WO2020192603A1 - 链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置 - Google Patents

链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2020192603A1
WO2020192603A1 PCT/CN2020/080553 CN2020080553W WO2020192603A1 WO 2020192603 A1 WO2020192603 A1 WO 2020192603A1 CN 2020080553 W CN2020080553 W CN 2020080553W WO 2020192603 A1 WO2020192603 A1 WO 2020192603A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
node
link
link state
state information
Prior art date
Application number
PCT/CN2020/080553
Other languages
English (en)
French (fr)
Inventor
罗薇
陈琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020217034596A priority Critical patent/KR20210141696A/ko
Priority to SG11202110770WA priority patent/SG11202110770WA/en
Priority to US17/599,114 priority patent/US20220174772A1/en
Priority to EP20776636.1A priority patent/EP3952593A4/en
Publication of WO2020192603A1 publication Critical patent/WO2020192603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • H04W36/362Conditional handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • This application relates to the field of communications, for example, to a method and device for notifying a link state, a method and device for processing a link, a storage medium, and an electronic device.
  • relay link that supports wireless backhaul transmission to implement dense network deployment.
  • the node that supports the relay function is called a relay node (Relay Node, RN).
  • the RN provides the user equipment (UE) that accesses its cell with functions and services similar to the ordinary evolved NodeB (eNB).
  • UE user equipment
  • eNB ordinary evolved NodeB
  • the radio interface between the RN and the UE is called the "access link" ( Access Link: RN accesses a base station eNB that serves it through a wireless interface in a manner similar to a common UE, and the eNB that serves RN is called a Donor eNB (DeNB).
  • the radio interface between RN and DeNB is called "Backhaul Link”.
  • IAB integrated access backhaul
  • IAB donor IAB donor
  • IAB node A is connected to the core network through optical fiber and is an IAB donor
  • IAB node B and IAB node C are not connected to the core network and are ordinary IAB.
  • FIG 2 is a schematic diagram of the link between the IAB node in the related technology as a relay node.
  • the IAB can transmit data to the IAB donor through multiple IABs as relays, in other words , IAB is hierarchical.
  • the so-called IAB level represents the number of IAB hops that the IAB transmission needs to pass to reach the IAB donor. Assuming that the level of the IAB donor is 0 and the level of the UE accessing the IAB is N, then the transmission path between the UE and the core network passes through the IAB with levels 1, 2, ...N in sequence.
  • an IAB with a level of n+1 is a UE for an IAB with a level of n
  • an IAB with a level of n is for a level of n
  • the IAB of +1 is the serving cell. If the IAB of level n+1 is connected to the IAB of level n through the Uu port in the way of UE, the IAB of level n is called the parent node of the IAB of level n+1, and the IAB of level n+1 It is a child node of IAB at level n.
  • Each IAB can choose to access one or more parent nodes.
  • the IAB When the IAB is used as a relay node, when the communication between the relay node and its service node is interrupted due to poor link status or congestion, if it immediately stops serving its child nodes, the child nodes may need to control radio resources ( Radio Resource Control (RRC) is connected to other communication nodes through reestablishment. When the link of the relay node is restored, the child nodes may need to reconnect again by handover, which will lead to unstable network topology and great demands. Control signaling overhead. If it continues to serve the child node, if the link recovery fails or the new communication node cannot be accessed through reestablishment, it will cause a large communication interruption delay to the child node.
  • RRC Radio Resource Control
  • the embodiment of the present invention provides a link state notification method and device, a link processing method and device, a storage medium, and an electronic device to at least solve the problem of relaying due to poor link status or congestion in related technologies.
  • the link communication between a node and its service node is interrupted, the network topology is unstable, a large control signaling overhead is required, and a large communication interruption delay is caused.
  • a method for notifying link status including: a first communication node sends link status information to a second communication node, where the second communication node is the first communication node The child nodes of the node.
  • the link state information includes at least one of the following: a radio link failure indication, an RRC reconfiguration failure indication, an RRC integrity check failure indication, a mobility failure indication, a synchronization reconfiguration failure indication, and a timer Timeout indication.
  • the first communication node sends link state information to the second communication node under one of the following conditions: the first communication node enters the RRC idle state; the first communication node starts RRC Connection re-establishment procedure; the first communication node detects that the timer expires.
  • the link state information includes one of the following: an indication that the first communication node enters an idle state; an RRC connection re-establishment start indication; and a timer timeout indication.
  • the link state information further includes: link state recovery indication information.
  • the method further includes: the first communication node sending the link state information and the node identification information of the first node to the second communication node.
  • the node identification information may be: the hierarchical identification of the first communication node; this hierarchical identification is used to indicate the number of hops of the first communication node from the IAB donor.
  • the method further includes: the first communication node performs link recovery and updates user access control parameters in the system information or stops sending the system information block.
  • the first communication node sends the link state information and the state identification information of the first node to the second communication node, where the state identification information is used to indicate the status of the first communication node Link recovery time and/or node status.
  • a link processing method including: a second communication node receiving link state information of a first communication node; wherein, the second communication node is the first communication node The child nodes of the node.
  • the link state information includes at least one of the following: a radio link failure indication, an RRC reconfiguration failure indication, an RRC integrity check failure indication, a mobility failure indication, a synchronization reconfiguration failure indication, and a timer Timeout indication.
  • the link state information includes one of the following: an indication that the first communication node enters an idle state, an RRC connection re-establishment start indication, and a timer timeout indication.
  • the method further includes: the second communication node sets the timeout period T of the timer and starts the timer.
  • the method further includes: when the second communication node receives the link state recovery indication information sent by the first communication node, the second communication node stops timing.
  • the method further includes: when the timer expires, the second communication node considers that the link fails.
  • the second communication node initiates a cell group failure procedure to report SCG link failure.
  • the second communication node sets the failure type in the cell group failure information to timer timeout.
  • the cell group failure information includes primary cell group failure information and secondary cell group failure information.
  • the second communication node when the counting time of the timer exceeds T, the second communication node initiates connection re-establishment or initiates condition switching.
  • T is included in system messages, RRC reconfiguration messages, or cell group configuration messages.
  • the method further includes: the second communication node feeds back a link state information confirmation message to the first communication node.
  • the method further includes: the second communication node receives the link state information and the node identification information of the first communication node; and the second communication node combines the link state information with The node identification information of the first communication node is sent to a third communication node, where the third communication node includes: a child node of the second communication node.
  • the node identification information of the first communication node includes: the hierarchical identification of the first communication node, which is used to indicate the number of hops from the IAB donor of the first communication node; or, the node identification information of the first communication node Including: the number of hops between the second communication node and the first communication node.
  • the node identification information of the first communication node includes: the hierarchical identification of the first communication node, which is used to indicate the number of hops from the IAB donor of the first communication node; optionally, the node identification of the first communication node The information includes: the number of hops between the second communication node and the first communication node.
  • the second communication node after the second communication node receives the link state information and the node identification information of the first communication node, the second communication node initiates a cell group failure procedure to report the cell group link failure.
  • the second communication node sets the failure type in the cell group failure information to serving node link failure.
  • the node identification information of the first communication node is carried in the cell group failure information.
  • the second communication node after receiving the link state information, performs measurement on the non-serving cell.
  • the first communication node includes one of the following: a terminal, a relay, an IAB, a Distributed Unit (DU) part of the IAB, a base station, and the second communication node includes one of the following: a relay, IAB, the Mobile-Termination (MT) part of IAB.
  • a terminal a terminal
  • a relay an IAB
  • DU Distributed Unit
  • a base station a base station
  • the second communication node includes one of the following: a relay, IAB, the Mobile-Termination (MT) part of IAB.
  • MT Mobile-Termination
  • a link state notification device which is located at a first communication node and includes: a sending module for sending link state information to a second communication node; wherein, the second communication node The communication node is a child node of the first communication node.
  • a link processing device which is located in a second communication node, and includes: a receiving module for receiving link state information of the first communication node; wherein the second communication node The node is a child node of the first communication node.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute any one of the above method embodiments when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any of the above Method embodiment.
  • the child node After the parent node has a link failure, the child node is notified in time of the link status information about the link failure, so that the child node can process the connection with the parent node in time. Therefore, it can solve the problem of poor link status or congestion that causes the instability of the network topology when the communication between the relay node and its service node is interrupted, the need for large control signaling overhead, and a large communication interruption delay The problem of reducing control signaling overhead and eliminating communication interruption delay is achieved.
  • FIG. 1 is a schematic diagram of an IAB link in related technologies
  • Fig. 2 is a schematic diagram of a link in which an IAB node is used as a relay in the related art
  • Figure 3 is a flowchart of a method for notifying a link state according to an embodiment of the present invention
  • Figure 4 is a flowchart of a link processing method according to an embodiment of the present invention.
  • Fig. 5 is a structural block diagram of a link state notification device according to an embodiment of the present invention.
  • Fig. 6 is a structural block diagram of a link processing device according to an embodiment of the present invention.
  • IAB donor The next generation base station (next generation NodeB, gNB) that provides network access to the terminal through the backhaul and access link network.
  • gNB next generation NodeB
  • IAB node A radio access network (RAN) node that supports the new radio (NR) access link to the terminal and the NR backhaul link to the parent node and child nodes.
  • RAN radio access network
  • Upstream direction The direction from the IAB node and the IAB host to the IAB host in a directed acyclic topology.
  • Downstream direction the direction from the IAB node and the IAB host to the leaf node in a directed acyclic topology.
  • Parent node the upstream node of the IAB node, or the northbound node of the IAB node.
  • the parent node includes: IAB node or IAB host distribution unit (IAB-donor-DU).
  • Child node the downstream node of the IAB node, or the southbound node of the IAB node, the child nodes include: IAB node.
  • North direction The direction towards the IAB host in the multi-hop backhaul link.
  • All IAB nodes connected to the IAB host through one hop or multiple hops form a directed acyclic topology with the IAB host.
  • the IAB host is the root node.
  • the parent node or upstream node of the IAB node can also be defined as a neighbor node close to the root node.
  • the child nodes of the IAB node can also be defined as neighbor nodes close to the leaf node.
  • FIG. 3 is a flowchart of a method for notifying link status according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 The first communication node sends link state information to a second communication node, where the second communication node is a child node of the first communication node.
  • the first communication node includes one of the following: a terminal, a relay, an IAB, a DU part of the IAB, a base station, and the second communication node includes one of the following: a relay, an IAB, and an MT part of the IAB.
  • the network topology structure applied in this embodiment can be applied to the structure described in FIG. 1 and FIG. 2 above.
  • the foregoing Figures 1 and 2 are only exemplary descriptions, and any network topology structure with the same or similar functions is within the protection scope of this embodiment, and will not be described here too much.
  • the link state information includes at least one of the following: a radio link failure indication, an RRC reconfiguration failure indication, an RRC integrity check failure indication, a mobility failure indication, a synchronization reconfiguration failure indication, and a timer Timeout indication.
  • the first communication node sends link state information to the second communication node under one of the following conditions: the first communication node enters the RRC idle state; the first communication node starts RRC Connection re-establishment procedure; the first communication node detects that the timer expires.
  • the two timers include: T310 timer, which is used to detect the occurrence of a wireless link failure when it times out; T3XXX, which is used to send wireless link status information to the child node when it times out.
  • T310 timer which is used to detect the occurrence of a wireless link failure when it times out
  • T3XXX which is used to send wireless link status information to the child node when it times out.
  • the link state information further includes one of the following: an indication that the first communication node enters an idle state; an RRC connection re-establishment start indication; a timer timeout indication.
  • the link state information further includes: link state recovery indication information.
  • the IAB When receiving the link status information, if the IAB is indicated as dual connectivity, then the IAB is likely to be able to quickly restore the route, and the child node does not need to re-select a new parent node, but for the dual-connected child node, the other one can be preferred in the short term Route and forward terminal data.
  • the child node does not need to re-select a new parent node, but for the child node of dual connection, it can preferentially select another route to forward the terminal data in the short term , But considering the possibility of handover failure, the child node can start to perform preparations for accessing the new parent node, such as selecting the target parent node and detecting the synchronization signal. If the IAB is instructed to be single-connection and no CHO is configured, and RRC connection re-establishment is required, then for dual-connected child nodes, the transmission of the current link can be suspended and transmission is carried out through another link, and for single-connected child nodes, you can start Perform CHO.
  • CHO Controlled Handoff
  • the first communication node When the first communication node detects the link problem, it will try to perform link recovery. If the link recovery is successful, the link recovery indication information will be sent to the second communication node.
  • the second communication node may still need to continue sending to the child nodes of the second communication node, so the identification of the distribution unit indicating the occurrence of the wireless link failure is also required.
  • the distribution unit identification may be a simplified identification, for example, may be a level identification of the distribution unit.
  • the recovery time of the first communication node of different types is different. For example, the recovery time of the first communication node with dual connection and the first communication node configured with CHO is better than the first communication node with single connection and no CHO.
  • the communication node recovers quickly, or the link recovery performed by the network-assisted link recovery (link recovery) is faster than the first communication node's own RRC reconstruction recovery. Therefore, based on different types of link recovery, the estimated link recovery time level can be sent To the second communication node.
  • the method further includes: the first communication node sending the link state information and the node identification information of the first node to the second communication node.
  • the node identification information may be: the hierarchical identification of the first communication node; this hierarchical identification is used to indicate the number of hops of the first communication node from the IAB donor.
  • the method further includes: the first communication node performs link recovery, and updates user access control parameters in the system information or stops sending the system information block.
  • the conditional handover can be performed when the radio link fails, or the parent node has multiple connections, when the master cell group (Master Cell Group, MCG) has a radio link failure Link recovery is performed through the Secondary Cell Group (SCG).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the SCG wireless link fails the MCG is used to recover the link, and the parent node can recover quickly. It is not necessary to notify the child node that a wireless link has occurred Failure, only notify the child node when the parent node cannot recover quickly.
  • the parent node will start the connection re-establishment and send link state information to the child node.
  • the first communication node sends the link state information and the state identification information of the first node to the second communication node, where the state identification information is used to indicate the status of the first communication node Link recovery time and/or node status.
  • the time required for link recovery is divided into multiple levels or cases, and there is a dual connection as a level /case1, the condition switch is configured for class/case2, single connection and can only perform RRC reconstruction to class/case3, and it can also indicate whether the target donor CU of the estimated link recovery has changed.
  • the status identification information includes at least one of the following: link recovery identification and node status identification.
  • the function of the link recovery identifier is to determine the time level required for the first communication node to perform link recovery.
  • the role of the node status identifier is to determine the node status of the first communication node.
  • the node status includes one of the following: multiple connections, single connections, and conditional handover target cells are configured.
  • the method of the foregoing embodiment can be implemented by software plus a necessary general hardware platform, or by hardware.
  • the technical solution of the present application can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, and optical disk), and includes several instructions to make a terminal
  • a device which can be a mobile phone, a computer, a server, or a network device, etc. executes the method described in the embodiment of the present invention.
  • FIG. 4 is a flowchart of a link processing method according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 The second communication node receives the link state information of the first communication node; wherein, the second communication node is a child node of the first communication node.
  • the first communication node includes one of the following: a terminal, a relay, an IAB, a DU part of the IAB, a base station, and the second communication node includes one of the following: a relay, an IAB, and an MT part of the IAB.
  • the link state information includes at least one of the following: a radio link failure indication, an RRC reconfiguration failure indication, an RRC integrity check failure indication, a mobility failure indication, a synchronization reconfiguration failure indication, and a timer Timeout indication.
  • the link state information includes one of the following: an indication that the first communication node enters an idle state, an RRC connection re-establishment start indication, and a timer timeout indication.
  • the method includes: the second communication node sets the timeout period T of the timer and starts the timer.
  • the method further includes: when the second communication node receives the link state recovery indication information sent by the first communication node, the second communication node stops timing.
  • the method further includes: when the timer expires, the second communication node considers that the link fails.
  • the timer start condition includes: receiving radio link failure (Radio Link Failure, RLF) indication information.
  • the timer stop condition includes at least one of the following: after receiving the link recovery indication; after starting the connection re-establishment; and receiving the RRC reconfiguration message.
  • the timer can be a Txxx timer, that is, it can be a regular timer such as a T310 timer, or can be another newly defined timer set exclusively for the second communication node, which will not be repeated here.
  • the second communication node initiates connection reestablishment or initiates condition switching.
  • the second communication node When setting the timeout period T of the timer, the second communication node also needs to select a new parent node for subsequent consideration. Since the second communication node cannot wait endlessly for the failure of the first communication node to be resolved, if there is no timeout and the link failure of the first communication node is resolved, then the second communication node does not need to use a new mother When the node is connected by a link, it only needs to maintain the connection with the original first communication node. If it times out, the second communication node uses the selected new parent node as the new first communication node to connect.
  • Starting connection re-establishment includes but is not limited to: detecting and searching for a new cell, selecting a target cell, performing downlink synchronization, or starting an RRC connection re-establishment procedure.
  • the second communication node reports the SCG link failure by initiating the cell group failure procedure.
  • the second communication node sets the failure type in the cell group failure information to timer timeout, where the cell group failure information includes Primary cell group failure information and secondary cell group failure information.
  • T is set in a system message, an RRC reconfiguration message or a cell group configuration message.
  • the method further includes: the second communication node sending a link state information confirmation message to the first communication node.
  • the link state information confirmation message is carried by the Medium Access Control-Control Element (MAC CE) or carried by the adaptation layer control information.
  • MAC CE Medium Access Control-Control Element
  • the method further includes: the second communication node receives the link state information and the node identification information of the first communication node; and the second communication node combines the link state information with The node identification information of the first communication node is sent to a third communication node, where the third communication node includes: a child node of the second communication node.
  • the node identification information of the first communication node includes: the hierarchical identification of the first communication node, which is used to indicate the number of hops from the IAB donor of the first communication node; or, the node identification information of the first communication node includes : The number of hops between the second communication node and the first communication node.
  • the node identification information of the first communication node includes: the hierarchical identification of the first communication node, which is used to indicate the number of hops from the IAB donor of the first communication node; optionally, the node identification of the first communication node The information includes: the number of hops between the second communication node and the first communication node.
  • the second communication node after the second communication node receives the link state information and the node identification information of the first communication node, the second communication node initiates a cell group failure procedure to report the cell group link failure.
  • the second communication node sets the failure type in the cell group failure information to serving node link failure.
  • the node identification information of the first communication node is carried in the cell group failure information.
  • IAB donor-IAB1-IAB2-IAB3-IAB4-UE when IAB2 starts the RRC connection re-establishment procedure, method 1: IAB2 sends link state information and level information 2 to IAB3, IAB3 continues to send the above information to IAB4; Method 2: IAB2 sends the link state information and identification information 0 to IAB3, and IAB3 sends the link state information and identification information 1 to IAB4.
  • Identification information 0 can not be sent by default.
  • An identification information of 0 means that the node that has a link problem is the node that sends the message
  • an identification information of 1 means that the node that has a link problem is the previous hop node of the node that sends the message. analogy.
  • the second communication node after receiving the link state information, performs measurement on the non-serving cell.
  • the second communication node receives the link state information and the state identification information of the first communication node; according to the state identification information, the second communication node determines the state in combination with the node state of the first communication node
  • the link recovery time of the first communication node determines whether it exceeds the preset recovery time; if the judgment result is no, the second communication node performs uplink flow control; if the judgment result is yes, the first communication node 2.
  • the communication node initiates the connection reestablishment or the start condition switch.
  • the status identification information has been described in detail in Embodiment 1, and will not be repeated.
  • the second communication node After receiving the link state information and the state identification information, the second communication node can determine that the link of the first communication node (parent node) has failed and the time it may take to recover. If the link recovery time is short, upstream flow control can be performed. If the link recovery time is long, you can start to prepare for connection re-establishment, including detecting and searching for new cells, selecting the target cell, performing downlink synchronization, or starting the RRC connection re-establishment procedure.
  • the child node When the child node receives the IAB and needs to perform RRC reconstruction, it will continue to send link state information to the child node of the child node.
  • IAB can perform upstream flow control. For dual-connected child nodes, you can suspend the transmission of the current link, perform transmission through another link, and report the link status that occurs to the donor CU through SCG or MCG.
  • the child node After receiving the IAB re-establishment instruction, the child node can start to perform the preparations for CHO or RRC re-establishment, or it can directly start the CHO and RRC re-establishment process, continue to maintain the connection with the parent node, and execute RRC reconstruction.
  • the new parent node If it successfully accesses the new parent node before receiving the link state recovery indication information, it will be in a dual connection state during this period of time, and then disconnect the new parent node if it receives the link state recovery indication information , If it times out, disconnect the original parent node.
  • the MT performs RRC reconstruction while maintaining the existing connection. When the donor CU receives the reconstruction request, it will make a judgment. If the original parent node has not restored the connection, it can agree to the child node to connect to the new parent node and send RRC Rebuild the message. At this time, the child node releases the connection with the original parent node and updates the original parent node DU. If the original parent node has restored the connection, the RRC re-establishment is rejected.
  • the link status can be reported to the donor CU through MCG or SCG to perform handover or SCG change procedures.
  • the child nodes of CHO perform the CHO or RRC reconstruction process.
  • the operation of the child node at this time is similar to the operation of receiving the link state information.
  • the child node When the timer expires, the child node will release the current link.
  • the link status can be reported to the donor CU through MCG or SCG, and the handover or SCG change process can be executed.
  • the handover or SCG change process can be executed.
  • single-linked child nodes CHO or RRC reconstruction process.
  • the link connection can be automatically restored in a short period of time.
  • Step 1 The IAB/relay detects a link problem with the parent node of the IAB/relay.
  • Step 2 IAB/relay sends link state information to child nodes.
  • the link state information includes at least one of the following: radio link failure, RRC reconfiguration failure, RRC integrity check failure, mobility failure, and synchronization reconfiguration failure.
  • Step 3 After receiving the above link state information, the child node sets the timeout period T of the timer Txxx and starts the timer Txxx. And select a new parent node IAB/relay, but do not release the connection with the current IAB/relay.
  • Step 4 After receiving the link state information, the child node sends the wireless link failure confirmation message to the IAB/relay.
  • Step 5 The IAB/relay link attempts link recovery and succeeds.
  • Step 6 The IAB/relay sends link recovery information to the child node.
  • Step 7 After the child node receives the link recovery information, it stops the timer Txxx and maintains the connection using the current IAB/relay.
  • Step 1 The IAB/relay detects a link problem with the parent node of the IAB/relay.
  • Step 2 IAB/relay sends link state information to child nodes.
  • the link state information includes at least one of the following: radio link failure, RRC reconfiguration failure, RRC integrity check failure, mobility failure, and synchronization reconfiguration failure.
  • Step 3 After receiving the above link state information, the child node sets the timeout period of the timer Txxx and starts the timer Txxx. And select a new parent node IAB/relay, but do not release the connection with the current IAB/relay.
  • Step 4 After receiving the link state information, the child node sends the wireless link failure confirmation message to the IAB/relay.
  • Step 5 When the timer Txxx expires, the child node considers that a wireless link failure has occurred and releases the connection with the current IAB/relay.
  • Step 6 The terminal starts the connection re-establishment procedure, connects with the new parent node IAB/relay selected in step 3, and performs wireless link communication.
  • the IAB/relay has a link failure and gives the time to autonomously restore the link connection.
  • Step 1 The IAB/relay detects a link problem with the parent node of the IAB/relay.
  • Step 2 The IAB/relay sends link status information and status identification information to the child node.
  • the status identifier information includes: link recovery identifier or node status identifier, the link recovery identifier is used to reflect the time level required by the IAB/relay for link recovery, and the node status identifier is used to reflect the current IAB/relay status.
  • Step 3 After the child node receives the link status information and the status identification information, it learns that the link of the parent node has failed and the time it may take to recover.
  • Step 4 The child node determines whether the link recovery time exceeds the preset recovery time. If no, go to step 5, if yes, go to step 6.
  • Step 5 If the preset recovery time is not exceeded, the child node performs upstream flow control.
  • Step 6 If the preset recovery time is exceeded, the child node prepares for connection re-establishment, including: detecting and searching for a new cell, selecting a target cell, performing downlink synchronization, or starting an RRC connection re-establishment procedure.
  • Step 1 The IAB detects a link problem with the parent node of the IAB, and judges whether the quick recovery process can be started, if yes, go to step 2, if not, go to step 3.
  • Step 2 IAB starts the fast recovery process, where the fast recovery process includes: start conditional handover when the IAB is configured with the conditional handover target cell, there are multiple connections in the IAB, and when the MCG has a radio link failure, the SCG is used for link recovery. When SCG wireless link failure occurs, link recovery is performed through MCG.
  • Step 3 IAB starts the connection re-establishment process and sends link status information to the child nodes.
  • the link state information includes at least one of the following: radio link failure, RRC reconfiguration failure, RRC integrity check failure, mobility failure, and synchronization reconfiguration failure.
  • Step 4 After receiving the above link state information, the child node sets the timeout period of the timer Txxx and starts the timer Txxx. And select a new parent node IAB/relay, but do not release the connection with the current IAB/relay.
  • Step 5 After receiving the link state information, the child node sends a wireless link failure confirmation message to the IAB/relay.
  • Step 6 If the IAB attempts to restore the link and succeeds, follow the steps in scenario 1 to proceed with the subsequent process;
  • Step 7 If the timer Txxx expires, follow the steps of scenario two to proceed with the subsequent process.
  • Step 1 The IAB/relay detects a link problem with the parent node of the IAB/relay.
  • Step 2 The IAB/relay sends link status information and IAB/relay node identification information to the child nodes.
  • Step 3 The child node forwards the received link state information and the IAB/relay node identification information to the child node of the child node.
  • child node selecting a new parent node IAB/relay that appear or may appear in the foregoing scenario or derivative scenario are not limited to the sequence described in the foregoing scenario. That is, the child node can select a new parent node after determining that the timer expires or after the preset recovery time has expired, or during the process of starting the timer, for example, if the timer is about a time before the timer expires, the child node selects a new parent node The parent node. Therefore, any time when a child node selects a new parent node based on the idea of the present application is within the protection scope of the foregoing embodiment, and will not be repeated.
  • a link state notification device is also provided, which is used to implement the above-mentioned embodiments and implementation manners, and those that have been explained will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 5 is a structural block diagram of a link state notification device according to an embodiment of the present invention, which is located at the first communication node. As shown in Fig. 5, the device includes:
  • the sending module 52 is configured to send link state information to a second communication node; wherein, the second communication node is a child node of the first communication node.
  • Each of the above modules can be implemented by software or hardware. For the latter, it can be implemented in the following way, but not limited to this: the above modules are all located in the same processor; or, the above modules are located in different combinations in any combination. In the processor.
  • a link processing device is also provided, which is used to implement the above-mentioned embodiments and implementation modes, and the descriptions that have been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 6 is a structural block diagram of a link processing device according to an embodiment of the present invention, which is located at the second communication node. As shown in Fig. 6, the device includes:
  • the receiving module 62 is configured to receive link state information of the first communication node; wherein, the second communication node is a child node of the first communication node.
  • Each of the above modules can be implemented by software or hardware. For the latter, it can be implemented in the following way, but not limited to this: the above modules are all located in the same processor; or, the above modules are located in different combinations in any combination. In the processor.
  • An embodiment of the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for executing the following steps:
  • the first communication node sends link state information to a second communication node, where the second communication node is a child node of the first communication node.
  • the second communication node receives the link state information of the first communication node; wherein, the second communication node is a child node of the first communication node.
  • the foregoing storage medium may include, but is not limited to: Universal Serial Bus flash disk (Universal Serial Bus flash disk, U disk), Read-Only Memory (ROM), random memory Take memory (Random Access Memory, RAM), mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • Universal Serial Bus flash disk Universal Serial Bus flash disk, U disk
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any of the above method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • the first communication node sends link state information to a second communication node, where the second communication node is a child node of the first communication node.
  • the second communication node receives the link state information of the first communication node; wherein, the second communication node is a child node of the first communication node.
  • the above-mentioned modules or steps of this application can be implemented by a general computing device. They can be concentrated on a single computing device or distributed on a network composed of multiple computing devices. Optionally, they can be implemented by computing
  • the program code executable by the device is implemented, so that they can be stored in a storage device to be executed by a computing device, and in some cases, the steps shown or described can be executed in a different order here, or the They are respectively fabricated into individual integrated circuit modules, or multiple modules or steps in them are fabricated into a single integrated circuit module to achieve. In this way, this application is not limited to any specific hardware and software combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Telephonic Communication Services (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本文公开了一种链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置。该链路状态的通知方法包括:第一通信节点向第二通信节点发送链路状态信息,其中,所述第二通信节点为所述第一通信节点的子节点。

Description

链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置
本申请要求在2019年03月28日提交中国专利局、申请号为201910244417.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如,涉及一种链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置。
背景技术
相关技术为了提升网络容量和覆盖,同时兼顾小区部署灵活性的需求,提出一种支持无线回程传输的中继链路,用于实现密集网络的部署。把支持中继功能的节点称之为中继节点(Relay Node,RN)。RN对于接入其小区的用户设备(User Equipment,UE)提供与普通演进型基站(evolved NodeB,eNB)类似的功能和服务,RN与UE间的无线接口称之为“接入链路”(Access Link),RN通过无线接口以类似于普通UE的方式接入一个服务于它的基站eNB,服务于RN的eNB称之为宿主基站(Donor eNB,DeNB)。RN与DeNB间的无线接口称之为“回传链路”(Backhaul Link)。
未来通信技术支持更大的带宽且支持更大规模的多天线或者多波束的传输,为这种回传链路和接入链路共享空口资源的中继的实现提供了便利的条件,称之为集成接入回程(Integrated Access Backhaul,IAB)。为了提升部署的灵活性,普通的IAB不需要直接与核心网相连,只有IAB宿主(IAB donor)直接与核心网相连,因此,普通IAB都必须将数据传输到宿主IAB才能与核心网进行通信。图1是相关技术中的IAB链路示意图,如图1所示,IAB节点A通过光纤与核心网相连,为IAB donor,而IAB节点B和IAB节点C不与核心网相连,为普通IAB。
为了提升部署的灵活性,图2是相关技术中的IAB节点作为中继节点的链路示意图,如图2所示,IAB可以经过多个IAB作为中继将数据传输到达IAB donor,换句话说,IAB是分层级的,所谓IAB层级代表着该IAB传输到达IAB donor需要经过的IAB跳数。假设IAB donor的层级为0,UE接入IAB的层级为N,那么UE与核心网的传输路径是依次经过层级为1,2,..N的IAB。假设IAB与IAB之间建立连接的过程与UE和基站建立连接的过程类似,那么层级为n+1的IAB对于层级为n的IAB来说就是UE,反之,层级为n的IAB对于层级为n+1的IAB来说就是服务小区。如果层级为n+1的IAB通过Uu口以UE 的方式接入到层级为n的IAB,称呼层级为n的IAB为层级为n+1的IAB的母节点,而层级为n+1的IAB为层级为n的IAB的子节点。每个IAB可以选择接入一个或者多个母节点。
当IAB作为中继节点时,由于链路状态不佳或者拥塞等原因导致中继节点与其服务节点链路通信中断时,如果立即停止服务于其子节点,那么子节点可能需要通过无线资源控制(Radio Resource Control,RRC)重建的方式连接到其他通信节点,当中继节点链路恢复后,子节点可能又需要通过切换的方式重新接入回来,这样会导致网络拓扑结构的不稳定以及需要很大的控制信令开销。如果继续服务于子节点,如果链路恢复失败或者无法通过重建的方式接入到新的通信节点,那么会给子节点带来很大的通信中断延时。
发明内容
本发明实施例提供了一种链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置,以至少解决相关技术中由于链路状态不佳或者拥塞等原因导致中继节点与其服务节点链路通信中断时导致网络拓扑结构的不稳定以及需要很大的控制信令开销,以及很大的通信中断延时的问题。
根据本发明的一个实施例,提供了一种链路状态的通知方法,包括:第一通信节点向第二通信节点发送链路状态信息,其中,所述第二通信节点为所述第一通信节点的子节点。
可选地,所述链路状态信息包括以下至少之一:无线链路失败指示,RRC重配失败指示,RRC完整性校验失败指示,移动性失败指示,同步重配失败指示,以及定时器超时指示。
可选地,所述第一通信节点在以下之一的条件下,向所述第二通信节点发送链路状态信息:所述第一通信节点进入RRC空闲状态;所述第一通信节点启动RRC连接重建程序;所述第一通信节点检测到定时器超时。
可选地,所述链路状态信息包括以下之一:所述第一通信节点进入空闲状态指示;RRC连接重建启动指示;定时器超时指示。
可选地,所述链路状态信息还包括:链路状态恢复指示信息。
可选地,所述方法还包括:所述第一通信节点向第二通信节点发送所述链路状态信息和所述第一节点的节点标识信息。
可选地,节点标识信息可以为:第一通信节点的层级标识;这个层级标识用于指示第一通信节点距离IAB donor的跳数。
可选地,在发送所述链路状态信息之后,所述方法还包括:所述第一通信 节点进行链路恢复,并更新系统信息中的用户接入控制参数或者停止发送系统信息块。
可选地,所述第一通信节点向第二通信节点发送所述链路状态信息和所述第一节点的状态标识信息,其中,所述状态标识信息用于指示所述第一通信节点的链路恢复时间和/或节点状态。
根据本发明的另一个实施例,提供了一种链路的处理方法,包括:第二通信节点接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
可选地,所述链路状态信息包括以下至少之一:无线链路失败指示,RRC重配失败指示,RRC完整性校验失败指示,移动性失败指示,同步重配失败指示,以及定时器超时指示。
可选地,所述链路状态信息包括以下之一:所述第一通信节点进入空闲状态指示,RRC连接重建启动指示,定时器超时指示。
可选地,所述第二通信节点接收第一通信节点的链路状态信息后,还包括:所述第二通信节点设置定时器的超时时间T,并启动定时器。
可选地,在启动定时器之后,所述方法还包括:当所述第二通信节点接收到所述第一通信节点发送的链路状态恢复指示信息时,所述第二通信节点停止计时。
可选地,在启动定时器之后,所述方法还包括:当所述定时器超时时,所述第二通信节点认为链路失败。
可选地,所述第二通信节点启动小区组失败流程以报告SCG链路失败。
可选地,在确定启动小区组失败信息的消息传输的原因是所述定时器超时时,所述第二通信节点将小区组失败信息中的失败类型设置为定时器超时,可选地,所述小区组失败信息包括主小区组失败信息以及辅小区组失败信息。
可选地,当所述定时器的计时时间超过T时,所述第二通信节点启动连接重建,或启动条件切换。
可选地,T被包含在系统消息,RRC重配消息或小区组配置消息中。
可选地,所述第二通信节点接收第一通信节点的链路状态信息后,还包括:所述第二通信节点向所述第一通信节点反馈链路状态信息确认消息。
可选地,所述方法还包括:所述第二通信节点接收到所述链路状态信息以及所述第一通信节点的节点标识信息;所述第二通信节点将所述链路状态信息以及所述第一通信节点的节点标识信息发送至第三通信节点,其中,所述第三 通信节点包括:所述第二通信节点的子节点。
可选地,第一通信节点的节点标识信息包括:第一通信节点的层级标识,这个层级标识用于指示第一通信节点距离IAB donor的跳数;或者,第一通信节的节点点标识信息包括:所述第二通信节点距离所述第一通信节点的跳数。
可选地,第一通信节点的节点标识信息包括:第一通信节点的层级标识,这个层级标识用于指示第一通信节点距离IAB donor的跳数;可选地,第一通信节点的节点标识信息包括:所述第二通信节点距离所述第一通信节点的跳数。
可选地,所述第二通信节点接收到所述链路状态信息以及所述第一通信节点的节点标识信息后,所述第二通信节点启动小区组失败流程以报告小区组链路失败。
可选地,所述第二通信节点将小区组失败信息中的失败类型设置为服务节点链路失败。
可选地,在所述小区组失败信息中携带第一通信节点的节点标识信息。
可选地,所述第二通信节点接收所述链路状态信息后,对非服务小区执行测量。
可选地,所述第一通信节点包括以下之一:终端,中继,IAB,IAB的分布单元(Distributed Unit,DU)部分,基站,所述第二通信节点包括以下之一:中继,IAB,IAB的移动终端(Mobile-Termination,MT)部分。
根据本发明的另一个实施例,提供了一种链路状态的通知装置,位于第一通信节点,包括:发送模块,用于向第二通信节点发送链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
根据本发明的另一个实施例,提供了一种链路的处理装置,位于第二通信节点,包括:接收模块,用于接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例。
通过本申请,在母节点发生链路故障后,及时通知子节点有关链路故障的链路状态信息,从而使得子节点能够及时处理与母节点的连接。因此,可以解 决链路状态不佳或者拥塞等原因导致中继节点与其服务节点链路通信中断时导致网络拓扑结构的不稳定以及需要很大的控制信令开销,以及很大的通信中断延时的问题,达到了降低控制信令开销以及消除通信中断延时的效果。
附图说明
图1是相关技术中的IAB链路示意图;
图2是相关技术中的IAB节点作为中继的链路示意图;
图3是根据本发明实施例的一种链路状态的通知方法的流程图;
图4是根据本发明实施例的一种链路的处理方法的流程图;
图5是根据本发明实施例的一种链路状态的通知装置的结构框图;
图6是根据本发明实施例的一种链路的处理装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。
本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为了更好的理解下述实施例中记载的方案,提供了如下的名词说明和解释。下述说明和解释只是给出了常规的解释,任何基于下述实施例思路的合理衍生或者合理变形也在保护范围之内。
IAB donor(IAB宿主):通过回程和接入链路网络向终端提供网络接入的下一代基站(next generation NodeB,gNB)。
IAB node(IAB节点):支持向终端的新无线(New Radio,NR)接入链接以及向母节点和子节点的NR回程链路的无线接入网络(Radio Access Network,RAN)节点。
上行方向:在有向无环拓扑结构中由IAB节点以及IAB宿主向IAB宿主的方向。
下行方向:在有向无环拓扑结构中由IAB节点以及IAB宿主向叶子节点的方向。
母节点:IAB节点的上行节点,或者IAB节点的北向节点。母节点包括:IAB节点或者IAB宿主分布单元(IAB-donor-DU)。
子节点:IAB节点的下行节点,或者IAB节点的南向节点,子节点包括: IAB节点。
南向:在多跳回程链路中远离IAB宿主的方向。
北向:在多跳回程链路中朝向IAB宿主的方向。
通过一跳或者多跳与IAB宿主连接的所有的IAB节点与IAB宿主形成了有向无环拓扑结构。而IAB宿主则是根节点。在拓扑结构中,IAB节点的母节点或者上行节点还可以被定义为靠近根节点的邻居节点。而IAB节点的子节点则还可以被定义为靠近叶子节点的邻居节点。
实施例1
在本实施例中提供了一种链路状态的通知的方法,图3是根据本发明实施例的一种链路状态的通知方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,第一通信节点向第二通信节点发送链路状态信息,其中,所述第二通信节点为所述第一通信节点的子节点。
可选地,所述第一通信节点包括以下之一:终端,中继,IAB,IAB的DU部分,基站,所述第二通信节点包括以下之一:中继,IAB,IAB的MT部分。
本实施例中所应用的网络拓扑结构,可以应用在上述图1和图2所描述的结构。上述图1和图2只是示例性说明,任何具有相同作用或者类似作用的网络拓扑结构均在本实施例的保护范围之内,在此不做过多说明。
可选地,所述链路状态信息包括以下至少之一:无线链路失败指示,RRC重配失败指示,RRC完整性校验失败指示,移动性失败指示,同步重配失败指示,以及定时器超时指示。
可选地,所述第一通信节点在以下之一的条件下,向所述第二通信节点发送链路状态信息:所述第一通信节点进入RRC空闲状态;所述第一通信节点启动RRC连接重建程序;所述第一通信节点检测到定时器超时。
由于无线链路失败是一个持续的过程,需要在发生不同步(Out of Synchronization,OOS)的初期就做好提前通知子节点的准备。因此,第一节点需要配置两个定时器,以实现在检测到第一个OOS后就判定为发生无线链路失败,防止导致的中断时延过长的问题。两个定时器包括:T310定时器,用于在超时时,检测到发生了无线链路失败;T3XXX,用于在超时时,发送无线链路状态信息给子节点。虽然可以使用相同类型的定时器,但这里的定时器与实施例2中描述的定时器的作用是不相同。
可选地,所述链路状态信息还包括以下之一:所述第一通信节点进入空闲状态指示;RRC连接重建启动指示;定时器超时指示。
可选地,所述链路状态信息还包括:链路状态恢复指示信息。
接收到链路状态信息时,如果指示IAB为双连接,那么IAB很可能可以快速恢复路由,子节点不需要重新选择新的母节点,但是对于双连接的子节点,短期内可以优先选择另外一条路由转发终端的数据。如果指示IAB为单连接但配置了控制切换(Controlled Hand off,CHO),子节点不需要重新选择新的母节点,但是对于双连接的子节点,短期内可以优先选择另外一条路由转发终端的数据,但是考虑到存在切换失败的可能,子节点可以开始执行接入新的母节点的准备工作,例如选择目标母节点,检测同步信号。如果指示IAB为单连接且没有配置CHO,需要执行RRC连接重建,那么对于双连接的子节点,可以暂停当前链路的传输,通过另外一条链路进行传输,对于单连接的子节点,可以开始执行CHO。
当第一通信节点检测到链路问题后,会尝试进行链路恢复,如果链路恢复成功,那么会将链路恢复的指示信息发送给第二通信节点。
考虑到第二通信节点接收到该指示后可能还需要继续发送给第二通信节点的子节点,因此还需要指示发生无线链路失败的分布单元标识。为节省开销,该分布单元标识可以为简化的标识,例如,可以为分布单元的层级标识。
如果仅仅指示发生了无线链路失败,由于不同类型的第一通信节点恢复的时间不同,例如双连接的第一通信节点和配置了CHO的第一通信节点恢复比单连接且无CHO的第一通信节点恢复快,或者说网络辅助执行的链路恢复(link recovery)比第一通信节点自己进行RRC重建的恢复快,因此,基于不同类型的link recovery,可以将链路恢复预估时间等级发送给第二通信节点。
在进行链路重建后,新接入的第一通信节点是否还连接到原来的宿主集中单元(donor Centre Unit,donor CU)对下层第二通信节点也会有影响,因此还可以发送一个donor CU是否可能发生变化指示或者直接发送donor CU的标识信息,帮助第二通信节点提前做好准备。
可选地,所述方法还包括:所述第一通信节点向第二通信节点发送所述链路状态信息和所述第一节点的节点标识信息。
可选地,节点标识信息可以为:第一通信节点的层级标识;这个层级标识用于指示第一通信节点距离IAB donor的跳数。
可选地,在发送所述链路状态信息之后,所述方法还包括:所述第一通信节点进行链路恢复,并更新系统信息中的用户接入控制参数或者停止发送系统信息块。
可选地,如果母节点配置了条件切换目标小区,当无线链路失败发生时即 可执行条件切换,或者母节点存在多连接,当主小区组(Master Cell Group,MCG)发生无线链路失败后通过辅小区组(Secondary Cell Group,SCG)进行链路恢复,当SCG发生无线链路失败时通过MCG进行链路恢复,则母节点可以快速恢复的场景,可以不通知子节点发生了无线链路失败,只有当母节点无法快速恢复时才通知子节点。而在母节点无法快速恢复时,母节点会启动连接重建进行时,向子节点发送链路状态信息。
可选地,所述第一通信节点向第二通信节点发送所述链路状态信息和所述第一节点的状态标识信息,其中,所述状态标识信息用于指示所述第一通信节点的链路恢复时间和/或节点状态。
为了帮助子节点作出合理的判断,需要告知子节点发生无线链路失败时当前的状态,例如,将链路恢复所需时间分为多个等级或者多个情况(case),存在双连接为等级/case1,配置了条件切换的为等级/case2,单连接且只能执行RRC重建为等级/case3,还可以指示预估链路恢复的目标donor CU是否发生改变。而该状态标识信息包括以下至少之一:链路恢复标识、节点状态标识。链路恢复标识的作用在于判断第一通信节点进行链路恢复所需要的时间等级。而节点状态标识的作用在于确定第一通信节点的节点状态,该节点状态包括以下之一:拥有多连接,单连接,配置了条件切换目标小区。
通过以上的实施方式的描述可知,上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,也可以通过硬件。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明实施例所述的方法。
实施例2
在本实施例中提供了一种链路的处理方法,图4是根据本发明实施例的一种链路的处理方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,第二通信节点接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
可选地,所述第一通信节点包括以下之一:终端,中继,IAB,IAB的DU部分,基站,所述第二通信节点包括以下之一:中继,IAB,IAB的MT部分。
可选地,所述链路状态信息包括以下至少之一:无线链路失败指示,RRC重配失败指示,RRC完整性校验失败指示,移动性失败指示,同步重配失败指示,以及定时器超时指示。
可选地,所述链路状态信息包括以下之一:所述第一通信节点进入空闲状 态指示,RRC连接重建启动指示,定时器超时指示。
可选地,所述第二通信节点接收第一通信节点的链路状态信息后,包括:所述第二通信节点设置定时器的超时时间T,并启动定时器。
可选地,在启动定时器之后,所述方法还包括:当所述第二通信节点接收到所述第一通信节点发送的链路状态恢复指示信息时,所述第二通信节点停止计时。
可选地,在启动定时器之后,所述方法还包括:当所述定时器超时时,所述第二通信节点认为链路失败。
定时器开启条件包括:接收到无线链路失败(Radio Link Failure,RLF)指示信息。定时器停止条件包括以下至少之一:接收到链路恢复指示后;启动连接重建后;接收到RRC重配消息。
定时器超时后,启动连接重建程序;或者启动小区组失败信息报告程序。
该定时器可以用Txxx定时器,即可以是T310定时器等常规定时器,也可以是其他的新定义的设置在第二通信节点专用的定时器,在此不做过多赘述。
可选地,当所述定时器的计时时间超时时,所述第二通信节点启动连接重建,或启动条件切换。
在设置定时器的超时时间T时,第二通信节点还需要选择新的母节点为后续考虑。由于第二通信节点不能够无休止的等待第一通信节点的故障问题解决,因此,如果没有超时,第一通信节点的链路故障就得以解决的话,那么第二通信节点则无需使用新的母节点进行链路连接,只需要维持与原有的第一通信节点进行连接。如果超时的话,那么第二通信节点则使用选择好的新的母节点作为新的第一通信节点进行连接。启动连接重建包括但不限于:检测搜索新的小区,选择目标小区,执行下行同步,或者,启动RRC连接重建程序。
所述第二通信节点通过启动小区组失败流程以报告SCG链路失败。
在确定启动小区组失败信息的消息传输的原因是所述定时器超时时,所述第二通信节点将小区组失败信息中的失败类型设置为定时器超时,其中,所述小区组失败信息包括主小区组失败信息以及辅小区组失败信息。
可选地,T被设置在系统消息,RRC重配消息或小区组配置消息中。
可选地,所述第二通信节点接收第一通信节点的链路状态信息后,还包括:所述第二通信节点向所述第一通信节点发送链路状态信息确认消息。
链路状态信息确认消息通过媒体接入控制-控制单元(Medium Access Control-Control Element,MAC CE)携带或者通过适配层控制信息携带。
可选地,所述方法还包括:所述第二通信节点接收到所述链路状态信息以及所述第一通信节点的节点标识信息;所述第二通信节点将所述链路状态信息以及所述第一通信节点的节点标识信息发送至第三通信节点,其中,所述第三通信节点包括:所述第二通信节点的子节点。
可选地,第一通信节点的节点标识信息包括:第一通信节点的层级标识,这个层级标识用于指示第一通信节点距离IAB donor的跳数;或者,第一通信节点的节点标识信息包括:所述第二通信节点距离所述第一通信节点的跳数。
可选地,第一通信节点的节点标识信息包括:第一通信节点的层级标识,这个层级标识用于指示第一通信节点距离IAB donor的跳数;可选地,第一通信节点的节点标识信息包括:所述第二通信节点距离所述第一通信节点的跳数。
可选地,所述第二通信节点接收到所述链路状态信息以及所述第一通信节点的节点标识信息后,所述第二通信节点启动小区组失败流程以报告小区组链路失败。
可选地,所述第二通信节点将小区组失败信息中的失败类型设置为服务节点链路失败。
可选地,在所述小区组失败信息中携带第一通信节点的节点标识信息。
可选地,假设存在下面这个拓扑关系,IAB donor-IAB1-IAB2-IAB3-IAB4-UE,当IAB2开启RRC连接重建程序后,方式1:IAB2将链路状态信息以及层级信息2发送给IAB3,IAB3将上述信息继续发给IAB4;方式2:IAB2将链路状态信息以及标识信息0发送给IAB3,IAB3将链路状态信息以及标识信息1发给IAB4。标识信息0可以缺省不发,标识信息为0代表发生链路问题的节点为发送消息的节点,标识信息为1表示发生链路问题的节点为发送消息的节点的上一跳节点,以此类推。
可选地,所述第二通信节点接收所述链路状态信息后,对非服务小区执行测量。
所述第二通信节点接收所述链路状态信息以及所述第一通信节点的状态标识信息;根据所述状态标识信息,所述第二通信节点结合所述第一通信节点的节点状态判断所述第一通信节点的链路恢复时间确定是否超出预设恢复时长;在判断结果为否的情况下,所述第二通信节点进行上行流量控制;在判断结果为是的情况下,所述第二通信节点启动连接重建或启动条件切换。状态标识信息已经在实施例1中进行了详细的说明,不在赘述。
在接收到链路状态信息以及状态标识信息后,第二通信节点可以确定第一通信节点(母节点)链路出现了故障且进行恢复可能需要的时间。如果链路恢 复时间较短,可以进行上行流量控制。如果链路恢复时间较长,可以开始进行连接重建的准备,包括检测搜索新的小区,选择目标小区,执行下行同步,或者,启动RRC连接重建程序。
子节点接收到IAB需要执行RRC重建时,会继续将链路状态信息发送给子节点的子节点。另外,IAB可以进行上行流控。对于双连接的子节点,可以暂停当前链路的传输,通过另外一条链路进行传输,并将发生的链路状况通过SCG或者MCG报告给donor CU。对于单连接的子节点,当接收到IAB重建指示后,子节点可以开始执行CHO或者RRC重建的准备工作,或者,也可以直接开始执行CHO和RRC重建流程,继续保持与母节点的连接,执行RRC重建。如果在接收到链路状态恢复指示信息之前就成功接入到新的母节点,那么在这段时间内则处于双连接状态,后续如果接收到链路状态恢复指示信息则断开新的母节点,如果超时则断开原来的母节点。MT在保持现有连接的情况下执行RRC重建,当donor CU接收到重建请求后再进行判决,如果原有的母节点还没有恢复连接,则可以同意子节点连接到新的母节点,发送RRC重建消息,此时子节点释放掉与原母节点的连接,更新原母节点DU。如果原母节点已经恢复连接,则拒绝RRC重建。
如果当IAB进入RRC空闲(idle)态,则会释放当前链路,对于双连接的子节点可以通过MCG或者SCG上报链路状况给donor CU,执行切换或者SCG改变(change)流程,对于单链接的子节点则执行CHO或者RRC重建流程。
如果检测到第N个OOS时,也就是说无线链路失败可能会发生但还没有判定时提前发送指示,此时子节点的操作与接收到链路状态信息的操作类似。
在定时器超时时,子节点会释放当前链路,对于双连接的子节点可以通过MCG或者SCG上报链路状况给donor CU,执行切换或者SCG change流程,对于单链接的子节点则执行CHO或者RRC重建流程。
为了更好的理解上述实施例中记载的技术方案,还提供了如下的场景进行阐述和说明。
场景一:
IAB/中继发生了链路故障后,在短期内能够自主恢复链路连接。
步骤1:IAB/中继检测到与该IAB/中继的母节点之间存在链路问题。
步骤2:IAB/中继发送链路状态信息给子节点。其中,链路状态信息包括以下至少之一:无线链路失败,RRC重配失败,RRC完整性校验失败,移动性失败,同步重配失败。
步骤3:子节点接收上述链路状态信息后,设置定时器Txxx的超时时间T 以及启动定时器Txxx。并选择一个新的母节点IAB/中继,但不释放与当前的IAB/中继的连接。
步骤4:子节点接收链路状态信息后,向IAB/中继发送无线链路失败确认信息。
步骤5:IAB/中继链路尝试进行链路恢复并成功。
步骤6:IAB/中继发送链路恢复信息给子节点。
步骤7:子节点接收链路恢复信息后,停止定时器Txxx计时,并维持使用当前的IAB/中继进行连接。
场景二:
IAB/中继发生了链路故障,在短期内未能够自主恢复链路连接。
步骤1:IAB/中继检测到与该IAB/中继的母节点之间存在链路问题。
步骤2:IAB/中继发送链路状态信息给子节点。其中,链路状态信息包括以下至少之一:无线链路失败,RRC重配失败,RRC完整性校验失败,移动性失败,同步重配失败。
步骤3:子节点接收上述链路状态信息后,设置定时器Txxx的超时时间以及启动定时器Txxx。并选择一个新的母节点IAB/中继,但不释放与当前的IAB/中继的连接。
步骤4:子节点接收链路状态信息后,向IAB/中继发送无线链路失败确认信息。
步骤5:定时器Txxx超时,子节点认为发生无线链路失败,并释放与当前的IAB/中继的连接。
步骤6:终端启动连接重建程序,与在步骤3中选择的新的母节点IAB/中继进行连接,进行无线链路通信。
场景三:
IAB/中继发生了链路故障,并给出了自主恢复链路连接的时间。
步骤1:IAB/中继检测到与该IAB/中继的母节点之间存在链路问题。
步骤2:IAB/中继发送链路状态信息以及状态标识信息给子节点。其中,所述状态标识信息包括:链路恢复标识或者节点状态标识,链路恢复标识用于反映IAB/中继进行链路恢复所需要的时间等级,节点状态标识用于反映IAB/中继当前的状态。
步骤3:子节点接收到链路状态信息以及状态标识信息后,获知母节点链路 出现了故障且进行恢复可能需要的时间。
步骤4:子节点判断链路恢复时间是否超过预设恢复时长。如果否,转至步骤5,如果是,转至步骤6。
步骤5:如果没有超过预设恢复时长,子节点进行上行流量控制。
步骤6:如果超出预设恢复时长,子节点进行连接重建准备,包括:检测搜索新的小区,选择目标小区,执行下行同步,或者,启动RRC连接重建程序。
场景四:
IAB发生了链路故障,并进行快速恢复进程。
步骤1:IAB检测到与该IAB的母节点之间存在链路问题,判断是否能够启动快速恢复流程,如果是,转至步骤2,如果否,转至步骤3.
步骤2:IAB启动快速恢复流程,其中,快速恢复流程包括:在IAB配置了条件切换目标小区时启动条件切换,在IAB存在多连接,当MCG发生无线链路失败后通过SCG进行链路恢复,当SCG发生无线链路失败时通过MCG进行链路恢复。
步骤3:IAB启动连接重建进程,并发送链路状态信息给子节点。其中,链路状态信息包括以下至少之一:无线链路失败,RRC重配失败,RRC完整性校验失败,移动性失败,同步重配失败。
步骤4:子节点接收上述链路状态信息后,设置定时器Txxx的超时时间以及启动定时器Txxx。并选择一个新的母节点IAB/中继,但不释放与当前的IAB/中继的连接。
步骤5:子节点接收链路状态信息后,向IAB/中继发送无线链路失败确认信息。
步骤6:如果IAB尝试进行链路恢复并成功,则按照场景一的步骤进行后续流程;
步骤7:如果定时器Txxx超时,则按照场景二的步骤进行后续流程。
场景五:
步骤1:IAB/中继检测到与该IAB/中继的母节点之间存在链路问题。
步骤2:IAB/中继发送链路状态信息以及IAB/中继的节点标识信息给子节点。
步骤3:子节点向该子节点的子节点转发接收到链路状态信息以及IAB/中继的节点标识信息。
对于上述场景或者衍生场景中出现或者可能出现的步骤“子节点选择一个新的母节点IAB/中继”的步骤并不限于上述场景中所描述的顺序。即,子节点完全可以在确定定时器超时后或者超出预设恢复时长后选择新的母节点,也可以在启动定时器过程中,例如,如果计时器即将超时前的一个时间,子节点选择新的母节点。因此,任何基于本申请思路的子节点选择新的母节点的时机,均在上述实施例的保护范围之内,不再进行赘述。
实施例3
在本实施例中还提供了一种链路状态的通知装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的一种链路状态的通知装置的结构框图,位于第一通信节点,如图5所示,该装置包括:
发送模块52,用于向第二通信节点发送链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
在本实施例中还提供了一种链路的处理装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的一种链路的处理装置的结构框图,位于第二通信节点,如图6所示,该装置包括:
接收模块62,用于接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例5
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序, 其中,该计算机程序被设置为运行时执行上述任一项方法实施例。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
所述第一通信节点向第二通信节点发送链路状态信息,其中,所述第二通信节点为所述第一通信节点的子节点。
或,
第二通信节点接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
可选地,在本实施例中,上述存储介质可以包括但不限于:通用串行总线闪存盘(Universal Serial Bus flash disk,U盘)、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
所述第一通信节点向第二通信节点发送链路状态信息,其中,所述第二通信节点为所述第一通信节点的子节点。
或,
第二通信节点接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于 任何特定的硬件和软件结合。

Claims (26)

  1. 一种链路状态的通知方法,包括:
    第一通信节点向第二通信节点发送链路状态信息,其中,所述第二通信节点为所述第一通信节点的子节点。
  2. 根据权利要求1所述的方法,其中,所述链路状态信息包括以下至少之一:
    无线链路失败指示;
    无线资源控制RRC重配失败指示;
    RRC完整性校验失败指示;
    移动性失败指示;
    同步重配失败指示;
    定时器超时指示。
  3. 根据权利要求1所述的方法,其中,所述第一通信节点在以下之一的条件下,向所述第二通信节点发送链路状态信息:
    所述第一通信节点进入RRC空闲状态;
    所述第一通信节点启动RRC连接重建程序;
    所述第一通信节点检测到定时器超时。
  4. 根据权利要求3所述的方法,其中,所述链路状态信息包括以下之一:
    所述第一通信节点进入空闲状态指示;
    RRC连接重建启动指示;
    定时器超时指示。
  5. 根据权利要求2或4所述的方法,其中,所述链路状态信息还包括:链路状态恢复指示信息。
  6. 根据权利要求1-5任一项所述的方法,还包括:
    所述第一通信节点向所述第二通信节点发送所述第一节点的节点标识信息。
  7. 根据权利要求1-6任一项所述的方法,在所述发送链路状态信息之后,还包括:
    所述第一通信节点进行链路恢复,并更新系统信息中的用户接入控制参数或者停止发送系统信息块。
  8. 根据权利要求7所述的方法,还包括:
    所述第一通信节点向所述第二通信节点发送所述第一节点的状态标识信息,其中,所述状态标识信息用于指示所述第一通信节点的链路恢复时间和节点状态中的至少之一。
  9. 一种链路的处理方法,包括:
    第二通信节点接收第一通信节点的链路状态信息;
    其中,所述第二通信节点为所述第一通信节点的子节点。
  10. 根据权利要求9所述的方法,其中,所述链路状态信息包括以下之一:
    所述第一通信节点进入空闲状态指示;
    无线资源控制RRC连接重建启动指示;
    定时器超时指示。
  11. 根据权利要求9所述的方法,在所述第二通信节点接收第一通信节点的链路状态信息之后,还包括:
    所述第二通信节点设置定时器的超时时间T,并启动所述定时器。
  12. 根据权利要求11所述的方法,在所述启动所述定时器之后,还包括:
    在所述第二通信节点接收到所述第一通信节点发送的链路状态恢复指示信息的情况下,所述第二通信节点停止计时。
  13. 根据权利要求11所述的方法,在所述启动所述定时器之后,还包括:
    在所述定时器超时的情况下,所述第二通信节点认为无线链路失败。
  14. 根据权利要求11所述的方法,在所述启动所述定时器之后,还包括:
    在所述定时器的计时时间超时的情况下,所述第二通信节点启动连接重建,或启动条件切换。
  15. 根据权利要求11-14任一项所述的方法,其中,T被包含在系统消息、RRC重配消息或小区组配置消息中。
  16. 根据权利要求9所述的方法,在所述第二通信节点接收第一通信节点的链路状态信息之后,还包括:
    所述第二通信节点向所述第一通信节点发送链路状态信息确认消息。
  17. 根据权利要求9所述的方法,还包括:
    所述第二通信节点接收所述第一通信节点的节点标识信息。
  18. 根据权利要求17所述的方法,在所述第二通信节点接收所述第一通信节点的节点标识信息之后,还包括:
    所述第二通信节点启动小区组失败流程以报告小区组链路失败。
  19. 根据权利要求18所述的方法,还包括:所述第二通信节点将小区组失败信息中的失败类型设置为服务节点链路失败。
  20. 根据权利要求19所述的方法,其中,在所述小区组失败信息中携带所述第一通信节点的节点标识信息。
  21. 根据权利要求17所述的方法,还包括:
    所述第二通信节点将所述链路状态信息以及所述第一通信节点的节点标识信息发送至第三通信节点,其中,所述第三通信节点包括:所述第二通信节点的子节点。
  22. 根据权利要求9所述的方法,在所述第二通信节点接收第一通信节点的链路状态信息之后,还包括:
    所述第二通信节点对非服务小区执行测量。
  23. 一种链路状态的通知装置,位于第一通信节点,包括:
    发送模块,设置为向第二通信节点发送链路状态信息;
    其中,所述第二通信节点为所述第一通信节点的子节点。
  24. 一种链路的处理装置,位于第二通信节点,包括:
    接收模块,设置为接收第一通信节点的链路状态信息;其中,所述第二通信节点为所述第一通信节点的子节点。
  25. 一种存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行如权利要求1-8中任一项所述的链路状态的通知方法,或执行如权利要求9-22中任一项所述的链路的处理方法。
  26. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行如权利要求1-8中任一项所述的链路状态的通知方法,或执行如权利要求9-22中任一项所述的链路的处理方法。
PCT/CN2020/080553 2019-03-28 2020-03-23 链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置 WO2020192603A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217034596A KR20210141696A (ko) 2019-03-28 2020-03-23 링크상태 통지 방법 및 장치, 링크 처리 방법 및 장치, 저장매체, 전자장치
SG11202110770WA SG11202110770WA (en) 2019-03-28 2020-03-23 Link state notification method and device, link processing method and device, storage medium and electronic devices
US17/599,114 US20220174772A1 (en) 2019-03-28 2020-03-23 Link state notification method and device, link processing method and device, storage medium and electronic device
EP20776636.1A EP3952593A4 (en) 2019-03-28 2020-03-23 LINK STATE NOTIFICATION METHOD AND DEVICE, LINK PROCESSING METHOD AND DEVICE, STORAGE MEDIA AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910244417.5 2019-03-28
CN201910244417.5A CN111757362A (zh) 2019-03-28 2019-03-28 一种链路状态的通知,链路的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2020192603A1 true WO2020192603A1 (zh) 2020-10-01

Family

ID=72610977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080553 WO2020192603A1 (zh) 2019-03-28 2020-03-23 链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置

Country Status (6)

Country Link
US (1) US20220174772A1 (zh)
EP (1) EP3952593A4 (zh)
KR (1) KR20210141696A (zh)
CN (1) CN111757362A (zh)
SG (1) SG11202110770WA (zh)
WO (1) WO2020192603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022166659A1 (zh) * 2021-02-03 2022-08-11 大唐移动通信设备有限公司 信息获取方法、处理方法、节点、网络侧设备及装置
WO2022252130A1 (en) * 2021-06-01 2022-12-08 Nec Corporation Methods, devices, and computer readable medium for communication

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4124159A4 (en) * 2020-04-22 2023-09-27 Shanghai Langbo Communication Technology Company Limited METHOD AND DEVICE USED AS A COMMUNICATION NODE FOR WIRELESS COMMUNICATION
JP2024501028A (ja) * 2020-12-28 2024-01-10 日本電気株式会社 第1装置、第2装置、及び通信方法
CN112910981B (zh) * 2021-01-27 2022-07-26 联想(北京)有限公司 一种控制方法及装置
CN115334577A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 一种信息处理方法及装置
WO2023010299A1 (zh) * 2021-08-03 2023-02-09 富士通株式会社 触发生成回传链路无线链路失败通知的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107736004A (zh) * 2015-06-30 2018-02-23 高通股份有限公司 回程网络中的话务流迁移
CN107852363A (zh) * 2015-06-30 2018-03-27 高通股份有限公司 对通信网络中的网络路由域的管理

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385231B2 (en) * 2009-07-30 2013-02-26 Roberto Rojas-Cessa Disseminating link state information to nodes of a network
CN102948235A (zh) * 2010-06-17 2013-02-27 日本电气株式会社 无线电通信系统和无线电资源分配的控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107736004A (zh) * 2015-06-30 2018-02-23 高通股份有限公司 回程网络中的话务流迁移
CN107852363A (zh) * 2015-06-30 2018-03-27 高通股份有限公司 对通信网络中的网络路由域的管理

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED ET AL.: "IAB backhaul RLF recovery for architecture 1a", R3-186455,3GPP TSG-RAN WG3 MEETING #102, 2 November 2018 (2018-11-02), pages 1 - 11, XP051558243, DOI: 20200520000711X *
See also references of EP3952593A4 *
ZTE ET AL.: "Procedures for backhaul link failure and recovery", R3-186421,3GPP TSG RAN WG3 MEETING #102, 2 November 2018 (2018-11-02), XP051482571, DOI: 20200520000826A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022166659A1 (zh) * 2021-02-03 2022-08-11 大唐移动通信设备有限公司 信息获取方法、处理方法、节点、网络侧设备及装置
WO2022252130A1 (en) * 2021-06-01 2022-12-08 Nec Corporation Methods, devices, and computer readable medium for communication

Also Published As

Publication number Publication date
CN111757362A (zh) 2020-10-09
SG11202110770WA (en) 2021-10-28
EP3952593A4 (en) 2023-01-11
US20220174772A1 (en) 2022-06-02
EP3952593A1 (en) 2022-02-09
EP3952593A8 (en) 2022-03-30
KR20210141696A (ko) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2020192603A1 (zh) 链路状态的通知方法及装置、链路的处理方法及装置、存储介质、电子装置
RU2769279C1 (ru) Обработка отказов главной группы сот главным узлом
WO2020164569A1 (zh) Iab链路控制方法、通信单元、计算机可读存储介质
US9357459B2 (en) Method and apparatus for cross link establishment
JP7303290B2 (ja) 通信制御方法
JP7422916B2 (ja) 通信制御方法、無線中継装置及びプロセッサ
JP7291763B2 (ja) 通信制御方法
US20210315040A1 (en) Method and apparatus for handling radio link failure
JP5801901B2 (ja) 通信制御方法及び中継局
WO2020112011A1 (en) Method and wireless device for handling handover
JP7322230B2 (ja) 通信制御方法
JPWO2020032129A1 (ja) 中継装置
JP2022141908A (ja) 通信制御方法
JP7450029B2 (ja) 通信制御方法、中継ノード及びプロセッサ
US20230189377A1 (en) Communication control method
JP7410167B2 (ja) 通信制御方法及び無線中継装置
EP4224902A1 (en) Communication control method
US20220286934A1 (en) Methods for Maintaining an Ongoing Communication Even After Site Outage
JP7426383B2 (ja) 通信制御方法
WO2021189466A1 (en) Method and apparatus for reporting failure information in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217034596

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020776636

Country of ref document: EP

Effective date: 20211028