WO2020194012A1 - 熱交換システム - Google Patents

熱交換システム Download PDF

Info

Publication number
WO2020194012A1
WO2020194012A1 PCT/IB2019/000336 IB2019000336W WO2020194012A1 WO 2020194012 A1 WO2020194012 A1 WO 2020194012A1 IB 2019000336 W IB2019000336 W IB 2019000336W WO 2020194012 A1 WO2020194012 A1 WO 2020194012A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
passage
flow rate
exchange system
engine
Prior art date
Application number
PCT/IB2019/000336
Other languages
English (en)
French (fr)
Inventor
永井宏幸
溝口真一朗
越島将史
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to JP2021508085A priority Critical patent/JP7160182B2/ja
Priority to PCT/IB2019/000336 priority patent/WO2020194012A1/ja
Publication of WO2020194012A1 publication Critical patent/WO2020194012A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat exchange system used in an internal combustion engine.
  • the above heat exchange system has a valve mechanism that adjusts the flow rate of the bypass passage that bypasses the EGR cooler, a valve mechanism that adjusts the amount of EGR from the bypass passage to the intake passage, and an EGR amount from the exhaust passage to the intake passage.
  • the valve mechanism is provided. Then, if there is an EGR request at the initial stage of warm-up operation after the engine cooler starts, the exhaust gas is returned from the bypass passage to the intake passage, and after a predetermined time has passed after the start, the exhaust gas that has passed through the EGR cooler is returned to the intake passage. I'm letting you.
  • the heat exchange system in the above document has a configuration in which the cooling water flows into the EGR cooler after passing through the engine.
  • the exhaust gas that has passed through the EGR cooler is returned to the intake passage when the cooling water is at a low temperature, the exhaust gas is cooled by the cooling water and condensed water that causes corrosion of the EGR valve and the like is generated. It ends up. That is, EGR cannot be executed until the temperature of the cooling water rises. Then, if the EGR is started after the temperature of the cooling water rises, it is necessary to wait for the entire engine to warm up.
  • the exhaust is returned from the bypass passage to the intake passage at the initial stage of the warm-up operation when the cooling water is at a low temperature.
  • an object of the present invention is to ensure the effect of using the EGR cooler as an exhaust heat recovery device and to provide a heat exchange system capable of performing EGR at an early stage.
  • a heat exchange system includes a heat exchange passage including a heat exchanger for exchanging heat between exhaust and liquid, a bypass passage bypassing the heat exchanger, a heat exchange passage, and a heat exchange passage in the exhaust passage of the engine.
  • a first flow rate adjusting mechanism for adjusting the exhaust flow rate of the bypass passage is provided.
  • an exhaust recirculation passage for recirculating the exhaust gas from the outlet side of the heat exchanger of the heat exchange passage to the intake passage of the engine, a second flow rate adjusting mechanism for adjusting the flow rate of the exhaust gas passing through the exhaust recirculation passage, and a first flow rate adjustment.
  • a control unit for controlling a mechanism and a second flow rate adjusting mechanism is provided.
  • the control unit closes the bypass passage by controlling the first flow rate adjusting mechanism and allows the exhaust gas to flow to the underfloor catalyst through the heat exchange passage, and when the warm-up operation is completed, the second By controlling the flow control mechanism, the exhaust gas that has passed through the heat exchanger is sent to the exhaust return passage.
  • the heat exchange system includes a first liquid circulation path including an engine cooling flow path provided inside the engine as a part of the path, and a second liquid in which the liquid circulates in the heat exchanger independently of the engine cooling flow path. It has a circulation path.
  • FIG. 1 is a schematic view of a heat exchange system.
  • FIG. 2 is a cooling circuit diagram of the heat exchange system.
  • FIG. 3 is a map showing an operation mode during warm-up operation.
  • FIG. 4 is a map showing an operation mode after the warm-up operation is completed.
  • FIG. 5 is a diagram showing a state of each valve mechanism in the non-exhaust heat recovery mode or the non-EGR mode.
  • FIG. 6 is a diagram showing a state of each valve mechanism in the exhaust heat recovery mode.
  • FIG. 7 is a diagram showing a state of each valve mechanism in the EGR mode.
  • FIG. 8 is a diagram showing the flow of cooling water in a zero flow state.
  • FIG. 9 is a diagram showing the flow of cooling water in a state where the zero flow is released and the thermostat is closed.
  • FIG. 10 is a flowchart showing a control routine of the heat exchange system.
  • FIG. 11 is a timing chart when the control routine of the present embodiment is executed.
  • FIG. 12 is a timing chart when the heater valve is opened at once.
  • FIG. 13 is a timing chart as a comparative example.
  • FIG. 1 is a schematic view showing a heat exchange system 100 according to an embodiment of the present invention.
  • the heat exchange system 100 is a system applied to a vehicle.
  • the heat exchange system 100 heat exchanges with a heat exchange passage 14 provided with a heat exchanger 13 for heat exchange between exhaust and liquid on the upstream side of the main catalyst 12 as an underfloor catalyst in the exhaust passage 11 of the engine 10.
  • a bypass passage 15 that bypasses the passage 14 is provided.
  • the heat exchange system 100 is connected to the downstream side of the heat exchanger 13 in the heat exchange passage 14, and returns a part of the exhaust to the intake passage 16 from the outlet side of the heat exchanger 13 in the heat exchange passage 14.
  • a passage 17 is provided.
  • the liquid is cooling water.
  • the cooling water here means a liquid refrigerant that cools the engine.
  • the main catalyst 12 is composed of any one of a NOx storage reduction catalyst, an oxidation catalyst, and a three-way catalyst, or a combination thereof.
  • the sub-catalyst 18 is provided near the engine 10 in the exhaust passage 11, but the sub-catalyst 18 does not necessarily have to be provided.
  • a first valve mechanism 22 as a first flow rate adjusting mechanism is provided at the confluence of the heat exchange passage 14 and the bypass passage 15.
  • the first valve mechanism 22 in this embodiment is a three-way valve.
  • the exhaust return passage 17 is provided with a second valve mechanism 21 as a second flow rate adjusting mechanism for adjusting the flow rate of the exhaust gas passing through the exhaust return passage 17.
  • the second valve mechanism 21 in this embodiment is a butterfly valve.
  • the intake passage 16 is provided with a turbocharger 23 on the downstream side of the confluence with the exhaust / return passage 17, and a throttle chamber 24 is provided on the downstream side of the turbocharger 23.
  • the flow rate of the exhaust gas flowing through the heat exchange passage 14, the bypass passage 15, and the exhaust return passage 17 can be adjusted by the valve mechanisms 21 and 22, respectively.
  • the heat exchange system 100 includes a controller 30 that controls the operation of the valve mechanisms 21 and 22 and the throttle chamber 24.
  • the controller 30 of the present embodiment is configured to control the operation of the engine 10 in addition to the heat exchange system 100.
  • a controller that controls the heat exchange system 100 and a controller that controls the engine 10 may be provided separately.
  • the controller 30 is composed of a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output interface, a bus connecting these, and the like. It is also possible to configure the controller 30 with a plurality of microcomputers.
  • the controller 30 controls the heat exchange system 100 by the CPU reading and executing the program stored in the ROM.
  • the controller 30 contains a signal from the temperature sensor 20 that detects the cooling water temperature at the inlet of the heat exchanger 13 in the heat exchanger flow path 51, which will be described later, and a temperature sensor 19 that detects the cooling water temperature at the engine outlet flow path 54, which will be described later.
  • the signal from is input.
  • FIG. 2 is a diagram showing a cooling circuit 101 of the heat exchange system 100.
  • the arrows on the cooling circuit in the figure indicate the direction in which the cooling water flows.
  • the pump flow path 50 connected to the outlet of the water pump 31 includes a block flow path 53A which is a water jacket provided in the cylinder block 10A of the engine 10, a heat exchanger flow path 51 including a heat exchanger 13, and a turbocharger. It branches into a turbo flow path 52 including a feeder 23 and an oil cooler flow path 58 including an oil cooler 38.
  • the water pump 31 is driven by the engine 10.
  • the block flow path 53A communicates with the head flow path 53B, which is a water jacket provided on the cylinder head 10B of the engine 10, and the engine outlet flow path 54 is connected to the head flow path 53B at the outlet portion of the engine 10.
  • the engine outlet flow path 54 includes a radiator flow path 55 including a radiator 36, a reservoir tank 37, and a thermostat 35, a heater flow path 56 including a heater core 33, a heater valve 32, and a heater pump 34, and a throttle flow having a throttle chamber 24. Branch to road 57.
  • the temperature sensor 19 described above is provided in the engine outlet flow path 54.
  • the heater valve 32 is opened and closed by the controller 30. Details of the opening / closing control of the heater valve 32 will be described later.
  • the temperature sensor 20 described above is provided at the inlet portion of the heat exchanger 13 in the heat exchanger flow path 51.
  • a part of the heat exchanger flow path 51 passes through the inside of the engine 10, but this is not a configuration for the purpose of cooling the engine 10, and the cooling piping is simplified. It is a configuration for doing. Therefore, if there is enough space in the engine room, the heat exchanger flow path 51 may be branched from the pump flow path 50 before entering the engine 10.
  • the heat exchanger flow path 51 as the second liquid circulation path is the first liquid circulation including the pump flow path 50, the block flow path 53A, the head flow path 53B, the engine outlet flow path 54, and the throttle flow path 57. It is a circulation path independent of the engine flow path as a route.
  • the heat exchange system 100 is configured as described above, and is controlled by the controller 30 so as to operate in an operation mode according to the state of the vehicle.
  • FIG. 3 is an operation mode map during warm-up operation after the engine 10 is cold-started.
  • the vertical axis is the net mean effective pressure BMEP corresponding to the engine load, and the horizontal axis is the engine speed Ne.
  • the exhaust heat recovery region is set in the region of low and medium rotation speed and low and medium load. In the exhaust heat recovery region, the heat of the exhaust gas is recovered to the liquid by exchanging heat between the exhaust gas and the cooling water in the heat exchanger 13. The purpose of recovering the exhaust heat is to promote the temperature rise of the cooling water.
  • FIG. 4 is an operation mode map after the warm-up operation of the engine 10 is completed.
  • the vertical axis and the horizontal axis are the same as those in FIG.
  • a part of the exhaust gas is recirculated to the intake passage 16 via the exhaust gas recirculation passage 17 to the region excluding the region where the engine 10 is close to WOT (Wide-Open Throttle) and the region where the net mean effective pressure BMEP is very low.
  • An area for executing the EGR to be performed (hereinafter referred to as an EGR area) is set.
  • the purpose of executing EGR is to suppress an increase in the combustion temperature in the cylinder of the engine 10, reduce pumping loss, and the like.
  • 5 to 7 are diagrams for explaining the operation of the first valve mechanism 22 and the second valve mechanism 21 in each operating region shown in FIGS. 3 and 4.
  • the arrows indicate the exhaust flow.
  • FIG. 5 shows the states and exhaust flows of the valve mechanisms 21 and 22 in the non-exhaust heat recovery region and the non-EGR region.
  • the first valve mechanism 22 is controlled so that the bypass passage 15 is opened and the heat exchange passage 14 is closed. This state is referred to as a state in which the first valve mechanism 22 is open.
  • the second valve mechanism 21 is controlled so as to block the flow path of the exhaust / return passage 17. This state is referred to as a state in which the second valve mechanism 21 is closed.
  • FIG. 6 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the exhaust heat recovery region.
  • the first valve mechanism 22 is controlled so that the bypass passage 15 is closed and the heat exchange passage 14 is open. This state is referred to as a state in which the first valve mechanism 22 is closed.
  • the second valve mechanism 21 is controlled in a closed state.
  • FIG. 7 shows the states of the valve mechanisms 21 and 22 and the exhaust flow in the EGR region.
  • the first valve mechanism 22 On the boundary line between the exhaust heat recovery region and the non-exhaust heat recovery region, the first valve mechanism 22 is controlled to be in a half-open state, and the second valve mechanism 21 is controlled to be in a closed state.
  • the heat exchanger 13 functions as a so-called EGR cooler that cools the exhaust gas to be recirculated.
  • FIG. 8 shows the state of the cooling circuit 101 during the warm-up operation immediately after the engine 10 is started to cool down.
  • the heater valve 32 is controlled to be closed because the temperature rise of the cooling water is prioritized. Further, since the cooling water temperature is low, the temperature-sensitive thermostat 35 is closed.
  • the throttle flow path 57 is the only flow path that returns from the engine outlet flow path 54 to the water pump 31.
  • the flow rate of the throttle flow path 57 is significantly smaller than that of the heater flow path 56 and the radiator flow path 55. That is, only the cooling water of the flow rate (also referred to as the minimum flow rate) flowing through the throttle flow path 57 flows in the first liquid circulation path. This state is called zero flow.
  • the throttle flow path 57 may be provided separately from the first liquid circulation path so that the flow rates of the block flow path 53A and the head flow path 53B become substantially zero in the zero flow state.
  • the flow rate of the heat exchanger flow path 51 is significantly larger than the flow rate of the block flow path 53A and the head flow path 53B. This is because the first liquid circulation path including the block flow path 53A and the head flow path 53B and the heat exchanger flow path 51 are connected in parallel to the water pump 31. In other words, the first liquid circulation path and the heat exchanger flow path 51 are independent.
  • the temperature rise of the cooling water can be promoted by the heat exchanger 13 while promoting the temperature rise of the engine 10 in the state of zero flow.
  • FIG. 9 shows the state of the cooling circuit 101 when the zero flow is canceled according to the rise in the cooling water temperature.
  • the heater valve 32 is controlled to be open in order to release the zero flow. At this stage, the thermostat 35 is left closed. By opening the heater valve 32, the flow rate of the cooling water flowing through the block flow path 53A, the head flow path 53B, and the engine outlet flow path 54 increases. As the flow rate flowing into the engine 10 increases, the flow rate of the heat exchanger flow path 51 decreases slightly.
  • FIG. 10 is a flowchart showing a control routine executed by the controller 30.
  • the controller 30 executes this control routine when the engine 10 cools down. More specifically, when an engine start command is issued by an operation of the driver or the like, this control routine is executed.
  • this control routine is executed.
  • the steps in the flowchart will be described. In the figure, “y” indicates that the determination result is positive, and “n” indicates that the determination result is negative.
  • step S100 the controller 30 closes the heater valve 32. As a result, it becomes a zero flow state.
  • step S110 the controller 30 closes the first valve mechanism 22. It is assumed that the second valve mechanism 21 is closed in the initial state. As a result, the valve mechanisms 21 and 22 are in the state shown in FIG. 6, and when the water pump 31 is driven with the start of the engine 10, exhaust heat is recovered in the heat exchanger 13.
  • step S120 the controller 30 determines whether or not the inlet water temperature of the heat exchanger 13 is higher than the first condensed water avoidance temperature as the first determination temperature. If the determination result is affirmative, the process of step S130 is executed, and if the determination result is negative, this step is repeatedly executed.
  • the first condensed water avoidance temperature referred to here is a temperature at which condensed water is not generated in the exhaust return passage 17. More specifically, it is the lower limit of the temperature of the cooling water when the exhaust gas is cooled in the heat exchanger 13 but the condensed water is not generated downstream of the heat exchanger 13. It does not have to be a strict lower limit value, and the temperature may be slightly higher than the lower limit value in order to more reliably avoid the generation of condensed water.
  • the specific first condensed water avoidance temperature depends on the specifications of the engine 10 and the like, but is set to, for example, about 55 ° C.
  • step S130 the controller 30 determines whether or not the temperature of the cooling water in the engine outlet flow path 54 (engine outlet water temperature) is higher than the EGR possible temperature as the second determination temperature. If the determination result is affirmative, the process of step S140 is executed, and if the determination result is negative, the process returns to step S120.
  • the EGR possible temperature here is the lower limit of the temperature of the cooling water when the engine 10 burns stably even if EGR is performed. It does not have to be a strict lower limit value, and the temperature may be slightly higher than the lower limit value in order to more reliably secure the combustion stability of the engine 10.
  • the specific EGR possible temperature depends on the specifications of the engine 10, but is set to, for example, about 60 °.
  • step S140 the controller 30 opens the first valve mechanism 22.
  • the valve mechanisms 21 and 22 are in the state shown in FIG.
  • step S150 the controller 30 opens the second valve mechanism 21.
  • the valve mechanisms 21 and 22 are in the state shown in FIG. That is, EGR is started.
  • step S160 the controller 30 determines whether or not the heat exchanger inlet water temperature is higher than the boiling determination temperature as the third determination temperature. If the determination result is affirmative, the process of step S170 is executed, and if the determination result is negative, this step is repeatedly executed.
  • the boiling determination temperature referred to here is a boiling point of cooling water or a temperature slightly lower than the boiling point. That is, the boiling determination temperature is higher than the first condensed water avoidance temperature and the EGR possible temperature.
  • step S170 the controller 30 gradually opens the heater valve 32.
  • the cooling water also flows in the heater flow path 56, and the zero flow is released. The reason why the heater valve 32 is gradually opened without being suddenly fully opened will be described later.
  • step S180 the controller 30 determines whether or not the engine outlet water temperature is higher than the second condensed water avoidance temperature as the fourth determination temperature. If the determination result is affirmative, the process of step S190 is executed, and if the determination result is negative, this step is repeatedly executed.
  • the second condensed water avoidance temperature referred to here is the heat exchanger inlet even if the heater valve 32 is fully opened and the cooling water whose temperature has dropped in the heater core 33 and the cooling water flowing through the heat exchanger flow path 51 are mixed. This is the temperature of the cooling water of the engine outlet flow path 54 when the water temperature does not fall below the first condensed water avoidance temperature. As with other determination temperatures, a slight margin may be provided.
  • the controller 30 fully opens the heater valve 32 in step S190.
  • FIG. 11 is a timing chart of the cooling water temperature, the cooling water flow rate, and the opening degree of the heater valve 32 when the above-mentioned control routine is executed in the heat exchange system 100 of the present embodiment. It is assumed that the engine start command is issued at the timing t0.
  • both the heat exchanger inlet water temperature and the engine outlet water temperature rise.
  • the heat exchanger flow path 51 recovers heat from the exhaust in the heat exchanger 13
  • heat is taken away by the cold engine 10 in the block flow path 53A and the head flow path 53B, so that the heat exchanger inlet water temperature The temperature rises faster than the engine outlet water temperature.
  • the flow rate of the cooling water in the heater flow path 56 gradually increases. That is, the flow rate of the cooling water flowing from the pump flow path 50 to the block flow path 53A increases. Therefore, the flow rate of the cooling water in the heat exchanger flow path 51 is reduced.
  • the engine outlet water temperature drops once as the cooling water flow rates of the block flow path 53A and the head flow path 53B increase, but rises again as the temperatures of the cylinder block 10A and the cylinder head 10B rise.
  • the cooling water that has passed through the heat exchanger 13 and the cooling water that has passed through the heater core 33 merge.
  • the cooling water that has passed through the heater core 33 is the one in which the engine outlet water temperature, which is lower than the heat exchanger inlet water temperature, is further lowered in the heater core 33. Therefore, the cooling water that has passed through the heat exchanger 13 merges with the cooling water that has passed through the heater core 33, so that the temperature drops and the cooling water flows into the water pump 31 again. As a result, the temperature of the water at the inlet of the heat exchanger is suppressed from rising and maintained at a temperature lower than the boiling point T5.
  • step S190 the heater valve 32 is fully opened by the process of step S190.
  • the flow rate of the cooling water in the heater flow path 56 increases sharply, and the water temperature at the inlet of the heat exchanger decreases.
  • the heat exchanger inlet water temperature does not drop to the condensed water generation temperature.
  • FIG. 12 is a timing chart when the heater valve 32 is fully opened in the process of step S170.
  • the timings t1 to t3 are the same as in FIG.
  • the engine outlet water temperature is lower than the timing t4 in FIG.
  • the heater valve 32 is fully opened in this state, the temperature of the heat exchanger inlet water drops until it becomes the same as the engine outlet water temperature. Therefore, when the engine outlet water temperature is lower than the first condensed water avoidance temperature, condensed water is generated.
  • the heater valve 32 is gradually opened as in the present embodiment, a sudden drop in the heat exchanger inlet water temperature immediately after the start of EGR is suppressed.
  • the engine outlet water temperature is such that the heat exchanger inlet water temperature does not fall below the first condensed water avoidance temperature even if the cooling water of the heat exchanger flow path 51 and the cooling water of the heat exchanger flow path 51 are mixed (the first). 2
  • the heater valve 32 is fully opened after the temperature rises to (condensed water avoidance temperature). Therefore, according to this embodiment, condensed water is not generated.
  • EGR can be performed while avoiding the generation of condensed water. Further, according to the present embodiment, the timing of starting EGR can be accelerated. This will be described in comparison with FIG. 13 as a comparative example.
  • FIG. 13 is a timing chart in the case of a conventionally known cooling circuit in which cooling water flows into the heat exchanger 13 after passing through the engine 10 and the throttle chamber 24.
  • EGR can be started at the timing t3 when the heat exchanger inlet water temperature exceeds the first condensed water avoidance temperature. That is, in the comparative example, it takes time from the release of the zero flow state to the start of EGR.
  • EGR can be started before the zero flow state is released. That is, according to the present embodiment, the EGR can be started at a timing significantly earlier than that of the comparative example.
  • the heat exchange system 100 of the present embodiment has a heat exchange passage provided with a heat exchanger 13 for exchanging heat between the exhaust and the cooling water (liquid) on the upstream side of the main catalyst (underfloor) 12 in the exhaust passage 11 of the engine 10.
  • a bypass passage 15 for bypassing the heat exchanger 13, and a first valve mechanism (first flow rate adjusting mechanism) 22 for adjusting the exhaust flow rate of the heat exchange passage 14 and the bypass passage 15 are provided.
  • an exhaust recirculation passage 17 for recirculating the exhaust gas from the outlet side of the heat exchanger 13 of the heat exchange passage 14 to the intake passage 16 of the engine 10 and a second valve mechanism for adjusting the flow rate of the exhaust gas passing through the exhaust recirculation passage 17 A second flow rate adjusting mechanism 21 and a controller (control unit) 30 for controlling the first valve mechanism 22 and the second valve mechanism 21 are provided.
  • the controller 30 closes the bypass passage 15 by controlling the first valve mechanism 22 and allows exhaust gas to flow to the main catalyst 12 via the heat exchange passage 14. Then, when the warm-up operation is completed, the exhaust gas that has passed through the heat exchanger 13 is sent to the exhaust / return passage 17 by controlling the second valve mechanism 21.
  • the first liquid circulation includes a head flow path 53B for cooling the cylinder head 10B of the engine 10 and the cylinder block 10A, and a block flow path 53A (engine cooling flow path) as a part of the path. It includes a path and a heat exchanger flow path (second liquid circulation path) 51 in which cooling water circulates in the heat exchanger 13 independently of the engine cooling flow path.
  • the heat exchange system 100 of the present embodiment includes one water pump 31 for circulating cooling water in the first liquid circulation path and the heat exchanger flow path 51, and exchanges heat with the first liquid circulation path for the water pump 31.
  • the vessel flow path 51 is connected in parallel. This makes it possible to start EGR early in a compact system.
  • the heat exchange system 100 of the present embodiment is arranged on the downstream side of the engine cooling flow path in the first liquid circulation path, and is a heater valve (third flow rate adjusting mechanism) 32 that adjusts the flow rate from the engine cooling flow path to the heater core 33. Further prepare. Then, the controller 30 closes the heater valve 32 at the initial stage of the warm-up operation to block the flow of the cooling water from the engine cooling flow path to the heater core 33, and circulates the cooling water in the second liquid circulation path. ..
  • the heat exchanger inlet water temperature (first water temperature) is higher than the first condensed water avoidance temperature (first determination temperature), and the engine outlet water temperature (second water temperature) sets the EGR. Even if this is done, when the temperature becomes higher than the EGR possible temperature (second determination temperature), which is the water temperature when the engine 10 can burn, the second valve mechanism 21 is opened and EGR is started.
  • the EGR can be started after the engine 10 has warmed up and then the heat exchanger 13 has warmed up, but in the configuration of the present embodiment, the EGR can be started earlier than this. ..
  • the controller 30 uses the heater when either the heat exchanger inlet water temperature or the engine outlet water temperature becomes higher than the first condensed water avoidance temperature and the boiling determination temperature (third determination temperature) higher than the engine outlet water temperature.
  • the valve 32 is opened to allow cooling water to flow through the heater core 33. As a result, boiling of the cooling water can be avoided.
  • the controller 30 gradually increases the opening degree when the heater valve 32 is opened. That is, the heater valve 32 is gradually opened. As a result, the water temperature at the inlet of the heat exchanger is maintained, so that condensed water is not generated even when EGR is started.
  • the engine outlet water temperature becomes higher than the second condensed water avoidance temperature (fourth determination temperature), which is higher than the first condensed water avoidance temperature, during the period in which the opening degree of the heater valve 32 is gradually increased. Then, the heater valve 32 is fully opened. As described above, if the engine outlet water temperature is higher than the second condensed water avoidance temperature, condensed water will not be generated even if the heater valve 32 is fully opened.
  • one three-way valve is used as the first valve mechanism 22 for switching between the heat exchange passage 14 and the bypass passage 15, but the present invention is not limited to this.
  • one valve may be provided in each of the heat exchange passage 14 and the bypass passage 15, and these valves may be coordinatedly controlled.
  • the second valve mechanism 21 is not limited to the butterfly valve, and other types of valves may be used as long as the exhaust flow rate of the exhaust return passage 17 can be adjusted.
  • both the present embodiment and the comparative example are in the zero flow state at the initial stage of the warm-up operation, but it is not essential to be in the zero flow state. If the zero flow state is not achieved, the rate of increase in the heat exchanger inlet water temperature and the engine outlet water temperature will only slow down. That is, even if neither the present embodiment nor the comparative example is compared in the state of no zero flow, the configuration of the present embodiment can start EGR earlier than the configuration of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

熱交換システムは、排気通路に、排気と液体との熱交換を行なう熱交換器を備える熱交換通路と、熱交換器をバイパスするバイパス通路と、熱交換通路及びバイパス通路の排気流量を調節する第1流量調節機構とを備える。さらに、熱交換システムは熱交換通路の熱交換器の出口側からエンジンの吸気通路へ排気を還流させる排気還流通路と、還流させる排気の量を調節する第2流量調節機構と、第1流量調節機構及び第2流量調節機構を制御する制御部とを備える。制御部は、エンジンの暖機運転時には、バイパス通路を閉鎖して熱交換通路を介して排気を床下触媒に流し、暖機運転が終了したら熱交換器を通過した排気を排気還流通路に流す。さらに、熱交換システムはエンジン冷却流路を経路の一部として含む第1液体循環経路と、エンジン冷却流路から独立して液体が熱交換器を循環する第2液体循環経路とを備える。

Description

熱交換システム
 本発明は、内燃機関に用いる熱交換システムに関する。
 国際公開第2015/088224号には、エンジンの排気通路に設けられたEGR(Exhaust Gas Recirculation)クーラを、排気の熱を回収する熱交換器として用いる熱交換システムが開示されている。
 上記の熱交換システムは、EGRクーラをバイパスするバイパス通路の流量を調節するバルブ機構と、バイパス通路から吸気通路へのEGR量を調節するバルブ機構と、排気通路から吸気通路へのEGR量を調節するバルブ機構と、を備える。そして、エンジンの冷機始動後の暖機運転の初期にEGR要求がある場合にはバイパス通路から吸気通路へ排気を還流させ、始動後に所定時間が経過したらEGRクーラを通過した排気を吸気通路に還流させている。
 ところで、上記文献の熱交換システムは、冷却水がエンジンを通過した後にEGRクーラに流入する構成となっている。このような構成において、冷却水が低温の状態でEGRクーラを通過した排気を吸気通路に還流させると、排気が冷却水により冷却されて、EGRバルブ等の腐食の原因となる凝縮水が発生してしまう。すなわち、冷却水の温度が上昇するまではEGRを実行することができない。そして、冷却水の温度が上昇してからEGRを開始することとすると、エンジン全体が暖まるのを待つ必要がある。
 そこで上記文献の熱交換システムでは、冷却水が低温である暖機運転の初期にはバイパス通路から吸気通路へ排気を還流させている。
 しかし、上記文献の熱交換システムにおいて、バイパス通路の一部は暖機運転の初期にしか使用されない。このような通路があることで、EGRクーラを排熱回収器としても用いることによる部品点数削減の効果は相殺されてしまう。
 そこで本発明は、EGRクーラを排熱回収器としても用いることの効果を確保し、かつ、EGRを早期に実行可能な熱交換システムを提供することを目的とする。
 本発明のある態様による熱交換システムは、エンジンの排気通路に、排気と液体との熱交換を行なう熱交換器を備える熱交換通路と、熱交換器をバイパスするバイパス通路と、熱交換通路及びバイパス通路の排気流量を調節する第1流量調節機構と、を備える。さらに、熱交換通路の熱交換器の出口側からエンジンの吸気通路へ排気を還流させる排気還流通路と、排気還流通路を通過する排気の流量を調節する第2流量調節機構と、第1流量調節機構及び第2流量調節機構を制御する制御部と、を備える。そして、制御部が、エンジンの暖機運転時には、第1流量調節機構を制御することによりバイパス通路を閉鎖して熱交換通路を介して排気を床下触媒に流し、暖機運転が終了したら第2流量調節機構を制御することにより熱交換器を通過した排気を排気還流通路に流す。さらに、熱交換システムは、エンジンの内部に設けたエンジン冷却流路を経路の一部として含む第1液体循環経路と、エンジン冷却流路から独立して液体が熱交換器を循環する第2液体循環経路と、を備える。
図1は、熱交換システムの概略図である。 図2は、熱交換システムの冷却回路図である。 図3は、暖機運転中の運転モードを示すマップである。 図4は、暖機運転終了後の運転モードを示すマップである。 図5は、非排熱回収モードまたは非EGRモードにおける各バルブ機構の状態を示す図である。 図6は、排熱回収モードにおける各バルブ機構の状態を示す図である。 図7は、EGRモードにおける各バルブ機構の状態を示す図である。 図8は、ゼロフローの状態における冷却水の流れを示す図である。 図9は、ゼロフローが解除され、かつサーモスタットが閉じた状態における冷却水の流れを示す図である。 図10は、熱交換システムの制御ルーチンを示すフローチャートである。 図11は、本実施形態の制御ルーチンを実行した場合のタイミングチャートである。 図12は、ヒータバルブを一気に開いた場合のタイミングチャートである。 図13は、比較例としてのタイミングチャートである。
 以下、図面を参照して、本発明の実施形態について説明する。
 図1は、本発明の実施形態に係る熱交換システム100を示す概略図である。
 熱交換システム100は、車両に適用されるシステムである。熱交換システム100は、エンジン10の排気通路11における床下触媒としてのメイン触媒12の上流側に、排気と液体との熱交換を行う熱交換器13が設けられた熱交換通路14と、熱交換通路14をバイパスするバイパス通路15と、を備える。また、熱交換システム100は、熱交換通路14における熱交換器13よりも下流側に接続され熱交換通路14の熱交換器13の出口側から吸気通路16に排気の一部を還流させる排気還流通路17を備える。本実施形態では、液体は冷却水である。ここでいう冷却水とは、エンジンを冷却する液状の冷媒を意味する。
 メイン触媒12は、NOx吸蔵還元触媒、酸化触媒、及び三元触媒のいずれか、又はこれらの組み合わせで構成される。本実施形態では、排気通路11におけるエンジン10の近くにサブ触媒18が設けられているが、サブ触媒18は必ずしも設けなくてもよい。
 熱交換通路14とバイパス通路15との合流部には、第1流量調節機構としての第1バルブ機構22が設けられる。本実施形態における第1バルブ機構22は、三方弁である。
 排気還流通路17には、排気還流通路17を通過する排気の流量を調節する第2流量調節機構としての第2バルブ機構21が設けられる。本実施形態における第2バルブ機構21は、バタフライバルブである。
 吸気通路16は、排気還流通路17との合流部より下流側にターボ過給機23を備え、ターボ過給機23の下流にはスロットルチャンバ24を備える。
 熱交換通路14、バイパス通路15、及び排気還流通路17を流れる排気の流量は、各バルブ機構21、22によりそれぞれ調節可能となっている。
 また、熱交換システム100は、各バルブ機構21、22及びスロットルチャンバ24の作動を制御するコントローラ30を備える。本実施形態のコントローラ30は、熱交換システム100に加えて、エンジン10の作動も制御するように構成される。熱交換システム100の制御を行うコントローラとエンジン10の制御を行うコントローラとを別々に設けてもよい。
 コントローラ30は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出インターフェース、これらを接続するバス等を含んだマイクロコンピュータで構成される。コントローラ30を複数のマイクロコンピュータで構成することも可能である。コントローラ30は、CPUがROMに記憶されたプログラムを読み出して実行することで熱交換システム100の制御を行う。
 コントローラ30には、後述する熱交換器流路51における熱交換器13の入口の冷却水温を検出する温度センサ20からの信号と、後述するエンジン出口流路54における冷却水温を検出する温度センサ19からの信号等が入力される。
 第1バルブ機構22及び第2バルブ機構21の開閉制御については後述する。
 図2は、熱交換システム100の冷却回路101を示す図である。図中の冷却回路上の矢印は冷却水の流れる方向を示している。
 ウォータポンプ31の出口に接続されたポンプ流路50は、エンジン10のシリンダブロック10Aに設けたウォータジャケットであるブロック流路53Aと、熱交換器13を備える熱交換器流路51と、ターボ過給機23を備えるターボ流路52と、オイルクーラ38を備えるオイルクーラ流路58と、に分岐する。ウォータポンプ31はエンジン10により駆動される。
 ブロック流路53Aは、エンジン10のシリンダヘッド10Bに設けたウォータジャケットであるヘッド流路53Bと連通しており、ヘッド流路53Bにはエンジン10の出口部分でエンジン出口流路54が接続されている。エンジン出口流路54は、ラジエータ36、リザーバタンク37及びサーモスタット35を備えるラジエータ流路55と、ヒータコア33、ヒータバルブ32及びヒータ用ポンプ34を備えるヒータ流路56と、スロットルチャンバ24を備えるスロットル流路57とに分岐する。エンジン出口流路54には、上述した温度センサ19が設けられる。ヒータバルブ32は、コントローラ30により開閉制御される。ヒータバルブ32の開閉制御の詳細については後述する。
 熱交換器流路51における熱交換器13の入口部分には、上述した温度センサ20が設けられる。なお、図2においては、熱交換器流路51の一部がエンジン10の内部を通過する構成になっているが、これはエンジン10の冷却を目的とした構成ではなく、冷却配管を簡素化する為の構成である。したがって、エンジンルーム内に空間的な余裕がある場合には、エンジン10に入る前に熱交換器流路51がポンプ流路50から分岐する構成にしてもよい。
 熱交換器流路51、ターボ流路52、ラジエータ流路55、ヒータ流路56、スロットル流路57及びオイルクーラ流路58は、ウォータポンプ31の入口より手前で合流する。
 上記の通り、第2液体循環経路としての熱交換器流路51は、ポンプ流路50、ブロック流路53A、ヘッド流路53B、エンジン出口流路54及びスロットル流路57からなる第1液体循環経路としてのエンジン流路から独立した循環経路となっている。
 熱交換システム100は上記のように構成されており、車両の状態に応じた運転モードで作動するように、コントローラ30よって制御される。
 図3は、エンジン10を冷機始動した後の暖機運転中における運転モードマップである。縦軸はエンジン負荷に相当する正味平均有効圧BMEPであり、横軸はエンジン回転速度Neである。図示する通り、低中回転速度かつ低中負荷の領域に排熱回収領域が設定されている。排熱回収領域では、熱交換器13において排気と冷却水との熱交換を行なうことにより、排気の熱を液体に回収する。排熱を回収する目的は、冷却水の温度上昇を促進させることである。
 図4は、エンジン10の暖機運転が終了した後の運転モードマップである。縦軸及び横軸は図3と同様である。図示する通り、エンジン10がWOT(Wide−Open Throttle)に近い領域と、正味平均有効圧BMEPがごく低い領域を除く領域に、排気還流通路17を介して吸気通路16に排気の一部を還流させるEGRを実行する領域(以下、EGR領域という)が設定されている。EGRを実行する目的は、エンジン10のシリンダ内の燃焼温度の上昇の抑制、ポンピングロスの低下等である。
 図5~図7は、図3及び図4に示した各運転領域における第1バルブ機構22及び第2バルブ機構21の動作を説明するための図である。各図において、矢印は排気の流れを示している。
 図5は、非排熱回収領域及び非EGR領域における各バルブ機構21、22の状態と排気の流れを示している。
 図5において、第1バルブ機構22は、バイパス通路15が開き熱交換通路14が閉じた状態になるよう制御される。この状態を第1バルブ機構22が開いた状態という。一方、第2バルブ機構21は排気還流通路17の流路を塞ぐ状態に制御される。この状態を第2バルブ機構21が閉じた状態という。
 上記のように第1バルブ機構22を開き、第2バルブ機構21を閉じることにより、排気はバイパス通路15を通ってメイン触媒12に流入する。
 図6は、排熱回収領域における各バルブ機構21、22の状態と排気の流れを示している。
 図6において、第1バルブ機構22は、バイパス通路15が閉じ熱交換通路14が開いた状態になるよう制御される。この状態を第1バルブ機構22が閉じた状態という。一方、第2バルブ機構21は閉じた状態に制御される。
 上記のように第1バルブ機構22を閉じ、第2バルブ機構21も閉じることにより、排気は熱交換通路14を通ってメイン触媒12に流入する。これにより、冷却水の温度上昇が促進される。
 図7は、EGR領域における各バルブ機構21、22の状態と排気の流れを示している。
 図7において、第1バルブ機構22及び第2バルブ機構21は披いた状態に制御される。これにより、排気の一部はバイパス通路15を通ってメイン触媒12に流入し、排気の他の一部は排気還流通路17を通って吸気通路16に還流する。
 なお、排熱回収領域と非排熱回収領域との境界線上では、第1バルブ機構22を半開状態に制御し、第2バルブ機構21を閉じた状態に制御する。これにより、排気の一部はバイパス通路15を通ってメイン触媒12に流入し、排気の他の一部は熱交換通路14を通ってメイン触媒12に流入する。この際、熱交換器13は還流させる排気を冷却する、いわゆるEGRクーラとして機能する。
 次に、エンジン10を冷機始動した後の、冷却回路101の冷却水の流れについて図2、図8及び図9を用いて説明する。各図において、実線は冷却水が流れていることを示し、破線は冷却水が流れていないことを示す。
 図8は、エンジン10を冷機始動した直後の暖機運転中における冷却回路101の状態を示している。
 冷機始動した直後は、冷却水の温度上昇を優先するため、ヒータバルブ32は閉じた状態に制御される。また、冷却水温は低いので、温度感応式のサーモスタット35は閉じている。この状態で、エンジン出口流路54からウォータポンプ31に戻る流路はスロットル流路57だけある。そして、スロットル流路57はヒータ流路56及びラジエータ流路55に比べて流量が大幅に少ない。すなわち、第1液体循環経路にはスロットル流路57を流れる流量(最小流量ともいう)の冷却水しか流れない。この状態を、ゼロフローという。ゼロフローの状態にすると、冷却水がブロック流路53A及びヘッド流路53Bに滞在する時間が長くなるので、エンジン10の熱が冷却水に持ち去られ難くなる。その結果、エンジン10の温度上昇は促進される。なお、スロットル流路57を第1液体循環経路とは別に設け、ゼロフローの状態ではブロック流路53A及びヘッド流路53Bの流量がほぼゼロになるようにしてもよい。
 また、ゼロフローの状態でも、熱交換器流路51の流量はブロック流路53A及びヘッド流路53Bの流量に比べて大幅に多い。これは、ブロック流路53A及びヘッド流路53Bを含む第1液体循環経路と熱交換器流路51とがウォータポンプ31に対して並列に接続されているからである。換言すると、第1液体循環経路と熱交換器流路51とが独立しているからである。
 これにより、ゼロフローの状態で、エンジン10の温度上昇を促進しつつ、熱交換器13で冷却水の温度上昇を促進することができる。
 図9は、冷却水温の上昇に応じてゼロフローを解除した場合における冷却回路101の状態を示している。
 ゼロフローを解除するために、ヒータバルブ32が開いた状態に制御される。この段階ではサーモスタット35は閉じたままとする。ヒータバルブ32が開かれたことで、ブロック流路53A、ヘッド流路53B及びエンジン出口流路54を流れる冷却水の流量が増加する。なお、エンジン10に流入する流量が増加することで、熱交換器流路51の流量は若干減少する。
 図9の状態から、さらに冷却水の温度が上昇してサーモスタット35が開くと、図2に示した通り、全ての流路に冷却水が流れることとなる。
 次に、エンジン10の冷機始動からヒータバルブ32を全開にするまでの制御について図10を参照して説明する。
 図10はコントローラ30が実行する制御ルーチンを示すフローチャートである。コントローラ30は、エンジン10が冷機始動する際にこの制御ルーチンを実行する。より詳細には、運転者の操作等によりエンジン始動指令が発せられたら、この制御ルーチンを実行する。以下、フローチャートのステップに沿って説明する。なお、図中の「y」は判定結果が肯定的なことを示し、「n」は判定結果が否定的なことを示す。
 ステップS100において、コントローラ30はヒータバルブ32を閉じる。これによりゼロフローの状態になる。
 ステップS110において、コントローラ30は第1バルブ機構22を閉じる。なお、第2バルブ機構21は初期状態で閉じているものとする。これにより、各バルブ機構21、22は図6に示した状態になり、エンジン10の始動に伴ってウォータポンプ31が駆動したら、熱交換器13において排熱回収が行われる。
 上記のステップS100及びS110の処理が終了したら、コントローラ30はエンジン10を始動させる。
 ステップS120において、コントローラ30は、熱交換器13の入口水温が第1判定温度としての第1凝縮水回避温度より高いか否かを判定する。判定結果が肯定的な場合はステップS130の処理を実行し、否定的な場合は本ステップを繰り返し実行する。ここでいう第1凝縮水回避温度とは、排気還流通路17において凝縮水が発生しないときの温度である。より詳細には、熱交換器13において排気が冷却されても、熱交換器13の下流で凝縮水が発生しない場合の冷却水の温度の下限値である。なお、厳密な下限値でなくてもよく、凝縮水の発生をより確実に回避するために、下限値よりも若干高い温度としてもよい。具体的な第1凝縮水回避温度はエンジン10の仕様等によるが、例えば55℃程度とする。
 ステップS130において、コントローラ30はエンジン出口流路54の冷却水の温度(エンジン出口水温)が第2判定温度としてのEGR可能温度より高いか否かを判定する。判定結果が肯定的な場合はステップS140の処理を実行し、否定的な場合はステップS120の処理に戻る。ここでいうEGR可能温度とは、EGRを行なってもエンジン10が安定して燃焼する場合の冷却水の温度の下限値である。なお、厳密な下限値でなくてもよく、エンジン10の燃焼安定性をより確実に確保するために、下限値よりも若干高い温度としてもよい。具体的なEGR可能温度はエンジン10の仕様等によるが、例えば60°程度とする。
 ステップS140において、コントローラ30は第1バルブ機構22を開く。これにより、各バルブ機構21、22は図5の状態になる。
 ステップS150において、コントローラ30は第2バルブ機構21を開く。これにより各バルブ機構21、22は図7の状態になる。すなわち、EGRが開始される。
 ステップS160において、コントローラ30は熱交換器入口水温が第3判定温度としての沸騰判定温度より高いか否かを判定する。判定結果が肯定的な場合はステップS170の処理を実行し、否定的な場合は本ステップを繰り返し実行する。ここでいう沸騰判定温度とは、冷却水の沸点または沸点より若干低い温度である。すなわち、沸騰判定温度は第1凝縮水回避温度及びEGR可能温度に比べて高温である。
 ステップS170において、コントローラ30はヒータバルブ32を徐々に開く。これにより、ヒータ流路56にも冷却水が流れることとなり、ゼロフローが解除される。ヒータバルブ32をいきなり全開にせずに、徐々に開く理由については後述する。
 ステップS180において、コントローラ30はエンジン出口水温が第4判定温度としての第2凝縮水回避温度より高いか否かを判定する。判定結果が肯定的な場合はステップS190の処理を実行し、否定的な場合は本ステップを繰り返し実行する。ここでいう第2凝縮水回避温度とは、ヒータバルブ32を全開にして、ヒータコア33で温度低下した冷却水と熱交換器流路51を流れる冷却水とが混合しても、熱交換器入口水温が第1凝縮水回避温度を下回らない場合の、エンジン出口流路54の冷却水の温度である。なお、他の判定温度と同様に、若干のマージンを持たせてもよい。
 そして、エンジン出口水温が第4判定温度としての第2凝縮水回避温度より高い場合には、コントローラ30はステップS190においてヒータバルブ32を全開にする。
 上述した制御ルーチンを実行した場合の作用効果について、図11~図13のタイミングチャートを参照して説明する。
 図11は本実施形態の熱交換システム100において上述した制御ルーチンを実行した場合の、冷却水温と冷却水流量とヒータバルブ32の開度についてのタイミングチャートである。タイミングt0でエンジン始動指令が発せられたものとする。
 ステップS100及びS110の処理が終了し、タイミングt1でエンジン10が始動すると、熱交換器流路51の流量が増加する。このとき、ステップS100及びS110の処理によってゼロフローの状態になっているので、ヒータコア33には冷却水が流れない。
 エンジン始動後は、熱交換器入口水温とエンジン出口水温はともに上昇する。ただし、熱交換器流路51では熱交換器13において排気から熱を回収するのに対し、ブロック流路53A及びヘッド流路53Bでは冷えたエンジン10に熱を奪われるので、熱交換器入口水温の方がエンジン出口水温よりも早く温度上昇する。
 その後、熱交換器入口水温が第1凝縮水回避温度T2を超え、タイミングt2においてエンジン出口水温がEGR可能温度T1を超えると、ステップS140及びS150の処理によってEGRが始まる。
 そして、タイミングt3において熱交換器入口水温が沸騰判定温度T4を超えると、ステップS170の処理によって、ヒータバルブ32の開度が漸増する。
 これにより、ヒータ流路56の冷却水流量が徐々に増加する。つまり、ポンプ流路50からブロック流路53Aへ流入する冷却水流量が増加する。このため熱交換器流路51の冷却水流量は減少する。
 また、エンジン出口水温はブロック流路53A及びヘッド流路53Bの冷却水流量が増加することで一旦低下するが、シリンダブロック10A及びシリンダヘッド10Bの温度上昇に伴って再び上昇する。
 また、ヒータ流路56に冷却水が流れることにより、熱交換器13を通過した冷却水と、ヒータコア33を通過した冷却水とが合流する。ヒータコア33を通過した冷却水は、熱交換器入口水温よりも低いエンジン出口水温がヒータコア33においてさらに温度低下したものである。したがって、熱交換器13を通過した冷却水はヒータコア33を通過した冷却水と合流することで温度が低下して、再びウォータポンプ31に流入する。これにより、熱交換器入口水温は上昇が抑制され、沸点T5より低温に維持される。
 そして、タイミングt4においてエンジン出口水温が第2凝縮水回避温度T3を超えたら、ステップS190の処理によってヒータバルブ32が全開になる。これにより、ヒータ流路56の冷却水流量が急峻に増加し、熱交換器入口水温は低下する。ただし、エンジン出口水温が上述した通りに設定した第2凝縮水回避温度T3を超えているので、熱交換器入口水温が凝縮水発生温度まで低下することはない。
 ここで、図10のステップS170の処理において、ヒータバルブ32を徐々に開くことについて図12を参照して説明する。図12は、ステップS170の処理においてヒータバルブ32を全開にした場合のタイミングチャートである。タイミングt1からt3までは図11と同様である。
 熱交換器入口水温が沸騰判定温度T4を超えたタイミングt3では、エンジン出口水温は図11のタイミングt4に比べて低い。この状態でヒータバルブ32を全開にすると、熱交換器入口水温はエンジン出口水温と同じになるまで温度低下する。したがって、エンジン出口水温が第1凝縮水回避温度より低い場合には、凝縮水が発生してしまう。
 これに対し本実施形態のようにヒータバルブ32を徐々に開けば、EGR開始直後の熱交換器入口水温の急激な低下が抑制される。そして、エンジン出口水温が、熱交換器流路51の冷却水と熱交換器流路51の冷却水とが混合しても熱交換器入口水温が第1凝縮水回避温度を下回らない温度(第2凝縮水回避温度)まで上昇してからヒータバルブ32を全開にする。したがって、本実施形態によれば、凝縮水が発生することはない。
 上記の通り、本実施形態によれば凝縮水の発生を回避しつつEGRを行なうことができる。さらに、本実施形態によれば、EGRを開始するタイミングを早めることができる。これについて、比較例としての図13と対比しつつ説明する。
 図13は、冷却水がエンジン10及びスロットルチャンバ24を通過した後に熱交換器13に流入するという、従来から知られた冷却回路の場合のタイミングチャートである。
 図13に示す通り、ゼロフローの状態のタイミングt1においてエンジンを始動すると、エンジン出口水温は図11に示した本実施形態の場合と同様に上昇する。ただし、冷却水がエンジン10及びスロットルチャンバ24を通過した後に熱交換器13に流入するので、熱交換器入口水温はエンジン出口水温より低くなる。
 そして、エンジン出口水温及び熱交換器入口水温がEGR可能温度T1を超えるタイミングt2になったら、ゼロフローの状態を解除できる。しかし、このタイミングt2では熱交換器入口水温が第1凝縮水回避温度T2に達していないので、EGRを行なうことができない。比較例においてEGRを開始できるのは、熱交換器入口水温が第1凝縮水回避温度を超えるタイミングt3である。すなわち、比較例においては、ゼロフローの状態を解除してからEGRを開始するまでに時間を要する。
 これに対し本実施形態では、図11に示した通り、ゼロフローの状態を解除する前にEGRを開始することができる。つまり、本実施形態によれば、比較例に比べて大幅に早いタイミングでEGRを開始することができる。
 以下に、本実施形態による効果をまとめる。
 本実施形態の熱交換システム100は、エンジン10の排気通路11におけるメイン触媒(床下)12の上流側に、排気と冷却水(液体)との熱交換を行なう熱交換器13を備える熱交換通路14と、熱交換器13をバイパスするバイパス通路15と、熱交換通路14及びバイパス通路15の排気流量を調節する第1バルブ機構(第1流量調節機構)22と、を備える。さらに、熱交換通路14の熱交換器13の出口側からエンジン10の吸気通路16へ排気を還流させる排気還流通路17と、排気還流通路17を通過する排気の流量を調節する第2バルブ機構(第2流量調節機構)21と、第1バルブ機構22及び第2バルブ機構21を制御するコントローラ(制御部)30と、を備える。コントローラ30は、エンジン10の暖機運転時(特に初期)には、第1バルブ機構22を制御することによりバイパス通路15を閉鎖して熱交換通路14を介して排気をメイン触媒12に流す。そして、暖機運転が終了したら第2バルブ機構21を制御することにより熱交換器13を通過した排気を排気還流通路17に流す。このような熱交換システム100は、エンジン10のシリンダヘッド10B及びシリンダブロック10Aを冷却するためのヘッド流路53B、ブロック流路53A(エンジン冷却流路)を経路の一部として含む第1液体循環経路と、エンジン冷却流路から独立して冷却水が熱交換器13を循環する熱交換器流路(第2液体循環経路)51と、を備える。
 上記のように、熱交換器13を循環する冷却回路とエンジンを冷却するための冷却回路とを分離することで、暖機運転中における冷却水の温度上昇が促進され、エンジン10が暖まるのを待たずにEGRを開始することが可能となる。
 本実施形態の熱交換システム100は、第1液体循環経路及び熱交換器流路51に冷却水を循環させる1つのウォータポンプ31を備え、ウォータポンプ31に対して第1液体循環経路と熱交換器流路51とが並列に接続される。これにより、コンパクトなシステムで早期のEGR開始を可能にすることができる。
 本実施形態の熱交換システム100は、第1液体循環経路におけるエンジン冷却流路の下流側に配置され、エンジン冷却流路からヒータコア33への流量を調節するヒータバルブ(第3流量調節機構)32をさらに備える。そして、コントローラ30は、暖機運転の初期にはヒータバルブ32を閉じてエンジン冷却流路からヒータコア33への冷却水の流れを遮断し、かつ、第2液体循環経路には冷却水を循環させる。
 これにより、ゼロフローの状態であっても、熱交換器流路51では冷却水が循環するので、熱交換器入口水温は速やかに上昇する。
 本実施形態では、コントローラ30は、熱交換器入口水温(第1水温)が、第1凝縮水回避温度(第1判定温度)より高く、かつ、エンジン出口水温(第2水温)が、EGRを行なってもエンジン10が燃焼可能な場合の水温であるEGR可能温度(第2判定温度)より高くなったら、第2バルブ機構21を開いてEGRを開始する。上述した比較例の構成ではエンジン10が暖まり、その後に熱交換器13が暖まってからEGRを開始することができるが、本実施形態の構成では、これよりも早期にEGRを開始することができる。
 本実施形態では、コントローラ30は、熱交換器入口水温またはエンジン出口水温のいずれかが第1凝縮水回避温度及びエンジン出口水温よりも高い沸騰判定温度(第3判定温度)より高くなったら、ヒータバルブ32を開いてヒータコア33に冷却水を流す。これにより、冷却水の沸騰を回避できる。
 本実施形態では、コントローラ30は、ヒータバルブ32を開く際には、開度を漸増させる。つまり、ヒータバルブ32を徐々に開く。これにより熱交換器入口水温が維持されるので、EGRを開始しても凝縮水が発生することはない。
 本実施形態では、コントローラ30は、ヒータバルブ32の開度を漸増させている期間中にエンジン出口水温が第1凝縮水回避温度より高い第2凝縮水回避温度(第4判定温度)より高くなったら、ヒータバルブ32を全開にする。上述した通り、エンジン出口水温が第2凝縮水回避温度より高くなれば、ヒータバルブ32を全開にしても凝縮水が発生することはない。
 なお、本実施形態では熱交換通路14とバイパス通路15との切り替えを行なう第1バルブ機構22として1つの三方弁を用いたが、これに限られるわけではない。例えば、熱交換通路14とバイパス通路15に、それぞれ1個ずつバルブを設け、これらのバルブを協調制御してもよい。第2バルブ機構21についても、バタフライバルブに限られるわけではなく、排気還流通路17の排気流量を調節できるのであれば、他の形式のバルブを用いてもよい。
 また、上記の説明では、本実施形態及び比較例のいずれも暖機運転の初期にゼロフローの状態にしているが、ゼロフローの状態にすることは必須ではない。ゼロフローの状態にしない場合には、熱交換器入口水温及びエンジン出口水温の上昇速度が遅くなるだけである。すなわち、本実施形態及び比較例のいずれもゼロフローの状態にしないものとして比較しても、本実施形態の構成は比較例の構成に比べて早期にEGRを開始することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1.  エンジンの排気通路に、
     排気と液体との熱交換を行なう熱交換器を備える熱交換通路と、
     前記熱交換器をバイパスするバイパス通路と、
     前記熱交換通路及び前記バイパス通路の排気流量を調節する第1流量調節機構と、
    を備え、さらに、
     前記熱交換通路の前記熱交換器の出口側から前記エンジンの吸気通路へ前記排気を還流させる排気還流通路と、
     前記排気還流通路を通過する排気の流量を調節する第2流量調節機構と、
     前記第1流量調節機構及び前記第2流量調節機構を制御する制御部と、
    を備え、
     前記制御部が、前記エンジンの暖機運転時には、前記第1流量調節機構を制御することにより前記バイパス通路を閉鎖して前記熱交換通路を介して排気を流し、前記暖機運転が終了したら前記第2流量調節機構を制御することにより前記熱交換器を通過した排気を前記排気還流通路に流す、熱交換システムにおいて、
     前記エンジンの内部に設けたエンジン冷却流路を経路の一部として含む第1液体循環経路と、
     前記エンジン冷却流路から独立して前記液体が前記熱交換器を循環する第2液体循環経路と、
    を備える熱交換システム。
  2.  請求項1に記載の熱交換システムにおいて、
     前記第1液体循環経路及び前記第2液体循環経路に前記液体を循環させる1つのウォータポンプを備え、
     前記ウォータポンプに対して前記第1液体循環経路と前記第2液体循環経路とが並列に接続される、熱交換システム。
  3.  請求項2に記載の熱交換システムにおいて、
     前記第1液体循環経路における前記エンジン冷却流路の下流側に配置され、前記エンジン冷却流路からヒータコアへの流量を調節する第3流量調節機構をさらに備え、
     前記制御部は、前記暖機運転の初期には前記第3流量調節機構を閉じて前記エンジン冷却流路から前記ヒータコアへの前記液体の流れをほぼ遮断し、かつ、前記第2液体循環経路には前記液体を循環させる、熱交換システム。
  4.  請求項3に記載の熱交換システムにおいて、
     前記制御部は、前記熱交換器の入口における前記液体の温度である第1水温が、前記排気還流通路において凝縮水が発生しない場合の水温である第1判定温度より高く、
     かつ、前記エンジン冷却流路の出口における前記液体の温度である第2水温が、前記吸気通路に前記排気を還流させても前記エンジンが燃焼可能な場合の水温である第2判定温度より高くなったら、前記第2流量調節機構を開いて前記排気を前記吸気通路に還流させる、熱交換システム。
  5.  請求項4に記載の熱交換システムにおいて、
     前記制御部は、前記第1水温または前記第2水温のいずれかが前記第1判定温度及び前記第2判定温度よりも高い第3判定温度より高くなったら、前記第3流量調節機構を開いて前記ヒータコアに前記液体を流す、熱交換システム。
  6.  請求項5に記載の熱交換システムにおいて、
     前記制御部は、前記第3流量調節機構を開く際には、開度を漸増させる、熱交換システム。
  7.  請求項6に記載の熱交換システムにおいて、
     前記制御部は、前記第3流量調節機構の開度を漸増させている期間中に前記第2水温が前記第1判定温度より高い第4判定温度より高くなったら、前記第3流量調節機構を全開にする、熱交換システム。
  8.  請求項1に記載の熱交換システムにおいて、
     前記熱交換器は床下触媒の上流側に位置する、熱交換システム。
PCT/IB2019/000336 2019-03-22 2019-03-22 熱交換システム WO2020194012A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021508085A JP7160182B2 (ja) 2019-03-22 2019-03-22 熱交換システム
PCT/IB2019/000336 WO2020194012A1 (ja) 2019-03-22 2019-03-22 熱交換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000336 WO2020194012A1 (ja) 2019-03-22 2019-03-22 熱交換システム

Publications (1)

Publication Number Publication Date
WO2020194012A1 true WO2020194012A1 (ja) 2020-10-01

Family

ID=72609597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000336 WO2020194012A1 (ja) 2019-03-22 2019-03-22 熱交換システム

Country Status (2)

Country Link
JP (1) JP7160182B2 (ja)
WO (1) WO2020194012A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138615A (ja) * 2007-12-06 2009-06-25 Toyota Motor Corp 内燃機関の制御装置
FR2948421A1 (fr) * 2009-07-23 2011-01-28 Renault Sa Procede de gestion de la circulation d'un fluide caloporteur dans un circuit de refroidissement d'un moteur thermique de vehicule automobile.
JP2018127915A (ja) * 2017-02-07 2018-08-16 いすゞ自動車株式会社 エンジン冷却システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948421A (en) * 1958-05-21 1960-08-09 Dresser Ind Interlock and control system for the elevator of a mechanical parking garage
JP2007024022A (ja) * 2005-07-15 2007-02-01 Sango Co Ltd 排気浄化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138615A (ja) * 2007-12-06 2009-06-25 Toyota Motor Corp 内燃機関の制御装置
FR2948421A1 (fr) * 2009-07-23 2011-01-28 Renault Sa Procede de gestion de la circulation d'un fluide caloporteur dans un circuit de refroidissement d'un moteur thermique de vehicule automobile.
JP2018127915A (ja) * 2017-02-07 2018-08-16 いすゞ自動車株式会社 エンジン冷却システム

Also Published As

Publication number Publication date
JPWO2020194012A1 (ja) 2020-10-01
JP7160182B2 (ja) 2022-10-25

Similar Documents

Publication Publication Date Title
JP5993759B2 (ja) エンジンの吸気冷却装置
EP1995424B1 (en) Internal combustion engine cooling system
JP2712711B2 (ja) 内燃機関の冷却方法及びその装置
US9404409B2 (en) Exhaust throttling for cabin heating
JP4802811B2 (ja) エンジンの冷却水回路
JP3179971U (ja) 燃焼機関の冷却システム
US9441511B2 (en) Apparatus for adjusting temperature of oil for vehicle and method for controlling the apparatus
JP5699839B2 (ja) エンジン冷却装置
JP7253898B2 (ja) 車両用冷却システムの制御方法
JP2016000971A (ja) 過給機付き内燃機関システム
JP2014009617A (ja) 内燃機関の冷却装置
JP6414194B2 (ja) 内燃機関の制御装置
WO2014132755A1 (ja) 排気再循環装置の冷却装置及び冷却方法
WO2020194012A1 (ja) 熱交換システム
JP4060697B2 (ja) Egrガスの冷却装置
JP2020180574A (ja) 内燃機関の冷却装置
JP2012082723A (ja) 内燃機関の冷却装置
JPH10325368A (ja) Egrガス冷却装置
JP6969412B2 (ja) 熱交換システム
JP5994450B2 (ja) 可変流量型ポンプの制御装置
JP5880325B2 (ja) 内燃機関の制御装置
WO2019138582A1 (ja) 冷却システム及び冷却システムの制御方法
JP2013124546A (ja) 車両の冷却装置
WO2021209778A1 (ja) 熱交換システム制御方法及び熱交換システム制御装置
JP5983453B2 (ja) 吸気冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920651

Country of ref document: EP

Kind code of ref document: A1