WO2020194708A1 - Saddle riding-type vehicle - Google Patents

Saddle riding-type vehicle Download PDF

Info

Publication number
WO2020194708A1
WO2020194708A1 PCT/JP2019/013779 JP2019013779W WO2020194708A1 WO 2020194708 A1 WO2020194708 A1 WO 2020194708A1 JP 2019013779 W JP2019013779 W JP 2019013779W WO 2020194708 A1 WO2020194708 A1 WO 2020194708A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control unit
wheels
braking
saddle
Prior art date
Application number
PCT/JP2019/013779
Other languages
French (fr)
Japanese (ja)
Inventor
拡 前田
由幸 黒羽
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2019/013779 priority Critical patent/WO2020194708A1/en
Priority to JP2021508635A priority patent/JP7138239B2/en
Publication of WO2020194708A1 publication Critical patent/WO2020194708A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L1/00Brakes; Arrangements thereof
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a saddle-riding vehicle.
  • Patent Document 1 describes a forward travel sensor that detects an obstacle in a travel path, and a controller that can operate to execute an autonomous braking event of a motorcycle based on receiving a signal from the forward travel sensor.
  • a motorcycle equipped with is disclosed.
  • the autonomous braking event once activated, involves ABS to maximize the deceleration rate and bring the motorcycle to a complete stop.
  • the present invention provides a saddle-riding type vehicle that can reduce contact damage when a vehicle collides with a rear vehicle when stopped.
  • One aspect of the saddle-riding vehicle according to the present invention includes a rear vehicle recognition unit (54) that recognizes the rear vehicle (B1) of the own vehicle (M) and wheels (11,) of the own vehicle (M).
  • the control is provided with a brake device (510) that applies a braking force to the 12) and a control unit (400) that controls the brake device (510) based on the recognition result of the rear vehicle recognition unit (54).
  • the unit (400) operates the braking device (510) when it is determined that the rear vehicle (B1) collides with the own vehicle (M) when the speed of the own vehicle (M) is equal to or less than a predetermined value. , Characterized by.
  • the drag force against the rear vehicle can be generated in the own vehicle. Therefore, it is possible to prevent the own vehicle from moving forward due to insufficient drag against a collision from the rear and disturbing the posture of the vehicle body. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
  • control unit (400) is driven by the braking device (510) according to the relative speed of the rear vehicle (B1) with respect to the own vehicle (M).
  • the magnitude of the braking force may be set.
  • the magnitude of the impact applied to the own vehicle changes depending on the relative speed at the time of the collision of the rear vehicle. Therefore, by configuring as described above, it is possible to apply an appropriate braking force to the wheels according to the magnitude of the impact applied to the own vehicle. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle collides.
  • control unit (400) gives priority to the rear wheel (12) to apply a braking force to the braking device (510). May be controlled.
  • braking force is applied only to the front wheels, and it is possible to prevent the rear part of the vehicle body from being lifted due to a collision of a rear vehicle. Therefore, it is possible to more reliably suppress the posture of the vehicle body from being disturbed.
  • the control unit (400) uses the control unit (400) after the rear vehicle (B1) collides with the own vehicle (M).
  • the braking device (510) may be controlled so as to reduce the braking force applied to the wheels (11, 12) while the own vehicle (M) is moving forward.
  • control unit (400) reduces the braking force applied to the wheels (11, 12) and then applies the braking force to the wheels (11, 12).
  • the braking device (510) may be controlled so as to increase the braking force applied.
  • the own vehicle can be stopped more quickly by increasing the braking force applied to the wheels when the rear vehicle decelerates and begins to move away from the own vehicle.
  • the front object recognition unit (54) that recognizes the object (B2) in front of the own vehicle (M) and the steering wheel A steering device (520) that changes the direction of the wheels (11) is further provided, and the control unit (400) determines that the rear vehicle (B1) collides with the own vehicle (M), and the front When it is determined that the object (B2) exists in front of the own vehicle (M) based on the recognition result of the object recognition unit (54), the steering wheel (11) is steered.
  • the device (520) may be controlled.
  • the own vehicle can move diagonally forward. Therefore, it is possible to prevent the own vehicle from colliding with an object in front. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
  • control unit (400) rolls the steering wheel (11) on the roadside zone (R) side or the road shoulder side close to the own vehicle (M).
  • the steering device (520) may be controlled so as to steer.
  • the control unit (400) is in a direction in which a pedestrian (W) and an object (B2) in front of the control unit (400) do not exist when viewed from the own vehicle (M).
  • the steering device (520) may be controlled so as to steer the steering wheel (11).
  • control unit (400) is in a direction in which the oncoming vehicle (B4) and the object (B2) in front of the control unit (400) do not exist when viewed from the own vehicle (M).
  • the steering device (520) may be controlled so as to steer the steering wheel (11).
  • the driving support system for the saddle-riding vehicle of the present embodiment will be described with reference to the drawings.
  • Autonomous driving is a type of driving assistance in which a vehicle runs in a state that does not require operation by the driver in principle.
  • the degree of driving support includes the first degree of driving assistance by operating a driving support device such as ACC (Adaptive Cruise Control System) or LKAS (Lane Keeping Assistance System), and the first degree of driving assistance.
  • the degree of control is also high, and the driver automatically controls at least one of acceleration / deceleration or steering of the vehicle without operating the driver of the vehicle to perform automatic driving, but the driver has some degree of control.
  • the second degree and the third degree of driving support correspond to automatic driving.
  • FIG. 1 is a configuration diagram of a driving support system according to the first embodiment.
  • the vehicle equipped with the driving support system 1 shown in FIG. 1 is a saddle-riding vehicle such as a two-wheeled vehicle or a three-wheeled vehicle.
  • the prime mover of a vehicle is an internal combustion engine such as a gasoline engine, an electric motor, or a combination of an internal combustion engine and an electric motor.
  • the electric motor operates by using the electric power generated by the generator connected to the internal combustion engine or the electric power generated by the secondary battery or the fuel cell.
  • the driving support system 1 includes a camera 51, a radar device 52, a finder 53, an object recognition device 54 (rear vehicle recognition unit, front object recognition unit), a communication device 55, and an HMI (Human Machine Interface) 56.
  • Vehicle sensor 57 Navigation device 60, MPU (Map Positioning Unit) 70, driving operator 80, driver monitoring camera 90, control device 100, traveling driving force output device 500, and braking device 510.
  • MPU Map Positioning Unit
  • control device 100 traveling driving force output device 500, and braking device 510.
  • a steering device 520 and a line-of-sight guidance unit 530 are connected to each other by multiple communication lines such as CAN (Controller Area Network) communication lines, serial communication lines, wireless communication networks, and the like.
  • CAN Controller Area Network
  • the camera 51 is a digital camera that uses a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 51 is attached to an arbitrary position of the vehicle (hereinafter, own vehicle M) on which the driving support system 1 is mounted.
  • the camera 51 periodically and repeatedly images the periphery of the own vehicle M, for example.
  • the camera 51 may be a stereo camera.
  • the radar device 52 radiates radio waves such as millimeter waves around the own vehicle M, and also detects radio waves (reflected waves) reflected by the object to detect at least the position (distance and direction) of the object.
  • the radar device 52 is attached to an arbitrary position of the own vehicle M.
  • the radar device 52 may detect the position and speed of the object by the FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the finder 53 is a LIDAR (Light Detection and Ringing).
  • the finder 53 irradiates the periphery of the own vehicle M with light and measures the scattered light.
  • the finder 53 detects the distance to the target based on the time from light emission to light reception.
  • the light to be irradiated is, for example, a pulsed laser beam.
  • the finder 53 is attached to an arbitrary position of the own vehicle M.
  • the object recognition device 54 performs sensor fusion processing on the detection results of a part or all of the camera 51, the radar device 52, and the finder 53 to determine the position, type, speed, and the like of the objects around the own vehicle M. recognize.
  • the object recognition device 54 recognizes at least an object in front of the own vehicle M and a vehicle behind the own vehicle M.
  • the object recognition device 54 outputs the recognition result to the control device 100.
  • the object recognition device 54 may output the detection results of the camera 51, the radar device 52, and the finder 53 to the control device 100 as they are.
  • the communication device 55 uses, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles existing in the vicinity of the own vehicle M (inter-vehicle communication). ) Or communicate with various server devices via a wireless base station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles existing in the vicinity of the own vehicle M (inter-vehicle communication).
  • Bluetooth registered trademark
  • DSRC Dedicated Short Range Communication
  • the HMI 56 presents various information to the driver of the own vehicle M and accepts input operations by the driver.
  • the HMI 56 includes various display devices, speakers, buzzers, touch panels, switches, keys and the like.
  • the vehicle sensor 57 includes a vehicle speed sensor that detects the speed of the own vehicle M, an acceleration sensor that detects the acceleration, a yaw rate sensor that detects the angular velocity around the vertical axis, an orientation sensor that detects the direction of the own vehicle M, and the like.
  • the navigation device 60 includes, for example, a GNSS (Global Navigation Satellite System) receiver 61, a navigation HMI 62, and a route determination unit 63.
  • the navigation device 60 holds the first map information 64 in a storage device such as an HDD (Hard Disk Drive) or a flash memory.
  • the GNSS receiver 61 identifies the position of the own vehicle M based on the signal received from the GNSS satellite. The position of the own vehicle M may be specified or complemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 57.
  • the navigation HMI 62 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 62 may be partially or wholly shared with the above-mentioned HMI 56.
  • the route determination unit 63 has a route from the position of the own vehicle M (or an arbitrary position input) specified by the GNSS receiver 61 to the destination input by the occupant using the navigation HMI 62 (hereinafter,).
  • the route on the map) is determined with reference to the first map information 64.
  • the first map information 64 is information in which the road shape is expressed by, for example, a link indicating a road and a node connected by the link.
  • the first map information 64 may include road curvature, POI (Point Of Interest) information, and the like.
  • the route on the map is output to the MPU 70.
  • the navigation device 60 may provide route guidance using the navigation HMI 62 based on the route on the map.
  • the navigation device 60 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by an occupant.
  • the navigation device 60 may transmit the current position and the destination to the navigation server via the communication device 55, and may acquire a route equivalent to the route on the map from the navigation server.
  • the MPU 70 includes, for example, a recommended lane determination unit 71.
  • the MPU 70 holds the second map information 72 in a storage device such as an HDD or a flash memory.
  • the recommended lane determination unit 71 divides the route on the map provided by the navigation device 60 into a plurality of blocks (for example, divides the route every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 72. Determine the recommended lane for each block.
  • the recommended lane determination unit 71 determines which lane to drive from the left. When the recommended lane determination unit 71 has a branch point on the route on the map, the recommended lane determination unit 71 determines the recommended lane so that the own vehicle M can travel on a reasonable route to proceed to the branch destination.
  • the second map information 72 is more accurate map information than the first map information 64.
  • the second map information 72 includes, for example, information on the center of the lane, information on the boundary of the lane, and the like. Further, the second map information 72 may include road information, traffic regulation information, address information (address / zip code), facility information, telephone number information, and the like.
  • the second map information 72 may be updated at any time by the communication device 55 communicating with another device.
  • the driving operator 80 includes, for example, an accelerator grip, an operator such as a brake pedal, a brake lever, a shift pedal, and a steering handle.
  • a sensor for detecting the amount of operation or the presence or absence of operation is attached to the operation operator 80. The detection result of the sensor is output to a part or all of the control device 100, the traveling driving force output device 500, the brake device 510, and the steering device 520.
  • the driver monitoring camera 90 is arranged at a position where the driver sitting on the seat can be imaged.
  • the driver surveillance camera 90 is attached to the front portion of the own vehicle M.
  • the driver monitoring camera 90 takes an image of the face of the driver sitting on the seat.
  • the driver surveillance camera 90 is a digital camera that uses a solid-state image sensor such as a CCD or CMOS.
  • the driver monitoring camera 90 periodically images the driver, for example.
  • the captured image of the driver monitoring camera 90 is output to the control device 100.
  • the control device 100 includes a master control unit 110, a driving support control unit 200, an automatic driving control unit 300, and a braking control unit 400.
  • the master control unit 110 may be integrated into either the operation support control unit 200 or the automatic operation control unit 300.
  • the master control unit 110 switches the degree of driving support and controls the HMI 56.
  • the master control unit 110 includes a switching control unit 120, an HMI control unit 130, an operator state determination unit 140, and an occupant condition monitoring unit 150.
  • the switching control unit 120, the HMI control unit 130, the operator state determination unit 140, and the occupant condition monitoring unit 150 are each realized by executing a program by a processor such as a CPU (Central Processing Unit).
  • a processor Central Processing Unit
  • some or all of these functional parts may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or software. And may be realized by the cooperation of hardware.
  • the switching control unit 120 switches the degree of driving support based on, for example, an operation signal input from a predetermined switch included in the HMI 56. Further, the switching control unit 120 cancels the driving support and manually operates the vehicle based on, for example, an operation of instructing the driving controller 80 such as the accelerator grip, the brake pedal, the brake lever, and the steering handle to accelerate, decelerate, or steer. You may switch to.
  • the driving controller 80 such as the accelerator grip, the brake pedal, the brake lever, and the steering handle to accelerate, decelerate, or steer. You may switch to.
  • the switching control unit 120 may switch the degree of driving support based on the action plan generated by the action plan generation unit 330 described later. For example, the switching control unit 120 may end the driving support at the scheduled end point of the automatic driving defined by the action plan.
  • the HMI control unit 130 causes the HMI 56 to output a notification or the like related to switching the degree of driving support. Further, the HMI control unit 130 switches the content to be output to the HMI 56 when a predetermined event for the own vehicle M occurs. Further, the HMI control unit 130 may output the information regarding the determination result by one or both of the operator state determination unit 140 and the occupant condition monitoring unit 150 to the HMI 56. Further, the HMI control unit 130 may output the information received by the HMI 56 to one or both of the operation support control unit 200 and the automatic operation control unit 300.
  • the operator state determination unit 140 is, for example, in a state in which the steering handle included in the operation operator 80 is being operated (specifically, when an intentional operation is actually performed, a state in which the steering wheel can be immediately operated, or (It shall indicate the gripping state).
  • the occupant condition monitoring unit 150 monitors the driver's condition based on the image captured by the driver monitoring camera 90.
  • the occupant condition monitoring unit 150 monitors that the driver is continuously monitoring the traffic conditions in the surrounding area.
  • the occupant condition monitoring unit 150 acquires the driver's face image from the image captured by the driver monitoring camera 90, and recognizes the driver's line-of-sight direction from the acquired face image.
  • the occupant condition monitoring unit 150 may recognize the line-of-sight direction of the occupant from the image captured by the driver monitoring camera 90 by deep learning using a neural network or the like.
  • the driving support control unit 200 executes the first degree of driving support.
  • the driving support control unit 200 executes, for example, ACC, LKAS, or other driving support control.
  • ACC ACC
  • LKAS LKAS
  • the traveling driving force output device 500 and the braking device 510 are controlled so that the vehicle travels while keeping the distance between the vehicle and the vehicle constant. That is, the driving support control unit 200 performs acceleration / deceleration control (speed control) based on the inter-vehicle distance from the vehicle in front.
  • the driving support control unit 200 controls the steering device 520 so that the own vehicle M travels while maintaining (lane keeping) the traveling lane in which the vehicle is currently traveling. That is, the driving support control unit 200 performs steering control for maintaining the lane.
  • the type of driving support of the first degree may include various controls other than automatic driving (second degree and third degree) that do not require an operation on the driving operator 80.
  • the automatic driving control unit 300 executes the driving support of the second degree and the third degree.
  • the automatic operation control unit 300 includes, for example, a first control unit 310 and a second control unit 350.
  • Each of the first control unit 310 and the second control unit 350 is realized by, for example, a hardware processor such as a CPU executing a program (software).
  • a hardware processor such as a CPU executing a program (software).
  • some or all of these components may be realized by hardware such as LSI, ASIC, FPGA, GPU, or may be realized by collaboration between software and hardware.
  • the first control unit 310 includes, for example, a recognition unit 320 and an action plan generation unit 330.
  • the first control unit 310 realizes a function by AI (Artificial Intelligence) and a function by a model given in advance in parallel.
  • AI Artificial Intelligence
  • a function by a model given in advance in parallel For example, in the "intersection recognition" function, recognition of an intersection by deep learning or the like and recognition based on predetermined conditions (pattern matching signals, road markings, etc.) are executed in parallel, and both are executed in parallel.
  • it may be realized by scoring and comprehensively evaluating. This ensures the reliability of autonomous driving.
  • the recognition unit 320 recognizes states such as the position, speed, and acceleration of surrounding vehicles based on the information input from the camera 51, the radar device 52, and the finder 53 via the object recognition device 54.
  • the positions of peripheral vehicles are recognized as, for example, positions on absolute coordinates with the representative point (center of gravity, center of drive shaft, etc.) of the own vehicle M as the origin, and are used for control.
  • the position of the peripheral vehicle may be represented by a representative point such as the center of gravity or a corner of the peripheral vehicle, or may be represented by the represented area.
  • the "state" of the surrounding vehicle may include the acceleration or jerk of the object, or the "behavioral state” (eg, whether or not the vehicle is changing lanes or is about to change lanes).
  • the recognition unit 320 recognizes, for example, the lane (traveling lane) in which the own vehicle M is traveling.
  • the recognition unit 320 has a road marking line pattern (for example, an arrangement of a solid line and a broken line) obtained from the second map information 72 and a road marking line around the own vehicle M recognized from the image captured by the camera 51. By comparing with the pattern of, the traveling lane is recognized.
  • the recognition unit 320 may recognize the traveling lane by recognizing not only the road marking line but also the running road boundary (road boundary) including the road marking line, the shoulder, the curb, the median strip, the guardrail, and the like. .. In this recognition, the position of the own vehicle M acquired from the navigation device 60 or the processing result by the INS may be added.
  • the recognition unit 320 recognizes a stop line, an obstacle, a red light, a tollgate, other road events, and the like.
  • the recognition unit 320 When recognizing the traveling lane, the recognition unit 320 recognizes the position and orientation of the own vehicle M with respect to the traveling lane.
  • FIG. 2 is a diagram showing an example of how the recognition unit recognizes the relative position and posture of the own vehicle with respect to the traveling lane.
  • the recognition unit 320 is, for example, a line connecting the deviation OS of the reference point (for example, the center of gravity) of the own vehicle M from the central CL of the traveling lane and the central CL of the traveling lane in the traveling direction of the own vehicle M.
  • the angle ⁇ formed with respect to the traveling lane L1 may be recognized as the relative position and orientation of the own vehicle M with respect to the traveling lane L1.
  • the recognition unit 320 sets the position of the reference point of the own vehicle M with respect to any side end (road marking line or road boundary) of the traveling lane L1 relative to the traveling lane. It may be recognized as a position.
  • the action plan generation unit 330 generates an action plan for driving the own vehicle M by automatic driving.
  • the action plan generation unit 330 travels in the recommended lane determined by the recommended lane determination unit 71, and the own vehicle M automatically (driver) so as to be able to respond to the surrounding conditions of the own vehicle M.
  • the target trajectory includes, for example, a position element that determines the position of the own vehicle M in the future and a speed element that determines the speed and acceleration of the own vehicle M in the future.
  • the action plan generation unit 330 determines a plurality of points (track points) that the own vehicle M should reach in order as position elements of the target track.
  • the track point is a point to be reached by the own vehicle M for each predetermined mileage (for example, about several [m]).
  • the predetermined mileage may be calculated, for example, by the road distance when traveling along the route.
  • the action plan generation unit 330 determines the target speed and the target acceleration for each predetermined sampling time (for example, about 0 comma several seconds) as the speed elements of the target trajectory.
  • the track point may be a position to be reached by the own vehicle M at the sampling time for each predetermined sampling time. In this case, the target velocity and target acceleration are determined by the sampling time and the interval between the orbital points.
  • the action plan generation unit 330 may set an event for automatic driving when generating a target trajectory.
  • Examples of the automatic driving event include a constant speed driving event in which the vehicle travels in the same lane at a constant speed, a following driving event in which the vehicle follows the vehicle in front, and a lane change event in which the vehicle M changes the traveling lane.
  • the action plan generation unit 330 generates a target trajectory according to the activated event.
  • FIG. 3 is a diagram showing how a target trajectory is generated based on the recommended lane.
  • the recommended lane is set so as to be convenient for traveling along the route to the destination.
  • the action plan generation unit 330 activates a lane change event, a branch event, a merging event, and the like. If it becomes necessary to avoid an obstacle during the execution of each event, an avoidance trajectory is generated as shown in the figure.
  • the second control unit 350 has a traveling driving force output device 500, a brake device 510, so that the own vehicle M passes the target trajectory generated by the action plan generation unit 330 at the scheduled time. And controls the steering device 520.
  • the second control unit 350 includes, for example, an acquisition unit 352, a speed control unit 354, and a steering control unit 356.
  • the acquisition unit 352 acquires the information of the target trajectory (orbit point) generated by the action plan generation unit 330 and stores it in a memory (not shown).
  • the speed control unit 354 controls the traveling driving force output device 500 or the brake device 510 based on the speed element associated with the target trajectory stored in the memory.
  • the steering control unit 356 controls the steering device 520 according to the degree of bending of the target trajectory stored in the memory.
  • the processing of the speed control unit 354 and the steering control unit 356 is realized by, for example, a combination of feedforward control and feedback control.
  • the steering control unit 356 executes a combination of feedforward control according to the curvature of the road in front of the own vehicle M and feedback control based on the deviation from the target trajectory.
  • the braking control unit 400 controls the braking device 510 and the steering device 520, which will be described later, based on the recognition result of the object recognition device 54.
  • the braking control unit 400 includes a collision determination unit 410, a brake control unit 420, a safety direction determination unit 430, and a steering control unit 440.
  • the collision determination unit 410 determines the existence of a vehicle behind the own vehicle M (rear vehicle B1) and an object in front of the own vehicle M based on the recognition result of the object recognition device 54.
  • the collision determination unit 410 determines whether or not the rear vehicle B1 of the own vehicle M collides with the own vehicle M while the own vehicle M is completely stopped or is moving forward immediately before the stop.
  • the collision determination unit 410 determines whether or not the rear vehicle B1 collides with the own vehicle M based on the speed, deceleration, traveling direction, etc. of the own vehicle M and the rear vehicle B1. Further, the collision determination unit 410 predicts the relative speed of the rear vehicle B1 with respect to the own vehicle M at the time of collision, based on the speed, deceleration, traveling direction, etc. of the own vehicle M and the rear vehicle B1.
  • the collision determination unit 410 outputs a first braking command to the brake control unit 420 based on the predicted relative speed of the rear vehicle B1 at the time of collision.
  • the collision determination unit 410 determines whether or not the rear vehicle B1 has collided with the own vehicle M, for example, based on the recognition result of the object recognition device 54 and the detection result of the vehicle sensor 57.
  • the collision determination unit 410 outputs a second braking command to the brake control unit 420 based on the determination result of the collision of the rear vehicle B1 with the own vehicle M.
  • the brake control unit 420 controls the brake device 510 based on the first braking command received from the collision determination unit 410.
  • the brake control unit 420 sets the magnitude of the braking force of the wheels according to the predicted speed of the rear vehicle B1 at the time of collision.
  • the brake control unit 420 controls the brake device 510 so as to give the braking force preferentially to the rear wheels. In other words, when the braking force is applied to the wheels, the brake control unit 420 controls the braking device 510 so as to apply the braking force to at least the rear wheels.
  • the brake control unit 420 reduces the braking force applied to the wheels after the rear vehicle B1 collides with the own vehicle M based on the second braking command received from the collision determination unit 410.
  • the brake control unit 420 calculates the magnitude of the braking force to be reduced according to the predicted speed at the time of the collision of the rear vehicle B1 or the actual speed at the time of the collision of the rear vehicle B1.
  • the brake control unit 420 reduces the braking force applied to the wheels so that the wheels do not lock.
  • the brake control unit 420 may increase the braking force in a situation where the own vehicle M can be decelerated after reducing the braking force applied to the wheels.
  • a situation in which the own vehicle M can be decelerated is, for example, a state in which the own vehicle M is not pushed by the rear vehicle B1.
  • the safety direction determination unit 430 determines the direction in which the own vehicle M can safely travel (hereinafter referred to as the safety direction) based on the recognition result of the object recognition device 54.
  • the safe direction is a direction in which contact with an object in front of the own vehicle M can be avoided.
  • the safety direction determination unit 430 outputs a steering command based on the safety direction determination result to the steering control unit 440.
  • the steering control unit 440 controls the steering device 520 based on the steering command received from the safety direction determination unit 430.
  • the steering control unit 440 adjusts the steering direction (direction of the front wheels) and the steering angle in response to the steering command.
  • the traveling driving force output device 500 outputs a traveling driving force (torque) for the own vehicle M to travel to the drive wheels.
  • the traveling driving force output device 500 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU (Electronic Control Unit) that controls them.
  • the ECU controls the above configuration according to the information input from the second control unit 350 or the information input from the operation operator 80.
  • the brake device 510 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the speed control unit 354 of the second control unit 350 or the brake control unit 420 of the braking control unit 400, or the information input from the operation operator 80, and performs the braking operation.
  • the brake torque according to the above is output to each wheel.
  • the brake device 510 may include, as a backup, a mechanism for transmitting the hydraulic pressure generated by the operation of the brake lever or the brake pedal included in the operation operator 80 to the cylinder via the master cylinder.
  • the brake device 510 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to the information input from the second control unit 350 to transmit the hydraulic pressure of the master cylinder to the cylinder. May be good.
  • the steering device 520 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steering wheels (front wheels), for example.
  • the steering ECU drives and steers the electric motor according to the information input from the steering control unit 356 of the second control unit 350 or the steering control unit 440 of the braking control unit 400, or the information input from the operation controller 80. Change the direction of the wheel.
  • FIG. 4 is a left side view showing the motorcycle of the first embodiment.
  • the motorcycle 10 is a saddle-riding vehicle equipped with the driving support system 1 of the embodiment.
  • the motorcycle 10 mainly includes a front wheel 11 which is a steering wheel, a rear wheel 12 which is a driving wheel, and a vehicle body frame 20 which supports a prime mover 13 (an engine in the illustrated example).
  • the front wheels 11 and the rear wheels 12 may be collectively referred to as wheels 11 and 12.
  • the front wheel 11 is steerably supported by the vehicle body frame 20 via a steering mechanism.
  • the steering mechanism includes a front fork 14 that supports the front wheels 11 and a steering stem 15 that supports the front fork 14.
  • a steering handle 16 held by the driver J is attached to the upper part of the steering stem 15.
  • the front wheels 11 are braked by the braking device 510.
  • the rear wheel 12 is supported by the rear end of the swing arm 17 extending in the front-rear direction at the rear of the vehicle.
  • the front end portion of the swing arm 17 is supported by the vehicle body frame 20 so as to be able to swing up and down.
  • the rear wheel 12 is braked by the braking device 510.
  • the vehicle body frame 20 rotatably supports the steering stem 15 by a head pipe 21 provided at the front end portion.
  • the vehicle body frame 20 supports the seat 22 on which the driver J sits, the left and right steps 23 on which the driver J rests his / her feet, the fuel tank 24 arranged in front of the seat 22, and the like.
  • a front cowl 25 supported by the vehicle body frame 20 is mounted on the front portion of the vehicle.
  • a meter device 30 is arranged inside the front cowl 25.
  • This processing flow is repeatedly executed in a state where the speed of the own vehicle M is equal to or less than the first predetermined value, that is, in a state where the vehicle is completely stopped or is moving forward immediately before the stop, regardless of whether or not the driving support is executed.
  • the state of moving forward immediately before stopping is, for example, a state in which the own vehicle M is decelerating and the speed of the own vehicle M is 5 km / h or less.
  • FIG. 5 is a flowchart showing a processing flow by the braking control unit.
  • FIG. 6 is a diagram showing a scene in which it is determined that the rear vehicle collides with the own vehicle.
  • the collision determination unit 410 determines whether or not there is a rear vehicle B1 that collides with the own vehicle M.
  • the braking control unit 400 shifts to the process of step S20.
  • the braking control unit 400 ends a series of processes.
  • step S20 the collision determination unit 410 determines whether or not the relative speed of the rear vehicle B1 with respect to the own vehicle M is equal to or greater than the second predetermined value.
  • the second predetermined value may be fixedly set, or may be determined according to the traveling direction of the rear vehicle B1 and the like.
  • the collision determination unit 410 outputs the first braking command to the brake control unit 420 (step S30).
  • the braking control unit 400 does not operate the braking device 510 and shifts to the process of step S40. That is, the braking control unit 400 sets the braking force of the wheels 11 and 12 to 0 when the relative speed of the rear vehicle B1 is equal to or higher than the second predetermined value.
  • step S30 when the brake control unit 420 receives the first braking command from the collision determination unit 410, the brake control unit 420 controls the brake device 510 so as to apply braking force to the wheels 11 and 12.
  • the brake control unit 420 determines the wheels 11 and 12 to be braked according to the relative speed of the rear vehicle B1 at the time of collision.
  • the brake control unit 420 brakes only the rear wheels 12 when the relative speed of the rear vehicle B1 at the time of collision is smaller than a predetermined reference (see FIG. 6).
  • the brake control unit 420 brakes the front wheels 11 and the rear wheels 12 when the relative speed of the rear vehicle B1 at the time of collision is larger than a predetermined reference.
  • the magnitude of the braking force applied to the front wheels 11 or the rear wheels 12 may be finely set according to the relative speed of the rear vehicle B1 at the time of collision.
  • the braking control unit 400 shifts to the process of step S40.
  • step S40 the safety direction determination unit 430 determines whether or not an object exists in front of the own vehicle M. Specifically, the safety direction determination unit 430 determines whether or not an object exists in the traveling direction of the own vehicle M. When there is no object in front of the own vehicle M (S40: NO), the braking control unit 400 ends a series of processes. When an object exists in front of the own vehicle M (S40: YES), the braking control unit 400 shifts to the process of step S50.
  • step S50 the safety direction determination unit 430 determines the safety direction.
  • the steering control unit 440 controls the steering device 520 so as to steer the front wheels 11 to the right side (step S60). Subsequently, the braking control unit 400 shifts to the process of step S80.
  • the steering control unit 440 controls the steering device 520 so as to steer the front wheels 11 to the left side (step S70). Subsequently, the braking control unit 400 shifts to the process of step S80.
  • FIG. 7 to 10 are views showing an example of a scene in which the own vehicle avoids in the safe direction when the own vehicle collides with a vehicle behind.
  • the reference numeral LL indicates a road marking line.
  • the safety direction determination unit 430 determines that the side of the road outside line OL on the side closer to the own vehicle M is the safe direction. In other words, the safety direction determination unit 430 determines the roadside zone R side (or road shoulder side) close to the own vehicle M as the safety direction.
  • the safety direction determination unit 430 determines the side where the pedestrian W does not exist with respect to the front vehicle B2 as the safe direction. ..
  • the safety direction determination unit 430 when the safety direction determination unit 430 has an object such as another vehicle B3 within a predetermined range on the side of the road outside line OL on the side closer to the own vehicle M, the safety direction determination unit 430 refers to the vehicle in front B2. The side opposite to the object is determined to be the safe direction.
  • the safety direction determination unit 430 determines the side where the oncoming vehicle B4 does not exist as the safe direction.
  • the predetermined range may be fixedly set, or may be determined according to the speed of the oncoming vehicle B4, the speed at the time of collision of the rear vehicle B1, the traveling direction, and the like.
  • step S80 the collision determination unit 410 determines whether or not the rear vehicle B1 has collided with the own vehicle M.
  • the collision determination unit 410 outputs a second braking command to the brake control unit 420 (step S90).
  • the collision determination unit 410 repeats the process of step S80.
  • step S90 when the brake control unit 420 receives the second braking command from the collision determination unit 410, the brake control unit 420 controls the brake device 510 so as to reduce the braking force applied to the wheels 11 and 12. For example, the brake control unit 420 sets the magnitude of the braking force to be reduced so that the difference before and after the braking force is reduced becomes smaller as the speed of the rear vehicle B1 at the time of collision increases. Subsequently, the braking control unit 400 shifts to the process of step S100.
  • step S100 the brake control unit 420 determines whether or not the own vehicle M can be decelerated. For example, the brake control unit 420 determines that the own vehicle M can be decelerated when the distance between the own vehicle M and the rear vehicle B1 begins to increase. Further, for example, the brake control unit 420 determines that the own vehicle M can be decelerated when a predetermined time elapses after the rear vehicle B1 collides with the own vehicle M.
  • the brake control unit 420 controls the brake device 510 so as to increase the braking force applied to the wheels 11 and 12 (step S110), and a series of series. End the process.
  • the brake control unit 420 repeats the process of step S100 by the brake control unit 420.
  • the motorcycle 10 of the present embodiment includes an object recognition device 54 that recognizes the vehicle B1 behind the own vehicle M, and a brake device 510 that applies a braking force to the wheels 11 and 12 of the own vehicle M.
  • a braking control unit 400 that controls the brake device 510 based on the recognition result of the object recognition device 54 is provided.
  • the braking control unit 400 operates the braking device 510 when it is determined that the rear vehicle B1 collides with the own vehicle M when the speed of the own vehicle M is equal to or less than the first predetermined value.
  • the drag force against the rear vehicle B1 can be generated in the own vehicle M. Therefore, it is possible to prevent the own vehicle M from moving forward due to insufficient drag against a collision from the rear and disturbing the posture of the vehicle body. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
  • the braking control unit 400 sets the magnitude of the braking force by the braking device 510 according to the relative speed of the rear vehicle B1 with respect to the own vehicle M.
  • the magnitude of the impact applied to the own vehicle M changes depending on the relative speed at the time of the collision of the rear vehicle B1. Therefore, by configuring as described above, it is possible to apply an appropriate braking force to the wheels 11 and 12 according to the magnitude of the impact applied to the own vehicle M. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle B1 collides.
  • the braking control unit 400 controls the braking device 510 so as to give priority to the rear wheel 12 to apply the braking force. According to this configuration, braking force is applied only to the front wheels 11 to prevent the rear portion of the vehicle body from being lifted by the collision of the rear vehicle B1. Therefore, it is possible to more reliably suppress the posture of the vehicle body from being disturbed.
  • the braking control unit 400 controls the braking device 510 so as to reduce the braking force applied to the wheels 11 and 12 while the own vehicle M is moving forward after the rear vehicle B1 collides with the own vehicle M. .. According to this configuration, slippage due to locking of the wheels 11 and 12 can be suppressed while the own vehicle M is collided with and pushed by the rear vehicle B1. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle B1 collides.
  • the braking control unit 400 controls the braking device 510 so as to decrease the braking force applied to the wheels 11 and 12 and then increase the braking force applied to the wheels 11 and 12. According to this configuration, when the rear vehicle B1 decelerates and starts to move away from the own vehicle M, the own vehicle M can be stopped more quickly by increasing the braking force applied to the wheels 11 and 12.
  • the motorcycle 10 further includes an object recognition device 54 that recognizes an object (such as the front vehicle B2) in front of the own vehicle M, and a steering device 520 that changes the direction of the front wheels 11.
  • an object recognition device 54 that recognizes an object (such as the front vehicle B2) in front of the own vehicle M
  • a steering device 520 that changes the direction of the front wheels 11.
  • the braking control unit 400 controls the steering device 520 so as to steer the front wheels 11 toward the roadside band R side (or road shoulder side) close to the own vehicle M.
  • the own vehicle M can escape to the roadside zone R (or the road shoulder) where another vehicle is unlikely to exist. Therefore, it is possible to prevent the own vehicle M from colliding with a surrounding object. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
  • the braking control unit 400 controls the steering device 520 so as to steer the front wheels 11 in a direction in which the pedestrian W and the object in front do not exist when viewed from the own vehicle M. According to this configuration, it is possible to prevent the own vehicle M from colliding with the pedestrian W and an object in front of it. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
  • the braking control unit 400 controls the steering device 520 so as to steer the front wheels 11 in a direction in which the oncoming vehicle B4 and the object in front do not exist when viewed from the own vehicle M. According to this configuration, it is possible to prevent the own vehicle M from colliding with the oncoming vehicle B4 and the object in front. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
  • the present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications can be considered within the technical scope thereof.
  • the application of the driving support system 1 to a motorcycle has been described as an example, but the present invention is not limited to this.
  • Saddle-riding vehicles to which the driving support system 1 is applied include all vehicles in which the driver straddles the vehicle body, and not only motorcycles but also three wheels (one front and two rear wheels, two front wheels and rear wheels). Vehicles (including one-wheeled vehicles) are also included.
  • the driving support system 1 of the above embodiment can execute so-called automatic driving, but is not limited to this. That is, the driving support system of the present invention may be applied to a vehicle that always requires operation by the driver when traveling.
  • the braking control unit 400 performs a series of processing in a state where the speed of the own vehicle M is equal to or less than the first predetermined value has been described, but the present invention is not limited to this.
  • the braking control unit 400 may perform the same processing as that of the above-described embodiment only when the own vehicle M is completely stopped. Even in this case, the same action and effect as those of the above-described embodiment are obtained.
  • step S90 when the brake control unit 420 receives the second braking command from the collision determination unit 410, the brake device 510 reduces the braking force applied to the wheels 11 and 12. Is in control. That is, the brake control unit 420 controls the brake device 510 so as to reduce the braking force applied to the wheels 11 and 12 when the rear vehicle B1 collides with the own vehicle M. However, it is not limited to this. For example, the brake control unit 420 may control the brake device 510 so as to reduce the braking force applied to the wheels 11 and 12 when the slip of the wheels 11 and 12 is detected. Further, the processing of steps S80 to S110 described above may not be performed.
  • the object recognition device 54 recognizes the position of an object around the own vehicle M based on the detection results of the camera 51, the radar device 52, and the finder 53, but the present invention is not limited to this. ..
  • the object recognition device 54 may recognize the existence of another vehicle existing in the vicinity of the own vehicle M by V2X communication (for example, vehicle-to-vehicle communication, road-to-vehicle communication, etc.) using the communication device 55.
  • V2X communication for example, vehicle-to-vehicle communication, road-to-vehicle communication, etc.
  • the rear vehicle recognition unit that recognizes the vehicle behind the own vehicle M and the front object recognition unit that recognizes the object in front of the own vehicle M are integrated as the object recognition device 54. Not limited to this. These functional units may be provided independently.
  • Front wheels (wheels, steering wheels) 12 Rear wheels (wheels) 54
  • Object recognition device (rear vehicle recognition unit, front object recognition unit) 400
  • Braking control unit (control unit) 510
  • Brake device 520
  • Steering device B1 Rear vehicle
  • B2 Front vehicle (object in front)
  • B4 Oncoming vehicle M Own vehicle R Roadside zone W Pedestrian

Abstract

This saddle riding-type vehicle is provided with: a rear-side vehicle recognizing unit (54) that recognizes a rear-side vehicle (B1) of an own vehicle (M); a brake device (150) that applies brake force to wheels (11, 12) of the own vehicle (M); and a control unit (400) that controls the brake device (510) on the basis of the recognition result of the rear-side vehicle recognizing unit (54), wherein the control unit (400) actuates the brake device (510) when the rear-side vehicle (B1) is determined to collide with the own vehicle (M) in a state in which the speed of the own vehicle (M) is no greater than a predetermined value.

Description

鞍乗り型車両Saddle-type vehicle
 本発明は、鞍乗り型車両に関する。 The present invention relates to a saddle-riding vehicle.
 鞍乗り型車両において、自車両が前方の物体に接近した場合に衝突の影響を低減する技術がある。例えば、特許文献1には、走行経路内に障害物体を検出する前方走行センサと、前方走行センサから信号を受信することに基づいて自動二輪車の自律制動イベントを実行するように動作可能なコントローラと、を備えた自動二輪車が開示されている。この自動二輪車において、自律制動イベントは、いったん作動されると、ABSを関与させて減速レートを最大化して自動二輪車を完全な停止に至らせる。 In a saddle-riding vehicle, there is a technology to reduce the influence of a collision when the own vehicle approaches an object in front. For example, Patent Document 1 describes a forward travel sensor that detects an obstacle in a travel path, and a controller that can operate to execute an autonomous braking event of a motorcycle based on receiving a signal from the forward travel sensor. A motorcycle equipped with, is disclosed. In this motorcycle, the autonomous braking event, once activated, involves ABS to maximize the deceleration rate and bring the motorcycle to a complete stop.
日本国特開2018-118716号公報Japanese Patent Application Laid-Open No. 2018-118716
 ところで、鞍乗り型車両が停止直前の状態を含む停止時に後方から接近する四輪車等の車両に追突される事象がある。鞍乗り型車両の運転者は、後方から接近する車両の存在を認識することが難しいので、不意に車両に衝撃が加わることとなる。また、鞍乗り型車両の運転者は、仮に後方から接近する車両の存在を認識することができても、衝突に備えた行動をとることが難しい。このため、停止時に後方車両に衝突された場合の接触被害を低減するという課題がある。 By the way, there is an event in which a saddle-riding vehicle is hit by a vehicle such as a four-wheeled vehicle approaching from behind at the time of stopping, including the state immediately before stopping. Since it is difficult for the driver of a saddle-riding vehicle to recognize the existence of a vehicle approaching from behind, the vehicle is suddenly impacted. Further, even if the driver of a saddle-riding vehicle can recognize the existence of a vehicle approaching from behind, it is difficult to take action in preparation for a collision. Therefore, there is a problem of reducing contact damage when the vehicle collides with a vehicle behind when stopped.
 本発明は、停止時に後方車両に衝突された場合の接触被害を低減できる鞍乗り型車両を提供する。 The present invention provides a saddle-riding type vehicle that can reduce contact damage when a vehicle collides with a rear vehicle when stopped.
(1)本発明に係る一態様の鞍乗り型車両は、自車両(M)の後方車両(B1)を認識する後方車両認識部(54)と、前記自車両(M)の車輪(11,12)に制動力を付与するブレーキ装置(510)と、前記後方車両認識部(54)の認識結果に基づいて前記ブレーキ装置(510)を制御する制御部(400)と、を備え、前記制御部(400)は、前記自車両(M)の速度が所定値以下の状態で前記後方車両(B1)が前記自車両(M)に衝突すると判定した場合に前記ブレーキ装置(510)を作動させる、ことを特徴とする。 (1) One aspect of the saddle-riding vehicle according to the present invention includes a rear vehicle recognition unit (54) that recognizes the rear vehicle (B1) of the own vehicle (M) and wheels (11,) of the own vehicle (M). The control is provided with a brake device (510) that applies a braking force to the 12) and a control unit (400) that controls the brake device (510) based on the recognition result of the rear vehicle recognition unit (54). The unit (400) operates the braking device (510) when it is determined that the rear vehicle (B1) collides with the own vehicle (M) when the speed of the own vehicle (M) is equal to or less than a predetermined value. , Characterized by.
 本態様によれば、完全停止または停止直前で前進している自車両に後方車両が衝突する際に、後方車両に対する抗力を自車両に発生させることができる。このため、後方からの衝突に対する抗力が不足して自車両が前進し、車体の姿勢が乱れることを抑制できる。したがって、停止時に後方車両に衝突された場合の接触被害を低減できる。 According to this aspect, when the rear vehicle collides with the own vehicle that is moving forward at the complete stop or immediately before the stop, the drag force against the rear vehicle can be generated in the own vehicle. Therefore, it is possible to prevent the own vehicle from moving forward due to insufficient drag against a collision from the rear and disturbing the posture of the vehicle body. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
(2)上記(1)の態様の鞍乗り型車両において、前記制御部(400)は、前記自車両(M)に対する前記後方車両(B1)の相対速度に応じて前記ブレーキ装置(510)による制動力の大きさを設定してもよい。 (2) In the saddle-riding vehicle according to the aspect (1), the control unit (400) is driven by the braking device (510) according to the relative speed of the rear vehicle (B1) with respect to the own vehicle (M). The magnitude of the braking force may be set.
 自車両に加わる衝撃の大きさは、後方車両の衝突時の相対速度によって変化する。このため、上記のように構成することで、自車両に加わる衝撃の大きさに応じた適切な制動力を車輪に付与できる。よって、後方車両が衝突した際の車体の姿勢の乱れをより確実に抑制できる。 The magnitude of the impact applied to the own vehicle changes depending on the relative speed at the time of the collision of the rear vehicle. Therefore, by configuring as described above, it is possible to apply an appropriate braking force to the wheels according to the magnitude of the impact applied to the own vehicle. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle collides.
(3)上記(1)または(2)の態様の鞍乗り型車両において、前記制御部(400)は、後輪(12)に優先して制動力を付与するように前記ブレーキ装置(510)を制御してもよい。 (3) In the saddle-riding vehicle according to the aspect (1) or (2), the control unit (400) gives priority to the rear wheel (12) to apply a braking force to the braking device (510). May be controlled.
 上記のように構成することで、前輪のみに制動力が付与されて後方車両の衝突により車体後部が持ち上がることを抑制できる。よって、車体の姿勢が乱れることをより確実に抑制できる。 By configuring as described above, braking force is applied only to the front wheels, and it is possible to prevent the rear part of the vehicle body from being lifted due to a collision of a rear vehicle. Therefore, it is possible to more reliably suppress the posture of the vehicle body from being disturbed.
(4)上記(1)から(3)のいずれか1つの態様の鞍乗り型車両において、前記制御部(400)は、前記後方車両(B1)が前記自車両(M)に衝突後、前記自車両(M)が前進している状態で、前記車輪(11,12)に付与する制動力を減少させるように前記ブレーキ装置(510)を制御してもよい。 (4) In the saddle-riding vehicle according to any one of (1) to (3) above, the control unit (400) uses the control unit (400) after the rear vehicle (B1) collides with the own vehicle (M). The braking device (510) may be controlled so as to reduce the braking force applied to the wheels (11, 12) while the own vehicle (M) is moving forward.
 上記のように構成することで、自車両が後方車両に衝突されて押されている状態で車輪のロックによるスリップを抑制できる。したがって、後方車両が衝突した際の車体の姿勢の乱れをより確実に抑制できる。 By configuring as described above, it is possible to suppress slippage due to wheel lock while the own vehicle is being pushed by the vehicle behind. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle collides.
(5)上記(4)の態様の鞍乗り型車両において、前記制御部(400)は、前記車輪(11,12)に付与する制動力を減少させた後、前記車輪(11,12)に付与する制動力を増加させるように前記ブレーキ装置(510)を制御してもよい。 (5) In the saddle-riding vehicle according to the aspect (4), the control unit (400) reduces the braking force applied to the wheels (11, 12) and then applies the braking force to the wheels (11, 12). The braking device (510) may be controlled so as to increase the braking force applied.
 上記のように構成することで、後方車両が減速して自車両から離れ始めた場合に車輪に付与する制動力を増加させることで、より速やかに自車両を停止させることができる。 By configuring as described above, the own vehicle can be stopped more quickly by increasing the braking force applied to the wheels when the rear vehicle decelerates and begins to move away from the own vehicle.
(6)上記(1)から(5)のいずれか1つの態様の鞍乗り型車両において、前記自車両(M)の前方の物体(B2)を認識する前方物体認識部(54)と、操舵輪(11)の向きを変更するステアリング装置(520)と、をさらに備え、前記制御部(400)は、前記後方車両(B1)が前記自車両(M)に衝突すると判定し、かつ前記前方物体認識部(54)の認識結果に基づいて前記自車両(M)の前方に前記物体(B2)が存在していると判定した場合に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御してもよい。 (6) In the saddle-riding vehicle according to any one of (1) to (5) above, the front object recognition unit (54) that recognizes the object (B2) in front of the own vehicle (M) and the steering wheel A steering device (520) that changes the direction of the wheels (11) is further provided, and the control unit (400) determines that the rear vehicle (B1) collides with the own vehicle (M), and the front When it is determined that the object (B2) exists in front of the own vehicle (M) based on the recognition result of the object recognition unit (54), the steering wheel (11) is steered. The device (520) may be controlled.
 上記のように構成することで、自車両が後方車両の衝突によって前進する場合であっても、自車両を斜め前に進行させることができる。よって、自車両が前方の物体に衝突することを抑制できる。したがって、停止時に後方車両に衝突された場合の接触被害を低減できる。 By configuring as described above, even if the own vehicle moves forward due to a collision of the rear vehicle, the own vehicle can move diagonally forward. Therefore, it is possible to prevent the own vehicle from colliding with an object in front. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
(7)上記(6)の態様の鞍乗り型車両において、前記制御部(400)は、前記自車両(M)に近い路側帯(R)側または路肩側に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御してもよい。 (7) In the saddle-riding vehicle according to the aspect (6), the control unit (400) rolls the steering wheel (11) on the roadside zone (R) side or the road shoulder side close to the own vehicle (M). The steering device (520) may be controlled so as to steer.
 上記のように構成することで、他車両が存在する可能性の低い路側帯または路肩に自車両を逃がすことができる。よって、自車両が周囲の物体に衝突することを抑制できる。したがって、停止時に後方車両に衝突された場合の接触被害を低減できる。 By configuring as described above, it is possible to let the own vehicle escape to the roadside zone or shoulder where other vehicles are unlikely to exist. Therefore, it is possible to prevent the own vehicle from colliding with surrounding objects. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
(8)上記(6)の態様の鞍乗り型車両において、前記制御部(400)は、前記自車両(M)から見て歩行者(W)および前記前方の物体(B2)が存在しない方向に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御してもよい。 (8) In the saddle-riding vehicle according to the embodiment (6), the control unit (400) is in a direction in which a pedestrian (W) and an object (B2) in front of the control unit (400) do not exist when viewed from the own vehicle (M). The steering device (520) may be controlled so as to steer the steering wheel (11).
 上記のように構成することで、自車両が歩行者および前方の物体に衝突することを抑制できる。したがって、停止時に後方車両に衝突された場合の接触被害を低減できる。 With the above configuration, it is possible to prevent the own vehicle from colliding with pedestrians and objects in front of it. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
(9)上記(6)の態様の鞍乗り型車両において、前記制御部(400)は、前記自車両(M)から見て対向車(B4)および前記前方の物体(B2)が存在しない方向に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御してもよい。 (9) In the saddle-riding vehicle according to the aspect (6), the control unit (400) is in a direction in which the oncoming vehicle (B4) and the object (B2) in front of the control unit (400) do not exist when viewed from the own vehicle (M). The steering device (520) may be controlled so as to steer the steering wheel (11).
 上記のように構成することで、自車両が対向車および前方の物体に衝突することを抑制できる。したがって、停止時に後方車両に衝突された場合の接触被害を低減できる。 By configuring as described above, it is possible to prevent the own vehicle from colliding with an oncoming vehicle and an object in front of it. Therefore, it is possible to reduce the contact damage when the vehicle collides with the vehicle behind when the vehicle is stopped.
 上記の鞍乗り型車両によれば、停止時に後方車両に衝突された場合の接触被害を低減できる。 According to the above-mentioned saddle-riding type vehicle, it is possible to reduce contact damage when the vehicle collides with a rear vehicle when stopped.
実施形態に係る運転支援システムの構成図である。It is a block diagram of the driving support system which concerns on embodiment. 自車位置認識部により走行車線に対する自車両の相対位置および姿勢が認識される様子を示す図である。It is a figure which shows the state which the relative position and posture of the own vehicle with respect to the traveling lane are recognized by the own vehicle position recognition part. 推奨車線に基づいて目標軌道が生成される様子を示す図である。It is a figure which shows how the target trajectory is generated based on a recommended lane. 第1実施形態の自動二輪車の左側面図である。It is a left side view of the motorcycle of 1st Embodiment. 制動制御部による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing by a braking control part. 後方車両が自車両に衝突すると判定された場面を示す図である。It is a figure which shows the scene which it is determined that the rear vehicle collides with the own vehicle. 自車両が後方車両に衝突される際に安全方向に回避する場面の一例を示す図である。It is a figure which shows an example of the scene which avoids in a safe direction when the own vehicle collides with the rear vehicle. 自車両が後方車両に衝突される際に安全方向に回避する場面の一例を示す図である。It is a figure which shows an example of the scene which avoids in a safe direction when the own vehicle collides with the rear vehicle. 自車両が後方車両に衝突される際に安全方向に回避する場面の一例を示す図である。It is a figure which shows an example of the scene which avoids in a safe direction when the own vehicle collides with the rear vehicle. 自車両が後方車両に衝突される際に安全方向に回避する場面の一例を示す図である。It is a figure which shows an example of the scene which avoids in a safe direction when the own vehicle collides with the rear vehicle.
 以下、図面を参照し、本実施形態の鞍乗り型車両の運転支援システムの一例について説明する。実施形態では、運転支援システムが自動運転車両に適用されたものとする。自動運転は、運転者による操作を原則として必要としない状態で車両が走行することをいい、運転支援の一種である。ここで、運転支援には、度合が存在する。例えば、運転支援の度合には、ACC(Adaptive Cruise Control System)やLKAS(Lane Keeping Assistance System)等の運転支援装置が作動することで運転支援を実行する第1の度合と、第1の度合よりも制御度合が高く、運転者が車両の運転操作子に対する操作を行わずに、車両の加減速または操舵のうち少なくとも一方を自動的に制御して自動運転を実行するが、運転者にある程度の周辺監視義務を課す第2の度合と、第2の度合よりも制御度合が高く、運転者に周辺監視義務を課さない(または第2の度合よりも低い周辺監視義務を課す)第3の度合と、がある。本実施形態において、第2の度合および第3の度合の運転支援が自動運転に相当する。 Hereinafter, an example of the driving support system for the saddle-riding vehicle of the present embodiment will be described with reference to the drawings. In the embodiment, it is assumed that the driving support system is applied to the autonomous driving vehicle. Autonomous driving is a type of driving assistance in which a vehicle runs in a state that does not require operation by the driver in principle. Here, there is a degree of driving support. For example, the degree of driving support includes the first degree of driving assistance by operating a driving support device such as ACC (Adaptive Cruise Control System) or LKAS (Lane Keeping Assistance System), and the first degree of driving assistance. The degree of control is also high, and the driver automatically controls at least one of acceleration / deceleration or steering of the vehicle without operating the driver of the vehicle to perform automatic driving, but the driver has some degree of control. A second degree that imposes a peripheral monitoring obligation, and a third degree that has a higher degree of control than the second degree and does not impose a peripheral monitoring obligation on the driver (or imposes a lower peripheral monitoring obligation than the second degree). And there is. In the present embodiment, the second degree and the third degree of driving support correspond to automatic driving.
<全体構成>
 図1は、第1実施形態に係る運転支援システムの構成図である。
 図1に示す運転支援システム1が搭載される車両は、二輪や三輪等の鞍乗り型車両である。車両の原動機は、ガソリンエンジン等の内燃機関、電動機、または内燃機関および電動機の組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、または、二次電池もしくは燃料電池の放電電力を使用して動作する。
<Overall configuration>
FIG. 1 is a configuration diagram of a driving support system according to the first embodiment.
The vehicle equipped with the driving support system 1 shown in FIG. 1 is a saddle-riding vehicle such as a two-wheeled vehicle or a three-wheeled vehicle. The prime mover of a vehicle is an internal combustion engine such as a gasoline engine, an electric motor, or a combination of an internal combustion engine and an electric motor. The electric motor operates by using the electric power generated by the generator connected to the internal combustion engine or the electric power generated by the secondary battery or the fuel cell.
 例えば、運転支援システム1は、カメラ51と、レーダ装置52と、ファインダ53と、物体認識装置54(後方車両認識部、前方物体認識部)と、通信装置55と、HMI(Human Machine Interface)56と、車両センサ57と、ナビゲーション装置60と、MPU(Map Positioning Unit)70と、運転操作子80と、運転者監視カメラ90と、制御装置100と、走行駆動力出力装置500と、ブレーキ装置510と、ステアリング装置520と、視線誘導部530と、を備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。 For example, the driving support system 1 includes a camera 51, a radar device 52, a finder 53, an object recognition device 54 (rear vehicle recognition unit, front object recognition unit), a communication device 55, and an HMI (Human Machine Interface) 56. , Vehicle sensor 57, navigation device 60, MPU (Map Positioning Unit) 70, driving operator 80, driver monitoring camera 90, control device 100, traveling driving force output device 500, and braking device 510. And a steering device 520 and a line-of-sight guidance unit 530. These devices and devices are connected to each other by multiple communication lines such as CAN (Controller Area Network) communication lines, serial communication lines, wireless communication networks, and the like. The configuration shown in FIG. 1 is merely an example, and a part of the configuration may be omitted or another configuration may be added.
 カメラ51は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ51は、運転支援システム1が搭載される車両(以下、自車両M)の任意の箇所に取り付けられる。カメラ51は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ51は、ステレオカメラであってもよい。 The camera 51 is a digital camera that uses a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The camera 51 is attached to an arbitrary position of the vehicle (hereinafter, own vehicle M) on which the driving support system 1 is mounted. The camera 51 periodically and repeatedly images the periphery of the own vehicle M, for example. The camera 51 may be a stereo camera.
 レーダ装置52は、自車両Mの周辺にミリ波等の電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置52は、自車両Mの任意の箇所に取り付けられる。レーダ装置52は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。 The radar device 52 radiates radio waves such as millimeter waves around the own vehicle M, and also detects radio waves (reflected waves) reflected by the object to detect at least the position (distance and direction) of the object. The radar device 52 is attached to an arbitrary position of the own vehicle M. The radar device 52 may detect the position and speed of the object by the FM-CW (Frequency Modulated Continuous Wave) method.
 ファインダ53は、LIDAR(Light Detection and Ranging)である。ファインダ53は、自車両Mの周辺に光を照射し、散乱光を測定する。ファインダ53は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。ファインダ53は、自車両Mの任意の箇所に取り付けられる。 The finder 53 is a LIDAR (Light Detection and Ringing). The finder 53 irradiates the periphery of the own vehicle M with light and measures the scattered light. The finder 53 detects the distance to the target based on the time from light emission to light reception. The light to be irradiated is, for example, a pulsed laser beam. The finder 53 is attached to an arbitrary position of the own vehicle M.
 物体認識装置54は、カメラ51、レーダ装置52、およびファインダ53のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、自車両Mの周辺の物体の位置や種類、速度等を認識する。物体認識装置54は、少なくとも自車両Mの前方の物体、および自車両Mの後方の車両を認識する。物体認識装置54は、認識結果を制御装置100に出力する。物体認識装置54は、カメラ51、レーダ装置52、およびファインダ53の検出結果をそのまま制御装置100に出力してよい。 The object recognition device 54 performs sensor fusion processing on the detection results of a part or all of the camera 51, the radar device 52, and the finder 53 to determine the position, type, speed, and the like of the objects around the own vehicle M. recognize. The object recognition device 54 recognizes at least an object in front of the own vehicle M and a vehicle behind the own vehicle M. The object recognition device 54 outputs the recognition result to the control device 100. The object recognition device 54 may output the detection results of the camera 51, the radar device 52, and the finder 53 to the control device 100 as they are.
 通信装置55は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)等を利用して、自車両Mの周辺に存在する他車両と通信(車車間通信)し、または無線基地局を介して各種サーバ装置と通信する。 The communication device 55 uses, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles existing in the vicinity of the own vehicle M (inter-vehicle communication). ) Or communicate with various server devices via a wireless base station.
 HMI56は、自車両Mの運転者に対して各種情報を提示すると共に、運転者による入力操作を受け付ける。HMI56は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。 The HMI 56 presents various information to the driver of the own vehicle M and accepts input operations by the driver. The HMI 56 includes various display devices, speakers, buzzers, touch panels, switches, keys and the like.
 車両センサ57は、自車両Mの速度を検出する車速センサや、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。 The vehicle sensor 57 includes a vehicle speed sensor that detects the speed of the own vehicle M, an acceleration sensor that detects the acceleration, a yaw rate sensor that detects the angular velocity around the vertical axis, an orientation sensor that detects the direction of the own vehicle M, and the like.
 ナビゲーション装置60は、例えば、GNSS(Global Navigation Satellite System)受信機61と、ナビHMI62と、経路決定部63と、を備える。ナビゲーション装置60は、HDD(Hard Disk Drive)やフラッシュメモリ等の記憶装置に第1地図情報64を保持している。GNSS受信機61は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ57の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI62は、表示装置やスピーカ、タッチパネル、キー等を含む。ナビHMI62は、前述したHMI56と一部または全部が共通化されてもよい。経路決定部63は、例えば、GNSS受信機61により特定された自車両Mの位置(または入力された任意の位置)から、ナビHMI62を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報64を参照して決定する。第1地図情報64は、例えば、道路を示すリンクと、リンクによって接続されたノードと、によって道路形状が表現された情報である。第1地図情報64は、道路の曲率やPOI(Point Of Interest)情報等を含んでもよい。地図上経路は、MPU70に出力される。ナビゲーション装置60は、地図上経路に基づいて、ナビHMI62を用いた経路案内を行ってもよい。ナビゲーション装置60は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置60は、通信装置55を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。 The navigation device 60 includes, for example, a GNSS (Global Navigation Satellite System) receiver 61, a navigation HMI 62, and a route determination unit 63. The navigation device 60 holds the first map information 64 in a storage device such as an HDD (Hard Disk Drive) or a flash memory. The GNSS receiver 61 identifies the position of the own vehicle M based on the signal received from the GNSS satellite. The position of the own vehicle M may be specified or complemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 57. The navigation HMI 62 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 62 may be partially or wholly shared with the above-mentioned HMI 56. The route determination unit 63, for example, has a route from the position of the own vehicle M (or an arbitrary position input) specified by the GNSS receiver 61 to the destination input by the occupant using the navigation HMI 62 (hereinafter,). The route on the map) is determined with reference to the first map information 64. The first map information 64 is information in which the road shape is expressed by, for example, a link indicating a road and a node connected by the link. The first map information 64 may include road curvature, POI (Point Of Interest) information, and the like. The route on the map is output to the MPU 70. The navigation device 60 may provide route guidance using the navigation HMI 62 based on the route on the map. The navigation device 60 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by an occupant. The navigation device 60 may transmit the current position and the destination to the navigation server via the communication device 55, and may acquire a route equivalent to the route on the map from the navigation server.
 MPU70は、例えば、推奨車線決定部71を含む。MPU70は、HDDやフラッシュメモリ等の記憶装置に第2地図情報72を保持している。推奨車線決定部71は、ナビゲーション装置60から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報72を参照してブロックごとに推奨車線を決定する。推奨車線決定部71は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部71は、地図上経路に分岐箇所が存在する場合、自車両Mが分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。 The MPU 70 includes, for example, a recommended lane determination unit 71. The MPU 70 holds the second map information 72 in a storage device such as an HDD or a flash memory. The recommended lane determination unit 71 divides the route on the map provided by the navigation device 60 into a plurality of blocks (for example, divides the route every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 72. Determine the recommended lane for each block. The recommended lane determination unit 71 determines which lane to drive from the left. When the recommended lane determination unit 71 has a branch point on the route on the map, the recommended lane determination unit 71 determines the recommended lane so that the own vehicle M can travel on a reasonable route to proceed to the branch destination.
 第2地図情報72は、第1地図情報64よりも高精度な地図情報である。第2地図情報72は、例えば、車線の中央の情報、または車線の境界の情報等を含んでいる。また、第2地図情報72には、道路情報や交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報等が含まれてよい。第2地図情報72は、通信装置55が他装置と通信することにより、随時、アップデートされてもよい。 The second map information 72 is more accurate map information than the first map information 64. The second map information 72 includes, for example, information on the center of the lane, information on the boundary of the lane, and the like. Further, the second map information 72 may include road information, traffic regulation information, address information (address / zip code), facility information, telephone number information, and the like. The second map information 72 may be updated at any time by the communication device 55 communicating with another device.
 運転操作子80は、例えば、アクセルグリップや、ブレーキペダル、ブレーキレバー、シフトペダル、操向ハンドル等の操作子を含む。運転操作子80には、操作量または操作の有無を検出するセンサが取り付けられている。センサの検出結果は、制御装置100、または、走行駆動力出力装置500、ブレーキ装置510、およびステアリング装置520のうち一部もしくは全部に出力される。 The driving operator 80 includes, for example, an accelerator grip, an operator such as a brake pedal, a brake lever, a shift pedal, and a steering handle. A sensor for detecting the amount of operation or the presence or absence of operation is attached to the operation operator 80. The detection result of the sensor is output to a part or all of the control device 100, the traveling driving force output device 500, the brake device 510, and the steering device 520.
 運転者監視カメラ90は、シートに着座する運転者を撮像可能な位置に配置されている。例えば、運転者監視カメラ90は、自車両Mの前部に取り付けられている。運転者監視カメラ90は、例えば、シートに着座する運転者の顔を中心に撮像する。運転者監視カメラ90は、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。運転者監視カメラ90は、例えば、周期的に運転者を撮像する。運転者監視カメラ90の撮像画像は、制御装置100に出力される。 The driver monitoring camera 90 is arranged at a position where the driver sitting on the seat can be imaged. For example, the driver surveillance camera 90 is attached to the front portion of the own vehicle M. The driver monitoring camera 90, for example, takes an image of the face of the driver sitting on the seat. The driver surveillance camera 90 is a digital camera that uses a solid-state image sensor such as a CCD or CMOS. The driver monitoring camera 90 periodically images the driver, for example. The captured image of the driver monitoring camera 90 is output to the control device 100.
 制御装置100は、マスター制御部110と、運転支援制御部200と、自動運転制御部300と、制動制御部400と、を備える。なお、マスター制御部110は、運転支援制御部200または自動運転制御部300のどちらかに統合されてもよい。 The control device 100 includes a master control unit 110, a driving support control unit 200, an automatic driving control unit 300, and a braking control unit 400. The master control unit 110 may be integrated into either the operation support control unit 200 or the automatic operation control unit 300.
 マスター制御部110は、運転支援の度合の切り替え、およびHMI56の制御を行う。例えば、マスター制御部110は、切替制御部120と、HMI制御部130と、操作子状態判定部140と、乗員状態監視部150と、を備える。切替制御部120、HMI制御部130、操作子状態判定部140、および乗員状態監視部150は、それぞれ、CPU(Central Processing Unit)等のプロセッサがプログラムを実行することで実現される。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。 The master control unit 110 switches the degree of driving support and controls the HMI 56. For example, the master control unit 110 includes a switching control unit 120, an HMI control unit 130, an operator state determination unit 140, and an occupant condition monitoring unit 150. The switching control unit 120, the HMI control unit 130, the operator state determination unit 140, and the occupant condition monitoring unit 150 are each realized by executing a program by a processor such as a CPU (Central Processing Unit). In addition, some or all of these functional parts may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or software. And may be realized by the cooperation of hardware.
 切替制御部120は、例えば、HMI56に含まれる所定のスイッチから入力される操作信号に基づいて運転支援の度合を切り替える。また、切替制御部120は、例えば、アクセルグリップやブレーキペダル、ブレーキレバー、操向ハンドル等の運転操作子80に対する加速、減速または操舵を指示する操作に基づいて、運転支援をキャンセルして手動運転に切り替えてもよい。 The switching control unit 120 switches the degree of driving support based on, for example, an operation signal input from a predetermined switch included in the HMI 56. Further, the switching control unit 120 cancels the driving support and manually operates the vehicle based on, for example, an operation of instructing the driving controller 80 such as the accelerator grip, the brake pedal, the brake lever, and the steering handle to accelerate, decelerate, or steer. You may switch to.
 なお、切替制御部120は、後述する行動計画生成部330により生成される行動計画に基づいて、運転支援の度合を切り替えてもよい。例えば、切替制御部120は、行動計画によって規定される自動運転の終了予定地点で、運転支援を終了するようにしてもよい。 The switching control unit 120 may switch the degree of driving support based on the action plan generated by the action plan generation unit 330 described later. For example, the switching control unit 120 may end the driving support at the scheduled end point of the automatic driving defined by the action plan.
 HMI制御部130は、運転支援の度合の切り替えに関連する通知等を、HMI56に出力させる。また、HMI制御部130は、自車両Mに対する所定の事象が発生した場合に、HMI56に出力する内容を切り替える。また、HMI制御部130は、操作子状態判定部140または乗員状態監視部150の一方または双方による判定結果に関する情報を、HMI56に出力させてもよい。また、HMI制御部130は、HMI56により受け付けられた情報を運転支援制御部200または自動運転制御部300の一方または双方に出力してもよい。 The HMI control unit 130 causes the HMI 56 to output a notification or the like related to switching the degree of driving support. Further, the HMI control unit 130 switches the content to be output to the HMI 56 when a predetermined event for the own vehicle M occurs. Further, the HMI control unit 130 may output the information regarding the determination result by one or both of the operator state determination unit 140 and the occupant condition monitoring unit 150 to the HMI 56. Further, the HMI control unit 130 may output the information received by the HMI 56 to one or both of the operation support control unit 200 and the automatic operation control unit 300.
 操作子状態判定部140は、例えば、運転操作子80に含まれる操向ハンドルが操作されている状態(具体的には、現に意図的な操作を行っている場合、直ちに操作可能な状態、または把持状態を指すものとする)であるか否かを判定する。 The operator state determination unit 140 is, for example, in a state in which the steering handle included in the operation operator 80 is being operated (specifically, when an intentional operation is actually performed, a state in which the steering wheel can be immediately operated, or (It shall indicate the gripping state).
 乗員状態監視部150は、運転者監視カメラ90の撮像画像に基づいて、運転者の状態を監視する。乗員状態監視部150は、運転者が周辺の交通状況を継続して監視していることを監視する。乗員状態監視部150は、運転者監視カメラ90の撮像画像により運転者の顔画像を取得し、取得した顔画像から運転者の視線方向を認識する。例えば、乗員状態監視部150は、ニューラルネットワーク等を利用したディープラーニングによって、運転者監視カメラ90の撮像画像から乗員の視線方向を認識してもよい。 The occupant condition monitoring unit 150 monitors the driver's condition based on the image captured by the driver monitoring camera 90. The occupant condition monitoring unit 150 monitors that the driver is continuously monitoring the traffic conditions in the surrounding area. The occupant condition monitoring unit 150 acquires the driver's face image from the image captured by the driver monitoring camera 90, and recognizes the driver's line-of-sight direction from the acquired face image. For example, the occupant condition monitoring unit 150 may recognize the line-of-sight direction of the occupant from the image captured by the driver monitoring camera 90 by deep learning using a neural network or the like.
 運転支援制御部200は、第1の度合の運転支援を実行する。運転支援制御部200は、例えば、ACCやLKASその他の運転支援制御を実行する。例えば、運転支援制御部200は、ACCを実行する際には、カメラ51、レーダ装置52、およびファインダ53から物体認識装置54を介して入力される情報に基づいて、自車両Mと、前走車両との車間距離を一定に保った状態で走行するように走行駆動力出力装置500およびブレーキ装置510を制御する。すなわち、運転支援制御部200は、前走車両との車間距離に基づく加減速制御(速度制御)を行う。また、運転支援制御部200は、LKASを実行する際には、自車両Mが、現在走行中の走行車線を維持(レーンキープ)しながら走行するようにステアリング装置520を制御する。すなわち、運転支援制御部200は、車線維持のための操舵制御を行う。第1の度合の運転支援の種類に関しては、運転操作子80への操作を要求しない自動運転(第2の度合および第3の度合)以外の種々の制御を含んでよい。 The driving support control unit 200 executes the first degree of driving support. The driving support control unit 200 executes, for example, ACC, LKAS, or other driving support control. For example, when the driving support control unit 200 executes the ACC, the driving support control unit 200 moves forward with the own vehicle M based on the information input from the camera 51, the radar device 52, and the finder 53 via the object recognition device 54. The traveling driving force output device 500 and the braking device 510 are controlled so that the vehicle travels while keeping the distance between the vehicle and the vehicle constant. That is, the driving support control unit 200 performs acceleration / deceleration control (speed control) based on the inter-vehicle distance from the vehicle in front. Further, when executing the LKAS, the driving support control unit 200 controls the steering device 520 so that the own vehicle M travels while maintaining (lane keeping) the traveling lane in which the vehicle is currently traveling. That is, the driving support control unit 200 performs steering control for maintaining the lane. The type of driving support of the first degree may include various controls other than automatic driving (second degree and third degree) that do not require an operation on the driving operator 80.
 自動運転制御部300は、第2の度合および第3の度合の運転支援を実行する。自動運転制御部300は、例えば、第1制御部310と、第2制御部350と、を備える。第1制御部310および第2制御部350のそれぞれは、例えば、CPU等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSIやASIC、FPGA、GPU等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。 The automatic driving control unit 300 executes the driving support of the second degree and the third degree. The automatic operation control unit 300 includes, for example, a first control unit 310 and a second control unit 350. Each of the first control unit 310 and the second control unit 350 is realized by, for example, a hardware processor such as a CPU executing a program (software). In addition, some or all of these components may be realized by hardware such as LSI, ASIC, FPGA, GPU, or may be realized by collaboration between software and hardware.
 第1制御部310は、例えば、認識部320と、行動計画生成部330と、を備える。第1制御部310は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能と、を並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号や道路標示等)に基づく認識と、が並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてもよい。これによって、自動運転の信頼性が担保される。 The first control unit 310 includes, for example, a recognition unit 320 and an action plan generation unit 330. The first control unit 310, for example, realizes a function by AI (Artificial Intelligence) and a function by a model given in advance in parallel. For example, in the "intersection recognition" function, recognition of an intersection by deep learning or the like and recognition based on predetermined conditions (pattern matching signals, road markings, etc.) are executed in parallel, and both are executed in parallel. On the other hand, it may be realized by scoring and comprehensively evaluating. This ensures the reliability of autonomous driving.
 認識部320は、カメラ51、レーダ装置52、およびファインダ53から物体認識装置54を介して入力された情報に基づいて、周辺車両の位置や速度、加速度等の状態を認識する。周辺車両の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識され、制御に使用される。周辺車両の位置は、その周辺車両の重心やコーナー等の代表点で表されてもよいし、表現された領域で表されてもよい。周辺車両の「状態」とは、物体の加速度もしくはジャーク、または「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。 The recognition unit 320 recognizes states such as the position, speed, and acceleration of surrounding vehicles based on the information input from the camera 51, the radar device 52, and the finder 53 via the object recognition device 54. The positions of peripheral vehicles are recognized as, for example, positions on absolute coordinates with the representative point (center of gravity, center of drive shaft, etc.) of the own vehicle M as the origin, and are used for control. The position of the peripheral vehicle may be represented by a representative point such as the center of gravity or a corner of the peripheral vehicle, or may be represented by the represented area. The "state" of the surrounding vehicle may include the acceleration or jerk of the object, or the "behavioral state" (eg, whether or not the vehicle is changing lanes or is about to change lanes).
 また、認識部320は、例えば、自車両Mが走行している車線(走行車線)を認識する。例えば、認識部320は、第2地図情報72から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ51によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンと、を比較することで、走行車線を認識する。なお、認識部320は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレール等を含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置60から取得される自車両Mの位置、またはINSによる処理結果が加味されてもよい。また、認識部320は、一時停止線や障害物、赤信号、料金所、その他の道路事象等を認識する。 Further, the recognition unit 320 recognizes, for example, the lane (traveling lane) in which the own vehicle M is traveling. For example, the recognition unit 320 has a road marking line pattern (for example, an arrangement of a solid line and a broken line) obtained from the second map information 72 and a road marking line around the own vehicle M recognized from the image captured by the camera 51. By comparing with the pattern of, the traveling lane is recognized. The recognition unit 320 may recognize the traveling lane by recognizing not only the road marking line but also the running road boundary (road boundary) including the road marking line, the shoulder, the curb, the median strip, the guardrail, and the like. .. In this recognition, the position of the own vehicle M acquired from the navigation device 60 or the processing result by the INS may be added. In addition, the recognition unit 320 recognizes a stop line, an obstacle, a red light, a tollgate, other road events, and the like.
 認識部320は、走行車線を認識する際に、走行車線に対する自車両Mの位置および姿勢を認識する。
 図2は、認識部により走行車線に対する自車両の相対位置および姿勢が認識される様子の一例を示す図である。
 図2に示すように、認識部320は、例えば、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置および姿勢として認識してもよい。また、これに代えて、認識部320は、走行車線L1の何れかの側端部(道路区画線または道路境界)に対する自車両Mの基準点の位置等を、走行車線に対する自車両Mの相対位置として認識してもよい。
When recognizing the traveling lane, the recognition unit 320 recognizes the position and orientation of the own vehicle M with respect to the traveling lane.
FIG. 2 is a diagram showing an example of how the recognition unit recognizes the relative position and posture of the own vehicle with respect to the traveling lane.
As shown in FIG. 2, the recognition unit 320 is, for example, a line connecting the deviation OS of the reference point (for example, the center of gravity) of the own vehicle M from the central CL of the traveling lane and the central CL of the traveling lane in the traveling direction of the own vehicle M. The angle θ formed with respect to the traveling lane L1 may be recognized as the relative position and orientation of the own vehicle M with respect to the traveling lane L1. Alternatively, the recognition unit 320 sets the position of the reference point of the own vehicle M with respect to any side end (road marking line or road boundary) of the traveling lane L1 relative to the traveling lane. It may be recognized as a position.
 図1に示すように、行動計画生成部330は、自動運転により自車両Mを走行させる行動計画を生成する。行動計画生成部330は、原則的には推奨車線決定部71により決定された推奨車線を走行し、更に、自車両Mの周辺状況に対応できるように、自車両Mが自動的に(運転者の操作に依らずに)将来走行する目標軌道を生成する。目標軌道には、例えば、将来の自車両Mの位置を定めた位置要素と、将来の自車両Mの速度や加速度等を定めた速度要素と、が含まれる。例えば、行動計画生成部330は、自車両Mが順に到達すべき複数の地点(軌道点)を、目標軌道の位置要素として決定する。軌道点は、所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点である。所定の走行距離は、例えば、経路に沿って進んだときの道なり距離によって計算されてもよい。また、行動計画生成部330は、所定のサンプリング時間(例えば0コンマ数秒程度)ごとの目標速度および目標加速度を、目標軌道の速度要素として決定する。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度および目標加速度は、サンプリング時間および軌道点の間隔によって決定される。 As shown in FIG. 1, the action plan generation unit 330 generates an action plan for driving the own vehicle M by automatic driving. In principle, the action plan generation unit 330 travels in the recommended lane determined by the recommended lane determination unit 71, and the own vehicle M automatically (driver) so as to be able to respond to the surrounding conditions of the own vehicle M. Generate a target track to run in the future (regardless of the operation of). The target trajectory includes, for example, a position element that determines the position of the own vehicle M in the future and a speed element that determines the speed and acceleration of the own vehicle M in the future. For example, the action plan generation unit 330 determines a plurality of points (track points) that the own vehicle M should reach in order as position elements of the target track. The track point is a point to be reached by the own vehicle M for each predetermined mileage (for example, about several [m]). The predetermined mileage may be calculated, for example, by the road distance when traveling along the route. Further, the action plan generation unit 330 determines the target speed and the target acceleration for each predetermined sampling time (for example, about 0 comma several seconds) as the speed elements of the target trajectory. Further, the track point may be a position to be reached by the own vehicle M at the sampling time for each predetermined sampling time. In this case, the target velocity and target acceleration are determined by the sampling time and the interval between the orbital points.
 行動計画生成部330は、目標軌道を生成するにあたり、自動運転のイベントを設定してよい。自動運転のイベントには、例えば、一定速度で同じ走行車線を走行する定速走行イベントや、前走車両に追従して走行する追従走行イベント、自車両Mの走行車線を変更する車線変更イベント、道路の分岐地点で自車両Mを目的の方向に走行させる分岐イベント、合流地点で自車両Mを合流させる合流イベント、前走車両を追い越す追い越しイベント等がある。行動計画生成部330は、起動させたイベントに応じた目標軌道を生成する。 The action plan generation unit 330 may set an event for automatic driving when generating a target trajectory. Examples of the automatic driving event include a constant speed driving event in which the vehicle travels in the same lane at a constant speed, a following driving event in which the vehicle follows the vehicle in front, and a lane change event in which the vehicle M changes the traveling lane. There are a branching event in which the own vehicle M travels in a desired direction at a branch point on the road, a merging event in which the own vehicle M merges at the merging point, an overtaking event in which the preceding vehicle overtakes, and the like. The action plan generation unit 330 generates a target trajectory according to the activated event.
 図3は、推奨車線に基づいて目標軌道が生成される様子を示す図である。
 図3に示すように、推奨車線は、目的地までの経路に沿って走行するのに都合が良いように設定される。行動計画生成部330は、推奨車線の切り替わり地点の所定距離手前(イベントの種類に応じて決定されてよい)に差し掛かると、車線変更イベントや分岐イベント、合流イベント等を起動する。各イベントの実行中に、障害物を回避する必要が生じた場合には、図示するように回避軌道が生成される。
FIG. 3 is a diagram showing how a target trajectory is generated based on the recommended lane.
As shown in FIG. 3, the recommended lane is set so as to be convenient for traveling along the route to the destination. When the action plan generation unit 330 approaches a predetermined distance before the recommended lane switching point (may be determined according to the type of event), the action plan generation unit 330 activates a lane change event, a branch event, a merging event, and the like. If it becomes necessary to avoid an obstacle during the execution of each event, an avoidance trajectory is generated as shown in the figure.
 図1に戻り、第2制御部350は、行動計画生成部330によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置500、ブレーキ装置510、およびステアリング装置520を制御する。 Returning to FIG. 1, the second control unit 350 has a traveling driving force output device 500, a brake device 510, so that the own vehicle M passes the target trajectory generated by the action plan generation unit 330 at the scheduled time. And controls the steering device 520.
 第2制御部350は、例えば、取得部352と、速度制御部354と、操舵制御部356と、を備える。取得部352は、行動計画生成部330により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部354は、メモリに記憶された目標軌道に付随する速度要素に基づいて、走行駆動力出力装置500またはブレーキ装置510を制御する。操舵制御部356は、メモリに記憶された目標軌道の曲がり具合に応じて、ステアリング装置520を制御する。速度制御部354および操舵制御部356の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部356は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御と、を組み合わせて実行する。 The second control unit 350 includes, for example, an acquisition unit 352, a speed control unit 354, and a steering control unit 356. The acquisition unit 352 acquires the information of the target trajectory (orbit point) generated by the action plan generation unit 330 and stores it in a memory (not shown). The speed control unit 354 controls the traveling driving force output device 500 or the brake device 510 based on the speed element associated with the target trajectory stored in the memory. The steering control unit 356 controls the steering device 520 according to the degree of bending of the target trajectory stored in the memory. The processing of the speed control unit 354 and the steering control unit 356 is realized by, for example, a combination of feedforward control and feedback control. As an example, the steering control unit 356 executes a combination of feedforward control according to the curvature of the road in front of the own vehicle M and feedback control based on the deviation from the target trajectory.
 制動制御部400は、物体認識装置54の認識結果に基づいて、後述するブレーキ装置510およびステアリング装置520を制御する。制動制御部400は、衝突判定部410と、ブレーキ制御部420と、安全方向判定部430と、操舵制御部440と、を備える。 The braking control unit 400 controls the braking device 510 and the steering device 520, which will be described later, based on the recognition result of the object recognition device 54. The braking control unit 400 includes a collision determination unit 410, a brake control unit 420, a safety direction determination unit 430, and a steering control unit 440.
 衝突判定部410は、物体認識装置54の認識結果に基づいて、自車両Mの後方の車両(後方車両B1)、および自車両Mの前方の物体の存在を判定する。衝突判定部410は、自車両Mが完全停止または停止直前で前進している状態で、自車両Mの後方車両B1が自車両Mに衝突するか否かを判定する。衝突判定部410は、自車両Mおよび後方車両B1の速度や減速度、進行方向等に基づいて、後方車両B1が自車両Mに衝突するか否かを判定する。また、衝突判定部410は、自車両Mおよび後方車両B1の速度や減速度、進行方向等に基づいて、自車両Mに対する後方車両B1の衝突時の相対速度を予測する。衝突判定部410は、予測した後方車両B1の衝突時の相対速度に基づいて、ブレーキ制御部420に第1の制動指令を出力する。 The collision determination unit 410 determines the existence of a vehicle behind the own vehicle M (rear vehicle B1) and an object in front of the own vehicle M based on the recognition result of the object recognition device 54. The collision determination unit 410 determines whether or not the rear vehicle B1 of the own vehicle M collides with the own vehicle M while the own vehicle M is completely stopped or is moving forward immediately before the stop. The collision determination unit 410 determines whether or not the rear vehicle B1 collides with the own vehicle M based on the speed, deceleration, traveling direction, etc. of the own vehicle M and the rear vehicle B1. Further, the collision determination unit 410 predicts the relative speed of the rear vehicle B1 with respect to the own vehicle M at the time of collision, based on the speed, deceleration, traveling direction, etc. of the own vehicle M and the rear vehicle B1. The collision determination unit 410 outputs a first braking command to the brake control unit 420 based on the predicted relative speed of the rear vehicle B1 at the time of collision.
 衝突判定部410は、例えば物体認識装置54の認識結果や車両センサ57の検出結果に基づいて、後方車両B1が自車両Mに衝突したか否かを判定する。衝突判定部410は、自車両Mへの後方車両B1の衝突の判定結果に基づいて、ブレーキ制御部420に第2の制動指令を出力する。 The collision determination unit 410 determines whether or not the rear vehicle B1 has collided with the own vehicle M, for example, based on the recognition result of the object recognition device 54 and the detection result of the vehicle sensor 57. The collision determination unit 410 outputs a second braking command to the brake control unit 420 based on the determination result of the collision of the rear vehicle B1 with the own vehicle M.
 ブレーキ制御部420は、衝突判定部410から受信した第1の制動指令に基づいて、ブレーキ装置510を制御する。ブレーキ制御部420は、予測された後方車両B1の衝突時の速度に応じて車輪の制動力の大きさを設定する。ブレーキ制御部420は、後輪に優先して制動力を付与するようにブレーキ装置510を制御する。換言すると、ブレーキ制御部420は、車輪に制動力を付与させる場合、少なくとも後輪に制動力を付与させるようにブレーキ装置510を制御する。 The brake control unit 420 controls the brake device 510 based on the first braking command received from the collision determination unit 410. The brake control unit 420 sets the magnitude of the braking force of the wheels according to the predicted speed of the rear vehicle B1 at the time of collision. The brake control unit 420 controls the brake device 510 so as to give the braking force preferentially to the rear wheels. In other words, when the braking force is applied to the wheels, the brake control unit 420 controls the braking device 510 so as to apply the braking force to at least the rear wheels.
 ブレーキ制御部420は、衝突判定部410から受信した第2の制動指令に基づいて、後方車両B1が自車両Mに衝突した後、車輪に付与する制動力を減少させる。この場合、ブレーキ制御部420は、予測された後方車両B1の衝突時の速度、または後方車両B1の衝突時の実速度に応じて、減少させる制動力の大きさを算出する。例えば、ブレーキ制御部420は、車輪がロックしないように車輪に付与する制動力を減少させる。ブレーキ制御部420は、車輪に付与する制動力を減少させた後、自車両Mを減速させることが可能な状況で制動力を増加させてもよい。自車両Mを減速させることが可能な状況は、例えば自車両Mが後方車両B1に押されていない状態である。 The brake control unit 420 reduces the braking force applied to the wheels after the rear vehicle B1 collides with the own vehicle M based on the second braking command received from the collision determination unit 410. In this case, the brake control unit 420 calculates the magnitude of the braking force to be reduced according to the predicted speed at the time of the collision of the rear vehicle B1 or the actual speed at the time of the collision of the rear vehicle B1. For example, the brake control unit 420 reduces the braking force applied to the wheels so that the wheels do not lock. The brake control unit 420 may increase the braking force in a situation where the own vehicle M can be decelerated after reducing the braking force applied to the wheels. A situation in which the own vehicle M can be decelerated is, for example, a state in which the own vehicle M is not pushed by the rear vehicle B1.
 安全方向判定部430は、物体認識装置54の認識結果に基づいて、自車両Mが安全に進行できる方向(以下、安全方向と称する)を判定する。安全方向は、自車両Mの前方の物体への接触を回避できる方向である。安全方向判定部430は、安全方向の判定結果に基づく転舵指令を操舵制御部440に出力する。 The safety direction determination unit 430 determines the direction in which the own vehicle M can safely travel (hereinafter referred to as the safety direction) based on the recognition result of the object recognition device 54. The safe direction is a direction in which contact with an object in front of the own vehicle M can be avoided. The safety direction determination unit 430 outputs a steering command based on the safety direction determination result to the steering control unit 440.
 操舵制御部440は、安全方向判定部430から受信した転舵指令に基づいて、ステアリング装置520を制御する。操舵制御部440は、転舵指令に応じて転舵方向(前輪の向き)および転舵角を調整する。 The steering control unit 440 controls the steering device 520 based on the steering command received from the safety direction determination unit 430. The steering control unit 440 adjusts the steering direction (direction of the front wheels) and the steering angle in response to the steering command.
 走行駆動力出力装置500は、自車両Mが走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置500は、例えば、内燃機関や電動機、変速機等の組み合わせと、これらを制御するECU(Electronic Control Unit)と、を備える。ECUは、第2制御部350から入力される情報、または運転操作子80から入力される情報に従って、上記の構成を制御する。 The traveling driving force output device 500 outputs a traveling driving force (torque) for the own vehicle M to travel to the drive wheels. The traveling driving force output device 500 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU (Electronic Control Unit) that controls them. The ECU controls the above configuration according to the information input from the second control unit 350 or the information input from the operation operator 80.
 ブレーキ装置510は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUと、を備える。ブレーキECUは、第2制御部350の速度制御部354、もしくは制動制御部400のブレーキ制御部420から入力される情報、または運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置510は、運転操作子80に含まれるブレーキレバーまたはブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置510は、上記説明した構成に限らず、第2制御部350から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。 The brake device 510 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU. The brake ECU controls the electric motor according to the information input from the speed control unit 354 of the second control unit 350 or the brake control unit 420 of the braking control unit 400, or the information input from the operation operator 80, and performs the braking operation. The brake torque according to the above is output to each wheel. The brake device 510 may include, as a backup, a mechanism for transmitting the hydraulic pressure generated by the operation of the brake lever or the brake pedal included in the operation operator 80 to the cylinder via the master cylinder. The brake device 510 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to the information input from the second control unit 350 to transmit the hydraulic pressure of the master cylinder to the cylinder. May be good.
 ステアリング装置520は、例えば、ステアリングECUと、電動モータと、を備える。電動モータは、例えば、操舵輪(前輪)の向きを変更する。ステアリングECUは、第2制御部350の操舵制御部356、もしくは制動制御部400の操舵制御部440から入力される情報、または運転操作子80から入力される情報に従って、電動モータを駆動し、操舵輪の向きを変更させる。 The steering device 520 includes, for example, a steering ECU and an electric motor. The electric motor changes the direction of the steering wheels (front wheels), for example. The steering ECU drives and steers the electric motor according to the information input from the steering control unit 356 of the second control unit 350 or the steering control unit 440 of the braking control unit 400, or the information input from the operation controller 80. Change the direction of the wheel.
<車両全体>
 次に、本実施形態の運転支援システム1が搭載された鞍乗り型車両の構造を説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UPが示されている。
<Whole vehicle>
Next, the structure of the saddle-riding vehicle equipped with the driving support system 1 of the present embodiment will be described. The orientations of the front, rear, left, right, etc. in the following description shall be the same as the orientations in the vehicle described below unless otherwise specified. Further, in the appropriate place in the figure used in the following description, an arrow FR indicating the front of the vehicle, an arrow LH indicating the left side of the vehicle, and an arrow UP indicating the upper part of the vehicle are shown.
 図4は、第1実施形態の自動二輪車を示す左側面図である。
 図4に示すように、自動二輪車10は、実施形態の運転支援システム1が搭載された鞍乗り型車両である。自動二輪車10は、操舵輪である前輪11と、駆動輪である後輪12と、原動機13(図示の例ではエンジン)を支持する車体フレーム20と、を主に備える。なお、以下の説明では前輪11および後輪12をまとめて車輪11,12と称する場合がある。
FIG. 4 is a left side view showing the motorcycle of the first embodiment.
As shown in FIG. 4, the motorcycle 10 is a saddle-riding vehicle equipped with the driving support system 1 of the embodiment. The motorcycle 10 mainly includes a front wheel 11 which is a steering wheel, a rear wheel 12 which is a driving wheel, and a vehicle body frame 20 which supports a prime mover 13 (an engine in the illustrated example). In the following description, the front wheels 11 and the rear wheels 12 may be collectively referred to as wheels 11 and 12.
 前輪11は、操舵機構を介して車体フレーム20に操向可能に支持されている。操舵機構は、前輪11を支持するフロントフォーク14と、フロントフォーク14を支持するステアリングステム15と、を備える。ステアリングステム15の上部には、運転者Jが握る操向ハンドル16が取り付けられている。前輪11は、ブレーキ装置510によって制動される。 The front wheel 11 is steerably supported by the vehicle body frame 20 via a steering mechanism. The steering mechanism includes a front fork 14 that supports the front wheels 11 and a steering stem 15 that supports the front fork 14. A steering handle 16 held by the driver J is attached to the upper part of the steering stem 15. The front wheels 11 are braked by the braking device 510.
 後輪12は、車両後部で前後方向に延びるスイングアーム17の後端部に支持されている。スイングアーム17の前端部は、車体フレーム20に上下揺動可能に支持されている。後輪12は、ブレーキ装置510によって制動される。 The rear wheel 12 is supported by the rear end of the swing arm 17 extending in the front-rear direction at the rear of the vehicle. The front end portion of the swing arm 17 is supported by the vehicle body frame 20 so as to be able to swing up and down. The rear wheel 12 is braked by the braking device 510.
 車体フレーム20は、前端部に設けられたヘッドパイプ21によって、ステアリングステム15を回動可能に支持している。車体フレーム20は、上述した原動機13の他、運転者Jが着座するシート22や、運転者Jが足を載せる左右のステップ23、シート22の前方に配置された燃料タンク24等を支持している。車両前部には、車体フレーム20に支持されたフロントカウル25が装着される。フロントカウル25の内側には、メータ装置30が配置されている。 The vehicle body frame 20 rotatably supports the steering stem 15 by a head pipe 21 provided at the front end portion. In addition to the prime mover 13 described above, the vehicle body frame 20 supports the seat 22 on which the driver J sits, the left and right steps 23 on which the driver J rests his / her feet, the fuel tank 24 arranged in front of the seat 22, and the like. There is. A front cowl 25 supported by the vehicle body frame 20 is mounted on the front portion of the vehicle. A meter device 30 is arranged inside the front cowl 25.
<制動制御部の機能>
 以下、本実施形態に係る制動制御部400の機能について図5から図10を参照して説明する。この処理フローは、運転支援が実行されているか否かによらず自車両Mの速度が第1の所定値以下の状態、すなわち完全停止または停止直前で前進している状態で繰り返し実施される。なお、停止直前で前進している状態は、例えば自車両Mが減速中、かつ自車両Mの速度が5km/h以下の状態である。
<Function of braking control unit>
Hereinafter, the function of the braking control unit 400 according to the present embodiment will be described with reference to FIGS. 5 to 10. This processing flow is repeatedly executed in a state where the speed of the own vehicle M is equal to or less than the first predetermined value, that is, in a state where the vehicle is completely stopped or is moving forward immediately before the stop, regardless of whether or not the driving support is executed. The state of moving forward immediately before stopping is, for example, a state in which the own vehicle M is decelerating and the speed of the own vehicle M is 5 km / h or less.
 図5は、制動制御部による処理の流れを示すフローチャートである。図6は、後方車両が自車両に衝突すると判定された場面を示す図である。
 図5に示すように、ステップS10において、衝突判定部410は、自車両Mに衝突する後方車両B1が存在するか否かを判定する。自車両Mに衝突する後方車両B1が存在する場合(S10:YES)、制動制御部400はステップS20の処理に移行する。自車両Mに衝突する後方車両が存在しない場合(S10:NO)、制動制御部400は一連の処理を終了する。
FIG. 5 is a flowchart showing a processing flow by the braking control unit. FIG. 6 is a diagram showing a scene in which it is determined that the rear vehicle collides with the own vehicle.
As shown in FIG. 5, in step S10, the collision determination unit 410 determines whether or not there is a rear vehicle B1 that collides with the own vehicle M. When there is a rear vehicle B1 that collides with the own vehicle M (S10: YES), the braking control unit 400 shifts to the process of step S20. When there is no rear vehicle colliding with the own vehicle M (S10: NO), the braking control unit 400 ends a series of processes.
 ステップS20において、衝突判定部410は、自車両Mに対する後方車両B1の相対速度が第2の所定値以上か否かを判定する。第2の所定値は、固定的に設定されてもよいし、後方車両B1の進行方向等に応じて決まってもよい。後方車両B1の相対速度が第2の所定値よりも低い場合(S20:NO)、衝突判定部410はブレーキ制御部420に第1の制動指令を出力する(ステップS30)。後方車両B1の相対速度が第2の所定値以上の場合(S20:YES)、制動制御部400はブレーキ装置510を作動させず、ステップS40の処理に移行する。すなわち、制動制御部400は、後方車両B1の相対速度が第2の所定値以上の場合、車輪11,12の制動力を0に設定する。 In step S20, the collision determination unit 410 determines whether or not the relative speed of the rear vehicle B1 with respect to the own vehicle M is equal to or greater than the second predetermined value. The second predetermined value may be fixedly set, or may be determined according to the traveling direction of the rear vehicle B1 and the like. When the relative speed of the rear vehicle B1 is lower than the second predetermined value (S20: NO), the collision determination unit 410 outputs the first braking command to the brake control unit 420 (step S30). When the relative speed of the rear vehicle B1 is equal to or higher than the second predetermined value (S20: YES), the braking control unit 400 does not operate the braking device 510 and shifts to the process of step S40. That is, the braking control unit 400 sets the braking force of the wheels 11 and 12 to 0 when the relative speed of the rear vehicle B1 is equal to or higher than the second predetermined value.
 ステップS30において、ブレーキ制御部420は、衝突判定部410から第1の制動指令を受信すると、車輪11,12に制動力を付与するようにブレーキ装置510を制御する。この際、ブレーキ制御部420は、後方車両B1の衝突時の相対速度に応じて制動する車輪11,12を決定する。ブレーキ制御部420は、後方車両B1の衝突時の相対速度が所定の基準よりも小さい場合、後輪12のみを制動する(図6参照)。ブレーキ制御部420は、後方車両B1の衝突時の相対速度が所定の基準よりも大きい場合、前輪11および後輪12を制動する。前輪11または後輪12に付与する制動力の大きさは、後方車両B1の衝突時の相対速度に応じて細かく設定されてもよい。続いて、制動制御部400はステップS40の処理に移行する。 In step S30, when the brake control unit 420 receives the first braking command from the collision determination unit 410, the brake control unit 420 controls the brake device 510 so as to apply braking force to the wheels 11 and 12. At this time, the brake control unit 420 determines the wheels 11 and 12 to be braked according to the relative speed of the rear vehicle B1 at the time of collision. The brake control unit 420 brakes only the rear wheels 12 when the relative speed of the rear vehicle B1 at the time of collision is smaller than a predetermined reference (see FIG. 6). The brake control unit 420 brakes the front wheels 11 and the rear wheels 12 when the relative speed of the rear vehicle B1 at the time of collision is larger than a predetermined reference. The magnitude of the braking force applied to the front wheels 11 or the rear wheels 12 may be finely set according to the relative speed of the rear vehicle B1 at the time of collision. Subsequently, the braking control unit 400 shifts to the process of step S40.
 ステップS40において、安全方向判定部430は、自車両Mの前方に物体が存在するか否かを判定する。具体的に、安全方向判定部430は、自車両Mの進行方向に物体が存在するか否かを判定する。自車両Mの前方に物体が存在しない場合(S40:NO)、制動制御部400は、一連の処理を終了する。自車両Mの前方に物体が存在する場合(S40:YES)、制動制御部400はステップS50の処理に移行する。 In step S40, the safety direction determination unit 430 determines whether or not an object exists in front of the own vehicle M. Specifically, the safety direction determination unit 430 determines whether or not an object exists in the traveling direction of the own vehicle M. When there is no object in front of the own vehicle M (S40: NO), the braking control unit 400 ends a series of processes. When an object exists in front of the own vehicle M (S40: YES), the braking control unit 400 shifts to the process of step S50.
 ステップS50において、安全方向判定部430は、安全方向を判定する。安全方向が右側の場合(S50:YES)、操舵制御部440は前輪11を右側に転舵するようにステアリング装置520を制御する(ステップS60)。続いて、制動制御部400は、ステップS80の処理に移行する。安全方向が右側でない場合(S50:NO)、すなわち安全方向が左側の場合、操舵制御部440は前輪11を左側に転舵するようにステアリング装置520を制御する(ステップS70)。続いて、制動制御部400は、ステップS80の処理に移行する。 In step S50, the safety direction determination unit 430 determines the safety direction. When the safety direction is on the right side (S50: YES), the steering control unit 440 controls the steering device 520 so as to steer the front wheels 11 to the right side (step S60). Subsequently, the braking control unit 400 shifts to the process of step S80. When the safety direction is not on the right side (S50: NO), that is, when the safety direction is on the left side, the steering control unit 440 controls the steering device 520 so as to steer the front wheels 11 to the left side (step S70). Subsequently, the braking control unit 400 shifts to the process of step S80.
 ここで、安全方向判定部430における安全方向の判定例を説明する。なお、以下の例では、自車両Mの進行方向に他車両(前方車両B2)が存在する場合を例に挙げて説明する。 Here, an example of determining the safety direction in the safety direction determination unit 430 will be described. In the following example, a case where another vehicle (front vehicle B2) exists in the traveling direction of the own vehicle M will be described as an example.
 図7から図10は、自車両が後方車両に衝突される際に安全方向に回避する場面の一例を示す図である。なお、各図において、符号LLは道路区画線を示している。
 図7に示すように、安全方向判定部430は、自車両Mの前方の物体として前方車両B2のみが存在する場合、自車両Mに近い側の車道外側線OL側を安全方向と判定する。換言すると、安全方向判定部430は、自車両Mに近い路側帯R側(または路肩側)を安全方向と判定する。
7 to 10 are views showing an example of a scene in which the own vehicle avoids in the safe direction when the own vehicle collides with a vehicle behind. In each figure, the reference numeral LL indicates a road marking line.
As shown in FIG. 7, when only the front vehicle B2 exists as an object in front of the own vehicle M, the safety direction determination unit 430 determines that the side of the road outside line OL on the side closer to the own vehicle M is the safe direction. In other words, the safety direction determination unit 430 determines the roadside zone R side (or road shoulder side) close to the own vehicle M as the safety direction.
 また、図8に示すように、安全方向判定部430は、前方車両B2の側方に歩行者Wが存在する場合、前方車両B2に対して歩行者Wが存在しない側を安全方向と判定する。 Further, as shown in FIG. 8, when the pedestrian W is present on the side of the front vehicle B2, the safety direction determination unit 430 determines the side where the pedestrian W does not exist with respect to the front vehicle B2 as the safe direction. ..
 また、図9に示すように、安全方向判定部430は、自車両Mに近い側の車道外側線OL側の所定の範囲内に他車両B3等の物体が存在する場合、前方車両B2に対して前記物体とは反対側を安全方向と判定する。 Further, as shown in FIG. 9, when the safety direction determination unit 430 has an object such as another vehicle B3 within a predetermined range on the side of the road outside line OL on the side closer to the own vehicle M, the safety direction determination unit 430 refers to the vehicle in front B2. The side opposite to the object is determined to be the safe direction.
 また、図10に示すように、安全方向判定部430は、所定の範囲内に対向車B4が存在する場合、対向車B4が存在しない側を安全方向と判定する。所定の範囲は、固定的に設定されてもよいし、対向車B4の速度や、後方車両B1の衝突時の速度や進行方向等に応じて決まってもよい。 Further, as shown in FIG. 10, when the oncoming vehicle B4 exists within a predetermined range, the safety direction determination unit 430 determines the side where the oncoming vehicle B4 does not exist as the safe direction. The predetermined range may be fixedly set, or may be determined according to the speed of the oncoming vehicle B4, the speed at the time of collision of the rear vehicle B1, the traveling direction, and the like.
 図6に戻り、ステップS80において、衝突判定部410は、後方車両B1が自車両Mに衝突したか否かを判定する。後方車両B1が自車両Mに衝突した場合(S80:YES)、衝突判定部410はブレーキ制御部420に第2の制動指令を出力する(ステップS90)。後方車両B1が自車両Mに衝突していない場合(S80:YES)、衝突判定部410はステップS80の処理を繰り返す。 Returning to FIG. 6, in step S80, the collision determination unit 410 determines whether or not the rear vehicle B1 has collided with the own vehicle M. When the rear vehicle B1 collides with the own vehicle M (S80: YES), the collision determination unit 410 outputs a second braking command to the brake control unit 420 (step S90). When the rear vehicle B1 does not collide with the own vehicle M (S80: YES), the collision determination unit 410 repeats the process of step S80.
 ステップS90において、ブレーキ制御部420は、衝突判定部410から第2の制動指令を受信すると、車輪11,12に付与した制動力を減少させるようにブレーキ装置510を制御する。例えば、ブレーキ制御部420は、後方車両B1の衝突時の速度が大きくなるに従い、制動力を減少させる前後の差分が小さくなるように、減少させる制動力の大きさを設定する。続いて、制動制御部400は、ステップS100の処理に移行する。 In step S90, when the brake control unit 420 receives the second braking command from the collision determination unit 410, the brake control unit 420 controls the brake device 510 so as to reduce the braking force applied to the wheels 11 and 12. For example, the brake control unit 420 sets the magnitude of the braking force to be reduced so that the difference before and after the braking force is reduced becomes smaller as the speed of the rear vehicle B1 at the time of collision increases. Subsequently, the braking control unit 400 shifts to the process of step S100.
 ステップS100において、ブレーキ制御部420は、自車両Mを減速させることが可能か否かを判定する。例えば、ブレーキ制御部420は、自車両Mと後方車両B1との距離が開き始めた場合に、自車両Mを減速させることが可能と判定する。また、例えば、ブレーキ制御部420は、後方車両B1が自車両Mに衝突した後、所定時間経過した場合に、自車両Mを減速させることが可能と判定する。自車両Mを減速させることが可能な場合(S100:YES)、ブレーキ制御部420は、車輪11,12に付与する制動力を増加させるようにブレーキ装置510を制御し(ステップS110)、一連の処理を終了する。自車両Mを減速させることが不可能な場合(S100:NO)、ブレーキ制御部420は、ブレーキ制御部420はステップS100の処理を繰り返す。 In step S100, the brake control unit 420 determines whether or not the own vehicle M can be decelerated. For example, the brake control unit 420 determines that the own vehicle M can be decelerated when the distance between the own vehicle M and the rear vehicle B1 begins to increase. Further, for example, the brake control unit 420 determines that the own vehicle M can be decelerated when a predetermined time elapses after the rear vehicle B1 collides with the own vehicle M. When it is possible to decelerate the own vehicle M (S100: YES), the brake control unit 420 controls the brake device 510 so as to increase the braking force applied to the wheels 11 and 12 (step S110), and a series of series. End the process. When it is impossible to decelerate the own vehicle M (S100: NO), the brake control unit 420 repeats the process of step S100 by the brake control unit 420.
 以上に説明したように、本実施形態の自動二輪車10は、自車両Mの後方車両B1を認識する物体認識装置54と、自車両Mの車輪11,12に制動力を付与するブレーキ装置510と、物体認識装置54の認識結果に基づいてブレーキ装置510を制御する制動制御部400と、を備える。制動制御部400は、自車両Mの速度が第1の所定値以下の状態で後方車両B1が自車両Mに衝突すると判定した場合にブレーキ装置510を作動させる。
 この構成によれば、完全停止または停止直前で前進している自車両Mに後方車両B1が衝突する際に、後方車両B1に対する抗力を自車両Mに発生させることができる。このため、後方からの衝突に対する抗力が不足して自車両Mが前進し、車体の姿勢が乱れることを抑制できる。したがって、停止時に後方車両B1に衝突された場合の接触被害を低減できる。
As described above, the motorcycle 10 of the present embodiment includes an object recognition device 54 that recognizes the vehicle B1 behind the own vehicle M, and a brake device 510 that applies a braking force to the wheels 11 and 12 of the own vehicle M. A braking control unit 400 that controls the brake device 510 based on the recognition result of the object recognition device 54 is provided. The braking control unit 400 operates the braking device 510 when it is determined that the rear vehicle B1 collides with the own vehicle M when the speed of the own vehicle M is equal to or less than the first predetermined value.
According to this configuration, when the rear vehicle B1 collides with the own vehicle M that is moving forward at the complete stop or immediately before the stop, the drag force against the rear vehicle B1 can be generated in the own vehicle M. Therefore, it is possible to prevent the own vehicle M from moving forward due to insufficient drag against a collision from the rear and disturbing the posture of the vehicle body. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
 また、制動制御部400は、自車両Mに対する後方車両B1の相対速度に応じてブレーキ装置510による制動力の大きさを設定する。
 ここで、自車両Mに加わる衝撃の大きさは、後方車両B1の衝突時の相対速度によって変化する。このため、上記のように構成することで、自車両Mに加わる衝撃の大きさに応じた適切な制動力を車輪11,12に付与できる。よって、後方車両B1が衝突した際の車体の姿勢の乱れをより確実に抑制できる。
Further, the braking control unit 400 sets the magnitude of the braking force by the braking device 510 according to the relative speed of the rear vehicle B1 with respect to the own vehicle M.
Here, the magnitude of the impact applied to the own vehicle M changes depending on the relative speed at the time of the collision of the rear vehicle B1. Therefore, by configuring as described above, it is possible to apply an appropriate braking force to the wheels 11 and 12 according to the magnitude of the impact applied to the own vehicle M. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle B1 collides.
 また、制動制御部400は、後輪12に優先して制動力を付与するようにブレーキ装置510を制御する。
 この構成によれば、前輪11のみに制動力が付与されて後方車両B1の衝突により車体後部が持ち上がることを抑制できる。よって、車体の姿勢が乱れることをより確実に抑制できる。
Further, the braking control unit 400 controls the braking device 510 so as to give priority to the rear wheel 12 to apply the braking force.
According to this configuration, braking force is applied only to the front wheels 11 to prevent the rear portion of the vehicle body from being lifted by the collision of the rear vehicle B1. Therefore, it is possible to more reliably suppress the posture of the vehicle body from being disturbed.
 また、制動制御部400は、後方車両B1が自車両Mに衝突後、自車両Mが前進している状態で、車輪11,12に付与する制動力を減少させるようにブレーキ装置510を制御する。
 この構成によれば、自車両Mが後方車両B1に衝突されて押されている状態で車輪11,12のロックによるスリップを抑制できる。したがって、後方車両B1が衝突した際の車体の姿勢の乱れをより確実に抑制できる。
Further, the braking control unit 400 controls the braking device 510 so as to reduce the braking force applied to the wheels 11 and 12 while the own vehicle M is moving forward after the rear vehicle B1 collides with the own vehicle M. ..
According to this configuration, slippage due to locking of the wheels 11 and 12 can be suppressed while the own vehicle M is collided with and pushed by the rear vehicle B1. Therefore, it is possible to more reliably suppress the disturbance of the posture of the vehicle body when the rear vehicle B1 collides.
 また、制動制御部400は、車輪11,12に付与する制動力を減少させた後、車輪11,12に付与する制動力を増加させるようにブレーキ装置510を制御する。
 この構成によれば、後方車両B1が減速して自車両Mから離れ始めた場合に車輪11,12に付与する制動力を増加させることで、より速やかに自車両Mを停止させることができる。
Further, the braking control unit 400 controls the braking device 510 so as to decrease the braking force applied to the wheels 11 and 12 and then increase the braking force applied to the wheels 11 and 12.
According to this configuration, when the rear vehicle B1 decelerates and starts to move away from the own vehicle M, the own vehicle M can be stopped more quickly by increasing the braking force applied to the wheels 11 and 12.
 また、自動二輪車10は、自車両Mの前方の物体(前方車両B2等)を認識する物体認識装置54と、前輪11の向きを変更するステアリング装置520と、をさらに備える。制動制御部400は、後方車両B1が自車両Mに衝突すると判定し、かつ物体認識装置54の認識結果に基づいて自車両Mの前方に物体が存在していると判定した場合に前輪11を転舵するようにステアリング装置520を制御する。
 この構成によれば、自車両Mが後方車両B1の衝突によって前進する場合であっても、自車両Mを斜め前に進行させることができる。よって、自車両Mが前方の物体に衝突することを抑制できる。したがって、停止時に後方車両B1に衝突された場合の接触被害を低減できる。
Further, the motorcycle 10 further includes an object recognition device 54 that recognizes an object (such as the front vehicle B2) in front of the own vehicle M, and a steering device 520 that changes the direction of the front wheels 11. When the braking control unit 400 determines that the rear vehicle B1 collides with the own vehicle M and determines that an object exists in front of the own vehicle M based on the recognition result of the object recognition device 54, the front wheel 11 is set. The steering device 520 is controlled so as to steer.
According to this configuration, even when the own vehicle M moves forward due to the collision of the rear vehicle B1, the own vehicle M can move diagonally forward. Therefore, it is possible to prevent the own vehicle M from colliding with an object in front. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
 また、制動制御部400は、自車両Mに近い路側帯R側(または路肩側)に前輪11を転舵するようにステアリング装置520を制御する。
 この構成によれば、他車両が存在する可能性の低い路側帯R(または路肩)に自車両Mを逃がすことができる。よって、自車両Mが周囲の物体に衝突することを抑制できる。したがって、停止時に後方車両B1に衝突された場合の接触被害を低減できる。
Further, the braking control unit 400 controls the steering device 520 so as to steer the front wheels 11 toward the roadside band R side (or road shoulder side) close to the own vehicle M.
According to this configuration, the own vehicle M can escape to the roadside zone R (or the road shoulder) where another vehicle is unlikely to exist. Therefore, it is possible to prevent the own vehicle M from colliding with a surrounding object. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
 また、制動制御部400は、自車両Mから見て歩行者Wおよび前方の物体が存在しない方向に前輪11を転舵するようにステアリング装置520を制御する。
 この構成によれば、自車両Mが歩行者Wおよび前方の物体に衝突することを抑制できる。したがって、停止時に後方車両B1に衝突された場合の接触被害を低減できる。
Further, the braking control unit 400 controls the steering device 520 so as to steer the front wheels 11 in a direction in which the pedestrian W and the object in front do not exist when viewed from the own vehicle M.
According to this configuration, it is possible to prevent the own vehicle M from colliding with the pedestrian W and an object in front of it. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
 また、制動制御部400は、自車両Mから見て対向車B4および前方の物体が存在しない方向に前輪11を転舵するようにステアリング装置520を制御する。
 この構成によれば、自車両Mが対向車B4および前方の物体に衝突することを抑制できる。したがって、停止時に後方車両B1に衝突された場合の接触被害を低減できる。
Further, the braking control unit 400 controls the steering device 520 so as to steer the front wheels 11 in a direction in which the oncoming vehicle B4 and the object in front do not exist when viewed from the own vehicle M.
According to this configuration, it is possible to prevent the own vehicle M from colliding with the oncoming vehicle B4 and the object in front. Therefore, it is possible to reduce the contact damage when the vehicle collides with the rear vehicle B1 when stopped.
 なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上記実施形態では、運転支援システム1の自動二輪車への適用を例に説明したが、これに限定されない。運転支援システム1が適用される鞍乗り型車両は、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)の車両も含まれる。
The present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications can be considered within the technical scope thereof.
For example, in the above embodiment, the application of the driving support system 1 to a motorcycle has been described as an example, but the present invention is not limited to this. Saddle-riding vehicles to which the driving support system 1 is applied include all vehicles in which the driver straddles the vehicle body, and not only motorcycles but also three wheels (one front and two rear wheels, two front wheels and rear wheels). Vehicles (including one-wheeled vehicles) are also included.
 また、上記実施形態の運転支援システム1は、いわゆる自動運転を実行できるものであるが、これに限定されない。すなわち、走行に際して常に運転者による操作を必要とする車両に本発明の運転支援システムを適用してもよい。 Further, the driving support system 1 of the above embodiment can execute so-called automatic driving, but is not limited to this. That is, the driving support system of the present invention may be applied to a vehicle that always requires operation by the driver when traveling.
 また、上記実施形態では、自車両Mの速度が第1の所定値以下の状態で制動制御部400が一連の処理を行う例を説明したが、これに限定されない。制動制御部400は、自車両Mが完全に停止している場合のみ、上述した実施形態と同様の処理を行ってもよい。この場合であっても、上述した実施形態と同様の作用効果を奏する。 Further, in the above embodiment, an example in which the braking control unit 400 performs a series of processing in a state where the speed of the own vehicle M is equal to or less than the first predetermined value has been described, but the present invention is not limited to this. The braking control unit 400 may perform the same processing as that of the above-described embodiment only when the own vehicle M is completely stopped. Even in this case, the same action and effect as those of the above-described embodiment are obtained.
 また、上記実施形態では、ステップS90の処理において、ブレーキ制御部420は、衝突判定部410から第2の制動指令を受信すると、車輪11,12に付与した制動力を減少させるようにブレーキ装置510を制御している。すなわち、ブレーキ制御部420は、後方車両B1が自車両Mに衝突した場合に、車輪11,12に付与した制動力を減少させるようにブレーキ装置510を制御している。しかしながら、これに限定されるものではない。例えば、ブレーキ制御部420は、車輪11,12のスリップが検知された場合に、車輪11,12に付与した制動力を減少させるようにブレーキ装置510を制御してもよい。また、上述したステップS80からステップS110の処理は行わなくてもよい。 Further, in the above embodiment, in the process of step S90, when the brake control unit 420 receives the second braking command from the collision determination unit 410, the brake device 510 reduces the braking force applied to the wheels 11 and 12. Is in control. That is, the brake control unit 420 controls the brake device 510 so as to reduce the braking force applied to the wheels 11 and 12 when the rear vehicle B1 collides with the own vehicle M. However, it is not limited to this. For example, the brake control unit 420 may control the brake device 510 so as to reduce the braking force applied to the wheels 11 and 12 when the slip of the wheels 11 and 12 is detected. Further, the processing of steps S80 to S110 described above may not be performed.
 また、上記実施形態では、物体認識装置54は、カメラ51、レーダ装置52、およびファインダ53による検出結果に基づいて、自車両Mの周辺の物体の位置を認識しているが、これに限定されない。例えば、物体認識装置54は、通信装置55を用いたV2X通信(例えば、車車間通信や路車間通信等)によって、自車両Mの周辺に存在する他車両の存在を認識してもよい。 Further, in the above embodiment, the object recognition device 54 recognizes the position of an object around the own vehicle M based on the detection results of the camera 51, the radar device 52, and the finder 53, but the present invention is not limited to this. .. For example, the object recognition device 54 may recognize the existence of another vehicle existing in the vicinity of the own vehicle M by V2X communication (for example, vehicle-to-vehicle communication, road-to-vehicle communication, etc.) using the communication device 55.
 また、上記実施形態では、自車両Mの後方車両を認識する後方車両認識部と、自車両Mの前方の物体を認識する前方物体認識部と、が物体認識装置54として統合されているが、これに限定されない。これら機能部は、独立して設けられていてもよい。 Further, in the above embodiment, the rear vehicle recognition unit that recognizes the vehicle behind the own vehicle M and the front object recognition unit that recognizes the object in front of the own vehicle M are integrated as the object recognition device 54. Not limited to this. These functional units may be provided independently.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the spirit of the present invention.
 11 前輪(車輪、操舵輪)
 12 後輪(車輪)
 54 物体認識装置(後方車両認識部、前方物体認識部)
 400 制動制御部(制御部)
 510 ブレーキ装置
 520 ステアリング装置
 B1 後方車両
 B2 前方車両(前方の物体)
 B4 対向車
 M 自車両
 R 路側帯
 W 歩行者
11 Front wheels (wheels, steering wheels)
12 Rear wheels (wheels)
54 Object recognition device (rear vehicle recognition unit, front object recognition unit)
400 Braking control unit (control unit)
510 Brake device 520 Steering device B1 Rear vehicle B2 Front vehicle (object in front)
B4 Oncoming vehicle M Own vehicle R Roadside zone W Pedestrian

Claims (9)

  1.  自車両(M)の後方車両(B1)を認識する後方車両認識部(54)と、
     前記自車両(M)の車輪(11,12)に制動力を付与するブレーキ装置(510)と、
     前記後方車両認識部(54)の認識結果に基づいて前記ブレーキ装置(510)を制御する制御部(400)と、
     を備え、
     前記制御部(400)は、前記自車両(M)の速度が所定値以下の状態で前記後方車両(B1)が前記自車両(M)に衝突すると判定した場合に前記ブレーキ装置(510)を作動させる、
     ことを特徴とする鞍乗り型車両。
    The rear vehicle recognition unit (54) that recognizes the rear vehicle (B1) of the own vehicle (M),
    A braking device (510) that applies braking force to the wheels (11, 12) of the own vehicle (M), and
    A control unit (400) that controls the brake device (510) based on the recognition result of the rear vehicle recognition unit (54).
    With
    When the control unit (400) determines that the rear vehicle (B1) collides with the own vehicle (M) when the speed of the own vehicle (M) is equal to or less than a predetermined value, the control unit (400) applies the brake device (510). To operate,
    A saddle-riding vehicle that features this.
  2.  前記制御部(400)は、前記自車両(M)に対する前記後方車両(B1)の相対速度に応じて前記ブレーキ装置(510)による制動力の大きさを設定する、
     請求項1に記載の鞍乗り型車両。
    The control unit (400) sets the magnitude of the braking force by the braking device (510) according to the relative speed of the rear vehicle (B1) with respect to the own vehicle (M).
    The saddle-riding vehicle according to claim 1.
  3.  前記制御部(400)は、後輪(12)に優先して制動力を付与するように前記ブレーキ装置(510)を制御する、
     請求項1または請求項2に記載の鞍乗り型車両。
    The control unit (400) controls the brake device (510) so as to give braking force to the rear wheels (12) in preference to the rear wheels (12).
    The saddle-riding vehicle according to claim 1 or 2.
  4.  前記制御部(400)は、前記後方車両(B1)が前記自車両(M)に衝突後、前記自車両(M)が前進している状態で、前記車輪(11,12)に付与する制動力を減少させるように前記ブレーキ装置(510)を制御する、
     請求項1から請求項3のいずれか1項に記載の鞍乗り型車両。
    The control unit (400) is applied to the wheels (11, 12) in a state where the own vehicle (M) is moving forward after the rear vehicle (B1) collides with the own vehicle (M). Control the braking device (510) to reduce power,
    The saddle-riding vehicle according to any one of claims 1 to 3.
  5.  前記制御部(400)は、前記車輪(11,12)に付与する制動力を減少させた後、前記車輪(11,12)に付与する制動力を増加させるように前記ブレーキ装置(510)を制御する、
     請求項4に記載の鞍乗り型車両。
    The control unit (400) reduces the braking force applied to the wheels (11, 12), and then increases the braking force applied to the wheels (11, 12). Control,
    The saddle-riding vehicle according to claim 4.
  6.  前記自車両(M)の前方の物体(B2)を認識する前方物体認識部(54)と、
     操舵輪(11)の向きを変更するステアリング装置(520)と、
     をさらに備え、
     前記制御部(400)は、前記後方車両(B1)が前記自車両(M)に衝突すると判定し、かつ前記前方物体認識部(54)の認識結果に基づいて前記自車両(M)の前方に前記物体(B2)が存在していると判定した場合に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御する、
     請求項1から請求項5のいずれか1項に記載の鞍乗り型車両。
    A front object recognition unit (54) that recognizes an object (B2) in front of the own vehicle (M), and
    A steering device (520) that changes the direction of the steering wheel (11) and
    With more
    The control unit (400) determines that the rear vehicle (B1) collides with the own vehicle (M), and based on the recognition result of the front object recognition unit (54), the front of the own vehicle (M). The steering device (520) is controlled so as to steer the steering wheel (11) when it is determined that the object (B2) is present.
    The saddle-riding vehicle according to any one of claims 1 to 5.
  7.  前記制御部(400)は、前記自車両(M)に近い路側帯(R)側または路肩側に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御する、
     請求項6に記載の鞍乗り型車両。
    The control unit (400) controls the steering device (520) so as to steer the steering wheel (11) to the roadside zone (R) side or the road shoulder side close to the own vehicle (M).
    The saddle-riding vehicle according to claim 6.
  8.  前記制御部(400)は、前記自車両(M)から見て歩行者(W)および前記前方の物体(B2)が存在しない方向に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御する、
     請求項6に記載の鞍乗り型車両。
    The control unit (400) steers the steering wheel (11) in a direction in which a pedestrian (W) and an object (B2) in front of the vehicle (M) do not exist when viewed from the own vehicle (M). Control (520),
    The saddle-riding vehicle according to claim 6.
  9.  前記制御部(400)は、前記自車両(M)から見て対向車(B4)および前記前方の物体(B2)が存在しない方向に前記操舵輪(11)を転舵するように前記ステアリング装置(520)を制御する、
     請求項6に記載の鞍乗り型車両。
    The control unit (400) steers the steering wheel (11) in a direction in which the oncoming vehicle (B4) and the object (B2) in front of the vehicle (M) do not exist when viewed from the own vehicle (M). Control (520),
    The saddle-riding vehicle according to claim 6.
PCT/JP2019/013779 2019-03-28 2019-03-28 Saddle riding-type vehicle WO2020194708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/013779 WO2020194708A1 (en) 2019-03-28 2019-03-28 Saddle riding-type vehicle
JP2021508635A JP7138239B2 (en) 2019-03-28 2019-03-28 saddle-riding vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013779 WO2020194708A1 (en) 2019-03-28 2019-03-28 Saddle riding-type vehicle

Publications (1)

Publication Number Publication Date
WO2020194708A1 true WO2020194708A1 (en) 2020-10-01

Family

ID=72611218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013779 WO2020194708A1 (en) 2019-03-28 2019-03-28 Saddle riding-type vehicle

Country Status (2)

Country Link
JP (1) JP7138239B2 (en)
WO (1) WO2020194708A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269505A1 (en) * 2021-06-25 2022-12-29 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング Control device and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247168A (en) * 2007-03-30 2008-10-16 Fujitsu Ten Ltd Vehicular control device
JP2014094745A (en) * 2012-11-08 2014-05-22 Robert Bosch Gmbh Method for mitigating result of accident in two-wheeled vehicle
JP2017091138A (en) * 2015-11-09 2017-05-25 スズキ株式会社 Alarm system and saddling vehicle having the same
JP2018192825A (en) * 2017-05-12 2018-12-06 株式会社デンソー Automatic driving control system of vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084053A (en) * 2005-08-24 2007-04-05 Hino Motors Ltd Automatic braking control device
JP2007168504A (en) * 2005-12-20 2007-07-05 Nissan Motor Co Ltd Impact energy reducing device in rear-end collision of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247168A (en) * 2007-03-30 2008-10-16 Fujitsu Ten Ltd Vehicular control device
JP2014094745A (en) * 2012-11-08 2014-05-22 Robert Bosch Gmbh Method for mitigating result of accident in two-wheeled vehicle
JP2017091138A (en) * 2015-11-09 2017-05-25 スズキ株式会社 Alarm system and saddling vehicle having the same
JP2018192825A (en) * 2017-05-12 2018-12-06 株式会社デンソー Automatic driving control system of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269505A1 (en) * 2021-06-25 2022-12-29 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング Control device and control method

Also Published As

Publication number Publication date
JPWO2020194708A1 (en) 2020-10-01
JP7138239B2 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP6704890B2 (en) Vehicle control device, vehicle control method, and program
JP6646168B2 (en) Vehicle control system, vehicle control method, and vehicle control program
US11390302B2 (en) Vehicle control device, vehicle control method, and program
CN110949376B (en) Vehicle control device, vehicle control method, and storage medium
JP7112374B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP7133086B2 (en) saddle-riding vehicle
US20230398990A1 (en) Mobile body control device, mobile body control method, and storage medium
WO2020194708A1 (en) Saddle riding-type vehicle
JP6994982B2 (en) Vehicle control systems, vehicle control methods, and programs
JP6583697B2 (en) Perimeter monitoring device, control device, perimeter monitoring method, and program
JP7092955B1 (en) Vehicle control devices, vehicle control methods, and programs
JP7308880B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
US20220176956A1 (en) Vehicle control device, vehicle control method, and non-transitory computer-readable recording medium recording program
CN114750778A (en) Vehicle control device, vehicle control method, and storage medium
CN112172805A (en) Vehicle control device, vehicle control method, and storage medium
WO2020194694A1 (en) Saddled vehicle
JP7329142B2 (en) vehicle controller
JP7461989B2 (en) Driving assistance device, driving assistance method, and program
WO2022123727A1 (en) Vehicle control device, vehicle control method, and program
JP7132447B1 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
US11834048B2 (en) Vehicle control device, vehicle control method, and recording medium
WO2022144976A1 (en) Vehicle control device, vehicle control method, and program
JP7474136B2 (en) Control device, control method, and program
US20230331260A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7396906B2 (en) Vehicle control device, vehicle control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920667

Country of ref document: EP

Kind code of ref document: A1