WO2020192687A1 - 一种汽车轮胎胎压确定方法与装置 - Google Patents

一种汽车轮胎胎压确定方法与装置 Download PDF

Info

Publication number
WO2020192687A1
WO2020192687A1 PCT/CN2020/081098 CN2020081098W WO2020192687A1 WO 2020192687 A1 WO2020192687 A1 WO 2020192687A1 CN 2020081098 W CN2020081098 W CN 2020081098W WO 2020192687 A1 WO2020192687 A1 WO 2020192687A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
wheel radius
value
time
state
Prior art date
Application number
PCT/CN2020/081098
Other languages
English (en)
French (fr)
Inventor
钟毅
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2020192687A1 publication Critical patent/WO2020192687A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems

Definitions

  • the invention relates to automobile electronic technology, in particular to a method and device for determining the tire pressure of automobile tires.
  • the technical problem to be solved by the present invention is to provide a method for determining the tire pressure of automobile tires in view of the defects in the prior art.
  • the method eliminates the noise of tire radius analysis through Kalman filtering, so that the tire pressure analysis results are more effective Greater accuracy is improved.
  • the technical solution adopted by the present invention to solve its technical problem is: a method for determining the tire pressure of automobile tires, including the following steps:
  • the wheel radius analysis model includes an analysis of estimated values in four directions, as follows:
  • G 12 (R 1 -R 2 )/R 0 ;
  • R 0 is the standard wheel radius
  • R 1 , R 2 , R 3 , and R 4 are the real-time wheel radius of the left rear, left front, right front, and right rear respectively;
  • the Kalman filter is specifically as follows:
  • Is the system state value at time K Is the estimated value of the state of the system at time K
  • A is the state gain matrix that linearly maps the state at k-1 to the current time k
  • B is the gain matrix of the system state control variable
  • u k-1 is the system state at time k
  • Y k is the observed value of the system at time k
  • H is the gain value of the state value X k to the observed value y k
  • p k is the error covariance value of the system at time k
  • Q is the system process Error covariance of excitation noise
  • R is the covariance of system observation noise
  • K K is the value of Kalman gain
  • step 3 Obtain stable wheel radius analysis results according to step 2), and perform tire pressure analysis.
  • the system function matrix H in the step 2) is set to
  • the stable wheel radius analysis result is obtained according to the step 2).
  • the tire pressure analysis process is as follows:
  • a device for determining the tire pressure of an automobile tire includes:
  • the wheel radius analysis model module is used to establish a wheel radius analysis model.
  • the wheel radius analysis model includes analysis of estimated values in four directions, as follows:
  • G 12 (R 1 -R 2 )/R 0 ;
  • R 0 is the standard wheel radius
  • R 1 , R 2 , R 3 , and R 4 are the real-time wheel radius of the left rear, left front, right front, and right rear respectively;
  • the filter module is used to filter the analysis result of the wheel radius estimation value by using Kalman filter to obtain the denoised wheel radius analysis result;
  • the tire pressure analysis module is used to obtain stable wheel radius analysis results according to the results of the filter module, and perform tire pressure analysis.
  • the Kalman filter in the filtering module is specifically as follows:
  • X k is the system state at time K
  • A is the state gain matrix that linearly maps the state at time k-1 to the current time k
  • B is the gain matrix of the system state control variable
  • u k-1 is the control of the system state at time k
  • Quantities y k is the observed value of the system at time k
  • H is the gain value of the state value X k to the observed value y k
  • p k is the error covariance value of the system at time k
  • Q is the excitation noise of the system process
  • the error covariance, R is the system observation noise covariance
  • K K is the value of Kalman gain.
  • the present invention can realize tire pressure monitoring of multiple tire air leaks.
  • Figure 1 is a schematic structural diagram of an embodiment of the present invention
  • FIG. 3 is a schematic diagram of tire pressure analysis according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of tire pressure analysis according to an embodiment of the present invention.
  • a method for determining the tire pressure of an automobile tire includes the following steps:
  • the wheel radius analysis model includes analysis of estimated values in four directions. There are four cases of left and right analysis and front and rear analysis of the wheel respectively. That is, longitudinal: left, right; horizontal: front axle, rear axle. Separate and check the input data to analyze the model, and then use a single input value as the filter input.
  • G 12 (R 1 -R 2 )/R 0 ;
  • R 0 is the standard wheel radius
  • R 1 , R 2 , R 3 , and R 4 are the real-time wheel radius of the left rear, left front, right front, and right rear respectively;
  • u k-1 is the control variable of the system state at time k
  • A is the state gain matrix linearly mapped from the state at k-1 to the current time k
  • B is the control variable of the system state
  • the gain matrix of y k is the observed value of the system at time k
  • H is the gain value of the state value X k to the observed value y k
  • p k is the error covariance value of the system at time k
  • Q is the system process Error covariance of excitation noise
  • R is the covariance of system observation noise
  • K K is the value of Kalman gain
  • the estimated value of state estimation and covariance is calculated from k-1 time forward to k time.
  • the measurement update equation first calculates the Kalman gain K K. After calculating the time update equation and measurement update equation, the whole process is repeated again.
  • the posterior estimate obtained in the next calculation is used as the prior estimate for the next calculation, and the Kalman filter recursively calculates the current state estimate according to the previous measurement changes.
  • y k is the measured value at time k.
  • H is a matrix.
  • q(k) and r(k) represent process and measurement noise, respectively. They are assumed to be Gaussian white noise, and their variances are Q and R respectively.
  • Q is the error covariance matrix of the measured data
  • R is the error covariance matrix of the input data
  • R can be observed and is the known condition of the filter.
  • the dot is the input signal with Gaussian white noise
  • the straight line is the signal after Kalman filter. From Figure 2, it can be observed that the result obtained by the Kalman filter is very stable. (The abscissa in the figure is from 100, the left rear wheel is leaking, and the graph changes.)
  • the longitudinal direction the left side XL (G 12 ), the right side XR (G 43 ); the horizontal direction: the front axis YF (G 23 ), the rear axis YR (G 14 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种汽车轮胎胎压确定方法与装置,该方法包括以下步骤:1)建立车轮半径分析模型,获得车轮半径估计值分析;2)采用卡尔曼滤波对车轮半径估计值分析结果进行滤波,获得去噪后的车轮半径分析结果;3)根据步骤2)得到稳定的车轮半径分析结果,进行胎压分析。通过卡尔曼滤波消除轮胎半径分析的噪声,使得分析结果较现有方法有较大精度提高,并能根据分析结果实现多个轮胎漏气的胎压监测。

Description

一种汽车轮胎胎压确定方法与装置 技术领域
本发明涉及汽车电子技术,尤其涉及一种汽车轮胎胎压确定方法与装置。
背景技术
统计表明,交通事故中爆胎原因所占的比例高达60%,如果车速超过160公里/小时,前轮爆胎的生存几率几乎为0。
75%的爆胎都是由胎压不足造成的,当胎压不足时,轮胎侧面因受挤压而弯曲,进而造成轮胎温度升高引发爆胎。当胎压不足时,车轮半径会减小,因此车轮半径分析是监测胎压变化的一项重要方法。然而现有的车轮半径分析方法并未考虑到很多特殊工况对于轮胎半径的影响,如汽车加速和转弯情况等,导致得到的车轮半径值包含很多噪声。需要提供一种滤除噪声的车轮半径监测胎压方法。
发明内容
本发明要解决的技术问题在于针对现有技术中的缺陷,提供一种汽车轮胎胎压确定方法,该方法通过卡尔曼滤波消除轮胎半径分析的噪声,使得轮胎胎压分析结果较现有方法有较大精度提高。
本发明解决其技术问题所采用的技术方案是:一种汽车轮胎胎压确定方法, 包括以下步骤:
1)建立车轮半径分析模型,获得车轮半径估计值分析;所述车轮半径分析模型包含四个方向的估计值分析,具体如下:
纵向左侧车轮半径分析:G 12=(R 1-R 2)/R 0
纵向右侧车轮半径分析:G 43=(R 4-R 3)/R 0
横向前轴车轮半径分析:G 23=(R 2-R 3)/R 0
横向后轴车轮半径分析:G 14=(R 1-R 4)/R 0
其中,R 0是车轮标准半径,R 1、R 2、R 3、R 4分别是左后、左前、右前、右后实时车轮半径;
Figure PCTCN2020081098-appb-000001
2)采用卡尔曼滤波对车轮半径估计值分析结果进行滤波,获得去噪后的车轮半径分析结果;
所述卡尔曼滤波器具体如下:
时间更新方程:
Figure PCTCN2020081098-appb-000002
Figure PCTCN2020081098-appb-000003
状态更新方程:
Figure PCTCN2020081098-appb-000004
Figure PCTCN2020081098-appb-000005
Figure PCTCN2020081098-appb-000006
其中,
Figure PCTCN2020081098-appb-000007
是K时刻的系统状态值,
Figure PCTCN2020081098-appb-000008
是系统在K时刻的状态估计值,A是k-1时刻的状态线性映射到当前时刻k的状态增益矩阵,B是系统状态控制量的增益矩阵,u k-1是在k时刻下系统状态的控制量,y k是在k时刻下系统的观测值大小,H是状态值X k对观测值y k的增益值,p k是系统k时刻的误差协方差值,Q是系统过程的激励噪声的误差协方差,R是系统观测噪声协方差,K K是卡尔曼增益的值;
3)根据步骤2)得到稳定的车轮半径分析结果,进行胎压分析。
按上述方案,所述步骤2)中系统函数矩阵H设置为
Figure PCTCN2020081098-appb-000009
按上述方案,所述步骤3)中根据步骤2)得到稳定的车轮半径分析结果,进行胎压分析的过程如下:
通过G 12、G 43、G 23、G 14反向推导出R 1、R 2、R 3、R 4的相对变化值,若相对变化 值超过设定阈值,则判断其发生漏气。
一种汽车轮胎胎压确定装置,包括:
车轮半径分析模型模块,用于建立车轮半径分析模型,所述车轮半径分析模型包含四个方向的估计值分析,具体如下:
纵向左侧车轮半径分析:G 12=(R 1-R 2)/R 0
纵向右侧车轮半径分析:G 43=(R 4-R 3)/R 0
横向前轴车轮半径分析:G 23=(R 2-R 3)/R 0
横向后轴车轮半径分析:G 14=(R 1-R 4)/R 0
其中,R 0是车轮标准半径,R 1、R 2、R 3、R 4分别是左后、左前、右前、右后实时车轮半径;
Figure PCTCN2020081098-appb-000010
滤波模块,用于采用卡尔曼滤波对车轮半径估计值分析结果进行滤波,获得去噪后的车轮半径分析结果;
胎压分析模块,用于根据滤波模块的结果,得到稳定的车轮半径分析结果,并进行胎压分析。
按上述方案,所述滤波模块中卡尔曼滤波器具体如下:
时间更新方程:
Figure PCTCN2020081098-appb-000011
Figure PCTCN2020081098-appb-000012
状态更新方程:
Figure PCTCN2020081098-appb-000013
Figure PCTCN2020081098-appb-000014
Figure PCTCN2020081098-appb-000015
其中,X k是K时刻的系统状态,
Figure PCTCN2020081098-appb-000016
是系统在K时刻的状态估计值,
Figure PCTCN2020081098-appb-000017
是K时刻的系统状态值,A是k-1时刻的状态线性映射到当前时刻k的状态增益矩阵,B是系统状态控制量的增益矩阵,u k-1是在k时刻下系统状态的控制量,y k是在k时刻下系统的观测值大小,H是状态值X k对观测值y k的增益值,p k是系统k时刻的误差协方差值,Q是系统过程的激励噪声的误差协方差,R是系统观测噪声协方差,K K是卡尔曼增益的值。
本发明产生的有益效果是:
1、通过卡尔曼滤波消除轮胎半径分析的噪声,使得分析结果较现有方法有较大精度提高。
2、相比于现有技术,本发明能实现多个轮胎漏气的胎压监测。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的结构示意图;
图2是本发明实施例的车轮半径分析数据的滤波仿真结果;
图3是本发明实施例的胎压分析示意图;
图4是本发明实施例的胎压分析示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,一种汽车轮胎胎压确定方法,包括以下步骤:
1.建立车轮半径分析模型。车轮半径分析模型包含四个方向的估计值分析。分别为车轮的左右分析和前后分析共四种情况。即纵向:左侧,右侧;横向:前轴,后轴。将输入数据分离检查来分析模型,然后将单个输入值作为滤波器输入。
纵向左侧车轮半径分析:G 12=(R 1-R 2)/R 0
纵向右侧车轮半径分析:G 43=(R 4-R 3)/R 0
横向前轴车轮半径分析:G 23=(R 2-R 3)/R 0
横向后轴车轮半径分析:G 14=(R 1-R 4)/R 0
其中,R 0是车轮标准半径,R 1、R 2、R 3、R 4分别是左后、左前、右前、右后实时车轮半径;
Figure PCTCN2020081098-appb-000018
2.建立卡尔曼模型:
本实施例中卡尔曼滤波,其时间更新方程和测量更新方程的具体形式为:
时间更新方程:
Figure PCTCN2020081098-appb-000019
Figure PCTCN2020081098-appb-000020
状态更新方程:
Figure PCTCN2020081098-appb-000021
Figure PCTCN2020081098-appb-000022
Figure PCTCN2020081098-appb-000023
其中,
Figure PCTCN2020081098-appb-000024
是K时刻的系统状态值,
Figure PCTCN2020081098-appb-000025
是系统在K时刻的状态估计值,u k-1是在k时刻下系统状态的控制量,A是k-1时刻的状态线性映射到当前时刻k的状 态增益矩阵,B是系统状态控制量的增益矩阵,y k是在k时刻下系统的观测值大小,H是状态值X k对观测值y k的增益值,p k是系统k时刻的误差协方差值,Q是系统过程的激励噪声的误差协方差,R是系统观测噪声协方差,K K是卡尔曼增益的值;
其中将状态估计和协方差的估计值从k-1时刻向前推算到k时刻。测量更新方程首先计算卡尔曼增益K K。计算完时间更新方程和测量更新方程,整个过程再次重复。下一次计算得到的后验估计被作为下一次计算的先验估计,卡尔曼滤波器每次根据以前的测量变化递归计算当前的状态估计。y k是k时刻的测量值,对于多测量系统,H为矩阵。q(k)和r(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声,他们的方差分别为Q,R。其中,Q为测量的数据的误差协方差矩阵,R为输入数据的误差协方差矩阵,R可以观测得到,是滤波器的已知条件。我们可以通过离线获取系统观测值以计算测量噪声协方差。
将车轮半径分析模型和卡尔曼滤波模型结合仿真,将状态转移矩阵设为单位矩阵,系统函数矩阵H设置为
Figure PCTCN2020081098-appb-000026
实际进行滤波处理时,由于车轮半径数据不容易获得,我们可以通过车轮角速度来表示半径。
根据滤波模块的结果,得到稳定的车轮半径分析结果,并进行胎压分析,如下:
如图2所示,圆点为输入的带高斯白噪声的信号,直线为经过卡尔曼滤波的信号,通过图2可以观察到经过卡尔曼滤波器得到的结果十分的稳定。(图中横坐标从100处,左后轮漏气,图形发生变化。)
图中,纵向:左侧XL(G 12),右侧XR(G 43);横向:前轴YF(G 23),后轴YR(G 14)。
如图3所示,将经过卡尔曼滤波器后得到的结果放置于一张图中,可以清晰的看到其变化。对于前轴,右侧的值基本稳定,而后轴,左侧的值于100处明显变小。
对矩阵H求伪逆矩阵H +,即可以通过G 12、G 43、G 23、G 14反向推导出R 1、R 2、R 3、R 4的相对变化值。
求出的结果如图4所示,可以更为明显地看出,R 1的值减少,而R 2、R 3、R 4的值不变,可以得到左后轮R 1发生漏气。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (7)

  1. 一种汽车轮胎胎压确定方法,其特征在于,包括以下步骤:
    1)建立车轮半径分析模型,获得车轮半径估计值分析;所述车轮半径分析模型包含四个方向的估计值分析,具体如下:
    纵向左侧车轮半径分析:G 12=(R 1-R 2)/R 0
    纵向右侧车轮半径分析:G 43=(R 4-R 3)/R 0
    横向前轴车轮半径分析:G 23=(R 2-R 3)/R 0
    横向后轴车轮半径分析:G 14=(R 1-R 4)/R 0
    其中,R 0是车轮标准半径,R 1、R 2、R 3、R 4分别是左后、左前、右前、右后实时车轮半径;
    Figure PCTCN2020081098-appb-100001
    2)采用卡尔曼滤波对车轮半径估计值分析结果进行滤波,获得去噪后的车轮半径分析结果;
    3)根据步骤2)得到稳定的车轮半径分析结果,进行胎压分析。
  2. 根据权利要求1所述的汽车轮胎胎压确定方法,其特征在于,所述步骤2)中采用的卡尔曼滤波器具体如下:
    时间更新方程:
    Figure PCTCN2020081098-appb-100002
    Figure PCTCN2020081098-appb-100003
    状态更新方程:
    Figure PCTCN2020081098-appb-100004
    Figure PCTCN2020081098-appb-100005
    Figure PCTCN2020081098-appb-100006
    其中,
    Figure PCTCN2020081098-appb-100007
    是K时刻的系统状态值,
    Figure PCTCN2020081098-appb-100008
    是系统在K时刻的状态估计值,A是k-1时刻的状态线性映射到当前时刻k的状态增益矩阵,B是系统状态控制量的增益矩阵,u k-1是在k时刻下系统状态的控制量,y k是在k时刻下系统的观测值大小,系统函数矩阵H是状态值X k对观测值y k的增益值,p k是系统k时刻的误差协方差值,Q是系统过程的激励噪声的误差协方差,R是系统观测噪声协方差,K K是卡尔曼增益的值;
  3. 根据权利要求2所述的汽车轮胎胎压确定方法,其特征在于,所述步骤2)中系统函数矩阵H设置为
    Figure PCTCN2020081098-appb-100009
  4. 根据权利要求1所述的汽车轮胎胎压确定方法,其特征在于,所述步骤3) 中根据步骤2)得到稳定的车轮半径分析结果,进行胎压分析的过程如下:
    通过G 12、G 43、G 23、G 14反向推导出R 1、R 2、R 3、R 4的相对变化值,若相对变化值超过设定阈值,则判断其发生漏气。
  5. 一种汽车轮胎胎压确定装置,其特征在于,包括:
    车轮半径分析模型模块,用于建立车轮半径分析模型,所述车轮半径分析模型包含四个方向的估计值分析,具体如下:
    纵向左侧车轮半径分析:G 12=(R 1-R 2)/R 0
    纵向右侧车轮半径分析:G 43=(R 4-R 3)/R 0
    横向前轴车轮半径分析:G 23=(R 2-R 3)/R 0
    横向后轴车轮半径分析:G 14=(R 1-R 4)/R 0
    其中,R 0是车轮标准半径,R 1、R 2、R 3、R 4分别是左后、左前、右前、右后实时车轮半径;
    Figure PCTCN2020081098-appb-100010
    滤波模块,用于采用卡尔曼滤波对车轮半径估计值分析结果进行滤波,获得去噪后的车轮半径分析结果;
    胎压分析模块,用于根据滤波模块的结果,得到稳定的车轮半径分析结果, 并进行胎压分析。
  6. 根据权利要求5所述的汽车轮胎胎压确定装置,其特征在于,所述滤波模块中卡尔曼滤波器具体如下:
    时间更新方程:
    Figure PCTCN2020081098-appb-100011
    Figure PCTCN2020081098-appb-100012
    状态更新方程:
    Figure PCTCN2020081098-appb-100013
    Figure PCTCN2020081098-appb-100014
    Figure PCTCN2020081098-appb-100015
    其中,
    Figure PCTCN2020081098-appb-100016
    是K时刻的系统状态值,
    Figure PCTCN2020081098-appb-100017
    是系统在K时刻的状态估计值,A是k-1时刻的状态线性映射到当前时刻k的状态增益矩阵,B是系统状态控制量的增益矩阵,u k-1是在k时刻下系统状态的控制量,y k是在k时刻下系统的观测值大小,系统函数矩阵H是状态值X k对观测值y k的增益值,p k是系统k时刻的误差协方差值,Q是系统过程的激励噪声的误差协方差,R是系统观测噪声协方差,K K是卡尔曼增益的值。
  7. 根据权利要求6所述的汽车轮胎胎压确定装置,其特征在于,其特征在于,所 述卡尔曼滤波器中系统函数矩阵H设置为
    Figure PCTCN2020081098-appb-100018
PCT/CN2020/081098 2019-03-26 2020-03-25 一种汽车轮胎胎压确定方法与装置 WO2020192687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910233650.3A CN109910527B (zh) 2019-03-26 2019-03-26 一种汽车轮胎胎压确定方法与装置
CN201910233650.3 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020192687A1 true WO2020192687A1 (zh) 2020-10-01

Family

ID=66966974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081098 WO2020192687A1 (zh) 2019-03-26 2020-03-25 一种汽车轮胎胎压确定方法与装置

Country Status (2)

Country Link
CN (1) CN109910527B (zh)
WO (1) WO2020192687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715561A (zh) * 2021-08-30 2021-11-30 偌轮汽车科技(武汉)有限公司 摩托车iTPMS胎压监测方法及其系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109910527B (zh) * 2019-03-26 2021-02-19 武汉理工大学 一种汽车轮胎胎压确定方法与装置
CN111016552B (zh) * 2019-12-26 2021-08-24 武汉理工大学 一种间接式胎压监测系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925960A2 (en) * 1997-12-15 1999-06-30 Denso Corporation Tyre air pressure estimating apparatus
CN103781641A (zh) * 2011-09-12 2014-05-07 大陆-特韦斯贸易合伙股份公司及两合公司 用于过滤机动车的轮胎压力监控系统中的数据的方法
CN104029684A (zh) * 2013-03-08 2014-09-10 固特异轮胎和橡胶公司 使用道路纵断面自适应滤波的轮胎载荷估计系统
KR20170049872A (ko) * 2015-10-29 2017-05-11 주식회사 만도 타이어 압력 추정 장치 및 그 추정 방법
CN107175996A (zh) * 2016-03-11 2017-09-19 株式会社万都 轮胎压力估计设备及其轮胎压力估计方法
CN109910527A (zh) * 2019-03-26 2019-06-21 武汉理工大学 一种汽车轮胎胎压确定方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024178A1 (de) * 2000-05-17 2001-12-06 Wabco Gmbh & Co Ohg Verfahren zur verbesserten Bestimmung des Verhältnisses der Radien der Räder eines Fahrzeuges zueinander
DE102013108283A1 (de) * 2013-08-01 2015-02-05 Scania Cv Ab Verfahren und System zur Bestimmung eines Druckverhältnisses zwischen einem Sollreifendruck und einem aktuellen Reifendruck für einen Reifen eines Fahrzeugs
KR101647697B1 (ko) * 2015-07-13 2016-08-11 현대오트론 주식회사 차량의 질량을 이용한 타이어 압력 모니터링 장치 및 그 방법
CN108490396B (zh) * 2018-03-16 2022-09-16 哈尔滨工业大学(威海) 一种基于水声信号卡尔曼滤波的超短基线定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925960A2 (en) * 1997-12-15 1999-06-30 Denso Corporation Tyre air pressure estimating apparatus
CN103781641A (zh) * 2011-09-12 2014-05-07 大陆-特韦斯贸易合伙股份公司及两合公司 用于过滤机动车的轮胎压力监控系统中的数据的方法
CN104029684A (zh) * 2013-03-08 2014-09-10 固特异轮胎和橡胶公司 使用道路纵断面自适应滤波的轮胎载荷估计系统
KR20170049872A (ko) * 2015-10-29 2017-05-11 주식회사 만도 타이어 압력 추정 장치 및 그 추정 방법
CN107175996A (zh) * 2016-03-11 2017-09-19 株式会社万都 轮胎压力估计设备及其轮胎压力估计方法
CN109910527A (zh) * 2019-03-26 2019-06-21 武汉理工大学 一种汽车轮胎胎压确定方法与装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715561A (zh) * 2021-08-30 2021-11-30 偌轮汽车科技(武汉)有限公司 摩托车iTPMS胎压监测方法及其系统

Also Published As

Publication number Publication date
CN109910527B (zh) 2021-02-19
CN109910527A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020192687A1 (zh) 一种汽车轮胎胎压确定方法与装置
CN109361678B (zh) 一种智能网联汽车自动巡航系统虚假数据注入攻击检测方法
CN110562263B (zh) 一种基于多模型融合的轮毂电机驱动车辆车速估计方法
CN113002549B (zh) 一种车辆状态估算方法、装置、设备及存储介质
CN103413325B (zh) 一种基于车身特征点定位的车速鉴定方法
CN110009903B (zh) 一种交通事故现场还原方法
CN109859526B (zh) 一种超车时前方目标车辆运动姿态实时观测装置及方法
US9988043B2 (en) Methods and systems for determining a vehicle spin-out condition
DE102016221932A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrerassistenzsystems, Fahrerassistenzsystem
CN109872415A (zh) 一种基于神经网络的车速估计方法及系统
DE102012224420A1 (de) Verfahren und System für das Messen des Neigungswinkels während des Abbiegens eines Fahrzeugs
US6711508B2 (en) Method and apparatus for estimating tire air pressure
CN110053431A (zh) 一种测量车辆轮胎压力的误差补偿方法与装置
CN112046492B (zh) 一种带有方向的车辆车速计算方法、装置、设备及介质
CN111323848A (zh) 一种车辆雨量传感器的校正方法和存储介质
CN111006884B (zh) 基于傅立叶变换的车轮车轴侧偏角与侧偏刚度的测量方法
CN102975720B (zh) 车辆纵向车速测算装置、方法及使用该装置的车辆
CN116101300B (zh) 一种基于大数据的挂车运输安全检测系统
CN111942399A (zh) 一种基于无迹卡尔曼滤波的车速估算方法及系统
CN108445250A (zh) 车速检测方法及装置
CN107848359B (zh) 用于估算由陆地车辆取道的行驶路线的状态指数的装置
CN114771283A (zh) 一种爬行控制方法、装置、电动汽车和存储介质
KR102103988B1 (ko) 기계학습을 이용한 자동차 휠 밸런스 진단 방법 및 장치
KR100844758B1 (ko) 영상 센서를 이용한 요레이트 센서 고장 검출 방법 및 장치
CN113433339B (zh) 一种基于双摄像机的测速方法、系统、计算机设备及可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779445

Country of ref document: EP

Kind code of ref document: A1