WO2020193061A1 - Hochspannungs-einrichtung und verfahren zur temperaturmessung an einer hochspannungs-einrichtung - Google Patents

Hochspannungs-einrichtung und verfahren zur temperaturmessung an einer hochspannungs-einrichtung Download PDF

Info

Publication number
WO2020193061A1
WO2020193061A1 PCT/EP2020/055231 EP2020055231W WO2020193061A1 WO 2020193061 A1 WO2020193061 A1 WO 2020193061A1 EP 2020055231 W EP2020055231 W EP 2020055231W WO 2020193061 A1 WO2020193061 A1 WO 2020193061A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage device
temperature sensor
carrier
temperature
voltage
Prior art date
Application number
PCT/EP2020/055231
Other languages
English (en)
French (fr)
Inventor
Matthias Heinecke
Thomas Hilker
Benjamin Zaedow
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2020193061A1 publication Critical patent/WO2020193061A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/55Oil reservoirs or tanks; Lowering means therefor
    • H01H33/555Protective arrangements responsive to abnormal fluid pressure, liquid level or liquid displacement, e.g. Buchholz relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/563Gas reservoirs comprising means for monitoring the density of the insulating gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/008Pedestal mounted switch gear combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices

Definitions

  • the invention relates to a high-voltage device and a method for temperature measurement on the high-voltage device, with at least one high-voltage device and with at least one carrier which is designed to carry at least one high-voltage device.
  • a high-voltage device with circuit breakers as high-voltage devices is z. B. from the
  • the high-voltage device comprises, as high-voltage devices, in particular three circuit breakers, each with one circuit breaker per pole.
  • the high-voltage device is designed to switch high voltages in the range of up to 1200 kV and / or currents in the range of a few hundred amperes.
  • high-voltage devices include e.g. B. disconnectors, earth electrodes, arresters, measuring transformers and / or transformers.
  • the high-voltage devices are in particular arranged on a carrier which, for B. is firmly connected to the ground via a foundation made of concrete.
  • z. B In a high-voltage device with three power switches as high-voltage devices, z. B. three poles independent of each other or dependent, in particular to switch simultaneously.
  • a drive in particular a spring-loaded drive, drives movable contact pieces of the circuit breakers via elements of a kinematic chain.
  • the elements of the kinematic chain include e.g. B. Trigger, gear parts and / or drive rods.
  • the drive is z. B. in a switch cabinet on the carrier, arranged with a trigger and a gear in the switch cabinet, and with drive Rods and deflection devices are arranged in the carrier running towards the poles.
  • Devices for controlling or regulating, for data processing, data storage and / or data transmission are z. B. arranged in the control cabinet.
  • the circuit breaker of a pole comprises electrical contacts, in particular rated current and / or arcing contacts and / or vacuum tubes, arranged in at least one insulator, e.g. B. an externally ribbed insulator made of ceramic, silicone and / or composite materials.
  • the isolator is e.g. B. filled with an insulating gas, in particular SF 6 and / or Clean Air.
  • the poles or circuit breakers of the poles, in particular the insulators of the circuit breakers are column-shaped, and z. B. arranged upright on the carrier.
  • the poles or circuit breakers of the poles comprise electrical contacts with contact lugs for connecting electrical consumers, current / voltage generators and / or power lines.
  • the state of the high-voltage device is monitored by measuring devices.
  • the gas pressure in isolators is monitored by means of a manometer, especially in the switch cabinet.
  • a reading is made e.g. B. manually at regular intervals during maintenance of the high-voltage device in order to obtain information about the status and functionality of the high-voltage device, in particular the high-voltage devices.
  • Continuous, in particular online, monitoring of high-voltage equipment enables the status and functionality of the high-voltage equipment to be determined at any time, thereby reducing downtimes, increasing functional reliability and enabling optimized maintenance and / or repair. As a result, costs and effort are z. B. to save personnel.
  • the state of a high-voltage device or of individual measurable properties of the high-voltage device, in particular measured variables of the high-voltage devices, can be determined online via sensors, in particular electrical and / or electronically readable sensors, and continuously or at time intervals , in particular measurable, processable, storable and / or transmitted at regular time intervals.
  • the condition is also influenced by environmental factors such as B. pressure, temperature, radiation and / or humidity is determined.
  • the temperature has a significant influence on high-voltage equipment.
  • the temperature influences a number of parameters of a high-voltage device, such as B. gas pressure, lengths of elements, spring storage forces, movement profiles, switching behavior, electrical resistances, cooling behavior with waste heat, condensation of liquids and / or frictional forces or lubrication behavior of lubricants.
  • the temperature of a high-voltage device is significantly influenced by the ambient temperature. When measuring the ambient temperature z. A number of disturbance variables can occur, for example via a temperature sensor, which falsify a measurement. So z. B. the temperature of the high-voltage device, the high-voltage device having a high thermal mass, influence the temperature measurement of the ambient temperature and lead to measurement errors.
  • Solar radiation and / or electromagnetic radiation from the high-voltage device or from electrical lines on the high-voltage devices can disrupt the temperature measurement of the temperature sensor and its data transmission.
  • the object of the present invention is to specify a high-voltage device and a method for measuring the temperature on the high-voltage device which solve the problems described above.
  • it is the task of a reliable temperature measurement, in particular the ambient temperature, with little or no measurement errors, easily and inexpensively on a high-voltage device.
  • a high-voltage device with the features according to claim 1 and / or by a method for measuring the temperature on a high-voltage device, in particular on the high-voltage device described above, according to claim 13.
  • Advantageous embodiments of the high-voltage device according to the invention and / or of the method for temperature measurement on a high-voltage device, in particular on the high-voltage device described above, are specified in the subclaims.
  • the objects of the main claims can be combined with one another and with features of subclaims and features of the subclaims with one another.
  • a high-voltage device comprises at least one high-voltage device and at least one carrier which is designed to carry the at least one high-voltage device. At least one temperature sensor is attached to the at least one carrier.
  • the at least one temperature sensor attached to the at least one carrier enables the ambient temperature of the high-voltage device to be measured easily and inexpensively. No further measuring devices to be set up separately, associated with additional effort and costs, are necessary for the temperature measurement of the ambient temperature.
  • the at least one carrier can comprise at least one support frame, in particular a hollow carrier.
  • the at least one temperature sensor can in particular be arranged on the at least one support frame.
  • the at least one carrier can comprise at least one carrier leg.
  • the at least one tem- The temperature sensor can in particular be arranged on the at least one support leg.
  • the at least one temperature sensor can be attached to a support frame and / or a support leg in a simple and inexpensive manner.
  • the at least one temperature sensor can be arranged in at least one support, in particular in at least one support frame and / or in at least one support leg.
  • the arrangement in the carrier enables the at least one temperature sensor to be shielded against radiation, in particular against light and / or thermal radiation, e.g. B. the sun and / or against electromagnetic radiation, in particular the electrical lines and / or the high-voltage devices. This will falsify the temperature measurements by z. B. radiation or other environmental influences such as rain prevented or at least reduced.
  • the at least one temperature sensor can be arranged on a lower side of the at least one carrier, in particular on a lower side of the at least one support frame. As a result, the temperature sensor is particularly well protected against environmental influences and / or radiation, with the advantages described above.
  • At least one decoupling element can be arranged between the at least one temperature sensor and the at least one carrier for thermal decoupling, in particular in the form of thermally insulating spacer sleeves and / or in the form of thermally insulating mats and / or in the form of thermally insulating pastes.
  • the thermal insulation or decoupling between the at least one temperature sensor and the at least one carrier enables the temperature of the environment to be measured without falsification or an influence of the temperature and thermal mass of the at least one carrier on the measurement results. This enables a reliable temperature measurement of the temperature of the environment with the At least one temperature sensor is possible, without or with minimized or low measurement errors, simply and inexpensively on a high-voltage device.
  • the at least one decoupling element can be made of thermally insulating plastic, glass fiber reinforced plastic (GfK) and / or rubber or comprise thermally insulating plastic, glass fiber reinforced plastic (GfK) and / or rubber.
  • the at least one temperature sensor can be dark, in particular black. This can reduce the disturbing effect of z. B. light radiation on the temperature measurement with the at least one temperature sensor can be reduced or minimized, in particular when the at least one temperature sensor is arranged on a side of the at least one carrier facing away from the light. Heat which is transferred from the at least one carrier to the at least one temperature sensor can be quickly given off again by the at least one temperature sensor and less falsifies the measurement result. The latency of the at least one temperature sensor is reduced and the temperature measurement of the temperature of the environment or the environment becomes more precise.
  • the at least one temperature sensor can be designed to be light, in particular white.
  • the at least one temperature sensor is arranged on at least one carrier in areas with direct incidence of light radiation, in the case of a bright, in particular white temperature sensor, the heating due to the direct radiation is reduced; the at least one temperature sensor is not heated by the radiation so strong, and the temperature The solution of the temperature of the environment is not so strongly falsified or is more precise and possible with fewer errors.
  • the at least one temperature sensor can be arranged in a field shadow of the electromagnetic field of the at least one high-voltage device.
  • errors in the measurement of the temperature with the at least one temperature sensor due to electromagnetic fields, in particular the at least one high-voltage device can be avoided or reduced.
  • electromagnetic fields by induction can lead to heating and / or to interference signals in at least one temperature sensor and thus interfere with the temperature measurement and / or falsify the measurement result.
  • An arrangement of the at least one temperature sensor in a field shadow e.g. B. within the carrier, which is in particular made of metal, z. B. made of steel, reduces negative influences or disturbances in the temperature measurement of the at least one temperature sensor.
  • the at least one temperature sensor can be electrically connected via at least one shielded, in particular twisted, connecting cable, in particular with a data processing and / or storage and / or data transmission device.
  • the connecting cable can be arranged inside the at least one carrier, in particular in the case of a carrier made of metal, e.g. B. made of steel.
  • At least one high-voltage device can include a high-voltage circuit breaker.
  • three high-voltage power switches can be included for switching, one high-voltage power switch per pole.
  • High-voltage devices with high-voltage circuit breakers can have supports which enable the high-voltage device to be constructed according to the invention.
  • the carrier enables the at least one temperature sensor to be attached as described above, inexpensively and simply, and enables an accurate, error-free measurement of the temperature of the environment without additional structures.
  • a method according to the invention for temperature measurement on a high-voltage device comprises that at least one temperature sensor, attached to the at least one carrier, thermally insulated from the at least one carrier, measures the temperature, in particular thermally insulated by means of spacer sleeves and / or thermally insulating mats and / or thermally insulating pastes.
  • the at least one temperature sensor can be protected from rain, sun, IR and / or electromagnetic radiation by the carrier, in particular by being arranged in the carrier or below the carrier. Disturbance variables can be minimized when measuring the ambient temperature, e. B. by the color of the at least one temperature sensor, in particular white or black.
  • a shielded and / or twisted electrical connection, in particular to a data processing and / or storage and / or data transmission device, can minimize disturbance variables.
  • High-voltage device 1 with high-voltage devices 2, and with a carrier 3 to which a temperature sensor 7 is attached.
  • a high-voltage device 1 according to the invention is shown schematically in a front view.
  • the high-voltage device 1 comprises, for example, three circuit breakers as high-voltage devices 2, in particular one circuit breaker being provided for each pole.
  • the three circuit breakers are arranged on a carrier 3 to which a temperature sensor 7 is attached.
  • the carrier 3 comprises a base carrier 4 and two carrier legs 5 which are attached to the ground.
  • B arranged a spring storage drive with a mechanical storage spring, a trigger, a gear, a manometer, a control and / or regulation and data processing and / or storage and / or data transmission devices.
  • the high-voltage device 1 in the exemplary embodiment in the figure is designed to switch high voltages in the range of up to 1200 kV and / or currents in the range of a few hundred amperes.
  • the three circuit breakers as high-voltage devices 2 are z. B. to switch three Poles trained, independent of each other or dependent, especially at the same time.
  • a drive in the housing 6, in particular a spring-loaded drive drives movable contact pieces of the circuit breakers via elements of a kinematic chain.
  • the elements of the kinematic chain include e.g. B. Trigger and gear parts in the housing 6 as well as drive rods and deflection devices, which run in the base support 4 to the poles.
  • the circuit breakers in the poles include electrical contacts, in particular rated current and / or arc contacts and / or vacuum tubes, the movable contact pieces of which are moved via the drive rods when switching.
  • the electrical contacts of the circuit breakers are arranged in at least one insulator for each pole.
  • the insulators are columnar, in particular with outer ribs to increase the leakage current length. Electrical contacts are each arranged in the insulator along the longitudinal axis.
  • the isolators are z. B. made of ceramic, silicone and / or composite materials and are inside z. B. filled with an insulating gas, in particular SF 6 and / or Clean Air.
  • the columnar insulators with electrical contacts of the circuit breakers are perpendicular to the longitudinal axis
  • the base support 4 is z. B. made of steel in profile shape, in particular a U-profile shape, in the manner of a transverse beam, the opening of the U-profile shape pointing downwards, viewed in the opposite direction from the insulators.
  • the housing 6 is firmly attached in the center of the base support 4, e.g. B. by welding, screws and / or plug connections.
  • the base support 4 is carried by two support legs 5 which are arranged perpendicular to the substrate and to the base support 4.
  • the support legs 5 are also z. B. made of steel in profile shape, in particular a round or square profile shape.
  • the support legs 5 are solid, in particular rigidly connected to the base support 4, for. B. by welding or screwing.
  • the temperature sensor 7 is arranged on the base support 4, e.g. B. on a lower side of the base support 4, as shown in the single figure, or inside the U-shaped profile. Between the temperature sensor 7 and the base support 4, decoupling elements, in particular in the form of spacer sleeves, are arranged for the thermal decoupling of the temperature sensor 7 from the base support 4. Alternatively to spacer sleeves z. B. thermally insulating mats and / or thermally insulating pastes can be used. Spacer sleeves and / or mats are z. B. made of thermally insulating plastic and / or glass fiber reinforced plastic (GRP). The materials have a low thermal conductivity with high mechanical stability for a stable mechanical connection between the temperature sensor 7 and the base support 4.
  • GRP glass fiber reinforced plastic
  • the spacer sleeves and / or mats can be connected to the base support 4 and / or the temperature sensor 7 via screw connections, gluing, Welding and / or clamps can be connected, and are arranged between the temperature sensor 7 and the base support 4 as spacer or decoupling elements for thermal insulation.
  • the temperature sensor 7 is designed to measure the temperature of the environment, in particular continuously or at time intervals, e.g. B. periodically. Via a connection cable 8 which, for. B. is arranged in the base support 4 or at the lower end of the base support 4 for shielding electromagnetic radiation, the temperature sensor is connected to a data acquisition, data processing, data storage and / or data transmission unit, in particular in the housing 6. So that locally in the housing 6 or globally z. B. from a control center or from the Internet, in particular on handheld devices such as smartphones and / or tablets, the temperature data are recorded, stored, processed and / or evaluated. Due to the arrangement of the temperature sensor 7 on the carrier 3, in particular on the base support 4, simple and inexpensive attachment is possible, and thermally insulating decoupling elements can be used to measure the ambient temperature without disruptive effects or with minimized / low interference from the support 3.
  • connection cable 8 is z. B. shielded and / or twisted to minimize interference from electromagnetic fields.
  • the connection cable 8 is z. B. a copper and / or aluminum cable.
  • the connecting cable 8 can be an optical cable.
  • a current / voltage supply of the temperature sensor 7 can take place via the connecting cable 8 or an additional cable or z. B. via energy saving devices.
  • Another transmission variant is the radio and / or wireless transmission of the measurement data. The data is sent wirelessly from the sensor to the receiving module.
  • the temperature sensor 7 is designed to measure the ambient temperature with little or no error by means of thermal insulation from the carrier 3 and protection from direct sunlight and the color.
  • the exemplary embodiments described above can be combined with one another and / or can be combined with the prior art.
  • the carrier 3 can have different support elements, eg. B. fewer or more than two support legs 5 and / or more than one, in particular bar-shaped Gen base carrier 4.
  • One or more temperature sensors 7 can be used, in particular a temperature sensor 7 in the shade and a temperature sensor 7 in the area of solar radiation.
  • Redundant temperature sensors 7 can be used in order to continue to reliably record temperature data of the ambient temperature in the event of failure of a temperature sensor 7, or temperature sensors 7 arranged at different locations on the carrier 3 in order to eliminate interfering influences of the carrier 3, in particular by calculation.
  • the temperature data can be evaluated locally or globally by one or many high-voltage devices, and used to control or regulate the high-voltage device and / or high-voltage devices, and / or to other users, such as B. can be passed on to the weather service, especially for financial compensation.
  • circuit breaker pole especially circuit breaker pole

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Die Erfindung betrifft eine Hochspannungs-Einrichtung (1), mit wenigstens einer Hochspannungs-Vorrichtung (2) und mit wenigstens einem Träger (3), welcher ausgebildet ist die wenigstens eine Hochspannungs-Vorrichtung (2) zu tragen. Wenigstens ein Temperatursensor (7) ist an dem wenigstens einen Träger (3) befestigt. Ein Verfahren zur Temperaturmessung an der Hochspannungs-Einrichtung umfasst, dass wenigstens ein Temperatursensor (7), befestigt an dem wenigstens einen Träger (3), thermisch isoliert vom wenigstens einen Träger (3) die Temperatur misst, insbesondere thermisch isoliert über Distanzhülsen und/oder thermisch isolierende Matten und/oder thermisch isolierende Pasten.

Description

Beschreibung
Hochspannungs-Einrichtung und Verfahren zur Temperaturmessung an einer Hochspannungs-Einrichtung
Die Erfindung betrifft eine Hochspannungs-Einrichtung und ein Verfahren zur Temperaturmessung an der Hochspannungs-Einrich- tung, mit wenigstens einer Hochspannungs-Vorrichtung und mit wenigstens einem Träger, welcher ausgebildet ist, die wenigs- tens eine Hochspannungs-Vorrichtung zu tragen.
Eine Hochspannungs-Einrichtung mit Leistungsschaltern als Hochspannungs-Vorrichtungen ist z. B. aus der
DE 10 2010 011 198 Al bekannt. Die Hochspannungs-Einrichtung umfasst als Hochspannungs-Vorrichtungen insbesondere drei Leistungsschalter mit jeweils einem Leistungsschalter pro Pol. Die Hochspannungs-Einrichtung ist ausgebildet zum Schal- ten von Hochspannungen im Bereich von bis zu 1200 kV und/oder von Strömen im Bereich von einigen hundert Ampere. Hochspan- nungs-Einrichtungen umfassen alternativ zu oder neben Leis- tungsschaltern als Hochspannungs-Vorrichtungen z. B. Trenn- schalter, Erder, Ableiter, Messwandler und/oder Transformato- ren. Die Hochspannungs-Vorrichtungen sind insbesondere auf einem Träger angeordnet, welcher z. B. über ein Fundament aus Beton fest mit dem Untergrund verbunden ist.
Bei einer Hochspannungs-Einrichtung mit drei Leistungsschal- tern als Hochspannungs-Vorrichtungen sind z. B. drei Pole un- abhängig voneinander oder abhängig, insbesondere gleichzeitig zu schalten. Ein Antrieb, insbesondere ein Federspeicheran- trieb treibt bewegliche Kontaktstücke der Leistungsschalter über Elemente einer kinematischen Kette an. Die Elemente der kinematischen Kette umfassen z. B. Auslöser, Getriebeteile und/oder Antriebsstangen. Der Antrieb ist z. B. in einem Schaltschrank am Träger befestigt, mit einem Auslöser und ei- nem Getriebe im Schaltschrank angeordnet, und mit Antriebs- Stangen und Umlenkeinrichtungen im Träger zu den Polen ver- laufend angeordnet. Einrichtungen zum Steuern oder Regeln, zur Datenverarbeitung, Datenspeicherung und/oder Datenüber- mittlung sind z. B. im Schaltschrank angeordnet.
Der Leistungsschalter eines Pols umfasst elektrische Kontak- te, insbesondere Nennstrom- und/oder Lichtbogenkontakte und/oder Vakuumröhren, in wenigstens einem Isolator angeord- net, z. B. einem außen gerippten Isolator aus Keramik, Sili- kon und/oder Verbundwerkstoffen. Der Isolator ist z. B. mit einem Isoliergas befüllt, insbesondere SF6 und/oder Clean Air. Die Pole bzw. Leistungsschalter der Pole, insbesondere die Isolatoren der Leistungsschalter sind säulenförmig ausge- bildet, und z. B. aufrechtstehend auf dem Träger angeordnet. Die Pole bzw. Leistungsschalter der Pole umfassen elektrische Kontakte mit Kontaktfahnen zum Anschließen von elektrischen Verbrauchern, Strom/Spannungs-Erzeugern und/oder Stromleitun- gen .
Der Zustand der Hochspannungs-Einrichtung, insbesondere der Hochspannungs-Vorrichtungen wird über Messeinrichtungen über- wacht. Z. B. wird der Gasdruck in Isolatoren über Manometer, insbesondere im Schaltschrank angeordnet, überwacht. Eine Ab- lesung erfolgt z. B. in regelmäßigen Abständen bei Wartungen der Hochspannungs-Einrichtung manuell, um Informationen über den Zustand und die Funktionsfähigkeit der Hochspannungs- Einrichtung, insbesondere der Hochspannungs-Vorrichtungen zu erhalten. Kontinuierliche, insbesondere Online-Überwachungen von Hochspannungs-Einrichtungen ermöglichen zu jedem Zeit- punkt die Bestimmung des Zustands und der Funktionstüchtig- keit der Hochspannungs-Einrichtung und reduzieren dadurch die Ausfallzeiten, erhöhen die Funktionssicherheit und ermögli- chen eine optimierte Wartung und/oder Reparatur. Dadurch sind Kosten und Aufwand z. B. für Personal einzusparen. Der Zustand einer Hochspannungs-Einrichtung bzw. von einzel- nen messbaren Eigenschaften der Hochspannungs-Einrichtung, insbesondere von Messgrößen der Hochspannungs-Vorrichtungen, ist Online über Sensoren, insbesondere elektrischen und/oder elektronisch auslesbaren Sensoren bestimmbar, und kontinuier- lich oder in zeitlichen Abständen, insbesondere in regelmäßi- gen zeitlichen Abständen messbar, verarbeitbar, speicherbar und/oder übermittelbar. Dabei wird der Zustand unter anderem auch von Umwelteinflüssen wie z. B. Druck, Temperatur, Strah- lung, und/oder Feuchtigkeit bestimmt.
Einen wesentlichen Einfluss auf Hochspannungs-Einrichtungen hat die Temperatur. Die Temperatur beeinflusst eine Reihe von Parametern einer Hochspannungs-Einrichtung, wie z. B. Gas- druck, Längen von Elementen, Federspeicherkräfte, Bewegungs- profile, Schaltverhalten, elektrische Widerstände, Kühlver- halten bei Abwärme, Kondensation von Flüssigkeiten und/oder Reibungskräfte bzw. Schmierverhalten von Schmiermitteln. Die Temperatur einer Hochspannungs-Einrichtung wird wesentlich von der Umgebungstemperatur mit beeinflusst. Bei der Messung der Umgebungstemperatur z. B. über einen Temperatursensor können eine Reihe von Störgrößen auftreten, welche eine Mes- sung verfälschen. So kann z. B. die Temperatur der Hochspan- nungs-Einrichtung, wobei die Hochspannungs-Einrichtung eine hohe thermische Masse aufweist, die Temperaturmessung der Um- gebungstemperatur beeinflussen und zu Messfehlern führen. Sonneneinstrahlung und/oder elektromagnetische Strahlung der Hochspannungs-Einrichtung bzw. von elektrischen Leitungen an den Hochspannungs-Vorrichtungen, können die Temperaturmessung des Temperatursensors und dessen Datenübermittlung stören.
Aufgabe der vorliegenden Erfindung ist es, eine Hochspan- nungs-Einrichtung und ein Verfahren zur Temperaturmessung an der Hochspannungs-Einrichtung anzugeben, welche die zuvor be- schriebenen Probleme lösen. Insbesondere ist es Aufgabe, eine zuverlässige Temperaturmessung, insbesondere der Umgebungs- temperatur, ohne bzw. mit geringen Messfehlern, einfach und kostengünstig an einer Hochspannungs-Einrichtung zu ermögli- chen .
Die angegebene Aufgabe wird erfindungsgemäß durch eine Hoch- spannungs-Einrichtung mit den Merkmalen gemäß Patentan- spruch 1 und/oder durch ein Verfahren zur Temperaturmessung an einer Hochspannungs-Einrichtung, insbesondere an der zuvor beschriebenen Hochspannungs-Einrichtung, gemäß Patentanspruch 13 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Hochspannungs-Einrichtung und/oder des Verfahrens zur Tempe- raturmessung an einer Hochspannungs-Einrichtung, insbesondere an der zuvor beschriebenen Hochspannungs-Einrichtung, sind in den Unteransprüchen angegeben. Dabei sind Gegenstände der Hauptansprüche untereinander und mit Merkmalen von Unteran- sprüchen sowie Merkmale der Unteransprüche untereinander kom- binierbar .
Eine erfindungsgemäße Hochspannungs-Einrichtung umfasst we- nigstens eine Hochspannungs-Vorrichtung und wenigstens einen Träger, welcher ausgebildet ist, die wenigstens eine Hoch- spannungs-Vorrichtung zu tragen. Wenigstens ein Temperatur- sensor ist an dem wenigstens einen Träger befestigt.
Durch den wenigstens einen Temperatursensor an dem wenigstens einen Träger befestigt, ist einfach und kostengünstig die Um- gebungstemperatur der Hochspannungs-Einrichtung zu messen. Es sind keine weiteren, gesondert aufzustellenden Messeinrich- tungen, verbunden mit zusätzlichem Aufwand und Kosten, für die Temperaturmessung der Umgebungstemperatur notwendig.
Der wenigstens eine Träger kann wenigstens einen Tragrahmen, insbesondere einen Hohlträger umfassen. Der wenigstens eine Temperatursensor kann insbesondere an dem wenigstens einen Tragrahmen angeordnet sein. Der wenigstens eine Träger kann wenigstens ein Trägerbein umfassen. Der wenigstens eine Tem- peratursensor kann insbesondere an dem wenigstens einen Trä- gerbein angeordnet sein. Die Befestigung des wenigstens einen Temperatursensors an einem Tragrahmen und/oder einem Trä- gerbein ist einfach und kostengünstig möglich.
Der wenigstens eine Temperatursensor kann im wenigstens einen Träger angeordnet sein, insbesondere im wenigstens einen Tragrahmen und/oder im wenigstens einen Trägerbein. Die An- ordnung im Träger ermöglicht eine Abschirmung des wenigstens einen Temperatursensors gegen Strahlung, insbesondere gegen Licht- und/oder Wärmestrahlung z. B. der Sonne und/oder gegen elektromagnetische Strahlung insbesondere der elektrischen Leitungen und/oder der Hochspannungs-Vorrichtungen. Dadurch wird eine Verfälschung der Temperarturmessungen durch z. B. Strahlung oder andere Umwelteinflüsse wie Regen verhindert oder zumindest vermindert.
Der wenigstens eine Temperatursensor kann auf einer unteren Seite des wenigstens einen Trägers angeordnet sein, insbeson- dere auf einer unteren Seite des wenigstens einen Tragrah- mens. Dadurch ist der Temperatursensor besonders gut gegen Umwelteinflüsse und/oder Strahlung geschützt, mit den zuvor beschriebenen Vorteilen.
Zwischen dem wenigstens einen Temperatursensor und dem we- nigstens einen Träger kann wenigstens ein Entkopplungselement angeordnet sein zur thermischen Entkopplung, insbesondere in Form von thermisch isolierenden Distanzhülsen und/oder in Form von thermisch isolierenden Matten und/oder in Form von thermisch isolierenden Pasten. Die thermische Isolation bzw. Entkopplung zwischen dem wenigstens einen Temperatursensor und dem wenigstens einen Träger ermöglicht eine Messung der Temperatur der Umwelt, ohne Verfälschung bzw. einen Einfluss der Temperatur und thermischen Masse des wenigstens einen Trägers auf die Messergebnisse. Dadurch wird eine zuverlässi- ge Temperaturmessung der Temperatur der Umwelt mit dem we- nigstens einen Temperatursensor möglich, ohne bzw. mit mini- mierten bzw. geringen Messfehlern, einfach und kostengünstig an einer Hochspannungs-Einrichtung.
Das wenigstens eine Entkopplungselement kann aus thermisch isolierendem Kunststoff, Glasfaserverstärktem Kunststoff (GfK) und/oder Gummi sein oder thermisch isolierenden Kunst- stoff, Glasfaserverstärkten Kunststoff (GfK) und/oder Gummi umfassen. Mit einem Entkopplungselement aus den zuvor genann- ten Materialien sind die zuvor genannten Vorteile der Erfin- dung kostengünstig, einfach und zuverlässig zu erreichen.
Zur Erhöhung der Rückstrahlung von Wärme durch Lichtabsorpti- on kann der wenigstens eine Temperatursensor dunkel, insbe- sondere Schwarz ausgebildet sein. Dadurch kann der störende Effekt von z. B. Lichtstrahlung auf die Temperaturmessung mit dem wenigstens einen Temperatursensor verringert bzw. mini- miert werden, insbesondere bei Anordnung des wenigstens einen Temperatursensors auf einer Lichtabgewandten Seite des we- nigstens einen Trägers. Wärme, welche vom wenigstens einen Träger auf den wenigstens einen Temperatursensor übertragen wird, kann schnell vom wenigstens einen Temperatursensor wie- der abgegeben werden und verfälscht weniger das Messergebnis. Die Latenzzeit des wenigstens einen Temperatursensors wird reduziert und die Temperaturmessung der Temperatur der Umge- bung bzw. der Umwelt wird genauer.
Zur Verringerung der Absorption von Licht mit verbundener Wärmeentwicklung, kann der wenigstens eine Temperatursensor hell, insbesondere Weiß ausgebildet sein. Insbesondere bei Anordnung des wenigstens einen Temperatursensors am wenigs- tens einen Träger in Bereichen mit direktem Lichtstrahlungs- einfall wird bei einem hellen, insbesondere weißen Tempera- tursensor die Erwärmung durch die direkte Einstrahlung redu- ziert, der wenigstens eine Temperatursensor heizt sich durch die Einstrahlung nicht so stark auf, und die Temperaturmes- sung der Temperatur der Umwelt wird nicht so stark verfälscht bzw. ist genauer, mit geringerem Fehler möglich.
Der wenigstens eine Temperatursensor kann in einem Feldschat- ten des elektromagnetischen Feldes der wenigstens einen Hoch- spannungs-Vorrichtung angeordnet sein. Dadurch sind Fehler in der Messung der Temperatur mit dem wenigstens einen Tempera- tursensor durch elektromagnetische Felder insbesondere der wenigstens einen Hochspannungs-Vorrichtung zu vermeiden bzw. zu reduzieren. Z. B. können elektromagnetische Felder durch Induktion zu einer Erwärmung und/oder zu Störsignalen im we- nigstens einen Temperatursensor führen, und damit die Tempe- raturmessung stören und/oder das Messergebnis verfälschen. Eine Anordnung des wenigstens einen Temperatursensors in ei- nem Feldschatten, z. B. innerhalb des Trägers, welcher insbe- sondere aus Metall ist, z. B. aus Stahl, verringert negative Einflüsse bzw. Störungen der Temperaturmessung des wenigstens einen Temperatursensors .
Der wenigstens eine Temperatursensor kann elektrisch über we- nigstens ein geschirmtes, insbesondere verdrilltes Verbin- dungskabel verbunden sein, insbesondere mit einer Datenverar- beitungs- und/oder Speicher- und/oder Datenübermittlungsein- richtung. Dadurch ist ebenfalls der Einfluss von elektromag- netischen Feldern, insbesondere der wenigstens einen Hoch- spannungs-Vorrichtung, auf die Datenübertragung bzw. Weiter- leitung des Messergebnisses z. B. analog und/oder digital vermeidbar bzw. verringerbar, und das Messergebnis wird nicht oder nur wenig verfälscht.
Das Verbindungskabel kann zur elektrischen Schirmung im Inne- ren des wenigstens einen Trägers angeordnet sein, insbesonde- re bei einem Träger aus Metall, z. B. aus Stahl. Damit sind die zuvor beschriebenen Vorteile verbunden. Die wenigsten eine Hochspannungs-Vorrichtung kann einen Hoch- spannungs-Leistungsschalter umfassen. Insbesondere bei einem dreipoligen Aufbau können zum Schalten drei Hochspannungs- Leistungsschalter umfasst sein, jeweils ein Hochspannungs- Leistungsschalter pro Pol. Hochspannungs-Vorrichtungen mit Hochspannungs-Leistungsschaltern können Träger aufweisen, welche den erfindungsgemäßen Aufbau der Hochspannungs-Vor- richtung ermöglichen. Der Träger ermöglicht die Befestigung des wenigstens einen Temperatursensors wie zuvor beschrieben, kostengünstig und einfach, und ermöglicht ohne zusätzliche Aufbauten eine genaue, fehlerfreie Messung der Temperatur der Umwelt .
Ein erfindungsgemäßes Verfahren zur Temperaturmessung an ei- ner Hochspannungs-Einrichtung, insbesondere einer zuvor be- schriebenen Hochspannungs-Einrichtung, umfasst, dass wenigs- tens ein Temperatursensor, befestigt an dem wenigstens einen Träger, thermisch isoliert vom wenigstens einen Träger, die Temperatur misst, insbesondere thermisch isoliert über Dis- tanzhülsen und/oder thermisch isolierenden Matten und/oder thermisch isolierenden Pasten.
Der wenigstens eine Temperatursensor kann durch den Träger vor Regen, Sonne, IR- und/oder elektromagnetischer Strahlung geschützt werden, insbesondere durch Anordnung im Träger oder unterhalb des Trägers. Störgrößen können bei der Temperatur- messung der Umgebungstemperatur minimiert werden, z. B. durch die Farbe des wenigstens einen Temperatursensors, insbesonde- re Weiß oder Schwarz. Eine geschirmte und/oder verdrillte elektrische Verbindung insbesondere zu einer Datenverarbei- tungs- und/oder Speicher- und/oder Datenübermittlungseinrich- tung kann Störgrößen minimieren.
Die Vorteile des erfindungsgemäßen Verfahrens zur Temperatur- messung an einer Hochspannungs-Einrichtung, insbesondere ei- ner zuvor beschriebenen Hochspannungs-Einrichtung, gemäß An- spruch 13 sind analog den zuvor beschriebenen Vorteilen der erfindungsgemäßen Hochspannungs-Einrichtung gemäß Anspruch 1 und umgekehrt .
Im Folgenden wird ein Ausführungsbeispiel der Erfindung sche- matisch in der einzigen Figur dargestellt und nachfolgend nä- her beschrieben.
Dabei zeigt die
Figur schematisch in Frontansicht eine erfindungsgemäße
Hochspannungs-Einrichtung 1 mit Hochspannungs- Vorrichtungen 2, und mit einem Träger 3, an welchem ein Temperatursensor 7 befestigt ist.
In der einzigen Figur ist schematisch in Frontansicht eine erfindungsgemäße Hochspannungs-Einrichtung 1 dargestellt. Die Hochspannungs-Einrichtung 1 umfasst beispielhaft drei Leis- tungsschalter als Hochspannungs-Vorrichtungen 2, wobei insbe- sondere jeweils ein Leistungsschalter pro Pol vorgesehen ist. Die drei Leistungsschalter sind auf einem Träger 3 angeord- net, an welchem ein Temperatursensor 7 befestigt ist. Der Träger 3 umfasst einen Basisträger 4 und zwei Trägerbeine 5, welche auf dem Untergrund befestigt sind. Am Basisträger 4 ist ein Gehäuse 6 angebracht, welches als Schalt- und/oder Antriebsschrank ausgebildet ist. In dem Gehäuse 6 ist z. B. ein Federspeicherantrieb mit einer mechanischen Speicherfeder angeordnet, ein Auslöser, ein Getriebe, ein Manometer, eine Steuer- und/oder Regelung sowie Datenverarbeitungs- und/oder Speicher- und/oder Datenübermittlungseinrichtungen.
Die Hochspannungs-Einrichtung 1 im Ausführungsbeispiel der Figur ist ausgebildet zum Schalten von Hochspannungen im Be- reich von bis zu 1200 kV und/oder von Strömen im Bereich von einigen hundert Ampere. Die drei Leistungsschalter als Hoch- spannungs-Vorrichtungen 2 sind z. B. zum Schalten von drei Polen ausgebildet, unabhängig voneinander oder abhängig, ins- besondere gleichzeitig. Ein Antrieb im Gehäuse 6, insbesonde- re ein Federspeicherantrieb, treibt bewegliche Kontaktstücke der Leistungsschalter über Elemente einer kinematischen Kette an. Die Elemente der kinematischen Kette umfassen z. B. Aus- löser und Getriebeteile im Gehäuse 6 sowie Antriebsstangen und Umlenkeinrichtungen, welche im Basisträger 4 zu den Polen verlaufen. Die Leistungsschalter in den Polen umfassen elekt- rische Kontakte, insbesondere Nennstrom- und/oder Lichtbogen- kontakte und/oder Vakuumröhren, deren bewegliche Kontaktstü- cke über die Antriebsstangen beim Schalten bewegt werden.
Die elektrischen Kontakte der Leistungsschalter sind jeweils pro Pol in wenigstens einem Isolator angeordnet. Die Isolato- ren sind säulenförmig ausgebildet, insbesondere mit äußeren Rippen zur Erhöhung der Kriechstromlänge. Elektrische Kontak- te sind jeweils im Isolator entlang der Längsachse angeord- net. Die Isolatoren sind z. B. aus Keramik, Silikon und/oder Verbundwerkstoffen und sind im Inneren z. B. mit einem Iso- liergas befüllt, insbesondere SF6 und/oder Clean Air. Die säulenförmigen Isolatoren mit elektrischen Kontakten der Leistungsschalter sind mit der Längsachse senkrecht zur
Längsachse des Basisträgers 4 angeordnet, aufrechtstehend auf dem Basisträger 4.
Der Basisträger 4 ist z. B. aus Stahl in Profilform, insbe- sondere einer U-Profilform, nach Art eines Querbalkens ausge- bildet, wobei die Öffnung der U-Profilform nach unten weist, in die entgegengesetzte Richtung von den Isolatoren aus gese- hen. Mittig am Basisträger 4 ist das Gehäuse 6 fest ange- bracht, z. B. durch Schweißen, Schrauben und/oder Steckver- bindungen. Der Basisträger 4 wird von zwei Trägerbeinen 5 ge- tragen, welche senkrecht zum Untergrund und zum Basisträger 4 angeordnet sind. Die Trägerbeine 5 sind ebenfalls z. B. aus Stahl in Profilform, insbesondere einer Rund- oder quadrati- schen Profilform. Die Trägerbeine 5 sind fest, insbesondere steif mit dem Basisträger 4 verbunden, z. B. durch Schweißen oder Schrauben.
Am Basisträger 4 ist der Temperatursensor 7 angeordnet, z. B. auf einer unteren Seite des Basisträgers 4, wie in der einzi- gen Figur dargestellt ist oder im Inneren der U-Profilform. Zwischen dem Temperatursensor 7 und dem Basisträger 4 sind Entkopplungselemente, insbesondere in Form von Distanzhülsen angeordnet, zur thermischen Entkopplung des Temperatursensors 7 vom Basisträger 4. Alternativ zu Distanzhülsen können z. B. thermisch isolierende Matten und/oder thermisch isolierenden Pasten verwendet werden. Distanzhülsen und/oder Matten sind z. B. aus thermisch isolierendem Kunststoff und/oder Glasfa- serverstärktem Kunststoff (GfK) . Die Materialien weisen eine geringe thermische Leitfähigkeit auf bei hoher mechanischer Stabilität für eine stabile mechanische Verbindung zwischen dem Temperatursensor 7 und dem Basisträger 4. Die Distanzhül- sen und/oder Matten könne mit dem Basisträger 4 und/oder dem Temperatursensor 7 über Schraubverbindungen, Kleben, Schwei- ßen, und/oder Klemmen verbunden sein, und sind zwischen dem Temperatursensor 7 und dem Basisträger 4 als Abstands- bzw. Entkopplungselemente zur thermischen Isolierung angeordnet.
Der Temperatursensor 7 ist ausgebildet die Temperatur der Um- gebung zu messen, insbesondere kontinuierlich oder in zeitli- chen Abständen, z. B. periodisch. Über ein Verbindungskabel 8, welches z. B. im Basisträger 4 oder am unteren Ende des Basisträgers 4 zur Abschirmung von elektromagnetischen Strah- len angeordnet ist, ist der Temperatursensor mit einer Daten- erfassungs-, Datenverarbeitungs-, Datenspeicher- und/oder Da- tenübermittlungseinheit insbesondere im Gehäuse 6 verbunden. Damit können lokal im Gehäuse 6 oder global z. B. von einer Zentrale aus oder aus dem Internet, insbesondere auf Hand- heldgeräten wie Smartphones und/oder Tablets, die Temperatur- daten erfasst, gespeichert, verarbeitet und/oder ausgewertet werden. Durch die Anordnung des Temperatursensors 7 am Träger 3, insbesondere am Basisträger 4, ist eine einfache und kos- tengünstige Anbringung möglich, und über thermisch isolieren- de Entkopplungselemente ist eine Temperaturmessung der Umge- bungstemperatur möglich, ohne störende Effekte bzw. mit mini- mierten/geringen Störungen durch den Träger 3.
Das Verbindungskabel 8 ist z. B. geschirmt und/oder ver- drillt, um Störungen durch elektromagnetische Felder zu mini- mieren. Das Verbindungskabel 8 ist z. B. ein Kupfer und/oder Aluminiumkabel. Alternativ kann das Verbindungskabel 8 ein optisches Kabel sein. Eine Strom-/Spannungsversorgung des Temperatursensors 7 kann über das Verbindungskabel 8 oder ein zusätzliches Kabel erfolgen oder z. B. über Energieharves- ting-Vorrichtungen . Eine weitere Übertragungsvariante stellt die Funk- und/oder Wireless-Übertragung der Messdaten dar. Hierbei werden die Daten vom Sensor zum Empfangsmodul kabel- los gesendet.
Der Temperatursensor 7, welcher im oder unter dem Basisträger 4 angeordnet ist, im Schutz vor direkter Sonneneinstrahlung, ist z. B. mit einem schwarzen Gehäuse ausgebildet, um eine hohe Wärmeabstrahlung aufzuweisen und geringe Latenz des Tem- peratursensors 7 zu gewährleisten. Durch thermische Isolation vom Träger 3 und Schutz vor direkter Sonneneinstrahlung sowie der Farbe, ist der Temperatursensor 7 ausgebildet die Umge- bungstemperatur ohne bzw. mit geringem Fehler zu Messen.
Die zuvor beschriebenen Ausführungsbeispiele können unterei- nander kombiniert werden und/oder können mit dem Stand der Technik kombiniert werden. So können z. B. Hochspannungs- Einrichtungen als Hochspannungs-Vorrichtungen neben Leis- tungsschaltern oder alternativ zu Leistungsschaltern z. B. Trennschalter, Erder, Ableiter, Messwandler und/oder Trans- formatoren umfassen. Der Träger 3 kann unterschiedliche Tra- gelemente aufweisen, z. B. weniger oder mehr als zwei Trä- gerbeine 5 und/oder mehr als einen, insbesondere balkenförmi- gen Basisträger 4. Es können ein oder mehr Temperatursensoren 7 verwendet werden, insbesondere ein Temperatursensor 7 im Schatten und ein Temperatursensor 7 im Bereich von Sonnenein- strahlung. Es können redundante Temperatursensoren 7 verwen- det werden, um beim Ausfall eines Temperatursensors 7 weiter- hin zuverlässig Temperaturdaten der Umgebungstemperatur zu erfassen, oder an unterschiedlichen Orten des Trägers 3 ange- ordnete Temperatursensors 7, um Störeinflüsse des Trägers 3 insbesondere rechnerisch zu eliminieren.
Die Temperaturdaten können von einer oder vielen Hochspan- nungs-Einrichtungen lokal oder global ausgewertet werden, und zur Steuerung- oder Regelung der Hochspannungs-Einrichtung und/oder Hochspannungs-Einrichtungen verwendet werden, und/oder an andere Nutzer, wie z. B. den Wetterdienst weiter- gegeben werden, insbesondere gegen finanziellen Ausgleich.
Patentansprüche
1 Hochspannungs-Einrichtung,
insbesondere Hochspannungs-Leistungsschalter 2 Hochspannungs-Vorrichtung,
insbesondere Leistungsschalterpol
3 Träger
4 Basisträger
5 Trägerbein
6 Gehäuse,
insbesondere Schalt- und/oder Antriebsschrank
7 Temperatursensor
8 Verbindungskabel

Claims

Patentansprüche
1. Hochspannungs-Einrichtung (1), mit wenigstens einer Hoch- spannungs-Vorrichtung (2) und mit wenigstens einem Träger
(3), welcher ausgebildet ist die wenigstens eine Hochspan- nungs-Vorrichtung (2) zu tragen,
dadurch gekennzeichnet, dass
wenigstens ein Temperatursensor (7) an dem wenigstens einen Träger (3) befestigt ist.
2. Hochspannungs-Einrichtung (1) nach Anspruch 1,
dadurch gekennzeichnet, dass
der wenigstens eine Träger (3) wenigstens einen Tragrahmen
(4), insbesondere einen Hohlträger umfasst, und dass der we- nigstens eine Temperatursensor (7) insbesondere an dem we- nigstens einen Tragrahmen (4) angeordnet ist, und/oder dass der wenigstens eine Träger (3) wenigstens ein Trägerbein (5) umfasst, und dass der wenigstens eine Temperatursensor (7) insbesondere an dem wenigstens einen Trägerbein (5) angeord- net ist.
3. Hochspannungs-Einrichtung (1) nach Anspruch 2,
dadurch gekennzeichnet, dass
der wenigstens eine Temperatursensor (7) im wenigstens einen Träger (3) angeordnet ist, insbesondere im wenigstens einen Tragrahmen (4) und/oder im wenigstens einen Trägerbein (5) .
4. Hochspannungs-Einrichtung (1) nach Anspruch 2,
dadurch gekennzeichnet, dass
der wenigstens eine Temperatursensor (7) auf einer unteren Seite des wenigstens einen Trägers (3) angeordnet ist, insbe- sondere auf einer unteren Seite des wenigstens einen Tragrah- mens ( 4 ) .
5. Hochspannungs-Einrichtung (1) nach einem der vorhergehen- den Ansprüche, dadurch gekennzeichnet, dass
zwischen dem wenigstens einen Temperatursensor (7) und dem wenigstens einen Träger (3) wenigstens ein Entkopplungsele- ment angeordnet ist zur thermischen Entkopplung, insbesondere in Form von thermisch isolierenden Distanzhülsen und/oder in Form von thermisch isolierenden Matten und/oder in Form von thermisch isolierenden Pasten.
6. Hochspannungs-Einrichtung (1) nach Anspruch 5,
dadurch gekennzeichnet, dass
das wenigstens eine Entkopplungselement aus thermisch isolie- rendem Kunststoff, Glasfaserverstärktem Kunststoff (GfK) und/oder Gummi ist oder thermisch isolierenden Kunststoff, Glasfaserverstärkten Kunststoff (GfK) und/oder Gummi umfasst.
7. Hochspannungs-Einrichtung (1) nach einem der vorhergehen- den Ansprüche,
dadurch gekennzeichnet, dass
zur Erhöhung der Rückstrahlung von Wärme der wenigstens ein Temperatursensor (7) dunkel, insbesondere Schwarz ausgebildet ist .
8. Hochspannungs-Einrichtung (1) nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
zur Verringerung der Absorption von Licht mit verbundener Wärmeentwicklung der wenigstens ein Temperatursensor (7) hell, insbesondere Weiß ausgebildet ist.
9. Hochspannungs-Einrichtung (1) nach einem der vorhergehen- den Ansprüche,
dadurch gekennzeichnet, dass
der wenigstens eine Temperatursensor (7) in einem Feldschat- ten des elektromagnetischen Feldes der wenigstens einen Hoch- spannungs-Vorrichtung (2) angeordnet ist.
10. Hochspannungs-Einrichtung (1) nach einem der vorhergehen- den Ansprüche,
dadurch gekennzeichnet, dass
der wenigstens eine Temperatursensor (7) elektrisch über we- nigstens ein geschirmtes, insbesondere verdrilltes Verbin- dungskabel (8) verbunden ist, insbesondere mit einer Daten- verarbeitungs- und/oder Speicher- und/oder Datenübermitt- lungseinrichtung .
11. Hochspannungs-Einrichtung (1) nach Anspruch 10,
dadurch gekennzeichnet, dass
das Verbindungskabel (8) zur elektrischen Schirmung im Inne- ren des wenigstens einen Trägers (3) angeordnet ist.
12. Hochspannungs-Einrichtung (1) nach einem der vorhergehen- den Ansprüche,
dadurch gekennzeichnet, dass
die wenigsten eine Hochspannungs-Vorrichtung (2) einen Hoch- spannungs-Leistungsschalter umfasst .
13. Verfahren zur Temperaturmessung an einer Hochspannungs- Einrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
wenigstens ein Temperatursensor (7), befestigt an dem wenigs- tens einen Träger (3), thermisch isoliert vom wenigstens ei- nen Träger (3) die Temperatur misst, insbesondere thermisch isoliert über Distanzhülsen und/oder thermisch isolierenden Matten und/oder thermisch isolierenden Pasten.
14. Verfahren nach Anspruch 13,
dadurch gekennzeichnet, dass
der wenigstens eine Temperatursensor (7) durch den Träger (3) vor Regen, Sonne, IR- und/oder elektromagnetischer Strahlung geschützt wird, insbesondere durch Anordnung im Träger (3) oder unterhalb des Trägers (3), und/oder Störgrößen bei der Temperaturmessung der Umgebungstemperatur minimiert werden, insbesondere durch die Farbe, insbesondere Weiß oder Schwarz, des wenigstens einen Temperatursensors (7) und/oder eine ge- schirmte und/oder verdrillte elektrische Verbindung insbeson- dere zu einer Datenverarbeitungs- und/oder Speicher- und/oder Datenübermittlungseinrichtung.
PCT/EP2020/055231 2019-03-28 2020-02-28 Hochspannungs-einrichtung und verfahren zur temperaturmessung an einer hochspannungs-einrichtung WO2020193061A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019204305.4 2019-03-28
DE102019204305.4A DE102019204305A1 (de) 2019-03-28 2019-03-28 Hochspannungs-Einrichtung und Verfahren zur Temperaturmessung an einer Hochspannungs-Einrichtung

Publications (1)

Publication Number Publication Date
WO2020193061A1 true WO2020193061A1 (de) 2020-10-01

Family

ID=69804823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/055231 WO2020193061A1 (de) 2019-03-28 2020-02-28 Hochspannungs-einrichtung und verfahren zur temperaturmessung an einer hochspannungs-einrichtung

Country Status (2)

Country Link
DE (1) DE102019204305A1 (de)
WO (1) WO2020193061A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637114A1 (de) * 1993-07-30 1995-02-01 Consolidated Electronics, Inc. Hochspannungsübertragung-Schaltanlage mit Gasüberwachungseinrichtung
US5636134A (en) * 1994-04-11 1997-06-03 Abb Power T&D Company Inc. Intelligent circuit breaker providing synchronous switching and condition monitoring
US6114778A (en) * 1997-07-23 2000-09-05 Siemens Power Transmission & Distribution, Inc. High voltage synchronous switch for capacitors
DE102010011198A1 (de) 2010-03-05 2011-09-08 Siemens Aktiengesellschaft Antriebsanordnung eines Leistungsschalters
CN203150462U (zh) * 2013-01-22 2013-08-21 金海勇 一种用于寒冷地区的六氟化硫高压电气设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637114A1 (de) * 1993-07-30 1995-02-01 Consolidated Electronics, Inc. Hochspannungsübertragung-Schaltanlage mit Gasüberwachungseinrichtung
US5636134A (en) * 1994-04-11 1997-06-03 Abb Power T&D Company Inc. Intelligent circuit breaker providing synchronous switching and condition monitoring
US6114778A (en) * 1997-07-23 2000-09-05 Siemens Power Transmission & Distribution, Inc. High voltage synchronous switch for capacitors
DE102010011198A1 (de) 2010-03-05 2011-09-08 Siemens Aktiengesellschaft Antriebsanordnung eines Leistungsschalters
CN203150462U (zh) * 2013-01-22 2013-08-21 金海勇 一种用于寒冷地区的六氟化硫高压电气设备

Also Published As

Publication number Publication date
DE102019204305A1 (de) 2020-10-01

Similar Documents

Publication Publication Date Title
Velásquez Insulation failure caused by special pollution around industrial environments
EP3756022A1 (de) Verfahren zum bestimmen eines betriebszustands eines elektrischen betriebsmittels und anordnung
DE202014003243U1 (de) Vorrichtung für die Erzeugung, Verteilung und/oder Verwendung elektrischer Energie oder eine Komponente einer solchen Verbindung
DE102018216475A1 (de) Hochspannungs-Schaltanlage mit Sensor-Array und Verfahren zur Verwendung der Sensoren
Ghayedi et al. AC flashover dynamic theoretical and experimental model under fan‐shaped and longitudinal pollution on silicone rubber insulator
DE102015122073B3 (de) System zur Diagnose des technischen Betriebszustandes einer elektrischen Hochspannungs- und Mittelspannungsanlage
Zachariades et al. A coastal trial facility for high voltage composite cross-arms
WO2020193061A1 (de) Hochspannungs-einrichtung und verfahren zur temperaturmessung an einer hochspannungs-einrichtung
DE102008018272A1 (de) Gasisolierter Spannungswandler
WO2007093575A1 (de) Schaltanlage mit überwachungskamera
DE102019116233A1 (de) Zustandsüberwachung von Überspannungsschutzkomponenten
EP3284149A1 (de) Verfahren und anordnung für einen betrieb einer elektrischen anlage unter benützung eines thermischen modells dessen
EP3827454B1 (de) Hochspannungseinrichtung und verfahren zur einstellung von eigenschaften der hochspannungseinrichtung
Zachariades et al. Real-time monitoring of leakage current on insulating cross-arms in relation to local weather conditions
Chunyan et al. Using ultraviolet imaging method to detect the external insulation faults of electric device
CN206431236U (zh) 一种利用光电场传感器检测绝缘子缺陷的检测系统
EP3655981B1 (de) Hochspannungsleistungsschalter für einen pol und verwendung des hochspannungsleistungsschalters
DE102020211953B4 (de) Hochspannungsleistungsschalter und Verfahren zur Messung eines Stroms über ein Lichtbogenkontaktstück
Hallas et al. Commissioning and Service Experience with a±550 kV DC GIL conducted in Frame of a CIGRE Prototype Installation Test
Väkeväinen Surface Discharge Phenomena in Medium Voltage Terminations
DE102020212350A1 (de) Gekapseltes Hochspannungsgerät und Stromwandler für das gekapselte Hochspannungsgerät
Meyer et al. Study of the performance of 25kV insulators under various weather conditions
Zhang et al. Study on the lightning strike discharge characteristics of switchgear air gap at low air pressure condition
Hao et al. the Technology of Space Electric Field Detection of Deteriorated Insulator Strings Based on Multi Rotor UAV
CN209542707U (zh) 高压外线瓷瓶绝缘电阻测量杆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20710806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20710806

Country of ref document: EP

Kind code of ref document: A1