WO2020194747A1 - Arithmetic learning material - Google Patents
Arithmetic learning material Download PDFInfo
- Publication number
- WO2020194747A1 WO2020194747A1 PCT/JP2019/013875 JP2019013875W WO2020194747A1 WO 2020194747 A1 WO2020194747 A1 WO 2020194747A1 JP 2019013875 W JP2019013875 W JP 2019013875W WO 2020194747 A1 WO2020194747 A1 WO 2020194747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- displayed
- value
- row
- square
- column
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D15/00—Printed matter of special format or style not otherwise provided for
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/02—Counting; Calculating
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/02—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for mathematics
Definitions
- the present invention relates to teaching materials for learning arithmetic for learning multiplication.
- the multipliers are 1, 2, 3, ... .. .. It is important for students to understand the arithmetic progression (n, 2n, 3n 7) that increases with.
- a card in which the value of m ⁇ n is displayed in the squares of m rows and n columns as shown in Patent Document 1 students can get closer to understanding arithmetic progressions.
- the sequence of n 7, 7, 14, 21. .. .. It cannot be said that it is easy to grasp that it is an arithmetic progression by looking only at the sequence.
- An object of the present invention is to provide a teaching material for arithmetic learning capable of learning multiplication for a large value of a multiplicand n based on an understanding of a value of a small multiplicand n.
- mn 5m + (n-5) m.
- 5m it is the 5th step that is easy to remember in 99, and for (n-5) m, (n-5) is less than 5, so it is easy to understand.
- process 5 in the 1st place of 5m. As will be described later, various methods can be considered for this process depending on the ability of the students to add.
- the teaching material for arithmetic learning of the present invention is It is a teaching material for learning arithmetic for learning multiplication.
- the base card is characterized in that a number indicating a value of m ⁇ p is displayed in the square of m row and p column, and no number is displayed in the square of m row and v column (v ⁇ p).
- v ⁇ p the teaching material for arithmetic learning of the present invention
- the teaching material for arithmetic learning of the present invention is In the base card, for one n where n> p, a number indicating the value of m ⁇ n is displayed in the square of the m row and nth column, and the m row and wth column (w> p and w ⁇ n). The feature is that the number is not displayed in the square of).
- the base card displays only the numbers indicating the value of m ⁇ p and the numbers indicating the value of m ⁇ n, and is not aware of other values.
- the teaching material for arithmetic learning of the present invention is In the base card, for one n where n> p, a number indicating a value of m ⁇ (n ⁇ p) is displayed in the square of m row nth column (n> p), and m row w column. It is characterized in that no number is displayed in the square of the eye (w> p and w ⁇ n).
- the teaching material for arithmetic learning of the present invention is
- the base card is characterized in that, for all n where n> p, a number indicating a value of m ⁇ n is displayed in the square of the m row and nth column.
- one base card can be shared for learning about many multiplicands n.
- the teaching material for arithmetic learning of the present invention is The base card is characterized in that, for all n where n> p, a number indicating a value of m ⁇ (n ⁇ p) is displayed in the square of the m row and nth column. Teaching materials for learning mathematics described in 1.
- one base card can be shared for learning about many multiplicands n.
- FIG. 1 is a diagram showing a base card.
- FIG. 2 is a diagram showing the use of a work card.
- FIG. 3 is a diagram showing the use of a base card and a work card.
- FIG. 4 is a diagram showing the use of a base card and a work card.
- FIG. 5 is a diagram showing the use of a base card and a work card.
- FIG. 6 is a diagram showing a base card.
- FIG. 7 is a diagram showing the use of a work card. (Example 4)
- FIG. 1 is a diagram showing a base card.
- the base card 1 is composed of rectangular squares arranged in a matrix.
- a multiplicand display frame 11 is provided at the lower end, a multiplier display square 12 is provided at the left end, and the other parts are squares 13 divided in a grid pattern.
- the multiplicand display frame 11 displays the multiplicand n.
- the base card 1 is for one multiplicand n, and one multiplicand n in a rectangle having a shape in which the lowermost squares are connected without being divided into squares (6 in FIG. 1A, FIG. 7 is displayed in B), 8 is displayed in FIG. 1 (C), and 9 is displayed in FIG. 1 (D).
- the multiplier display square 12 displays the multiplier m.
- the base card 1 is related to a plurality of multipliers m (1 to 10 in this embodiment) for one multiplier n, and each line is related to one multiplier m. Therefore, each line is divided into squares. The value of m is displayed in the square.
- the square 13 is a blank space in which a number indicating a value of m ⁇ n is displayed or a number is not displayed in the square m row and nth column.
- the values of m and n when referred to as the m row and nth column count the squares on the base card 1 without including the multiplier display frame 11 and the multiplier display square 12.
- the number indicating the value of m ⁇ n is displayed in which square and which square is not displayed according to the following criteria.
- a number indicating a value of m ⁇ n is displayed in the n-th column (n-th column 13b).
- No numbers are printed on other squares.
- FIG. 2 is a diagram showing the use of a work card. The procedure for learning multiplication using the base card 1 will be described below.
- u n-p.
- the student adds the value "20" displayed in the p-column cell 13d adjacent to the top row on which the work card 2 is placed to 12, and the product value (m ⁇ n) is 32. To guide.
- m is an even number (4), but when m is an odd number, it is necessary to process the value displayed in the p-column cell 13d adjacent to the top row by 5 in the 1st place. is there.
- m 5
- the product value (m ⁇ n) is 40, as in the case of even m. Can guide you.
- This embodiment describes another form of base card 1.
- the display of the n-row squares 13b is different from that of the first embodiment, and the others are the same as those of the first embodiment. A detailed description of the same parts as in the first embodiment will be omitted.
- FIG. 3 is a diagram showing the use of a base card and a work card.
- FIG. 3A shows an example of the base card 1.
- the multiplicand is 8, which corresponds to FIG. 1 (C). The same applies to other multiplicands.
- nth column 13b a number indicating a value of m ⁇ n was displayed in the first embodiment, but in this embodiment, a number indicating a value of m ⁇ (np) is displayed.
- FIG. 3B shows the use of a work card. The number of squares covered by the work card is displayed in the n-row squares 13b.
- the student adds the value "20" displayed in the p-column cell 13d adjacent to the top row on which the work card 2 is placed to 12, and derives that the product value (m ⁇ n) is 32. ..
- the number 12 to be added is displayed in the nth column 13b.
- This embodiment describes another form of base card 1.
- the point that the integrated n-row square 13c is used instead of the n-row square 13b and the display of the multiplicand display frame 11 are different from those of the first embodiment, and the other points are the same as those of the first embodiment. A detailed description of the same parts as in the first embodiment will be omitted.
- FIG. 4 is a diagram showing the use of a base card and a work card.
- FIG. 4A shows the base card 1.
- the position of the n-column square 12b differs depending on the value of n.
- the entire cell on which these numbers are displayed is defined as the integrated n-column cell 13c.
- Figure 4 (B) shows the use of work cards. Students learn by looking at the numbers displayed in the squares of the base card 1 at the right end of the work card 2.
- n 6,7,8,9. Therefore, in the multiplicand display frame 11, all of 6, 7, 8, and 9 are displayed at positions corresponding to n (6, 7, 8, 9) in the integrated n-column square 13c.
- the number indicating the value of m ⁇ (n ⁇ p) may be displayed in the integrated n-column square 13c as in the second embodiment.
- the use of the base card and the work card in this case is shown in FIG.
- Example 1 This embodiment describes another form of base card 1.
- Others are the same as in Example 1. A detailed description of the same parts as in the first embodiment will be omitted.
- FIG. 6 is a diagram showing a base card.
- FIG. 7 is a diagram showing the use of a work card.
- the base card 1 and the work card 2 it is considered that paper ones are used. However, it may be made of other materials, such as wood or plastic.
- the base card 1 and the work card 2 may be displayed on the display screen by a computer program, and the display position of the work card 2 may be moved by operating the mouse or the touch panel.
- a separate base card 1 and work card 2 are used for each multiplicand. Therefore, by designating the multiplicand, the base card 1 and the work card 2 corresponding to the multiplicand are displayed. Then, the combination of the base card 1 and the work card 2 is automatically and correctly selected, which is convenient. Further, also in the third embodiment, since the work card 2 is used separately for each multiplicand, it is convenient in that the work card can be automatically selected.
- various base cards 1 can be considered, and it is also possible to selectively use them according to the proficiency level of the students. It is effective to select the type of base card 1 to be used by a computer program.
- the teaching material for arithmetic learning of the present invention it is possible to learn multiplication for a large n value based on an understanding of a small n value by using a value obtained by subtracting 5 or 10 from a multiplicand n, and multiplying. You can improve the learning effect of. It can be used by many cram schools and individuals.
- Multiplicand display frame 12 Multiplier display square 13 square 13a p row square 13b n row square 13c Integrated n row square 2 Work card
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Algebra (AREA)
- Entrepreneurship & Innovation (AREA)
- Electrically Operated Instructional Devices (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
[Problem] To provide an arithmetic learning material that allows a learner to learn multiplication with a multiplicand n that has a large value on the basis of understanding multiplication with the multiplicand n having a small value. [Solution] Provided is an arithmetic learning material for learning multiplication, provided with a base card 1 whereon s × t sections 13 connected in the form of s rows and t columns (5≤s) (p<t<2p), are drawn for p which is 5 or 10, and a work card 2 of 1 row and u columns, which is formed by connecting u (u<p) squares having the same size as the sections in one direction; a number indicating the value of m × p is displayed in a section 13a in the m-th row and the p-th column on the base card 1, whereas no number is displayed in the section 13 in the m-th row and the v-th column (v<p).
Description
本発明は、掛け算を学習するための算数学習用教材に関する。
The present invention relates to teaching materials for learning arithmetic for learning multiplication.
小学校低学年の算数教育において、掛け算、足し算、及び引き算を学習する。ここで、掛け算の学習は、いわゆる九九を基礎とする。しかし、九九は、通常、暗記による学習であることから、掛け算の概念を習得する機会に乏しい。
Learn multiplication, addition, and subtraction in mathematics education in the lower grades of elementary school. Here, the learning of multiplication is based on the so-called multiplication table. However, since multiplication tables are usually learned by rote learning, there are few opportunities to learn the concept of multiplication.
ここで、九九の暗記によらずに掛け算の考え方を学習することを検討すると、被乗数がnである場合に、乗数が1、2、3、...と増加していく等差数列(n、2n、3n...)を生徒が理解することが重要である。この点、特許文献1に示すようにm行n列のマス目にm×nの値を表示したカードを用いれば、生徒を等差数列の理解に近づけることができる。
Here, when considering learning the concept of multiplication without memorizing multiplication tables, when the multiplier is n, the multipliers are 1, 2, 3, ... .. .. It is important for students to understand the arithmetic progression (n, 2n, 3n ...) that increases with. In this regard, by using a card in which the value of m × n is displayed in the squares of m rows and n columns as shown in Patent Document 1, students can get closer to understanding arithmetic progressions.
ここで、数列を見た生徒が「等差数列である」と確実に把握できるのは、nの値が小さい場合である。例えば、n=1の数列1,2,3...、n=2の数列2,4,6...については、等差数列であることが容易に把握できる。一方、例えばn=7の数列7,14,21...についてその数列のみを見て等差数列であると把握することが容易であるとは言えない。
Here, the student who sees the sequence can surely grasp that it is an arithmetic progression when the value of n is small. For example, a number sequence of n = 1, 1, 2, 3. .. .. , N = 2 sequence 2, 4, 6. .. .. Can be easily grasped as an equal difference number sequence. On the other hand, for example, the sequence of n = 7, 7, 14, 21. .. .. It cannot be said that it is easy to grasp that it is an arithmetic progression by looking only at the sequence.
してみれば、小さなnの値についての理解に基づいて大きなnの値についての掛け算を学習することのできる算数学習用教材が期待される。
If you try, you can expect a teaching material for arithmetic learning that can learn multiplication for a large n value based on an understanding of a small n value.
本発明は、小さな被乗数nの値についての理解に基づいて大きな被乗数nの値についての掛け算を学習することのできる算数学習用教材を提供することを課題とする。
An object of the present invention is to provide a teaching material for arithmetic learning capable of learning multiplication for a large value of a multiplicand n based on an understanding of a value of a small multiplicand n.
被乗数nが、5<n<10である場合、乗数をmとすると、積mnは、mn=5m+(n-5)mと表すことができる。5mについては九九の中でも覚えやすい5の段であり、(n-5)mについては、(n-5)が5未満となるので、容易に理解できる。
When the multiplier n is 5 <n <10 and the multiplier is m, the product mn can be expressed as mn = 5m + (n-5) m. For 5m, it is the 5th step that is easy to remember in 99, and for (n-5) m, (n-5) is less than 5, so it is easy to understand.
ここで、5mと(n-5)mを加算する点については、mが偶数であれば5mが10の倍数となり、1の位を考えずに10の位のみを考えればよく容易である。九九で学ぶ範囲のm<10であれば、10の位は繰り上がりのない1桁の数の加算となり容易である。
Here, regarding the point of adding 5m and (n-5) m, if m is an even number, 5m is a multiple of 10, and it is easy to consider only the tens place without considering the ones place. If m <10, which is the range learned in multiplication tables, the tens place is an addition of single-digit numbers without carry, which is easy.
mが奇数の場合には、5mの1の位の5の処理をする。この処理は、後述するように、生徒の足し算の力量によって各種の方法が考えられる。
If m is an odd number, process 5 in the 1st place of 5m. As will be described later, various methods can be considered for this process depending on the ability of the students to add.
以上のように、本発明の算数学習用教材は、mn=5m+(n-5)mとして取扱い、5以下の被乗数nの値についての理解に基づいて6以上の被乗数nの値についての掛け算を学習することを可能にする。
As described above, the teaching material for arithmetic learning of the present invention is treated as mn = 5m + (n-5) m, and the value of the multiplicand n of 6 or more is multiplied based on the understanding of the value of the multiplicand n of 5 or less. Allows you to learn.
なお、mn=10m+(n-10)mとして取扱い、10以下の被乗数nの値についての理解に基づいて11以上の被乗数nの値についての掛け算を学習することを可能にすることも、同様に可能である。
Similarly, it is treated as mn = 10m + (n-10) m, and it is possible to learn multiplication for the value of the multiplicand n of 11 or more based on the understanding of the value of the multiplicand n of 10 or less. It is possible.
本発明の算数学習用教材は、
掛け算を学習するための算数学習用教材であって、
5又は10であるpについて、
s行t列(5≦s)(p<t<2p)列の形に連接されたs×tのマス目が描かれたベースカードと、
前記マス目と同大の正方形を1方向にu個(u<p)連接してなる1行u列の作業用カードとを備え、
前記ベースカードは、m行p列目のマス目にm×pの値を示す数字が表示され、m行v列目(v<p)のマス目には数字が表示されていないことを特徴とする。 The teaching material for arithmetic learning of the present invention is
It is a teaching material for learning arithmetic for learning multiplication.
For p, which is 5 or 10,
A base card with s × t squares connected in the form of s rows and t columns (5 ≦ s) (p <t <2p) columns,
It is equipped with a 1-row, u-column work card formed by connecting u (u <p) squares of the same size as the squares in one direction.
The base card is characterized in that a number indicating a value of m × p is displayed in the square of m row and p column, and no number is displayed in the square of m row and v column (v <p). And.
掛け算を学習するための算数学習用教材であって、
5又は10であるpについて、
s行t列(5≦s)(p<t<2p)列の形に連接されたs×tのマス目が描かれたベースカードと、
前記マス目と同大の正方形を1方向にu個(u<p)連接してなる1行u列の作業用カードとを備え、
前記ベースカードは、m行p列目のマス目にm×pの値を示す数字が表示され、m行v列目(v<p)のマス目には数字が表示されていないことを特徴とする。 The teaching material for arithmetic learning of the present invention is
It is a teaching material for learning arithmetic for learning multiplication.
For p, which is 5 or 10,
A base card with s × t squares connected in the form of s rows and t columns (5 ≦ s) (p <t <2p) columns,
It is equipped with a 1-row, u-column work card formed by connecting u (u <p) squares of the same size as the squares in one direction.
The base card is characterized in that a number indicating a value of m × p is displayed in the square of m row and p column, and no number is displayed in the square of m row and v column (v <p). And.
この特徴によれば、n>pである被乗数nについて、乗数mとの積をmn=pm+(n-p)mとして学習することが容易となる。ベースカードにはm×pの値を示す数字が表示され、v×pの値を示す数字が表示されていないので、m×pの値を示す数字に意識が集中するからである。
According to this feature, it becomes easy to learn the product of the multiplier m, which is n> p, as mn = pm + (n−p) m. This is because the number indicating the value of m × p is displayed on the base card, and the number indicating the value of v × p is not displayed, so that the consciousness is concentrated on the number indicating the value of m × p.
本発明の算数学習用教材は、
前記ベースカードは、n>pである1つのnについて、m行n列目のマス目にはm×nの値を示す数字が表示され、m行w列目(w>pかつw≠n)のマス目には数字が表示されていないことを特徴とする。 The teaching material for arithmetic learning of the present invention is
In the base card, for one n where n> p, a number indicating the value of m × n is displayed in the square of the m row and nth column, and the m row and wth column (w> p and w ≠ n). The feature is that the number is not displayed in the square of).
前記ベースカードは、n>pである1つのnについて、m行n列目のマス目にはm×nの値を示す数字が表示され、m行w列目(w>pかつw≠n)のマス目には数字が表示されていないことを特徴とする。 The teaching material for arithmetic learning of the present invention is
In the base card, for one n where n> p, a number indicating the value of m × n is displayed in the square of the m row and nth column, and the m row and wth column (w> p and w ≠ n). The feature is that the number is not displayed in the square of).
この特徴によれば、mn=pm+(n-p)mとして学習することが容易となる。m×pの値を示す数字及びm×nの値を示す数字のみが表示されたベースカードとなり、他の値を意識することがない。
According to this feature, it becomes easy to learn as mn = pm + (n−p) m. The base card displays only the numbers indicating the value of m × p and the numbers indicating the value of m × n, and is not aware of other values.
本発明の算数学習用教材は、
前記ベースカードは、n>pである1つのnについて、m行n列目(n>p)のマス目にはm×(n―p)の値を示す数字が表示され、m行w列目(w>pかつw≠n)のマス目には数字が表示されていないことを特徴とする。 The teaching material for arithmetic learning of the present invention is
In the base card, for one n where n> p, a number indicating a value of m × (n−p) is displayed in the square of m row nth column (n> p), and m row w column. It is characterized in that no number is displayed in the square of the eye (w> p and w ≠ n).
前記ベースカードは、n>pである1つのnについて、m行n列目(n>p)のマス目にはm×(n―p)の値を示す数字が表示され、m行w列目(w>pかつw≠n)のマス目には数字が表示されていないことを特徴とする。 The teaching material for arithmetic learning of the present invention is
In the base card, for one n where n> p, a number indicating a value of m × (n−p) is displayed in the square of m row nth column (n> p), and m row w column. It is characterized in that no number is displayed in the square of the eye (w> p and w ≠ n).
この特徴によっても、mn=pm+(n-p)mとして学習することが容易となる。m×nの値に替えてm×(n―p)の値を示す数字が表示されている。積mnの値ではないが、m×pの値を加算することで積mnとなる値なので、容易に理解できる。
This feature also makes it easy to learn as mn = pm + (n-p) m. Instead of the value of m × n, a number indicating the value of m × (n−p) is displayed. Although it is not the value of the product mn, it can be easily understood because it is a value obtained by adding the value of m × p to obtain the product mn.
本発明の算数学習用教材は、
n=tであり、u=n-pであることを特徴とする。 The teaching material for arithmetic learning of the present invention is
It is characterized in that n = t and u = n−p.
n=tであり、u=n-pであることを特徴とする。 The teaching material for arithmetic learning of the present invention is
It is characterized in that n = t and u = n−p.
この特徴によれば、被乗数nを超える箇所のマス目がない。被乗数をnに限定して設計されたベースカードとなる。
According to this feature, there are no squares where the multiplicand n exceeds. It is a base card designed by limiting the multiplicand to n.
本発明の算数学習用教材は、
前記ベースカードは、n>pである全てのnについて、m行n列目のマス目にはm×nの値を示す数字が表示されていることを特徴とする。 The teaching material for arithmetic learning of the present invention is
The base card is characterized in that, for all n where n> p, a number indicating a value of m × n is displayed in the square of the m row and nth column.
前記ベースカードは、n>pである全てのnについて、m行n列目のマス目にはm×nの値を示す数字が表示されていることを特徴とする。 The teaching material for arithmetic learning of the present invention is
The base card is characterized in that, for all n where n> p, a number indicating a value of m × n is displayed in the square of the m row and nth column.
この特徴によれば、1枚のベースカードを、多くの被乗数nについての学習に共用することができる。
According to this feature, one base card can be shared for learning about many multiplicands n.
本発明の算数学習用教材は、
前記ベースカードは、n>pである全てのnについて、m行n列目のマス目にはm×(n-p)の値を示す数字が表示されていることを特徴とする、請求項1に記載の算数学習用教材。 The teaching material for arithmetic learning of the present invention is
The base card is characterized in that, for all n where n> p, a number indicating a value of m × (n−p) is displayed in the square of the m row and nth column. Teaching materials for learning mathematics described in 1.
前記ベースカードは、n>pである全てのnについて、m行n列目のマス目にはm×(n-p)の値を示す数字が表示されていることを特徴とする、請求項1に記載の算数学習用教材。 The teaching material for arithmetic learning of the present invention is
The base card is characterized in that, for all n where n> p, a number indicating a value of m × (n−p) is displayed in the square of the m row and nth column. Teaching materials for learning mathematics described in 1.
この特徴によっても、1枚のベースカードを、多くの被乗数nについての学習に共用することができる。
With this feature as well, one base card can be shared for learning about many multiplicands n.
本発明の算数学習用教材によれば、被乗数nから5又は10を減算した値を用いて、小さなnの値についての理解に基づいて大きなnの値についての掛け算を学習することができ、掛け算の学習効果を上げることができる。
According to the teaching material for arithmetic learning of the present invention, it is possible to learn multiplication for a large n value based on an understanding of a small n value by using a value obtained by subtracting 5 or 10 from a multiplicand n, and multiplying. You can improve the learning effect of.
以下、本発明の実施例について説明する。
Hereinafter, examples of the present invention will be described.
図1は、ベースカードを示す図である。ベースカード1は、マトリクス状に配置された矩形状のマス目から構成されている。下端に被乗数表示枠11、左端に乗数表示マス目12を備え、他の箇所は格子状に区分されたマス目13である。
FIG. 1 is a diagram showing a base card. The base card 1 is composed of rectangular squares arranged in a matrix. A multiplicand display frame 11 is provided at the lower end, a multiplier display square 12 is provided at the left end, and the other parts are squares 13 divided in a grid pattern.
被乗数表示枠11は、被乗数nを表示する。ベースカード1は、1つの被乗数nについてのものであり、マス目に区切らずに下端のマス目を結合した形状の長方形の中に1つの被乗数n(図1(A)では6、図1(B)では7、図1(C)では8、図1(D)では9が表示されている。
The multiplicand display frame 11 displays the multiplicand n. The base card 1 is for one multiplicand n, and one multiplicand n in a rectangle having a shape in which the lowermost squares are connected without being divided into squares (6 in FIG. 1A, FIG. 7 is displayed in B), 8 is displayed in FIG. 1 (C), and 9 is displayed in FIG. 1 (D).
乗数表示マス目12は、乗数mを表示する。ベースカード1は、1つの被乗数nについて複数の(本実施例では1~10の)乗数mに係るものであり、各々の行が1つの乗数mに係る内容なので、マス目に区切った各行のマス目にmの値が表示されている。
The multiplier display square 12 displays the multiplier m. The base card 1 is related to a plurality of multipliers m (1 to 10 in this embodiment) for one multiplier n, and each line is related to one multiplier m. Therefore, each line is divided into squares. The value of m is displayed in the square.
マス目13は、m行n列目のマス目に、m×nの値を示す数字を表示し、又は、数字を表示しない空白のものである。ここで、m行n列目と言う時のm及びnの値は、被乗数表示枠11及び乗数表示マス目12を含まずにベースカード1上のマス目をカウントしたものとする。
The square 13 is a blank space in which a number indicating a value of m × n is displayed or a number is not displayed in the square m row and nth column. Here, it is assumed that the values of m and n when referred to as the m row and nth column count the squares on the base card 1 without including the multiplier display frame 11 and the multiplier display square 12.
ここで、いずれのマス目にm×nの値を示す数字を表示し、いずれのマス目に表示しないかについて、以下の基準による。(1)p列目(pは5又は10、本実施例ではp=5とする)のマス目(p列マス目13a)にはm×pの値を示す数字を表示する。(2)n列目のマス目(n列マス目13b)にはm×nの値を示す数字を表示する。(3)他のマス目には、数字を印字しない。
Here, the number indicating the value of m × n is displayed in which square and which square is not displayed according to the following criteria. (1) A number indicating the value of m × p is displayed in the squares (p row squares 13a) in the p-th column (p is 5 or 10, p = 5 in this embodiment). (2) A number indicating a value of m × n is displayed in the n-th column (n-th column 13b). (3) No numbers are printed on other squares.
図2は、作業用カードの使用を示す図である。以下、ベースカード1を用いて掛け算を学習する手順を説明する。
FIG. 2 is a diagram showing the use of a work card. The procedure for learning multiplication using the base card 1 will be described below.
生徒は、1行u列の作業用カード2を、下から順に(図2において、作業用カード2a、2b、2c、2dの順に)置いていく。図2は被乗数nが8であり、乗数mが4の場合(8×4=32)を学ぶものである。他の被乗数n、乗数mについても同様である。
Students place work cards 2 in 1 row and u columns in order from the bottom (in the order of work cards 2a, 2b, 2c, and 2d in FIG. 2). FIG. 2 learns the case where the multiplier n is 8 and the multiplier m is 4 (8 × 4 = 32). The same applies to the other multipliers n and m.
ここで、u=n-pとする。本実施例では、u=8-5=3である。生徒は、4行目まで置いた時に、作業用カードによって覆われたマス目の数が、3×4=12個であることを理解している(被乗数nが3である掛け算は、問題なく行えるものとする)。
Here, u = n-p. In this embodiment, u = 8-5 = 3. The student understands that the number of squares covered by the work card is 3 × 4 = 12 when placed up to the 4th line (multiplication with a multiplicand n of 3 is fine. It should be possible).
そこで、生徒は、作業用カード2が置かれた最上行に隣接するp列マス目13dに表示された値「20」を12に加えて、積の値(m×n)が32であることを導く。
Therefore, the student adds the value "20" displayed in the p-column cell 13d adjacent to the top row on which the work card 2 is placed to 12, and the product value (m × n) is 32. To guide.
ここで、20+12=32との加算については、20が10の倍数であるので、1の位を考えずに10の位のみを考えればよく容易である。
Here, regarding the addition of 20 + 12 = 32, since 20 is a multiple of 10, it is easy to consider only the tens place without considering the ones place.
上例ではmが偶数(4)であったが、mが奇数の場合には、最上行に隣接するp列マス目13dに表示された値について、1の位の5の処理をする必要がある。例えばm=5の場合、生徒が25+15=40との足し算を容易に行えるくらいに足し算に習熟していれば、mが偶数の場合と同様に、積の値(m×n)が40であることを導くことができる。
In the above example, m is an even number (4), but when m is an odd number, it is necessary to process the value displayed in the p-column cell 13d adjacent to the top row by 5 in the 1st place. is there. For example, in the case of m = 5, if the student is proficient in addition enough to easily add 25 + 15 = 40, the product value (m × n) is 40, as in the case of even m. Can guide you.
生徒が足し算に習熟していない場合には、(m-1)が偶数であるので、(m-1)×5を加え、後に5を加えることもできる。20+15=35を先に計算し、後に35+5=40を計算する。
If the student is not proficient in addition, (m-1) is an even number, so (m-1) x 5 can be added, and 5 can be added later. 20 + 15 = 35 is calculated first, and 35 + 5 = 40 is calculated later.
本実施例は、別形態のベースカード1を説明するものである。n列マス目13bの表示が実施例1と相違し、他は実施例1と同様である。実施例1と同様の部分については、詳細な説明を省略する。
This embodiment describes another form of base card 1. The display of the n-row squares 13b is different from that of the first embodiment, and the others are the same as those of the first embodiment. A detailed description of the same parts as in the first embodiment will be omitted.
図3は、ベースカード及び作業用カードの使用を示す図である。図3(A)にベースカード1の一例を示す。被乗数が8であり、図1(C)に対応するものである。なお、他の被乗数についても同様である。
FIG. 3 is a diagram showing the use of a base card and a work card. FIG. 3A shows an example of the base card 1. The multiplicand is 8, which corresponds to FIG. 1 (C). The same applies to other multiplicands.
n列マス目13bには、実施例1ではm×nの値を示す数字が表示されていたが、本実施例では、m×(n―p)の値を示す数字を表示する。図3(B)に作業用カードの使用を示す。n列マス目13bには、作業用カードによって覆われたマス目の数が表示されていることとなる。
In the nth column 13b, a number indicating a value of m × n was displayed in the first embodiment, but in this embodiment, a number indicating a value of m × (np) is displayed. FIG. 3B shows the use of a work card. The number of squares covered by the work card is displayed in the n-row squares 13b.
生徒は、作業用カード2が置かれた最上行に隣接するp列マス目13dに表示された値「20」を12に加えて、積の値(m×n)が32であることを導く。加える数字12がn列マス目13bに表示されている。
The student adds the value "20" displayed in the p-column cell 13d adjacent to the top row on which the work card 2 is placed to 12, and derives that the product value (m × n) is 32. .. The number 12 to be added is displayed in the nth column 13b.
本実施例は、また別形態のベースカード1を説明するものである。n列マス目13bに替えて統合n列マス目13cである点、及び被乗数表示枠11の表示が実施例1と相違し、他は実施例1と同様である。実施例1と同様の部分については、詳細な説明を省略する。
This embodiment describes another form of base card 1. The point that the integrated n-row square 13c is used instead of the n-row square 13b and the display of the multiplicand display frame 11 are different from those of the first embodiment, and the other points are the same as those of the first embodiment. A detailed description of the same parts as in the first embodiment will be omitted.
図4は、ベースカード及び作業用カードの使用を示す図である。図4(A)にベースカード1を示す。n列マス目12bの位置は、nの値によって相違する。本実施例では、n=6,7,8,9に対応する全てのn列マス目12bの位置に、m×nの値を示す数字を表示する。これらの数字が表示されたマス目の全体を、統合n列マス目13cとする。
FIG. 4 is a diagram showing the use of a base card and a work card. FIG. 4A shows the base card 1. The position of the n-column square 12b differs depending on the value of n. In this embodiment, numbers indicating the value of m × n are displayed at the positions of all n-column squares 12b corresponding to n = 6, 7, 8, 9. The entire cell on which these numbers are displayed is defined as the integrated n-column cell 13c.
図4(B)に作業用カードの使用を示す。生徒は、作業用カード2の右端におけるベースカード1のマス目に表示された数字を見て、学習を行う。
Figure 4 (B) shows the use of work cards. Students learn by looking at the numbers displayed in the squares of the base card 1 at the right end of the work card 2.
本実施例のベースカード1は、1枚のカードを、n=6,7,8,9の全ての学習に使うことができる。そのため、被乗数表示枠11には、6,7,8,9の全てが、統合n列マス目13cのn(6,7,8,9)に対応する位置に表示されている。
As the base card 1 of this embodiment, one card can be used for all learning of n = 6,7,8,9. Therefore, in the multiplicand display frame 11, all of 6, 7, 8, and 9 are displayed at positions corresponding to n (6, 7, 8, 9) in the integrated n-column square 13c.
なお、統合n列マス目13cには、m×nの値を示す数字に替えて、実施例2のようにm×(n―p)の値を示す数字を表示してもよい。この場合のベースカード及び作業用カードの使用を、図5に示す。
Note that, instead of the number indicating the value of m × n, the number indicating the value of m × (n−p) may be displayed in the integrated n-column square 13c as in the second embodiment. The use of the base card and the work card in this case is shown in FIG.
本実施例は、さらに別形態のベースカード1を説明するものである。実施例1では、p=5としたが、p=10とするものである。他は実施例1と同様である。実施例1と同様の部分については、詳細な説明を省略する。
This embodiment describes another form of base card 1. In Example 1, p = 5, but p = 10. Others are the same as in Example 1. A detailed description of the same parts as in the first embodiment will be omitted.
図6は、ベースカードを示す図である。ベースカード1は、p=10であり、11以上の被乗数nに対応するものである。図はn=13(=p+3)の場合を示し、n=p+3である点で、実施例1において図1(C)に示したものと同等である。なお、n=11,12、n=14...においても同様である。
FIG. 6 is a diagram showing a base card. The base card 1 has p = 10 and corresponds to a multiplicand n of 11 or more. The figure shows the case of n = 13 (= p + 3), and is equivalent to that shown in FIG. 1 (C) in Example 1 in that n = p + 3. In addition, n = 11,12, n = 14. .. .. The same applies to.
図7は、作業用カードの使用を示す図である。このように、1行u列(u=n-p=13-10=3)の作業用カード2を置き、13×4=52を学ぶ。他の被乗数n、乗数mについても同様である。
FIG. 7 is a diagram showing the use of a work card. In this way, the work card 2 of 1 row and u column (u = n-p = 13-10 = 3) is placed, and 13 × 4 = 52 is learned. The same applies to the other multiplicands n and m.
生徒は、作業用カードによって覆われたマス目の数が3×4=12個であることを理解しており、作業用カード2が置かれた最上行に隣接するp列マス目13dに表示された値「40」を12に加えて、積の値(m×n)が52であることを導く。
The student understands that the number of squares covered by the work card is 3 × 4 = 12, and is displayed in the p-column square 13d adjacent to the top row where the work card 2 is placed. The value "40" is added to 12 to derive that the product value (m × n) is 52.
ここで、40+12=32との加算については、40が10の倍数であるので、1の位を考えずに10の位のみを考えればよく容易である。本実施例においては、mが奇数であってもマス目13dに表示された値が10の倍数となる。1の位の5の処理をする必要はない。
Here, regarding the addition of 40 + 12 = 32, since 40 is a multiple of 10, it is easy to consider only the tens place without considering the ones place. In this embodiment, even if m is an odd number, the value displayed in the square 13d is a multiple of 10. It is not necessary to process 5 in the 1st place.
なお、本実施例は、実施例1を基礎としてp=10としたが、p=5でなくp=10とすることは、p=5の場合とp=10の場合とでベースカード1の設計は同一なので、実施例2のようにn列マス目13bの表示をm×(n―p)の値を示す数字とする場合にも、実施例3のように統合n列マス目13cを設ける場合にも可能である。
In this embodiment, p = 10 is set based on the first embodiment, but setting p = 10 instead of p = 5 means that the base card 1 is set to p = 5 and p = 10. Since the design is the same, even when the display of the n-th column 13b is a number indicating the value of m × (n-p) as in the second embodiment, the integrated n-th column 13c is used as in the third embodiment. It is also possible to provide it.
以上、4つの実施例で詳細に説明したように、本発明の算数学習用教材は、mn=pm+(n-p)mとして、(n-p)を被乗数とした掛け算の知識に基づいて、被乗数nについての掛け算を学習することが容易となる、pを5又は10とすることで、効率的な学習が可能となる。
As described in detail in the above four examples, the teaching material for arithmetic learning of the present invention is based on the knowledge of multiplication with (n-p) as a multiplicand, with mn = pm + (n-p) m. Efficient learning is possible by setting p to 5 or 10, which makes it easy to learn multiplication for the multiplicand n.
ベースカード1及び作業用カード2については、紙製のものを用いると考えられる。しかし、他の材質、例えば木製やプラスチック製のものであってもよい。
As for the base card 1 and the work card 2, it is considered that paper ones are used. However, it may be made of other materials, such as wood or plastic.
また、コンピュータプログラムによってベースカード1及び作業用カード2をディスプレイ画面に表示し、マウスやタッチパネルの操作によって作業用カード2の表示位置を移動させてもよい。
Alternatively, the base card 1 and the work card 2 may be displayed on the display screen by a computer program, and the display position of the work card 2 may be moved by operating the mouse or the touch panel.
実施例1,2,4においては、被乗数毎に別々のベースカード1及び作業用カード2を使用するので、被乗数を指定することによってその被乗数に対応したベースカード1及び作業用カード2が表示されると、ベースカード1と作業用カード2との組み合わせが自動的に正しく選択され、便利である。また、実施例3においても、作業用カード2は被乗数毎に別々のものを使用するので、自動的に作業用カードの選択ができる点で、便利である。
In the first, second, and fourth embodiments, a separate base card 1 and work card 2 are used for each multiplicand. Therefore, by designating the multiplicand, the base card 1 and the work card 2 corresponding to the multiplicand are displayed. Then, the combination of the base card 1 and the work card 2 is automatically and correctly selected, which is convenient. Further, also in the third embodiment, since the work card 2 is used separately for each multiplicand, it is convenient in that the work card can be automatically selected.
また、4つの実施例で示したように、多様なベースカード1が考えられ、生徒の習熟度に応じて選択的に用いることも考えられる。使用するベースカード1の種類をコンピュータプログラムによって選択することが有効である。
Also, as shown in the four examples, various base cards 1 can be considered, and it is also possible to selectively use them according to the proficiency level of the students. It is effective to select the type of base card 1 to be used by a computer program.
本発明の算数学習用教材によれば、被乗数nから5又は10を減算した値を用いて、小さなnの値についての理解に基づいて大きなnの値についての掛け算を学習することができ、掛け算の学習効果を上げることができる。多くの学習塾や個人における利用が考えられる。
According to the teaching material for arithmetic learning of the present invention, it is possible to learn multiplication for a large n value based on an understanding of a small n value by using a value obtained by subtracting 5 or 10 from a multiplicand n, and multiplying. You can improve the learning effect of. It can be used by many cram schools and individuals.
1 ベースカード
11 被乗数表示枠
12 乗数表示マス目
13 マス目
13a p列マス目
13b n列マス目
13c 統合n列マス目
2 作業用カ―ド 1Base card 11 Multiplicand display frame 12 Multiplier display square 13 square 13a p row square 13b n row square 13c Integrated n row square 2 Work card
11 被乗数表示枠
12 乗数表示マス目
13 マス目
13a p列マス目
13b n列マス目
13c 統合n列マス目
2 作業用カ―ド 1
Claims (6)
- 掛け算を学習するための算数学習用教材であって、
5又は10であるpについて、
s行t列(5≦s)(p<t<2p)列の形に連接されたs×tのマス目が描かれたベースカードと、
前記マス目と同大の正方形を1方向にu個(u<p)連接してなる1行u列の作業用カードとを備え、
前記ベースカードは、m行p列目のマス目にm×pの値を示す数字が表示され、m行v列目(v<p)のマス目には数字が表示されていないことを特徴とする、算数学習用教材。 It is a teaching material for learning arithmetic for learning multiplication.
For p, which is 5 or 10,
A base card with s × t squares connected in the form of s rows and t columns (5 ≦ s) (p <t <2p) columns,
It is equipped with a 1-row, u-column work card formed by connecting u (u <p) squares of the same size as the squares in one direction.
The base card is characterized in that a number indicating a value of m × p is displayed in the square of m row and p column, and no number is displayed in the square of m row and v column (v <p). Teaching materials for learning mathematics. - 前記ベースカードは、n>pである1つのnについて、m行n列目のマス目にはm×nの値を示す数字が表示され、m行w列目(w>pかつw≠n)のマス目には数字が表示されていないことを特徴とする、請求項1に記載の算数学習用教材。 In the base card, for one n where n> p, a number indicating the value of m × n is displayed in the square of the m row and nth column, and the m row and wth column (w> p and w ≠ n). The teaching material for arithmetic learning according to claim 1, wherein the number is not displayed in the square of).
- 前記ベースカードは、n>pである1つのnについて、m行n列目(n>p)のマス目にはm×(n―p)の値を示す数字が表示され、m行w列目(w>pかつw≠n)のマス目には数字が表示されていないことを特徴とする、請求項1に記載の算数学習用教材。 In the base card, for one n where n> p, a number indicating a value of m × (n−p) is displayed in the square of m row nth column (n> p), and m row w column. The teaching material for arithmetic learning according to claim 1, wherein a number is not displayed in the square of the eye (w> p and w ≠ n).
- n=tであり、u=n-pであることを特徴とする。請求項2又は3に記載の算数学習用教材。 It is characterized in that n = t and u = np. The teaching material for math learning according to claim 2 or 3.
- 前記ベースカードは、n>pである全てのnについて、m行n列目のマス目にはm×nの値を示す数字が表示されていることを特徴とする、請求項1に記載の算数学習用教材。 The base card according to claim 1, wherein a number indicating a value of m × n is displayed in the square of the m row and the nth column for all n where n> p. Teaching materials for learning math.
- 前記ベースカードは、n>pである全てのnについて、m行n列目のマス目にはm×(n-p)の値を示す数字が表示されていることを特徴とする、請求項1に記載の算数学習用教材。 The base card is characterized in that, for all n where n> p, a number indicating a value of m × (n−p) is displayed in the square of the m row and nth column. Teaching materials for learning mathematics described in 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/013875 WO2020194747A1 (en) | 2019-03-28 | 2019-03-28 | Arithmetic learning material |
JP2019533660A JP6719675B1 (en) | 2019-03-28 | 2019-03-28 | Math learning materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/013875 WO2020194747A1 (en) | 2019-03-28 | 2019-03-28 | Arithmetic learning material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020194747A1 true WO2020194747A1 (en) | 2020-10-01 |
Family
ID=71402461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/013875 WO2020194747A1 (en) | 2019-03-28 | 2019-03-28 | Arithmetic learning material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6719675B1 (en) |
WO (1) | WO2020194747A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7569860B2 (en) | 2020-07-19 | 2024-10-18 | 明子 直井 | Computer programs for learning mathematics |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56154367U (en) * | 1980-04-21 | 1981-11-18 | ||
JP3094881U (en) * | 2002-12-25 | 2003-07-04 | 財団法人こども教育支援財団 | Calculation practice paper |
JP3114502U (en) * | 2005-03-22 | 2005-10-27 | 株式会社東京教育技術研究所 | Multiplication table scale set |
JP2008253520A (en) * | 2007-04-04 | 2008-10-23 | Tic:Kk | Game board |
US20130184041A1 (en) * | 2006-03-07 | 2013-07-18 | Lyndon O. Barton | Method and system for creating a multiplication and division puzzle |
US20140106317A1 (en) * | 2011-06-08 | 2014-04-17 | Gap-Suk Choi | Teaching resources for studying mathematics having the effect of learning by repetition |
JP3190745U (en) * | 2013-11-28 | 2014-05-29 | 光昭 佐藤 | Multiplication table memory card to see and remember |
JP2017134299A (en) * | 2016-01-29 | 2017-08-03 | 明子 直井 | Material for arithmetic learning |
JP2019028155A (en) * | 2017-07-27 | 2019-02-21 | 久美子 小守 | Learning tool for arithmetic |
JP2019032499A (en) * | 2017-08-04 | 2019-02-28 | 佐々木 康博 | Multiplication table of 19×19 |
-
2019
- 2019-03-28 WO PCT/JP2019/013875 patent/WO2020194747A1/en active Application Filing
- 2019-03-28 JP JP2019533660A patent/JP6719675B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56154367U (en) * | 1980-04-21 | 1981-11-18 | ||
JP3094881U (en) * | 2002-12-25 | 2003-07-04 | 財団法人こども教育支援財団 | Calculation practice paper |
JP3114502U (en) * | 2005-03-22 | 2005-10-27 | 株式会社東京教育技術研究所 | Multiplication table scale set |
US20130184041A1 (en) * | 2006-03-07 | 2013-07-18 | Lyndon O. Barton | Method and system for creating a multiplication and division puzzle |
JP2008253520A (en) * | 2007-04-04 | 2008-10-23 | Tic:Kk | Game board |
US20140106317A1 (en) * | 2011-06-08 | 2014-04-17 | Gap-Suk Choi | Teaching resources for studying mathematics having the effect of learning by repetition |
JP3190745U (en) * | 2013-11-28 | 2014-05-29 | 光昭 佐藤 | Multiplication table memory card to see and remember |
JP2017134299A (en) * | 2016-01-29 | 2017-08-03 | 明子 直井 | Material for arithmetic learning |
JP2019028155A (en) * | 2017-07-27 | 2019-02-21 | 久美子 小守 | Learning tool for arithmetic |
JP2019032499A (en) * | 2017-08-04 | 2019-02-28 | 佐々木 康博 | Multiplication table of 19×19 |
Non-Patent Citations (1)
Title |
---|
"MultiplicationTable. Math Glossary.", 1 June 2016 (2016-06-01), XP055745009, Retrieved from the Internet <URL:https://web.archive.org/web/20160601171510/https://www.shinko-keirin.co.jp/keirinkan/sansu/WebHelp/02/page2_22.html> [retrieved on 20190509] * |
Also Published As
Publication number | Publication date |
---|---|
JP6719675B1 (en) | 2020-07-08 |
JPWO2020194747A1 (en) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Drenoyianni et al. | Conceptions or misconceptions? Primary teachers' perceptions and use of computers in the classroom | |
Battista | The importance of spatial structuring in geometric reasoning | |
JP6372893B2 (en) | Math learning materials | |
Murtiyasa et al. | Designing mathematics learning media based on mobile learning for ten graders of vocational high school | |
Boaler et al. | Why kids should use their fingers in math class | |
EP2646995A2 (en) | Apparatus and method for tools for mathematics instruction | |
US5098301A (en) | Multiplication facts learning aid | |
WO2020194747A1 (en) | Arithmetic learning material | |
Flores et al. | Use of the concrete–representational–abstract instructional sequence to improve mathematical outcomes for elementary students with EBD | |
Paterson | Scotland's Curriculum for Excellence: the betrayal of a whole generation? | |
Quinn et al. | Teacher perceptions of division by zero | |
Carnine | Reforming mathematics instruction: The role of curriculum materials | |
US20070184419A1 (en) | Apparatus and Method for Teaching Multiplication and Division | |
Mulligan et al. | Insights into early numeracy: The count me in too project | |
Bakos et al. | Touch, Tap, Grasp and Zap: New Ways to Learn Multiplication | |
US20080171309A1 (en) | Mathematical learning tables | |
US20100203485A1 (en) | Method for teaching multiplication and factorization | |
Steinweg | Short note on algebraic notations: First encounter with letter variables in primary school | |
US7537454B1 (en) | Numerical multiplication teaching method | |
EP2947639A1 (en) | Double-sided, front-to-back-aligned, tactile learning aid | |
Pevac | First experiences with tutor for recursive algorithm time efficiency analysis | |
Prastiti et al. | The development of education statistics digital scrapbook integrated with problem-based learning at Universitas Terbuka | |
US20240096237A1 (en) | Division Problems Education Device and Method of Use Thereof | |
JP2017211521A (en) | Learning support system and learning support program | |
JP3202932U (en) | Calculation practice slips and booklet for calculation practice slips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019533660 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19921081 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19921081 Country of ref document: EP Kind code of ref document: A1 |