WO2020192732A1 - 一种多股复合材料加强芯及其制备方法 - Google Patents

一种多股复合材料加强芯及其制备方法 Download PDF

Info

Publication number
WO2020192732A1
WO2020192732A1 PCT/CN2020/081390 CN2020081390W WO2020192732A1 WO 2020192732 A1 WO2020192732 A1 WO 2020192732A1 CN 2020081390 W CN2020081390 W CN 2020081390W WO 2020192732 A1 WO2020192732 A1 WO 2020192732A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
core
strand composite
fiber
wire
Prior art date
Application number
PCT/CN2020/081390
Other languages
English (en)
French (fr)
Inventor
任桂芳
徐俊
王志伟
张玉庆
陈中伟
刘恩赐
Original Assignee
中复碳芯电缆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中复碳芯电缆科技有限公司 filed Critical 中复碳芯电缆科技有限公司
Publication of WO2020192732A1 publication Critical patent/WO2020192732A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/1825Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of a high tensile strength core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/008Power cables for overhead application

Definitions

  • the invention relates to a reinforced core for overhead power transmission wires, in particular to a multi-strand composite material reinforced core and a preparation method thereof.
  • the objective of the present invention is to overcome the shortcomings of the prior art, and through a large number of experimental studies, provide a multi-strand composite reinforced core with firm structure, firm bonding force between individual core rods, and not easy to disperse.
  • the multi-strand composite material reinforced core and the single-wire core rods are precisely bound to each other, which can improve the efficiency of stranding and construction, improve the safety of line operation, and has important application values.
  • a multi-strand composite material reinforced core is composed of single-wire core rods, the number of single-wire core rods is ⁇ 7, and the number of layers is ⁇ 1; the single-wire core rods and the overall outer layer of the core rods are bonded by the matrix Adhesive mixture, multi-strand composite material to strengthen the outer layer of the core is wound or not wound fiber.
  • the single-wire core rod is made of fiber and resin; the resin includes a thermoplastic resin or a thermosetting resin; the fiber is an organic fiber or an inorganic fiber .
  • the single-wire core rods are parallel to each other or twisted layer by layer from the inside to the outside.
  • the outer layer of the reinforced core can be wound or not need to be wound fibers according to actual requirements.
  • the matrix adhesive is an epoxy resin, polyester resin, heat-resistant rubber, and other high-temperature resistant thermosetting materials.
  • the fibers are organic fibers or inorganic fibers.
  • the inorganic fibers include glass fibers, carbon fibers, bamboo fibers, aramid fibers, and graphite fibers.
  • thermosetting resin includes epoxy resin, polyester resin or polyether ether ketone.
  • the single-wire core rod has a diameter in the range of 0.5-6 mm; the cross-section of the single-wire core rod is circular or trapezoidal.
  • the preparation method of the multi-strand composite material reinforced core of the present invention includes the following steps:
  • each single-wire mandrel into a tray and place it in parallel pass through a dipping device equipped with a matrix adhesive, enter the first pre-forming device under the action of a tractor, and be preliminarily fixed and formed, and then fully cured by the first post-curing device , Finally, the first winder is wound into a disk; and according to actual use requirements, before entering the first preforming device, choose to place the first yarn winding machine to wind the outer layer of the multi-strand composite reinforced core or do not need to wind the fiber;
  • each single-wire mandrel into a tray and install it on a device with back-twisting function.
  • the outlet end of the device with back-twisting function is equipped with a second dipping device.
  • the surface of each single-wire mandrel is equipped with a matrix adhesive. After the second dipping device is hung up with the matrix adhesive, it enters the second preforming device under the action of the second tractor. After each layer of single-wire core rods are twisted into a shape, they are fully cured by the second post-curing device, and finally The second winder winds into a disk; according to actual needs, a second yarn winder can be placed in front of the second preforming device to wind the outer layer of the multi-strand composite reinforced core or does not need to wind the fiber.
  • the inlet end of the first preforming device has a through-hole mold with the same cross-section as the reinforced core, and the reinforced core is preformed after passing through the mold and having the desired shape.
  • the device is heated and preliminarily fixed;
  • the inlet end of the second preforming device has a hole mold with the same outer diameter as the reinforcing core, the reinforcing core has a target shape after passing through the mold, and is heated and preliminarily fixed in the second preforming device.
  • the first post-curing device and the second post-curing device are enclosed spaces with adjustable temperature heating, such as ovens.
  • the above-mentioned single-wire core rod is made of fibers and resins;
  • the resins include thermosetting resins such as thermoplastic or epoxy resin, polyester resin, polyether ether ketone, etc.;
  • the fibers are organic fibers or Inorganic fibers, such as carbon fiber, glass fiber, aramid fiber, graphite fiber, etc.
  • the position of the dipping device can be moved, and it can be on the outer layer of each strand of single-wire core rod, or it can be integrated after stranding. Strengthen the outside of the core.
  • the equipment with the back-twisting function can be a cage stranding machine on the market. It can prevent the single-wire mandrel from being damaged due to internal stress concentration during the stranding process.
  • the stranding pitch (such as 100 mm) and speed (such as 100 mm/min) can be adjusted according to the actual process.
  • the multi-strand composite material reinforced core provided by the present invention and the preparation method thereof have the following advantages:
  • the multi-strand composite material reinforced core provided by the present invention has the advantages of reasonable structural design, excellent performance, good bending performance, high safety, corrosion resistance, and good toughness.
  • the single-wire core rods are bonded by matrix adhesive and wrapped with fiber, which can greatly enhance the binding force between the single-wire core rods and improve the safety of construction and line operation Sex.
  • the preparation method of the multi-strand composite material reinforced core provided by the present invention has a reasonable preparation process, strong operability, and can realize industrialized production.
  • Figure 1 is a schematic diagram of the structure of a multi-stranded composite reinforced core.
  • Figure 2 is a schematic cross-sectional structure diagram of a multi-stranded composite reinforced core.
  • Figure 3 is a flow chart of the preparation of a multi-stranded composite reinforced core (parallel structure).
  • Figure 4 is a flow chart of the preparation of a multi-stranded composite reinforced core (stranded structure).
  • a multi-strand composite material reinforced core is formed by bonding a multi-strand single-wire core rod (1) through a matrix adhesive 2 (epoxy resin or silicone rubber resistant);
  • the number of single-wire core rods is 7, and the number of layers is 2.
  • the diameter range of the single wire core rod 1 described above is 0.5-6mm.
  • the cross section of the single wire core rod 1 described above is circular.
  • the above-mentioned single-wire core rod 1 is manufactured by a pultrusion process of fiber and resin; the resin is epoxy resin; the fiber is carbon fiber and glass fiber.
  • a method for preparing a multi-strand composite material reinforced core includes the following steps:
  • each single-wire core rod 1 into a tray and place it in parallel, pass through the first dipping device 1-1 equipped with the matrix adhesive 2 (epoxy resin), and enter the first traction machine 1-4 under the action of the first tractor 1-4
  • the pre-forming device 1-2 is preliminarily fixed and formed, and then fully cured by the first post-curing device 1-3, and finally wound into a disk by the first winding machine 1-5.
  • the first yarn winding machine 1-0 may be placed in front of the first forming device 1-2 to wind or not wind the fibers in the outer layer to prepare a multi-strand composite reinforced core.
  • the multi-strand composite material reinforced core prepared above has better flexibility than the single-core structure reinforced core in the prior art, and the smaller bending radius can better deal with harsh conditions such as large corners and large height differences during the construction process , And at the same time, the mechanical properties are equivalent to the reinforced core of a single-core structure with uniform cross-section, and a good technical effect has been achieved.
  • a method for preparing a multi-strand composite material reinforced core includes the following steps:
  • each single-wire mandrel 1 into a tray, and install it on the cage stranding machine 2-1 with back-twisting function, add a second dipping device 2-2 at the outlet end of the cage stranding machine 2-1, and each single-wire mandrel 1
  • the surface passes through the second dipping device 2-2 equipped with the base adhesive 2 and is covered with the base adhesive 2 (heat-resistant silicone rubber), and enters the second forming device under the action of the second tractor 2-5 2-3.
  • the second yarn winding machine 2-0 can be placed in front of the second forming device 2-3 to wind the outer layer or the fiber 3 does not need to be wound.
  • the position of the second dipping device 2-2 can be moved, which can be on the outer layer of each single-wire core rod 1, or after the multi-strand stranding Integrally strengthen the outside of the core.
  • the outer layer winding yarn 3 can be adjusted according to actual requirements by adjusting the winding speed (for example, 100 mm/min) to control the winding pitch of 100 mm.
  • the multi-strand composite material reinforced core prepared above has better flexibility than the single-core structure reinforced core in the prior art, and has a smaller bending radius, which can better deal with the large corners and large height differences in the construction process.
  • the mechanical properties are equivalent to the reinforced core of a single-core structure with uniform cross-section, and a good technical effect has been achieved.

Abstract

本发明公开了一种多股复合材料加强芯及其制备方法,其由大于等于7根的单线芯棒(1)构成,各单线芯棒(1)之间及芯棒整体外层均由基体粘合剂(2)粘接,多股复合材料加强芯外层缠绕或不缠绕纤维(3)。本发明提供的多股复合材料加强芯应用于架空导线,相对于传统单芯的碳纤维复合芯导线具有弯曲性能好,线路运行安全等优点,该多股复合材料加强芯在施工展放过程中具有很大优势,特别适用于大高差、大转角等恶劣环境下施工。

Description

一种多股复合材料加强芯及其制备方法
技术领域
本发明涉及一种架空输电导线用加强芯,具体涉及一种多股复合材料加强芯及其制备方法。
背景技术
为解决现有远程大容量电力输送采用的电线电缆一般以钢芯铝绞线为导线,耗能大,载流量小,由此造成的停电、断电故障时有发生等问题,人们尝试用有机复合材料代替金属材料制作导线的芯材,开发出了新型复合材料合成芯导线。该种导线具有耐高温、大容量、低能耗、寿命长等特点。因为该种导线具有很高的优越性,已在旧线路改造及新建线路中得到了很好的应用。由于超高压、特高压线路的推广运用,大截面导线得到更大的需求,大直径单根复合材料芯导线的弯曲性能不好的局限性开始显露,为施工安装带来了很多不便,且整根导线的加强芯为单独芯棒,降低了线路运行的安全系数。
经过研究表明,多股绞合加强芯来替换单根大直径加强芯,可很好的解决上述问题,但由于单根芯棒具有一定的韧性,在绞线或施工开断的过程中,各单根芯棒之间会散开,因此各芯棒间的互相束缚是一个亟待解决的问题。
发明内容
发明目的:本发明的目的是为了克服现有技术的不足,通过大量实验研究,提供一种结构牢固,各单根芯棒之间结合力牢固,不易散开的多股复合材料加强芯。该多股复合材料加强芯各单线芯棒间相互束缚精密,可提高绞线和施工时的效率,提高线路运行的安全性,具有重要的应用价值。
技术方案:为了实现本发明的目的,本发明采取如下技术方案:
一种多股复合材料加强芯,多股复合材料加强芯由单线芯棒构成,单线芯棒根数≥7,层数≥1;各单线芯棒之间及芯棒整体外层均由基体粘合剂粘接,多股复合材料加强芯外层缠绕或不缠绕纤维。
作为优选方案,以上所述的多股复合材料加强芯,所述的单线芯棒由纤维和树脂制造而成;所述的树脂包括热塑性树脂或热固性树脂;所述的纤维为有机纤维或无机纤维。
作为优选方案,以上所述的多股复合材料加强芯,各单线芯棒之间互相平行或由内而外逐层绞合而成。
作为优选方案,以上所述的多股复合材料加强芯的结构,加强芯外层可根据实际使用要求缠绕或不需缠绕纤维。
作为优选方案,以上所述的多股复合材料加强芯,所述基体粘合剂为环氧树脂、聚酯树脂、耐热橡胶等耐高温热固性材料。
作为优选方案,以上所述的多股复合材料加强芯,所述的纤维为有机纤维或无机 纤维。
作为优选方案,以上所述的多股复合材料加强芯,所述的无机纤维包括玻璃纤维、碳纤维、竹纤维、芳纶纤维、石墨纤维。
作为优选方案,以上所述的多股复合材料加强芯,所述的热固性树脂包括环氧树脂、聚酯树脂或聚醚醚酮。
作为优选方案,以上所述的多股复合材料加强芯,所述的单线芯棒直径范围为0.5-6mm;单线芯棒的截面为圆形或梯形。
本发明所述的多股复合材料加强芯的制备方法,包括以下步骤:
将各单线芯棒包装成盘并平行放置,通过装有基体粘合剂的浸胶装置,在牵引机的作用下进入第一预成型装置内初步固定成型,之后经过第一后固化装置充分固化,最后由第一收卷机收卷成盘;并根据实际使用需求,在进入第一预成型装置之前选择放置第一缠纱机对多股复合材料加强芯外层缠绕或不需缠绕纤维;
或者
将各单线芯棒包装成盘,并装在具有退扭功能的设备上,该具有退扭功能的设备的出线端增加第二浸胶装置,各单线芯棒表面经过装有基体粘合剂的第二浸胶装置后挂满基体粘合剂,在第二牵引机的作用下进入第二预成型装置,各层单线芯棒绞合成型之后,再经过第二后固化装置充分固化,最后由第二收卷机收卷成盘;可根据实际使用需求,选择在第二预成型装置前放置第二缠纱机对多股复合材料加强芯外层缠绕或不需缠绕纤维。
作为优选方案,以上所述的多股复合材料加强芯的制备方法,第一预成型装置进线端具有与加强芯截面相同的通孔模具,加强芯通过该模具并具有目的形状后在预成型装置中加热并初步固定;第二预成型装置进线端具有与加强芯外径相同的孔型模具,加强芯通过该模具后具有目的形状,在第二预成型装置中加热并初步固定。
第一后固化装置和第二后固化装置为具有可调温加热的密闭空间,如烘箱等。
作为优选方案,以上所述的单线芯棒由纤维和树脂制造而成;所述的树脂包括热塑性或环氧树脂、聚酯树脂、聚醚醚酮等热固性树脂;所述的纤维为有机纤维或无机纤维,如:碳纤维、玻璃纤维、芳纶纤维、石墨纤维等。
作为优选方案,以上所述的多股复合材料加强芯的制备方法中,所述的浸胶装置的位置可以移动,可以在各股单线芯棒的外层,也可在多股绞合后整体加强芯的外侧。
作为优选方案,以上所述的多股复合材料加强芯的制备方法中,所述的具有退扭功能的设备,可采用市场上的笼绞机。可防止单线芯棒在绞和过程中因内应力集中造成损伤,其绞合节距(如100毫米)及速度(如100毫米/分钟)可根据实际工艺调整。
有益效果:本发明提供的多股复合材料加强芯及其制备方法具有以下优点:
(1)本发明提供的多股复合材料加强芯,结构设计合理,性能优,具有弯曲性能好,安全性高,耐腐蚀、韧性好等优点。
(2)本发明提供的多股复合材料加强芯,各单线芯棒间通过基体粘合剂粘结和缠绕纤维包扎,可大大增强各单线芯棒间的束缚力,提高施工和线路运行的安全性。
(3)本发明提供的多股复合材料加强芯制备方法,制备工艺合理,可操作性强,可实现工业化生产。
附图说明
图1为多股绞合复合材料加强芯的结构示意图。
图2为多股绞合复合材料加强芯的截面结构示意图。
图3为多股绞合复合材料加强芯(平行结构)的制备流程图。
图4为多股绞合复合材料加强芯(绞合结构)的制备流程图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
如图1和图2所示,一种多股复合材料加强芯,他由多股单线芯棒(1)通过基体粘合剂2(环氧树脂或硅橡胶耐)粘合而成;所述的单线芯棒1根数为7,层数为2。
以上所述的单线芯棒1直径范围为0.5-6mm。
以上所述的单线芯棒1的截面为圆形。
以上所述的单线芯棒1由纤维和树脂通过拉挤工艺制造而成;所述的树脂为环氧树脂;所述的纤维为碳纤维和玻璃纤维。
实施例2
如图3所示,本发明所提供的一种多股复合材料加强芯的制备方法,其包括以下步骤:
将各单线芯棒1包装成盘并平行放置,通过装有基体粘合剂2(环氧树脂)的第一浸胶装置1-1,在第一牵引机1-4的作用下进入第一预成型装置1-2内初步固定成型,之后经过第一后固化装置1-3充分固化,最后由第一收卷机1-5收卷成盘。可根据实际使用需求,选择在第一成型装置1-2前放置第一缠纱机1-0对外层缠绕或不缠绕纤维,制备得到多股复合材料加强芯。
以上制备得到的多股复合材料加强芯较现有技术领域中单芯结构的加强芯具有更好的柔性,弯曲半径更小能够更好的应对施工过程中的大转角、大高差等恶劣条件,且同时力学性能与等截面的单芯结构加强芯相当,取得了很好的技术效果。
在绞线或施工开断的过程中,以上多股复合材料加强芯未出现散开、开裂的情况。
实施例3
如图4所示,本发明所提供的一种多股复合材料加强芯的制备方法,其包括以下步骤:
将各单线芯棒1包装成盘,并装在具有退扭功能的笼绞机2-1上,在笼绞机2-1的出线端增加第二浸胶装置2-2,各单线芯棒1表面经过装有基体粘合剂2的第二浸胶装置2-2后挂满基体粘合剂2(耐热硅橡胶),在第二牵引机2-5的作用下进入第二成型装置2-3,各层单线芯棒1绞合后成型之后,经过第二后固化装置2-4充分固化,最后由第二收卷机2-6收卷成盘。可根据实际使用需求,选择在第二成型装置2-3前放置第二缠纱机2-0对外层缠绕或不需缠绕纤维3。
以上所述的多股复合材料加强芯的制备方法,所述的第二浸胶装置2-2的位置可以移动,可以在各股单线芯棒1的外层,也可在多股绞合后整体加强芯的外侧。
以上所述的多股复合材料加强芯的制备方法中,所述的外层缠纱3可根据实际要 求调节缠绕速度(如100毫米/分钟)来控制缠绕节距100毫米。
以上制备得到的多股复合材料加强芯较现有技术领域中单芯结构的加强芯具有更好的柔性,弯曲半径更小,能够更好的应对施工过程中的大转角、大高差等恶劣条件,同时力学性能与等截面的单芯结构加强芯相当,取得了很好的技术效果。
在绞线或施工开断的过程中,以上多股复合材料加强芯未出现散开、开裂的情况。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种多股复合材料加强芯,其特征在于,多股复合材料加强芯由单线芯棒(1)构成,单线芯棒(1)根数≥7,层数≥1;各单线芯棒(1)之间及芯棒整体外层均由基体粘合剂(2)粘接,多股复合材料加强芯外层缠绕或不缠绕纤维(3)。
  2. 权利要求1所述的多股复合材料加强芯,其特征在于,所述的单线芯棒(1)由纤维和树脂制造而成;所述的树脂包括热塑性树脂或热固性树脂;所述的纤维为有机纤维或无机纤维。
  3. 根据权利要求1所述的多股复合材料加强芯,其特征在于,各单线芯棒(1)之间互相平行或由内而外逐层绞合而成。
  4. 根据权利要求3所述的多股复合材料加强芯的结构,其特征在于加强芯外层可根据实际使用要求缠绕或不需缠绕纤维(3)。
  5. 根据权利要求1所述的多股复合材料加强芯,其特征在于,所述基体粘合剂(2)为环氧树脂、硅橡胶耐高温热固性材料。
  6. 根据权利要求1所述的多股复合材料加强芯,其特征在于,所述的纤维(3)为有机纤维或无机纤维。
  7. 根据权利要求2或6所述的多股复合材料加强芯,其特征在于,所述的无机纤维包括玻璃纤维、碳纤维、竹纤维、芳纶纤维或石墨纤维。
  8. 根据权利要求2所述的多股复合材料加强芯,其特征在于,所述的热固性树脂包括环氧树脂、聚酯树脂或聚醚醚酮。
  9. 根据权利要求1所述的多股复合材料加强芯,其特征在于,所述的单线芯棒(1)直径范围为0.5-6mm;单线芯棒(1)的截面为圆形或梯形。
  10. 权利要求1至9任一项所述的多股复合材料加强芯的制备方法,其特征在于,包括以下步骤:
    将各单线芯棒(1)包装成盘并平行放置,通过装有基体粘合剂(2)的第一浸胶装置(1-1),在第一牵引机(1-4)的作用下进入第一预成型装置(1-2)内初步固定成型,之后经过第二后固化装置(1-3)充分固化,最后由第一收卷机(1-5)收卷成盘;并根据实际使用需求,在进入第一预成型装置(1-2)之前选择在第一预成型装置(1-2)前放置第一缠纱机(1-0)对多股复合材料加强芯外层缠绕或不需缠绕纤维(3);
    或者将各单线芯棒(1)包装成盘,并装在具有退扭功能的设备(2-1)上,该设备(2-1)的出线端增加第二浸胶装置(2-2),各单线芯棒(1)表面经过装有基体粘合剂(2)的第二浸胶装置(2-2)后挂满基体粘合剂(2),在第二牵引机(2-5)的作用下进入第二预成型装置(2-3),各层单线芯棒(1)绞合成型之后,再经过第二后固化装置(2-3)充分固化,最后由第二收卷机(2-5)收卷成盘;可根据实际使用需求,选择在第二预成型装置(2-3)前放置第二缠纱机(2-0)对多股复合材料加强芯外层缠绕或不需缠绕纤维(3)。
PCT/CN2020/081390 2019-03-28 2020-03-26 一种多股复合材料加强芯及其制备方法 WO2020192732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910242433.0 2019-03-28
CN201910242433.0A CN110197745A (zh) 2019-03-28 2019-03-28 一种多股复合材料加强芯及其制备方法

Publications (1)

Publication Number Publication Date
WO2020192732A1 true WO2020192732A1 (zh) 2020-10-01

Family

ID=67751728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081390 WO2020192732A1 (zh) 2019-03-28 2020-03-26 一种多股复合材料加强芯及其制备方法

Country Status (2)

Country Link
CN (1) CN110197745A (zh)
WO (1) WO2020192732A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197745A (zh) * 2019-03-28 2019-09-03 中复碳芯电缆科技有限公司 一种多股复合材料加强芯及其制备方法
CN111764187A (zh) * 2020-07-09 2020-10-13 中复碳芯电缆科技有限公司 一种弹性体粘合的纤维增强复合线材及其制备方法
CN112323525A (zh) * 2020-11-16 2021-02-05 清华大学 复合材料缠绕增强钢索及其制作方法
CN113643843A (zh) * 2021-07-27 2021-11-12 中复碳芯电缆科技有限公司 一种多股绞合型碳纤维光纤复合电缆及其制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454386A (zh) * 2000-07-14 2003-11-05 3M创新有限公司 绞合缆索及其制造方法
CN102124528A (zh) * 2008-08-15 2011-07-13 3M创新有限公司 绞合复合缆线以及制造和使用方法
CN103456409A (zh) * 2012-06-05 2013-12-18 河南科信电缆有限公司 一种浸渍加强型碳纤维电缆
CN105719768A (zh) * 2016-05-03 2016-06-29 上海电缆研究所 架空导线用铝包纤维增强复合芯及其制造方法
CN110197745A (zh) * 2019-03-28 2019-09-03 中复碳芯电缆科技有限公司 一种多股复合材料加强芯及其制备方法
CN209591609U (zh) * 2019-03-28 2019-11-05 中复碳芯电缆科技有限公司 一种多股复合材料加强芯

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202282187U (zh) * 2011-11-06 2012-06-20 远东复合技术有限公司 一种绞合复合芯
CN102602083B (zh) * 2012-03-20 2014-10-22 浙江顺天复合材料有限公司 一种纤维增强复合材料芯及其制备方法
CN103000279A (zh) * 2012-12-14 2013-03-27 大连元盛科技开发有限公司 一种碳纤维复合材料芯棒及其加工方法
CN203706697U (zh) * 2014-01-26 2014-07-09 杭州伟峰电子有限公司 一种耐弯曲疲劳的电线
CN104700949B (zh) * 2015-02-10 2017-02-22 中复碳芯电缆科技有限公司 多股绞合纤维增强树脂基复合材料芯铝绞线的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454386A (zh) * 2000-07-14 2003-11-05 3M创新有限公司 绞合缆索及其制造方法
CN102124528A (zh) * 2008-08-15 2011-07-13 3M创新有限公司 绞合复合缆线以及制造和使用方法
CN103456409A (zh) * 2012-06-05 2013-12-18 河南科信电缆有限公司 一种浸渍加强型碳纤维电缆
CN105719768A (zh) * 2016-05-03 2016-06-29 上海电缆研究所 架空导线用铝包纤维增强复合芯及其制造方法
CN110197745A (zh) * 2019-03-28 2019-09-03 中复碳芯电缆科技有限公司 一种多股复合材料加强芯及其制备方法
CN209591609U (zh) * 2019-03-28 2019-11-05 中复碳芯电缆科技有限公司 一种多股复合材料加强芯

Also Published As

Publication number Publication date
CN110197745A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2020192732A1 (zh) 一种多股复合材料加强芯及其制备方法
CN102136319B (zh) 架空导线用连续高强纤维树脂基复合芯及制备方法
CN104134483B (zh) 一种绞合型碳纤维复合芯软铝导线及其制作方法
CN102602083A (zh) 一种纤维增强复合材料芯及其制备方法
RU2568188C2 (ru) Провод для воздушных линий электропередач и способ его изготовления
CN102127986A (zh) 一种复合材料输电杆塔
CN102345236A (zh) 一种多芯绞合型纤维加强芯材湿法生产工艺
WO2022007705A1 (zh) 一种弹性体粘合的纤维增强复合线材及其制备方法
CN103531292A (zh) 输电架空导线用纤维复合绳芯的制造设备
CN110305450B (zh) 一种架空线路纤维增强树脂基复合芯及其制备方法
CN103887023A (zh) 一种树脂基增强纤维复合芯和架空导线及其制造方法
CN104842569B (zh) 复合型frp筋、制备工艺及制备装置
CN203325558U (zh) 一种混杂纤维复合绳芯增强导线
CN101572132A (zh) 输电线路导线的玻璃纤维与碳纤维复合芯
CN106920581A (zh) 碳纤维绳加强芯铝绞线及其制备方法
CN104700949B (zh) 多股绞合纤维增强树脂基复合材料芯铝绞线的制备方法
CN201000774Y (zh) 输电铝绞线复合材料芯
CN105719768B (zh) 架空导线用铝包纤维增强复合芯及其制造方法
CN201036070Y (zh) 复合材料型线架空导线
CN104517673A (zh) 碳纤维复合材料芯导线及制备方法
CN112151205A (zh) 一种输电导线专用高韧性碳纤维复合芯棒
CN105825945A (zh) 一种智能复合材料芯导线及其制备方法
CN202540829U (zh) 一种纤维增强复合材料芯
CN104036877B (zh) 一种架空导线用纤维复合绳芯成型工艺与制造设备
CN104900320B (zh) 一种智慧能源用超柔性绞合型碳纤维复合芯及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779959

Country of ref document: EP

Kind code of ref document: A1