WO2020194742A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020194742A1
WO2020194742A1 PCT/JP2019/013861 JP2019013861W WO2020194742A1 WO 2020194742 A1 WO2020194742 A1 WO 2020194742A1 JP 2019013861 W JP2019013861 W JP 2019013861W WO 2020194742 A1 WO2020194742 A1 WO 2020194742A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
delay
patrol
user terminal
present disclosure
Prior art date
Application number
PCT/JP2019/013861
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 岡村
祐輝 松村
浩樹 原田
ナディサンカ ルパシンハ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/013861 priority Critical patent/WO2020194742A1/en
Publication of WO2020194742A1 publication Critical patent/WO2020194742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • Future wireless communication systems eg, NR are being considered to support codebook-based transmission using precoding matrices.
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately controlling full power transmission.
  • the user terminal determines a precoding matrix to be applied to uplink transmission based on the downlink control information, and a codebook that does not correspond to the set codebook subset is designated by the downlink control information.
  • a control unit that determines the circulation delay applied to each antenna port, and a transmission unit that applies the circulation delay diversity (Cyclic Delay Diversity (CDD)) based on the circulation delay to the uplink transmission to perform full power transmission.
  • CDD Cirlic Delay Diversity
  • full power transmission can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index.
  • FIG. 2 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission.
  • FIG. 3 is a diagram showing an example in which CDD is applied to the configuration of UE capability 2 to perform full power transmission.
  • FIG. 4 is a diagram showing an example of a patrol delay for the UE capability 2.
  • FIG. 5 is a diagram showing an example of a patrol delay for the UE capability 2.
  • 6A and 6B are diagrams showing an example of a patrol delay for UE capability 2.
  • 7A and 7B are diagrams showing an example of a patrol delay for UE capability 2.
  • FIG. 8 is a diagram showing an example of a patrol delay set set by higher layer signaling.
  • FIG. 9 is a diagram showing an example of a patrol delay set set by higher layer signaling.
  • FIG. 10 is a diagram showing an example of a patrol delay set set by higher layer signaling.
  • FIG. 11 is a diagram showing an example of a shift of the circuit delay by the circuit delay shift field.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE supports at least one of codebook (Codebook (CB))-based transmission and non-codebook (Non-Codebook (NCB)) -based transmission.
  • codebook Codebook
  • NCB Non-Codebook
  • the UE uses at least the measurement reference signal (Sounding Reference Signal (SRS)) resource index (SRS Resource Index (SRI)) to use at least one of the CB-based and NCB-based uplink shared channels (PUSCH). )) It is being considered to determine the precoder (precoding matrix) for transmission.
  • SRS Sounding Reference Signal
  • SRI SRS Resource Index
  • the UE determines the precoder for PUSCH transmission based on the SRI, transmission rank index (Transmitted Rank Indicator (TRI)), transmission precoding matrix index (Transmitted Precoding Matrix Indicator (TPMI)), and the like. You may.
  • the UE may determine a precoder for PUSCH transmission based on SRI.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of DCI, or by the parameter "srs-ResourceIndicator” included in the RRC information element "Configured GrantConfig" of the confid grant PUSCH (configured grant PUSCH). You may.
  • TRI and TPMI may be specified by the Precoding information and number of layers field of DCI.
  • the UE may report UE capability information regarding the precoder type, and the precoder type based on the UE capability information may be set by higher layer signaling from the base station.
  • the UE capability information may be precoder type information (may be represented by the RRC parameter "pusch-Trans Coherence") used by the UE in PUSCH transmission.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information may be, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), or the like.
  • MIB Master Information Block
  • SIB System Information Block
  • the UE is based on the precoder type information (which may be represented by the RRC parameter "codebookSubset") included in the PUSCH setting information (the "PUSCH-Config" information element of RRC signaling) notified by the upper layer signaling.
  • the precoder used for PUSCH transmission may be determined.
  • the UE may be configured by the codebookSubset with a subset of PMI specified by TPMI.
  • the precoder type is either full coherent (full coherent, fully coherent, coherent), partial coherent (non-coherent) or non-coherent (non-coherent), or at least two combinations thereof (for example, “complete”. And may be represented by parameters such as "fullyAndPartialAndNonCoherent", “partialAndNonCoherent”).
  • Completely coherent may mean that the antenna ports used for transmission are synchronized (may be expressed as being able to match the phase, applying the same precoder, etc.). Partial coherent may mean that some of the antenna ports used for transmission are synchronized, but not synchronized. Non-coherent may mean that the antenna port used for transmission cannot be synchronized.
  • a UE that supports a fully coherent precoder type may be assumed to support a partially coherent and non-coherent precoder type.
  • UEs that support partially coherent precoder types may be expected to support non-coherent precoder types.
  • the precoder type may be read as coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, and the like.
  • the UE determines from multiple precoders for CB-based transmissions (may be referred to as precoding matrices, codebooks, etc.) the precoding matrix corresponding to the TPMI index obtained from the DCI that schedules UL transmissions. May be good.
  • FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index.
  • FIG. 1 corresponds to a table of precoding matrix W for single layer transmission using 4 antenna ports in DFT-s-OFDM (Discrete Fourier Transform spread OFDM, transform precoding is effective).
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM, transform precoding is effective.
  • the UE when the precoder type (codebookSubset) is full andpartialAndNonCoherent, the UE is notified of any TPMI from 0 to 27 for single layer transmission. Further, when the precoder type is partialAndNonCoherent, the UE is set to any TPMI from 0 to 11 for single layer transmission. If the precoder type is nonCoherent, the UE is configured with any TPMI from 0 to 3 for single layer transmission.
  • FIG. 1 is a table specified in the current Rel-15 NR.
  • NR is studying UE capabilities related to codebook-based full-power UL transmission using a plurality of power amplifiers (PAs).
  • PAs power amplifiers
  • UE capabilities 1-3 have been proposed: -UE capability 1: Supports (or has) a PA (full rated PA) that can output the maximum rated power in each transmission chain (Tx chain).
  • -UE capability 2 None of the transmit chains support fully rated PA, UE Capability 3: A subset of transmit chains support fully rated PA.
  • a UE having at least one of the UE capabilities 1-3 may mean that it supports the full power of UL transmission.
  • the UE capacity 1/2/3 may be read as a UE capacity 1/2/3, a full power transmission type 1/2/3, a power allocation type 1/2/3, etc. for full power transmission, respectively.
  • the type may be read as a mode, an ability, and the like.
  • 1/2/3 may be read as an arbitrary number or character set such as A / B / C.
  • FIG. 2 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission.
  • FIG. 2 briefly shows only the PA and the transmitting antenna port (which may be read as the transmitting antenna) as the configuration of the UE.
  • P indicates the UE maximum output power [dBm]
  • P PA indicates the PA maximum output power [dBm].
  • P may be 23 dBm in a UE of power class 3, for example.
  • the configuration of UE capability 1 is expected to be expensive to implement, but full power transmission is possible using one or more arbitrary antenna ports.
  • the configuration of UE capability 2 includes only non-full rated PA and is expected to be implemented at low cost. However, since full power transmission cannot be performed even if only one antenna port is used, the phase of the signal input to each PA, It is required to control the amplitude and the like.
  • the configuration of UE capability 3 is intermediate between the configuration of UE capability 1 and the configuration of UE capability 2.
  • Antenna ports capable of full-power transmission (transmission antennas # 0 and # 2 in this example) and antenna ports not capable of full-power transmission (transmission antennas # 1 and # 3 in this example) are mixed.
  • the transmission signals of multiple antennas will shift. Therefore, when the UE does not have the full coherent capability, especially in the case of the UE capability 2, full power transmission cannot be performed unless the transmission signals of the plurality of antennas are adjusted in time.
  • CDD Cyclic Delay Diversity
  • the UE transmits the transmission signal s i (k) of each antenna i (i is an integer) with a delay of ⁇ i .
  • ⁇ i may be read as ⁇ i , ⁇ i cyc , patrol delay, patrol delay amount, and the like.
  • FIG. 3 is a diagram showing an example in which CDD is applied to the configuration of UE capability 2 to perform full power transmission.
  • TPMI 0-3.
  • T indicates a transposed matrix; the same applies hereinafter
  • TPMI a codebook
  • the UE that complies with the existing Rel-15 NR does not have the full coherent capability and has the configuration of the UE capability 2, it cannot perform full power transmission to which the CDD is applied. If full power transmission is not possible, the coverage may decrease and the increase in communication throughput may be suppressed.
  • UL MIMO Multi Input Multi Output
  • UL MIMO Multi Input Multi Output
  • cell coverage similar to that of a single antenna can be maintained.
  • spatial diversity gain can be obtained, and throughput improvement can be expected.
  • a UE that does not have a fully rated PA can appropriately perform full power transmission.
  • having coherent abilities may be read interchangeably with reporting the ability, setting the coherent, and so on.
  • non-coherent UE the partial coherent UE, and the fully coherent UE may be read as a UE having a non-coherent ability, a UE having a partial coherent ability, and a UE having a complete coherent ability, respectively.
  • the UE having the UE ability 2 may be read as the UE that reported the UE ability 2.
  • the UE in the following embodiment may be read as a non-coherent UE having a UE capability 2 or a partially coherent UE having a UE capability 2.
  • the scope of application of the present disclosure is not limited to this, and the wireless communication method based on the following embodiment may be applied to any UE regardless of the UE capability 1-3.
  • CDD in the present disclosure may be read interchangeably with specific CDDs such as Small Cyclic Delay Diversity (SCDD) and Large Cyclic Delay Diversity (LCDD). CDD meaning may be included.
  • SCDD Small Cyclic Delay Diversity
  • LCDD Large Cyclic Delay Diversity
  • SCDD may mean a CDD that applies a smaller amount of cyclic delay than a normal CDD or LCDD.
  • tau i is defined by the specification.
  • UE based the tau i like other parameters may be implicitly determined.
  • TPMI 4-27 for 4-antenna port single layer transmission.
  • the UE determines which ⁇ i to apply to each antenna port based on specifications and other parameters when a codebook that does not fall under the configured codebook subset (eg, non-coherent) is specified by TPMI. Then, CDD may be applied to PUSCH to perform full power transmission.
  • a codebook that does not fall under the configured codebook subset eg, non-coherent
  • RRC parameter "codebookSubset” "partialAndNonCoherent”
  • the other parameter may include the number of antenna ports for PUSCH transmission.
  • the number of antenna ports for the PUSCH transmission may be notified to the UE using, for example, upper layer signaling (eg, RRC signaling), physical layer signaling (eg, DCI), or a combination thereof.
  • the number of antenna ports for the PUSCH transmission may be specified by the antenna port field of DCI format 0-1.
  • the maximum number of antenna ports may be 4, or a value larger than 4 may be used.
  • FIG. 4 is a diagram showing an example of a patrol delay for the UE capability 2.
  • ⁇ 0 , ⁇ 1 ⁇ cyclic prefix (CP) length * ⁇ 1/4, 1/2 ⁇ , and the number of antenna ports is 4.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ CP length * ⁇ 1/8, 1/4, 3/8, 1/2 ⁇
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 ⁇ CP length * ⁇ 1/32, 1/16, 3/32, 1/8, 5/32, 3/16 , 7/32, 1/4 ⁇ .
  • the UE based on the correspondence between the cyclic delay to be applied to the antenna ports and the antenna port may be derived cyclic delay tau i to be applied to each antenna port i.
  • the derivation may be performed with reference to the table corresponding to FIG. 4, or may be performed using a function or the like that satisfies the correspondence relationship of FIG.
  • the patrol delay of the present disclosure may be derived, determined, selected, or the like by an arbitrary method based on a predetermined association (FIG. 4, correspondence relationship of drawings described later, etc.).
  • each tau i is an example, but not limited to.
  • at least one of the values of ⁇ i may be 0.
  • the value of ⁇ i does not have to depend on the CP length.
  • the value of ⁇ i may be expressed in any unit such as seconds, milliseconds, microseconds, symbols, and the like.
  • ⁇ i may be read interchangeably with the form e j ⁇ . The same applies to the examples of other correspondence relationships in the present disclosure.
  • FIG. 5 is a diagram showing an example of a patrol delay for the UE capability 2.
  • each ⁇ i has a CP length * 1/4
  • each ⁇ i has a CP length * 1/8
  • the number of antenna ports is In the case of 8
  • each ⁇ i has a CP length * 1/32. The same applies to the examples of other correspondence relationships in the present disclosure.
  • the UE assumes (using) a precoding matrix for partial or full coherence that corresponds to the number of antenna ports for PUSCH transmission, regardless of the reported (or configured) coherent capability. May be done.
  • the UE notified of 2 as the number of antenna ports for PUSCH transmission may determine the antenna port for transmission to which CDD is applied based on 1/2 [0 1 0 1] T.
  • ⁇ i may include CP length.
  • the UE may assume that for at least one antenna port i, a larger cyclic delay ⁇ i is applied for transmissions with longer CP lengths.
  • the CP length may be notified to the UE using, for example, upper layer signaling (eg, RRC signaling), physical layer signaling (eg, DCI), or a combination thereof.
  • RRC signaling eg, RRC signaling
  • DCI physical layer signaling
  • the CP length (whether or not it is an extended CP) for a predetermined BWP may be set in the UE by the parameter "cyclicPrefix" included in the RRC information element "BWP".
  • FIG. 6A and 6B are diagrams showing an example of a patrol delay for UE capability 2.
  • FIG. 6A shows the correspondence between the CP length and the patrol delay in the case where the number of antenna ports is 2.
  • normal CP normal CP
  • ⁇ 0 , ⁇ 1 ⁇ CP length * ⁇ 1/32, 1/2 ⁇
  • extended CP extended CP
  • ⁇ 0 , ⁇ 1 ⁇ CP length * ⁇ 1/4, 1/2 ⁇ .
  • the value of ⁇ 0 of the transmission using the extended CP is larger than the value of ⁇ 0 of the transmission using the normal CP.
  • FIG. 6B shows the correspondence between the CP length and the patrol delay in the case where the number of antenna ports is 4.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ CP length * ⁇ 1/32, 1/16, 3/32, 1/8 ⁇ Yes
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ CP length * ⁇ 1/8, 1/4, 3/8, 1/2 ⁇ .
  • Each ⁇ i of the transmission using the extended CP is a value larger than the corresponding ⁇ i of the transmission using the normal CP.
  • Partially coherent UE as correspondence between the cyclic delay and other parameters described above, based on different correspondence with the correspondence relationship noncoherent UE utilizes may determine the tau i for each antenna port.
  • FIG. 7A and 7B are diagrams showing an example of a patrol delay for UE capability 2. Since FIG. 7A corresponds to a part of FIG. 4, the description will not be repeated. For example, non-coherent UE may determine the tau i based on the correspondence relation of FIG. 7A.
  • Partially coherent UE may determine the tau i based on the correspondence relation of FIG. 7B.
  • the value of the patrol delay when the number of antenna ports is 2 is not specified because it is necessary to apply CDD if full power transmission is performed using two antenna ports having a coherent relationship. Because there is no.
  • ⁇ i when the number of antenna ports is 2 may be specified.
  • the antenna port is used as the antenna port. It may be read and applied as a group.
  • the antenna ports 1 and 2 having a coherent relationship constitute an antenna port group 1, and the antenna ports 3 and 4 having a coherent relationship form an antenna port group 2.
  • the antenna port of the antenna port group 1 and the antenna port of the antenna port group 2 have a non-coherent relationship.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ CP length * ⁇ 1/4, 1/4, 1/2, 1/2 ⁇ It may mean.
  • the UE may apply the CDD based on these ⁇ i , for example, to the precoding matrix of 1/2 [1 1 1 1] T.
  • the value of tau i of the plurality of antenna ports having a coherent relationship may be the same.
  • full power transmission can be appropriately performed without increasing the signaling overhead related to CDD.
  • tau i is higher layer signaling (for example, RRC signaling) is set to the UE by.
  • UE is the tau i, based on parameters related to cyclic delay may be explicitly determined.
  • full power transmission e.g., full power PUSCH transmission
  • full power PUSCH transmission in order to perform, may be determined based on parameters related to the cyclic delay is set to tau i for each antenna port.
  • the UE determines which ⁇ i to apply to each antenna port based on the upper layer parameters when a codebook that does not fall under the configured codebook subset (eg, non-coherent) is specified by TPMI.
  • CDD may be applied to PUSCH to perform full power transmission.
  • the UE may set a set of patrol delay values for a plurality of antenna ports as parameters relating to the patrol delay using higher layer signaling.
  • a set of cyclic delay values for a plurality of antenna ports may be referred to as a cyclic delay set or the like.
  • FIG. 8 is a diagram showing an example of a patrol delay set set by higher layer signaling.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ ⁇ 0, 0, 0, 0 ⁇ , CP length * ⁇ 1/8, 1/4, 3/8 , 1/2 ⁇ , CP length * ⁇ 1/16, 1/8, 3/16, 1/4 ⁇ , CP length * ⁇ 1/32, 1/16, 3/32, 1/8 ⁇ ing.
  • the values are merely examples and are not limited to these.
  • the UE is scheduled for PUSCH transmission by DCI (for example, DCI format 0_1).
  • the UE may acquire the number of antenna ports for PUSCH transmission based on the antenna port field of the DCI.
  • the UE may apply the CDD to the specified number of antenna ports using the above ⁇ i . Therefore, the cyclic delay set described here corresponds to one cyclic delay set that is commonly referred to regardless of the number of antenna ports (even if the number of antenna ports is different).
  • the UE may set a plurality of the above-mentioned patrol delay sets.
  • the UE determines one of a plurality of set cyclic delay sets based on a specific field of a predetermined DCI (for example, DCI format 0_1), and applies based on the determined one cyclic delay set.
  • the ⁇ i to be used may be explicitly determined based on the parameters related to the patrol delay.
  • the patrol delay set setting may include an index (or ID) for identifying the patrol delay set.
  • the specific field may be called a patrol delay field.
  • the cyclic delay field may be a new field for specifying the cyclic delay set index, or it may be another field (eg, precoding information and number of layers field). The value of the other field may identify the cyclic delay set index.
  • FIG. 9 is a diagram showing an example of a patrol delay set set by higher layer signaling.
  • the UE may be configured with all of these patrol delay sets.
  • the value of the cycle delay field for each cycle delay set is shown.
  • the field is 2 bits, but the field is not limited to this.
  • the UE is scheduled to transmit PUSCH by the DCI.
  • the UE may acquire the number of antenna ports for PUSCH transmission based on the antenna port field of the DCI.
  • the UE may apply the CDD to the specified number of antenna ports using the above ⁇ i .
  • FIG. 9 shows an example in which a (common) set is set regardless of the number of antenna ports, but the present invention is not limited to this.
  • one or more patrol delay sets may be set independently for each number of antenna ports.
  • FIG. 10 is a diagram showing an example of a patrol delay set set by higher layer signaling.
  • the UE may acquire the number of antenna ports for PUSCH transmission based on the antenna port field included in the DCI that schedules PUSCH transmission.
  • the UE may determine one circuit delay set based on the value of the circuit delay field included in the DCI for one or more circuit delay sets corresponding to the number of antenna ports.
  • the UE may apply the CDD to a specified number of antenna ports using each ⁇ i of the determined cyclic delay set.
  • the DCI that schedules the PUSCH may include a specific field for the shift of the patrol delay antenna port.
  • the field may be called a patrol delay shift field or the like, may be a new field, or may correspond to an existing field.
  • the value of the cyclic delay shift field may be used to specify the starting index of the cyclic delay set.
  • FIG. 11 is a diagram showing an example of a shift of the cycle delay by the cycle delay shift field. Since the contents of the patrol delay set are the same as those in FIG. 8, the description will not be repeated.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ CP length * ⁇ 1/32, 1/16, 3/32, 1/8 ⁇ set by higher layer signaling.
  • cyclic delay shift field may be used to specify a pattern in any order of the cyclic delay index, instead of specifying the start index.
  • the UE may perform full power transmission without applying CDD (without CDD) when all ⁇ i corresponding to the number of PUSCH antenna ports are equal to 0. Otherwise, the UE may assume that the patrol delay for applying the CDD to perform full power transmission is set in the RRC or specified by the DCI.
  • the UE may assume that the value of each patrol delay in the patrol delay set is set to 0 by the upper layer signaling.
  • the UE may report to the base station the capability information indicating that full power transmission can be performed without applying the CDD in the configuration of the UE capability 2.
  • the UE that reports the capability information may perform full power transmission without applying the CDD in the configuration of the UE capability 2.
  • control of full power transmission to which CDD is not applied may also be used in the first embodiment.
  • full power transmission can be appropriately performed without increasing the signaling overhead related to CDD.
  • UL transmission using the antenna port has been described assuming PUSCH, but at least one full power transmission of other signals and channels is controlled in addition to or in place of PUSCH. You may.
  • the antenna port in each of the above-described embodiments is a PUSCH (and a demodulation reference signal (DeModulation Reference Signal (DMRS)) for the PUSCH, a phase tracking reference signal (Phase Tracking Reference Signal (PTRS))), and an uplink control channel ( It may be at least one antenna port such as Physical Uplink Control Channel (PUCCH)), Random Access Channel (Physical Random Access Channel (PRACH)), SRS, and the like.
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SRS Physical Random Access Channel
  • Each of the above-described embodiments may be used properly based on predetermined conditions. For example, before the UE sets the patrol delay set by higher layer signaling (initial access, random access procedure, etc.), the UE controls full power transmission using the CDD based on the first embodiment. You may. Further, the UE may always fixedly assume the first embodiment or the second embodiment for UL transmission using a specific resource (frequency resource, time resource, etc.).
  • RRC parameter "codebookSubset” set codebook subset
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access system based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block containing SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB), or the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may receive UE capability information regarding support for fully rated PA, UE capability information regarding support for antenna switching for full power transmission, and the like from the user terminal 20.
  • the control unit 110 may control the UE that reports these capability information to generate a DCI that causes full power transmission.
  • FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • control unit 210 may determine a precoding matrix to be applied to uplink transmission (for example, PUSCH) based on downlink control information (DCI).
  • DCI downlink control information
  • the patrol delay applied to each antenna port of the uplink transmission may be determined.
  • the transmission / reception unit 220 may perform full-power transmission by applying the circulation delay diversity (Cyclic Delay Diversity (CDD)) based on the circulation delay to the uplink transmission.
  • CDD Cirlic Delay Diversity
  • the full power transmission may mean that the total transmission power of the antenna port specified by the precoding matrix matches the maximum transmission power of the user terminal 20.
  • the control unit 210 may determine the patrol delay based on at least one of the number of transmitting antenna ports used for the uplink transmission and the cyclic prefix length.
  • the control unit 210 changes (for example, shifts) the correspondence relationship between the antenna port and the patrol delay in the patrol delay set based on predetermined information (for example, the patrol delay shift field) included in the downlink control information. May be good.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a mini slot, a sub slot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
  • Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal according to one embodiment of the present disclosure is characterized by having: a control unit for determining, on the basis of downlink control information, a precoding matrix to apply to uplink transmission and determining a cyclic delay to apply to each antenna port if a code book that does not correspond to a configured code book subset is designated by the downlink control information; and a transmission unit for performing full-power transmission by applying cyclic delay diversity (CDD) based on the cyclic delay to the uplink transmission. According to one embodiment of the present disclosure, it is possible to appropriately control full-power transmission.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 将来の無線通信システム(例えば、NR)では、プリコーディング行列を用いたコードブックベース送信をサポートすることが検討されている。 Future wireless communication systems (eg, NR) are being considered to support codebook-based transmission using precoding matrices.
 しかしながら、これまでのRel-15 NRの仕様では、UEが複数のポートを用いてコードブックベース送信する場合に、一部のコードブックを利用すると、シングルポートの場合と比べて送信電力が小さくなる(フルパワー送信ができない)場合がある。例えば、一部のアンテナポートにつながるパワーアンプ(Power Amplifier(PA))が最大定格電力を出力可能なPA(フルレイテッドPA(full rated PA))でない場合には、フルパワー送信できないおそれがある。フルパワー送信できない場合、カバレッジの減少などが生じ、通信スループットの増大が抑制されるおそれがある。 However, in the specifications of Rel-15 NR so far, when the UE uses a plurality of ports for codebook-based transmission, if some codebooks are used, the transmission power becomes smaller than that in the case of a single port. (Full power transmission is not possible). For example, if the power amplifier (Power Amplifier (PA)) connected to some antenna ports is not a PA (full rated PA) that can output the maximum rated power, full power transmission may not be possible. If full power transmission is not possible, coverage may decrease and the increase in communication throughput may be suppressed.
 そこで、本開示は、適切にフルパワー送信を制御できるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately controlling full power transmission.
 本開示の一態様に係るユーザ端末は、下り制御情報に基づいて、上りリンク送信に適用するプリコーディング行列を決定し、設定されたコードブックサブセットに該当しないコードブックが前記下り制御情報によって指定される場合、各アンテナポートに適用する巡回遅延を決定する制御部と、前記上りリンク送信に前記巡回遅延に基づく巡回遅延ダイバーシティ(Cyclic Delay Diversity(CDD))を適用してフルパワー送信を行う送信部と、を有することを特徴とする。 The user terminal according to one aspect of the present disclosure determines a precoding matrix to be applied to uplink transmission based on the downlink control information, and a codebook that does not correspond to the set codebook subset is designated by the downlink control information. In this case, a control unit that determines the circulation delay applied to each antenna port, and a transmission unit that applies the circulation delay diversity (Cyclic Delay Diversity (CDD)) based on the circulation delay to the uplink transmission to perform full power transmission. And, characterized by having.
 本開示の一態様によれば、適切にフルパワー送信を制御できる。 According to one aspect of the present disclosure, full power transmission can be appropriately controlled.
図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index. 図2は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。FIG. 2 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission. 図3は、UE能力2の構成にCDDを適用してフルパワー送信を行う一例を示す図である。FIG. 3 is a diagram showing an example in which CDD is applied to the configuration of UE capability 2 to perform full power transmission. 図4は、UE能力2のための巡回遅延の一例を示す図である。FIG. 4 is a diagram showing an example of a patrol delay for the UE capability 2. 図5は、UE能力2のための巡回遅延の一例を示す図である。FIG. 5 is a diagram showing an example of a patrol delay for the UE capability 2. 図6A及び6Bは、UE能力2のための巡回遅延の一例を示す図である。6A and 6B are diagrams showing an example of a patrol delay for UE capability 2. 図7A及び7Bは、UE能力2のための巡回遅延の一例を示す図である。7A and 7B are diagrams showing an example of a patrol delay for UE capability 2. 図8は、上位レイヤシグナリングで設定される巡回遅延セットの一例を示す図である。FIG. 8 is a diagram showing an example of a patrol delay set set by higher layer signaling. 図9は、上位レイヤシグナリングで設定される巡回遅延セットの一例を示す図である。FIG. 9 is a diagram showing an example of a patrol delay set set by higher layer signaling. 図10は、上位レイヤシグナリングで設定される巡回遅延セットの一例を示す図である。FIG. 10 is a diagram showing an example of a patrol delay set set by higher layer signaling. 図11は、巡回遅延シフトフィールドによる巡回遅延のシフトの一例を示す図である。FIG. 11 is a diagram showing an example of a shift of the circuit delay by the circuit delay shift field. 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図13は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment. 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(PUSCHプリコーダ)
 NRでは、UEがコードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートすることが検討されている。
(PUSCH precoder)
In the NR, it is considered that the UE supports at least one of codebook (Codebook (CB))-based transmission and non-codebook (Non-Codebook (NCB)) -based transmission.
 例えば、UEは少なくとも測定用参照信号(Sounding Reference Signal(SRS))リソースインデックス(SRS Resource Index(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。 For example, the UE uses at least the measurement reference signal (Sounding Reference Signal (SRS)) resource index (SRS Resource Index (SRI)) to use at least one of the CB-based and NCB-based uplink shared channels (PUSCH). )) It is being considered to determine the precoder (precoding matrix) for transmission.
 UEは、CBベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。 In the case of CB-based transmission, the UE determines the precoder for PUSCH transmission based on the SRI, transmission rank index (Transmitted Rank Indicator (TRI)), transmission precoding matrix index (Transmitted Precoding Matrix Indicator (TPMI)), and the like. You may. In the case of NCB-based transmission, the UE may determine a precoder for PUSCH transmission based on SRI.
 SRI、TRI、TPMIなどは、下り制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。TRI及びTPMIは、DCIのPrecoding information and number of layersフィールドによって指定されてもよい。 SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI). The SRI may be specified by the SRS Resource Indicator field (SRI field) of DCI, or by the parameter "srs-ResourceIndicator" included in the RRC information element "Configured GrantConfig" of the confid grant PUSCH (configured grant PUSCH). You may. TRI and TPMI may be specified by the Precoding information and number of layers field of DCI.
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。 The UE may report UE capability information regarding the precoder type, and the precoder type based on the UE capability information may be set by higher layer signaling from the base station. The UE capability information may be precoder type information (may be represented by the RRC parameter "pusch-Trans Coherence") used by the UE in PUSCH transmission.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))などであってもよい。 For MAC signaling, for example, a MAC control element (MAC Control Element (MAC CE)), a MAC Protocol Data Unit (PDU), or the like may be used. The broadcast information may be, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), or the like.
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。 The UE is based on the precoder type information (which may be represented by the RRC parameter "codebookSubset") included in the PUSCH setting information (the "PUSCH-Config" information element of RRC signaling) notified by the upper layer signaling. The precoder used for PUSCH transmission may be determined. The UE may be configured by the codebookSubset with a subset of PMI specified by TPMI.
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。 The precoder type is either full coherent (full coherent, fully coherent, coherent), partial coherent (non-coherent) or non-coherent (non-coherent), or at least two combinations thereof (for example, "complete". And may be represented by parameters such as "fullyAndPartialAndNonCoherent", "partialAndNonCoherent").
 完全コヒーレントは、送信に用いるアンテナポートの同期がとれている(位相を合わせることができる、適用するプリコーダが同じである、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートのうち、一部は同期がとれているが、同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いるアンテナポートの同期がとれないことを意味してもよい。 Completely coherent may mean that the antenna ports used for transmission are synchronized (may be expressed as being able to match the phase, applying the same precoder, etc.). Partial coherent may mean that some of the antenna ports used for transmission are synchronized, but not synchronized. Non-coherent may mean that the antenna port used for transmission cannot be synchronized.
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。 Note that a UE that supports a fully coherent precoder type may be assumed to support a partially coherent and non-coherent precoder type. UEs that support partially coherent precoder types may be expected to support non-coherent precoder types.
 プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。 The precoder type may be read as coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, and the like.
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCIから得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。 The UE determines from multiple precoders for CB-based transmissions (may be referred to as precoding matrices, codebooks, etc.) the precoding matrix corresponding to the TPMI index obtained from the DCI that schedules UL transmissions. May be good.
 図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。図1は、DFT-s-OFDM(Discrete Fourier Transform spread OFDM、変換プリコーディング(transform precoding)が有効である)で4アンテナポートを用いたシングルレイヤ送信用のプリコーディング行列Wのテーブルに該当する。 FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index. FIG. 1 corresponds to a table of precoding matrix W for single layer transmission using 4 antenna ports in DFT-s-OFDM (Discrete Fourier Transform spread OFDM, transform precoding is effective).
 図1において、プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。 In FIG. 1, when the precoder type (codebookSubset) is full andpartialAndNonCoherent, the UE is notified of any TPMI from 0 to 27 for single layer transmission. Further, when the precoder type is partialAndNonCoherent, the UE is set to any TPMI from 0 to 11 for single layer transmission. If the precoder type is nonCoherent, the UE is configured with any TPMI from 0 to 3 for single layer transmission.
 図1は、現状のRel-15 NRにおいて規定されているテーブルである。このテーブルでは、インデックス12から27に該当する完全コヒーレントの送信電力を1(=(1/2)*4)とおくと、インデックス4から11に該当する部分コヒーレントの送信電力は1/2(=(1/2)*2)であり、インデックス0から3に該当するノンコヒーレントの送信電力は1/4(=(1/2)*1)である。 FIG. 1 is a table specified in the current Rel-15 NR. In this table, if the completely coherent transmission power corresponding to indexes 12 to 27 is set to 1 (= (1/2) 2 * 4), the transmission power of the partial coherent corresponding to indexes 4 to 11 is 1/2 ( = (1/2) 2 * 2), and the non-coherent transmission power corresponding to indexes 0 to 3 is 1/4 (= (1/2) 2 * 1).
 つまり、現状のRel-15 NRの仕様によれば、UEが複数のポートを用いてコードブックベース送信する場合に、一部のコードブックを利用すると、シングルポートの場合と比べて送信電力が小さくなる(フルパワー送信ができない)場合がある。 In other words, according to the current Rel-15 NR specifications, when the UE uses a plurality of ports for codebook-based transmission, if some codebooks are used, the transmission power is smaller than that for a single port. (Full power transmission is not possible).
(フルパワー送信のUE能力)
 コードブックを用いる場合でも、フルパワーUL送信を適切に行うことが好ましい。このため、NRでは、複数のパワーアンプ(Power Amplifier(PA))を用いたコードブックベースのフルパワーUL送信に関連するUE能力が検討されている。これまでのNRの議論では、以下のUE能力1-3が提案されている:
・UE能力1:各送信チェイン(Tx chain)において最大定格電力を出力可能なPA(フルレイテッドPA(full rated PA))をサポートする(又は有する)、
・UE能力2:送信チェインのいずれもフルレイテッドPAをサポートしない、
・UE能力3:送信チェインのサブセット(一部)がフルレイテッドPAをサポートする。
(UE capability for full power transmission)
Even when using a codebook, it is preferable to properly perform full power UL transmission. For this reason, NR is studying UE capabilities related to codebook-based full-power UL transmission using a plurality of power amplifiers (PAs). In the discussion of NR so far, the following UE capabilities 1-3 have been proposed:
-UE capability 1: Supports (or has) a PA (full rated PA) that can output the maximum rated power in each transmission chain (Tx chain).
-UE capability 2: None of the transmit chains support fully rated PA,
UE Capability 3: A subset of transmit chains support fully rated PA.
 なお、当該UE能力1-3の少なくとも1つを有するUEは、UL送信のフルパワーをサポートしていることを意味してもよい。 It should be noted that a UE having at least one of the UE capabilities 1-3 may mean that it supports the full power of UL transmission.
 当該UE能力1/2/3は、それぞれ、フルパワー送信に関するUE能力1/2/3、フルパワー送信タイプ1/2/3、電力割り当てタイプ1/2/3などで読み替えられてもよい。ここで、タイプは、モード、能力などで読み替えられてもよい。また、1/2/3は、A/B/Cなど任意の数字又は文字のセットで読み替えられてもよい。 The UE capacity 1/2/3 may be read as a UE capacity 1/2/3, a full power transmission type 1/2/3, a power allocation type 1/2/3, etc. for full power transmission, respectively. Here, the type may be read as a mode, an ability, and the like. Further, 1/2/3 may be read as an arbitrary number or character set such as A / B / C.
 図2は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。図2は、UEの構成としてPA及び送信アンテナポート(送信アンテナで読み替えられてもよい)のみを簡略的に示している。なお、PA及び送信アンテナポートの数がそれぞれ4である例を示すが、これに限られない。 FIG. 2 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission. FIG. 2 briefly shows only the PA and the transmitting antenna port (which may be read as the transmitting antenna) as the configuration of the UE. An example in which the number of PAs and transmission antenna ports is 4 each is shown, but the present invention is not limited to this.
 なお、PはUE最大出力電力[dBm]を示し、PPAはPA最大出力電力[dBm]を示す。なお、Pは、例えばパワークラス3のUEでは23dBmであってもよい。本開示ではPPA≦Pを想定するが、PPA>Pの場合に本開示の実施形態が適用されてもよい。 Note that P indicates the UE maximum output power [dBm], and P PA indicates the PA maximum output power [dBm]. Note that P may be 23 dBm in a UE of power class 3, for example. Although P PA ≤ P is assumed in the present disclosure, the embodiment of the present disclosure may be applied when P PA > P.
 UE能力1の構成は、実装が高コストになると想定されるが、1つ以上の任意のアンテナポートを用いてフルパワー送信が可能である。UE能力2の構成は、ノンフルレイテッドPAのみを含み、安価に実装できると期待されるが、アンテナポートを1つだけ用いてもフルパワー送信できないため、各PAに入力される信号の位相、振幅などを制御することが求められる。 The configuration of UE capability 1 is expected to be expensive to implement, but full power transmission is possible using one or more arbitrary antenna ports. The configuration of UE capability 2 includes only non-full rated PA and is expected to be implemented at low cost. However, since full power transmission cannot be performed even if only one antenna port is used, the phase of the signal input to each PA, It is required to control the amplitude and the like.
 UE能力3の構成は、UE能力1の構成及びUE能力2の構成の中間である。フルパワー送信可能なアンテナポート(本例では送信アンテナ#0及び#2)と可能でないアンテナポート(本例では送信アンテナ#1及び#3)が混在している。 The configuration of UE capability 3 is intermediate between the configuration of UE capability 1 and the configuration of UE capability 2. Antenna ports capable of full-power transmission (transmission antennas # 0 and # 2 in this example) and antenna ports not capable of full-power transmission (transmission antennas # 1 and # 3 in this example) are mixed.
 なお、UE能力3のフルパワー送信可能なアンテナポートのインデックス、数などは、これに限定されない。また、本例では、ノンフルレイテッドPAのPPA=P/2と想定するが、PPAの値はこれに限られない。 The index, number, and the like of antenna ports capable of full power transmission of UE capability 3 are not limited to this. Further, in this example, it is assumed that P PA = P / 2 of the non-full rated PA , but the value of P PA is not limited to this.
 ところで、UEがフルコヒーレントの能力を持たない場合、複数のアンテナの送信信号がずれることになる。このため、UEがフルコヒーレントの能力を持たない場合であって、特にUE能力2のケースにおいては、複数のアンテナの送信信号を時間的に調整しなければ、フルパワー送信できない。 By the way, if the UE does not have full coherent capability, the transmission signals of multiple antennas will shift. Therefore, when the UE does not have the full coherent capability, especially in the case of the UE capability 2, full power transmission cannot be performed unless the transmission signals of the plurality of antennas are adjusted in time.
 各アンテナの送信信号を調整する手法としては、巡回遅延ダイバーシティ(Cyclic Delay Diversity(CDD))がある。CDDにおいては、UEは、各アンテナi(iは整数)の送信信号s(k)を、それぞれτだけ遅延させて送信する。なお、τは、δ、τ cyc、巡回遅延、巡回遅延量などと互いに読み替えられてもよい。 As a method of adjusting the transmission signal of each antenna, there is Cyclic Delay Diversity (CDD). In the CDD, the UE transmits the transmission signal s i (k) of each antenna i (i is an integer) with a delay of τ i . Note that τ i may be read as δ i , τ i cyc , patrol delay, patrol delay amount, and the like.
 図3は、UE能力2の構成にCDDを適用してフルパワー送信を行う一例を示す図である。UEは、ベースバンド信号に対して、送信アンテナ#0-#3に対応するそれぞれの巡回遅延τを適用し、PPA≦P(本例では、PPA=17dBm)のアンプを経由して各信号を送信する。このようにして、フルパワー送信を実現することが期待されている。 FIG. 3 is a diagram showing an example in which CDD is applied to the configuration of UE capability 2 to perform full power transmission. UE, to the baseband signal, to apply the transmission antenna # 0 # each cyclic delay tau i corresponding to 3 (in this example, P PA = 17dBm) P PA ≦ P via the amplifier Send each signal. In this way, it is expected to realize full power transmission.
 しかしながら、図1で説明したように、例えばノンコヒーレントUEに対しては、TPMI=0-3を用いて1つのアンテナポートを指定することしかできない。例えば、コードブック(プリコーディング行列)として、1/2[1 0 0 0](Tは転置行列を示す。以下同様)をTPMIによって指定された場合、UEは1つのアンテナポートを用いたPUSCHを送信する。 However, as described in FIG. 1, for example, for a non-coherent UE, only one antenna port can be specified using TPMI = 0-3. For example, if 1/2 [100 0] T (T indicates a transposed matrix; the same applies hereinafter) is specified by TPMI as a codebook (precoding matrix), the UE uses one antenna port for PUSCH. To send.
 このため、既存のRel-15 NRに従うUEは、フルコヒーレントの能力を持たずUE能力2の構成を有する場合には、CDDを適用したフルパワー送信を行うことができない。フルパワー送信できない場合、カバレッジの減少などが生じ、通信スループットの増大が抑制されるおそれがある。 Therefore, if the UE that complies with the existing Rel-15 NR does not have the full coherent capability and has the configuration of the UE capability 2, it cannot perform full power transmission to which the CDD is applied. If full power transmission is not possible, the coverage may decrease and the increase in communication throughput may be suppressed.
 そこで、本発明者らは、適切にフルパワー送信を行うための制御方法を着想した。本開示の一態様によれば、フルパワーでUL MIMO(Multi Input Multi Output)送信を行うことができ、シングルアンテナと同様のセルカバレッジを維持できる。また、UL MIMOによれば空間ダイバーシティ利得が得られ、スループット向上が期待できる。さらに、フルレイテッドPAを持たないUEであっても、適切にフルパワー送信を行うことができる。 Therefore, the present inventors have conceived a control method for appropriately performing full power transmission. According to one aspect of the present disclosure, UL MIMO (Multi Input Multi Output) transmission can be performed with full power, and cell coverage similar to that of a single antenna can be maintained. In addition, according to UL MIMO, spatial diversity gain can be obtained, and throughput improvement can be expected. Further, even a UE that does not have a fully rated PA can appropriately perform full power transmission.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
 なお、以下の実施形態の「アンテナ」及び「アンテナポート」は、互いに読み替えられてもよい。 Note that the "antenna" and "antenna port" of the following embodiments may be read as each other.
 また、本開示では、UE能力X(X=1、2、3)を有することは、UE能力Xを報告することと、UE能力Xの構成を用いてフルパワー送信を行えること、などと互いに読み替えられてもよい。 Further, in the present disclosure, having UE capability X (X = 1, 2, 3) means that UE capability X can be reported and full power transmission can be performed using the configuration of UE capability X. It may be read as.
 本開示では、コヒーレントに関する能力(例えば、完全コヒーレント、部分コヒーレント、ノンコヒーレント)を有することは、当該能力を報告すること、当該コヒーレントを設定されたこと、などと互いに読み替えられてもよい。 In the present disclosure, having coherent abilities (eg, fully coherent, partial coherent, non-coherent) may be read interchangeably with reporting the ability, setting the coherent, and so on.
 また、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントに関する能力を有するUE、部分コヒーレントに関する能力を有するUE、完全コヒーレントに関する能力を有するUEと互いに読み替えられてもよい。 Further, the non-coherent UE, the partial coherent UE, and the fully coherent UE may be read as a UE having a non-coherent ability, a UE having a partial coherent ability, and a UE having a complete coherent ability, respectively.
 UE能力2を有するUEは、UE能力2を報告したUEと互いに読み替えられてもよい。 The UE having the UE ability 2 may be read as the UE that reported the UE ability 2.
 なお、以下の実施形態におけるUEは、UE能力2を有するノンコヒーレントUE、UE能力2を有する部分コヒーレントUEなどで読み替えられてもよい。しかしながら、本開示の適用範囲はこれに限られず、UE能力1-3に関わらず、任意のUEに対して、以下の実施形態に基づく無線通信方法を適用してもよい。 The UE in the following embodiment may be read as a non-coherent UE having a UE capability 2 or a partially coherent UE having a UE capability 2. However, the scope of application of the present disclosure is not limited to this, and the wireless communication method based on the following embodiment may be applied to any UE regardless of the UE capability 1-3.
 本開示における「CDD」は、小巡回遅延ダイバーシティ(Small Cyclic Delay Diversity(SCDD))、長巡回遅延ダイバーシティ(Large Cyclic Delay Diversity(LCDD))などの特定のCDDと互いに読み替えられてもよいし、これらのCDDの意味を含んでもよい。ここで、SCDDは、通常のCDD又はLCDDよりも小さい巡回遅延の量を適用するCDDを意味してもよい。 The term "CDD" in the present disclosure may be read interchangeably with specific CDDs such as Small Cyclic Delay Diversity (SCDD) and Large Cyclic Delay Diversity (LCDD). CDD meaning may be included. Here, SCDD may mean a CDD that applies a smaller amount of cyclic delay than a normal CDD or LCDD.
(無線通信方法)
<第1の実施形態>
 第1の実施形態において、τは仕様によって規定される。言い換えると、UEは、τを他のパラメータなどに基づいて、暗黙的に判断してもよい。
(Wireless communication method)
<First Embodiment>
In the first embodiment, tau i is defined by the specification. In other words, UE, based the tau i like other parameters may be implicitly determined.
 例えば、UE能力2を有するノンコヒーレントUEは、部分又は完全コヒーレントコードブックに対応するTPMI(例えば、4アンテナポートのシングルレイヤ送信の場合であれば、TPMI=4-27のいずれか)を指示された場合には、フルパワー送信(例えば、フルパワーPUSCH送信)を行うために、各アンテナポートのτを他のパラメータに基づいて決定してもよい。 For example, a non-coherent UE with UE capability 2 is instructed to have a TPMI corresponding to a partially or fully coherent codebook (eg, TPMI = 4-27 for 4-antenna port single layer transmission). If the the full power transmission (e.g., full power PUSCH transmission) in order to perform, may be determined based on other parameters tau i for each antenna port.
 言い換えると、UEは、設定されたコードブックサブセット(例えば、ノンコヒーレント)に該当しないコードブックがTPMIによって指定される場合、各アンテナポートに適用するτを仕様及び他のパラメータに基づいて決定して、PUSCHにCDDを適用してフルパワー送信を行ってもよい。 In other words, the UE determines which τ i to apply to each antenna port based on specifications and other parameters when a codebook that does not fall under the configured codebook subset (eg, non-coherent) is specified by TPMI. Then, CDD may be applied to PUSCH to perform full power transmission.
 設定されたコードブックサブセットに該当しないコードブックの指定は、例えば、直接TPMIの値によって指定されてもよいし、TPMIの値の解釈を特定のUE(例えば、UE能力2を有するノンコヒーレントUE)については変更する(例えば、通知されたTPMI=0、1、2、3をそれぞれTPMI=12、14、20、22と解釈する)ことによって指定されてもよい。 The designation of a codebook that does not correspond to the set codebook subset may be specified, for example, directly by the value of TPMI, or the interpretation of the value of TPMI may be specified by a specific UE (for example, a non-coherent UE having UE capability 2). May be specified by changing (for example, the notified TPMI = 0, 1, 2, 3 are interpreted as TPMI = 12, 14, 20, 22 respectively).
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。 In the present disclosure, in the partial coherent codebook, a UE in which a partial coherent codebook subset (for example, RRC parameter "codebookSubset" = "partialAndNonCoherent") is set is specified by DCI for codebook-based transmission. Of the codebooks (precoding matrices) corresponding to TPMI, except for the codebooks corresponding to TPMI in which a UE with a non-coherent codebook subset (for example, RRC parameter "codebookSubset" = "nonCoherent") is specified. (That is, in the case of single-layer transmission of 4 antenna ports, the codebook of TPMI = 4 to 11) may be applicable.
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。 In the present disclosure, the fully coherent codebook is a UE in which a fully coherent codebook subset (for example, RRC parameter "codebookSubset" = "fullyAndPartialAndNonCoherent") is set, and is designated by DCI for codebook-based transmission. Of the codebooks (precoding matrices) corresponding to TPMI, except for the codebooks corresponding to TPMI in which a UE with a partially coherent codebook subset (for example, RRC parameter "codebookSubset" = "partialAndNonCoherent") is specified. (That is, in the case of single-layer transmission of 4 antenna ports, the codebook of TPMI = 12 to 27) may be applicable.
[τをPUSCH送信のためのアンテナポート数に基づいて決定]
 当該他のパラメータは、PUSCH送信のためのアンテナポート数を含んでもよい。
[Tau i determined based on the number of antenna ports for PUSCH transmission and]
The other parameter may include the number of antenna ports for PUSCH transmission.
 当該PUSCH送信のためのアンテナポート数は、例えば、上位レイヤシグナリング(例えば、RRCシグナリング)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせを用いて、UEに通知されてもよい。当該PUSCH送信のためのアンテナポート数は、DCIフォーマット0_1のアンテナポートフィールドによって指定されてもよい。当該アンテナポート数は最大4であってもよいし、4より大きい値が用いられてもよい。 The number of antenna ports for the PUSCH transmission may be notified to the UE using, for example, upper layer signaling (eg, RRC signaling), physical layer signaling (eg, DCI), or a combination thereof. The number of antenna ports for the PUSCH transmission may be specified by the antenna port field of DCI format 0-1. The maximum number of antenna ports may be 4, or a value larger than 4 may be used.
 図4は、UE能力2のための巡回遅延の一例を示す図である。本例において、アンテナポート数が2の場合、{τ、τ}=サイクリックプレフィックス(Cyclic Prefix(CP))長*{1/4、1/2}であり、アンテナポート数が4の場合、{τ、τ、τ、τ}=CP長*{1/8、1/4、3/8、1/2}であり、アンテナポート数が8の場合、{τ、τ、τ、τ、τ、τ、τ、τ}=CP長*{1/32、1/16、3/32、1/8、5/32、3/16、7/32、1/4}である。 FIG. 4 is a diagram showing an example of a patrol delay for the UE capability 2. In this example, when the number of antenna ports is 2, {τ 0 , τ 1 } = cyclic prefix (CP) length * {1/4, 1/2}, and the number of antenna ports is 4. In the case, {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/8, 1/4, 3/8, 1/2}, and when the number of antenna ports is 8, {τ 0 , Τ 1 , τ 2 , τ 3 , τ 4 , τ 5 , τ 6 , τ 7 } = CP length * {1/32, 1/16, 3/32, 1/8, 5/32, 3/16 , 7/32, 1/4}.
 UEは、図4に示すような、アンテナポート数と各アンテナポートに適用する巡回遅延との対応関係に基づいて、各アンテナポートiに適用する巡回遅延τを導出してもよい。当該導出は、図4に対応するテーブルを参照して行われてもよいし、図4の対応関係を満たすような関数などを用いて行われてもよい。本開示の巡回遅延は、所定の関連付け(図4、後述の図面の対応関係など)に基づいて任意の手法で導出、決定、選択などされてもよい。 The UE, as shown in FIG. 4, based on the correspondence between the cyclic delay to be applied to the antenna ports and the antenna port may be derived cyclic delay tau i to be applied to each antenna port i. The derivation may be performed with reference to the table corresponding to FIG. 4, or may be performed using a function or the like that satisfies the correspondence relationship of FIG. The patrol delay of the present disclosure may be derived, determined, selected, or the like by an arbitrary method based on a predetermined association (FIG. 4, correspondence relationship of drawings described later, etc.).
 なお、各τの値は一例であって、これらに限られない。例えば、τの値の少なくとも1つが0であってもよい。また、τの値はCP長に依存しなくてもよい。τの値は、秒、ミリ秒、マイクロ秒、シンボルなど、任意の単位で表現されてもよい。τは、ejθの形式と互いに読み替えられてもよい。本開示における他の対応関係の例でも同様である。 The value of each tau i is an example, but not limited to. For example, at least one of the values of τ i may be 0. Further, the value of τ i does not have to depend on the CP length. The value of τ i may be expressed in any unit such as seconds, milliseconds, microseconds, symbols, and the like. τ i may be read interchangeably with the form e j θ. The same applies to the examples of other correspondence relationships in the present disclosure.
 あるアンテナポート数について、全てのτの値は同じであってもよい。図5は、UE能力2のための巡回遅延の一例を示す図である。本例において、アンテナポート数が2の場合、各τはCP長*1/4であり、アンテナポート数が4の場合、各τはCP長*1/8であり、アンテナポート数が8の場合、各τはCP長*1/32である。本開示における他の対応関係の例でも同様である。 For certain number of antenna ports, the value of all tau i may be the same. FIG. 5 is a diagram showing an example of a patrol delay for the UE capability 2. In this example, when the number of antenna ports is 2, each τ i has a CP length * 1/4, and when the number of antenna ports is 4, each τ i has a CP length * 1/8, and the number of antenna ports is In the case of 8, each τ i has a CP length * 1/32. The same applies to the examples of other correspondence relationships in the present disclosure.
 UEは、報告した(又は設定された)コヒーレントに関する能力に関わらず、PUSCH送信のためのアンテナポート数に対応する、部分又は完全コヒーレント用のプリコーディング行列を想定して(用いて)フルパワー送信を行ってもよい。例えば、PUSCH送信のためのアンテナポート数として2を通知された当該UEは、CDDを適用した送信のためのアンテナポートを1/2[0 1 0 1]に基づいて決定してもよい。 The UE assumes (using) a precoding matrix for partial or full coherence that corresponds to the number of antenna ports for PUSCH transmission, regardless of the reported (or configured) coherent capability. May be done. For example, the UE notified of 2 as the number of antenna ports for PUSCH transmission may determine the antenna port for transmission to which CDD is applied based on 1/2 [0 1 0 1] T.
 なお、図4及び5のような対応関係は、サブキャリア間隔ごとに独立に規定されてもよい。本開示における他の対応関係の例でも同様である。 Note that the correspondence as shown in FIGS. 4 and 5 may be defined independently for each subcarrier interval. The same applies to the examples of other correspondence relationships in the present disclosure.
[τをCP長に基づいて決定]
 上述のτを決定するための他のパラメータは、CP長を含んでもよい。UEは、少なくとも1つのアンテナポートiについて、より長いCP長の送信に対してはより大きい巡回遅延τを適用すると想定してもよい。
[Determined on the basis of the τ i to CP length]
Other parameters for determining τ i described above may include CP length. The UE may assume that for at least one antenna port i, a larger cyclic delay τ i is applied for transmissions with longer CP lengths.
 CP長は、例えば、上位レイヤシグナリング(例えば、RRCシグナリング)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせを用いて、UEに通知されてもよい。例えば、所定のBWPについてのCP長(拡張CPか否か)が、RRC情報要素「BWP」に含まれるパラメータ「cyclicPrefix」によってUEに設定されてもよい。 The CP length may be notified to the UE using, for example, upper layer signaling (eg, RRC signaling), physical layer signaling (eg, DCI), or a combination thereof. For example, the CP length (whether or not it is an extended CP) for a predetermined BWP may be set in the UE by the parameter "cyclicPrefix" included in the RRC information element "BWP".
 図6A及び6Bは、UE能力2のための巡回遅延の一例を示す図である。図6Aは、アンテナポート数が2のケースにおけるCP長と巡回遅延との対応関係を示す。図示されるように、通常CP(normal CP)を用いた送信については、{τ、τ}=CP長*{1/32、1/2}であり、拡張CP(extended CP)を用いた送信については、{τ、τ}=CP長*{1/4、1/2}である。拡張CPを用いた送信のτが、通常CPを用いた送信のτより大きい値となっている。 6A and 6B are diagrams showing an example of a patrol delay for UE capability 2. FIG. 6A shows the correspondence between the CP length and the patrol delay in the case where the number of antenna ports is 2. As shown in the figure, for transmission using normal CP (normal CP), {τ 0 , τ 1 } = CP length * {1/32, 1/2}, and extended CP (extended CP) is used. For the transmitted transmission, {τ 0 , τ 1 } = CP length * {1/4, 1/2}. The value of τ 0 of the transmission using the extended CP is larger than the value of τ 0 of the transmission using the normal CP.
 図6Bは、アンテナポート数が4のケースにおけるCP長と巡回遅延との対応関係を示す。図示されるように、通常CPを用いた送信については、{τ、τ、τ、τ}=CP長*{1/32、1/16、3/32、1/8}であり、拡張CPを用いた送信については、{τ、τ、τ、τ}=CP長*{1/8、1/4、3/8、1/2}である。拡張CPを用いた送信の各τが、通常CPを用いた送信の対応するτより大きい値となっている。 FIG. 6B shows the correspondence between the CP length and the patrol delay in the case where the number of antenna ports is 4. As shown, for transmission using normal CP, {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/32, 1/16, 3/32, 1/8} Yes, for transmission using the extended CP, {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/8, 1/4, 3/8, 1/2}. Each τ i of the transmission using the extended CP is a value larger than the corresponding τ i of the transmission using the normal CP.
[τをコードブックサブセット(又はコヒーレントの能力)に基づいて決定]
 部分コヒーレントUEは、上述した他のパラメータと巡回遅延との対応関係として、ノンコヒーレントUEが利用する当該対応関係とは異なる対応関係に基づいて、各アンテナポートのτを決定してもよい。
[Determined based on tau i to codebook subset (or coherent ability)
Partially coherent UE as correspondence between the cyclic delay and other parameters described above, based on different correspondence with the correspondence relationship noncoherent UE utilizes may determine the tau i for each antenna port.
 図7A及び7Bは、UE能力2のための巡回遅延の一例を示す図である。図7Aは、図4の一部に対応しているため、説明を繰り返さない。例えば、ノンコヒーレントUEは図7Aの対応関係に基づいてτを決定してもよい。 7A and 7B are diagrams showing an example of a patrol delay for UE capability 2. Since FIG. 7A corresponds to a part of FIG. 4, the description will not be repeated. For example, non-coherent UE may determine the tau i based on the correspondence relation of FIG. 7A.
 部分コヒーレントUEは、図7Bの対応関係に基づいてτを決定してもよい。ここで、アンテナポート数が2の場合の巡回遅延の値が規定されていないのは、コヒーレントな関係を有する2つのアンテナポートを用いてフルパワー送信を行うようにすれば、CDDを適用する必要はないためである。もちろん、ノンコヒーレントな関係を有する2つのアンテナポートを用いてフルパワー送信を行うために、アンテナポート数が2の場合のτが規定されてもよい。 Partially coherent UE may determine the tau i based on the correspondence relation of FIG. 7B. Here, the value of the patrol delay when the number of antenna ports is 2 is not specified because it is necessary to apply CDD if full power transmission is performed using two antenna ports having a coherent relationship. Because there is no. Of course, in order to perform full power transmission using two antenna ports having a non-coherent relationship, τ i when the number of antenna ports is 2 may be specified.
 図7Bのアンテナポート数が4の場合は、{τ、τ}=CP長*{1/4、1/2}と記載されているが、この対応関係においては、アンテナポートをアンテナポートグループで読み替えて適用してもよい。 When the number of antenna ports in FIG. 7B is 4, it is described as {τ 0 , τ 1 } = CP length * {1/4, 1/2}, but in this correspondence, the antenna port is used as the antenna port. It may be read and applied as a group.
 例えば、コヒーレントな関係を有するアンテナポート1及び2がアンテナポートグループ1を構成し、コヒーレントな関係を有するアンテナポート3及び4がアンテナポートグループ2を構成すると想定する。ここで、アンテナポートグループ1のアンテナポートと、アンテナポートグループ2のアンテナポートと、はノンコヒーレントな関係を有する。この場合、図7Bのアンテナポート数が4のケースは、{τ、τ、τ、τ}=CP長*{1/4、1/4、1/2、1/2}を意味してもよい。UEは、例えば1/2[1 1 1 1]のプリコーディング行列について、これらのτに基づいてCDDを適用してもよい。 For example, it is assumed that the antenna ports 1 and 2 having a coherent relationship constitute an antenna port group 1, and the antenna ports 3 and 4 having a coherent relationship form an antenna port group 2. Here, the antenna port of the antenna port group 1 and the antenna port of the antenna port group 2 have a non-coherent relationship. In this case, in the case where the number of antenna ports in FIG. 7B is 4, {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/4, 1/4, 1/2, 1/2} It may mean. The UE may apply the CDD based on these τ i , for example, to the precoding matrix of 1/2 [1 1 1 1] T.
 このように、コヒーレントな関係を有する複数のアンテナポートのτの値は、同じであってもよい。本開示における他の対応関係の例でも同様である。 Thus, the value of tau i of the plurality of antenna ports having a coherent relationship may be the same. The same applies to the examples of other correspondences in the present disclosure.
 以上説明した第1の実施形態によれば、CDDに関するシグナリングオーバヘッドを増大させずに、フルパワー送信を適切に実施できる。 According to the first embodiment described above, full power transmission can be appropriately performed without increasing the signaling overhead related to CDD.
<第2の実施形態>
 第2の実施形態において、τは上位レイヤシグナリング(例えば、RRCシグナリング)によってUEに設定される。言い換えると、UEは、τを、巡回遅延に関するパラメータに基づいて、明示的に判断してもよい。
<Second embodiment>
In the second embodiment, tau i is higher layer signaling (for example, RRC signaling) is set to the UE by. In other words, UE is the tau i, based on parameters related to cyclic delay may be explicitly determined.
 例えば、UE能力2を有するノンコヒーレントUEは、部分又は完全コヒーレントコードブックに対応するTPMI(例えば、シングルレイヤの場合であれば、TPMI=4-27のいずれか)を指示された場合には、フルパワー送信(例えば、フルパワーPUSCH送信)を行うために、各アンテナポートのτを設定された巡回遅延に関するパラメータに基づいて決定してもよい。 For example, a non-coherent UE with UE capability 2 may be instructed to have a TPMI (eg, TPMI = 4-27 in the case of a single layer) corresponding to a partially or fully coherent codebook. full power transmission (e.g., full power PUSCH transmission) in order to perform, may be determined based on parameters related to the cyclic delay is set to tau i for each antenna port.
 言い換えると、UEは、設定されたコードブックサブセット(例えば、ノンコヒーレント)に該当しないコードブックがTPMIによって指定される場合、各アンテナポートに適用するτを上位レイヤパラメータに基づいて決定して、PUSCHにCDDを適用してフルパワー送信を行ってもよい。 In other words, the UE determines which τ i to apply to each antenna port based on the upper layer parameters when a codebook that does not fall under the configured codebook subset (eg, non-coherent) is specified by TPMI. CDD may be applied to PUSCH to perform full power transmission.
[異なるアンテナポート数で共通の1つの巡回遅延セットをRRCシグナリングで設定]
 UEは、巡回遅延に関するパラメータとして、複数のアンテナポートの巡回遅延の値のセットを、上位レイヤシグナリングを用いて設定されてもよい。複数のアンテナポートの巡回遅延の値のセットは、巡回遅延セットなどと呼ばれてもよい。
[Set one common patrol delay set with different number of antenna ports by RRC signaling]
The UE may set a set of patrol delay values for a plurality of antenna ports as parameters relating to the patrol delay using higher layer signaling. A set of cyclic delay values for a plurality of antenna ports may be referred to as a cyclic delay set or the like.
 図8は、上位レイヤシグナリングで設定される巡回遅延セットの一例を示す図である。本例には、当該セットの一例として、{τ、τ、τ、τ}={0、0、0、0}、CP長*{1/8、1/4、3/8、1/2}、CP長*{1/16、1/8、3/16、1/4}、CP長*{1/32、1/16、3/32、1/8}が示されている。なお、値はあくまで一例であって、これらに限られない。 FIG. 8 is a diagram showing an example of a patrol delay set set by higher layer signaling. In this example, as an example of the set, {τ 0 , τ 1 , τ 2 , τ 3 } = {0, 0, 0, 0}, CP length * {1/8, 1/4, 3/8 , 1/2}, CP length * {1/16, 1/8, 3/16, 1/4}, CP length * {1/32, 1/16, 3/32, 1/8} ing. The values are merely examples and are not limited to these.
 まず、UEは、当該セットの1つを設定されてもよい。例えば、{τ、τ、τ、τ}=CP長*{1/16、1/8、3/16、1/4}が設定されたと想定して以下説明を続ける。 First, the UE may be configured with one of the sets. For example, assuming that {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/16, 1/8, 3/16, 1/4} is set, the following description will be continued.
 その後、UEは、DCI(例えば、DCIフォーマット0_1)によって、PUSCH送信をスケジュールされる。UEは、当該DCIのアンテナポートフィールドに基づいて、PUSCH送信のためのアンテナポート数を取得してもよい。 After that, the UE is scheduled for PUSCH transmission by DCI (for example, DCI format 0_1). The UE may acquire the number of antenna ports for PUSCH transmission based on the antenna port field of the DCI.
 UEは、設定された上記巡回遅延セットのうち、当該アンテナポート数を考慮して各τを導出する。例えば、PUSCHアンテナポート数=2と指定された場合、UEは{τ、τ}=CP長*{1/16、1/8}と想定してもよい。また、PUSCHアンテナポート数=4と指定された場合、UEは{τ、τ、τ、τ}=CP長*{1/16、1/8、3/16、1/4}と想定してもよい。 The UE among the cyclic delay set configured to derive the respective tau i in consideration of the number of the antenna ports. For example, when the number of PUSCH antenna ports is specified as 2, the UE may be assumed to be {τ 0 , τ 1 } = CP length * {1/16, 1/8}. If the number of PUSCH antenna ports is specified as 4, the UE has {τ 1 , τ 2 , τ 3 , τ 4 } = CP length * {1/16, 1/8, 3/16, 1/4}. You may assume that.
 UEは、指定された数のアンテナポートに対して、上記のτを用いてCDDを適用してもよい。したがって、ここで説明した巡回遅延セットは、アンテナポート数に関わらず(異なるアンテナポート数であっても)共通で参照される1つの巡回遅延セットに該当する。 The UE may apply the CDD to the specified number of antenna ports using the above τ i . Therefore, the cyclic delay set described here corresponds to one cyclic delay set that is commonly referred to regardless of the number of antenna ports (even if the number of antenna ports is different).
[異なるアンテナポート数で共通の複数の巡回遅延セットをRRCシグナリングで設定]
 UEは、上述した巡回遅延セットを複数個設定されてもよい。UEは、複数個設定された巡回遅延セットのうち1つを、所定のDCI(例えば、DCIフォーマット0_1)の特定のフィールドに基づいて決定し、当該決定した1つの巡回遅延セットに基づいて、適用するτを、巡回遅延に関するパラメータに基づいて、明示的に判断してもよい。
[Set multiple common patrol delay sets with different number of antenna ports by RRC signaling]
The UE may set a plurality of the above-mentioned patrol delay sets. The UE determines one of a plurality of set cyclic delay sets based on a specific field of a predetermined DCI (for example, DCI format 0_1), and applies based on the determined one cyclic delay set. The τ i to be used may be explicitly determined based on the parameters related to the patrol delay.
 巡回遅延セットの設定は、巡回遅延セットを特定するためのインデックス(又はID)を含んでもよい。 The patrol delay set setting may include an index (or ID) for identifying the patrol delay set.
 当該特定のフィールドは、巡回遅延フィールドと呼ばれてもよい。巡回遅延フィールドは、巡回遅延セットインデックスを指定するための新しいフィールドであってもよいし、他のフィールド(例えば、プリコーディング情報及びレイヤ数フィールド)であってもよい。当該他のフィールドの値によって、巡回遅延セットインデックスが特定されてもよい。 The specific field may be called a patrol delay field. The cyclic delay field may be a new field for specifying the cyclic delay set index, or it may be another field (eg, precoding information and number of layers field). The value of the other field may identify the cyclic delay set index.
 図9は、上位レイヤシグナリングで設定される巡回遅延セットの一例を示す図である。UEは、これらの巡回遅延セット全てを設定されてもよい。各巡回遅延セットに対する巡回遅延フィールドの値が示されている。本例では当該フィールドは2ビットであるが、これに限られない。 FIG. 9 is a diagram showing an example of a patrol delay set set by higher layer signaling. The UE may be configured with all of these patrol delay sets. The value of the cycle delay field for each cycle delay set is shown. In this example, the field is 2 bits, but the field is not limited to this.
 UEは、例えば巡回遅延フィールドの値=“10”を含むDCIを受信すると、{τ、τ、τ、τ}=CP長*{1/16、1/8、3/16、1/4}が指定されたと想定してもよい。 When the UE receives a DCI containing, for example, the value of the patrol delay field = "10", the UE receives {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/16, 1/8, 3/16, It may be assumed that 1/4} is specified.
 UEは、当該DCIによって、PUSCH送信をスケジュールされる。UEは、当該DCIのアンテナポートフィールドに基づいて、PUSCH送信のためのアンテナポート数を取得してもよい。 The UE is scheduled to transmit PUSCH by the DCI. The UE may acquire the number of antenna ports for PUSCH transmission based on the antenna port field of the DCI.
 UEは、設定された上記巡回遅延セットのうち、当該アンテナポート数を考慮して各τを導出する。例えば、PUSCHアンテナポート数=2と指定された場合、UEは{τ、τ}=CP長*{1/16、1/8}と想定してもよい。また、PUSCHアンテナポート数=4と指定された場合、UEは{τ、τ、τ、τ}=CP長*{1/16、1/8、3/16、1/4}と想定してもよい。 The UE among the cyclic delay set configured to derive the respective tau i in consideration of the number of the antenna ports. For example, when the number of PUSCH antenna ports is specified as 2, the UE may be assumed to be {τ 0 , τ 1 } = CP length * {1/16, 1/8}. If the number of PUSCH antenna ports is specified as 4, the UE has {τ 1 , τ 2 , τ 3 , τ 4 } = CP length * {1/16, 1/8, 3/16, 1/4}. You may assume that.
 UEは、指定された数のアンテナポートに対して、上記のτを用いてCDDを適用してもよい。 The UE may apply the CDD to the specified number of antenna ports using the above τ i .
[アンテナポート数ごとに異なる複数の巡回遅延セットをRRCシグナリングで設定]
 なお、図9ではアンテナポート数に関わらない(共通の)セットが設定される例を示したが、これに限られない。例えば、アンテナポート数ごとに、1つ又は複数の巡回遅延セットが独立して設定されてもよい。
[Set multiple patrol delay sets that differ depending on the number of antenna ports by RRC signaling]
Note that FIG. 9 shows an example in which a (common) set is set regardless of the number of antenna ports, but the present invention is not limited to this. For example, one or more patrol delay sets may be set independently for each number of antenna ports.
 図10は、上位レイヤシグナリングで設定される巡回遅延セットの一例を示す図である。本例には、当該セットの一例として、アンテナポート数=2に対応する(τ、τ)={0、0}、{CP長*(1/4、1/2)}、{CP長*(1/8、1/4)}、{CP長*(1/16、1/8)}が示され、またアンテナポート数=4に対応する(τ、τ、τ、τ)={0、0、0、0}、{CP長*(1/8、1/4、3/8、1/2)}、{CP長*(1/16、1/8、3/16、1/4)}、{CP長*(1/32、1/16、3/32、1/8)}が示されている。 FIG. 10 is a diagram showing an example of a patrol delay set set by higher layer signaling. In this example, as an example of the set, (τ 1 , τ 2 ) = {0, 0}, {CP length * (1/4, 1/2)}, {CP corresponding to the number of antenna ports = 2. Length * (1/8, 1/4)}, {CP length * (1/16, 1/8)} are shown, and corresponds to the number of antenna ports = 4 (τ 1 , τ 2 , τ 3 , τ 4 ) = {0, 0, 0, 0}, {CP length * (1/8, 1/4, 3/8, 1/2)}, {CP length * (1/16, 1/8, 3/16, 1/4)} and {CP length * (1/32, 1/16, 3/32, 1/8)} are shown.
 UEは、PUSCH送信をスケジュールするDCIに含まれるアンテナポートフィールドに基づいて、PUSCH送信のためのアンテナポート数を取得してもよい。UEは、当該アンテナポート数に対応する1又は複数の巡回遅延セットに関して、上記DCIに含まれる巡回遅延フィールドの値に基づいて、1つの巡回遅延セットを決定してもよい。 The UE may acquire the number of antenna ports for PUSCH transmission based on the antenna port field included in the DCI that schedules PUSCH transmission. The UE may determine one circuit delay set based on the value of the circuit delay field included in the DCI for one or more circuit delay sets corresponding to the number of antenna ports.
 UEは、指定された数のアンテナポートに対して、決定した巡回遅延セットの各τを用いてCDDを適用してもよい。 The UE may apply the CDD to a specified number of antenna ports using each τ i of the determined cyclic delay set.
[巡回遅延のアンテナポートのシフト]
 これまでの説明では、設定された巡回遅延セットに対応するアンテナポートの順番はアンテナポート0から昇順に固定されていたが、この順番は、任意に指定可能であってもよい。
[Antenna port shift of patrol delay]
In the above description, the order of the antenna ports corresponding to the set patrol delay set is fixed in ascending order from the antenna port 0, but this order may be arbitrarily specified.
 例えば、PUSCHをスケジュールするDCIは、巡回遅延のアンテナポートのシフトに関する特定のフィールドを含んでもよい。当該フィールドは、巡回遅延シフトフィールドなどと呼ばれてもよく、新しいフィールドであってもよいし、既存のフィールドに該当ドしてもよい。 For example, the DCI that schedules the PUSCH may include a specific field for the shift of the patrol delay antenna port. The field may be called a patrol delay shift field or the like, may be a new field, or may correspond to an existing field.
 巡回遅延シフトフィールドの値は、巡回遅延セットの開始インデックスを指定するために用いられてもよい。図11は、巡回遅延シフトフィールドによる巡回遅延のシフトの一例を示す図である。巡回遅延セットの内容は図8と同じため、説明は繰り返さない。 The value of the cyclic delay shift field may be used to specify the starting index of the cyclic delay set. FIG. 11 is a diagram showing an example of a shift of the cycle delay by the cycle delay shift field. Since the contents of the patrol delay set are the same as those in FIG. 8, the description will not be repeated.
 例えば、UEが、{τ、τ、τ、τ}=CP長*{1/32、1/16、3/32、1/8}を上位レイヤシグナリングによって設定されたと想定する。 For example, assume that the UE has {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/32, 1/16, 3/32, 1/8} set by higher layer signaling.
 この場合、UEは、DCIに含まれる巡回遅延シフトフィールドに基づいて、各アンテナポートのための巡回遅延をずらすことができる。例えば、巡回遅延シフトフィールド=“00”の場合、UEは、アンテナポート#0-#3の送信信号に対してはそれぞれ図中の{τ、τ、τ、τ}を適用する。 In this case, the UE can stagger the patrol delay for each antenna port based on the patrol delay shift field contained in the DCI. For example, when the cyclic delay shift field = “00”, the UE applies {τ 0 , τ 1 , τ 2 , τ 3 } in the figure to the transmission signals of antenna ports # 0- # 3, respectively. ..
 巡回遅延シフトフィールド=“10”の場合、UEは、アンテナポート#0-#3の送信信号に対してはそれぞれ図中の{τ、τ、τ、τ}を適用する。つまり、実際に適用される{τ、τ、τ、τ}=CP長*{3/32、1/8、1/32、1/16}となる。 When the circuit delay shift field = “10”, the UE applies {τ 2 , τ 3 , τ 0 , τ 1 } in the figure to the transmission signals of antenna ports # 0 to # 3, respectively. That is, {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {3/32, 1/8, 1/32, 1/16} that is actually applied.
 このように、巡回遅延シフトフィールドの値がxである場合、アンテナポート#kに対してτk+xを適用するように変更でき、柔軟な制御が可能となる。 In this way, when the value of the cyclic delay shift field is x, it can be changed to apply τ k + x to the antenna port # k , and flexible control becomes possible.
 なお、巡回遅延シフトフィールドは、開始インデックスを指定するのではなく、巡回遅延インデックスの任意の順番のパターンを指定するために用いられてもよい。 Note that the cyclic delay shift field may be used to specify a pattern in any order of the cyclic delay index, instead of specifying the start index.
[CDDを適用しないでフルパワー送信]
 なお、UEは、PUSCHアンテナポート数に対応する全てのτが0に等しい場合、CDDを適用しないで(without CDD)フルパワー送信を行ってもよい。そうでない場合、UEは、CDDを適用してフルパワー送信を行うための巡回遅延がRRCで設定又はDCIによって指定されると想定してもよい。
[Full power transmission without applying CDD]
Note that the UE may perform full power transmission without applying CDD (without CDD) when all τ i corresponding to the number of PUSCH antenna ports are equal to 0. Otherwise, the UE may assume that the patrol delay for applying the CDD to perform full power transmission is set in the RRC or specified by the DCI.
 UEは、上位レイヤシグナリングによって、巡回遅延セットの各巡回遅延の値が全て0に設定されると想定してもよい。 The UE may assume that the value of each patrol delay in the patrol delay set is set to 0 by the upper layer signaling.
 また、UEは、UE能力2の構成においてCDDを適用しないで(without CDD)フルパワー送信を行えることを示す能力情報を、基地局に報告してもよい。当該能力情報を報告したUEは、UE能力2の構成においてCDDを適用しないでフルパワー送信を行ってもよい。 Further, the UE may report to the base station the capability information indicating that full power transmission can be performed without applying the CDD in the configuration of the UE capability 2. The UE that reports the capability information may perform full power transmission without applying the CDD in the configuration of the UE capability 2.
 なお、CDDを適用しないフルパワー送信の制御、当該能力情報などについては、第1の実施形態でも利用されてもよい。 Note that the control of full power transmission to which CDD is not applied, the capability information, and the like may also be used in the first embodiment.
 以上説明した第2の実施形態によれば、CDDに関するシグナリングオーバヘッドを増大させずに、フルパワー送信を適切に実施できる。 According to the second embodiment described above, full power transmission can be appropriately performed without increasing the signaling overhead related to CDD.
<その他>
 上述の各実施形態では、アンテナポートを用いたUL送信は、PUSCHを想定して説明したが、PUSCHに加えて又はPUSCHの代わりに、他の信号及びチャネルの少なくとも1つのフルパワー送信が制御されてもよい。
<Others>
In each of the above embodiments, UL transmission using the antenna port has been described assuming PUSCH, but at least one full power transmission of other signals and channels is controlled in addition to or in place of PUSCH. You may.
 つまり、上述の各実施形態におけるアンテナポートは、PUSCH(及びPUSCH用の復調用参照信号(DeModulation Reference Signal(DMRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS)))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、SRSなどの少なくとも1つのアンテナポートであってもよい。 That is, the antenna port in each of the above-described embodiments is a PUSCH (and a demodulation reference signal (DeModulation Reference Signal (DMRS)) for the PUSCH, a phase tracking reference signal (Phase Tracking Reference Signal (PTRS))), and an uplink control channel ( It may be at least one antenna port such as Physical Uplink Control Channel (PUCCH)), Random Access Channel (Physical Random Access Channel (PRACH)), SRS, and the like.
 上述の各実施形態は、所定の条件に基づいて使い分けられてもよい。例えば、UEが巡回遅延セットを上位レイヤシグナリングによって設定される前(初期アクセス時、ランダムアクセス手順時など)においては、UEは第1の実施形態に基づいてCDDを用いたフルパワー送信を制御してもよい。また、UEは、例えば特定のリソース(周波数リソース、時間リソースなど)を用いたUL送信については、常に第1の実施形態又は第2の実施形態を固定的に想定してもよい。 Each of the above-described embodiments may be used properly based on predetermined conditions. For example, before the UE sets the patrol delay set by higher layer signaling (initial access, random access procedure, etc.), the UE controls full power transmission using the CDD based on the first embodiment. You may. Further, the UE may always fixedly assume the first embodiment or the second embodiment for UL transmission using a specific resource (frequency resource, time resource, etc.).
 上述の各実施形態が適用されるUEは、UE能力2を有し(又は報告し)、かつ設定されたコードブックサブセット(RRCパラメータ「codebookSubset」)に該当するTPMI(例えば、codebookSubset=nonCoherentであってシングルレイヤの場合であれば、TPMI=0-3)の範囲外のTPMI(上記の場合、TPMI>3)をDCIによって指定されるUEで読み替えられてもよい。 The UE to which each of the above embodiments is applied is a TPMI (eg, codebookSubset = nonCoherent) that has (or reports) UE capability 2 and corresponds to a set codebook subset (RRC parameter "codebookSubset"). In the case of a single layer, the TPMI outside the range of TPMI = 0-3) (TPMI> 3 in the above case) may be read by the UE specified by DCI.
 上述の各実施形態が適用されるUEは、UE能力2を有し(又は報告し)、かつ設定されたコードブックサブセット(RRCパラメータ「codebookSubset」)に該当するTPMI(例えば、codebookSubset=nonCoherentであってシングルレイヤの場合であれば、TPMI=0-3)に対応するプリコーディング行列のアンテナポート数(上記の場合、1)を超えるアンテナポート数のプリコーディングを示すTPMI(上記の場合、TPMI>3)をDCIによって指定されるUEで読み替えられてもよい。 The UE to which each of the above embodiments is applied is a TPMI (eg, codebookSubset = nonCoherent) that has (or reports) UE capability 2 and corresponds to a set codebook subset (RRC parameter "codebookSubset"). In the case of a single layer, TPMI indicating the precoding of the number of antenna ports exceeding the number of antenna ports (1 in the above case) of the precoding matrix corresponding to TPMI = 0-3) (TPMI> in the above case). 3) may be read by the UE specified by DCI.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access system based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). A signal block containing SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB), or the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,). RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 なお、送受信部120は、ユーザ端末20から、フルレイテッドPAのサポートに関するUE能力情報、フルパワー送信のためのアンテナスイッチングのサポートに関するUE能力情報などを受信してもよい。制御部110は、これらの能力情報を報告したUEに対して、フルパワー送信を行わせるDCIを生成するように制御してもよい。 Note that the transmission / reception unit 120 may receive UE capability information regarding support for fully rated PA, UE capability information regarding support for antenna switching for full power transmission, and the like from the user terminal 20. The control unit 110 may control the UE that reports these capability information to generate a DCI that causes full power transmission.
(ユーザ端末)
 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 なお、制御部210は、下り制御情報(DCI)に基づいて、上りリンク送信(例えば、PUSCH)に適用するプリコーディング行列を決定してもよい。制御部210は、設定されたコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)に該当しないコードブック(例えば、部分又は完全コヒーレントコードブック)が前記下り制御情報によって指定される(例えば、TPMIによって指定される)場合、上記上りリンク送信の各アンテナポートに適用する巡回遅延を決定してもよい。 Note that the control unit 210 may determine a precoding matrix to be applied to uplink transmission (for example, PUSCH) based on downlink control information (DCI). The control unit 210 specifies a codebook (for example, a partial or complete coherent codebook) that does not correspond to the set codebook subset (for example, the RRC parameter “codebookSubset” = “nonCoherent”) by the downlink control information (for example). , Specified by TPMI), the patrol delay applied to each antenna port of the uplink transmission may be determined.
 送受信部220は、前記上りリンク送信に前記巡回遅延に基づく巡回遅延ダイバーシティ(Cyclic Delay Diversity(CDD))を適用してフルパワー送信を行ってもよい。ここで、当該フルパワー送信は、前記プリコーディング行列が指定するアンテナポートの合計送信電力が当該ユーザ端末20の最大送信電力に一致することを意味してもよい。 The transmission / reception unit 220 may perform full-power transmission by applying the circulation delay diversity (Cyclic Delay Diversity (CDD)) based on the circulation delay to the uplink transmission. Here, the full power transmission may mean that the total transmission power of the antenna port specified by the precoding matrix matches the maximum transmission power of the user terminal 20.
 制御部210は、前記巡回遅延を、前記上りリンク送信に用いる送信アンテナポート数及びサイクリックプレフィックス長の少なくとも一方に基づいて決定してもよい。 The control unit 210 may determine the patrol delay based on at least one of the number of transmitting antenna ports used for the uplink transmission and the cyclic prefix length.
 制御部210は、前記巡回遅延を、上位レイヤシグナリングによって設定された巡回遅延セット(例えば、{τ、τ、τ、τ}=CP長*{1/16、1/8、3/16、1/4})から、前記上りリンク送信に用いる送信アンテナポート数分の要素を選択してもよい(例えば、アンテナポート数=2であれば、{τ、τ}=CP長*{1/16、1/8}を選択し、アンテナポート数=4であれば、{τ、τ、τ、τ}=CP長*{1/16、1/8、3/16、1/4}を選択してもよい)。 The control unit 210 sets the patrol delay to a patrol delay set (for example, {τ 0 , τ 1 , τ 2 , τ 3 } = CP length * {1/16, 1/8, 3 ) set by higher layer signaling. From / 16, 1/4}), elements corresponding to the number of transmitting antenna ports used for the uplink transmission may be selected (for example, if the number of antenna ports = 2, {τ 0 , τ 1 } = CP. If length * {1/16, 1/8} is selected and the number of antenna ports = 4, {τ 1 , τ 2 , τ 3 , τ 4 } = CP length * {1/16, 1/8, 3/16, 1/4} may be selected).
 制御部210は、前記巡回遅延セットにおけるアンテナポートと巡回遅延との対応関係を、前記下り制御情報に含まれる所定の情報(例えば、巡回遅延シフトフィールド)に基づいて変更(例えば、シフト)してもよい。 The control unit 210 changes (for example, shifts) the correspondence relationship between the antenna port and the patrol delay in the patrol delay set based on predetermined information (for example, the patrol delay shift field) included in the downlink control information. May be good.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. The PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a mini slot, a sub slot, a slot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good. Here, the common RB may be specified by an index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as an amended or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for the purpose of exemplification and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (5)

  1.  下り制御情報に基づいて、上りリンク送信に適用するプリコーディング行列を決定し、設定されたコードブックサブセットに該当しないコードブックが前記下り制御情報によって指定される場合、各アンテナポートに適用する巡回遅延を決定する制御部と、
     前記上りリンク送信に前記巡回遅延に基づく巡回遅延ダイバーシティ(Cyclic Delay Diversity(CDD))を適用してフルパワー送信を行う送信部と、を有することを特徴とするユーザ端末。
    Based on the downlink control information, the precoding matrix to be applied to the uplink transmission is determined, and if a codebook that does not correspond to the set codebook subset is specified by the downlink control information, the patrol delay applied to each antenna port. The control unit that determines
    A user terminal comprising: a transmission unit that applies a cyclic delay diversity (CDD) based on the cyclic delay to the uplink transmission to perform full power transmission.
  2.  前記制御部は、前記巡回遅延を、前記上りリンク送信に用いる送信アンテナポート数及びサイクリックプレフィックス長の少なくとも一方に基づいて決定することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit determines the patrol delay based on at least one of the number of transmitting antenna ports used for the uplink transmission and the cyclic prefix length.
  3.  前記制御部は、前記巡回遅延を、上位レイヤシグナリングによって設定された巡回遅延セットから、前記上りリンク送信に用いる送信アンテナポート数分の要素を選択することを特徴とする請求項1に記載のユーザ端末。 The user according to claim 1, wherein the control unit selects an element corresponding to the number of transmission antenna ports used for the uplink transmission from the circulation delay set set by the upper layer signaling. Terminal.
  4.  前記制御部は、前記巡回遅延セットにおけるアンテナポートと巡回遅延との対応関係を、前記下り制御情報に含まれる所定の情報に基づいて変更することを特徴とする請求項3に記載のユーザ端末。 The user terminal according to claim 3, wherein the control unit changes the correspondence between the antenna port and the patrol delay in the patrol delay set based on predetermined information included in the downlink control information.
  5.  下り制御情報に基づいて、上りリンク送信に適用するプリコーディング行列を決定し、設定されたコードブックサブセットに該当しないコードブックが前記下り制御情報によって指定される場合、各アンテナポートに適用する巡回遅延を決定するステップと、
     前記上りリンク送信に前記巡回遅延に基づく巡回遅延ダイバーシティ(Cyclic Delay Diversity(CDD))を適用してフルパワー送信を行うステップと、を有することを特徴とするユーザ端末の無線通信方法。
    Based on the downlink control information, the precoding matrix to be applied to the uplink transmission is determined, and if a codebook that does not correspond to the set codebook subset is specified by the downlink control information, the patrol delay applied to each antenna port. And the steps to decide
    A method for wireless communication of a user terminal, which comprises a step of applying Cyclic Delay Diversity (CDD) based on the cyclic delay to the uplink transmission to perform full power transmission.
PCT/JP2019/013861 2019-03-28 2019-03-28 User terminal and wireless communication method WO2020194742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013861 WO2020194742A1 (en) 2019-03-28 2019-03-28 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013861 WO2020194742A1 (en) 2019-03-28 2019-03-28 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020194742A1 true WO2020194742A1 (en) 2020-10-01

Family

ID=72611300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013861 WO2020194742A1 (en) 2019-03-28 2019-03-28 User terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2020194742A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805499B2 (en) * 2019-12-13 2023-10-31 Qualcomm Incorporated Increase diversity of slot aggregation using slot-specific cyclic delay diversity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Full TX power UL transmission", 3GPP TSG RAN WG1 #96 R1-1901791, 16 February 2019 (2019-02-16), XP051599485 *
QUALCOMM INCORPORATED: "Full Tx power for UL transmissions", 3GPP TSG RAN WG1 #95 R1-1813897, 11 November 2018 (2018-11-11), XP051480102 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805499B2 (en) * 2019-12-13 2023-10-31 Qualcomm Incorporated Increase diversity of slot aggregation using slot-specific cyclic delay diversity

Similar Documents

Publication Publication Date Title
WO2020148903A1 (en) User terminal and wireless communication method
WO2020166081A1 (en) User terminal and wireless communication method
WO2021005764A1 (en) Terminal and wireless communication method
WO2021090403A1 (en) Terminal and wireless communication method
JP7244633B2 (en) Terminal, wireless communication method, base station and system
WO2020144774A1 (en) User terminal and wireless communication method
JP7351909B2 (en) Terminals, wireless communication methods, base stations and systems
WO2021064962A1 (en) Terminal and wireless communication method
WO2020144773A1 (en) User terminal and wireless communication method
WO2021002018A1 (en) Terminal and wireless communication method
JP7344288B2 (en) Terminals, wireless communication methods, base stations and systems
WO2022153395A1 (en) Terminal, wireless communication method, and base station
WO2021229758A1 (en) Terminal, radio communication method, and base station
WO2020144775A1 (en) User terminal and wireless communication method
WO2021117193A1 (en) Terminal and wireless communication method
WO2021070392A1 (en) Terminal and wireless communication method
JP7230059B2 (en) Terminal, wireless communication method, base station and system
WO2020166086A1 (en) User terminal and wireless communication method
WO2021215379A1 (en) Terminal, wireless communication method, and base station
WO2021161541A1 (en) Terminal, radio communication method, and base station
JP7323615B2 (en) Terminal and wireless communication method
WO2020255419A1 (en) Terminal and wireless communication method
WO2023281680A1 (en) Terminal, wireless communication method, and base station
WO2020194742A1 (en) User terminal and wireless communication method
WO2021117194A1 (en) Terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP