WO2020194642A1 - 事象予測装置および事象予測方法 - Google Patents

事象予測装置および事象予測方法 Download PDF

Info

Publication number
WO2020194642A1
WO2020194642A1 PCT/JP2019/013483 JP2019013483W WO2020194642A1 WO 2020194642 A1 WO2020194642 A1 WO 2020194642A1 JP 2019013483 W JP2019013483 W JP 2019013483W WO 2020194642 A1 WO2020194642 A1 WO 2020194642A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
event
occurrence
function
time
Prior art date
Application number
PCT/JP2019/013483
Other languages
English (en)
French (fr)
Inventor
真実 梶田
晴司 梶田
Original Assignee
株式会社Singular Perturbations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Singular Perturbations filed Critical 株式会社Singular Perturbations
Priority to JP2019518001A priority Critical patent/JP7357316B2/ja
Priority to PCT/JP2019/013483 priority patent/WO2020194642A1/ja
Priority to US16/337,447 priority patent/US20220179919A1/en
Priority to CN201980000380.XA priority patent/CN112005254A/zh
Publication of WO2020194642A1 publication Critical patent/WO2020194642A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to an event prediction device and an event prediction method.
  • the occurrence of crime is predicted using, for example, the Self-Exciting Point Process (SEPP) model.
  • SEPP Self-Exciting Point Process
  • the crime density at a specific location and at a specific time in the future is indicated by the sum of the effects of past crime events. More specifically, the effect of a past crime event on a particular location of a crime and the density at a particular time is the distance between the predicted location and the location of the past crime, the predicted time and the past. It is expressed as a function of the time between the time when the crime occurred and the time of the crime. Furthermore, it is calculated by adding up the effects on the outbreak density obtained for each of the crimes that have occurred in the past.
  • the occurrence density of the specific event is given by the function ⁇ (t, x) of the region specific variable x that specifies the occurrence time t of the specific event and the occurrence region of the specific event, and the function ⁇ (t).
  • X is given by the external factor ⁇ f ⁇ and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] of the function ⁇ (t, x), and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] Is obtained from the history data of specific events that have occurred in the past, and the function ⁇ (t, x) is expressed as a function of the occurrence time t and the area specific variable x.
  • the prediction unit has a prediction unit that predicts the occurrence density of a specific event by inputting a value for specifying a future time and region into the function ⁇ .
  • the accuracy may not be improved unlike the reality. Further, when the influence g ( ⁇ t, ⁇ x) is constructed by using the expected value maximization method, the accuracy may not be high in the prediction by machine learning when the number of data is small.
  • an object of the present invention is to improve the prediction accuracy even when the number of data is small in the event occurrence prediction device that predicts the future occurrence density of the specific event based on the historical data of the specific event that has occurred in the past.
  • the present invention uses a matrix c (t) in an event prediction device that predicts an event feature vector ⁇ (t) at time t based on historical data of events that have occurred in the past.
  • Is the Laplace transform ⁇ (z) of ⁇ (t) is obtained
  • G (z) the Green's function G (z) is obtained using the constant ⁇ .
  • the prediction formula construction unit for obtaining G (t) by Laplace transforming this G (z) and the G (t) obtained by the prediction formula construction unit It is characterized by having a prediction unit for obtaining a feature amount vector ⁇ (t) of the specific event by inputting a future time t into.
  • the present invention uses a matrix c (t) in an event prediction method for predicting an event feature vector ⁇ (t) at time t based on historical data of events that have occurred in the past.
  • a matrix c (t) in an event prediction method for predicting an event feature vector ⁇ (t) at time t based on historical data of events that have occurred in the past.
  • G (t) the prediction formula construction step of obtaining G (t) by Laplace transforming this G (z) and the G (t) obtained by the prediction formula construction unit, It is characterized by having a prediction step of inputting a future time t into and obtaining a feature amount vector ⁇ (t) of the specific event.
  • the present invention uses the matrix c (t) in an event prediction system that predicts an event feature vector ⁇ (t) at time t based on historical data of events that have occurred in the past.
  • an event prediction system that predicts an event feature vector ⁇ (t) at time t based on historical data of events that have occurred in the past.
  • G (t) by Laplace transforming this G (z) and the G (t) obtained by the prediction formula construction unit
  • a prediction unit that inputs a future time t to obtain the feature amount vector ⁇ (t) of the specific event, a terminal that transmits the occurrence of the event as the history data, and a new history from the terminal. It is characterized by having a server that causes the prediction formula construction unit to obtain the G (t) again when the data is received and new historical data is obtained.
  • the prediction accuracy can be improved even when the number of data is small.
  • FIG. 1 is a block diagram according to an embodiment of the event occurrence prediction device according to the present invention.
  • the occurrence density of crimes such as burglary at a specific time and area is predicted.
  • the area indicates the position on the map where the crime occurs.
  • the specific event that predicts the occurrence density is a crime such as fraud on the Internet or a nuisance call
  • the area indicates a location on the Internet such as a URL or a telephone number.
  • the event occurrence prediction device has a prediction formula construction unit 10 and a prediction unit 30.
  • the occurrence density of the specific event is given by the function ⁇ (t, x) of the region specific variable x that specifies the occurrence time t of the specific event and the occurrence region of the specific event, and the function ⁇ (t).
  • X) is given by the external factor ⁇ f ⁇ and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] of the function ⁇ (t, x), and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] Is obtained from the history data of specific events that have occurred in the past, and the function ⁇ (t, x) is expressed as a function of the occurrence time t and the area specific variable x.
  • the external factor ⁇ f ⁇ is a factor that affects environmental factors such as weather conditions and geographical structure, and the occurrence density of specific events other than historical data of specific events such as patrol conditions.
  • the prediction formula construction unit 10 includes, for example, a history data group storage unit 12, a kernel function construction unit 14, a kernel function storage unit 16, a prediction formula construction unit 18, a prediction formula storage unit 20, and a history data reception unit 22.
  • the prediction unit 30 calculates the occurrence density of a specific event as a function of the date and time t and the place x by using the prediction formula constructed by the prediction formula construction unit 10, that is, the function g (t, x) and the data.
  • the event occurrence prediction device may include a display unit 40.
  • the display unit 40 displays the occurrence density of the specific event calculated by the prediction unit 30 in a recognizable state.
  • the display unit 40 displays contour lines of the occurrence density of a specific event on a map, for example.
  • the prediction formula construction unit 10 solves the problem of constructing the map F by using the occurrence history data group of the past specific event.
  • the occurrence history data group of a specific event is a set of a plurality of history data.
  • the historical data is a set of a time t when a specific event occurs and a region specific variable x that specifies the region where the specific event occurs.
  • Historical data may include an index indicating the type of specific event.
  • the map F [ ⁇ (t, x) + ⁇ f ⁇ ] can be assumed to be the solution of the partial differential equation, for example.
  • the solution of the partial differential equation can be written using, for example, a kernel function (sometimes called Green's function, response function, or integral nucleus).
  • a kernel function sometimes called Green's function, response function, or integral nucleus
  • the generation density ⁇ (t, x) can be assumed to satisfy the following equation.
  • can be determined according to the phenomenon to be described.
  • the kernel function g (t, t', x, x') can be written as a function of the time difference and distance difference between the past event and the present space-time.
  • the coefficient ⁇ can be uniquely determined by imposing a constraint that ⁇ (t) matches the conditional intensity ⁇ (t) of the SEPP model in some ideal state (such as a steady state).
  • ⁇ (t, k) ⁇ (t + t 0 , k) / ⁇ (t 0 , k)> t0 ... (5)
  • ⁇ (t, k) is obtained using the past crime history data, that is, the occurrence density ⁇ (t, k) in the region k at a certain time t.
  • the occurrence density ⁇ (t, x) in the past time t and the region x takes a positive integer value.
  • g (z, k) can be obtained using that ⁇ .
  • the predicted crime density ⁇ (t, x) is given by substituting it into the spatiotemporal kernel term of the Self-Exciting Point Process (SEPP) model.
  • SEPP Self-Exciting Point Process
  • ⁇ (t, x) ⁇ ti ⁇ t g ( tt i , xx i )... (6)
  • the sum of (6) is the sum of all the specific events that occurred before the time t.
  • FIG. 2 is a flowchart of an event occurrence prediction method using the event occurrence prediction device of the present embodiment.
  • This event occurrence prediction method is divided into a prediction formula construction phase and a prediction phase.
  • the occurrence density of the specific event is given by the function ⁇ (t, x) of the region specific variable x that specifies the occurrence time t of the specific event and the occurrence region of the specific event, and the function ⁇ (t, Assuming that x) is given by the map F [ ⁇ (t, x) + ⁇ f ⁇ ] of the external factor ⁇ f ⁇ and the function ⁇ (t, x), the map F [ ⁇ (t, x) + ⁇ f ⁇ ] is obtained from the history data of the specific event that has occurred in the past, and the function ⁇ (t, x) is expressed as a function of the occurrence time t and the area specific variable x.
  • the map F [ ⁇ (t, x) + ⁇ f ⁇ ] and past data are used to predict the occurrence density of the specific event. More specifically, it is as follows.
  • the past history data is stored in the history data group storage unit 12 (S11). There may be a plurality of past historical data.
  • the kernel function construction unit 14 obtains the kernel function g (z, k) from the equations (3) and (4) using the past history data group stored in the history data group storage unit 12 ( S12).
  • the kernel function g (z, k) derived by the kernel function construction unit 14 is stored in the kernel function storage unit 16. This kernel function is stored as a table of values in the discretized time z and the region-specific variable k that specifies the discretized region.
  • the prediction formula construction unit 18 predicts the occurrence density of a specific event from the formulas (5) and (6).
  • a function that gives the predicted crime density ⁇ (t, x) is constructed (S13).
  • the predicted crime density ⁇ (t, x) constructed by the predictive formula construction unit 18 is stored in the predictive formula storage unit 20. This predicted crime density ⁇ is stored as a table of values in the discretized time t and the domain-specific variable that specifies the discretized region.
  • the history data receiving unit 22 monitors the input of new history data (S14). For example, when a general user inputs the fact that a crime has occurred through a mobile terminal 24 such as a smartphone, the history data is received by the history data receiving unit 22. It is assumed that the mobile terminal 24 is installed with an application for inputting new history data when a general user witnesses a crime and transmitting the history data to the history data receiving unit 22. Alternatively, the history data may be transmitted from the police system 26 owned by the information providing organization such as the police to the history data receiving unit 22.
  • the history data receiving unit 22 repeats each time new history data is input and continues monitoring.
  • new history data is input to the history data receiving unit 22, the history data is stored in the history data group storage unit 12, and the process returns to step S11.
  • steps S11 to S13 are performed again, a new function of the predicted crime density ⁇ is constructed, and the function is stored in the predictive storage unit 20.
  • the time and area for predicting the predicted crime density are set (S21).
  • the predicted time may be a specific time or may have a range.
  • the predicted time is, for example, a predetermined period from the present.
  • the region to be predicted may be a specific position or may have a spread.
  • the area to be predicted is, for example, the entire area where historical data is collected for constructing a prediction formula.
  • the prediction unit 30 sets the time and area to be predicted.
  • the prediction unit 30 receives the prediction formula from the prediction formula storage unit 20 and calculates the prediction crime density ⁇ (S22). If the predicted time and region have width or spread, the calculation of the predicted crime density ⁇ is repeated for each discretized time and region.
  • the calculated predicted crime density ⁇ is displayed on the display unit 40 (S23).
  • the predicted crime density ⁇ displayed so that it can be recognized by humans is referred to by police officers and the like, and is used as a reference for patrol activities.
  • the predicted crime density ⁇ displayed on the mobile terminal 24 is used by the user of the mobile terminal 24 for actions to avoid crime.
  • FIG. 3 is a diagram showing an evaluation example of the time t dependence of the kernel function g in the crime occurrence rate prediction using the event occurrence prediction device of the present embodiment.
  • the horizontal axis of FIG. 3 is the time between times t, and the vertical axis is the value of the kernel function g.
  • the kernel function g tends to decrease as the time increases. However, as shown in FIG. 3, the kernel function g is not monotonically decreasing with time.
  • FIG. 4 is a contour line showing the crime occurrence prediction result using the event occurrence prediction device of the present embodiment.
  • Figure 4 is a contour line of the predicted crime density calculated using historical data of 738 crimes in a city. For the calculation of the predicted crime density, we used the data up to the day before the day we wanted to predict. It does not include data for the day you want to predict. In addition, FIG. 4 also shows the crime events that actually occurred in the predicted period (1 day) with markers.
  • FIG. 5 is a table showing the crime occurrence prediction result using the event occurrence prediction device of the present embodiment in comparison with other prediction methods.
  • the accuracy of the crime occurrence prediction result using the event occurrence prediction device of the present embodiment is the crime distance ⁇ x (for example, scaled by half the spatial resolution) and the time ⁇ t (for example, 7 days) of the crime of the past crime occurrence event.
  • the accuracy is compared by dividing the number of predicted crimes among the actual crimes by the actual number of crimes, and in the prediction, the predicted area is divided into 250 m1 square cells, and a certain area ratio is the crime. Designate as a dangerous area.
  • the prediction accuracy is improved as compared with the Prospective Hotspot Method and the EM method.
  • the above-described embodiment predicts the future occurrence density of one specific event, but it can also be applied to the prediction of a cascade phenomenon in which multiple variables affect each other. For example, focusing on financial data, the buying and selling of real estate in each country, the trading of bonds and stocks such as government bonds and corporate bonds, the production and sale of real goods, and the receipt of cash by providing services affect each other, and foreign countries
  • the rate (exchange rate) in foreign exchange transactions changes. This change is not affected by the state of real estate in each country at the moment of transaction, but rather by the state of past transactions in a cascade.
  • n is a natural number.
  • the state of the specific event may be the occurrence density or a value such as an exchange rate. It is assumed that the state variable of the i-th specific event is given by the function ⁇ _i (t).
  • the prediction formula construction unit can obtain the mapping F [ ⁇ (t) + ⁇ f ⁇ ] from the state values of specific events that have occurred in the past and the historical data of external factors.
  • the prediction unit inputs a value for specifying the future time into the function vector ⁇ (t) to predict the state value of the specific event.
  • the above-described embodiment is a case where the function vector ⁇ (t) is limited to the function ⁇ (t, x) of the region specific variable x that specifies the time t and the region where the specific event occurs.
  • the entire generation density ⁇ (t, x) of each region indicated by x can be regarded as the function vector ⁇ (t).
  • ⁇ a (t) and ⁇ b (t) be the state functions that give the state values of the two specific events, respectively.
  • g as a Green's function which influences representing the respective past state giving itself and other specific events aa (t), g ab ( t), g ba (t), introducing g bb (t) .
  • the evolution equation can be written as follows.
  • the vector of the state function that gives the state value of a specific event is called the feature vector ⁇ (t), and if this formula is generalized, it can be written as the following determinant.
  • ⁇ (t) In order to obtain ⁇ (t) from the past data (history data), first, the element ⁇ i of the equation (11) is divided by the initial state of ⁇ j . Next, the initial state is changed to generate multiple samples, and the statistical average is taken. If the time in each initial state is described as t 0 ,
  • G (t) can be obtained by inverse Laplace transform of this.
  • FIG. 6 is a graph comparing the correct answer rate of the exchange rate prediction according to the present embodiment with other prediction methods.
  • Ddgf is the result of using this embodiment.
  • var shows the result by another prediction method, Vector autoregression (vector autoregressive model).
  • rnn shows the result by LSTM Multimodal Long Short-Term Memory, which is an extension of RNN (Recurrent Neural Network).
  • the correct answer rate is the rate at which the correct answer is predicted with respect to the positive / negative of the pivot point rate (PP rate), which is the average value of the high price + the low price + the closing price.
  • PP rate pivot point rate
  • this embodiment shows accuracy equal to or higher than that of VAR and LSTM.
  • FIG. 7 is a graph showing the annual change in the correct answer rate of the exchange rate according to the present embodiment.
  • index 1 shows the rate of Japanese yen against the US dollar
  • index 3 shows the ratio of the closing price / opening price to the previous day for the Australian dollar rate against the US dollar.
  • the percentage of correct answers exceeded 50% in each year.
  • the correct answer rate improves as the past historical data increases, that is, as the year progresses.
  • FIG. 8 is a graph comparing the prediction accuracy of the occurrence of terrorism in the United States according to this embodiment with other prediction methods.
  • DDGF is the result of using this embodiment.
  • VAR shows the result by another prediction method, Vector autoregression (vector autoregressive model).
  • the prediction accuracy is a value obtained by dividing the number predicted to occur by the number actually generated.
  • FIG. 8 shows, for example, time-series data on how many terrorist attacks occurred daily between 2001 and 2015 in the three countries of North America, Iraq, and Afghanistan, and used the DDGF method of the present embodiment in the United States. It is the result of measuring the prediction accuracy of the occurrence of terrorism in. For example, among the data of the target period, 2/3 of the first half is selected as training data and 1/3 of the latter half is selected as test data.
  • this embodiment can also be used for predicting a cascade phenomenon in which the past states of a plurality of events influence each other.
  • FIG. 9 is a diagram schematically showing the concept of the multivariate DDGF method in the present embodiment.
  • the G matrix can interpret how the effects propagate between different variables. For example, when the variables are three variables of yen, dollar, and euro, the configuration of the G matrix as shown in FIG. 9 can be considered.
  • the first row and first column describe the propagation of the influence from the past circle to the future circle, and the first row and the second column describe the propagation of the influence from the past circle to the future dollar. In other words, by looking at each element of the G matrix, it is possible to see on what time scale the influence propagates between different variables.
  • FIG. 10 is a group of graphs showing the analysis results of events according to the present embodiment.
  • Determining the G matrix from the data is also a tool for analyzing the phenomenon.
  • the data on the number of daily terrorist attacks in Iraq, the United States, and Afghanistan is divided before and after the 9/11 incident to calculate the G matrix. It can be seen that the propagation of the influence from Afghanistan to Iraq and from Afghanistan to Afghanistan changed significantly around 9/11.
  • FIG. 11 is a diagram showing the results of analyzing the occurrence events of terrorism in each state of Iraq and the entire United States using this embodiment.
  • Prediction formula construction unit 10 ... Prediction formula construction unit, 12 ... History data group storage unit, 14 ... Kernel function construction unit, 16 ... Kernel function storage unit, 18 ... Prediction formula construction unit, 20 ... Prediction formula storage unit, 22 ... History data reception unit, 24 ... Mobile terminal, 26 ... police system, 30 ... Prediction unit, 40 ... Display unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Human Resources & Organizations (AREA)
  • Databases & Information Systems (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】過去に発生した特定事象の履歴データに基づいて特定事象の将来の発生密度を予測する事象発生予測装置において、データ数が少ない場合も予測精度を上げる。 【解決手段】事象発生予測装置は、予測式構築部10と、予測部30と、を備える。予測式構築部10は、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で前記特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は外部因子{f}と関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、写像F[ρ(t,x)+{f}]を過去に発生した特定事象の履歴データから求めて、関数ρ(t,x)を発生時刻tおよび領域特定変数xの関数として表現する。予測部30は、関数ρに将来の時刻および領域を特定する値を入力して、特定事象の発生密度を予測する予測部と、を有することを特徴とする。

Description

事象予測装置および事象予測方法
 本発明は、事象予測装置および事象予測方法に関する。
 米国カリフォルニア州で犯罪発生の可能性が高い要注意エリアを警察官が重点的に見回ることにより、その後の犯罪発生が抑制されたという事例がある。また、地震の余震予測のために提案されたアルゴリズムを用いて犯罪の発生密度の予測精度を向上させた例がある。
 犯罪発生の予測は、たとえばSelf-Exciting Point Process(SEPP)モデルを用いて行われる。SEPPモデルでは、特定の位置、将来の特定の時刻における犯罪の発生密度を、過去の犯罪発生事象による影響の総和で示す。より具体的には、ある過去の犯罪発生事象の犯罪の特定の位置および特定の時刻における発生密度に対する影響は、予測する位置と過去の犯罪の発生位置との距離と、予測する時刻と過去の犯罪の発生時刻との間の時間との関数で表されるとする。さらに、過去に発生した犯罪のそれぞれについて求めた発生密度に対する影響を足し合わせることによって求める。
 過去の犯罪発生事象の犯罪発生密度に対する影響を、現在着目する位置・時刻と過去の事象の位置・時刻との間の距離Δxおよび時間Δt(それぞれ適切な長さ、時間を単位にスケールする)を用いてg(Δt,Δx)と書くことにすると、g(Δt,Δx)=1/((1+Δt)(1+Δx))と表現する方法がある(Prospective Hotspot Method)。期待値最大化法(Expectation Maximization Algorithm)を用いて、過去の犯罪発生事象の履歴データから過去の犯罪発生事象の犯罪の位置xおよび時刻tにおける発生密度に対する影響g(Δt,Δx)を構築する方法もある。
 過去に発生した事象の履歴データに基づいてその事象の将来の発生密度を予測する精度を高めるため、予測式構築部と予測部とを備える手法がある。予測式構築部は、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で前記特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は外部因子{f}と関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、写像F[ρ(t,x)+{f}]を過去に発生した特定事象の履歴データから求めて、関数ρ(t,x)を発生時刻tおよび領域特定変数xの関数として表現する。予測部は、関数ρに将来の時刻および領域を特定する値を入力して、特定事象の発生密度を予測する予測部と、を有する。
米国特許第8949164号 米国特許第9129219号 WO2017/222030
 過去の発生事象である犯罪との距離差Δxおよび時間差Δtにおける発生密度に対する影響g(Δt,Δx)を特定の関数で表現した場合、現実とは異なり、精度が上がらない場合がある。また、期待値最大化法を用いて影響g(Δt,Δx)を構築する場合、機械学習による予測においては、データ数が少ない場合に精度が高く出ない場合がある。
 そこで、本発明は、過去に発生した特定事象の履歴データに基づいて特定事象の将来の発生密度を予測する事象発生予測装置において、データ数が少ない場合も予測精度を上げることを目的とする。
 上述の目的を達成するため、本発明は、時刻tにおける事象の特徴量ベクトルρ(t)を過去に発生した事象の履歴データに基づいて予測する事象予測装置において、行列c(t)を
Figure JPOXMLDOC01-appb-M000013
と定義して
Figure JPOXMLDOC01-appb-M000014
を求め、Φ(t)のラプラス変換Φ(z)を求め、定数γを用いてグリーン関数G(z)を
Figure JPOXMLDOC01-appb-M000015
として求め、このG(z)をラプラス変換してG(t)を求める予測式構築部と、前記予測式構築部で求めたG(t)を用いて、
Figure JPOXMLDOC01-appb-M000016
に将来の時刻tを入力して前記特定事象の特徴量ベクトルρ(t)を求める予測部と、を有することを特徴とする。
 また、本発明は、時刻tにおける事象の特徴量ベクトルρ(t)を過去に発生した事象の履歴データに基づいて予測する事象予測方法において、行列c(t)を
Figure JPOXMLDOC01-appb-M000017
と定義して
Figure JPOXMLDOC01-appb-M000018
を求め、Φ(t)のラプラス変換Φ(z)を求め、定数γを用いてグリーン関数G(z)を
Figure JPOXMLDOC01-appb-M000019
として求め、このG(z)をラプラス変換してG(t)を求める予測式構築ステップと、前記予測式構築部で求めたG(t)を用いて、
Figure JPOXMLDOC01-appb-M000020
に将来の時刻tを入力して前記特定事象の特徴量ベクトルρ(t)を求める予測ステップと、を有することを特徴とする。
 また、本発明は、時刻tにおける事象の特徴量ベクトルρ(t)を過去に発生した事象の履歴データに基づいて予測する事象予測システムにおいて、行列c(t)を
Figure JPOXMLDOC01-appb-M000021
と定義して
Figure JPOXMLDOC01-appb-M000022
を求め、Φ(t)のラプラス変換Φ(z)を求め、定数γを用いてグリーン関数G(z)を
Figure JPOXMLDOC01-appb-M000023
として求め、このG(z)をラプラス変換してG(t)を求める予測式構築部と、前記予測式構築部で求めたG(t)を用いて、
Figure JPOXMLDOC01-appb-M000024
に将来の時刻tを入力して前記特定事象の特徴量ベクトルρ(t)を求める予測部と、前記事象が発生したことを前記履歴データとして送信する端末と、前記端末から新たな前記履歴データを受信して新たな前記履歴データが得られたときに前記予測式構築部に前記G(t)を再度求めさせるサーバーと、を有することを特徴とする。
 本発明によれば、過去に発生した特定事象の履歴データに基づいて特定事象の将来の発生密度を予測する事象発生予測装置において、データ数が少ない場合も予測精度を上げることができる。
本発明に係る事象発生予測装置の一実施の形態におけるブロック図である。 本発明に係る事象発生予測装置の一実施の形態を用いた事象発生予測方法のフローチャートである。 本発明に係る事象発生予測装置の一実施の形態を用いた犯罪発生率予測におけるカーネル関数gの時刻t依存性の評価例を示す図である。 本発明に係る事象発生予測装置の一実施の形態を用いた犯罪発生率予測結果を示す等高線である。
 本発明に係る事象発生予測装置の一実施の形態を、図面を参照して説明する。なお、この実施の形態は単なる例示であり、本発明はこれに限定されない。同一または類似の構成には同一の符号を付し、重複する説明は省略する。
 図1は、本発明に係る事象発生予測装置の一実施の形態におけるブロック図である。
 本実施の形態では、特定の時刻および領域における住居侵入などの犯罪(特定事象)の発生密度を予測する。ここで、領域とは、犯罪が発生する地図上の位置を示すものである。発生密度を予測する特定事象が、たとえばインターネット上での詐欺などの犯罪や迷惑電話の場合、領域はURLなどのインターネット上の位置や電話番号を示すものとなる。
 事象発生予測装置は、予測式構築部10と、予測部30とを有している。
 予測式構築部10は、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は外部因子{f}と関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、写像F[ρ(t,x)+{f}]を過去に発生した特定事象の履歴データから求めて、関数ρ(t,x)を発生時刻tおよび領域特定変数xの関数として表現する。外部因子{f}とは、天候条件、地理構造などの環境要因や、パトロール状況などの特定事象の履歴データ以外の特定事象の発生密度に影響を与える因子である。予測式構築部10は、たとえば履歴データ群記憶部12とカーネル関数構築部14とカーネル関数記憶部16と予測式構築部18と予測式記憶部20と履歴データ受信部22を有している。
 予測部30は、予測式構築部10が構築した予測式、すなわち、関数g(t,x)とデータを使って、特定事象の発生密度を日時t、場所xの関数として算出する。
 事象発生予測装置は、表示部40を備えていてもよい。表示部40は、予測部30が算出した特定事象の発生密度を認識可能な状態に表示する。表示部40は、たとえば地図上に、特定事象の発生密度の等高線を表示する。
 次に、本実施の形態における、特定事象の発生密度の算出方法について説明する。時刻t、領域xにおける特定事象の発生密度ρ(t,x)を考える。この発生密度ρ(t,x)は、それ自身の写像Fで表されると仮定する。つまり、
  ρ(t,x)=F[ρ(t,x)+{f}]   …(1)
であるとする。ここで{f}は季節、環境要因、パトロール状況などの外部因子が考えられる。
 予測式構築部10は、過去の特定事象の発生履歴データ群を用いて、写像Fを構築するという問題を解く。ここで、特定事象の発生履歴データ群とは、複数の履歴データの集合である。履歴データとは、特定事象が発生した時刻tおよび発生した領域を特定する領域特定変数xの組である。履歴データに特定事象の種類を示すインデックスを含めてもよい。
 写像F[ρ(t,x)+{f}]は、たとえば、偏微分方程式の解と仮定することができる。
 また、偏微分方程式の解は、たとえばカーネル関数(グリーン関数、応答関数、積分核と呼ばれることもある)を使って書くことができる。
 発生密度ρ(t,x)は、たとえば、1変数の場合、以下の方程式を満たすと仮定することができる。
Figure JPOXMLDOC01-appb-M000025
ここで、γは記述したい現象に合わせ決めることができる。
 なお、右辺第一項のカーネル関数にかかるρ(t,x)に関する関数形や外部因子依存性と、第二項の形式には、幾つかのバリエーションが可能である。ここでは、最も単純な一例を挙げて議論を進めることにする。
 また、カーネル関数g(t,t’,x,x’)は過去の事象と現在の時空間との時間差、距離差の関数で書けると仮定できる場合がある。たとえば、発展方程式の形は、
Figure JPOXMLDOC01-appb-M000026
などが考えられる。たとえばγは、毎日1件の犯罪が発生する状況(定常解)において、SEPPモデルのλ(t,x)の定常解とρ(t,x)の定常解が等しくなるとの要請を加えるとγ=log2と求まる。一般的には、係数γは何らかの(たとえば定常状態などの)理想状態においてρ(t)がSEPPモデルのconditional intensity λ(t)と一致するといった制約を課すことで一意に定めることができる。
 この発展方程式を領域xについてフーリエ変換し、時刻tについてラプラス変換すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000027
  Φ(t,k)=<ρ(t+t,k)/ρ(t,k)>t0   …(5)
 過去の犯罪履歴データ、すなわち、ある時刻t、領域kにおける発生密度ρ(t,k)を用いて、Φ(t,k)が求められる。ここで、過去の時刻t、領域xにおける発生密度ρ(t,x)は、正の整数値をとる。i番目に発生した特定事象について、発生時刻をt、発生領域xとすると、同時刻、同領域に他の事象が発生しなかった場合、ρ(t,x)=1となる。Φ(t,k)が得られたら、そのΦを用いてg(z,k)が得られる。g(t,x)が求められたら、予測犯罪密度λ(t,x)は、Self-Exciting Point Process(SEPP)モデルの時空間カーネル項に代入することで与えられる。
 λ(t,x)の計算方法の一例を以下に挙げる。
   λ(t,x)=Σti<tg(t-t,x-x)   …(6)
ここで、(6)の和は時刻tより前に発生した特定事象についてのすべての和である。
 図2は、本実施の形態の事象発生予測装置を用いた事象発生予測方法のフローチャートである。
 この事象発生予測方法は、予測式構築フェーズと、予測フェーズに分けられる。予測式構築フェーズでは、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は前記外部因子{f}と前記関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、前記写像F[ρ(t,x)+{f}]を過去に発生した前記特定事象の履歴データから求めて、関数ρ(t,x)を前記発生時刻tおよび前記領域特定変数xの関数として表現する。予測フェーズでは、写像F[ρ(t,x)+{f}]と過去データを使って、前記特定事象の発生密度を予測する。より、具体的には次のとおりである。
 予測式構築フェーズでは、まず、過去の履歴データを履歴データ群記憶部12に蓄積する(S11)。過去の履歴データは、複数であってもよい。
 次に、カーネル関数構築部14は、履歴データ群記憶部12に蓄積された過去の履歴データ群を用いて、式(3)および式(4)からカーネル関数g(z,k)を求める(S12)。カーネル関数構築部14が導出したカーネル関数g(z,k)は、カーネル関数記憶部16に記憶される。このカーネル関数は、離散化した時刻z、および、離散化した領域を特定する領域特定変数kにおける値の表として記憶される。
 カーネル関数g(z,k)が得られたら、ラプラス逆変換、フーリエ逆変換を適用すると、予測式構築部18は、式(5)および式(6)から、特定事象の発生密度を予測する予測犯罪密度λ(t,x)を与える関数を構築する(S13)。予測式構築部18が構築した予測犯罪密度λ(t,x)は、予測式記憶部20に記憶される。この予測犯罪密度λは、離散化した時刻t、および、離散化した領域を特定する領域特定変数における値の表として記憶される。
 予測犯罪密度λの関数が構築されたら、履歴データ受信部22は、新たな履歴データが入力されるのを監視する(S14)。たとえば一般ユーザがスマートフォンなどの携帯端末24を通じて犯罪が発生したという事実を入力すると、その履歴データが履歴データ受信部22に受信される。携帯端末24には、一般ユーザが、犯罪を目撃した際などに、新たな履歴データを入力し、その履歴データを履歴データ受信部22に対して送信するアプリケーションがインストールされているものとする。あるいは、警察などの情報提供機関が有する警察システム26から履歴データ受信部22に履歴データが伝達されてもよい。
 履歴データ受信部22は、新たな履歴データが入力されるたびに繰り返し、監視を続ける。履歴データ受信部22に新たな履歴データが入力されたら、その履歴データは履歴データ群記憶部12に記憶され、工程S11に戻る。その結果、再び、工程S11~工程S13が行われ、新たな予測犯罪密度λの関数が構築されて、予測式記憶部20に記憶される。
 予測フェーズでは、まず、予測犯罪密度を予測する時刻および領域を設定する(S21)。予測する時刻は、特定の時刻でもよいし、幅をもっていてもよい。予測時間として、たとえば現在から所定の期間とする。予測する領域としては、特定の位置でもよいし、広がりをもっていてもよい。予測する領域として、たとえば予測式の構築のために履歴データを収集している領域全体とする。予測する時刻および領域の設定は、予測部30が行う。
 次に、工程S21で設定した時刻および領域において、予測部30は予測式記憶部20から予測式を受信して、予測犯罪密度λを計算する(S22)。予測する時刻および領域が幅あるいは広がりを持っている場合には、離散化された時刻および領域について、それぞれ予測犯罪密度λの計算を繰り返す。
 計算された予測犯罪密度λは、表示部40において表示される(S23)。人間が認識可能なように表示された予測犯罪密度λは、警察官などによって参照され、パトロール活動の参考とされる。あるいは、携帯端末24に表示された予測犯罪密度λは、携帯端末24のユーザが犯罪を避ける行動に用いられる。
 過去に発生した犯罪は、時間的・空間的に離れた位置において、次の犯罪を誘発する。時間差および距離が大きくなるほど、誘発する影響度は小さくなる傾向にある。たとえば、カリフォルニア州ロサンゼルスにおける不法侵入事件では、犯罪が発生すると、その1~2日後と7日後に、1m圏内での再発生密度が高くなる。過去の犯罪の履歴データそれぞれが、将来のある時刻・ある位置における犯罪を誘発すると考えると、将来の犯罪の発生密度ρは、過去の犯罪の発生密度ρの写像Fとして与えられることになる。そこで、本実施の形態では、ρ(t,x)=F[ρ(t,x)+{f}]と仮定し、犯罪の発生密度の密度場に対するカーネル関数を履歴データから構築している。
 図3は、本実施の形態の事象発生予測装置を用いた犯罪発生率予測におけるカーネル関数gの時刻t依存性の評価例を示す図である。図3の横軸は時刻tの間の時間、縦軸はカーネル関数gの値である。
 図3に示すように、カーネル関数gは時間が大きくなるにしたがって、減少する傾向にある。しかし、図3に示すように、カーネル関数gは時間に対して単調減少ではない。
 図4は、本実施の形態の事象発生予測装置を用いた犯罪発生予測結果を示す等高線である。
 図4は、ある都市の738件の犯罪の履歴データを用いて計算した予測犯罪密度の等高線である。予測犯罪密度の計算には予測したい日の前日までのデータを使った。予測したい日のデータは含まれていない。また、図4には、予測した期間(1日)において、実際に発生した犯罪イベントをマーカーで併せて示した。
 図4に示す通り、予測犯罪密度が高い位置において、実際に犯罪が発生している場合が多いことがわかる。
図5は、本実施の形態の事象発生予測装置を用いた犯罪発生予測結果を他の予測手法と比較して示した表である。
 本実施の形態の事象発生予測装置を用いた犯罪発生予測結果の精度は、過去の犯罪発生事象の犯罪の距離Δx(例えば空間分解能の半分の長さでスケールする)および時間Δt(例えば7日間でスケールする)における発生密度に対する影響g(Δt,Δx)をg(t,Δx)=1/((1+Δt)(1+Δx))と表現する方法(Prospective Hotspot Method)による予測結果の精度とEM法による予測結果の精度と比較して、たとえばシカゴの10罪種(theft, battery, criminal damage, narcotics, other offense, assault, burglary, motor-vehicle theft, deceptive practice and robbery)に対して、最高精度を達成した。精度は、実際の犯罪のうち予測できた犯罪の件数を実際の犯罪件数で除したもので比較し、予測においては、予測対象領域を250m1四方のセルに分割し、そのうちのある面積割合を犯罪危険地域に指定する。
 このように本実施の形態によれば、予測精度は、Prospective Hotspot Method、EM法よりも向上していることがわかる。
 なお、上述の実施の形態は、特定事象として犯罪を例として説明したが、ある1件の事象が新たに続く次の事象を誘発してカスケードする現象一般に適用可能である。特に、この誘発する割合が時間tおよび空間xの関数として見たときに時空間相関があり、かつその法則性にある程度の定常性があると予測される場合に、より高い精度を示すと期待される。このような事象として、たとえば地震の余震現象や空爆の被害状況などについては、過去にカスケード現象との関連が議論されている。さらには、自殺、疫病のパンデミック、ソーシャルネットワーキングサービス(SNS)上での勧誘・宗教・ねずみ講などの拡散、迷惑電話、服装などの流行、株価・金融商品の動向、選挙における投票、免疫系の異常事象、消費者の購買行動、ウェブサイト上の広告のクリック、ネットワーク上でのショッピングなどの需要予測、お見合いなどのマッチングにおける適合、薬物や金などの密輸、サイバークライム、サイバーテロを含むテロの予測、インフラの劣化予測、ソフトウェア・ハードウェアの故障や異常検知などについても、このようなカーネル関数を考えられると期待される。
 上述の実施の形態は、一つの特定事象を対象としてその将来の発生密度を予測するものであるが、多変数が影響しあうカスケード現象の予測にも応用できる。たとえば金融データに着目すると、それぞれの国における不動産の売買、国債・社債などの債権や株式の取引、現実の物の生産・販売、あるいはサービスの提供などによる現金の収受などが互いに影響しあい、外国為替取引におけるレート(為替レート)が変化する。この変化は、取引の瞬間における各国の不動産の状態に影響を受けるというよりも、過去の取引状態などにカスケード的に影響を受けている。
 n種の特定事象についてそれぞれの状態を予測する方法について考える。nは自然数である。ここで、特定事象の状態とは、発生密度でもよいし、為替レートなどの値であってもよい。i番目の特定事象の状態変数が関数ρ_i(t)で与えられるとする。
 n種の要素を持つ状態変数を与える関数ベクトルΡ(t)={ρ_1(t),…,ρ_i(t),…,ρ_n(t)}を考える。カスケード現象であれば、この状態変数ベクトルΡ(t)は、この関数ベクトルΡ(t)および外部因子ベクトル{f}の写像F[Ρ(t)+{f}]で与えられる。
 上述の実施の形態と同様にして、予測式構築部は、写像F[Ρ(t)+{f}]を過去に発生した特定事象の状態値と外部因子の履歴データから求めることができる。関数ベクトルΡ(t)が得られたら、予測部は、この関数ベクトルΡ(t)に将来の時刻を特定する値を入力して、特定事象の状態値を予測する。
 上述の実施の形態は、関数ベクトルΡ(t)が時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)であると限定した場合である。xを離散化した場合には、xが示す各領域の発生密度ρ(t,x)の全体を関数ベクトルΡ(t)とみなすことができる。
 たとえば2つの特定事象の状態値を予測する場合は、以下の通りである。2つの特定事象の状態値を与える状態関数をそれぞれρ(t)、ρ(t)とする。また、それぞれの過去の状態がそれ自身および他の特定事象に与える影響を表現したグリーン関数としてgaa(t)、gab(t)、gba(t)、gbb(t)を導入する。このとき、発展方程式は、以下のように書ける。
Figure JPOXMLDOC01-appb-M000028
ただし、外部因子の影響はないとした。また、簡単のため位置を示す変数xを無視した。γは1変量の場合と同様に、定常解の条件を考えるとγ=log2となる。以下、簡単のためγ,Δtを省略する。t
 特定事象の状態値を与える状態関数のベクトルを特徴量ベクトルρ(t)と呼ぶこととし、この式を一般化すると、以下の行列式のように書ける。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-I000030
 この(8)式をラプラス変換すると以下の行列式のようになる。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
 ここで、以下の定義を導入する。
Figure JPOXMLDOC01-appb-M000033
すると、式(9)の逆ラプラス変換は以下のように表せる。
Figure JPOXMLDOC01-appb-M000034
 過去のデータ(履歴データ)からΦ(t)を求めるため、まず、式(11)の要素ρをρの初期状態で除する。次に初期状態を変えて複数のサンプルを生成し、その統計平均をとる。それぞれの初期状態の時刻をtと記述すると、
Figure JPOXMLDOC01-appb-M000035
 ここで、行列cを導入する。
Figure JPOXMLDOC01-appb-M000036
 この行列cを用いると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000037
 つまり、
Figure JPOXMLDOC01-appb-M000038
となる。このラプラス変換Φ(z)を用いて(11)式を変形すると、最終的なグリーン関数は、以下のようになる。
Figure JPOXMLDOC01-appb-M000039
ここで、γとΔt依存性を明示した。
 これを逆ラプラス変換することにより、G(t)が得られる。このようにして得られたG(t)を用いれば、過去の発生密度ρ(t=0)を(8)式に代入して、時刻tの発生密度ρ(t)が得られる。
 図6は、本実施の形態による為替レートの予測の正答率を他の予測手法と比較したグラフである。
 ddgfは、本実施の形態を用いた結果である。varは、他の予測手法であるVector autoregression(ベクトル自己回帰モデル)による結果を示す。rnnは、RNN(Recurrent Neural Network)の拡張であるLSTM Multimodal Long Short‐Term Memoryによる結果を示す。ここで、正答率とは、高値+安値+終値の平均値であるpivot point rate (PP rate)の前日比の正負に関して予測し、正答した割合である。
 図6から、本実施の形態は、VARおよびLSTMと同等以上の精度を示している。
 図7は、本実施の形態による為替レートの正答率の年次変化を示すグラフである。
 ここで、指標1は日本円の対米ドルレート、指標3はオーストラリアドルの対米ドルレートについての、終値/始値の前日比をそれぞれ示す。指標1および指標3ともに、いずれの年でも正答率は50%を上回っている。さらに、過去の履歴データが増加していくにつれ、すなわち、年が進むにつれて、正答率が向上していることがわかる。
 図8は、本実施の形態によるアメリカでのテロ発生の予測精度を他の予測手法と比較したグラフである。
 DDGFは、本実施の形態を用いた結果である。VARは、他の予測手法であるVector autoregression(ベクトル自己回帰モデル)による結果を示す。ここで、予測精度とは、発生と予測した数を実際に発生した数で除した値である。
 図8は、たとえば、北米、イラク、アフガニスタンの3カ国で2001年から2015年までの間に毎日何件テロが発生したかの時系列データを選び、本実施の形態のDDGF法を用いてアメリカにおけるテロ発生の予測精度を測定した結果である。たとえば対象とする期間のデータのうち、前半の2/3をトレーニングデータ、後半の1/3をテストデータとして選択する。
 図8に示すように、本実施の形態によれば、既存の手法よりも高い予測精度が得られることがわかる。
 このように、本実施の形態では、複数の事象の過去の状態が影響しあうカスケード現象の予測にも用いることができる。
図9は、本実施の形態における多変量DDGF法の概念を模式的に示す図である。
 さらに、多変量DDGF法において、G行列はそれぞれ異なる変数の間での影響の伝搬の仕方を解釈することができる。たとえば、変数が円、ドル、ユーロの3変数だったとき、図9のようなG行列の構成が考えられる。1行1列目は過去の円から未来の円への影響の伝搬を、1行2列目は過去の円から未来のドルへの影響の伝搬を、記述する。つまり、G行列のそれぞれの要素を見ることで異なる変数間でどのような時間スケールで影響が伝搬していくかを見ることができる。
 図10は、本実施の形態による事象の分析結果を示すグラフ群である。
 データからG行列を決めることは、現象の分析のツールにもなる。その一例として、イラク、アメリカ、アフガニスタンの1日毎のテロ発生数のデータを9.11事件の前後に分割してG行列を計算する。9.11前後で特にアフガニスタンからイラク、アフガニスタンからアフガニスタンへの影響の伝搬が大きく変化したことがわかる。
 図11は、本実施の形態を用いてイラクの各州およびアメリカの全土におけるテロの発生事象を分析した結果を示す図である。
 変数をイラクの各州、アメリカ全土で選択すると、イラクのどの州の影響がUSAにもっとも大きく影響を与えるかを分析することもできる。
10…予測式構築部、12…履歴データ群記憶部、14…カーネル関数構築部、16…カーネル関数記憶部、18…予測式構築部、20…予測式記憶部、22…履歴データ受信部、24…携帯端末、26…警察システム、30…予測部、40…表示部
 

Claims (3)

  1.  時刻tにおける事象の特徴量ベクトルρ(t)を過去に発生した事象の履歴データに基づいて予測する事象予測装置において、
     行列c(t)を
    Figure JPOXMLDOC01-appb-I000001
    と定義して
    Figure JPOXMLDOC01-appb-I000002
    を求め、Φ(t)のラプラス変換Φ(z)を求め、定数γを用いてグリーン関数G(z)を
    Figure JPOXMLDOC01-appb-I000003
    として求め、このG(z)をラプラス変換してG(t)を求める予測式構築部と、
     前記予測式構築部で求めたG(t)を用いて、
    Figure JPOXMLDOC01-appb-I000004
    に将来の時刻tを入力して前記特定事象の特徴量ベクトルρ(t)を求める予測部と、
     を有することを特徴とする事象予測装置。
  2.  時刻tにおける事象の特徴量ベクトルρ(t)を過去に発生した事象の履歴データに基づいて予測する事象予測方法において、
     行列c(t)を
    Figure JPOXMLDOC01-appb-I000005
    と定義して
    Figure JPOXMLDOC01-appb-I000006
    を求め、Φ(t)のラプラス変換Φ(z)を求め、定数γを用いてグリーン関数G(z)を
    Figure JPOXMLDOC01-appb-I000007
    として求め、このG(z)をラプラス変換してG(t)を求める予測式構築ステップと、
     前記予測式構築部で求めたG(t)を用いて、
    Figure JPOXMLDOC01-appb-I000008
    に将来の時刻tを入力して前記特定事象の特徴量ベクトルρ(t)を求める予測ステップと、
     を有することを特徴とする事象予測方法。
  3.  時刻tにおける事象の特徴量ベクトルρ(t)を過去に発生した事象の履歴データに基づいて予測する事象予測システムにおいて、
     行列c(t)を
    Figure JPOXMLDOC01-appb-I000009
    と定義して
    Figure JPOXMLDOC01-appb-I000010
    を求め、Φ(t)のラプラス変換Φ(z)を求め、定数γを用いてグリーン関数G(z)を
    Figure JPOXMLDOC01-appb-I000011
    として求め、このG(z)をラプラス変換してG(t)を求める予測式構築部と、
     前記予測式構築部で求めたG(t)を用いて、
    Figure JPOXMLDOC01-appb-I000012
    に将来の時刻tを入力して前記特定事象の特徴量ベクトルρ(t)を求める予測部と、
     前記事象が発生したことを前記履歴データとして送信する端末と、
     前記端末から新たな前記履歴データを受信して新たな前記履歴データが得られたときに前記予測式構築部に前記G(t)を再度求めさせるサーバーと、
     を有することを特徴とする事象予測システム。
     
     
PCT/JP2019/013483 2019-03-27 2019-03-27 事象予測装置および事象予測方法 WO2020194642A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019518001A JP7357316B2 (ja) 2019-03-27 2019-03-27 事象予測装置
PCT/JP2019/013483 WO2020194642A1 (ja) 2019-03-27 2019-03-27 事象予測装置および事象予測方法
US16/337,447 US20220179919A1 (en) 2019-03-27 2019-03-27 Event prediction device and event prediction method
CN201980000380.XA CN112005254A (zh) 2019-03-27 2019-03-27 事件预测装置及事件预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013483 WO2020194642A1 (ja) 2019-03-27 2019-03-27 事象予測装置および事象予測方法

Publications (1)

Publication Number Publication Date
WO2020194642A1 true WO2020194642A1 (ja) 2020-10-01

Family

ID=72611184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013483 WO2020194642A1 (ja) 2019-03-27 2019-03-27 事象予測装置および事象予測方法

Country Status (4)

Country Link
US (1) US20220179919A1 (ja)
JP (1) JP7357316B2 (ja)
CN (1) CN112005254A (ja)
WO (1) WO2020194642A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112508237A (zh) * 2020-11-20 2021-03-16 北京师范大学 基于数据分析的雨型区域划分方法和实时雨型预测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113919160B (zh) * 2021-10-14 2022-09-27 南京审计大学 一种细粒度的城市犯罪预测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8949164B1 (en) 2011-09-08 2015-02-03 George O. Mohler Event forecasting system
US9129219B1 (en) 2014-06-30 2015-09-08 Palantir Technologies, Inc. Crime risk forecasting
WO2017222030A1 (ja) 2016-06-22 2017-12-28 真実 梶田 事象予測装置および事象予測方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177228B2 (ja) * 2003-10-24 2008-11-05 三菱電機株式会社 予測装置
JP2011192040A (ja) * 2010-03-15 2011-09-29 Kddi Corp 予測モデル学習装置、イベント予測装置、予測モデル学習方法およびプログラム
JP7087682B2 (ja) * 2018-05-30 2022-06-21 日本電信電話株式会社 時空間イベントデータ推定装置、方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8949164B1 (en) 2011-09-08 2015-02-03 George O. Mohler Event forecasting system
US9129219B1 (en) 2014-06-30 2015-09-08 Palantir Technologies, Inc. Crime risk forecasting
WO2017222030A1 (ja) 2016-06-22 2017-12-28 真実 梶田 事象予測装置および事象予測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAJITA, M. ET AL.: "Crime Prediction by Data-Driven Green's Function method", ARXIV, 2 April 2017 (2017-04-02), pages 1 - 13, XP081001695, Retrieved from the Internet <URL:https://arxiv.org/pdf/1704.00240vl.pdf> [retrieved on 20190521] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112508237A (zh) * 2020-11-20 2021-03-16 北京师范大学 基于数据分析的雨型区域划分方法和实时雨型预测方法
CN112508237B (zh) * 2020-11-20 2022-07-08 北京师范大学 基于数据分析的雨型区域划分方法和实时雨型预测方法

Also Published As

Publication number Publication date
CN112005254A (zh) 2020-11-27
JPWO2020194642A1 (ja) 2020-10-01
US20220179919A1 (en) 2022-06-09
JP7357316B2 (ja) 2023-10-06

Similar Documents

Publication Publication Date Title
Geginat et al. Electricity connections and firm performance in 183 countries
US20190340586A1 (en) Conducting optimized cross-blockchain currency transactions using machine learning
Catania et al. Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances
Ellington et al. Dynamic networks in large financial and economic systems
Zhang et al. The new market for volatility trading
Rao et al. Twitter sentiment analysis: How to hedge your bets in the stock markets
Afriyie et al. A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions
US20100114954A1 (en) Realtime popularity prediction for events and queries
Hong et al. Kernel smoothing for nested estimation with application to portfolio risk measurement
US20200184525A1 (en) Facilitating mitigation of dangerous activities
Chou et al. Range volatility: a review of models and empirical studies
US9269049B2 (en) Methods, apparatus, and systems for using a reduced attribute vector of panel data to determine an attribute of a user
Gençay et al. Economic links and credit spreads
US20160330590A1 (en) Predictive delivery of information based on device history
WO2020194642A1 (ja) 事象予測装置および事象予測方法
US20230267215A1 (en) Systems and methods for generating security improvement plans for entities
CN111524001B (zh) 用户授信额度的预测方法、装置和相关设备
JP6935928B2 (ja) 事象予測装置および事象予測方法
Klomp The Arab Spring and the international defense market
Orlando et al. A generalized two‐factor square‐root framework for modeling occurrences of natural catastrophes
Sidhu The impact of internet banking on bank performance: Empirical evidence from Indian Banks
Davydenko et al. Adaptation of cluster analysis methods in respect to vector space of social network analysis indicators for revealing suspicious government contracts
CN112256768B (zh) 模型离线训练评估方法、装置、介质和电子设备
Wang et al. A Trustworthiness evaluation framework in cloud computing for service selection
Vishwakarma et al. Machine learning algorithms for prediction of credit card defaulters—A comparative study

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518001

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19711235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19711235

Country of ref document: EP

Kind code of ref document: A1