄部20Yに対して磁極歯20Tが、一方から他方に向かって前記所定角度ずつ変位した位置関係で形成され、これらが順次積層されることで、以上のように、例えば、1スロット分スキューした分割スキュー積層コア20が構成される。 The upper and lower laminated core pieces 20 -1 , 20 -2, etc., which are laminated are joined to each other by fitting the caulking parts formed on the yoke part 20 Y etc. 20 −1 , 20 −2 , etc. constitute a split skew laminated core 20 that is fixedly coupled. As described above, in the laminated core pieces 20 -1 , 20 -2 ..., The magnetic pole teeth 20T from the lowermost layer to that of the uppermost layer are provided with the magnetic pole teeth 20T from one side to the other. For example, as described above, the divided skew laminated core 20 is formed by skewing by one slot by forming the positional relationship shifted by an angle and sequentially laminating them.

このとき、積層コア素片20-1、20-2…が、以上のように、一枚毎に継鉄部20Yに対して磁極歯20Tのみが変位した構成であり、継鉄部20Yは変位しない構成であるため、単に上下の継鉄部20Y側を正確に重ね合わせるのみで、上下の積層コア素片20-1、20-2等の継鉄部20Y相互のカシメ部等による固定が容易かつ確実に行えるものである。またこのように単に上下の継鉄部20Y側を正しい順序で正確に重ね合わせるのみで、磁極歯20T側が順次正確にスキューすることとなる。そのため、精度の高い良好な分割スキュー積層コア20が容易に製造し得ることとなる。 At this time, the laminated core pieces 20 -1 , 20 -2 ... Have a configuration in which only the magnetic pole teeth 20T are displaced with respect to the yoke portion 20Y for each piece as described above, and the yoke portion 20Y is displaced. Since the upper and lower yoke portions 20Y are simply accurately overlapped, the upper and lower laminated core pieces 20 -1 and 20 -2 can be easily fixed by the caulking portions between the yoke portions 20Y and the like. And it can be done reliably. Further, simply by accurately superimposing the upper and lower yoke portions 20Y in the correct order, the magnetic pole teeth 20T side is sequentially accurately skewed. As a result, a good split skew laminated core 20 with high accuracy can be easily manufactured.

このような分割スキュー積層コア20は、前記した分割スキュー積層コア10と同様に、プレス加工工程の終了時点で積層固定して構成することができる。   Similar to the above-described divided skew laminated core 10, the divided skew laminated core 20 can be configured to be laminated and fixed at the end of the pressing process.

以上に示してきた分割スキュー積層コア20は、前記したように、内転形回転電機の回転子、或いは外転形回転電機の固定子を構成するそれの例であるが、またこれは、以上の固定子又は回転子の積層コアを磁極歯の数に分割したものである。図8中では18分割した例が示してある。   As described above, the divided skew laminated core 20 described above is an example of a rotor constituting an inner rotary electric machine or a stator constituting an outer rotary electric machine. The laminated core of the stator or rotor is divided into the number of magnetic pole teeth. In FIG. 8, an example of 18 divisions is shown.

以上のように分割されている分割スキュー積層コア20を組み合わせて回転子又は固定子を構成する積層コア20Cを製造する場合は、前記分割スキュー積層コア10について説明したのと同様の手順で行うことができる。図8は組み立てた磁極歯数18の積層コア20Cを示している。なお図8に於いて、分割スキュー積層コア20にコイルを装着していない状態で積層コアに組み立てたように描かれているが、これは、分割スキュー積層コア20、20相互の結合関係を分かり易くすると云う作図上の便宜によるものであり、実際には各分割スキュー積層コア20には、それぞれ対応するコイルを巻き、或いは型巻コイルを装着した上で、以上の組み立て作業を行うものである。   When manufacturing the laminated core 20C constituting the rotor or the stator by combining the divided skew laminated cores 20 divided as described above, the same procedure as described for the divided skew laminated core 10 is performed. Can do. FIG. 8 shows an assembled laminated core 20C having 18 magnetic pole teeth. In FIG. 8, the divided skew laminated core 20 is depicted as assembled to a laminated core with no coil attached thereto. This shows the coupling relationship between the divided skew laminated cores 20 and 20. This is due to the convenience of drawing, which is easy. Actually, each of the divided skew laminated cores 20 is wound with a corresponding coil or mounted with a coiled coil, and then the above assembling work is performed. .

このように積層コア20Cの状態ではなく、分割スキュー積層コア20の段階でコイルを巻き、或いは型巻コイルを装着する作業を行うことにより、その作業が極めて容易になり、巻線作業若しくは巻線の装着作業の自動化等も可能となるものである。   Thus, by performing the work of winding the coil or mounting the die-wound coil at the stage of the divided skew laminated core 20 instead of the state of the laminated core 20C, the work becomes extremely easy, and the winding work or winding The mounting work can be automated.

図9(a)、(b)、(c)は、各々本発明の回転電機用の分割スキュー積層コア30を構成する一部の積層コア素片の平面図であり、外部が継鉄部となる外部円筒状の、内転型回転電機の固定子又は外転型回転電機の回転子に適する積層コア30C(図12参照)を構成するための一部の積層コア素片を示している。即ち、図9(a)はn層からなる内の最下部の積層コア素片30-1(1枚目)を示し、図9(b)は中間部の積層コア素片10-(n+1)/2((n+1)/2枚目)を示し、図9(c)は最上部の積層コア素片10-n(n枚目)を示している。 9A, 9B, and 9C are plan views of a part of the laminated core pieces constituting the divided skew laminated core 30 for a rotating electrical machine according to the present invention. FIG. 12 shows a part of laminated core pieces for constituting a laminated core 30 </ b> C (see FIG. 12) suitable for an outer cylindrical stator of an internal rotation type rotary electric machine or a rotor of an external rotation type rotary electric machine. That is, FIG. 9A shows the lowermost laminated core piece 30 -1 (first sheet) of n layers, and FIG. 9B shows the laminated core piece 10- (n + in the middle part. 1) / 2 ((n + 1) / 2nd sheet), and FIG. 9C illustrates the uppermost laminated core piece 10- n (nth sheet).

以上の図9(a)、(b)、(c)から明らかなように、積層コア素片30-1、30-2…は部分円弧状の継鉄部30Yから内側に突出する磁極歯30Tを有し、該磁極歯30Tの内端両側には図示しない巻線を係止するための係止突起30Eを備えている。なおこのように磁極歯30Tを突出させる該継鉄部30Yの内側の辺30Uは直線的に形成されている。 Above in FIG. 9 (a), (b) , (c) to As is apparent, the laminated core segment 30 -1, 30 -2 ... magnetic pole teeth 30T projecting from partial arc shaped yoke portion 30Y inside There are provided locking projections 30E for locking a winding (not shown) on both sides of the inner end of the magnetic pole tooth 30T. In this way, the inner side 30U of the yoke portion 30Y from which the magnetic pole teeth 30T protrude is formed linearly.

また該継鉄部30Yの両端部には、前記積層コア素片10-1、10-2…のそれと同様に、突起12P又は凹部12Hを構成し、或いはこれに類する構成を備えさせるのが適当である。更に又該継鉄部30Yの外側の辺には、前記積層コア素片10-1、10-2…のそれと同様に、図示していないバックヨークに連結固定するための楔14又はこれに類する構成を施しておくのが適当である。 Further, it is preferable that the both ends of the yoke portion 30Y have the projections 12P or the recesses 12H, or a similar configuration, similar to the laminated core pieces 10 -1 , 10 -2 . It is. Furthermore the outer side of該継iron unit 30Y, the laminated core segment 10 -1, 10 -2 ... similar to the, like the wedge 14 to or for coupling fixed to the back yoke, not shown It is appropriate to apply the configuration.

これらの図9(a)、(b)、(c)に示された積層コア素片30-1、30-(n+1)/2、30-nの間には、それらの継鉄部30Yに対する磁極歯30Tの相対位置を〔スキュー角に対応する幅/積層枚数n〕分ずつ変位させた(n−3)/2枚の積層コア素片が各々存在するが、煩雑さを避けるため詳細な図示は省略している。省略の趣旨は、図1に関して説明したのと同一である。 Between these laminated core pieces 30 -1 , 30- (n + 1) / 2 , 30 -n shown in FIG. 9 (a), (b), (c) There are (n−3) / 2 laminated core pieces, each of which is displaced by [the width corresponding to the skew angle / number of laminated sheets n] by the relative position of the magnetic pole teeth 30T with respect to 30Y, but in order to avoid complications Detailed illustration is omitted. The purpose of the omission is the same as that described with reference to FIG.

以上のように、積層コア素片30-1及び30-nの間には、それらの継鉄部30Yに対する磁極歯30Tの相対位置を〔スキュー角(この場合は1/4スロット分の角度)に対応する幅(間隔)/積層枚数n〕分ずつ変位させたn−2枚の積層コア素片が存在するが、この場合、中央以外の積層コア素片の磁極歯30Tは、図9(b)に示す、中央の積層コア素片30-(n+1)/2の磁極歯30Tに平行に構成する。 As described above, during lamination core segment 30 -1 and 30 -n is the relative position of the magnetic pole teeth 30T for those yoke sections 30Y [skew angle (the angle in this case is 1/4 slots) There are n-2 laminated core pieces displaced by the width (interval) / number of laminated sheets n] corresponding to the magnetic pole teeth 30T of the laminated core pieces other than the center in this case. It is configured in parallel with the magnetic pole teeth 30T of the central laminated core piece 30- (n + 1) / 2 shown in b).

なお、中央の積層コア素片30-(n+1)/2の磁極歯30Tは、これらを備えた積層コア素片を積層した分割スキュー積層コア30で組み立てた積層コア30Cの中心方向に向かって延びるように構成する。もっとも、積層コア素片の積層枚数が偶数の場合は、厳密には中央の積層コア素片30-(n+1)/2は存在しないことになるが、この場合は、中央の積層コア素片を想定し、その磁極歯30Tを、nが奇数の場合の中央の積層コア素片の磁極歯30Tと同様に構成したものと想定し、他の積層コア素片の磁極歯30Tを全てそれに平行に構成する。 Note that the magnetic pole teeth 30T of the central laminated core piece 30- (n + 1) / 2 are directed toward the center direction of the laminated core 30C assembled by the divided skew laminated core 30 obtained by laminating the laminated core pieces including these. To extend. However, when the number of laminated core pieces is an even number, strictly speaking, there is no central laminated core piece 30- (n + 1) / 2 , but in this case, the central laminated core piece is not present. Assuming that the magnetic pole teeth 30T are configured in the same way as the magnetic pole teeth 30T of the central laminated core piece when n is an odd number, all the magnetic pole teeth 30T of the other laminated core pieces are included in it. Configure in parallel.

図10は本発明の更に他の例の分割スキュー積層コア30を示している。この分割スキュー積層コア30は、図9(a)、(b)、(c)に示し、かつ先に説明した積層コア素片30-1…、10-(n+1)/2…、10-nを含むn枚の積層コア素片を積層して構成したものであり、一つの分割スキュー積層コア30の磁極歯が1/4スロット分スキューされたものである。これは、先に説明したように、所要数のこれを組み合わせて内転型回転電機の固定子用積層コア又は外転形回転電機の回転子用積層コアを構成することができるものである。 FIG. 10 shows a divided skew laminated core 30 according to still another example of the present invention. This divided skew laminated core 30 is shown in FIGS. 9A, 9B, and 9C, and the laminated core pieces 30 −1 ... 10 − (n + 1) / 2 . In this example, n laminated core pieces including -n are laminated, and the magnetic pole teeth of one divided skew laminated core 30 are skewed by 1/4 slot. As described above, a required number of these can be combined to form a stator laminated core for an adder-type rotating electrical machine or a rotor laminated core for an outer-rotor-type rotating electrical machine.

積層された各上下の積層コア素片30-1、30-2等相互は、図1に示した積層コア素片10-1、10-2等相互と同様に、各々継鉄部30Yに形成されたカシメ部等によりそれぞれ結合し、全積層コア素片30-1、30-2…が結合固定した分割スキュー積層コア30を構成している。積層コア素片30-1、30-2…は、先に述べたように、最下層のそれから最上層のそれまで継鉄部30Yに対して磁極歯30Tが一方から他方に前記所定幅ずつ変位した位置関係で形成され、これらが順次積層されることで、以上のように、例えば、1/4スロット分スキューした分割スキュー積層コア30が構成される。 The stacked upper and lower laminated core pieces 30 -1 and 30 -2 etc. are formed in the yoke part 30Y in the same manner as the laminated core pieces 10 -1 and 10 -2 etc. shown in FIG. Each of the laminated core pieces 30 -1 , 30 -2 ... Is joined and fixed by the crimped portions and the like to constitute a divided skew laminated core 30. As described above, in the laminated core pieces 30 -1 , 30 -2 ..., The magnetic pole teeth 30T are displaced by one predetermined width from one to the other with respect to the yoke portion 30Y from the lowermost layer to the uppermost layer. As described above, for example, the divided skew laminated core 30 that is skewed by 1/4 slot is configured.

このとき、積層コア素片30-1、30-2…が、以上のように、一枚毎に継鉄部30Yに対して磁極歯30Tのみが変位した構成であり、前記積層コア素片10-1、10-2…の場合と同様の作業によって、精度の高い良好な分割スキュー積層コア30が容易に製造し得ることとなる。 At this time, the laminated core pieces 30 -1 , 30 -2 ... Have a configuration in which only the magnetic pole teeth 30T are displaced with respect to the yoke portion 30Y for each piece as described above. -1 , 10 -2 ... Can be manufactured easily with high accuracy and good divided skew laminated core 30.

以上に説明した分割スキュー積層コア30は、前記したように、内転形回転電機の固定子、或いは外転形回転電機の回転子を構成するそれの例であるが、またこれは、以上の固定子又は回転子の積層コアを磁極歯の数に分割したものである。前記分割スキュー積層コア10と同様に、図面上は24分割した例が示してある(特に図12参照)。   As described above, the divided skew laminated core 30 described above is an example of a stator constituting an inner rotary electric machine or a rotor of an outer rotary electric machine. A laminated core of a stator or a rotor is divided into the number of magnetic pole teeth. As in the case of the divided skew laminated core 10, an example of 24 divisions is shown in the drawing (refer to FIG. 12 in particular).

以上のように分割されている分割スキュー積層コア30を組み合わせて回転子又は固定子を構成する積層コア30Cを製造する場合は、図1〜図5に示した例と全く同様であり、分割スキュー積層コア10を組み合わせて構成する場合と全く同様の作業によってこれを行い、図11及び図12に示すように、容易かつ正確に積層コア30Cを組み立てることができる。   In the case of manufacturing the laminated core 30C constituting the rotor or the stator by combining the divided skew laminated cores 30 divided as described above, it is exactly the same as the example shown in FIGS. This is done by exactly the same operation as the case where the laminated cores 10 are combined, and the laminated core 30C can be assembled easily and accurately as shown in FIGS.

なおこの場合も、図11及び図12には、コイルが描かれていないが、これは分割スキュー積層コア30の組立状態を分かり易くする趣旨の作図上の便宜であり、実際には分割スキュー積層コア30には、予めそれぞれ対応するコイルを巻き、或いは型巻コイルを装着した上で、以上の組み立て作業を行うものであるのは云うまでもない。   Also in this case, the coil is not drawn in FIGS. 11 and 12, but this is for the convenience of drawing to make it easy to understand the assembled state of the divided skew laminated core 30. Needless to say, the core 30 is wound with a corresponding coil or a coiled coil, and then the above assembly operation is performed.

このように積層コア30Cの段階ではなく、分割スキュー積層コア30の段階でコイルを巻き、或いは型巻コイルを装着する作業を行うことにより、その作業が極めて容易になり、巻線作業若しくは巻線の装着作業の自動化等も可能となるのも、これより前に説明した他の例と全く同様である。   Thus, by performing the work of winding a coil or mounting a die-wound coil not at the stage of the laminated core 30C but at the stage of the divided skew laminated core 30, the work becomes extremely easy. It is possible to automate the mounting operation of the same as in the other examples described before.

図13(a)、(b)、(c)は、各々本発明の更に他の例の回転電機用の分割スキュー積層コア40(図14参照)を構成する一部の積層コア素片の平面図であり、内部が継鉄部となる内部円筒状の、内転型回転電機の回転子又は外転型回転電機の固定子に適する積層コア40C(図15参照)を構成するための一部の積層コア素片40-n、40-(n+1)/2、40-1を示している。即ち、図13(a)はn層からなる内の最下部の積層コア素片40-1(1枚目)を示し、図13(b)は中間部の積層コア素片40-(n+1)/2((n+1)/2枚目)を示し、図13(c)は最上部の積層コア素片40-n(n枚目)を示している。 FIGS. 13A, 13B, and 13C are plan views of some laminated core pieces constituting a divided skew laminated core 40 (see FIG. 14) for a rotating electrical machine according to still another example of the present invention. FIG. 15 is a diagram showing a part of an inner cylindrical core that is a yoke part and that is suitable for a rotor of an internal rotation type rotary electric machine or a stator of an external rotation type rotary electric machine (see FIG. 15). The laminated core pieces 40 -n , 40- (n + 1) / 2 and 40 -1 are shown. 13A shows the lowermost laminated core piece 40 -1 (first sheet) of n layers, and FIG. 13B shows the middle laminated core piece 40- (n + 1) / 2 ((n + 1) / 2nd sheet), and FIG. 13 (c) shows the uppermost laminated core piece 40- n (nth sheet).

以上の図13(a)、(b)、(c)から明らかなように、積層コア素片40-1、40-2…は部分円弧状の継鉄部40Yから外側に突出する磁極歯40Tを有し、該磁極歯40Tの外端両側には図示しない巻線を係止するための係止突起40Eを備えている。なおこのように磁極歯40Tを突出させる該継鉄部40Yの外側の辺40Uは直線状に形成されている。 As is clear from FIGS. 13A, 13B, and 13C, the laminated core pieces 40 -1 , 40 -2 ... Are magnetic pole teeth 40T protruding outward from the partial arc-shaped yoke portion 40Y. And a locking projection 40E for locking a winding (not shown) on both sides of the outer end of the magnetic pole tooth 40T. In this way, the outer side 40U of the yoke portion 40Y from which the magnetic pole teeth 40T protrude is formed in a straight line.

また該継鉄部40Yの各端部には、図1に示した前記積層コア素片10-1等と同様に、突起12P又は凹部12H、或いはこれと同様の機能を有する構成を施しておくのが適当である。 Also each end of該継iron unit 40Y, similarly to the laminated core segment 10 1 and the like shown in FIG. 1, previously subjected to a configuration having the same function as protrusion 12P or recess 12H, or which Is appropriate.

これらの図13(a)、(b)、(c)に示された積層コア素片40-1、40-(n+1)/2、40-nの間には、それらの継鉄部40Yに対する磁極歯40Tの相対位置を〔スキュー角に対応する幅(間隔)/積層枚数n〕分ずつ変位させた(n−3)/2枚の積層コア素片がそれぞれ存在するが、煩雑さを避けるため詳細な図示は省略している。これは、図1に関して説明したのと同趣旨である。 Between these laminated core pieces 40 -1 , 40- (n + 1) / 2 , 40 -n shown in FIGS. 13 (a), (b) and (c) There are (n−3) / 2 laminated core pieces, each of which is displaced by [width (interval) corresponding to skew angle / number of laminated sheets n] relative positions of the magnetic pole teeth 40T with respect to 40Y. In order to avoid this, detailed illustration is omitted. This is the same as described with reference to FIG.

以上のように、積層コア素片40-1及び40-nの間には、それらの継鉄部40Yに対する磁極歯40Tの相対位置を〔スキュー角に対応する幅(間隔)/積層枚数n〕分ずつ変位させたn−2枚の積層コア素片が存在するが、この場合、中央以外の積層コア素片の磁極歯40Tは、図13(b)に示す、中央の積層コア素片40-(n+1)/2の磁極歯40Tに平行に構成する。 As described above, during lamination core segment 40 -1 and 40 -n is the relative position of the magnetic pole teeth 40T for those yoke portion 40Y [width corresponding to the skew angle (interval) / the number of laminated sheets n] There are n-2 laminated core pieces displaced by minutes. In this case, the magnetic pole teeth 40T of the laminated core pieces other than the center are formed in the central laminated core piece 40 shown in FIG. -(n + 1) / 2 magnetic pole teeth 40T are configured in parallel.

なお、中央の積層コア素片40-(n+1)/2の磁極歯40Tは、これらを備えた積層コア素片を積層した分割スキュー積層コア40で組み立てた積層コア40Cの中心から放射方向に向かって延びるように構成する。もっとも、積層コア素片の積層枚数が偶数の場合は、厳密には中央の積層コア素片40-(n+1)/2は存在しないことになるが、この場合は、中央の積層コア素片を想定し、その磁極歯40Tを、nが奇数の場合の中央の積層コア素片の磁極歯40Tと同様に構成したものと想定し、他の積層コア素片の磁極歯40Tを全てそれに平行に構成する。 Note that the magnetic pole teeth 40T of the central laminated core piece 40- (n + 1) / 2 are radiated from the center of the laminated core 40C assembled by the divided skew laminated core 40 obtained by laminating the laminated core pieces having these core teeth. It is configured to extend toward However, when the number of laminated core pieces is an even number, strictly speaking, the central laminated core piece 40- (n + 1) / 2 does not exist, but in this case, the central laminated core piece is not present. Assuming that the magnetic pole teeth 40T are configured in the same manner as the magnetic pole teeth 40T of the central laminated core piece when n is an odd number, all the magnetic pole teeth 40T of the other laminated core pieces Configure in parallel.

図14は本発明の更に他の例の分割スキュー積層コア40を示している。この分割スキュー積層コア40は、図13(a)、(b)、(c)に示し、かつ先に説明した積層コア素片40-1、40-(n+1)/2、20-nを含むn枚の積層コア素片を積層して構成したものであり、一つの分割スキュー積層コア40の磁極歯が1/8スロット分スキューされたものである。これは、先に説明したように、所要数のこれを組み合わせて内転型回転電機の回転子用積層コア又は外転型回転電機の固定子用積層コアを構成することができるものである。 FIG. 14 shows a divided skew laminated core 40 according to still another example of the present invention. This divided skew laminated core 40 is composed of laminated core pieces 40 −1 , 40 − (n + 1) / 2 , 20 −n shown in FIGS. 13A, 13B and 13C and described above. In this case, n pieces of laminated core pieces including the laminated core are laminated, and the magnetic pole teeth of one divided skew laminated core 40 are skewed by 1/8 slot. As described above, the required number of these can be combined to form a laminated core for a rotor of an inner rotary electric machine or a laminated core for a stator of an outer rotary electric machine.

積層された各上下の積層コア素片40-1、40-2等相互は、各々継鉄部40Y等に形成されたカシメ部等を嵌合することで、それぞれ結合し、全積層コア素片40-1、40-2…が結合固定した分割スキュー積層コア40を構成している。積層コア素片40-1、40-2…は、先に述べたように、最下層のそれから最上層のそれまで継鉄部40Yに対して磁極歯40Tが、一方から他方に向かって前記所定単位幅ずつ変位した位置関係で形成され、これらが順次積層されることで、以上のように、例えば、1/8スロット分スキューした分割スキュー積層コア40が構成される。 The upper and lower laminated core pieces 40 -1 , 40 -2 etc., which are laminated, are joined to each other by fitting the caulking parts etc. formed in the yoke part 40Y etc., respectively. 40 −1 , 40 −2 , etc. constitute a split skew laminated core 40 that is fixedly coupled. As described above, the laminated core pieces 40 -1 , 40 -2 ... Have the magnetic pole teeth 40T with respect to the yoke portion 40Y from that of the lowermost layer to that of the uppermost layer. For example, as described above, the divided skew stacked core 40 skewed by 1/8 slot is formed by forming the positional relationships displaced by unit widths and sequentially stacking them.

このとき、積層コア素片40-1、40-2…が、以上のように、一枚毎に継鉄部40Yに対して磁極歯40Tのみが変位した構成であり、継鉄部40Yは変位しない構成であるため、単に上下の継鉄部40Y側を正確に重ね合わせるのみで、上下の積層コア素片40-1、40-2等の継鉄部40Y相互のカシメ部等による固定が容易かつ確実に行えるものである。またこのように単に上下の継鉄部40Y側を正しい順序で正確に重ね合わせるのみで、磁極歯40T側が順次正確にスキューすることとなる。そのため、精度の高い良好な分割スキュー積層コア40が容易に製造し得ることともなる。 At this time, the laminated core pieces 40 -1 , 40 -2 ... Have a configuration in which only the magnetic pole teeth 40T are displaced with respect to the yoke portion 40Y for each piece as described above, and the yoke portion 40Y is displaced. Since the upper and lower yoke portions 40Y are simply accurately overlapped, the upper and lower laminated core pieces 40 -1 and 40 -2 can be easily fixed by the caulking portions between the yoke portions 40Y and the like. And it can be done reliably. Further, simply by accurately superimposing the upper and lower yoke portions 40Y side in the correct order, the magnetic pole teeth 40T side sequentially skews accurately. For this reason, it is possible to easily manufacture a good divided skew laminated core 40 with high accuracy.

このような分割スキュー積層コア40は、前記した分割スキュー積層コア10と同様に、プレス加工工程の終了時点で積層固定して構成することができる。   Such a divided skew laminated core 40 can be configured to be laminated and fixed at the end of the press working step, similarly to the divided skew laminated core 10 described above.

以上に示してきた分割スキュー積層コア40は、前記したように、内転形回転電機の回転子、或いは外転形回転電機の固定子を構成するそれの例であるが、またこれは、以上の固定子又は回転子の積層コアを磁極歯の数に分割したものである。図15中では18分割した例が示してある。   As described above, the divided skew laminated core 40 described above is an example of a rotor constituting an inner rotary electric machine or a stator constituting an outer rotary electric machine. The laminated core of the stator or rotor is divided into the number of magnetic pole teeth. FIG. 15 shows an example of 18 divisions.

以上のように分割されている分割スキュー積層コア40を組み合わせて回転子又は固定子を構成する積層コア40Cを製造する場合は、前記分割スキュー積層コア10について説明したのと同様の手順で行うことができる。図15は組み立てた磁極歯数18の積層コアを示している。なお図15に於いて、分割スキュー積層コア40にコイルを装着していない状態で積層コアに組み立てたように描かれているが、これは、分割スキュー積層コア40、40相互の結合関係を分かり易くすると云う作図上の便宜によるものであり、先に説明した他の例と同様に、実際には分割スキュー積層コア40には、それぞれ対応するコイルを巻き、或いは型巻コイルを装着した上で、以上の組み立て作業を行うものである。   When manufacturing the laminated core 40C constituting the rotor or the stator by combining the divided skew laminated cores 40 divided as described above, the same procedure as described for the divided skew laminated core 10 is performed. Can do. FIG. 15 shows an assembled laminated core having 18 magnetic pole teeth. In FIG. 15, the divided skew laminated core 40 is depicted as assembled to a laminated core with no coil attached, but this shows the coupling relationship between the divided skew laminated cores 40, 40. This is due to the convenience in drawing, and in the same manner as in the other examples described above, the divided skew laminated core 40 is actually wound with a corresponding coil or a die coil. The above assembly work is performed.

このように積層コア40Cの段階ではなく、分割スキュー積層コア40の段階でコイルを巻き、或いは型巻コイルを装着する作業を行うことにより、その作業が極めて容易になり、巻線作業若しくは巻線の装着作業の自動化等も可能となるのも、先に説明した他の例と同様である。   As described above, by performing the work of winding the coil or mounting the die-wound coil at the stage of the divided skew laminated core 40 instead of the stage of the laminated core 40C, the work becomes extremely easy. It is possible to automate the mounting operation of the same as in the other examples described above.

ところで本発明の図2及び図7に図示した形状の分割スキュー積層コア10、20の製造にあたっては、プレス加工による積層コア素片10-1、10-2…、20-1、20-2…の打ち抜き加工からそれらの積層固定までの作業を連続的に行うことができる。 By the way, in manufacturing the divided skew laminated cores 10 and 20 having the shapes shown in FIGS. 2 and 7 of the present invention, the laminated core pieces 10 −1 , 10 −2 ... 20 −1 , 20 −2 . The operations from the punching process to the stacking and fixing thereof can be performed continuously.

例えば、図16に示すように、積層コア用素材である帯状の珪素鋼板又は電磁鋼板等のコア素材鋼板Sをプレス装置の各加工ステージを通過させるようにセットし、これを順次間欠的に給送しながら連続的に加工可能に構成することができる。或いは、積層コア用素材である小板片状の珪素鋼板又は電磁鋼板等のコア素材鋼板をプレス装置の各加工ステージに順次配しながら連続的に加工可能に構成することができる。前者は複合型による順送り加工等になり、後者は単型による加工になるが、個々の加工ステージで行う加工動作は、同様である。以下には概ね複合型を前提に説明する。   For example, as shown in FIG. 16, a core material steel plate S such as a band-shaped silicon steel plate or electromagnetic steel plate, which is a laminated core material, is set so as to pass through each processing stage of the press device, and this is sequentially and intermittently supplied. It can be configured so that it can be continuously processed while being fed. Alternatively, a core material steel plate such as a small piece piece of silicon steel plate or electromagnetic steel plate, which is a laminated core material, can be continuously processed while being sequentially arranged on each processing stage of the press device. The former is a progressive feed by a composite die, and the latter is a single die, but the machining operations performed at individual machining stages are the same. The following explanation is based on the assumption of a composite type.

プレス加工に於いて、積層コア素片の、最下層から最上層までのいずれのそれでも形状の変化しない部位、即ち、継鉄部の両端部、背面側の辺(磁極歯の結合する辺(正面側の辺)と反対側の辺)、正面側の辺及び磁極歯の先端の加工は、相対位置が変化しない固定型によって打ち抜き加工を行うことができる。   In pressing, any part of the laminated core piece from the bottom layer to the top layer where the shape does not change, that is, both ends of the yoke part, the side on the back side (side where the magnetic pole teeth are joined (front side) The side of the side) and the side of the opposite side), the front side, and the tip of the magnetic pole teeth can be punched by a fixed die whose relative position does not change.

これに対して、磁極歯は、それが結合する継鉄部の正面側の辺(又は背面側の辺)の位置が、最下層の積層コア素片から最上層のそれまで、順次、該辺の一端側のある部位から他端側のある部位まで、前記スキュー角を積層枚数で除した単位角ずつ変化するため、その両側を打ち抜く可動型を、積層コア素片1枚毎に、その変化量を前記単位角ずつ順次変位させながら打ち抜き加工を行うべきである。   On the other hand, in the magnetic pole teeth, the position of the front side (or the back side) of the yoke part to which the magnetic pole teeth are coupled is sequentially changed from the lowest layered core element to that of the uppermost layer. Since the skew angle is divided by a unit angle obtained by dividing the skew angle by the number of laminated sheets from a certain part on one end side to a certain part on the other end side, the movable die punched on both sides is changed for each laminated core piece. Punching should be performed while the amount is sequentially displaced by the unit angle.

なお、前記継鉄部の正面側の辺又は背面側の辺の一端側のある部位から他端側のある部位までを、前記〔スキュー角/積層枚数〕に於ける「スキュー角」に対応するものとする。即ち、これらの積層コア素片を積層してなる分割スキュー積層コアで製造する積層コアの中心と、該継鉄部の正面側の辺又は背面側の辺の「一端側のある部位」及び「他端側のある部位」とをそれぞれ結ぶ線がなす角度が前記「スキュー角」となるようにする訳である。   In addition, from the part on one side of the side on the front side or the side on the back side of the yoke part to the part on the other end side corresponds to the “skew angle” in the above [skew angle / number of stacked layers]. Shall. That is, the center of the laminated core manufactured by the divided skew laminated core obtained by laminating these laminated core pieces, and the “part on one end side” of the front side or the back side of the yoke portion and “ The angle formed by the lines connecting the “parts on the other end side” is the “skew angle”.

このようなプレス加工は、前記のように、コア素材鋼板Sを順次送りながら、常に一定の形状の部位は固定型によって打ち抜き、一枚ごとに変化のある部位は、可動型を一枚ごとに単位変化量分だけ変位させた上で打ち抜き、更に各一枚の打ち抜きが完了する毎に、プレス工程に連動して打ち抜きの完了した積層コア素片を重ね合わせる積層工程を行うこととすることができる。   As described above, in such a pressing process, while the core material steel sheet S is sequentially fed, a portion having a constant shape is always punched by a fixed die, and a portion having a change from one piece to another is formed by moving a movable die one by one. Punching after displacement by the unit change amount, and each time one punching is completed, a lamination process is performed in which the laminated core pieces that have been punched are overlapped in conjunction with the pressing process. it can.

前記可動型は、磁極歯両側の打ち抜き用加工ステージにある打ち抜き途上の積層コア素片との関係で、該積層コア素片の継鉄部を端部方向に延長した場合に形成される円弧の中心に当たる点を回動中心として回動するベースに取り付け、該ベースを前記スキュー角を積層枚数nで割って得た角度を単位角度として、一枚の積層コア素片毎に該単位角度ずつ変位させて打ち抜き動作させることにより、磁極歯を一枚目の積層コア素片からn枚目の積層コア素片まで容易かつ正確に打ち抜くことができる。   The movable mold has a circular arc formed when the yoke portion of the laminated core piece is extended in the end direction in relation to the laminated core piece in the punching process on both sides of the magnetic pole teeth. Mounted on a rotating base with the point corresponding to the center as the rotation center, and the base is displaced by the unit angle for each laminated core element, with the angle obtained by dividing the skew angle by the number n of laminated layers as a unit angle By performing the punching operation, the magnetic pole teeth can be easily and accurately punched from the first laminated core piece to the nth laminated core piece.

前記積層工程は、最後の打ち抜き工程が完了すると、そのまま打ち抜きが完了した積層コア素片を所定の積層部位に押し込み、先行して押し込まれた積層コア素片に圧接積層するようにすれば極めて容易に一枚目からn枚目までの積層コア素片の積層が完了できる。   When the final punching process is completed, the stacking process is extremely easy if the stacked core piece that has been punched is pushed into a predetermined stacking part and pressure-laminated to the previously pressed stacked core piece. In addition, the lamination of the laminated core pieces from the first sheet to the nth sheet can be completed.

継鉄部の両端に構成する突起12P及び凹部12H又はこれに類する構成、或いはカシメ部16又はこれに類する構成は、前記固定型又は他の型に必要な構成を加える等により適切な段階でプレス加工することが可能である。   The projections 12P and the recesses 12H configured at both ends of the yoke portion or a configuration similar thereto, or the crimping portion 16 or a configuration similar thereto are pressed at an appropriate stage by adding a necessary configuration to the fixed mold or another mold. It is possible to process.

このように構成された加工を要約すれば、(1)継鉄部の両側部打ち抜き工程、(2)磁極歯両側部の角度変位を加えた打ち抜き工程、(3)継鉄部の背面及び磁極歯の先端部の打ち抜き工程の3工程によって分割スキュー積層コアの所定積層部位に対応する積層コア素片が得られ、更に(4)得られた積層コア素片をその順序通りに積層する積層工程を加えることにより、該積層コア素片を積層した分割スキュー積層コアを製造することができることになる。   Summarizing the machining configured in this way, (1) the punching process on both sides of the yoke, (2) the punching process with the angular displacement of both sides of the magnetic pole teeth, (3) the back surface of the yoke and the magnetic pole A laminated core piece corresponding to a predetermined laminated portion of the divided skew laminated core is obtained by three steps of the tooth tip punching process, and (4) a laminated step of laminating the obtained laminated core pieces in that order. As a result, it is possible to manufacture a split skew laminated core in which the laminated core pieces are laminated.

また本発明の図10及び図14に図示した形状の分割スキュー積層コア30、40の製造にあたっては、プレス加工による積層コア素片30-1、30-2…、40-1、40-2…の打ち抜き加工からそれらの積層固定までの作業を連続的に行うことができる。 Further, in manufacturing the divided skew laminated cores 30 and 40 having the shapes shown in FIGS. 10 and 14 of the present invention, the laminated core pieces 30 −1 , 30 −2 ... 40 −1 , 40 −2 . The operations from the punching process to the stacking and fixing thereof can be performed continuously.

例えば、先に説明し、図17に示すように、コア素材鋼板Sをプレス装置の加工ステージを通過させるようにセットし、これを順次給送しながら連続的に加工可能に構成することができる。この場合も、当然、積層コア用素材である小板片状の珪素鋼板又は電磁鋼板等のコア素材鋼板をプレス装置の各加工ステージに順次配しながら連続的に加工することが可能であるように構成することができる。前者は複合型による順送り加工等になり、後者は単型による加工になるが、個々の加工ステージで行う加工動作は、同様である。この場合も以下には概ね複合型を前提に説明する。   For example, as described above and as shown in FIG. 17, the core material steel plate S can be set so as to pass through the processing stage of the press device, and can be continuously processed while being fed sequentially. . In this case as well, naturally, it is possible to continuously process the core material steel plate such as a small piece piece silicon steel plate or electromagnetic steel plate, which is a material for the laminated core, while sequentially arranging it on each processing stage of the press device. Can be configured. The former is a progressive feed by a composite die, and the latter is a single die, but the machining operations performed at individual machining stages are the same. In this case as well, the following description will be based on the assumption of a composite type.

プレス加工に於いて、積層コア素片の、最下層から最上層までのいずれのそれでも形状の変化しない部位、即ち、継鉄部の両端部、継鉄部の正面側の辺又は背面側の辺、及び磁極歯の先端の加工は、相対位置が変化しない固定型によって打ち抜き加工を行い、これに対して、磁極歯は、それが結合する継鉄部の正面側の辺(又は背面側の辺)の位置が、最下層の積層コア素片から最上層のそれまで、順次、前記スキュー角に対応する該辺の一端側のある部位から他端側のある部位までの範囲(間隔)で、その範囲(間隔)を積層枚数で除した単位幅ずつ変化するため、その両側を打ち抜く可動型を、積層コア素片1枚毎に、該単位幅ずつ順次変位させながら打ち抜き加工を行うべきである。   In pressing, any part of the laminated core piece from the bottom layer to the top layer where the shape does not change, that is, both ends of the yoke part, the front side edge or the back side edge of the yoke part In addition, the tip of the magnetic pole tooth is punched by a fixed die whose relative position does not change, whereas the magnetic pole tooth is the front side (or the back side) of the yoke part to which it is coupled. ) Position in the range (interval) from a part on one side of the side corresponding to the skew angle to a part on the other side, sequentially from the lowermost laminated core piece to that of the uppermost layer, In order to change the range (interval) by the unit width divided by the number of stacked layers, the punching process should be performed while the movable die punched on both sides is sequentially displaced by the unit width for each stacked core piece. .

なお、磁極歯の両側を打ち抜く以上の可動型は、打ち抜き対象の磁極歯を次の方向に向けた状態に打ち抜き得るように構成しておく。即ち、前記スキュー角の中心に位置する又は中心に位置するものと想定した磁極歯(以下中心の磁極歯)以外の磁極歯の突出方向を、中心の磁極歯の突出方向と平行になるようにし、該中心の磁極歯の突出方向を、前記積層コア素片を積層してなる分割スキュー積層コアを組み合わせて製造する積層コアの中心から放射方向に延びる方向と一致させるものとする。   In addition, the movable mold | type more than punching the both sides of a magnetic pole tooth is comprised so that the magnetic pole tooth to be punched can be punched in the state which turned to the next direction. That is, the protruding direction of the magnetic pole teeth other than the magnetic pole teeth (hereinafter referred to as the central magnetic pole teeth) that are assumed to be located at the center or the center of the skew angle is made parallel to the protruding direction of the central magnetic pole teeth. The projecting direction of the magnetic pole teeth at the center is made to coincide with the direction extending in the radial direction from the center of the laminated core manufactured by combining the divided skew laminated cores formed by laminating the laminated core pieces.

このようなプレス加工は、前記のように、コア素材鋼板Sを順次送りながら、常に一定の形状の部位は固定型によって打ち抜き、一枚ごとに変化のある部位は、可動型を一枚ごとに単位変化量分だけ変位させた上で打ち抜き、更に各一枚の打ち抜きが完了する毎に、打ち抜き済の積層コア素片を該プレス工程に連動して先行する積層コア素片に重ね合わせる積層工程を行うこととすることができる。   As described above, in such a pressing process, while the core material steel sheet S is sequentially fed, a portion having a constant shape is always punched by a fixed die, and a portion having a change from one piece to another is formed by moving a movable die one by one. Punching after displacing by the unit change amount, and stacking the punched laminated core piece on the preceding laminated core piece in conjunction with the pressing process each time punching is completed. Can be done.

前記可動型は、打ち抜き用加工ステージにある打ち抜き途上の積層コア素片との関係で、少なくともその磁極歯突出部位の範囲で前記コア素材鋼板Sの送り方向と平行に往復動し得るベースに取り付け、該ベースを、最下層の磁極歯と最上層の磁極歯の間隔、即ち、前記スキュー角に対応する間隔を積層コア素片の積層枚数で除した単位幅ずつ該コア素材鋼板Sの送り方向と平行に移動させ、その単位幅の移動毎に当該位置で打ち抜き動作できるように構成することにより、パラレルスキューを構成する磁極歯を一枚目の積層コア素片からn枚目の積層コア素片まで容易かつ正確に打ち抜くことができるようにし得る。   The movable mold is attached to a base that can reciprocate in parallel with the feed direction of the core material steel sheet S at least in the range of the magnetic pole tooth projecting portion in relation to the punched laminated core piece on the punching processing stage. The feed direction of the core material steel sheet S by a unit width obtained by dividing the base by the interval between the lowermost magnetic pole teeth and the uppermost magnetic pole teeth, that is, the interval corresponding to the skew angle, by the number of laminated core pieces. The magnetic pole teeth that constitute the parallel skew are moved from the first laminated core element to the nth laminated core element. It is possible to easily and accurately punch a piece.

このように構成された加工工程は、先に示し、図16に示したものと、可動型の動きに若干の違いがあるのみで、基本的には同一であり、精度の高い分割スキュー積層コアを容易に製造し得ることになる。   The processing steps configured in this way are basically the same as those shown above and shown in FIG. 16 except that there is a slight difference in the movement of the movable type. Can be easily manufactured.

図16に於いて、帯状の珪素鋼板又は電磁鋼板である積層コア用素材Sを、プレス装置の全加工ステージ上に於いて、矢印aに示すように、同図中左から右に順次間欠的に給送するようにする。またプレス装置の左から右に並んだ各加工ステージには、工程I用の端部抜き型50、52、工程II用の側部抜き型54、56及び工程III用の辺抜き型58並びに先端抜き型60がその順序で配設してある。   In FIG. 16, the laminated core material S, which is a band-shaped silicon steel plate or electromagnetic steel plate, is intermittently sequentially from left to right in the drawing as indicated by an arrow a on all the processing stages of the press device. To feed. Further, the processing stages arranged from the left to the right of the press apparatus include end cutting dies 50 and 52 for process I, side cutting dies 54 and 56 for process II, edge cutting dies 58 for process III, and tips. The punching dies 60 are arranged in that order.

前記工程I用の端部抜き型50、52は固定型であり、同図に示すように、該工程Iの段階で積層コア素片の継鉄部の両端を打ち抜く位置関係で、図示しない型フレームに固設する。また前記工程III用の辺抜き型58及び先端抜き型60も固定型であり、同図に示すように、該辺抜き型58は、該工程IIIの段階で積層コア素片の継鉄部の背面側の辺を打ち抜く位置関係で、該型フレームに固設し、該先端抜き型60は、同様に該工程IIIの段階で積層コア素片の磁極歯の先端を打ち抜く位置関係で、該型フレームに固設する。   The end punching dies 50 and 52 for the process I are fixed dies, and as shown in the figure, a die not shown in the positional relationship of punching both ends of the yoke part of the laminated core piece at the stage of the process I. Secure to the frame. In addition, the side punching die 58 and the tip punching die 60 for the process III are also fixed, and as shown in the figure, the side punching die 58 is used for the yoke portion of the laminated core piece at the stage of the step III. In the positional relationship of punching the side on the back side, the die frame is fixed to the die frame, and the tip punching die 60 is similarly placed in the positional relationship of punching the tips of the magnetic pole teeth of the laminated core piece in the step III. Secure to the frame.

なお、前記工程I用の端部抜き型50、52には、図示していない突起又は凹部形成部が構成してあり、積層コア素片の継鉄部の一端には突起を、他端には凹部を、それぞれ打ち抜き形成できるようになっている。また該工程Iに於いて、図示しない他の型によって継鉄部に一対のカシメ部が押圧形成できるようになっている。   Note that the end punching dies 50 and 52 for the step I are configured with projections or recess forming portions (not shown), with projections at one end of the yoke portion of the laminated core piece and at the other end. Can be formed by punching each of the recesses. Further, in the step I, a pair of caulking portions can be pressed and formed on the yoke portion by another mold (not shown).

これらの固定型に対して、前記工程II用の側部抜き型54、56は可動型であり、同図に示すように、回動中心Cを中心として回動可能に配されたベース62に固設したものである。また該回動中心Cは、該工程IIで打ち抜かれる積層コア用素材S上の積層コア素片の継鉄部を端部方向に延長するものとした場合に形成される仮想円弧の中心に相当する点に設定するものとする。このベース62は、前記型フレームに、以上のように、回動中心Cを中心として回動可能に取り付けるものとする。   In contrast to these fixed molds, the side punching molds 54 and 56 for the step II are movable molds, and as shown in the figure, on a base 62 disposed so as to be rotatable around a rotation center C. It is fixed. The rotation center C corresponds to the center of a virtual arc formed when the yoke portion of the laminated core piece on the laminated core material S punched in the step II is extended in the end direction. It shall be set to the point to be. The base 62 is attached to the mold frame so as to be rotatable about the rotation center C as described above.

前記ベース62の前記回動中心Cと反対側には、ピニオン64に噛み合うセクタギア66が形成してあり、該ピニオン64は、図示しないステッピングモータによって回転駆動されるようになっている。また該ステッピングモータは制御手段によって制御され、前記ベース62を単位角度ずつ回転させるべく、該ピニオン64を回転動作させ得るようになっている。なお前記単位角度は〔スキュー角/積層枚数〕に相当する角度である。   A sector gear 66 that meshes with a pinion 64 is formed on the side of the base 62 opposite to the rotation center C, and the pinion 64 is rotationally driven by a stepping motor (not shown). The stepping motor is controlled by a control means so that the pinion 64 can be rotated to rotate the base 62 by a unit angle. The unit angle is an angle corresponding to [skew angle / number of stacked layers].

前記工程IIIの加工ステージの下方には、下型に隣接して、図示しない所定深さの積層部が構成してある。該積層部は、全積層コア素片に於いて形状寸法が同一である継鉄部の両端に接するガイド壁を有する空間であり、上型側に打ち抜き完了の積層コア素片を、打ち抜き完了と同時に、該積層部に押し込む押し込み手段をも備えたものである。   Below the processing stage in step III, a laminated portion having a predetermined depth (not shown) is formed adjacent to the lower mold. The laminated portion is a space having guide walls that are in contact with both ends of the yoke portion having the same shape and dimension in all the laminated core pieces. At the same time, a pushing means for pushing into the laminated portion is also provided.

なお以上の工程I用、II用及びIII用の型は、いずれも同一の型フレームに配されたものであり、同時に打ち抜き動作を行うことになる。   The molds for the above processes I, II, and III are all arranged in the same mold frame, and the punching operation is performed at the same time.

従って、前記コア素材鋼板Sは間欠的に給送されながら、全加工ステージで同時に加工動作が行われる。先頭の工程I用の加工ステージでは、端部抜き型50、52により継鉄部の両端が突起及び凹部と共に打ち抜かれ、同時に、継鉄部中には一対のカシメ部が押圧形成される。また次の工程II用の加工ステージでは、側部抜き型54、56により磁極歯の両側部が打ち抜かれる。これは、これに先立つピニオン64の該当する一定の回転動作によりベース62を必要な角度に回動させられた上で行われる。打ち抜き開始時であれば、図16中、ベース62は、上部が最も左側に回動させられた状態にセットされ、その後は、順次、単位角度ずつ右側に回動した上で打ち抜き動作に入ることになる。最後の工程III用の加工ステージでは、工程I及びIIと同時に、辺抜き型58により継鉄部の背面側の辺が、先端抜き型60により磁極歯の先端が、それぞれ打ち抜かれ、この工程III用の加工ステージでは、更にこれによって積層コア素片の加工が完了すると、これと同時に押し込み手段による加工の完了した積層コア素片の積層動作が行われる。   Accordingly, while the core material steel plate S is intermittently fed, the machining operation is performed simultaneously on all the machining stages. In the processing stage for the first step I, both ends of the yoke part are punched out together with the protrusions and the recesses by the end punching dies 50 and 52, and at the same time, a pair of crimping parts are pressed and formed in the yoke part. In the processing stage for the next step II, both sides of the magnetic pole teeth are punched out by the side punching dies 54 and 56. This is performed after the base 62 is rotated to a necessary angle by a corresponding fixed rotation operation of the pinion 64 prior to this. At the start of punching, the base 62 in FIG. 16 is set in a state where the upper part is rotated to the leftmost side, and thereafter, after sequentially rotating to the right by the unit angle, the punching operation is started. become. In the last processing stage for Step III, simultaneously with Steps I and II, the side on the back side of the yoke portion is punched by the edge-cutting die 58 and the tip of the magnetic pole tooth is punched by the tip-cutting die 60, respectively. In this processing stage, when the processing of the laminated core piece is further completed, the laminated core piece that has been processed by the pushing means is simultaneously laminated.

該押し込み手段による積層動作は、既述のように、打ち抜き加工が完了した積層コア素片を、前記工程IIIの加工ステージで、下方の空間である積層部に押し込み押圧動作を行うことによって行う。先行して加工済の積層コア素片が該積層部に押し込まれていれば、その上に後行する積層コア素片が圧接され、継鉄部に構成した一対のカシメ部相互が嵌合しあって積層状態で固定されることになる。   As described above, the laminating operation by the pushing means is performed by pushing the laminating core piece that has been punched into the laminating portion, which is a lower space, on the processing stage of Step III. If the previously processed laminated core piece is pushed into the laminated portion, the subsequent laminated core piece is pressed onto the laminated portion, and the pair of caulking portions formed in the yoke portion are fitted to each other. Therefore, it is fixed in a laminated state.

以上の工程が繰り返されることで、1セットの積層コア素片が順次打ち抜き加工され、かつ順次積層固定されることで、一つの分割スキュー積層コアの製造が完了することになる。   By repeating the above steps, one set of laminated core pieces is sequentially punched and sequentially laminated and fixed, thereby completing the production of one divided skew laminated core.

以上に於いては、前記のような型を用いて製造工程を行ったので、図1に示した積層コア素片10-1 、10-2…を打ち抜き形成し、これらを積層して図2に示した分割スキュー積層コア10を容易にかつ精度高く製造することができたものである。 In the above, since the manufacturing process was performed using the mold as described above, the laminated core pieces 10 −1 , 10 −2 ... Shown in FIG. The divided skew laminated core 10 shown in (1) can be manufactured easily and with high accuracy.

このように、以上に於いては、図2に示した分割スキュー積層コア10を製造する工程を説明したが、図16に示したそれぞれの型を、回転軸側に継鉄部があって磁極歯が放射状に外方に向かう内側円筒状の積層コアを作成するための積層コア素片を打ち抜く型に変更すれば、全く同様の工程を経て、図6に示す積層コア素片20-1、20-2…を打ち抜き形成し、かつこれらを積層して図7に示す分割スキュー積層コア20を製造することができる。 Thus, in the above, the process of manufacturing the divided skew laminated core 10 shown in FIG. 2 has been described. However, each die shown in FIG. 16 has a yoke portion on the rotating shaft side and a magnetic pole. If the laminated core piece for producing the inner cylindrical laminated core whose teeth are radially outward is changed to a die for punching, the same process is followed to obtain the laminated core piece 20 -1 shown in FIG. 20 −2 ... Can be formed by punching, and these can be laminated to produce the divided skew laminated core 20 shown in FIG.

これらの分割スキュー積層コアは、以上のように簡単に製造することができるものであり、かつ、前記したように、容易に積層コアに組み立てることもできる。磁極歯に、積層コアに組み立てる前に巻線を巻き、或いは型巻きコイルを装着する作業も簡単に行え、必要に応じてこれらの作業を自動化するのも容易である。   These divided skew laminated cores can be easily manufactured as described above, and can be easily assembled into a laminated core as described above. It is also possible to easily perform winding work or mounting a coil winding coil on the magnetic pole teeth before assembling the laminated core, and it is easy to automate these work if necessary.

図17に於いて、帯状の珪素鋼板又は電磁鋼板である積層コア用素材Sを、プレス装置の各加工ステージに於いて、矢印bに示すように、同図中左から右に順次間欠的に給送する。プレス装置の各加工ステージは左から右に並べて構成してあり、これらの各ステージには、以下に述べる順序で、工程I用の端部抜き型70、71、工程II用の側部抜き型72、73及び工程III用の辺抜き型74並びに先端抜き型75を左から右に配設する。   In FIG. 17, the laminated core material S, which is a band-shaped silicon steel plate or electromagnetic steel plate, is intermittently sequentially from left to right in the drawing, as indicated by arrows b, at each processing stage of the press device. To feed. The processing stages of the press apparatus are arranged side by side from left to right, and in each of these stages, end cutting dies 70 and 71 for process I and side cutting dies for process II are arranged in the order described below. 72, 73 and the edge punching die 74 and the tip punching die 75 for the process III are arranged from the left to the right.

前記工程I用の端部抜き型70、71は固定型であり、同図に示すように、該工程Iの段階で積層コア素片の継鉄部の両端を打ち抜く位置関係で図示しない型フレームに固設する。また前記工程III用の辺抜き型74及び先端抜き型75も固定型であり、同図に示すように、該辺抜き型74は、該工程IIIの段階で積層コア素片の継鉄部の背面側の辺を打ち抜く位置関係で該型フレームに固設し、該先端抜き型75は、同様に該工程IIIの段階で積層コア素片の磁極歯の先端を打ち抜く位置関係で該型フレームに固設する。これらの構成は実施例1のそれと同様である。   The end punching molds 70 and 71 for the process I are fixed molds, and as shown in the figure, a mold frame not shown in the positional relationship of punching both ends of the yoke part of the laminated core piece at the stage of the process I. Secure to. In addition, the side punching die 74 and the tip punching die 75 for the process III are also fixed, and as shown in the figure, the side punching die 74 is used as the yoke part of the laminated core piece at the stage of the step III. The tip punching die 75 is fixed to the die frame in a positional relationship by punching the tips of the magnetic pole teeth of the laminated core piece in the step III. Secure. These configurations are the same as those of the first embodiment.

なお、前記工程I用の端部抜き型70、71には、図示していない突起又は凹部形成部が構成してあり、積層コア素片の継鉄部の一端には突起を、他端には凹部を、それぞれ打ち抜き形成できるようになっている。また該工程Iに於いて、図示しない他の型によって継鉄部に一対のカシメ部が押圧形成できるようになっている。これも実施例1のそれと同様である。   Note that the end punching dies 70 and 71 for the step I are configured with projections or recess forming portions (not shown), with projections at one end of the yoke portion of the laminated core piece and at the other end. Can be formed by punching each of the recesses. Further, in the step I, a pair of caulking portions can be pressed and formed on the yoke portion by another mold (not shown). This is the same as that of the first embodiment.

これらの固定型に対して、前記工程II用の側部抜き型72、73は可動型であり、同図中矢印cに示すように、前記積層コア用素材Sの給送方向と平行に往復動自在に配されたベース76に固設したものである。該ベース76は、対象の分割スキュー積層コアのスキュー角に対応する磁極歯の間隔、即ち、最下層の磁極歯と最上層の磁極歯との間の間隔を積層コア素片の積層枚数で除して得られる分割間隔を単位移動幅とし、この単位移動幅ずつ積層コア用素材Sの給送方向と平行移動させて、一枚ごとに異なる磁極歯の両側を打ち抜くように構成する。   In contrast to these fixed molds, the side punching molds 72 and 73 for the step II are movable molds, and reciprocate in parallel with the feeding direction of the laminated core material S as indicated by an arrow c in FIG. It is fixed to a base 76 that is movably arranged. The base 76 divides the interval between the magnetic pole teeth corresponding to the skew angle of the target divided skew laminated core, that is, the interval between the lowermost magnetic pole tooth and the uppermost magnetic pole tooth by the number of laminated core pieces. The division interval obtained in this way is defined as a unit movement width, and the unit movement width is moved in parallel with the feeding direction of the laminated core material S so that both sides of different magnetic pole teeth are punched out one by one.

前記ベース76は、打ち抜き動作開始直後は、図17中の左端に位置しており、その位置で、側部抜き型72、73による磁極歯の両側部の打ち抜きが行われ、次には、該ベース76が前記単位移動幅だけ右方向に移動した上で、側部抜き型72、73による磁極歯の両側部の打ち抜きが行われ、こうしてベース76は最終的には最も右側まで移動し、同様の磁極歯両側部の打ち抜き動作が行われる。   The base 76 is located at the left end in FIG. 17 immediately after the start of the punching operation. At that position, the both sides of the magnetic pole teeth are punched by the side punching dies 72 and 73. After the base 76 moves to the right by the unit movement width, both side portions of the magnetic pole teeth are punched by the side punching dies 72 and 73, and thus the base 76 finally moves to the rightmost side. The punching operation on both sides of the magnetic pole teeth is performed.

前記ベース76には、図示しない制御手段付きの往復駆動機構が構成してあり、その制御手段によって以上のように制御されつつ、駆動されるようになっている。   The base 76 includes a reciprocating drive mechanism with control means (not shown), and is driven while being controlled as described above by the control means.

前記工程IIIの加工ステージの下方には、下型に隣接して、図示しない所定深さの積層部が構成してある。該積層部は、全積層コア素片に於いて形状寸法が同一である継鉄部の両端に接するガイド壁を有する空間であり、上型側に打ち抜きを完了した積層コア素片を打ち抜き完了と同時に該積層部に押し込む押し込み手段をも備えたものである。   Below the processing stage in step III, a laminated portion having a predetermined depth (not shown) is formed adjacent to the lower mold. The laminated portion is a space having guide walls that are in contact with both ends of the yoke portion having the same shape and dimension in all the laminated core pieces, and the laminated core piece that has been punched on the upper mold side is completed. At the same time, a pushing means for pushing into the laminated portion is also provided.

なお以上の工程I用、II用及びIII用の型は、いずれも同一の型フレームに配されたものであり、同時に打ち抜き動作が行われることになる。   The molds for the above processes I, II, and III are all arranged in the same mold frame, and the punching operation is performed at the same time.

従って、前記コア素材鋼板Sは間欠的に給送されながら、前記各加工ステージで、同時にプレス加工が行われる。先頭の工程I用の加工ステージでは、端部抜き型70、71により継鉄部の両端が突起及び凹部と共に打ち抜かれ、同時に、継鉄部中には一対のカシメ部が押圧形成される。また次の工程II用の加工ステージでは、側部抜き型72、73により磁極歯の両側部が打ち抜かれる。これは、これに先立つ往復駆動機構の該当する単位移動幅の移動によりベース76を必要な幅だけ移動させた上で行われる。打ち抜き開始時であれば、図17中、ベース76は、最も左側に移動した状態にセットされ、その後は、順次、単位移動幅ずつ右側に移動した上で打ち抜き動作に入ることになる。最後の工程III用の加工ステージでは、工程I及びIIと同時に、辺抜き型74により継鉄部の背面側の辺が、先端抜き型75により磁極歯の先端が、それぞれ打ち抜かれ、この工程III用の加工ステージでは、更にこれによって積層コア素片の加工が完了すると、これと同時に押し込み手段による、加工が完了した積層コア素片の積層動作が行われる。   Accordingly, the core material steel sheet S is pressed at the same time at each processing stage while being intermittently fed. In the processing stage for the first process I, both ends of the yoke part are punched out together with the protrusions and the recesses by the end punching dies 70 and 71, and at the same time, a pair of caulking parts are pressed into the yoke part. In the processing stage for the next step II, both sides of the magnetic pole teeth are punched out by the side punching dies 72 and 73. This is performed after the base 76 is moved by a necessary width by the movement of the corresponding unit movement width of the reciprocating drive mechanism prior to this. At the start of punching, the base 76 is set to the leftmost position in FIG. 17, and thereafter, the punching operation is started after sequentially moving to the right by the unit movement width. In the last processing stage for Step III, simultaneously with Steps I and II, the side on the back side of the yoke portion is punched by the edge punching die 74, and the tip of the magnetic pole tooth is punched by the tip punching die 75, respectively. In this processing stage, when the processing of the laminated core piece is further completed, the laminated core piece is processed by the pushing means at the same time.

該押し込み手段による積層動作は、既述のように、打ち抜き加工が完了した積層コア素片を、前記工程IIIの加工ステージで、下方の空間である積層部に押し込み押圧動作を行うことによって行う。先行して加工済の積層コア素片が該積層部に押し込まれていれば、その上に後行する積層コア素片が圧接され、継鉄部に構成した一対のカシメ部相互が嵌合しあって積層状態で固定されることになる。   As described above, the laminating operation by the pushing means is performed by pushing the laminating core piece that has been punched into the laminating portion, which is a lower space, on the processing stage of Step III. If the previously processed laminated core piece is pushed into the laminated portion, the subsequent laminated core piece is pressed onto the laminated portion, and the pair of caulking portions formed in the yoke portion are fitted to each other. Therefore, it is fixed in a laminated state.

以上の工程が繰り返されることで、1セットの積層コア素片が順次打ち抜き加工され、かつ順次積層固定されることになり、一つの分割スキュー積層コアの製造が完了することになる。   By repeating the above steps, one set of laminated core pieces is sequentially punched and sequentially laminated and fixed, and the production of one divided skew laminated core is completed.

以上に於いては、前記のような型を用いて製造工程を行ったので、図9に示した積層コア素片30-1 、30-2…を打ち抜き形成し、これらを積層して図10に示した分割スキュー積層コア30を容易にかつ精度高く製造することができたものである。 In the above, since the manufacturing process was performed using the mold as described above, the laminated core pieces 30 -1 , 30 -2 ... Shown in FIG. The split skew laminated core 30 shown in (1) can be manufactured easily and with high accuracy.

このように、以上に於いては、図10に示した分割スキュー積層コア30を製造する工程を説明したが、図17に示したそれぞれの型を、回転軸側に継鉄部があって磁極歯が放射状に外方に向かう内側円筒状の積層コアを作成するための積層コア素片を打ち抜く型に変更すれば、全く同様の工程で、図13に示す積層コア素片40-1 、40-2…を打ち抜き形成し、かつこれらを積層して図14に示す分割スキュー積層コア40を製造することができる。 Thus, in the above, the process of manufacturing the divided skew laminated core 30 shown in FIG. 10 has been described. However, each die shown in FIG. If the laminated core piece for producing the inner cylindrical laminated core whose teeth are radially outward is changed to a punching die, the laminated core pieces 40 -1 and 40 shown in FIG. -2 ... Can be formed by punching, and these can be laminated to produce the divided skew laminated core 40 shown in FIG.

これらの分割スキュー積層コアは、以上のように簡単に製造することができるものであり、かつ、前記したように、容易に積層コアに組み立てることもできる。磁極歯に、積層コアに組み立てる前に巻線を巻き、或いは型巻きコイルを装着する作業も簡単に行え、必要に応じてこれらの作業を自動化するのも容易である。これらは実施例1と同様である。   These divided skew laminated cores can be easily manufactured as described above, and can be easily assembled into a laminated core as described above. It is also possible to easily perform winding work or mounting a coil winding coil on the magnetic pole teeth before assembling the laminated core, and it is easy to automate these work if necessary. These are the same as in the first embodiment.

(a)、(b)、(c)は、実施例1の外部円筒状回転電機用分割スキュー積層コアを構成する積層コア素片の典型部分を抽出して示した概略平面図。(a), (b), (c) is the schematic top view which extracted and showed the typical part of the lamination | stacking core piece which comprises the division | segmentation skew lamination | stacking core for external cylindrical rotary electric machines of Example 1. FIG. 積層コア素片を積層して構成した実施例1の分割スキュー積層コアの概略斜視図。The schematic perspective view of the division | segmentation skew laminated core of Example 1 comprised by laminating | stacking a laminated core piece. 実施例1の分割スキュー積層コアを連結した積層コアの概略部分斜視図(巻線省略)。FIG. 2 is a schematic partial perspective view of laminated cores obtained by connecting the divided skew laminated cores of Example 1 (winding omitted). 実施例1の分割スキュー積層コアを組立てて構成した回転電機用の円環状スキュー積層コアを示す概略平面図(巻線省略)。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view showing an annular skew laminated core for a rotating electrical machine in which a divided skew laminated core of Example 1 is assembled (winding omitted). 分割スキュー積層を若干大径の円環状に並べた上で円環状のスキュー積層コアに組立てる過程を示した概略平面図(巻線省略)。FIG. 3 is a schematic plan view showing a process of assembling divided skew stacks into an annular skew stacked core after arranging them in a slightly large-diameter ring (winding omitted). (a)、(b)、(c)は、実施例1−2の内部円筒状回転電機用分割スキュー積層コアを構成する積層コア素片の典型部分を抽出して示した概略平面図。(a), (b), (c) is the schematic plan view which extracted and showed the typical part of the lamination | stacking core piece which comprises the division | segmentation skew lamination | stacking core for internal cylindrical rotary electric machines of Example 1-2. 積層コア素片を積層して構成した実施例1−2の分割スキュー積層コアの概略斜視図。The schematic perspective view of the division | segmentation skew laminated core of Example 1-2 comprised by laminating | stacking a laminated core piece. 実施例1−2の分割スキュー積層コアを18個連結した積層コアの概略斜視図(巻線省略)。The schematic perspective view of the lamination | stacking core which connected 18 division | segmentation skew lamination | stacking cores of Example 1-2 (winding omitted). (a)、(b)、(c)は、実施例2の外部円筒状回転電機用分割スキュー積層コアを構成する積層コア素片の典型部分を抽出して示した概略平面図。(a), (b), (c) is the schematic plan view which extracted and showed the typical part of the lamination | stacking core piece which comprises the division | segmentation skew lamination | stacking core for external cylindrical rotary electric machines of Example 2. FIG. 積層コア素片を積層して構成した実施例2の分割スキュー積層コアの概略斜視図。The schematic perspective view of the division | segmentation skew laminated core of Example 2 comprised by laminating | stacking a laminated core piece. 実施例2の分割スキュー積層コアを連結した積層コアの概略部分斜視図(巻線省略)。FIG. 6 is a schematic partial perspective view of laminated cores obtained by connecting divided skew laminated cores of Example 2 (winding omitted). 実施例2の分割スキュー積層コアを組立てて構成した回転電機用の円環状スキュー積層コアを示す概略平面図(巻線省略)。FIG. 5 is a schematic plan view showing an annular skew laminated core for a rotating electrical machine in which the divided skew laminated core of Example 2 is assembled (winding omitted). (a)、(b)、(c)は、実施例2−2の内部円筒状回転電機用分割スキュー積層コアを構成する積層コア素片の典型部分を抽出して示した概略平面図。(a), (b), (c) is the schematic plan view which extracted and showed the typical part of the lamination | stacking core piece which comprises the division | segmentation skew lamination | stacking core for internal cylindrical rotary electric machines of Example 2-2. 積層コア素片を積層して構成した実施例2−2の分割スキュー積層コアの概略斜視図。The schematic perspective view of the division | segmentation skew laminated core of Example 2-2 comprised by laminating | stacking a laminated core piece. 実施例2−2の分割スキュー積層コアを18個連結した積層コアの概略斜視図(巻線省略)。The schematic perspective view of the laminated core which connected 18 division | segmentation skew laminated cores of Example 2-2 (winding abbreviate | omitted). 実施例1、1−2の分割スキュー積層コアを製造する工程を示す平面説明図。Plane explanatory drawing which shows the process of manufacturing the division | segmentation skew laminated core of Example 1, 1-2. 実施例2、2−2の分割スキュー積層コアを製造する工程を示す平面説明図。Plane explanatory drawing which shows the process of manufacturing the division | segmentation skew laminated core of Example 2, 2-2.

符号の説明Explanation of symbols

10 分割スキュー積層コア
10-1、10-2… 積層コア素片
10C 積層コア
10E 係止突起
10T 磁極歯
10U 内側の辺
10Y 継鉄部
12H 凹部
12P 突起
14 バックヨークに固定するための楔
16 カシメ部
20 分割スキュー積層コア
20-1、20-2… 積層コア素片
20C 積層コア
20E 係止突起
20T 磁極歯
20U 内側の辺
20Y 継鉄部
30 分割スキュー積層コア
30-1、30-2… 積層コア素片
30C 積層コア
30E 係止突起
30T 磁極歯
30U 内側の辺
30Y 継鉄部
40 分割スキュー積層コア
40-1、40-2… 積層コア素片
40C 積層コア
40E 係止突起
40T 磁極歯
40U 内側の辺
40Y 継鉄部
50、52 端部抜き型
54、56 側部抜き型
58 辺抜き型
60 先端抜き型
62 ベース
64 ピニオン
66 セクタギア
70、71 端部抜き型
72、73 側部抜き型
74 辺抜き型
75 先端抜き型
C 回動中心
S 積層コア用素材
10 divided skew laminated core 10 −1 , 10 −2 ... Laminated core piece 10C laminated core 10E locking protrusion 10T magnetic pole tooth 10U inner side 10Y yoke portion 12H recessed portion 12P protrusion 14 wedge for fixing to back yoke 16 caulking Section 20 Divided Skew Laminated Core 20 -1 , 20 -2 ... Laminated Core Piece 20C Laminated Core 20E Locking Protrusion 20T Magnetic Teeth 20U Inner Side 20Y yoke part 30 Divided Skew Laminated Core 30 -1 , 30 -2 ... Laminated the core segment 30C laminated core 30E locking projection 30T magnetic pole teeth 30U inner side 30Y yoke portion 40 divisional skew laminated core 40 -1, 40 -2 ... laminated core segment 40C laminated core 40E locking projection 40T magnetic pole teeth 40U inner Side 40Y yoke portion 50, 52 end punching die 54, 56 side punching die 58 side punching die 60 tip punching die 62 base 64 pinion 66 sector gear 70, 71 end cutting die 72, 73 side cutting die 74 side cutting die 75 material tip cutting die C rotational center S laminated core

Claims (7)

積層コア素片を積層して構成した分割スキュー積層コアであって、
前記全積層コア素片を、積層コアの円筒状継鉄部を磁極歯数で分割したのに相当する寸法形状の、積層枚数の部分円弧状の継鉄部と、該各継鉄部毎に、その背面側の辺又は正面側の辺から突出する、スキュー角を積層枚数で除して得られる単位角度ずつ異なる角度で突出する磁極歯とで構成し、
該全積層コア素片を、順次、それらの磁極歯の突出角度が、スキュー開始点から終了点まで、該単位角度ずつ変化するように積層してなる分割スキュー積層コア。
A split skew laminated core constructed by laminating laminated core pieces,
For all the laminated core pieces, a partial arc-shaped yoke portion of the number of laminated layers having a size and shape corresponding to the cylindrical yoke portion of the laminated core divided by the number of magnetic pole teeth. , And projecting from the back side or the front side, the skew angle is divided by the number of stacked layers, and the magnetic pole teeth are projected at different angles by unit angles.
A split skew laminated core obtained by laminating all the laminated core pieces in such a manner that the projecting angle of the magnetic pole teeth sequentially changes from the skew start point to the end point by the unit angle.
前記磁極歯の突出方向を、前記積層コア素片を積層してなる分割スキュー積層コアを組み合わせて製造する積層コアの中心から放射方向に延びる方向と一致させた請求項1の分割スキュー積層コア。   2. The split skew laminated core according to claim 1, wherein a protruding direction of the magnetic pole teeth coincides with a direction extending in a radial direction from a center of the laminated core manufactured by combining the divided skew laminated cores formed by laminating the laminated core pieces. 前記スキュー角の中心に位置する又は中心に位置するものと想定した磁極歯の突出方向を、前記積層コア素片を積層してなる分割スキュー積層コアを組み合わせて製造する積層コアの中心から放射方向に延びる方向と一致させ、他の磁極歯の突出方向を、該スキュー角度の中心に位置する又は中心に位置するものと想定した磁極歯の突出方向と平行に構成した請求項1の分割スキュー積層コア。   Radial direction from the center of the laminated core produced by combining the divided skew laminated cores formed by laminating the laminated core pieces, with the protruding direction of the magnetic pole teeth positioned at the center of the skew angle or assumed to be located at the center. 2. The divided skew stack of claim 1, wherein the protruding direction of the other magnetic pole teeth is configured to be parallel to the protruding direction of the magnetic pole teeth that is assumed to be located at the center or the center of the skew angle. core. コア素材鋼板を順次プレス装置の複数の加工ステージに配し、
全積層コア素片に共通の形状である継鉄部の両端、継鉄部の背面側の辺及び磁極歯の先端は、前記複数の加工ステージの内、固定型を備えた加工ステージで打ち抜き加工し、
積層コア素片毎に位置の異なる磁極歯両側は、所定の変位単位で変位し得る可動型を備えた加工ステージで、スキュー開始点から終了点まで該変位単位量ずつ変位させて打ち抜き加工し、
次いで加工完了した積層コア素片を順次積層することによる分割スキュー積層コアの製造方法。
The core material steel plates are sequentially placed on multiple processing stages of the press machine,
Both ends of the yoke part, the back side of the yoke part, and the tip of the magnetic pole teeth, which are common to all the laminated core pieces, are punched by a machining stage having a fixed die among the plurality of machining stages. And
Both sides of the magnetic pole teeth at different positions for each laminated core piece are punched by being displaced by the displacement unit amount from the skew start point to the end point on a processing stage equipped with a movable mold that can be displaced by a predetermined displacement unit,
Next, a method of manufacturing a split skew laminated core by sequentially laminating processed laminated core pieces.
帯状のコア素材鋼板を順次所定幅ずつ間欠的に送ってプレス装置の各加工ステージに配置させつつ通過させ、
該各加工ステージの一部では、該帯状のコア素材鋼板の各該当部位に、全積層コア素片に共通の形状を有する継鉄部の両端、継鉄部の背面側の辺及び磁極歯の先端を固定型で打ち抜き加工し、
かつ該各加工ステージの他の一部では、積層コア素片毎に位置の異なる磁極歯両側を、所定の変位単位で変位し得る可動型で、スキュー開始点から終了点まで該変位単位量ずつ変位させて打ち抜き加工し、
次いで加工完了した積層コア素片を順次積層することによる分割スキュー積層コアの製造方法。
The strip-shaped core material steel plate is sequentially passed by a predetermined width and passed while being placed on each processing stage of the press device,
In a part of each processing stage, at each corresponding portion of the strip-shaped core material steel plate, both ends of the yoke portion having a shape common to all laminated core pieces, sides on the back side of the yoke portion, and magnetic pole teeth The tip is punched with a fixed mold,
And in the other part of each processing stage, it is a movable type capable of displacing both sides of the magnetic pole teeth at different positions for each laminated core element by a predetermined displacement unit, and each displacement unit amount from the skew start point to the end point. Displaced and punched,
Next, a method of manufacturing a split skew laminated core by sequentially laminating processed laminated core pieces.
前記固定型を、各々前記継鉄部の両端を打ち抜く端部抜き型、該継鉄部の背面側の辺又は正面の辺を打ち抜く辺抜き型及び磁極歯の先端を打ち抜く先端抜き型で構成し、
前記可動型を、磁極歯の両側を打ち抜く側部抜き型で構成し、かつ該側部抜き型を、磁極歯両側の打ち抜き用加工ステージにある打ち抜き途上の積層コア素片の継鉄部を端部方向に連設した場合に形成される円弧の中心に当たる点を回動中心として回動するベースに取り付け、該ベースをスキュー角を積層枚数で除して得た角度を単位角度として、一枚の積層コア素片毎に該単位角度ずつ変位させて打ち抜き動作できるように構成し、
前記加工ステージの内の先頭のステージに前記端部抜き型を配し、次のステージに前記側部抜き型を取り付けたベースを配し、最後のステージに前記辺抜き型及び先端抜き型を配して、これらを連動して動作するようにし、
前記コア素材鋼板を間欠的に送りながら、同時に、先頭の加工ステージでは継鉄部両端を打ち抜き、次の加工ステージでは磁極歯の両側を打ち抜き、最後の加工ステージでは継鉄部の背面又は正面の辺及び磁極歯の先端を打ち抜き、
その際、前記磁極歯の両側の打ち抜きは、前記ベースを、順次、該全積層コア素片の磁極歯の突出角度が、スキュー開始点から終了点まで該単位角度ずつ変化するように回動させながら行い、
前記最後の加工ステージでは、打ち抜きの完了した積層コア素片を該加工ステージの下方の積層位置に押し出し、打ち抜きの完了した積層コア素片を順次該積層位置で積層することとした請求項5の分割スキュー積層コアの製造方法。
The fixed mold is composed of an end punching die that punches both ends of the yoke part, a punching die that punches the side on the back side or the front side of the yoke part, and a tip punching die that punches the tip of the magnetic pole teeth. ,
The movable die is constituted by a side punching die that punches both sides of the magnetic pole teeth, and the side punching die is formed with the yoke portion of the laminated core piece being punched in the punching processing stage on both sides of the magnetic pole teeth. One piece with the angle obtained by dividing the skew angle by the number of stacked layers as a unit angle. It is configured so that it can be punched by displacing the unit core angle for each laminated core piece of
The end punching die is placed on the first stage of the processing stage, the base on which the side punching die is attached is placed on the next stage, and the edge punching die and the tip punching die are placed on the last stage. So that they work together,
While feeding the core material steel plate intermittently, at the same time, punching both ends of the yoke part at the first machining stage, punching both sides of the magnetic pole teeth at the next machining stage, and at the back or front of the yoke part at the last machining stage Punch out the edges of the edges and pole teeth,
At this time, the punching on both sides of the magnetic pole teeth rotates the base sequentially so that the projecting angle of the magnetic pole teeth of all the laminated core pieces changes from the skew start point to the end point by the unit angle. While doing
6. In the last processing stage, the punched laminated core pieces are pushed out to a stacking position below the processing stage, and the punched stacked core pieces are sequentially stacked at the stacking position. A method of manufacturing a split skew laminated core.
前記固定型を、各々前記継鉄部の両端を打ち抜く両端抜き型、該継鉄部の背面側の辺又は正面の辺を打ち抜く辺抜き型及び磁極歯の先端を打ち抜く先端抜き型で構成し、
前記可動型を、磁極歯の両側を打ち抜く両側抜き型で構成し、かつ該両側抜き型を、磁極歯両側の打ち抜き用加工ステージにある打ち抜き途上の積層コア素片との関係で、少なくともその磁極歯突出部位の範囲で前記コア素材鋼板の送り方向と平行に往復動し得るベースに取り付け、該ベースを、一枚の積層コア素片毎に、スキュー角に対応する最上部と最下部の積層コア素片の磁極歯のズレ間隔を積層枚数で除して得た間隔を単位間隔として、一枚の積層コア素片毎に該単位間隔ずつ、前記コア素材鋼板の送り方向と平行に移動させ、その位置で打ち抜き動作できるように構成し、
前記加工ステージの内の先頭のステージに前記両端抜き型を配し、次のステージに前記両側抜き型を取り付けたベースを配し、最後のステージに前記辺抜き型及び先端抜き型を配して、これらを連動して動作するようにし、
前記コア素材鋼板を間欠的に送りながら、同時に、先頭の加工ステージでは継鉄部両端を打ち抜き、次の加工ステージでは磁極歯の両側を打ち抜き、最後の加工ステージでは継鉄部の背面又は正面の辺及び磁極歯の先端を打ち抜き、
その際、前記磁極歯の両側の打ち抜きは、前記ベースを、順次、該全積層コア素片の磁極歯の突出位置が、スキュー開始点から終了点まで該単位間隔ずつ変化するように移動させながら行い、
前記最後の加工ステージでは、打ち抜きの完了した積層コア素片を該加工ステージの下方の積層位置に押し出し、打ち抜きの完了した積層コア素片を順次該積層位置で積層することとした請求項5の分割スキュー積層コアの製造方法。
The fixed mold is constituted by a both-end punching die that punches both ends of the yoke part, a punching die that punches the side on the back side or the front side of the yoke part, and a tip punching die that punches the tip of the magnetic pole tooth,
The movable die is constituted by a double-side punching die that punches both sides of the magnetic pole teeth, and the double-side punching die is at least its magnetic pole in relation to the laminated core piece in the punching process on the punching processing stage on both sides of the magnetic pole teeth. Attached to a base that can reciprocate in parallel with the feeding direction of the core material steel plate in the range of the tooth protruding portion, the base is laminated on the uppermost and lowermost parts corresponding to the skew angle for each laminated core piece. The interval obtained by dividing the gap interval of the magnetic pole teeth of the core piece by the number of laminated layers is taken as a unit interval, and the unit interval is moved in parallel with the feeding direction of the core material steel sheet for each laminated core piece. Configured to allow punching operation at that position,
Arrange the die with both ends on the first stage of the processing stage, arrange the base with the die on both sides on the next stage, and arrange the edge die and tip die on the last stage. , Make them work together,
While feeding the core material steel plate intermittently, at the same time, punching both ends of the yoke part at the first machining stage, punching both sides of the magnetic pole teeth at the next machining stage, and at the back or front of the yoke part at the last machining stage Punch out the edges of the edges and pole teeth,
At that time, the punching on both sides of the magnetic pole teeth is performed by moving the base sequentially so that the protruding positions of the magnetic pole teeth of all the laminated core pieces change from the skew start point to the end point by the unit interval. Done
6. In the last processing stage, the punched laminated core pieces are pushed out to a stacking position below the processing stage, and the punched stacked core pieces are sequentially stacked at the stacking position. A method of manufacturing a split skew laminated core.
JP2005359064A 2005-12-13 2005-12-13 Split skewed and stacked core and its manufacturing method Pending JP2007166767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359064A JP2007166767A (en) 2005-12-13 2005-12-13 Split skewed and stacked core and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359064A JP2007166767A (en) 2005-12-13 2005-12-13 Split skewed and stacked core and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007166767A true JP2007166767A (en) 2007-06-28

Family

ID=38249041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359064A Pending JP2007166767A (en) 2005-12-13 2005-12-13 Split skewed and stacked core and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007166767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144946A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous motor drive system
KR101100038B1 (en) 2010-03-11 2011-12-29 주식회사 아모텍 Stator Having Skew Structure and Motor Using The Same
CN107689716A (en) * 2017-10-12 2018-02-13 苏州工业职业技术学院 Three pin skew formula stator core laminated molds
WO2018079088A1 (en) * 2016-10-25 2018-05-03 アイシン精機株式会社 Rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018771A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Stator and its manufacturing method, and manufacturing device for core member of stator
JP2003018802A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Stator and manufacturing method thereof, and manufacturing device for stator core member
JP2005261188A (en) * 2004-02-09 2005-09-22 Mitsubishi Materials Corp Core for rotating machine and rotating machine
JP2007089326A (en) * 2005-09-22 2007-04-05 Mitsui High Tec Inc Stacked stator core, and its manufacturing method and its manufacturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018771A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Stator and its manufacturing method, and manufacturing device for core member of stator
JP2003018802A (en) * 2001-07-03 2003-01-17 Mitsubishi Electric Corp Stator and manufacturing method thereof, and manufacturing device for stator core member
JP2005261188A (en) * 2004-02-09 2005-09-22 Mitsubishi Materials Corp Core for rotating machine and rotating machine
JP2007089326A (en) * 2005-09-22 2007-04-05 Mitsui High Tec Inc Stacked stator core, and its manufacturing method and its manufacturing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144946A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous motor drive system
US8390165B2 (en) 2008-05-30 2013-03-05 Panasonic Corporation Synchronous motor drive system
JP5180297B2 (en) * 2008-05-30 2013-04-10 パナソニック株式会社 Synchronous motor drive system
KR101100038B1 (en) 2010-03-11 2011-12-29 주식회사 아모텍 Stator Having Skew Structure and Motor Using The Same
WO2018079088A1 (en) * 2016-10-25 2018-05-03 アイシン精機株式会社 Rotary electric machine
JP2018074663A (en) * 2016-10-25 2018-05-10 アイシン精機株式会社 Rotary electric machine
CN109923756A (en) * 2016-10-25 2019-06-21 爱信精机株式会社 Rotating electric machine
CN109923756B (en) * 2016-10-25 2021-03-26 爱信精机株式会社 Rotating electrical machine
CN107689716A (en) * 2017-10-12 2018-02-13 苏州工业职业技术学院 Three pin skew formula stator core laminated molds
CN107689716B (en) * 2017-10-12 2023-08-29 苏州工业职业技术学院 Three-needle skew type stator core laminating die

Similar Documents

Publication Publication Date Title
US8102092B2 (en) Split cores for motor stator, motor stator, permanent magnet type synchronous motor and punching method by split core punching die
JP4498154B2 (en) Motor manufacturing method and motor manufacturing apparatus
WO2012026158A1 (en) Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof
JP4427760B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
TWI451666B (en) Method for making laminated iron core and laminated iron core made thereby
JP4121008B2 (en) Stator and manufacturing method thereof, and stator core member manufacturing apparatus
CN111052543B (en) Radial gap type rotating electrical machine, manufacturing method therefor, manufacturing device for tooth piece for rotating electrical machine, and manufacturing method for tooth member for rotating electrical machine
JP2011193689A (en) Method of manufacturing armature core
JP4934402B2 (en) Armature manufacturing method and progressive mold apparatus
JP2007028799A (en) Production method for core
JP3865734B2 (en) Motor and motor manufacturing apparatus
JP4574255B2 (en) Manufacturing method of split laminated core and progressive mold for manufacturing
JP2007166767A (en) Split skewed and stacked core and its manufacturing method
JP2007221927A (en) Stator core of rotating electric machine and method of manufacturing same
JP2011019350A (en) Stator and method for manufacturing the same
JP2011078210A (en) Stator core and method of manufacturing the same
JP2007049807A (en) Permanent magnet type motor
JP6525931B2 (en) Synchronous motor having different types of synchronous motors and identical parts and method of manufacturing synchronous motor
JP2003061319A (en) Method for producing stator
JP2010226951A (en) Manufacturing method for stator laminated core, and the stator laminated core
JP7046265B2 (en) How to make an armature core, how to make an electric machine, and an electric machine
KR20120025827A (en) Method for manufacturing a separated stator and stator thereof
JP5311290B2 (en) Manufacturing method of stator core for axial gap type rotating electrical machine
JP4578460B2 (en) Manufacturing method of stator laminated iron core
JP5574931B2 (en) Stator core manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831