WO2017222030A1 - 事象予測装置および事象予測方法 - Google Patents

事象予測装置および事象予測方法 Download PDF

Info

Publication number
WO2017222030A1
WO2017222030A1 PCT/JP2017/023107 JP2017023107W WO2017222030A1 WO 2017222030 A1 WO2017222030 A1 WO 2017222030A1 JP 2017023107 W JP2017023107 W JP 2017023107W WO 2017222030 A1 WO2017222030 A1 WO 2017222030A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
event
prediction
state
time
Prior art date
Application number
PCT/JP2017/023107
Other languages
English (en)
French (fr)
Inventor
真実 梶田
晴司 梶田
Original Assignee
真実 梶田
晴司 梶田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 真実 梶田, 晴司 梶田 filed Critical 真実 梶田
Priority to JP2018524169A priority Critical patent/JP6935928B2/ja
Publication of WO2017222030A1 publication Critical patent/WO2017222030A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the present invention relates to an event prediction apparatus and an event prediction method.
  • Crime occurrence is predicted using, for example, a Self-Exciting Point Process (SEPP) model.
  • SEPP Self-Exciting Point Process
  • the crime occurrence density at a specific position and a specific time in the future is indicated by the sum of the effects of past crime occurrence events. More specifically, the influence of a certain crime occurrence event on the occurrence density of a crime at a specific position and a specific time is determined by the distance between the predicted position and the past crime occurrence position, the predicted time and the past It is assumed that it is expressed as a function of the time between the crime occurrence time. Furthermore, it calculates
  • the accuracy may not be increased unlike in reality.
  • the influence g ( ⁇ t, ⁇ x) is constructed using the expected value maximization method, in the prediction by machine learning, the accuracy may not be high when the number of data is small.
  • an object of the present invention is to increase the prediction accuracy even when the number of data is small in an event occurrence prediction device that predicts the future occurrence density of a specific event based on historical data of a specific event that occurred in the past.
  • the present invention provides an event generator that predicts a value representing the state of n types of specific events that occurred in the past when n is a natural number.
  • the map F [ ⁇ (t) + ⁇ f ⁇ ] of the function vector ⁇ (t) are given, the map F [ ⁇ (t) + ⁇ f ⁇ ] is expressed as the state of the specific event.
  • a prediction formula construction unit that is obtained from a value to be represented and history data of external factors, and a prediction unit that inputs a value that specifies a future time in the function vector ⁇ (t) and predicts the occurrence density of the specific event. It is characterized by having.
  • the present invention relates to a cascade phenomenon in which one event affects a subsequent new event, and a value representing the future state of the specific event based on historical data of a value representing the state of the specific event in the past.
  • a value representing the state of the specific event is given by a function ⁇ of time, and the function ⁇ is a map F [ ⁇ + ⁇ f ⁇ ] of the external factor ⁇ f ⁇ and the function ⁇ .
  • the mapping F [ ⁇ + ⁇ f ⁇ ] is obtained from the history data of the value representing the state of the specific event in the past, and the prediction formula construction step of expressing the function ⁇ ⁇ ⁇ as a function of the time, And a prediction step of predicting a value representing the state of the specific event by inputting a value specifying a future time and region into the function ⁇ .
  • the present invention relates to a cascade phenomenon in which one event affects a subsequent new event, and a value representing the future state of the specific event based on historical data of a value representing the state of the specific event in the past.
  • the computer is given a value representing the state of the specific event by a function ⁇ of time, and the function ⁇ is a map F [ ⁇ + ⁇ f of the external factor ⁇ f ⁇ and the function ⁇ .
  • the map F [ ⁇ + ⁇ f ⁇ ] is obtained from the history data of the value representing the state of the specific event in the past, and the prediction formula construction step for expressing the function ⁇ ⁇ ⁇ as a function of the time; A function of inputting a value specifying a future time and region to the function ⁇ and predicting a value representing the state of the specific event is executed.
  • the present invention relates to a cascade phenomenon in which one event affects a subsequent new event, and a value representing the future state of the specific event based on historical data of a value representing the state of the specific event in the past.
  • a value representing the state of the specific event is given by a function ⁇ of time, and the function ⁇ is a map F [ ⁇ + ⁇ f ⁇ ] of the external factor ⁇ f ⁇ and the function ⁇ .
  • a prediction formula construction unit that obtains the map F [ ⁇ + ⁇ f ⁇ ] from historical data of values representing the state of the specific event in the past, and expresses the function ⁇ ⁇ ⁇ as a function of the time; A value that specifies a future time and region is input to the function ⁇ , a prediction unit that predicts a value representing the state of the specific event, a mobile terminal that transmits a value related to the state of the specific event as the history data, and When the new history data is obtained by receiving a new history data from the mobile terminal and the terminal having the communication function, the map F [ ⁇ + ⁇ f ⁇ is sent to the prediction formula construction unit. And a server that asks again.
  • the present invention is also an event generating device that predicts a value representing the state of n types of specific events that occurred in the past when n is a natural number, and the state of the i-th specific event at time t is a function ⁇ _i.
  • the map F [ ⁇ (t) + ⁇ f ⁇ ] of the function vector ⁇ (t) and the value representing the state of the specific event and the external An event prediction comprising: a prediction formula construction unit obtained from factor history data; and a prediction unit that inputs a value specifying a future time into the function vector ⁇ (t) and predicts the occurrence density of the specific event.
  • the prediction accuracy can be increased even when the number of data is small.
  • FIG. 1 is a block diagram of an embodiment of an event occurrence prediction apparatus according to the present invention.
  • the occurrence density of crimes such as residence intrusion at a specific time and area is predicted.
  • the area indicates a position on the map where the crime occurs.
  • the specific event for predicting the occurrence density is, for example, a crime such as fraud on the Internet or a nuisance call
  • the area indicates a location on the Internet such as a URL or a telephone number.
  • the event occurrence prediction apparatus has a prediction formula construction unit 10 and a prediction unit 30.
  • the prediction formula construction unit 10 is given the occurrence density of the specific event by the function ⁇ (t, x) of the region specific variable x that specifies the generation time t of the specific event and the generation region of the specific event, and the function ⁇ (t , X) is given by the external factor ⁇ f ⁇ and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] of the function ⁇ (t, x), and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] Is obtained from the history data of the specific event that occurred in the past, and the function ⁇ (t, x) is expressed as a function of the occurrence time t and the region specific variable x.
  • the external factor ⁇ f ⁇ is a factor that affects the occurrence density of specific events other than environmental factors such as weather conditions and geographical structure, and historical data of specific events such as patrol status.
  • the prediction formula construction unit 10 includes, for example, a history data group storage unit 12, a kernel function construction unit 14, a kernel function storage unit 16, a prediction formula construction unit 18, a prediction formula storage unit 20, and a history data reception unit 22.
  • the prediction unit 30 uses the prediction formula constructed by the prediction formula construction unit 10, that is, the function g (t, x) and data, to calculate the occurrence density of a specific event as a function of the date and time t and the location x.
  • the event occurrence prediction device may include a display unit 40.
  • the display unit 40 displays the occurrence density of the specific event calculated by the prediction unit 30 in a recognizable state.
  • the display unit 40 displays, for example, contour lines of the occurrence density of specific events on a map.
  • the prediction formula construction unit 10 solves the problem of constructing the map F using the past history data group of specific events.
  • the specific event occurrence history data group is a set of a plurality of history data.
  • the history data is a set of a time t when a specific event has occurred and a region specifying variable x that specifies the region in which the specific event has occurred.
  • An index indicating the type of specific event may be included in the history data.
  • the map F [ ⁇ (t, x) + ⁇ f ⁇ ] can be assumed to be a solution of a partial differential equation, for example.
  • the solution of the partial differential equation can be written using, for example, a kernel function (sometimes called a Green function, a response function, or an integral kernel).
  • a kernel function sometimes called a Green function, a response function, or an integral kernel.
  • the generation density ⁇ (t, x) can be assumed to satisfy the following equation, for example.
  • the kernel function g (t, t ′, x, x ′) can be written as a function of a time difference and a distance difference between a past event and the current time space.
  • ⁇ (t, k) is obtained using past crime history data, that is, the occurrence density ⁇ (t, k) at a certain time t and region k.
  • the generation density ⁇ (t, x) in the past time t and region x takes a positive integer value.
  • ⁇ (t i , x i ) 1 when no other event occurs at the same time and the same region. .
  • g (z, k) is obtained using the ⁇ .
  • the predicted crime density ⁇ (t, x) is given by substituting it into the space-time kernel term of the Self-Exciting Point Process (SEPP) model.
  • SEPP Self-Exciting Point Process
  • ⁇ (t, x) ⁇ ti ⁇ t g (t ⁇ t i , x ⁇ x i ) + ⁇ b (x) (5)
  • ⁇ b (x) ⁇ 0 T dt ⁇ (t, x) / T (6)
  • the sum of (5) is the sum of all the specific events that occurred before time t.
  • ⁇ b is a background contribution term
  • T is the time domain of the original data.
  • the background contribution term ⁇ b is obtained by the above equation, but is not limited thereto.
  • FIG. 2 is a flowchart of an event occurrence prediction method using the event occurrence prediction apparatus of the present embodiment.
  • This event occurrence prediction method is divided into a prediction formula construction phase and a prediction phase.
  • the prediction formula construction phase the occurrence density of the specific event is given by the function ⁇ (t, x) of the region specific variable x that specifies the generation time t of the specific event and the generation region of the specific event, and the function ⁇ (t, x) is given by the external factor ⁇ f ⁇ and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] of the function ⁇ (t, x), and the map F [ ⁇ (t, x) + ⁇ f ⁇ ] is obtained from the history data of the specific event that occurred in the past, and the function ⁇ (t, x) is expressed as a function of the generation time t and the region specific variable x.
  • the occurrence density of the specific event is predicted using the map F [ ⁇ (t, x) + ⁇ f ⁇ ] and past data. More specifically, it is as follows.
  • past history data is accumulated in the history data group storage unit 12 (S11). There may be a plurality of past history data.
  • the kernel function construction unit 14 uses the past history data group stored in the history data group storage unit 12 to obtain the kernel function g (z, k) from the equations (3) and (4) ( S12).
  • the kernel function g (z, k) derived by the kernel function construction unit 14 is stored in the kernel function storage unit 16. This kernel function is stored as a table of values at the discretized time z and the region specifying variable k that specifies the discretized region.
  • the prediction formula construction unit 18 predicts the occurrence density of the specific event from Formula (5) and Formula (6).
  • a function that gives the predicted crime density ⁇ (t, x) is constructed (S13).
  • the predicted crime density ⁇ (t, x) constructed by the prediction formula construction unit 18 is stored in the prediction formula storage unit 20.
  • the predicted crime density ⁇ is stored as a table of values in the discretized time t and the region specifying variable that specifies the discretized region.
  • the history data receiving unit 22 monitors the input of new history data (S14). For example, when a general user inputs the fact that a crime has occurred through a portable terminal 24 such as a smartphone, the history data is received by the history data receiving unit 22. It is assumed that an application for inputting new history data and transmitting the history data to the history data receiving unit 22 is installed in the mobile terminal 24 when a general user witnesses a crime. Alternatively, history data may be transmitted to the history data receiving unit 22 from a police system 26 possessed by an information provider such as the police.
  • the history data receiving unit 22 repeats monitoring every time new history data is input.
  • the history data is stored in the history data group storage unit 12, and the process returns to step S11.
  • steps S11 to S13 are performed again, and a new function of predicted crime density ⁇ is constructed and stored in the prediction formula storage unit 20.
  • the predicted time may be a specific time or may have a width.
  • the predicted time is, for example, a predetermined period from the present time.
  • the area to be predicted may be a specific position or may have a spread.
  • the region to be predicted is, for example, the entire region in which history data is collected for the construction of a prediction formula.
  • the prediction unit 30 sets the time and area to be predicted.
  • the prediction unit 30 receives the prediction formula from the prediction formula storage unit 20 and calculates the predicted crime density ⁇ (S22). If the predicted time and area have a width or spread, the calculation of the predicted crime density ⁇ is repeated for each discretized time and area.
  • the calculated predicted crime density ⁇ is displayed on the display unit 40 (S23).
  • the predicted crime density ⁇ displayed so as to be recognizable by human beings is referred to by a police officer or the like and used as a reference for patrol activities.
  • the predicted crime density ⁇ displayed on the mobile terminal 24 is used for the action of the user of the mobile terminal 24 avoiding the crime.
  • FIG. 3 is a diagram illustrating an evaluation example of the dependence of the kernel function g on the time t in the crime occurrence rate prediction using the event occurrence prediction apparatus of the present embodiment.
  • FIG. 4 is a diagram illustrating an evaluation example of the dependency of the kernel function g on the region x in the crime occurrence density prediction using the event occurrence prediction apparatus of the present embodiment.
  • the horizontal axis in FIG. 3 is the time between time t, and the vertical axis is the value of the kernel function g.
  • the horizontal axis in FIG. 4 is the distance between the regions x, and the vertical axis is the value of the kernel function g.
  • the kernel function g tends to decrease as the time increases. However, as shown in FIG. 3, the kernel function g is not monotonically decreasing with respect to time. Also, as shown in FIG. 4, the kernel function g decreases rapidly as the distance between the regions x increases.
  • FIG. 5 is a contour line showing a crime occurrence prediction result using the event occurrence prediction apparatus of the present embodiment.
  • FIG. 5 is a contour line of predicted crime density calculated using history data of 738 crimes in a certain city. The data up to the day before the day of the prediction was used to calculate the predicted crime density. It does not include data for the day you want to predict. Further, in FIG. 5, crime events that actually occurred during the predicted period (one day) are also shown by crosses.
  • the accuracy of the crime occurrence prediction result using the event occurrence prediction device of the present embodiment is the crime distance ⁇ x (for example, scaled by half the spatial resolution) and time ⁇ t (for example, 7 days) of the past crime occurrence event.
  • the accuracy of the prediction result by the method Proactive Hotspot Method
  • the accuracy is improved by approximately 30%.
  • the accuracy is compared by dividing the number of crimes that could be predicted among actual crimes by dividing the actual number of crimes, and in the prediction, the prediction target area was divided into 1 km square cells, and 10% of them were criminal risk Designated to the area.
  • the prediction accuracy is higher than that of the Proactive Hotspot Method.
  • the above-described embodiment is for predicting the future occurrence density for one specific event, but it can also be applied to the prediction of cascade phenomena affected by multiple variables. Focusing on financial data, for example, the purchase and sale of real estate in each country, the transaction of bonds and stocks such as government bonds and corporate bonds, the production and sale of real things, or the receipt of cash from the provision of services, etc. affect each other.
  • the rate in exchange transactions changes. This change is not influenced by the state of real estate in each country at the moment of transaction, but rather by the past transaction state.
  • n is a natural number.
  • the state of the specific event may be an occurrence density or a value such as an exchange rate.
  • the state variable of the i-th specific event is given by the function ⁇ _i (t).
  • the prediction formula construction unit can obtain the map F [ ⁇ (t) + ⁇ f ⁇ ] from the state value of the specific event that has occurred in the past and the history data of the external factor.
  • the prediction unit inputs a value specifying a future time to the function vector ⁇ (t), and predicts the state value of the specific event.
  • the above-described embodiment is a case where the function vector ⁇ (t) is limited to the function ⁇ (t, x) of the region specific variable x that specifies the time t and the specific event occurrence region.
  • the entire generation density ⁇ (t, x) of each region indicated by x can be regarded as a function vector ⁇ (t).
  • it can also be used to predict a cascade phenomenon in which past states of a plurality of events affect each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Alarm Systems (AREA)

Abstract

【課題】過去に発生した特定事象の履歴データに基づいて特定事象の将来の発生密度を予測する事象発生予測装置において、データ数が少ない場合も予測精度を上げる。 【解決手段】事象発生予測装置は、予測式構築部10と、予測部30と、を備える。予測式構築部10は、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で前記特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は外部因子{f}と関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、写像F[ρ(t,x)+{f}]を過去に発生した特定事象の履歴データから求めて、関数ρ(t,x)を発生時刻tおよび領域特定変数xの関数として表現する。予測部30は、関数ρに将来の時刻および領域を特定する値を入力して、特定事象の発生密度を予測する予測部と、を有することを特徴とする。

Description

事象予測装置および事象予測方法
 本発明は、事象予測装置および事象予測方法に関する。
 米国カリフォルニア州で犯罪発生の可能性が高い要注意エリアを警察官が重点的に見回ることにより、その後の犯罪発生が抑制されたという事例がある。また、地震の余震予測のために提案されたアルゴリズムを用いて犯罪の発生密度の予測精度を向上させた例がある。
 犯罪発生の予測は、たとえばSelf-Exciting Point Process(SEPP)モデルを用いて行われる。SEPPモデルでは、特定の位置、将来の特定の時刻における犯罪の発生密度を、過去の犯罪発生事象による影響の総和で示す。より具体的には、ある過去の犯罪発生事象の犯罪の特定の位置および特定の時刻における発生密度に対する影響は、予測する位置と過去の犯罪の発生位置との距離と、予測する時刻と過去の犯罪の発生時刻との間の時間との関数で表されるとする。さらに、過去に発生した犯罪のそれぞれについて求めた発生密度に対する影響を足し合わせることによって求める。
 過去の犯罪発生事象の犯罪発生密度に対する影響を、現在着目する位置・時刻と過去の事象の位置・時刻との間の距離Δxおよび時間Δt(それぞれ適切な長さ、時間を単位にスケールする)を用いてg(Δt,Δx)と書くことにすると、g(Δt,Δx)=1/((1+Δt)(1+Δx))と表現する方法がある(Prospective Hotspot Method)。期待値最大化法(Expectation Maximization Algorithm)を用いて、過去の犯罪発生事象の履歴データから過去の犯罪発生事象の犯罪の位置xおよび時刻tにおける発生密度に対する影響g(Δt,Δx)を構築する方法もある。
米国特許第8949164号 米国特許第9129219号
 過去の発生事象である犯罪との距離差Δxおよび時間差Δtにおける発生密度に対する影響g(Δt,Δx)を特定の関数で表現した場合、現実とは異なり、精度が上がらない場合がある。また、期待値最大化法を用いて影響g(Δt,Δx)を構築する場合、機械学習による予測においては、データ数が少ない場合に精度が高く出ない場合がある。
 そこで、本発明は、過去に発生した特定事象の履歴データに基づいて特定事象の将来の発生密度を予測する事象発生予測装置において、データ数が少ない場合も予測精度を上げることを目的とする。
 上述の目的を達成するため、本発明は、nを自然数としたときに過去に発生したn種の特定事象の状態を表す値を予測する事象発生装置において、i番目の特定事象の時刻tの状態が関数ρ_i(t)で与えられ、かつ、前記関数ρ_i(t)の関数ベクトルΡ(t)={ρ_1(t),…,ρ_i(t),…,ρ_n(t)}は外部因子ベクトル{f}と前記関数ベクトルΡ(t)の写像F[Ρ(t)+{f}]で与えられるとして、前記写像F[Ρ(t)+{f}]を前記特定事象の状態を表す値と外部因子の履歴データから求める予測式構築部と、前記関数ベクトルΡ(t)に将来の時刻を特定する値を入力して、前記特定事象の発生密度を予測する予測部と、を有することを特徴とする。
 また、本発明は、1つの事象が次に引き続く新たな事象に影響を与えるカスケード現象一般に対し、過去の特定事象の状態を表す値の履歴データに基づいて前記特定事象の将来の状態を表す値を予測する事象予測方法において、時刻の関数Ρで前記特定事象の状態を表す値が与えられ、かつ、前記関数Ρは前記外部因子{f}と前記関数Ρの写像F[Ρ+{f}]で与えられるとして、前記写像F[Ρ+{f}]を過去の前記特定事象の状態を表す値の履歴データから求めて、前記関数Ρを前記時刻の関数として表現する予測式構築ステップと、前記関数Ρに将来の時刻および領域を特定する値を入力して、前記特定事象の状態を表す値を予測する予測ステップと、を有することを特徴とする。
 また、本発明は、1つの事象が次に引き続く新たな事象に影響を与えるカスケード現象一般に対し、過去の特定事象の状態を表す値の履歴データに基づいて前記特定事象の将来の状態を表す値を予測する事象予測プログラムにおいて、計算機に時刻の関数Ρで前記特定事象の状態を表す値が与えられ、かつ、前記関数Ρは前記外部因子{f}と前記関数Ρの写像F[Ρ+{f}]で与えられるとして、前記写像F[Ρ+{f}]を過去の前記特定事象の状態を表す値の履歴データから求めて、前記関数Ρを前記時刻の関数として表現させる予測式構築ステップと、前記関数Ρに将来の時刻および領域を特定する値を入力して、前記特定事象の状態を表す値を予測させる予測ステップと、を実行させることを特徴とする。
 また、本発明は、1つの事象が次に引き続く新たな事象に影響を与えるカスケード現象一般に対し、過去の特定事象の状態を表す値の履歴データに基づいて前記特定事象の将来の状態を表す値を予測する事象予測システムにおいて、時刻の関数Ρで前記特定事象の状態を表す値が与えられ、かつ、前記関数Ρは前記外部因子{f}と前記関数Ρの写像F[Ρ+{f}]で与えられるとして、前記写像F[Ρ+{f}]を過去の前記特定事象の状態を表す値の履歴データから求めて、前記関数Ρを前記時刻の関数として表現させる予測式構築部と、前記関数Ρに将来の時刻および領域を特定する値を入力して、前記特定事象の状態を表す値を予測する予測部と、前記特定事象の状態に関する値を前記履歴データとして送信する携帯端末及びそれに準じる通信機能を持った端末と、前記携帯端末から新たな前記履歴データを受信してして新たな前記履歴データが得られたときに前記予測式構築部に前記写像F[Ρ+{f}]を再度求めさせるサーバーと、を有することを特徴とする。
 また、本発明は、nを自然数としたときに過去に発生したn種の特定事象の状態を表す値を予測する事象発生装置であって、i番目の特定事象の時刻tの状態が関数ρ_i(t)で与えられ、かつ、前記関数ρ_i(t)の関数ベクトルΡ(t)={ρ_1(t),…,ρ_i(t),…,ρ_n(t)}は外部因子ベクトル{f}と前記関数ベクトルΡ(t)の写像F[Ρ(t)+{f}]で与えられるとして、前記写像F[Ρ(t)+{f}]を前記特定事象の状態を表す値と外部因子の履歴データから求める予測式構築部と、前記関数ベクトルΡ(t)に将来の時刻を特定する値を入力して、前記特定事象の発生密度を予測する予測部と、を備えた事象予測装置とともに用いる携帯端末にインストールされるプログラムにおいて、携帯端末に、前記事象予測装置に前記特定事象の状態を表す値を前記履歴データとして送信させる、ことを特徴とする。
 本発明によれば、過去に発生した特定事象の履歴データに基づいて特定事象の将来の発生密度を予測する事象発生予測装置において、データ数が少ない場合も予測精度を上げることができる。
本発明に係る事象発生予測装置の一実施の形態におけるブロック図である。 本発明に係る事象発生予測装置の一実施の形態を用いた事象発生予測方法のフローチャートである。 本発明に係る事象発生予測装置の一実施の形態を用いた犯罪発生率予測におけるカーネル関数gの時刻t依存性の評価例を示す図である。 本発明に係る事象発生予測装置の一実施の形態を用いた犯罪発生率予測におけるカーネル関数gの領域x依存性の評価例を示す図である。 本発明に係る事象発生予測装置の一実施の形態を用いた犯罪発生率予測結果を示す等高線である。
 本発明に係る事象発生予測装置の一実施の形態を、図面を参照して説明する。なお、この実施の形態は単なる例示であり、本発明はこれに限定されない。同一または類似の構成には同一の符号を付し、重複する説明は省略する。
 図1は、本発明に係る事象発生予測装置の一実施の形態におけるブロック図である。
 本実施の形態では、特定の時刻および領域における住居侵入などの犯罪(特定事象)の発生密度を予測する。ここで、領域とは、犯罪が発生する地図上の位置を示すものである。発生密度を予測する特定事象が、たとえばインターネット上での詐欺などの犯罪や迷惑電話の場合、領域はURLなどのインターネット上の位置や電話番号を示すものとなる。
 事象発生予測装置は、予測式構築部10と、予測部30とを有している。
 予測式構築部10は、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は外部因子{f}と関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、写像F[ρ(t,x)+{f}]を過去に発生した特定事象の履歴データから求めて、関数ρ(t,x)を発生時刻tおよび領域特定変数xの関数として表現する。外部因子{f}とは、天候条件、地理構造などの環境要因や、パトロール状況などの特定事象の履歴データ以外の特定事象の発生密度に影響を与える因子である。予測式構築部10は、たとえば履歴データ群記憶部12とカーネル関数構築部14とカーネル関数記憶部16と予測式構築部18と予測式記憶部20と履歴データ受信部22を有している。
 予測部30は、予測式構築部10が構築した予測式、すなわち、関数g(t,x)とデータを使って、特定事象の発生密度を日時t、場所xの関数として算出する。
 事象発生予測装置は、表示部40を備えていてもよい。表示部40は、予測部30が算出した特定事象の発生密度を認識可能な状態に表示する。表示部40は、たとえば地図上に、特定事象の発生密度の等高線を表示する。
 次に、本実施の形態における、特定事象の発生密度の算出方法について説明する。時刻t、領域xにおける特定事象の発生密度ρ(t,x)を考える。この発生密度ρ(t,x)は、それ自身の写像Fで表されると仮定する。つまり、
  ρ(t,x)=F[ρ(t,x)+{f}]   …(1)
であるとする。ここで{f}は季節、環境要因、パトロール状況などの外部因子が考えられる。
 予測式構築部10は、過去の特定事象の発生履歴データ群を用いて、写像Fを構築するという問題を解く。ここで、特定事象の発生履歴データ群とは、複数の履歴データの集合である。履歴データとは、特定事象が発生した時刻tおよび発生した領域を特定する領域特定変数xの組である。履歴データに特定事象の種類を示すインデックスを含めてもよい。
 写像F[ρ(t,x)+{f}]は、たとえば、偏微分方程式の解と仮定することができる。
 また、偏微分方程式の解は、たとえばカーネル関数(グリーン関数、応答関数、積分核と呼ばれることもある)を使って書くことができる。
 発生密度ρ(t,x)は、たとえば、以下の方程式を満たすと仮定することができる。
  ρ(t,x)=∫dx’∫dt’g(t,t’,x,x’)(ρ(t’,x’)+{f})+∫dx’g(t,0,x,x’)ρ(t=0,x)   …(2)
 なお、右辺第一項のカーネル関数にかかるρ(t,x)に関する関数形や外部因子依存性と、第二項の形式には、幾つかのバリエーションが可能である。ここでは、最も単純な一例を挙げて議論を進めることにする。
 また、カーネル関数g(t,t’,x,x’)は過去の事象と現在の時空間との時間差、距離差の関数で書けると仮定できる場合がある。たとえば、発展方程式の形は、
  ρ(t,x)=∫dx’∫dt’g(t-t’,x-x’)ρ(t’,x’)+∫dx’g(t,x-x’)ρ(t=0,x)   …(2)
などが考えられる。
 この発展方程式を領域xについてフーリエ変換し、時刻tについてラプラス変換すると、以下の式が得られる。
  g(z,k)=φ(z,k)/(φ(z,k)+1)   …(3)
  φ(t,k)=<ρ(t+t,k)/ρ(t,k)>t0   …(4)
 過去の犯罪履歴データ、すなわち、ある時刻t、領域kにおける発生密度ρ(t,k)を用いて、φ(t,k)が求められる。ここで、過去の時刻t、領域xにおける発生密度ρ(t,x)は、正の整数値をとる。i番目に発生した特定事象について、発生時刻をt、発生領域xとすると、同時刻、同領域に他の事象が発生しなかった場合、ρ(t,x)=1となる。φ(t,k)が得られたら、そのφを用いてg(z,k)が得られる。g(t,x)が求められたら、予測犯罪密度λ(t,x)は、Self-Exciting Point Process(SEPP)モデルの時空間カーネル項に代入することで与えられる。
 λ(t,x)の計算方法の一例を以下に挙げる。
   λ(t,x)=Σti<tg(t-t,x-x)+ρ(x)   …(5)
   ρ(x)=∫ dtρ(t,x)/T   …(6)
ここで、(5)の和は時刻tより前に発生した特定事象についてのすべての和である。また、ρはバックグラウンドの寄与項であり、Tは元データの時間領域である。なお、ここでは、バックグラウンドの寄与項ρは上式で求めたが、これに限定されるものではない。
 図2は、本実施の形態の事象発生予測装置を用いた事象発生予測方法のフローチャートである。
 この事象発生予測方法は、予測式構築フェーズと、予測フェーズに分けられる。予測式構築フェーズでは、特定事象の発生時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)で特定事象の発生密度が与えられ、かつ、関数ρ(t,x)は前記外部因子{f}と前記関数ρ(t,x)の写像F[ρ(t,x)+{f}]で与えられるとして、前記写像F[ρ(t,x)+{f}]を過去に発生した前記特定事象の履歴データから求めて、関数ρ(t,x)を前記発生時刻tおよび前記領域特定変数xの関数として表現する。予測フェーズでは、写像F[ρ(t,x)+{f}]と過去データを使って、前記特定事象の発生密度を予測する。より、具体的には次のとおりである。
 予測式構築フェーズでは、まず、過去の履歴データを履歴データ群記憶部12に蓄積する(S11)。過去の履歴データは、複数であってもよい。
 次に、カーネル関数構築部14は、履歴データ群記憶部12に蓄積された過去の履歴データ群を用いて、式(3)および式(4)からカーネル関数g(z,k)を求める(S12)。カーネル関数構築部14が導出したカーネル関数g(z,k)は、カーネル関数記憶部16に記憶される。このカーネル関数は、離散化した時刻z、および、離散化した領域を特定する領域特定変数kにおける値の表として記憶される。
 カーネル関数g(z,k)が得られたら、ラプラス逆変換、フーリエ逆変換を適用すると、予測式構築部18は、式(5)および式(6)から、特定事象の発生密度を予測する予測犯罪密度λ(t,x)を与える関数を構築する(S13)。予測式構築部18が構築した予測犯罪密度λ(t,x)は、予測式記憶部20に記憶される。この予測犯罪密度λは、離散化した時刻t、および、離散化した領域を特定する領域特定変数における値の表として記憶される。
 予測犯罪密度λの関数が構築されたら、履歴データ受信部22は、新たな履歴データが入力されるのを監視する(S14)。たとえば一般ユーザがスマートフォンなどの携帯端末24を通じて犯罪が発生したという事実を入力すると、その履歴データが履歴データ受信部22に受信される。携帯端末24には、一般ユーザが、犯罪を目撃した際などに、新たな履歴データを入力し、その履歴データを履歴データ受信部22に対して送信するアプリケーションがインストールされているものとする。あるいは、警察などの情報提供機関が有する警察システム26から履歴データ受信部22に履歴データが伝達されてもよい。
 履歴データ受信部22は、新たな履歴データが入力されるたびに繰り返し、監視を続ける。履歴データ受信部22に新たな履歴データが入力されたら、その履歴データは履歴データ群記憶部12に記憶され、工程S11に戻る。その結果、再び、工程S11~工程S13が行われ、新たな予測犯罪密度λの関数が構築されて、予測式記憶部20に記憶される。
 予測フェーズでは、まず、予測犯罪密度を予測する時刻および領域を設定する(S21)。予測する時刻は、特定の時刻でもよいし、幅をもっていてもよい。予測時間として、たとえば現在から所定の期間とする。予測する領域としては、特定の位置でもよいし、広がりをもっていてもよい。予測する領域として、たとえば予測式の構築のために履歴データを収集している領域全体とする。予測する時刻および領域の設定は、予測部30が行う。
 次に、工程S21で設定した時刻および領域において、予測部30は予測式記憶部20から予測式を受信して、予測犯罪密度λを計算する(S22)。予測する時刻および領域が幅あるいは広がりを持っている場合には、離散化された時刻および領域について、それぞれ予測犯罪密度λの計算を繰り返す。
 計算された予測犯罪密度λは、表示部40において表示される(S23)。人間が認識可能なように表示された予測犯罪密度λは、警察官などによって参照され、パトロール活動の参考とされる。あるいは、携帯端末24に表示された予測犯罪密度λは、携帯端末24のユーザが犯罪を避ける行動に用いられる。
 過去に発生した犯罪は、時間的・空間的に離れた位置において、次の犯罪を誘発する。時間差および距離が大きくなるほど、誘発する影響度は小さくなる傾向にある。たとえば、カリフォルニア州ロサンゼルスにおける不法侵入事件では、犯罪が発生すると、その1~2日後と7日後に、1m圏内での再発生密度が高くなる。過去の犯罪の履歴データそれぞれが、将来のある時刻・ある位置における犯罪を誘発すると考えると、将来の犯罪の発生密度ρは、過去の犯罪の発生密度ρの写像Fとして与えられることになる。そこで、本実施の形態では、ρ(t,x)=F[ρ(t,x)+{f}]と仮定し、犯罪の発生密度の密度場に対するカーネル関数を履歴データから構築している。
 図3は、本実施の形態の事象発生予測装置を用いた犯罪発生率予測におけるカーネル関数gの時刻t依存性の評価例を示す図である。図4は、本実施の形態の事象発生予測装置を用いた犯罪発生密度予測におけるカーネル関数gの領域x依存性の評価例を示す図である。図3の横軸は時刻tの間の時間、縦軸はカーネル関数gの値である。図4の横軸は領域xの間の距離、縦軸はカーネル関数gの値である。
 図3に示すように、カーネル関数gは時間が大きくなるにしたがって、減少する傾向にある。しかし、図3に示すように、カーネル関数gは時間に対して単調減少ではない。また、図4に示すように、カーネル関数gは領域xの間の距離が大きくなるにしたがって、急激に小さくなっている。
 図5は、本実施の形態の事象発生予測装置を用いた犯罪発生予測結果を示す等高線である。図5は、ある都市の738件の犯罪の履歴データを用いて計算した予測犯罪密度の等高線である。予測犯罪密度の計算には予測したい日の前日までのデータを使った。予測したい日のデータは含まれていない。また、図5には、予測した期間(1日)において、実際に発生した犯罪イベントを×記号で併せて示した。
 図5に示す通り、予測犯罪密度が高い位置において、実際に犯罪が発生している場合が多いことがわかる。
 本実施の形態の事象発生予測装置を用いた犯罪発生予測結果の精度は、過去の犯罪発生事象の犯罪の距離Δx(例えば空間分解能の半分の長さでスケールする)および時間Δt(例えば7日間でスケールする)における発生密度に対する影響g(Δt,Δx)をg(t,Δx)=1/((1+Δt)(1+Δx))と表現する方法(Prospective Hotspot Method)による予測結果の精度と比較して、概ね30%の精度向上となる。精度は、実際の犯罪のうち予測できた犯罪の件数を実際の犯罪件数で除したもので比較し、予測においては、予測対象領域を1km四方のセルに分割し、そのうちの10%を犯罪危険地域に指定した。
 このように本実施の形態によれば、予測精度は、Prospective Hotspot Methodよりも向上していることがわかる。
 なお、上述の実施の形態は、特定事象として犯罪を例として説明したが、ある1件の事象が新たに続く次の事象を誘発してカスケードする現象一般に適用可能である。特に、この誘発する割合が時間tおよび空間xの関数として見たときに時空間相関があり、かつその法則性にある程度の定常性があると予測される場合に、より高い精度を示すと期待される。このような事象として、たとえば地震の余震現象や空爆の被害状況などについては、過去にカスケード現象との関連が議論されている。さらには、自殺、疫病のパンデミック、ソーシャルネットワーキングサービス(SNS)上での勧誘・宗教・ねずみ講などの拡散、迷惑電話、服装などの流行、株価・金融商品の動向、選挙における投票、免疫系の異常事象、消費者の購買行動、ウェブサイト上の広告のクリック、ネットワーク上でのショッピングなどの需要予測、お見合いなどのマッチングにおける適合、サイバーテロを含むテロの予測、インフラの劣化予測、ソフトウェア・ハードウェアの故障や異常検知などについても、このようなカーネル関数を考えられると期待される。
 上述の実施の形態は、一つの特定事象を対象としてその将来の発生密度を予測するものであるが、多変数が影響しあうカスケード現象の予測にも応用できる。たとえば金融データに着目すると、それぞれの国における不動産の売買、国債・社債などの債権や株式の取引、現実の物の生産・販売、あるいはサービスの提供などによる現金の収受などが互いに影響しあい、外国為替取引におけるレート(為替レート)が変化する。この変化は、取引の瞬間における各国の不動産の状態に影響を受けるというよりも、過去の取引状態などにカスケード的に影響を受けている。
 n種の特定事象についてそれぞれの状態を予測する方法について考える。nは自然数である。ここで、特定事象の状態とは、発生密度でもよいし、為替レートなどの値であってもよい。i番目の特定事象の状態変数が関数ρ_i(t)で与えられるとする。
 n種の要素を持つ状態変数を与えるの関数ベクトルΡ(t)={ρ_1(t),…,ρ_i(t),…,ρ_n(t)}を考える。カスケード現象であれば、この状態変数ベクトルΡ(t)は、この関数ベクトルΡ(t)および外部因子ベクトル{f}の写像F[Ρ(t)+{f}]で与えられる。
 上述の実施の形態と同様にして、予測式構築部は、写像F[Ρ(t)+{f}]を過去に発生した特定事象の状態値と外部因子の履歴データから求めることができる。関数ベクトルΡ(t)が得られたら、予測部は、この関数ベクトルΡ(t)に将来の時刻を特定する値を入力して、特定事象の状態値を予測する。
 上述の実施の形態は、関数ベクトルΡ(t)が時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)であると限定した場合である。xを離散化した場合には、xが示す各領域の発生密度ρ(t,x)の全体を関数ベクトルΡ(t)とみなすことができる。
 たとえば2つの特定事象の状態値を予測する場合は、以下の通りである。2つの特定事象の状態値を与える状態関数をそれぞれρ(t)、ρ(t)とする。また、それぞれの過去の状態がそれ自身および他の特定事象に与える影響を表現したグリーン関数としてgaa(t)、gab(t)、gba(t)、gbb(t)を導入する。このとき、発展方程式は、以下のように書ける。
Figure JPOXMLDOC01-appb-M000001
ただし、外部因子の影響はないとした。
 このように、本実施の形態では、複数の事象の過去の状態が影響しあうカスケード現象の予測にも用いることができる。
10…予測式構築部、12…履歴データ群記憶部、14…カーネル関数構築部、16…カーネル関数記憶部、18…予測式構築部、20…予測式記憶部、22…履歴データ受信部、24…携帯端末、26…警察システム、30…予測部、40…表示部
 

Claims (11)

  1.  nを自然数としたときに過去に発生したn種の特定事象の状態を表す値を予測する事象発生装置において、
     i番目の特定事象の時刻tの状態が関数ρ_i(t)で与えられ、かつ、前記関数ρ_i(t)の関数ベクトルΡ(t)={ρ_1(t),…,ρ_i(t),…,ρ_n(t)}は外部因子ベクトル{f}と前記関数ベクトルΡ(t)の写像F[Ρ(t)+{f}]で与えられるとして、前記写像F[Ρ(t)+{f}]を前記特定事象の状態を表す値と外部因子の履歴データから求める予測式構築部と、
     前記関数ベクトルΡ(t)に将来の時刻を特定する値を入力して、前記特定事象の発生密度を予測する予測部と、
     を有することを特徴とする事象予測装置。
  2.  前記関数ベクトルΡ(t)は、前記時刻tおよび特定事象の発生領域を特定する領域特定変数xの関数ρ(t,x)であることを特徴とする請求項1に記載の事象予測装置。
  3.  前記予測式構築部は、前記関数ρ(t,x)の偏微分方程式の解として写像F[ρ(t,x)+{f}]を前記履歴データを用いて再構築する問題を解く導出部を備えることを特徴とする請求項2に記載の事象発生予測装置。
  4.  前記予測式構築部は、前記履歴データを用いて前記関数ρ(t,x)のカーネル関数を導出する導出部を備え、
     前記関数ρ(t,x)は、ρ(t,x)=∫dx’∫dt’g(t,t’,x,x’)M(ρ(t’,x’),{f},ρb)+N(g(t,t’,x,x’),ρ(t,x),{f},ρb)で表現される発展方程式を満足する、
     但し、M(ρ(t’,x’),{f},ρb)、及びN(g(t,t’,x,x’),ρ(t,x),{f},ρb)はρ(t,x)に関する線形項であり、ρbはρ(t,x)の時間平均によって決められる量である、
     ことを特徴とする請求項3に記載の事象発生予測装置。
  5.  過去の事象と現在の時空間との時間差t-t’、位置の差x-x’の関数であるカーネル関数を用いて前記関数ρ(t,x)はρ(t,x)=∫dx’∫dt’g(t-t’,x-x’)M(ρ(t’,x’),{f},ρb)+N(g(t,x),ρ(t,x),{f},ρb)で表現される発展方程式を満足するとする、
     但し、M(ρ(t’,x’),{f},ρb)、及びN(g(t,x),ρ(t,x),{f},ρb)はρ(t,x)に関する線形項であり、ρbはρ(t,x)の時間平均によって決められる量である、
     ことを特徴とする請求項4に記載の事象発生予測装置。
  6.  前記カーネル関数g(t,x)は、特定事象が発生した前記時刻tおよび発生した領域を特定する前記領域特定変数xの組である履歴データを前記発展方程式の解に複数入力してサンプル平均を測定することで定められ、
     前記予測部は、前記時刻tおよび前記領域特定変数xにおける事象発生率λ(x,t)を、Self-Exciting Point Process(SEPP)モデルの時空間カーネル項に代入することで求める、
     ことを特徴とする請求項5に記載の事象発生予測装置。
  7.  新たな前記履歴データを収集して新たな前記履歴データが得られたときに前記予測式構築部に前記写像F[Ρ(t)+{f}]を再度求めさせるサーバーをさらに有することを特徴とする請求項1ないし請求項6のいずれか1項に記載の事象発生予測装置。
  8.  1つの事象が次に引き続く新たな事象に影響を与えるカスケード現象一般に対し、過去の特定事象の状態を表す値の履歴データに基づいて前記特定事象の将来の状態を表す値を予測する事象予測方法において、
     時刻の関数Ρで前記特定事象の状態を表す値が与えられ、かつ、前記関数Ρは前記外部因子{f}と前記関数Ρの写像F[Ρ+{f}]で与えられるとして、前記写像F[Ρ+{f}]を過去の前記特定事象の状態を表す値の履歴データから求めて、前記関数Ρを前記時刻の関数として表現する予測式構築ステップと、
     前記関数Ρに将来の時刻および領域を特定する値を入力して、前記特定事象の状態を表す値を予測する予測ステップと、
     を有することを特徴とする事象予測方法。
  9.  1つの事象が次に引き続く新たな事象に影響を与えるカスケード現象一般に対し、過去の特定事象の状態を表す値の履歴データに基づいて前記特定事象の将来の状態を表す値を予測する事象予測プログラムにおいて、計算機に
     時刻の関数Ρで前記特定事象の状態を表す値が与えられ、かつ、前記関数Ρは前記外部因子{f}と前記関数Ρの写像F[Ρ+{f}]で与えられるとして、前記写像F[Ρ+{f}]を過去の前記特定事象の状態を表す値の履歴データから求めて、前記関数Ρを前記時刻の関数として表現させる予測式構築ステップと、
     前記関数Ρに将来の時刻および領域を特定する値を入力して、前記特定事象の状態を表す値を予測させる予測ステップと、
     を実行させることを特徴とする事象予測プログラム。
  10.  1つの事象が次に引き続く新たな事象に影響を与えるカスケード現象一般に対し、過去の特定事象の状態を表す値の履歴データに基づいて前記特定事象の将来の状態を表す値を予測する事象予測システムにおいて、
     時刻の関数Ρで前記特定事象の状態を表す値が与えられ、かつ、前記関数Ρは前記外部因子{f}と前記関数Ρの写像F[Ρ+{f}]で与えられるとして、前記写像F[Ρ+{f}]を過去の前記特定事象の状態を表す値の履歴データから求めて、前記関数Ρを前記時刻の関数として表現させる予測式構築部と、
     前記関数Ρに将来の時刻および領域を特定する値を入力して、前記特定事象の状態を表す値を予測する予測部と、
     前記特定事象の状態に関する値を前記履歴データとして送信する携帯端末及びそれに準じる通信機能を持った端末と、
     前記携帯端末から新たな前記履歴データを受信してして新たな前記履歴データが得られたときに前記予測式構築部に前記写像F[Ρ+{f}]を再度求めさせるサーバーと、
     を有することを特徴とする事象予測システム。
  11.  nを自然数としたときに過去に発生したn種の特定事象の状態を表す値を予測する事象発生装置であって、i番目の特定事象の時刻tの状態が関数ρ_i(t)で与えられ、かつ、前記関数ρ_i(t)の関数ベクトルΡ(t)={ρ_1(t),…,ρ_i(t),…,ρ_n(t)}は外部因子ベクトル{f}と前記関数ベクトルΡ(t)の写像F[Ρ(t)+{f}]で与えられるとして、前記写像F[Ρ(t)+{f}]を前記特定事象の状態を表す値と外部因子の履歴データから求める予測式構築部と、前記関数ベクトルΡ(t)に将来の時刻を特定する値を入力して、前記特定事象の発生密度を予測する予測部と、を備えた事象予測装置とともに用いる携帯端末にインストールされるプログラムにおいて、携帯端末に、
     前記事象予測装置に前記特定事象の状態を表す値を前記履歴データとして送信させる、
     ことを特徴とする携帯端末にインストールされるプログラム。
     
     
PCT/JP2017/023107 2016-06-22 2017-06-22 事象予測装置および事象予測方法 WO2017222030A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018524169A JP6935928B2 (ja) 2016-06-22 2017-06-22 事象予測装置および事象予測方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-123259 2016-06-22
JP2016123259 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017222030A1 true WO2017222030A1 (ja) 2017-12-28

Family

ID=60784128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023107 WO2017222030A1 (ja) 2016-06-22 2017-06-22 事象予測装置および事象予測方法

Country Status (2)

Country Link
JP (1) JP6935928B2 (ja)
WO (1) WO2017222030A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102113A (zh) * 2018-07-27 2018-12-28 阿里巴巴集团控股有限公司 事件预测方法及装置、电子设备
WO2020194642A1 (ja) 2019-03-27 2020-10-01 株式会社Singular Perturbations 事象予測装置および事象予測方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372046A (ja) * 1991-06-20 1992-12-25 Hitachi Ltd 需要量予測方法及び装置
JPH07151369A (ja) * 1993-11-30 1995-06-13 Toshiba Corp 熱負荷予測装置およびプラント熱負荷予測装置
JP2015069309A (ja) * 2013-09-27 2015-04-13 Kddi株式会社 情報端末装置ならびにそのスケジューリング方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372046A (ja) * 1991-06-20 1992-12-25 Hitachi Ltd 需要量予測方法及び装置
JPH07151369A (ja) * 1993-11-30 1995-06-13 Toshiba Corp 熱負荷予測装置およびプラント熱負荷予測装置
JP2015069309A (ja) * 2013-09-27 2015-04-13 Kddi株式会社 情報端末装置ならびにそのスケジューリング方法およびプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102113A (zh) * 2018-07-27 2018-12-28 阿里巴巴集团控股有限公司 事件预测方法及装置、电子设备
WO2020194642A1 (ja) 2019-03-27 2020-10-01 株式会社Singular Perturbations 事象予測装置および事象予測方法
JPWO2020194642A1 (ja) * 2019-03-27 2020-10-01
US20220179919A1 (en) * 2019-03-27 2022-06-09 Singular Perturbations Inc. Event prediction device and event prediction method
JP7357316B2 (ja) 2019-03-27 2023-10-06 株式会社Singular Perturbations 事象予測装置

Also Published As

Publication number Publication date
JP6935928B2 (ja) 2021-09-15
JPWO2017222030A1 (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
US10679260B2 (en) Cross-device message touchpoint attribution
US10755202B1 (en) Integrated risk analysis management
US20100114954A1 (en) Realtime popularity prediction for events and queries
Lodree Jr et al. Pre-positioning hurricane supplies in a commercial supply chain
US10776816B2 (en) System and method for building a targeted audience for an online advertising campaign
US9414199B2 (en) Predictive delivery of information based on device history
WO2014193700A1 (en) Social media pricing engine
US9269049B2 (en) Methods, apparatus, and systems for using a reduced attribute vector of panel data to determine an attribute of a user
US20170330231A1 (en) Method and system to display targeted ads based on ranking output of transactions
CN111008335B (zh) 一种信息处理方法、装置、设备及存储介质
US20160117737A1 (en) Preference Mapping for Automated Attribute-Selection in Campaign Design
US11907942B2 (en) Blockchain network risk management universal blockchain data model
US20220398466A1 (en) System, Method, and Computer Program Product for Event Forecasting Using Graph Theory Based Machine Learning
Zhou et al. Spatio-temporal analysis of urban crime leveraging multisource crowdsensed data
WO2017222030A1 (ja) 事象予測装置および事象予測方法
US20230143484A1 (en) System, Method, and Computer Program Product for Analyzing Multivariate Time Series Using a Convolutional Fourier Network
WO2020194642A1 (ja) 事象予測装置および事象予測方法
US20140279053A1 (en) System and method for applying spatially indexed data to digital advertising bids
US8719934B2 (en) Methods, systems and media for detecting non-intended traffic using co-visitation information
Desai Mobile cloud computing in business
US20130203443A1 (en) Providing information about a location to a mobile device based on the location of the mobile device
Pagsuyoin et al. Modeling regional impacts and resilience to water service disruptions in urban economies
KR20200127531A (ko) 온라인 광고 서비스를 제공하는 방법 및 장치
Wang et al. A Trustworthiness evaluation framework in cloud computing for service selection
Davydenko et al. Adaptation of cluster analysis methods in respect to vector space of social network analysis indicators for revealing suspicious government contracts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815496

Country of ref document: EP

Kind code of ref document: A1