WO2020192626A1 - 触控显示面板的驱动方法、触控显示装置 - Google Patents
触控显示面板的驱动方法、触控显示装置 Download PDFInfo
- Publication number
- WO2020192626A1 WO2020192626A1 PCT/CN2020/080658 CN2020080658W WO2020192626A1 WO 2020192626 A1 WO2020192626 A1 WO 2020192626A1 CN 2020080658 W CN2020080658 W CN 2020080658W WO 2020192626 A1 WO2020192626 A1 WO 2020192626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display panel
- touch display
- pixel
- sub
- display
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/13338—Input devices, e.g. touch panels
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0202—Addressing of scan or signal lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0233—Improving the luminance or brightness uniformity across the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2354/00—Aspects of interface with display user
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3655—Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
Definitions
- the present disclosure relates to the field of display technology, and in particular to a driving method of a touch display panel and a touch display device.
- Touch Screen Panel has gradually spread to people's lives.
- the touch signal and the display signal are output in time sharing.
- there are more sub-pixels in a row there are more sub-pixels in a row.
- the time for a row of sub-pixels to receive the display signal is relatively short, which makes some sub-pixels under-charged.
- a method for driving a touch display panel includes a liquid crystal layer, a common electrode, and a plurality of pixel electrodes.
- the common electrode includes a plurality of spaced and insulated electrodes.
- the method includes: providing a sinusoidal signal y to each electrode block in the common electrode in a display period; wherein the display period includes N display stages, and each display stage has M Image frames, the refresh rate of the display period is greater than or equal to the refresh rate threshold A, N ⁇ 2, M ⁇ 1, N is a positive integer, M is a positive number, and the refresh rate threshold is the maximum refresh rate recognizable by the human eye
- the display period includes N display stages, and each display stage has M Image frames
- the refresh rate of the display period is greater than or equal to the refresh rate threshold A, N ⁇ 2, M ⁇ 1, N is a positive integer, M is a positive number, and the refresh rate threshold is the maximum refresh rate recognizable by the human eye
- the providing a sinusoidal signal y to each electrode block in the common electrode during a display period includes: continuously supplying a sinusoidal signal y to the common electrode during the entire display period Each electrode block in provides the sinusoidal signal y.
- the sinusoidal signal y is a single-frequency sinusoidal signal.
- the electrode block serves as a touch electrode and forms a self-capacitance with the ground terminal.
- the average brightness value of any sub-pixel in the touch display panel is approximately the same as the target brightness value of the sub-pixel.
- the method before providing a sinusoidal signal y to each electrode block in the common electrode in a display period, includes: obtaining a center voltage Vh, and setting the When the center voltage Vh is used as the voltage of the electrode block in a sub-pixel, the brightness value of the sub-pixel is used as the target brightness value of the sub-pixel; wherein, the center voltage Vh is the voltage at the symmetric center of the single-frequency sinusoidal signal.
- the method before providing a single-frequency sinusoidal signal y to each electrode block in the common electrode in a display period, the method further includes: acquiring the touch display panel The refresh rate B of an image frame; according to the refresh rate B and the refresh rate of the display period, determine the number N of the display stages in the display period and the number M of image frames in each display stage .
- -Asin( ⁇ (t0+t ⁇ j) + ⁇ ); when the pixel voltage Vp is a negative value in a display stage, the voltage difference is: ⁇ V1
- the brightness of any sub-pixel in the touch display panel is obtained.
- the average value L1 includes: in each display stage, according to the pressure difference ⁇ V1, obtain the brightness value of any sub-pixel in the touch display panel during the display stage; In the period, the brightness values of each of the display stages are weighted and averaged to obtain the average brightness value L1 in the display period.
- any one of the sub-pixels in the touch display panel is obtained, and the brightness value in the display stage includes:
- the method before the obtaining the voltage difference ⁇ V1 between the pixel voltage Vp and the common voltage Vcom in each display stage, the method further includes: setting the pixel electrode to be charged and to be charged with the pixel electrode. When the connected transistors are turned off, the voltage on the pixel electrode is used as the pixel voltage Vp.
- a touch display device including a touch display panel, a memory, and a processor; the memory stores a computer program that can run on the processor, and the processor executes The computer program implements any one of the methods described above.
- the touch display panel includes a liquid crystal layer, a common electrode and a plurality of pixel electrodes; the common electrode includes a plurality of spaced and insulated electrode blocks; the touch display device further includes The drive circuit connected to the processor; the drive circuit includes a sinusoidal signal drive sub-circuit and a source drive sub-circuit; the sinusoidal signal drive sub-circuit is electrically connected to a plurality of electrode blocks in the common electrode , The sine signal driving sub-circuit is used to provide a sine signal y to each electrode block in the common electrode; in the source driving sub-circuit and the touch display panel, the sub-pixels in the The pixel electrodes are electrically connected, and the source driving sub-circuit is used to provide data signals to a plurality of the pixel electrodes.
- the driving circuit further includes a gate driving sub-circuit; the gate driving sub-circuit is connected to a plurality of gate lines of the touch display panel, and the gate driving sub-circuit It is used to provide gate scan signals to the plurality of gate lines.
- a computer-readable medium which stores a computer program, and when the computer program is executed by a processor, any one of the methods described above is implemented.
- FIG. 1 is a schematic structural diagram of a touch display panel provided by an embodiment of the disclosure
- FIG. 2 is a schematic diagram of the structure of pixel electrodes and common electrodes in a touch display panel provided by an embodiment of the disclosure
- FIG. 3 is a flowchart of a method for driving a touch display panel according to an embodiment of the disclosure
- FIG. 4 is a schematic diagram of the division of a display period according to an embodiment of the disclosure.
- FIG. 5 is a schematic diagram of another display period division provided by an embodiment of the present disclosure.
- FIG. 6 is a schematic diagram of another display period division provided by an embodiment of the disclosure.
- FIG. 7 is a schematic diagram of waveforms of a single-frequency sinusoidal signal and pixel voltage provided by an embodiment of the disclosure.
- FIG. 8 is a schematic diagram of waveforms of another single-frequency sinusoidal signal and pixel voltage provided by an embodiment of the disclosure.
- FIG. 9 is a flowchart of another method for driving a touch display panel provided by an embodiment of the disclosure.
- FIG. 10 is a schematic diagram of a test result of the influence of a single-frequency sinusoidal signal on image display provided by an embodiment of the disclosure
- FIG. 11 is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
- An embodiment of the present disclosure provides a touch display panel 01.
- the above touch display panel 01 includes an array substrate 100 and an aligner substrate 101 arranged oppositely, and is located between the array substrate 100 and the aligner substrate 101 The liquid crystal layer 102.
- the aforementioned touch display panel 01 also includes a common electrode 103 and a plurality of pixel electrodes 104 as shown in FIG. 2.
- the active display area (AA) of the touch display panel includes a plurality of sub-pixels 20. Each sub-pixel 20 is provided with a pixel electrode 104.
- the aforementioned touch display panel may be an advanced-super dimensional switching (ADS) type liquid crystal touch display panel.
- ADS advanced-super dimensional switching
- the above-mentioned common electrode 103 and the pixel electrode 104 may both be fabricated on the array substrate 100.
- the aforementioned pixel electrode 104 may include a plurality of strip-shaped sub-electrodes that are electrically connected and arranged at intervals.
- the above-mentioned touch display panel may be a twisted nematic (TN) liquid crystal touch display panel.
- the aforementioned common electrode 103 can be fabricated on the box substrate 101 and the pixel electrode 104 can be fabricated on the array substrate 100.
- the above-mentioned common electrode 101 includes a plurality of electrode blocks 110 arranged at intervals and insulated.
- Each electrode block 110 covers Q ⁇ Q sub-pixels 20. Among them, Q ⁇ 2, and Q is a positive integer. Since each sub-pixel 20 has one pixel electrode 104, one electrode block 110 in the above-mentioned common electrode 103 can cover Q ⁇ Q pixel electrodes 104.
- the electrode block 110 serves as a touch electrode and forms a self-capacitance with the ground (GND).
- GND ground
- an embodiment of the present disclosure provides a driving method of the touch display panel 01, as shown in FIG. 3, including S101 to S103.
- the aforementioned sinusoidal signal y serves as the common voltage Vcom and the touch signal.
- the sinusoidal signal y can be a single-frequency signal or a multi-frequency signal.
- A represents the amplitude of the single-frequency sinusoidal signal y.
- y may be a multi-frequency sinusoidal signal.
- a fixed frequency is preferably used because the fixed frequency has advantages in noise processing, spread spectrum processing, and the like.
- y is a single-frequency sinusoidal signal as an example, but the present disclosure is not limited to this.
- the above-mentioned display period P includes N display stages (S1, S2...SN).
- Each display stage for example, S1 has M image frames. N ⁇ 2, M ⁇ 1; N is a positive integer, M is a positive number.
- the refresh rate of the aforementioned display period P is greater than or equal to the refresh rate threshold A.
- the refresh rate threshold A is the maximum refresh rate recognizable by human eyes. Generally, the maximum refresh rate that can be recognized by the human eye is 24 Hz. Therefore, the refresh rate of the aforementioned display period P should be greater than or equal to 24 Hz.
- the driving method of the touch display panel 01 further includes:
- the refresh rate B of the image frame of the touch display panel 01 is acquired.
- the number N of display stages in the display period P and the number M of image frames in each display stage are determined.
- the refresh rate of the display period is 24HZ as an example.
- the refresh rate of the display period can be different from this. For example, when the refresh rate of the display period is changed to 48HZ, the display period The number will be reduced.
- each display stage is less than or equal to one image frame.
- the setting of the number M of image frames in each display stage will be described as an example below.
- the duration of the display stage S1 is 1/60s, which is displayed in FIG.
- the time axis is from 0s to 1/60s.
- the duration of the display stage S2 is 1/60s, which is shown in FIG. 5 from 1/60s to 1/30s on the time axis.
- the duration of the display stage S3 is 1/120s, which is shown in FIG. 5 from 1/30s to 1/24s on the time axis.
- the duration of the display stage S1 is 1/120s, as shown in FIG. It is from 0s to 1/120s on the time axis.
- the duration of the display stage S2 is 1/60s, which is shown in FIG. 6 from 1/120s to 1/40s on the time axis.
- the duration of the display stage S3 is 1/60s, which is shown in FIG. 6 from 1/40s to 1/24s on the time axis.
- S102 Provide a data signal Vdata to a plurality of pixel electrodes 104.
- the aforementioned data signal Vdata is the pixel voltage Vp provided to the pixel electrode 104.
- the pixel electrode 104 and the common electrode The electric field formed by 103 can drive the liquid crystal molecules to flip.
- the aforementioned touch display panel 01 performs display.
- the average brightness value L1 of any sub-pixel 20 in the touch display panel 01 is the same as the target brightness value L2 of the sub-pixel 20 (as shown in FIG. 5 or FIG. 6).
- the driving method of the aforementioned touch display panel 01 further includes:
- center voltage Vh is the voltage of the symmetric center of the single-frequency sinusoidal signal y of the common voltage Vcom.
- the single-frequency sinusoidal signal y can be used as a touch signal.
- the electrode block 110 receiving the single-frequency sinusoidal signal y may form a self-capacitance with the ground terminal (GND) for realizing touch.
- the single-frequency sinusoidal signal y can also be used as a signal provided to the common electrode 103 during display, that is, the common voltage Vcom provided to the common electrode 103.
- the common voltage Vcom provided to the common electrode 103.
- the data signal Vdata is written into the pixel electrode 104 through the transistor.
- the data signal Vdata is charged into the pixel electrode 104 as the pixel voltage Vp.
- the pixel voltage Vp will be reduced, but after the transistor is turned off, the pixel voltage Vp can maintain the voltage when the transistor is turned off in an image frame.
- the common electrode 103 receives the single-frequency sinusoidal signal y, under the action of the electric field generated between the common electrode 103 and the pixel electrode 104, the touch display panel 01 can be made to display.
- the average brightness value L1 of any sub-pixel 20 in the touch display panel 01 is the same as the target brightness value L2 of the sub-pixel 20, and
- the refresh rate of the aforementioned display period P is greater than or equal to the maximum refresh rate recognizable by human eyes, for example, 24 Hz. Therefore, even if the single-frequency sinusoidal signal y received on the common electrode 103 is a non-constant DC voltage during the display process, the human eye cannot effectively capture the display change caused by the single-frequency sinusoidal signal y, so normal screen display can be realized. .
- touch signals and display signals are provided to the touch display panel 01 at the same time, so that the touch display panel 01 can realize touch operation and screen display.
- This can solve the problem of insufficient charging time for a row of sub-pixels 20 in the touch screen 01 when the touch signal and the display signal are output in a time-sharing manner.
- the pixel voltage Vp charged in the pixel electrode 104 can maintain the voltage when the transistor is turned off in one image frame. Based on this, before the aforementioned S101, after the pixel electrode 104 is charged and the transistor connected to the pixel electrode 104 is turned off, the voltage on the pixel electrode 104 is set as the aforementioned pixel voltage Vp. Therefore, during the above-mentioned driving process, the pixel voltage Vp is a constant value, and the brightness average value of any sub-pixel in the touch display panel obtained through the above-mentioned driving process is more accurate.
- the process of determining the frequency f of the single-frequency sinusoidal signal y includes S201 to S206.
- S201 Obtain a refresh time t of the image frame according to the refresh rate B of the image frame.
- ⁇ V1
- ⁇ V1
- t0 is the start time of the single-frequency sinusoidal signal, t0 ⁇ 0; t ⁇ j is the time of the image frame of a display stage P in the display period P. 0 ⁇ j ⁇ C.
- the pixel voltage Vp provided to the pixel electrode 104 generally needs to be reversed in polarity. For example, in an odd-numbered frame, when the pixel voltage Vp supplied to the pixel electrode 104 is a positive value, in an even-numbered frame, the pixel voltage Vp supplied to the pixel electrode 104 is a negative value. On the contrary, the same can be obtained, so I won't repeat it here.
- the display period P includes three display stages S1, S2, and S3 as shown in FIG. 5, the voltage difference ⁇ V1 between the pixel voltage Vp and the common voltage Vcom in each image frame in the display period will be described.
- the image frame in the display stage S1 is an odd frame when the touch display panel 01 displays a picture.
- ⁇ V1
- the image frame in the display stage S2 is an even-numbered frame when the touch display panel 01 displays the screen.
- ⁇ V1
- the image frame in the display stage S3 is an odd frame when the touch display panel 01 displays a screen.
- ⁇ V1
- the image frame in the display stage S1 is an even-numbered frame when the touch display panel 01 displays the screen.
- ⁇ V1
- the image frame in the display stage S2 is an odd-numbered frame when the touch display panel 01 displays a screen.
- ⁇ V1
- the image frame in the display stage S3 is an even-numbered frame when the touch display panel 01 displays the screen.
- ⁇ V1
- the image frames in the display stage S1 are the odd-numbered frames when the touch display panel 01 displays the screen
- the image frames in the display stage S2 are the even-numbered frames when the touch display panel 01 displays the screen
- the image frames in the display stage S3 The image frame is an odd-numbered frame when the screen is displayed on the touch display panel 01 as an example.
- the pixel 20 has an average brightness value L1 during the display period P described above.
- the above S203 includes:
- the brightness value of any sub-pixel 20 in the touch display panel 01 in the aforementioned display stage P is obtained.
- the brightness value Lv1b in the display phase S2 as the 2.5th frame Value Lv1c is obtained.
- the electro-optical characteristic curve of the touch display panel 01 that is, the VT curve can be used to obtain the voltage
- the image frame in the display stage S1 is an odd-numbered frame when the touch display panel 01 displays the screen.
- the image frame in the display stage S1 is an even-numbered frame when the touch display panel 01 displays a screen.
- the image frame in the display stage S3 is an odd frame when the touch display panel 01 displays the screen.
- the brightness values (Lv1a, Lv1b, and Lv1c) of each image frame in each display stage are weighted and averaged to obtain the average brightness value L1 in the display period.
- L1 (Lv1a ⁇ 0.01667+Lv1b ⁇ 0.01667+Lv1c ⁇ 0.01667 ⁇ 0.5)/(0.01667 ⁇ 0.5).
- the above S206 may include: firstly, according to the resolution of the touch display panel 01, obtaining the scan period Ta of each row of sub-pixels 20.
- the refresh rate B of one image frame of the touch display panel 01 may be 60 Hz.
- S is the number of gate lines for receiving gate scan signals in the active area (AA) of the touch display panel 01.
- S 1920.
- the scanning period Ta 1/(60 ⁇ 1920).
- At least one available frequency f can be selected from the above frequency set.
- a single-frequency sinusoidal signal y of this frequency is used as a touch signal, the influence on the display during the touch process can be further avoided, thereby improving The accuracy of the y frequency of the single-frequency sinusoidal signal finally obtained.
- the abscissa is the frequency of the single-frequency sinusoidal signal y.
- the area block 1 indicates that the multiple single-frequency sinusoidal signals y with the peak-to-peak value and frequency corresponding to the area block 1 will affect the image display.
- the area block 2 indicates that among the multiple single-frequency sinusoidal signals y with the peak-to-peak value and frequency corresponding to the area block 2, there is a single-frequency sinusoidal signal y that does not affect the image display.
- the area block 3 indicates that none of the multiple single-frequency sine signals y with the peak-to-peak value and frequency corresponding to the area block 3 will affect the single-frequency sine signal y of the image display.
- the embodiments of the present disclosure provide a computer-readable medium storing a computer program, and when the computer program is executed by a processor, any one of the methods described above is implemented.
- the embodiment of the present disclosure provides a touch display device, as shown in FIG. 11, including a touch display panel 01, a memory 02 and a processor 03.
- the memory 02 stores a computer program that can run on the processor 03.
- the processor 03 executes the computer program, any of the methods described above can be implemented.
- the above-mentioned touch display device has the same technical effect as the driving method of the touch display panel provided in the foregoing embodiment, and will not be repeated here.
- memory 02 includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
- the above-mentioned touch display device further includes a driving circuit 30 connected to the processor 03.
- the driving circuit 30 includes a sinusoidal signal driving sub-circuit 301 and a source driving sub-circuit 302.
- the sinusoidal signal driving sub-circuit 301 is electrically connected to a plurality of electrode blocks 110 in the common electrode 103.
- the above-mentioned sinusoidal signal driving sub-circuit 301 is used to provide the above-mentioned single-frequency sinusoidal signal y to each electrode block 110 in the common electrode 103 as the common voltage Vcom.
- the source driving sub-circuit 302 is electrically connected to the pixel electrode 104 in each sub-pixel 20 in the touch display panel 01, and the source driving sub-circuit 302 is used to provide the aforementioned data signal Vdata to the plurality of pixel electrodes 104 as a pixel voltage Vp.
- the above-mentioned driving circuit 30 further includes a gate driving sub-circuit 303.
- the gate driving sub-circuit 303 is connected to a plurality of gate lines GL (Gate Line) of the touch display panel 01, and the gate driving sub-circuit 303 is used to provide gate scanning signals to the plurality of gate lines GL.
- the gate driving sub-circuit 303 scans the gate line GL row by row to gate the plurality of sub-pixels 20 row by row.
- the alternate sub-pixel 20 receives the data signal Vdata provided by the source driving sub-circuit 302.
- the data signal Vdata is provided as a pixel voltage Vp to the pixel electrode of the sub-pixel 20 described above.
- each electrode block 110 in the common electrode 104 receives the aforementioned single-frequency sinusoidal signal y.
- the single-frequency sinusoidal signal y can be used as the common voltage Vcom, so that the common electrode 104 and the pixel electrode 104 in the selected sub-pixel 20 generate an electric field, and drive the liquid crystal molecules in the liquid crystal layer 102 to deflect, thereby realizing display.
- the single-frequency sinusoidal signal y provided to each electrode block 110 in the common electrode 104 can be used as a touch signal, so that a self-capacitance is formed between the electrode block 110 and the ground terminal.
- the capacitance value of the self-capacitance changes, thereby determining the position of the touch.
- the driving method of the touch display panel provided by the embodiments of the present disclosure can reduce the influence of the single-frequency sinusoidal signal as the touch signal on the image display, so the touch process and the display process can be performed simultaneously. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Liquid Crystal (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Position Input By Displaying (AREA)
Abstract
一种触控显示面板的驱动方法、触控显示装置,触控显示面板的驱动方法包括:在一显示周期内,向公共电极中的每个电极块提供一正弦信号y,其中显示周期包括N个显示阶段,每个显示阶段具有M个图像帧,显示周期的刷新率大于或等于刷新率阈值A,N≥2,M≤1,N为正整数,M为正数,并且刷新率阈值A为人眼可识别的最大刷新率;向多个像素电极提供数据信号;以及像素电极和公共电极形成的电场驱动液晶层中的液晶分子翻转,触控显示面板进行显示。
Description
相关申请的交叉引用
本专利申请要求于2019年03月27日递交的中国专利申请第201910238674.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本公开的一部分。
本公开涉及显示技术领域,尤其涉及触控显示面板的驱动方法、触控显示装置。
触控显示屏(Touch Screen Panel)也逐渐遍及至人们的生活中。目前,触控显示屏在触控显示的过程中,触控信号和显示信号分时输出。然而对于分辨率较高的显示面板而言,一行的亚像素的数量较多。这样一来,当触控信号和显示信号分时输出时,一行亚像素接收到显示信号的时间较短,使得部分亚像素出现充电不足的现象。
发明内容
本公开实施例的一方面,提供一种触控显示面板的驱动方法,所述触控显示面板包括液晶层、公共电极和多个像素电极,所述公共电极包括多个间隔设置且绝缘的电极块,所述方法包括:在一显示周期内,向所述公共电极中的每个电极块提供一正弦信号y;其中,所述显示周期包括N个显示阶段,每个所述显示阶段具有M个图像帧,所述显示周期的刷新率大于或等于刷新率阈值A,N≥2,M≤1,N为正整数,M为正数,并且所述刷新率阈值为人眼可识别的最大刷新率;向多个所述像素电极提供数据信号;所述像素电极和所述公共电极形成的电场驱动所述液晶层中的液晶分子翻转,所述触控显示面板进行显示。
在本公开的一些实施例中,所述在一显示周期内,向所述公共电极中的每个电极块提供一正弦信号y包括:在整个所述显示周期内, 持续地向所述公共电极中的每个电极块提供所述正弦信号y。
在本公开的一些实施例中,所述正弦信号y是单频正弦信号。
在本公开的一些实施例中,所述电极块作为触控电极与接地端形成自电容。
在本公开的一些实施例中,在一所述显示周期内,所述触控显示面板中任意一个亚像素的亮度均值与该亚像素的目标亮度值大致相同。
在本公开的一些实施例中,所述在一显示周期内,向所述公共电极中的每个电极块提供一正弦信号y之前,所述方法包括:获取一中心电压Vh,并将所述中心电压Vh作为一亚像素中电极块的电压时,该亚像素的亮度值作为该亚像素的目标亮度值;其中,所述中心电压Vh为所述单频正弦信号对称中心的电压。
在本公开的一些实施例中,所述在一显示周期内,向所述公共电极中的每个电极块提供一单频正弦信号y之前,所述方法还包括:获取所述触控显示面板一图像帧的刷新率B;根据刷新率B与所述显示周期的刷新率,确定所述显示周期内所述显示阶段的个数N,以及每个所述显示阶段中图像帧的个数M。
在本公开的一些实施例中,所述在一显示周期内,向所述公共电极中的每个电极块提供一单频正弦信号y之前,所述方法还包括:根据一图像帧的刷新率B,获取该图像帧的刷新时间t;根据所述图像帧的刷新时间t、正弦函数y=Asin(ωt+φ),以及所述中心电压Vh,获取各个显示阶段中,像素电压Vp与公共电压Vcom的压差△V1;其中,当一显示阶段中,所述像素电压Vp为正值时所述压差为:△V1=|Vp-Vh|-Asin(ω(t0+t×j)+φ);当一显示阶段中,所述像素电压Vp为负值时所述压差为:△V1=|Vp-Vh|+Asin(ω(t0+t×j)+φ);其中,t0为所述单频正弦信号的起始时间,t0≥0;t×j为一显示阶段在所述显示周期内的时间,0≤j≤C;根据一所述显示周期内,各个显示阶段中所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示周期内的亮度均值L1;获取一所述显示周期内,像素电压Vp与中心电压Vh的压差△V2,并根据所述压差△V2,获取所述触控显示面板中的任意一个亚像素,在所述显示周期内的目标亮度值L2;根据L1=L2,计算出所述单频正弦信号的频率集合;从所述频率集合中,选取至少一个数值作为所述单频正弦信号的频率。
在本公开的一些实施例中,根据一所述显示周期内,各个显示阶段中所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示周期内的亮度均值L1包括:在每个所述显示阶段中,根据所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示阶段内的亮度值;对一个所述显示周期内,各个所述显示阶段的亮度值进行加权平均,获取所述显示周期内的亮度均值L1。
在本公开的一些实施例中,在各个显示阶段中,根据所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示阶段内的亮度值包括:在每个所述显示阶段中,采用所述触控显示面板的电光特性曲线,获取所述压差△V1与亚像素亮度值的函数L=H(V);根据所述函数L=H(V),计算出所述显示阶段中,所述触控显示面板中的任意一个亚像素,在所述显示阶段内的亮度值。
在本公开的一些实施例中,所述从所述频率集合中,选取至少一个数值作为所述单频正弦信号的频率包括:根据所述触控显示面板的分辨率,获取每一行亚像素的扫描周期Ta;所述单频正弦信号的频率为f=kTa/2;0<k,k为整数。
在本公开的一些实施例中,所述扫描周期Ta满足公式:Ta=1/(B×S);其中,S为所述触控显示面板的有效显示区域中,用于接收栅极扫描信号的栅线的数量。
在本公开的一些实施例中,所述获取每个显示阶段中,像素电压Vp与公共电压Vcom的压差△V1之前,所述方法还包括:设置所述正弦函数y=Asin(ωt+φ)中的初相φ为零。
在本公开的一些实施例中,所述获取每个显示阶段中,像素电压Vp与公共电压Vcom的压差△V1之前,所述方法还包括:设定像素电极充电后,且与该像素电极相连接的晶体管截止时刻,该像素电极上的电压作为所述像素电压Vp。
在本公开实施例的另一方面,提供一种触控显示装置,包括触控显示面板、存储器、处理器;所述存储器上存储有可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的任意一种方法。
在本公开的一些实施例中,所述触控显示面板包括液晶层、公共电极和 多个像素电极;所述公共电极包括多个间隔设置且绝缘的电极块;所述触控显示装置还包括与所述处理器相连接的所述驱动电路;所述驱动电路包括正弦信号驱动子电路以及源极驱动子电路;所述正弦信号驱动子电路与所述公共电极中的多个电极块电连接,所述正弦信号驱动子电路用于向所述公共电极中的每个电极块提供一正弦信号y;所述源极驱动子电路与所述触控显示面板中,各个亚像素中的所述像素电极电连接,所述源极驱动子电路用于向多个所述像素电极提供数据信号。
在本公开的一些实施例中,所述驱动电路还包括栅极驱动子电路;所述栅极驱动子电路与所述触控显示面板的多条栅线相连接,所述栅极驱动子电路用于向多条所述栅线提供栅极扫描信号。
在本公开另一方面,提供一种计算机可读介质,其存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的任意一种方法。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施方式。
图1为本公开实施例提供的一种触控显示面板的结构示意图;
图2为本公开实施例提供的一种触控显示面板中像素电极和公共电极的结构示意图;
图3为本公开实施例提供的一种触控显示面板的驱动方法流程图;
图4为本公开实施例提供的一种显示周期的划分示意图;
图5为本公开实施例提供的另一种显示周期的划分示意图;
图6为本公开实施例提供的另一种显示周期的划分示意图;
图7为本公开实施例提供的一种单频正弦信号、像素电压的波形示意图;
图8为本公开实施例提供的另一种单频正弦信号、像素电压的波形示意图;
图9为本公开实施例提供的另一种触控显示面板的驱动方法流程图;
图10为本公开实施例提供的一种单频正弦信号对图像显示的影响测试 结果示意图;
图11为本公开实施例提供的一种显示装置的结构示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种触控显示面板01,如图1所示,上述触控显示面板01包括相对设置的阵列基板100和对盒基板101,以及位于阵列基板100和对盒基板101之间的液晶层102。
此外,上述触控显示面板01,还包括如图2所示的公共电极103和多个像素电极104。触控显示面板的有效显示区(active area,AA)包括多个亚像素(sub pixel)20。每个亚像素20内设置有一个像素电极104。
在本公开的一些实施例中,上述触控显示面板可以为高级超维场开关(advanced-super dimensional switching,ADS)型液晶触控显示面板。在此情况下,上述公共电极103和像素电极104可以均制作于阵列基板100上。上述像素电极104可以包括多个电连接,且间隔设置的条状子电极。
或者,在本公开的另一些实施例中,上述触控显示面板可以为扭曲向列(twist nematic,TN)型液晶触控显示面板。在此情况下,上述公共电极103可以制作于对盒基板101上,像素电极104制作于阵列基板100上。
此外,上述公共电极101包括多个间隔设置且绝缘的电极块110。每个电极块110覆盖Q×Q个亚像素20。其中,Q≥2,Q为正整数。由于每个亚像素20内具有一个像素电极104,因此上述公共电极103中的一个电极块110能够覆盖Q×Q个像素电极104。
在此情况下,上述电极块110作为触控电极与接地端(GND)形成自电容。当用户手指触摸触控显示面板时,被触摸位置的电极块110与接地端之间形成的自电容的电容值发生了变化,从而能够确定出用户的触控位置。
基于上述触控显示面板的结构,为了实现触控操作与显示操作同步进行,本公开实施例提供一种触控显示面板01的驱动方法,如图3所示,包括 S101~S103。
S101、在一显示周期P内,向公共电极103中的每个电极块110提供一正弦信号y=Asin(ωt+φ)。上述正弦信号y作为公共电压Vcom以及触控信号。正弦信号y可以为单频信号或多频信号。
其中,以y是单频正弦信号为例,y=Asin(ωt+φ)中,A为表示单频正弦信号y的振幅。单频正弦信号y的振动周期T=2π/ω;ωt+φ为相位。当t=0时的相位为初相位。应理解,在实际产品中,由于电路设计以及干扰等因素,可能导致不纯粹的单频信号,此时y类似于多频信号。此外,y可以是多频正弦信号,在一些实施例中优选采用固定频点,因为固定频点在噪声处理、展频处理等方面具有优势。下文将以y为单频正弦信号为例进行说明,但本公开不限于此。
此外,如图4所示,上述显示周期P包括N个显示阶段(S1、S2……SN)。每个显示阶段,例如S1具有M个图像帧(frame)。N≥2,M≤1;N为正整数,M为正数。
上述显示周期P的刷新率大于或等于刷新率阈值A。该刷新率阈值A为人眼可识别的最大刷新率。通常人眼可识别的最大刷新率为24Hz。因此,上述显示周期P的刷新率要大于或等于24Hz。
基于此,为了确定出一显示周期P中显示阶段的个数N,以及每个显示阶段中图像帧的个数M,在上述步骤S101之前,上述触控显示面板01的驱动方法还包括:
首先,获取触控显示面板01图像帧的刷新率B。
然后,根据显示周期的刷新率,确定显示周期P中显示阶段的个数N,以及每个显示阶段中图像帧的个数M。
例如,B=60Hz,A=24Hz,C=60Hz/24Hz=2.5。在此情况下,显示周期P中具有3(N=3)个显示阶段,分别为如图5或图6的显示阶段S1、显示阶段S2以及显示阶段S3。应理解,在该例子中,是以显示周期的刷新率是24HZ为基准举例说明,显示周期的刷新率可以不同于此,例如,在显示周期的刷新率改为48HZ的情况下,显示阶段的数量将会减少。
此外,由上述可知,每个显示阶段小于等于一图像帧。以下对每个显示阶段中图像帧的个数M的设置进行举例说明。
例如,在本公开的一些实施例中,如图5所示,上述显示阶段S1中图像帧的个数M=1,此时,显示阶段S1的时长为1/60s,在图5中显示为时间轴从0s到1/60s处。
显示阶段S2中图像帧的个数M=1,此时显示阶段S2的时长为1/60s,在图5中显示为在时间轴上从1/60s到1/30s处。
显示阶段S3中图像帧的个数M=0.5,此时显示阶段S3的时长为1/120s,在图5中显示为在时间轴上从1/30s到1/24s处。
或者,在本公开的另一些实施例中,如图6所示,上述显示阶段S1中图像帧的个数M=0.5,此时,显示阶段S1的时长为1/120s,在图6中显示为在时间轴上从0s~1/120s。
显示阶段S2中图像帧的个数M=1,此时显示阶段S2的时长为1/60s,在图6中显示为在时间轴上从1/120s到1/40s处。
显示阶段S3中图像帧的个数M=1,此时显示阶段S3的时长为1/60s,在图6中显示为在时间轴上从1/40s到1/24s处。
以下为了方便说明,均是以图5所示的显示周期P的划分为例进行的说明。
S102、向多个像素电极104提供数据信号Vdata。
上述数据信号Vdata为向像素电极104提供的像素电压Vp。
S103、像素电极104和公共电极103形成的电场驱动上述液晶层中102的液晶分子翻转。
即在像素电极104接收到上述数据信号Vdata,公共电极103中的每个电极块110接收到上述作为公共电压Vcom的单频正弦信号y=Asin(ωt+φ)后,像素电极104和公共电极103形成的电场能够驱动液晶分子进行翻转。此时,上述触控显示面板01进行显示。
其中,在一显示周期P内,触控显示面板01中任意一个亚像素20的亮度均值L1与该亚像素20的目标亮度值L2(如图5或图6所示)相同。
为了获得上述目标亮度值L2,在S101之前,上述触控显示面板01的驱动方法还包括:
获取一如图7所示的中心电压Vh。由图7可知,上述中心电压Vh为公共电压Vcom的单频正弦信号y的对称中心的电压。
在此情况下,上述中心电压Vh作为一亚像素20中电极块110的电压时,对应的该亚像素20的亮度值作为该亚像素20的目标亮度值L2。
综上所述,由于在一显示周期P内,公共电极103中的各个电极块110接收到如图7所示,单频正弦信号y=Asin(ωt+φ)。在此情况下,在每一图像帧内,上述单频正弦信号y可以作为触控信号。此时,接收到该单频正弦信号y的电极块110可以与接地端(GND)形成用于实现触控的自电容。
此外,在同一图像帧内,上述单频正弦信号y还可以在显示时,作为提供至公共电极103的信号,即向该公共电极103提供的公共电压Vcom。具体的,如图8所示,当与像素电极104相连接的晶体管处于导通(On)状态时,上述数据信号Vdata通过上述该晶体管写入像素电极104。从而使得数据信号Vdata作为像素电压Vp充入像素电极104。
此外,受到晶体管漏电流的作用,上述像素电压Vp会有所减小,但是在晶体管截止(Off)后,该像素电压Vp能够在一图像帧内保持晶体管截止时的电压。当公共电极103接收到上述单频正弦信号y后,在公共电极103和像素电极104之间产生的电场作用下,可以使得触控显示面板01进行显示。
基于此,在触控显示面板01显示的过程中,由于在一显示周期P内,触控显示面板01中任意一个亚像素20的亮度均值L1与该亚像素20的目标亮度值L2相同,并且上述显示周期P的刷新率大于或等于人眼可识别的最大刷新率,例如24Hz。因此,即使显示过程中,公共电极103上接收到单频正弦信号y为并非恒定的直流电压,但是由于人眼无法有效捕捉上述单频正弦信号y引起的显示变化,所以能够实现正常的画面显示。
这样一来,在一图像帧内,触控信号和显示信号同时提供至该触控显示面板01,使得该触控显示面板01即可以实现触控操作,又可以实现画面显示。从而能够解决触控信号和显示信号分时输出时,触控显示屏01中一行亚像素20充电时间不足的问题。
由上述可知,与像素电极104电连接的晶体管,在其截止(Off)后,该像素电极104中充入的像素电压Vp能够在一图像帧内保持晶体管截止时的电压。基于此,在上述S101之前,设定像素电极104充电后,且与该像素电极104相连接的晶体管截止时刻,该像素电极104上的电压作为上述像素电压Vp。从而使得上述驱动过程中,像素电压Vp为一恒定值,进而经过上 述驱动过程获得的触控显示面板中任意一个亚像素的亮度均值更加准确。
此外,由上述可知,当该单频正弦信号的频率f=1/T=1/(2π/ω)确定后,可以得到单频正弦信号y所对应的正弦函数y=Asin(ωt+φ)以及其波形。
以下对单频正弦信号y的频率f的确定过程进行说明。其中,确定单频正弦信号y的频率f的方法,如图9所示,包括S201~S206。
S201、根据图像帧的刷新率B,获取该图像帧的刷新时间t。
例如,B=60Hz,该图像帧的刷新时间t=1/60Hz=0.01667s。
S202、根据图像帧的刷新时间t、正弦函数y=Asin(ωt+φ),以及上述中心电压Vh,获取每个显示阶段P的每一图像帧中,像素电压Vp与公共电压Vcom的压差△V1。
其中,当显示阶段P的一图像帧中,像素电压Vp为正值时,上述压差为:
△V1=|Vp-Vh|-Asin(ω(t0+t×j)+φ);
当显示阶段P的一图像帧中,像素电压Vp为负值时,上述压差为:
△V1=|Vp-Vh|+Asin(ω(t0+t×j)+φ)。
其中,t0为所述单频正弦信号的起始时间,t0≥0;t×j为一显示阶段P的图像帧在显示周期P内的时间。0≤j≤C。
例如,当刷新率B与刷新率阈值A的比值C=60Hz/24Hz=2.5时,0≤j≤2.5。
以图5中显示周期P的划分为例,显示阶段S1中的图像帧为该显示周期P内的第1帧,此时t×j=0.01667s,由于t=0.01667s,所以j=1;
显示阶段S2中的图像帧为该显示周期P内的第2帧,此时t×j=0.03334s,由于t=0.01667s,所以j=2;
显示阶段S3中的图像帧为该显示周期P内的第2.5帧,此时t×j=0.04168s,由于t=0.01667s,所以j=2.5。
需要说明的是,为了避免液晶老化,通常向像素电极104提供的像素电压Vp需要进行极性反转。例如,在奇数帧,向像素电极104提供的像素电压Vp为正值时,在偶数帧,向像素电极104提供的像素电压Vp为负值。反之同理可得,此处不再赘述。
在显示周期P包括如图5所示的三个显示阶段S1、S2以及S3时的情况下,该显示周期中,各个图像帧中,像素电压Vp与公共电压Vcom的压差△V1进行说明。
在本公开的一些实施例中,显示阶段S1的图像帧为触控显示面板01显示画面时的奇数帧,在此情况下,△V1=|Vp-Vh|-Asin(ω(t0+0.01667)+φ)。
显示阶段S2的图像帧为触控显示面板01显示画面时的偶数帧,在此情况下,△V1=|Vp-Vh|+Asin(ω(t0+0.01667×2)+φ)。
显示阶段S3的图像帧为触控显示面板01显示画面时的奇数帧,在此情况下,△V1=|Vp-Vh|-Asin(ω(t0+0.01667×2.5)+φ)。
或者,在本公开的另一些实施例中,显示阶段S1的图像帧为触控显示面板01显示画面时的偶数帧,在此情况下,△V1=|Vp-Vh|+Asin(ω(t0+0.01667)+φ)。
显示阶段S2的图像帧为触控显示面板01显示画面时的奇数帧,在此情况下,△V1=|Vp-Vh|-Asin(ω(t0+0.01667×2)+φ)。
显示阶段S3的图像帧为触控显示面板01显示画面时的偶数帧,在此情况下,△V1=|Vp-Vh|+Asin(ω(t0+0.01667×2.5)+φ)。
以下为了方便说明,均是以显示阶段S1的图像帧为触控显示面板01显示画面时的奇数帧、显示阶段S2的图像帧为触控显示面板01显示画面时的偶数帧、显示阶段S3的图像帧为触控显示面板01显示画面时的奇数帧为例进行的说明。
此外,当单频正弦信号y的输入与栅线逐行扫描同步时,在上述S201之前,可以将正弦函数y=Asin(ωt+φ)中的初相φ设置为零。
S203、根据一显示周期P中,各个显示阶段(S1、S2以及S3)的每一图像帧中,像素电压Vp与公共电压Vcom的压差△V1,获取触控显示面板01中的任意一个亚像素20,在上述显示周期P内的亮度均值L1。
例如,在本公开的一些实施例中,上述S203包括:
首先,在每个显示阶段P的每一图像帧中,根据上述压差△V1,获取触控显示面板01中的任意一个亚像素20,在上述显示阶段P内的亮度值。例如显示阶段P中,一亚像素20在作为第1帧的显示阶段S1的亮度值Lv1a;在作为第2帧的显示阶段S2的亮度值Lv1b,以及在作为第2.5帧的显示阶 段S2的亮度值Lv1c。
为了获得上述一亚像素20在显示周期P中各个显示阶段的亮度值Lv1a、Lv1b以及Lv1c,可以在每个显示阶段P中,采用触控显示面板01的电光特性曲线即V-T曲线,获取上述压差△V1与亚像素亮度值的函数L=H(V)。
由于不同的触控显示面板01的电光特性曲线即V-T曲线不同,因此本公开对上述压差△V1与亚像素亮度值的函数L=H(V)不做限定。
接下来,根据函数L=H(V),计算出显示阶段P中,触控显示面板01中的任意一个亚像素,在显示阶段P内的亮度值。
例如,显示阶段S1的图像帧为触控显示面板01显示画面时的奇数帧,在此情况下,亚像素20在作为第1帧的显示阶段S1的亮度值Lv1a=H(|Vp-Vh|-Asin(ω(t0+0.01667)+φ));
显示阶段S1的图像帧为触控显示面板01显示画面时的偶数帧,在此情况下,亚像素20在作为第1帧的显示阶段S1的亮度值Lv1b=H(|Vp-Vh|+Asin(ω(t0+0.01667×2)+φ));
显示阶段S3的图像帧为触控显示面板01显示画面时的奇数帧,在此情况下,亚像素20在作为第1帧的显示阶段S1的亮度值Lv1c=H(|Vp-Vh|-Asin(ω(t0+0.01667×2.5)+φ))。
然后,对一个显示周期P内,各个显示阶段每个图像帧的亮度值(Lv1a、Lv1b以及Lv1c)进行加权平均,获取所述显示周期内的亮度均值L1。
即L1=(Lv1a×0.01667+Lv1b×0.01667+Lv1c×0.01667×0.5)/(0.01667×0.5)。
S204、获取一显示周期P内,像素电压Vp与中心电压Vh的压差△V2,并根据该压差△V2,获取触控显示面板01中的任意一个亚像素,在显示周期P内的目标亮度值L2。
具体的,采用触控显示面板01的电光特性曲线即V-T曲线,获取上述压差△V2与亚像素亮度值的函数L2=H(V)。
S205、根据L1=L2,计算出单频正弦信号y的频率集合。
即根据上述步骤S201~S203获得的多个L1中,选取出多个满足L1=L2的数值,以构成上述频率集合。
S206、从频率集合中,选取至少一个数值作为单频正弦信号y的频率f。
具体的,上述S206可以包括,首先根据触控显示面板01的分辨率,获取每一行亚像素20的扫描周期Ta。
其中,扫描周期Ta满足公式:Ta=1/(B×S)。例如,触控显示面板01一图像帧的刷新率B可以为60Hz。此外,S为触控显示面板01的有效显示区域(active area,AA)中,用于接收栅极扫描信号的栅线的数量。例如,S=1920。在此情况下,扫描周期Ta=1/(60×1920)。
此外,上述单频正弦信号y的频率f可以满足公式f=kT/2。0<k,k为整数。
这样一来,可以从上述频率集合中,选取出至少一个可用频率f,当使用该频率的单频正弦信号y作为触控信号时,能够进一步规避触控过程中对显示造成的影响,从而提高最终获取到的单频正弦信号y频率的精度。
此外,对单频正弦信号y作为触控信号时,对图像显示造成的影响进行汇总,汇总结果如图10所示。其中,图10中,横坐标为单频正弦信号y的频率。纵坐标表面单频正弦信号y波峰电压与波谷电压压差的绝对值。
其中,区域块①表示,具有该区域块①所对应的峰峰值和频率的多个单频正弦信号y中,均会对图像显示造成影响。
区域块②表示,具有该区域块②所对应的峰峰值和频率的多个单频正弦信号y中,存在不会影响图像显示的单频正弦信号y。
区域块③表示,具有该区域块③所对应的峰峰值和频率的多个单频正弦信号y中,均不会影响图像显示的单频正弦信号y。
这样一来,通过上述测试结果,可以对根据上述驱动方法获得的单频正弦信号y进行验证。
本公开实施例提供一种计算机可读介质,其存储有计算机程序,该计算机程序被处理器执行时实现如上所述的任意一种方法。
本公开实施例提供一种触控显示装置,如图11所示,包括触控显示面板01、存储器02、处理器03。
该存储器02上存储有可在处理器03上运行的计算机程序,上述处理器03执行计算机程序时,可以实现上所述的任意一种方法。上述触控显示装置具有与前述实施例提供触控显示面板的驱动方法相同的技术效果,此处不再赘述。
需要说明的是,上述存储器02包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,如图11所示,上述触控显示装置还包括与处理器03相连接的驱动电路30。
该驱动电路30包括正弦信号驱动子电路301以及源极驱动子电路302。
其中,正弦信号驱动子电路301与公共电极103中的多个电极块110电连接。上述正弦信号驱动子电路301用于向公共电极103中的每个电极块110提供一上述单频正弦信号y,作为公共电压Vcom。
源极驱动子电路302与触控显示面板01中,各个亚像素20中的像素电极104电连接,该源极驱动子电路302用于向多个像素电极104提供上述数据信号Vdata,作为像素电压Vp。
此外,如图11所示,上述驱动电路30还包括栅极驱动子电路303。该栅极驱动子电路303与触控显示面板01的多条栅线GL(Gate Line,栅线)相连接,栅极驱动子电路303用于向多条栅线GL提供栅极扫描信号。
在此情况下,栅极驱动子电路303通过对栅线GL逐行进行扫描,从而对多个亚像素20逐行选通。备选通的亚像素20接收到源极驱动子电路302提供上述数据信号Vdata。该数据信号Vdata作为像素电压Vp提供至上述亚像素20的像素电极。
此外,公共电极104中的每个电极块110接收到上述单频正弦信号y。该单频正弦信号y能够作为公共电压Vcom,使得上述公共电极104与被选通的亚像素20中的像素电极104产生电场,并驱动液晶层102中的液晶分子发生偏转,从而实现显示。
与此同时,上述提供至公共电极104中的每个电极块110的单频正弦信号y又可以作为触控信号,使得电极块110与接地端之间形成自电容。当用户执行触控操作时,自电容的电容值发生变化,从而确定出触控的位置。此外,由上述可知,通过本公开实施例提供的触控显示面板的驱动方法,可以降低作为触控信号的单频正弦信号y最图像显示造成的影响,因此触控过程和显示过程可以同步进行。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (18)
- 一种触控显示面板的驱动方法,所述触控显示面板包括液晶层、公共电极和多个像素电极,所述公共电极包括多个间隔设置且绝缘的电极块,所述方法包括:在一显示周期内,向所述公共电极中的每个电极块提供一正弦信号y;其中,所述显示周期包括N个显示阶段,每个所述显示阶段具有M个图像帧,所述显示周期的刷新率大于或等于刷新率阈值A,N≥2,M≤1,N为正整数,M为正数,并且所述刷新率阈值为人眼可识别的最大刷新率;向多个所述像素电极提供数据信号;以及所述像素电极和所述公共电极形成的电场驱动所述液晶层中的液晶分子翻转,所述触控显示面板进行显示。
- 根据权利要求1所述的触控显示面板的驱动方法,其中,所述在一显示周期内,向所述公共电极中的每个电极块提供一正弦信号y包括:在整个所述显示周期内,持续地向所述公共电极中的每个电极块提供所述正弦信号y。
- 根据权利要求1或2所述的触控显示面板的驱动方法,其中,所述正弦信号y是单频正弦信号。
- 根据权利要求1所述的触控显示面板的驱动方法,其中,所述电极块作为触控电极与接地端形成自电容。
- 根据权利要求1所述的触控显示面板的驱动方法,其中,在一所述显示周期内,所述触控显示面板中任意一个亚像素的亮度均值与该亚像素的目标亮度值大致相同。
- 根据权利要求3所述的触控显示面板的驱动方法,其中,所述在一显示周期内,向所述公共电极中的每个电极块提供一单频正弦信号y之前,所述方法包括:获取一中心电压Vh,并将所述中心电压Vh作为一亚像素中电极块的电压时,该亚像素的亮度值作为该亚像素的目标亮度值;其中,所述中心电压Vh为所述单频正弦信号对称中心的电压。
- 根据权利要求3所述的触控显示面板的驱动方法,其中,所述在一显示周期内,向所述公共电极中的每个电极块提供一单频正 弦信号y之前,所述方法还包括:获取所述触控显示面板一图像帧的刷新率B;根据所述刷新率B与所述显示周期的刷新率,确定所述显示周期内所述显示阶段的个数N,以及每个所述显示阶段中图像帧的个数M。
- 根据权利要求7所述的触控显示面板的驱动方法,其中,所述在一显示周期内,向所述公共电极中的每个电极块提供一单频正弦信号y之前,所述方法还包括:根据一图像帧的刷新率B,获取该图像帧的刷新时间t;根据所述图像帧的刷新时间t、正弦函数y=Asin(ωt+φ),以及中心电压Vh,获取各个显示阶段中,像素电压Vp与公共电压Vcom的压差△V1;其中,当一显示阶段中,所述像素电压Vp为正值时所述压差为:△V1=|Vp-Vh|-Asin(ω(t0+t×j)+φ);当一显示阶段中,所述像素电压Vp为负值时所述压差为:△V1=|Vp-Vh|+Asin(ω(t0+t×j)+φ);其中,t0为所述单频正弦信号的起始时间,t0≥0;t×j为一显示阶段在所述显示周期内的时间,0≤j≤C;根据一所述显示周期内,各个显示阶段中所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示周期内的亮度均值L1;获取一所述显示周期内,像素电压Vp与中心电压Vh的压差△V2,并根据所述压差△V2,获取所述触控显示面板中的任意一个亚像素,在所述显示周期内的目标值亮度L2;根据L1=L2,计算出所述单频正弦信号的频率集合;从所述频率集合中,选取至少一个数值作为所述单频正弦信号的频率。
- 根据权利要求8所述的触控显示面板的驱动方法,其中,根据一所述显示周期内,各个显示阶段中所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示周期内的亮度均值L1包括:在每个所述显示阶段中,根据所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示阶段内的亮度值;对一个所述显示周期内,各个所述显示阶段的亮度值进行加权平均,获取所述显示周期内的亮度均值L1。
- 根据权利要求9所述的触控显示面板的驱动方法,其中,在各个显示阶段中,根据所述压差△V1,获取所述触控显示面板中的任意一个亚像素,在所述显示阶段内的亮度值包括:在每个所述显示阶段中,采用所述触控显示面板的电光特性曲线,获取所述压差△V1与亚像素亮度值的函数L=H(V);根据所述函数L=H(V),计算出所述显示阶段中,所述触控显示面板中的任意一个亚像素,在所述显示阶段内的亮度值。
- 根据权利要求8所述的触控显示面板的驱动方法,其中,所述从所述频率集合中,选取至少一个数值作为所述单频正弦信号的频率包括:根据所述触控显示面板的分辨率,获取每一行亚像素的扫描周期Ta;所述单频正弦信号的频率为f=kTa/2;0<k,k为整数。
- 根据权利要求11所述的触控显示面板的驱动方法,其中,所述扫描周期Ta满足公式:Ta=1/(B×S);其中,S为所述触控显示面板的有效显示区域中,用于接收栅极扫描信号的栅线的数量。
- 根据权利要求8所述的触控显示面板的驱动方法,其中,所述获取每个显示阶段中,像素电压Vp与公共电压Vcom的压差△V1之前,所述方法还包括:设置所述正弦函数y=Asin(ωt+φ)中的初相φ为零。
- 根据权利要求9所述的触控显示面板的驱动方法,其中,获取每个显示阶段中,像素电压Vp与公共电压Vcom的压差△V1之前,所述方法还包括:设定像素电极充电后,且与该像素电极相连接的晶体管截止时刻,该像素电极上的电压作为所述像素电压Vp。
- 一种触控显示装置,其中,包括触控显示面板、存储器、处理器;所述存储器上存储有可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-14任一项所述的方法。
- 根据权利要求15所述的触控显示装置,其中,所述触控显示面板包括液晶层、公共电极和多个像素电极;所述公共电极包括 多个间隔设置且绝缘的电极块;所述触控显示装置还包括与所述处理器相连接的所述驱动电路;所述驱动电路包括正弦信号驱动子电路以及源极驱动子电路;所述正弦信号驱动子电路与所述公共电极中的多个电极块电连接,所述正弦信号驱动子电路用于向所述公共电极中的每个电极块提供一正弦信号y;所述源极驱动子电路与所述触控显示面板中,各个亚像素中的所述像素电极电连接,所述源极驱动子电路用于向多个所述像素电极提供数据信号。
- 根据权利要求16所述的触控显示装置,其中,所述驱动电路还包括栅极驱动子电路;所述栅极驱动子电路与所述触控显示面板的多条栅线相连接,所述栅极驱动子电路用于向多条所述栅线提供栅极扫描信号。
- 一种计算机可读介质,其存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-14任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20777725.1A EP3951568A1 (en) | 2019-03-27 | 2020-03-23 | Driving method for touch display panel, and touch display apparatus |
US17/052,304 US11340730B2 (en) | 2019-03-27 | 2020-03-23 | Driving method for touch display panel, and touch display apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910238674.8 | 2019-03-27 | ||
CN201910238674.8A CN109976581B (zh) | 2019-03-27 | 2019-03-27 | 触控显示面板的驱动方法、触控显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020192626A1 true WO2020192626A1 (zh) | 2020-10-01 |
Family
ID=67080994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/080658 WO2020192626A1 (zh) | 2019-03-27 | 2020-03-23 | 触控显示面板的驱动方法、触控显示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11340730B2 (zh) |
EP (1) | EP3951568A1 (zh) |
CN (1) | CN109976581B (zh) |
WO (1) | WO2020192626A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109976581B (zh) | 2019-03-27 | 2021-08-17 | 京东方科技集团股份有限公司 | 触控显示面板的驱动方法、触控显示装置 |
CN112562606A (zh) * | 2020-12-09 | 2021-03-26 | 京东方科技集团股份有限公司 | 一种显示面板及其驱动方法、显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1280353A (zh) * | 1999-07-13 | 2001-01-17 | 三星Sdi株式会社 | 驱动等离子体显示面板的方法 |
JP2010052315A (ja) * | 2008-08-29 | 2010-03-11 | Casio Comput Co Ltd | 画像形成装置 |
CN106128374A (zh) * | 2015-05-06 | 2016-11-16 | 义隆电子股份有限公司 | 非分时触控及显示的内嵌式液晶显示器及其驱动方法 |
CN109523961A (zh) * | 2017-09-20 | 2019-03-26 | 夏普株式会社 | 液晶显示装置 |
CN109976581A (zh) * | 2019-03-27 | 2019-07-05 | 京东方科技集团股份有限公司 | 触控显示面板的驱动方法、触控显示装置 |
CN110268376A (zh) * | 2019-04-30 | 2019-09-20 | 京东方科技集团股份有限公司 | 驱动方法、驱动电路及触摸显示装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4049058B2 (ja) * | 2003-08-29 | 2008-02-20 | カシオ計算機株式会社 | 撮像装置及びそのプログラム |
TWI437476B (zh) * | 2011-02-24 | 2014-05-11 | Au Optronics Corp | 互動式立體顯示系統及計算三維座標的方法 |
KR101571769B1 (ko) * | 2013-04-30 | 2015-11-25 | 엘지디스플레이 주식회사 | 터치스크린 일체형 표시장치 및 그 구동 방법 |
-
2019
- 2019-03-27 CN CN201910238674.8A patent/CN109976581B/zh active Active
-
2020
- 2020-03-23 US US17/052,304 patent/US11340730B2/en active Active
- 2020-03-23 EP EP20777725.1A patent/EP3951568A1/en not_active Withdrawn
- 2020-03-23 WO PCT/CN2020/080658 patent/WO2020192626A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1280353A (zh) * | 1999-07-13 | 2001-01-17 | 三星Sdi株式会社 | 驱动等离子体显示面板的方法 |
JP2010052315A (ja) * | 2008-08-29 | 2010-03-11 | Casio Comput Co Ltd | 画像形成装置 |
CN106128374A (zh) * | 2015-05-06 | 2016-11-16 | 义隆电子股份有限公司 | 非分时触控及显示的内嵌式液晶显示器及其驱动方法 |
CN109523961A (zh) * | 2017-09-20 | 2019-03-26 | 夏普株式会社 | 液晶显示装置 |
CN109976581A (zh) * | 2019-03-27 | 2019-07-05 | 京东方科技集团股份有限公司 | 触控显示面板的驱动方法、触控显示装置 |
CN110268376A (zh) * | 2019-04-30 | 2019-09-20 | 京东方科技集团股份有限公司 | 驱动方法、驱动电路及触摸显示装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3951568A1 (en) | 2022-02-09 |
US11340730B2 (en) | 2022-05-24 |
US20210240328A1 (en) | 2021-08-05 |
CN109976581A (zh) | 2019-07-05 |
CN109976581B (zh) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4166448B2 (ja) | アクティブマトリクス型液晶表示装置およびその駆動方法 | |
KR101301422B1 (ko) | 액정표시장치와 그 구동방법 | |
JP5399432B2 (ja) | 液晶表示装置とその駆動方法 | |
JP5426167B2 (ja) | 表示装置 | |
KR101274702B1 (ko) | 액정표시장치와 그 구동방법 | |
KR100899157B1 (ko) | 액정표시장치와 그 구동 방법 | |
KR101303533B1 (ko) | 액정표시장치와 그 구동방법 | |
KR100869200B1 (ko) | 액정 표시 장치 및 그 구동 방법 | |
KR101289634B1 (ko) | 액정표시장치와 그 구동방법 | |
US11081040B2 (en) | Pixel circuit, display device and driving method | |
US20060119755A1 (en) | Liquid crystal display device | |
US20090273555A1 (en) | Liquid crystal display and method of driving the same | |
KR20090129248A (ko) | 액정표시장치와 그 구동방법 | |
WO2015000234A1 (zh) | 液晶显示面板极性反转驱动方法、驱动装置及显示装置 | |
TWI547932B (zh) | 液晶顯示面板與液晶顯示面板的驅動方法 | |
CN107490884B (zh) | 选择器、阵列基板和液晶显示装置及驱动方法 | |
JPWO2007135803A1 (ja) | アクティブマトリクス型液晶表示装置及びその駆動方法 | |
JP2007025691A (ja) | 液晶表示装置及びその駆動方法 | |
WO2020192626A1 (zh) | 触控显示面板的驱动方法、触控显示装置 | |
WO2020001266A1 (zh) | 显示控制方法及装置、显示装置、存储介质及计算机设备 | |
WO2010032526A1 (ja) | 表示駆動回路、表示装置及び表示駆動方法 | |
KR100920376B1 (ko) | 액정표시장치와 그 구동방법 | |
US9093034B2 (en) | Liquid crystal display and method of driving the same | |
KR101651290B1 (ko) | 액정표시장치와 그 데이터 극성 제어방법 | |
KR100644260B1 (ko) | 액정 표시 장치 및 그의 구동 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20777725 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020777725 Country of ref document: EP Effective date: 20211027 |