WO2020194482A1 - 抵抗式センサアレイ - Google Patents

抵抗式センサアレイ Download PDF

Info

Publication number
WO2020194482A1
WO2020194482A1 PCT/JP2019/012661 JP2019012661W WO2020194482A1 WO 2020194482 A1 WO2020194482 A1 WO 2020194482A1 JP 2019012661 W JP2019012661 W JP 2019012661W WO 2020194482 A1 WO2020194482 A1 WO 2020194482A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
electrodes
sensor array
type sensor
resistance type
Prior art date
Application number
PCT/JP2019/012661
Other languages
English (en)
French (fr)
Inventor
雄士 海野
拓弥 桑田
彰裕 金澤
雅昭 中林
山田 勉
二宮 伸二
Original Assignee
ムネカタインダストリアルマシナリー株式会社
戸田建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ムネカタインダストリアルマシナリー株式会社, 戸田建設株式会社 filed Critical ムネカタインダストリアルマシナリー株式会社
Priority to JP2021508450A priority Critical patent/JP7228817B2/ja
Priority to PCT/JP2019/012661 priority patent/WO2020194482A1/ja
Publication of WO2020194482A1 publication Critical patent/WO2020194482A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Definitions

  • the present invention relates to a resistance type sensor array, and more particularly to an array structure in which a plurality of resistance type sensors are integrated.
  • Patent Document 1 discloses a sheet-like sensor that detects the filling status of a filling material such as concrete.
  • the sheet-shaped sensor 20 has a plurality of resistance sensors 21 arranged at intervals in the longitudinal direction (extending direction) of the sheet, and each resistance sensor 21 is a pair. It is composed of electrodes 22.
  • the resistance value of the resistance sensor 21 changes according to the substance interposed between the pair of electrodes 22. By monitoring this resistance value, the filling status of concrete can be determined.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to ensure the continuity of the detection area in the resistance type sensor array.
  • the present invention provides a resistance type sensor array having a base material, a plurality of resistance type sensors, and a plurality of wirings.
  • the substrate is flexible and extends in strips.
  • each detection area along the extension direction is defined by a plurality of electrodes arranged at intervals in the extension direction of the base material, and a pair of adjacent electrodes in the detection area.
  • the resistance value changes depending on the substance intervening between the electrodes.
  • the plurality of wires are connected to each of the plurality of electrodes.
  • the pair of resistance sensors adjacent to each other share electrodes.
  • a disconnection check resistor connected to a pair of electrodes and having a predetermined resistance value may be provided in each of the detection areas.
  • a plurality of floating electrodes may be provided which are arranged at intervals between the pair of electrodes and to which a fixed voltage is not applied.
  • a plurality of piezoelectric sensors arranged in position corresponding to the resistance sensor may be provided on the surface of the base material opposite to the arrangement surface of the resistance sensor. In this case, at least one temperature sensor that detects the temperature of the object may be further provided.
  • a connector provided on one end side of the base material and in which the ends of a plurality of wirings are integrated may be provided. Further, it is preferable that the state of the substance intervening in the detection area is sequentially detected for each detection area by sequentially selecting the wiring.
  • the detection area of each resistance sensor is defined along the extending direction of the base material. .. As a result, the continuity of the detection area can be ensured in the extending direction of the base material.
  • Top view of the resistance type sensor array according to the first embodiment The figure which shows the change of the resistance value of a resistance type sensor Conceptual schematic of an external measurement system mounted on a resistive sensor array
  • Top view of the main part of the resistance type sensor array according to the second embodiment Explanatory drawing of resistance value in the presence of concrete, water and air Explanatory drawing of resistance value when concrete and air intervene Explanatory drawing of resistance value when only water is present
  • Explanatory drawing of resistance value when only concrete is intervened Explanatory drawing of resistance value when only air is intervened
  • Top view of the main part of the resistance type sensor array 1C according to the third embodiment Sectional view of piezoelectric sensor Explanatory drawing of the prior art
  • FIG. 1 is a plan view of the resistance type sensor array according to the first embodiment.
  • the resistance type sensor array 1A is attached to a relatively wide range of detection targets, and detects the state of substances intervening in the detection area for each detection area in which the detection target is divided into a plurality of regions. Examples of the detection target include a concrete structure in a tunnel.
  • the resistance type sensor array 1A is mainly composed of a base material 2, a plurality of resistance type sensors 3, a plurality of wirings 4, a connector 5, and a disconnection check resistor 6.
  • the base material 2 is formed of an insulating thin film such as a synthetic resin and has flexibility.
  • the base material 2 has a predetermined width and extends in a strip shape in the longitudinal direction.
  • the plurality of resistance type sensors 3 are arranged side by side in the extending direction (longitudinal direction) of the base material 2.
  • the resistance type sensor 3 is composed of a pair of electrodes 3a arranged at predetermined intervals, and the detection areas CH1 to CH3 of each resistance type sensor 3 extend the base material 2. Lined up in the direction. Further, the pair of resistance type sensors 3 adjacent to each other share one electrode 3a.
  • the detection areas CH1 to CH3 are continuous in the extending direction of the base material 2 so that the non-detection area (dead zone) does not substantially intervene.
  • the resistance type sensor 3 changes its own resistance value according to the substance existing in the detection area CH, in other words, the substance interposed between the pair of electrodes 3a adjacent to each other. By monitoring the potential difference between the electrodes 3a due to this resistance value, it is possible to detect and identify the state of matter (for example, the type of air, water, concrete, etc.) in the detection area CH.
  • the plurality of wirings 4 are provided corresponding to the plurality of electrodes 3a, and are individually connected to any of the electrodes 3a. These wirings 4 are divided into a group in which one side edge (upper edge) of the base material 2 extends in the longitudinal direction and a group in which the other side edge (lower edge) of the base material 2 extends in the longitudinal direction.
  • the electrodes 3a are separated, for example, the odd-numbered electrodes 3a are connected to the upper edge side group, the even-numbered electrodes 3a are connected to the lower edge side group, and so on.
  • the wiring 4 may be formed by printing (including coating) a conductive material such as silver paste or copper ink on the base material 2, or may use a metal wire which is a physically independent wire. Good.
  • the metal wire has an extremely low resistivity as compared with printing, and is advantageous in that the voltage change due to the lengthening of the wiring 4 can be suppressed.
  • the connector 5 is provided on one end side of the base material 2.
  • the connector 5 has a shape that can be connected to the external measuring device side (including the wiring connected to the connector 5), and the end portions of the plurality of wirings 4 are integrated.
  • the disconnection check resistor 6 is connected to a pair of electrodes 3a in each of the detection areas CH1 to CH3 and has a predetermined resistance value.
  • the resistors 6 are linearly arranged corresponding to the arrangement of the electrodes 3a arranged at the center in the width direction of the base material 2.
  • the disconnection check resistor 6 is not particularly limited as long as it has an intermediate resistance value between the upper limit value and the lower limit value of the resistance derived from the state of the substance to be detected by the resistance sensor 3.
  • a wire rod using carbon fiber as a main raw material can be used.
  • the disconnection check resistor 6 is used to detect the disconnection of the wiring 4.
  • the mechanism of this disconnection detection will be described by taking concrete filling into the space as an example with reference to FIG.
  • the magnitude relation of the electric resistance value is air> disconnection check resistor> concrete> bleeding water.
  • the bleeding water hereinafter, simply referred to as "water” refers to water that has risen to the surface due to the sedimentation of a solid material such as stone or cement inside the concrete.
  • the resistance type sensor 3 monitors the resistance value (to be exact, the potential difference under constant current conditions) between the pair of electrodes 3a, and identifies the substance from the change in the resistance value. Since the disconnection check resistor 6 is arranged between the pair of electrodes 3a, the resistance value R2 of the disconnection check resistor 6 itself is detected before filling the concrete. This resistance value R2 is an intermediate value between the concrete resistance value R1 and the air resistance value R3 (R3> R1). When water begins to intervene between the pair of electrodes 3a during filling of concrete, the resistance value of the resistance type sensor 3 increases, and then the resistance value further increases due to the contact of concrete.
  • the disconnection check resistor 6 is not energized, and the resistance value between the wiring 4 and the other electrode 3a is detected via air. As a result, the original air resistance value R3 larger than the resistance value R2 of the disconnection check resistor 6 is detected, and it can be determined that the wiring 4 is disconnected.
  • FIG. 3 is a conceptual circuit diagram of an external measurement system attached to the resistance type sensor array 1A.
  • This measuring system includes an AC voltage source 7, a resistor 8, and a voltmeter 9.
  • the voltage generated by the AC voltage source 7 is applied to one electrode 3a constituting the resistance type sensor 3 via the resistor 8, and a potential difference is generated between the voltage and the other electrode 3a.
  • This potential difference changes according to the resistance value of the resistance sensor 3, that is, the state of the substance interposed between the pair of electrodes 3a.
  • the voltmeter 9 detects the potential difference between the pair of electrodes 3a, and based on this potential difference, the state of the substance in the detection area CH is detected and identified.
  • the state of the substance intervening in each of the detection areas CH1 to CH3 is sequentially detected for each detection area CH by sequentially selecting the wiring 4 to which the voltage should be applied in chronological order.
  • the placement of lining concrete in a tunnel for mountains will be described as an example.
  • sprayed concrete 10 is constructed on the inner wall surface of the excavated tunnel (a steel arch member is also used as a support work), and a waterproof sheet is attached to the surface thereof.
  • a formwork 11 of a centre (moving formwork for lining concrete) is installed along the circumferential direction with a distance from the side wall surface of the ground.
  • concrete is placed in the filling space 12 provided between the side wall surface of the ground and the formwork 11.
  • the resistance type sensor array 1A according to the present embodiment can be used in order to accurately grasp the filling state of concrete.
  • the resistance type sensor array 1A is attached to the surface in the filling space 12 so as to extend in the circumferential direction of the tunnel, and the length of one detection area CH is set to, for example, 1 m. This makes it possible to continuously detect the filling status of concrete in the filling space 12 with the resolution of the detection area CH. It is not necessary to cover the entire circumferential direction of the tunnel with one resistance sensor array 1A.
  • the tunnel may be divided into two left and right, and the resistance sensor array 1A may be individually attached to each of the tunnels.
  • each resistance type is formed along the extending direction of the base material 2.
  • the detection areas CH1 to CH3 of the sensor 3 are defined. As a result, the continuity of the detection areas CH1 to CH3 can be ensured without substantially causing a non-detection area (dead zone) in the extending direction of the base material 2.
  • FIG. 5 is a plan view of a main part of the resistance sensor array 1B according to the second embodiment, and shows one of a plurality of resistance sensors 3 existing on the resistance sensor array 1B.
  • the feature of this embodiment lies in the configuration of the resistance type sensor 3, and other points are the same as those of the first embodiment described above. Therefore, the same reference numerals are given and the description thereof will be omitted here. The same applies to the third embodiment described later).
  • the resistance type sensor 3 has a plurality of floating electrodes 3b in addition to the pair of electrodes 3a described above.
  • Each of the floating electrodes 3b is arranged at intervals between the pair of electrodes 3a, and is in a state in which a fixed voltage is not applied, that is, in an electrically floating state.
  • the disconnection check resistor 6 is linearly arranged corresponding to the arrangement of the electrodes 3a and 3b arranged in the center in the width direction of the base material 2.
  • the resistance value of the resistance type sensor 3 is dispersed, and the resistance value tends to show a characteristic value according to the state of the intervening substance.
  • the resistance value of the resistance sensor 3 is 1220 ⁇ , which is the combined resistance of the resistance in the concrete region (200 ⁇ ), the resistance in the water region (20 ⁇ ), and the resistance in the air region (1k ⁇ ). .. From this, when the resistance value of the resistance type sensor 3 is in the vicinity of 1220 ⁇ (feature value), it can be determined that concrete, water, and air are mixed.
  • the series combined resistance of the resistance component in the concrete region (200 ⁇ ) and the resistance component in the air region (3k ⁇ ) 3.2 k ⁇ is the resistance value of the resistance type sensor 3.
  • 3.2 k ⁇ is a characteristic value peculiar to this state, which is different from other characteristic values. Therefore, when the resistance value of the resistance type sensor 3 is in the vicinity of 3.2 k ⁇ (feature value), it can be determined that concrete and air are mixed.
  • the resistance component (50 ⁇ ) in the water region becomes the resistance value of the resistance sensor 3.
  • 50 ⁇ is a characteristic value peculiar to this state, which is different from other characteristic values. Therefore, when the resistance value of the resistance type sensor 3 is in the vicinity of 50 ⁇ (feature value), it can be determined that only water is present.
  • the resistance component (500 ⁇ ) in the concrete region becomes the resistance value of the resistance sensor 3.
  • 500 ⁇ is a characteristic value peculiar to this state, which is different from other characteristic values. Therefore, when the resistance value of the resistance type sensor 3 is in the vicinity of 500 ⁇ (feature value), it can be determined that only concrete is present.
  • the resistance component (5 k ⁇ ) in the air region becomes the resistance value of the resistance type sensor 3.
  • 5 k ⁇ is a characteristic value peculiar to this state, which is different from other characteristic values. Therefore, when the resistance value of the resistance type sensor 3 is in the vicinity of 5 k ⁇ (feature value), it can be determined that only air is present.
  • the resistance value of the resistance type sensor 3 tends to show a characteristic value depending on the state of the intervening substance. Therefore, on the external measurement system side, the determination of the state of the substance can be patterned, and the discrimination accuracy can be improved.
  • FIG. 11 is a plan view of a main part of the resistance type sensor array 1C according to the third embodiment.
  • This resistance type sensor array 1C is a configuration in which a plurality of piezoelectric sensors 13 are added to the above-mentioned resistance type sensor arrays 1A and 1B. Specifically, a plurality of piezoelectric sensors 13 are provided on the surface (back surface) of the base material 2 opposite to the arrangement surface (front surface) of the resistance sensor 3 in position corresponding to the resistance sensor 3. There is. In the present embodiment, the piezoelectric sensor 13 is arranged between the pair of electrodes 3a constituting the resistance sensor 3.
  • FIG. 12 is a cross-sectional view of the piezoelectric sensor 13.
  • the piezoelectric sensor 13 is mainly composed of a lower electrode 13a, an upper electrode 13b, and a piezoelectric resin film 13c sandwiched between these electrodes 13a and 13b.
  • the piezoelectric sensor 13 generates a potential difference between the electrodes 13a and 13b according to the pressure applied to the detection area CH. Therefore, by monitoring this potential difference, the pressure in the detection area CH can be detected.
  • one common wiring 14 and a plurality of individual wirings 15 corresponding to the number of pressure line sensors 13 are provided, and each extends in the extending direction of the base material 2.
  • the common wiring 14 is commonly connected to a plurality of piezoelectric sensors 13 (one of the upper and lower electrodes 13a and 13b).
  • each individual wiring 15 is individually connected to the piezoelectric sensor 13 (the other of the upper and lower electrodes 13a and 13b) corresponding to the individual wiring 15. The ends of these wires 14 and 15 are integrated into the connector 5.
  • the resistance type sensor array 1C is positioned with the resistance type sensor 3 (detection area CH).
  • the resistance type sensor 3 detection area CH.
  • a temperature sensor 16 for detecting the temperature of an object may be added to the resistance type sensor array 1C (the connection wiring is not shown).
  • the temperature sensor 16 a tube-shaped or film-shaped contact type is available, and an appropriate one is incorporated. Further, if a plurality of temperature sensors 16 positionally corresponding to the resistance type sensor 3 (detection area CH) are provided, the temperature of the object can be detected for each detection area CH.
  • Resistance type sensor array 1A, 1B, 1C Resistance type sensor array 2 Base material 3 Resistance type sensor 3a Electrode 3b Floating electrode 4 Wiring 5 Connector 6 Disconnection check resistor 7 AC voltage source 8 Resistance 9 Piezoelectric 10 Sprayed concrete 11 Mold frame 12 Filling space 13 Piezoelectric sensor 13a Lower electrode 13b Upper electrode 13c Piezoelectric resin film 14 Common wiring 15 Individual wiring 16 Temperature sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

抵抗式センサアレイにおいて、検知エリアの連続性を確保する。抵抗式センサアレイ1Aは、基材2と、複数の抵抗式センサ3と、複数の配線4と、コネクタ5とを有する。基材2は、可撓性を有し、帯状に延在している。複数の抵抗式センサ3は、基材2の延在方向に間隔を空けて配置された複数の電極1aによって、延在方向に沿ったそれぞれの検知エリアCH1~CH3が規定され、検知エリアCH1~CH3のそれぞれにおいて、互いに隣り合った一対の電極1a間に介在する物質に応じて抵抗値が変化する。複数の配線4は、複数の電極1aのそれぞれに接続されている。

Description

抵抗式センサアレイ
 本発明は、抵抗式センサアレイに係り、特に、複数の抵抗式センサを一体化したアレイ構造に関する。
 従来、複数の抵抗式アレイを1つのユニットとして一体化した抵抗式センサアレイが知られている。例えば、特許文献1には、コンクリートなどの充填物の充填状況を検知するシート状センサが開示されている。図13に示すように、このシート状センサ20は、シートの長手方向(延在方向)に間隔を空けて配置された複数の抵抗式センサ21を有し、それぞれの抵抗式センサ21は一対の電極22によって構成されている。抵抗式センサ21は、一対の電極22間に介在する物質に応じて抵抗値が変化する。この抵抗値をモニタリングすることによって、コンクリートの充填状況が判別される。
特開2018-179995号公報
 しかしながら、上述した特許文献1のシート状センサでは、シートの長手方向に間隔を空けて抵抗式センサが配置されているため、これらの検知エリアが離散的となり、間隔に相当するエリアは不感帯となる。
 本発明は、かかる事情に鑑みてなされたものであり、その目的は、抵抗式センサアレイにおいて、検知エリアの連続性を確保することである。
 かかる課題を解決すべく、本発明は、基材と、複数の抵抗式センサと、複数の配線とを有する抵抗式センサアレイを提供する。基材は、可撓性を有し、帯状に延在している。複数の抵抗式センサは、基材の延在方向に間隔を空けて配置された複数の電極によって、延在方向に沿ったそれぞれの検知エリアが規定され、検知エリアにおいて、互いに隣り合った一対の電極間に介在する物質に応じて抵抗値が変化する。複数の配線は、複数の電極のそれぞれに接続されている。
 ここで、本発明において、互いに隣り合った一対の抵抗式センサは、電極を共用していることが好ましい。また、上記検知エリアのそれぞれにおいて、一対の電極に接続され、所定の抵抗値を有する断線チェック抵抗体を設けてもよい。また、上記検知エリアのそれぞれにおいて、一対の電極間に間隔を空けて配置され、固定電圧が印加されない複数のフローティング電極を設けてもよい。また、基材における抵抗式センサの配置面とは反対の面において、抵抗式センサと位置的に対応して配置された複数の圧電センサを設けてもよい。この場合、物体の温度を検知する少なくとも一つの温度センサをさらに設けてもよい。また、基材の一端側に設けられ、複数の配線の端部が集約されたコネクタを設けてもよい。さらに、上記検知エリアに介在する物質の状態は、配線を順次選択することによって、検知エリア毎に逐次的に検出されることが好ましい。
 本発明によれば、帯状の基材の延在方向に間隔を空けて複数の電極を配置することによって、基材の延在方向に沿って、それぞれの抵抗式センサの検知エリアが規定される。これにより、基材の延在方向において、検知エリアの連続性を確保できる。
第1の実施形態に係る抵抗式センサアレイの平面図 抵抗式センサの抵抗値の変化を示す図 抵抗式センサアレイに取り付けられる外部計測システムの概念的な回路図 トンネルにおける履工コンクリートの打設状態を示す断面図 第2の実施形態に係る抵抗式センサアレイの要部平面図 コンクリート、水および空気の介在時における抵抗値の説明図 コンクリートおよび空気の介在時における抵抗値の説明図 水のみ介在時における抵抗値の説明図 コンクリートのみ介在時における抵抗値の説明図 空気のみ介在時における抵抗値の説明図 第3の実施形態に係る抵抗式センサアレイ1Cの要部平面図 圧電センサの断面図 従来技術の説明図
(第1の実施形態)
 図1は、第1の実施形態に係る抵抗式センサアレイの平面図である。この抵抗式センサアレイ1Aは、比較的広範囲な検知対象に取り付けられ、検知対象を複数の領域に分割した検知エリア毎に、検知エリアに介在する物質の状態を検知する。検知対象としては、例えば、トンネルにおけるコンクリートの構造体などが挙げられる。抵抗式センサアレイ1Aは、基材2と、複数の抵抗式センサ3と、複数の配線4と、コネクタ5と、断線チェック抵抗体6とを主体に構成されている。
 基材2は、合成樹脂などの絶縁性薄膜で形成されており、可撓性を有する。この基材2は、所定の幅を有し、長手方向に帯状に延在している。複数の抵抗式センサ3は、基材2の延在方向(長手方向)に並んで配置されている。具体的には、抵抗式センサ3は、所定の間隔を空けて配置された一対の電極3aによって構成されており、それぞれの抵抗式センサ3の検知エリアCH1~CH3は、基材2の延在方向に並んでいる。また、互いに隣り合った一対の抵抗式センサ3は、1つの電極3aを共用している。これによって、検知エリアCH1~CH3は、基材2の延在方向において、実質的に非検知エリア(不感帯)が介在しないように連続することになる。抵抗式センサ3は、検知エリアCHに存在する物質、換言すれば、互いに隣り合った一対の電極3a間に介在する物質に応じて自己の抵抗値が変化する。この抵抗値に起因した電極3a間の電位差をモニタリングすることにより、検知エリアCHにおける物質の状態(例えば、空気、水、コンクリートなどの種類)を検知・識別することができる。
 複数の配線4は、複数の電極3aに対応して設けられており、いずれかの電極3aに個別に接続されている。これらの配線4は、基材2における一方の側縁(上縁)を長手方向に延在する群と、基材2における他方の側縁(下縁)を長手方向に延在する群とに別れており、例えば、奇数番目の電極3aは上縁側の群、偶数番目の電極3aは下縁側の群といった如く、電極3a毎に交互に接続される。配線4は、銀ペーストや銅インクなどの導電性材料を基材2に印刷(コーティングを含む。)することによって形成してもよいし、物理的に独立した線材である金属ワイヤーを用いてもよい。金属ワイヤーは、印刷と比較して抵抗率を極めて低く、配線4の長大化に起因した電圧変化を抑制できる点で有利である。
 コネクタ5は、基材2の一端側に設けられている。コネクタ5は、外部の測定装置側(これに接続された配線を含む。)と接続可能な形状を有しており、複数の配線4のそれぞれの端部が集約されている。
 断線チェック抵抗体6は、検知エリアCH1~CH3のそれぞれにおいて、一対の電極3aに接続されており、所定の抵抗値を有する。本実施形態では、基材2の幅方向の中央に配置された電極3aの並びに対応して、この抵抗体6を線状に配置している。断線チェック抵抗体6としては、抵抗式センサ3が検知しようとする物質の状態に由来した抵抗の上限値と下限値との間の中間的な抵抗値を有するものであれば特に制限はないが、例えば、カーボン繊維を主原料とした線材を用いることができる。
 断線チェック抵抗体6は、配線4の断線を検知するために用いられる。この断線検知の仕組みを、図2を参照しつつ、空間内へのコンクリート充填を例に説明する。この場合、電気抵抗値の大小関係は、空気>断線チェック抵抗体>コンクリート>ブリーディング水となる。ここで、ブリーディング水(以下、単に「水」と称する。)とは、コンクリートの内部において、石やセメントなどの固体材料が沈降することにより、表面に上昇してきた水をいう。
 抵抗式センサ3では、一対の電極3a間の抵抗値(正確には、電流一定条件下の電位差)をモニタリングし、抵抗値の変化から物質を識別している。一対の電極3a間には断線チェック抵抗体6が配置されているため、コンクリートの充填前には、断線チェック抵抗体6の抵抗値R2そのものが検出される。この抵抗値R2は、コンクリートの抵抗値R1と空気の抵抗値R3(R3>R1)との間の中間値である。コンクリートの充填中において、一対の電極3a間に水が介在し始めると、抵抗式センサ3の抵抗値が増加し、その後コンクリートの接触により抵抗値が更に増加する。これに対して、配線4の断線が生じた場合、断線チェック抵抗体6を通電せず、空気を介して別の電極3aとの間の抵抗値が検知される。その結果、断線チェック抵抗体6の抵抗値R2より大きな本来の空気の抵抗値R3が検出され、これによって、配線4が断線したものと判断できる。
 図3は、抵抗式センサアレイ1Aに取り付けられる外部計測システムの概念的な回路図である。この計測システムは、交流電圧源7と、抵抗8と、電圧計9とを含む。交流電圧源7によって生成された電圧は、抵抗8を介して、抵抗式センサ3を構成する一方の電極3aに印加され、他方の電極3aとの間に電位差が生じる。この電位差は、抵抗式センサ3の抵抗値、すなわち、一対の電極3a間に介在する物質の状態に応じて変化する。電圧計9は、一対の電極3a間の電位差を検知し、この電位差に基づいて、検知エリアCHにおける物質の状態が検知・識別される。それぞれの検知エリアCH1~CH3に介在する物質の状態は、電圧を印加すべき配線4を時系列的に順次選択することによって、検知エリアCH毎に逐次的に検出される。
 抵抗式センサアレイ1Aの使用例として、図4に示すように、山岳用のトンネルにおける覆工コンクリートの打設を例に説明する。トンネルの構築に際しては、掘削されたトンネル内壁面に吹付けコンクリート10が施工され(鋼アーチ部材が支保工として併用)、その表面に防水シートが貼設される。そして、地山側壁面との間に距離を空けて、周方向に沿ったセントル(覆工コンクリート用移動型枠)の型枠11が設置される。そして、地山側壁面と型枠11との間に設けられた充填空間12内にコンクリートが打設される。その際、コンクリートの充填状況を的確に把握するために、本実施形態に係る抵抗式センサアレイ1Aを用いることができる。抵抗式センサアレイ1Aは、トンネルの周方向に延在するように、充填空間12内の表面に取り付けられ、1つの検知エリアCHの長さは、例えば1mに設定される。これにより、充填空間12内におけるコンクリートの充填状況を検知エリアCHの分解能で連続的に検出することが可能になる。なお、トンネルの周方向全体を1つの抵抗式センサアレイ1Aでカバーする必要はなく、例えば、トンネルを左右に2分割し、それぞれに対して抵抗式センサアレイ1Aを個別に取り付けてもよい。
 このように、本実施形態によれば、帯状の基材2の延在方向に間隔を空けて複数の電極1aを配置することによって、基材2の延在方向に沿って、それぞれの抵抗式センサ3の検知エリアCH1~CH3が規定される。これにより、基材2の延在方向において、非検知エリア(不感帯)を実質的に生じさせることなく、検知エリアCH1~CH3の連続性を確保できる。
(第2の実施形態)
 図5は、第2の実施形態に係る抵抗式センサアレイ1Bの要部平面図であり、抵抗式センサアレイ1B上に存在する複数の抵抗式センサ3のうちの一つを示す。本実施形態の特徴は、抵抗式センサ3の構成にあり、それ以外の点については、上述した第1の実施形態と同様なので、同一の符号を付して、ここでの説明を省略する(後述する第3の実施形態についても同様)。
 抵抗式センサ3は、上述した一対の電極3aの他に、複数のフローティング電極3bを有する。それぞれのフローティング電極3bは、一対の電極3a間に間隔を空けて配置されており、固定電圧が印加されない状態、すなわち、電気的にフローティングした状態となっている。断線チェック抵抗体6は、基材2の幅方向の中央に配置された電極3a,3bの並びに対応して、線状に配置されている。
 抵抗式センサ3にフローティング電極3bを設けた場合、抵抗式センサ3の抵抗値が離散化し、介在する物質の状態に応じて抵抗値が特徴的な値を示す傾向が高くなる。例えば、図6に示すように、一部にコンクリート、一部に水、そして、残りの部分に空気が介在する場合、コンクリートの抵抗が100Ω、水の抵抗が10Ω、空気の抵抗が1kΩとすると、コンクリートの領域の抵抗分(200Ω)と、水の領域の抵抗分(20Ω)と、空気の領域の抵抗分(1kΩ)との直列合成抵抗である1220Ωが抵抗式センサ3の抵抗値となる。このことから、抵抗式センサ3の抵抗値が1220Ω(特徴値)近傍である場合、コンクリートと、水と、空気とが混在した状態であると判別できる。
 図7に示すように、一部にコンクリートが介在し、残りの部分に空気が介在する場合、コンクリートの領域の抵抗分(200Ω)と、空気の領域の抵抗分(3kΩ)との直列合成抵抗である3.2kΩが抵抗式センサ3の抵抗値となる。3.2kΩは、他の特徴値とは異なる本状態固有の特徴的な値である。よって、抵抗式センサ3の抵抗値が3.2kΩ(特徴値)近傍である場合、コンクリートと、空気とが混在した状態であると判別できる。
 図8に示すように、水のみが介在する場合、水の領域の抵抗分(50Ω)が抵抗式センサ3の抵抗値となる。50Ωは、他の特徴値とは異なる本状態固有の特徴的な値である。よって、抵抗式センサ3の抵抗値が50Ω(特徴値)近傍である場合、水のみが介在した状態であると判別できる。
 図9に示すように、コンクリートのみが介在する場合、コンクリートの領域の抵抗分(500Ω)が抵抗式センサ3の抵抗値となる。500Ωは、他の特徴値とは異なる本状態固有の特徴的な値である。よって、抵抗式センサ3の抵抗値が500Ω(特徴値)近傍である場合、コンクリートのみが介在した状態であると判別できる。
 また、図10に示すように、空気のみが介在する場合、空気の領域の抵抗分(5kΩ)が抵抗式センサ3の抵抗値となる。5kΩは、他の特徴値とは個なる本状態固有の特徴的な値である。よって、抵抗式センサ3の抵抗値が5kΩ(特徴値)近傍である場合、空気のみが介在した状態であると判別できる。
 このように、本実施形態によれば、上述した第1の実施形態と同様の作用効果を奏する他、抵抗式センサ3の抵抗値が介在する物質の状態に応じて特徴的な値を示す傾向が高くなるため、外部計測システム側において、物質の状態の判別をパターン化でき、判別精度の向上を図ることができる。
(第3の実施形態)
 図11は、第3の実施形態に係る抵抗式センサアレイ1Cの要部平面図である。この抵抗式センサアレイ1Cは、上述した抵抗式センサアレイ1A,1Bの構成に複数の圧電センサ13を追加したものである。具体的には、基材2における抵抗式センサ3の配置面(表面)とは反対の面(裏面)において、抵抗式センサ3と位置的に対応して、複数の圧電センサ13が設けられている。本実施形態では、抵抗式センサ3を構成する一対の電極3aの中間に圧電センサ13が配置されている。
 図12は、圧電センサ13の断面図である。この圧電センサ13は、下部電極13aと、上部電極13bと、これらの電極13a,13bによって挟まれた圧電性樹脂膜13cとを主体に構成されている。圧電センサ13は、検知エリアCHに加わった圧力に応じて、電極13a,13b間に電位差を発生させる。したがって、この電位差をモニタリングすることで、検知エリアCHの圧力を検知することができる。
 また、基材2の裏面には、1本の共通配線14と、圧線センサ13の個数に対応した複数の個別配線15とが設けられており、それぞれは基材2の延在方向に延在している。共通配線14は、複数の圧電センサ13(上下の電極13a,13bの一方)に共通接続されている。また、それぞれの個別配線15は、これが対応する圧電センサ13(上下の電極13a,13bの他方)に個別的に接続されている。これらの配線14,15の端部は、コネクタ5に集約されている。
 このように、本実施形態によれば、上述した第1または第2の実施形態と同様の作用効果を奏する他、抵抗式センサアレイ1Cとして、抵抗式センサ3(検知エリアCH)と位置的に対応した複数の圧電センサ13を追加することで、複数種のセンサ情報を検知エリアCH毎に取得でき、より多様な計測・判別が可能になる。
 なお、図11に示したように、抵抗式センサアレイ1Cにおいて、物体の温度を検知する温度センサ16を追加してもよい(接続配線の図示は省略)。温度センサ16としては、チューブ状やフィルム状の接触型のものが入手可能であり、適宜のものが組み込まれる。また、抵抗式センサ3(検知エリアCH)と位置的に対応した複数の温度センサ16を設ければ、検知エリアCH毎に物体の温度を検知することができる。
 1A,1B,1C 抵抗式センサアレイ
 2 基材
 3 抵抗式センサ
 3a 電極
 3b フローティング電極
 4 配線
 5 コネクタ
 6 断線チェック抵抗体
 7 交流電圧源
 8 抵抗
 9 電圧計
 10 吹付けコンクリート
 11 型枠
 12 充填空間
 13 圧電センサ
 13a 下部電極
 13b 上部電極
 13c 圧電性樹脂膜
 14 共通配線
 15 個別配線
 16 温度センサ

 

Claims (8)

  1.  抵抗式センサアレイにおいて、
     可撓性を有し、帯状に延在する基材と、
     前記基材の延在方向に間隔を空けて配置された複数の電極によって、前記延在方向に沿ったそれぞれの検知エリアが規定され、前記検知エリアにおいて、互いに隣り合った一対の電極間に介在する物質に応じて抵抗値が変化する複数の抵抗式センサと、
     前記複数の電極のそれぞれに接続された複数の配線と
    を有することを特徴とする抵抗式センサアレイ。
  2.  互いに隣り合った一対の前記抵抗式センサは、前記電極を共用していることを特徴とする請求項1に記載された抵抗式センサアレイ。
  3.  前記検知エリアのそれぞれにおいて、前記一対の電極に接続され、所定の抵抗値を有する断線チェック抵抗体をさらに有することを請求項1または2に記載された抵抗式センサアレイ。
  4.  前記検知エリアのそれぞれにおいて、前記一対の電極間に間隔を空けて配置され、固定電圧が印加されない複数のフローティング電極をさらに有することを特徴とする請求項1または2に記載された抵抗式センサアレイ。
  5.  前記基材における前記抵抗式センサの配置面とは反対の面において、前記抵抗式センサと位置的に対応して配置された複数の圧電センサをさらに有することを特徴とする請求項1または2に記載された抵抗式センサアレイ。
  6.  物体の温度を検知する少なくとも一つの温度センサをさらに有することを特徴とする請求項5に記載された抵抗式センサアレイ。
  7.  前記基材の一端側に設けられ、前記複数の配線の端部が集約されたコネクタをさらに有することを特徴とする請求項1または2に記載された抵抗式センサアレイ。
  8.  前記検知エリアに介在する物質の状態は、前記配線を順次選択することによって、前記検知エリア毎に逐次的に検出されることを特徴とする請求項1または2に記載された抵抗式センサアレイ。
PCT/JP2019/012661 2019-03-26 2019-03-26 抵抗式センサアレイ WO2020194482A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021508450A JP7228817B2 (ja) 2019-03-26 2019-03-26 コンクリート打設用の抵抗式センサアレイシステム
PCT/JP2019/012661 WO2020194482A1 (ja) 2019-03-26 2019-03-26 抵抗式センサアレイ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012661 WO2020194482A1 (ja) 2019-03-26 2019-03-26 抵抗式センサアレイ

Publications (1)

Publication Number Publication Date
WO2020194482A1 true WO2020194482A1 (ja) 2020-10-01

Family

ID=72609206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012661 WO2020194482A1 (ja) 2019-03-26 2019-03-26 抵抗式センサアレイ

Country Status (2)

Country Link
JP (1) JP7228817B2 (ja)
WO (1) WO2020194482A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650917A (ja) * 1991-02-08 1994-02-25 Asanumagumi:Kk コンクリートの充填検出器
JPH09210940A (ja) * 1996-01-30 1997-08-15 Kumagai Gumi Co Ltd 充填材の抵抗測定方法及び充填材観測装置
JP2002039979A (ja) * 2000-07-19 2002-02-06 Tohoku Techno Arch Co Ltd Pc鋼材のグラウト充填時における気泡検出装置
JP2006348570A (ja) * 2005-06-15 2006-12-28 Taiheiyo Cement Corp 充填検出方法およびプログラム
JP2009521698A (ja) * 2005-12-27 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー 検出システム
US20110234246A1 (en) * 2008-07-01 2011-09-29 Industrial Tomography Systems Plc Structural determination apparatus and method
CN105136859A (zh) * 2015-06-11 2015-12-09 四川大学 基于钢筋电极的二维混凝土健康监测方法
US20160282496A1 (en) * 2013-09-30 2016-09-29 St Geomative Co., Ltd. Segmented-centralized-type high-density electrical method measurement system and application thereof
JP2018040777A (ja) * 2016-09-09 2018-03-15 株式会社NejiLaw センサ構造のパターニング方法
JP2018179995A (ja) * 2017-04-20 2018-11-15 戸田建設株式会社 シート状センサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650917A (ja) * 1991-02-08 1994-02-25 Asanumagumi:Kk コンクリートの充填検出器
JPH09210940A (ja) * 1996-01-30 1997-08-15 Kumagai Gumi Co Ltd 充填材の抵抗測定方法及び充填材観測装置
JP2002039979A (ja) * 2000-07-19 2002-02-06 Tohoku Techno Arch Co Ltd Pc鋼材のグラウト充填時における気泡検出装置
JP2006348570A (ja) * 2005-06-15 2006-12-28 Taiheiyo Cement Corp 充填検出方法およびプログラム
JP2009521698A (ja) * 2005-12-27 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー 検出システム
US20110234246A1 (en) * 2008-07-01 2011-09-29 Industrial Tomography Systems Plc Structural determination apparatus and method
US20160282496A1 (en) * 2013-09-30 2016-09-29 St Geomative Co., Ltd. Segmented-centralized-type high-density electrical method measurement system and application thereof
CN105136859A (zh) * 2015-06-11 2015-12-09 四川大学 基于钢筋电极的二维混凝土健康监测方法
JP2018040777A (ja) * 2016-09-09 2018-03-15 株式会社NejiLaw センサ構造のパターニング方法
JP2018179995A (ja) * 2017-04-20 2018-11-15 戸田建設株式会社 シート状センサ

Also Published As

Publication number Publication date
JPWO2020194482A1 (ja) 2020-10-01
JP7228817B2 (ja) 2023-02-27

Similar Documents

Publication Publication Date Title
EP0614558B1 (en) Data input device with a pressure-sensitive input surface
JP2595246B2 (ja) リニアリティを有するタッチセンサデバイス
US20120043980A1 (en) Wear sensor
JP2015506465A5 (ja)
EP0651248B1 (en) Water quality sensor apparatus
JP2011513830A5 (ja)
CN103250350A (zh) 线性突出的单层电容传感器
US6360612B1 (en) Pressure sensor apparatus
GB2117123A (en) A dry/dew/frost sensor
US6225814B1 (en) Contact width sensors
JPH08136209A (ja) 可動物体の幾何学的位置、変位又は角度を検出する方法および非接触容量基準位置センサ
KR101200923B1 (ko) 정전용량형 레벨센서
EP2922205B1 (en) Position sensing device and method using self-capacitance
KR101717062B1 (ko) 고감도 터치 압력 검출 장치
WO2020194482A1 (ja) 抵抗式センサアレイ
US20080314654A1 (en) Position Transducer
WO2010064753A1 (en) Leakage detection apparatus
JP5923350B2 (ja) 液面レベル検出装置
KR101652981B1 (ko) 입자상 물질 센서
JP5597950B2 (ja) テールシール用のワイヤーブラシ
JP2013003080A (ja) 電気抵抗の計測装置
JP7246706B2 (ja) 建設構造物用の歪み検知システム
CN110953981B (zh) 压电传感器的形变检测方法及装置
US20230314264A1 (en) Leak detection system and method
JPWO2020194482A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921027

Country of ref document: EP

Kind code of ref document: A1