WO2020192522A1 - 彩膜基板、显示装置及其驱动方法 - Google Patents

彩膜基板、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2020192522A1
WO2020192522A1 PCT/CN2020/079923 CN2020079923W WO2020192522A1 WO 2020192522 A1 WO2020192522 A1 WO 2020192522A1 CN 2020079923 W CN2020079923 W CN 2020079923W WO 2020192522 A1 WO2020192522 A1 WO 2020192522A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
light
substrate
electrode layer
color
Prior art date
Application number
PCT/CN2020/079923
Other languages
English (en)
French (fr)
Inventor
赵子豪
尹清平
李涛
张静
朱建新
赵影
崔春明
张善策
王佳男
李鹏超
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020192522A1 publication Critical patent/WO2020192522A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a color film substrate, a display device
  • Micro LED Micro Light-Emitting Diode
  • Micro LED miniaturization and matrix technology refers to the technology of integrating high-density and small-size LED arrays on a chip.
  • Each pixel in the Micro LED display can be addressed and individually driven to light up. It can be regarded as a miniature version of the outdoor LED display, reducing the pixel distance from millimeters to micrometers.
  • the bottom layer of the Micro LED display is the LED display drive circuit made by the usual CMOS integrated circuit manufacturing process, and then the metal-organic chemical vapor deposition (MOCVD, Metal-organic Chemical Vapor Deposition) machine is used to make the LED array on the integrated circuit. , So as to realize the miniature display screen, which is the reduced version of the so-called LED display screen.
  • MOCVD Metal-organic Chemical Vapor Deposition
  • a color filter substrate including: a first substrate; a first electrode layer and a second electrode layer, which are stacked on the first substrate; a color filter layer, which is located on the Between the first electrode layer and the second electrode layer; and light-shielding particles, which are located on one side of the color filter layer, and are used for the separation between the first electrode layer and the second electrode layer Move under the action of an electric field to control the light transmission area of the color filter layer.
  • the light-shielding particles are located between the first electrode layer and the color filter layer; or, the light-shielding particles are located between the second electrode layer and the color filter layer.
  • the light-shielding particles include charged metal ions.
  • the color filter layer includes a plurality of color filters and a black matrix between any two adjacent color filters.
  • Each of the light sheets is provided with the light-shielding particles
  • the color filter substrate is divided into a plurality of pixel regions; each of the pixel regions includes a plurality of the color filters of different colors
  • the first One electrode layer includes a plurality of first electrodes
  • the second electrode layer includes a plurality of second electrodes
  • one of the plurality of second electrodes is configured to drive a plurality of color filters of different colors in one pixel area.
  • the light-shielding particles corresponding to the light sheet, and the plurality of electrodes in the plurality of first electrodes are configured to respectively drive the light-shielding particles corresponding to the color filters of different colors in one pixel area.
  • the first electrode layer is disposed on a side of the color filter layer close to the first substrate; the second electrode layer is disposed on the color filter layer away from the first substrate Side.
  • the plurality of color filters of different colors in the one pixel area are fan-shaped and combined to form a ring shape, which is used to drive the light-shielding particles corresponding to each color filter in the pixel area.
  • the orthographic projection of each first electrode on the first substrate is located in the pixel area in the orthographic projection of the plurality of color filters of different colors on the first substrate; used to drive the pixel
  • the orthographic projection of the second electrode of the light-shielding particles corresponding to the plurality of color filters of different colors on the first substrate in the pixel area is composed of a plurality of the color filters of different colors
  • the central area of the ring is in the orthographic projection on the first substrate.
  • a black matrix is provided in the middle area of the ring formed by the plurality of color filters of different colors in the one pixel area.
  • both the first electrode layer and the second electrode layer are made of indium tin oxide.
  • the color filter layer includes a plurality of filter combinations, and a filter combination is provided for each pixel area, and each of the filter combinations includes a plurality of color filters of different colors. sheet.
  • the different color filters in each of the filter combinations have the same size, and the same number of light-shielding particles are provided for each filter.
  • the plurality of color filters of different colors in each of the pixel areas include a red filter, a green filter, and a blue filter.
  • a display device including the color filter substrate described above and an array substrate disposed opposite to the color filter substrate.
  • the color filter substrate is divided into a plurality of pixel regions; each of the pixel regions includes a plurality of color filters of different colors; the array substrate includes a second base, and The multiple light-emitting devices on the second substrate; wherein the multiple light-emitting devices are arranged corresponding to the multiple pixel regions.
  • one light-emitting device is provided corresponding to one pixel area.
  • the light emitting device includes a Micro LED or a mini LED, and the light emitting device includes a first pole and a second pole.
  • the light-emitting device is symmetrically arranged with the second electrode in the pixel area as the center.
  • the array substrate further includes a plurality of third electrodes for driving the plurality of light-emitting devices to emit light respectively.
  • the plurality of second electrodes of the plurality of pixel regions respectively serve as the first electrodes of the plurality of light emitting devices, and the plurality of first electrodes of the plurality of pixel regions are electrically connected together.
  • a driving method for driving the above-mentioned display device comprising: generating a first electric field between a first electrode layer and a second electrode layer so that the light-shielding particles are located A second electric field is generated between the first electrode layer and the second electrode layer, so that the light-shielding particles are in the first electrode layer and the first electrode layer and the first electrode layer.
  • the two electrode layers move under the action of the electric field to control the light transmission area of the color filter layer.
  • the defined area includes an area on one side of the color filter layer that overlaps with the projection of the peripheral area of each color filter in each pixel area on the first substrate.
  • FIG. 1 is a schematic structural diagram of a display device including a color filter substrate and an array substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display device including a color filter substrate and an array substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a color filter substrate according to an embodiment of the present disclosure.
  • FIG. 4 is an enlarged view of a pixel area according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a driving method for a display device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the arrangement of light-shielding particles for the color filter substrate to achieve red light + blue light mixing according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the arrangement of light-shielding particles for implementing color display on a color filter substrate according to an embodiment of the present disclosure.
  • Micro LED color display is mainly realized by mixing the three colors of R (red), G (green), and B (blue). That is, a Micro LED lamp is placed under the R, G, and B color filters. The control of a single lamp realizes gray scale and color display. However, due to the small characteristics of Micro LEDs, mass production is difficult.
  • a color filter substrate as shown in FIG. 1, wherein the color filter substrate includes: a first base 10; a first electrode layer 12 and a second electrode layer 14, which are on the first base 10 is stacked; the color filter layer 16, which is located between the first electrode layer 12 and the second electrode layer 14; the light-shielding particles 3, which is located on one side of the color filter layer 16, for the first electrode layer 12 It moves under the action of the electric field between it and the second electrode layer 14 to control the light transmission area of the color filter layer 16.
  • the color filter substrate of this embodiment adds light-shielding particles, and the first electrode layer and the second electrode layer that control the movement of the light-shielding particles, in this way, the color filter layer can be shielded by the light-shielding particles to control the color filter layer.
  • the light transmission area controls the amount of light passing through the color filter layer.
  • the color filter layer is light-transmissive, and the light-shielding particles are opaque. In this way, when the light-shielding particles block the color filter layer, the light irradiated to the shielding place will not pass through the light-shielding particles and affect the entire color.
  • the color filter layer does not transmit light, so that the light-shielding particles control the light transmission area of the color filter layer.
  • first electrode layer 12 and the second electrode layer 14 can also be arranged on the same side of the color filter layer, and the light-shielding particles 3 are located between the first electrode layer 12 and the second electrode layer 14, so that the light-shielding particles 3 are on the second side.
  • the first electrode layer 12 and the second electrode layer 14 move under the action of the electric field.
  • the color filter layer 16 generally includes a plurality of color filters (for example, a red filter R, a green filter G, and a blue filter B), and any two adjacent color filters Black matrix BM between light sheets.
  • a red filter R for example, a red filter R, a green filter G, and a blue filter B
  • any two adjacent color filters Black matrix BM between light sheets for each of the multiple color filters, light-shielding particles may be provided to shield the corresponding color filter.
  • the color film substrate can be divided into a plurality of pixel areas A, and each pixel area A includes a plurality of color filters of different colors, such as red filter R, green filter G, and blue filter B ,As shown in Figure 3. Multiple filters in one pixel area can be used as a combination, so that the color filter layer may include multiple filter combinations.
  • the red filter R, the green filter G, and the blue filter B in a pixel area can be used as a combination, and the different color filters in each filter combination have the same size.
  • Each filter can be provided with the same number of light-shielding particles, which is beneficial to control the light-shielding particles on the entire color filter substrate.
  • the first electrode layer 12 includes a plurality of first electrodes 1
  • the second electrode layer 14 includes a plurality of second electrodes 2
  • one of the plurality of second electrodes 2 is configured to drive all the pixels in one pixel area.
  • the light-shielding particles 3 corresponding to the color filters, and the plurality of electrodes of the plurality of first electrodes 1 are configured to drive the light-shielding particles 3 corresponding to the plurality of color filters in one pixel area.
  • corresponding first electrodes 1 are respectively provided, and the red filter and green filter in a pixel area
  • the blue filter shares a second electrode 2.
  • one light-emitting device can correspond to multiple different color filters in a pixel area (and the corresponding pixel unit) in the color filter substrate.
  • only control and The strength of the electric field formed by the first electrode 1 and the second electrode 2 corresponding to each color filter can control the number and position of the light-shielding particles, and then control the light-transmitting area of the color filter to achieve passage
  • a light emitting device produces light of different colors and different brightness.
  • the color filter substrate in this embodiment can greatly improve the utilization rate of the light emitting device.
  • the color filter layer includes a red filter, a green filter, and a blue filter as an example for description.
  • FIG. 3 is a schematic diagram of a color filter substrate in a display state according to an embodiment of the present disclosure.
  • the color filter substrate can be divided into a plurality of pixel areas A.
  • the color filter substrate includes a first substrate 10 and a color filter layer on the first substrate 10.
  • the color filter layer includes three different colors of red, green and blue color filters (ie: red filter R, green filter G, blue filter B), and any two adjacent color filters
  • the black matrix BM between the filters Each pixel area A includes three color filters, which are red filter R, green filter G, and blue filter B, and the three color filters are arranged in a ring shape. That is, each color filter resembles a fan shape.
  • the orthographic projection of each first electrode 1 on the first substrate 10 of the light-shielding particles 3 corresponding to a plurality of color filters of different colors in the pixel area is located in each color in the pixel area.
  • the peripheral area of the filter is in the orthographic projection on the first substrate; a plurality of second electrodes 2 for driving the light-shielding particles 3 corresponding to a plurality of color filters of different colors in the pixel area are on the first substrate 10
  • the orthographic projection on the pixel area is in the orthographic projection on the first substrate 10 in the middle area of the ring composed of a plurality of color filters of different colors in the pixel area.
  • a black matrix is arranged in the middle area of the ring composed of multiple color filters of different colors in a pixel area, so that the orthographic projection of the second electrode 2 on the first substrate 10 can fall into the black matrix on the first substrate 10.
  • the peripheral area of each color filter in a pixel area is also provided with a black matrix.
  • a first electrode layer 12 is provided between the first substrate 10 and the color filter layer 16.
  • the first electrode layer includes A plurality of first electrodes 1 extending in the direction of the optical layer 16.
  • each first electrode 1 is located in the peripheral area of the pixel area A, and is arranged in a one-to-one correspondence with the color filter, that is, each pixel area A is provided with three first electrodes 1, three The first electrodes 1 are arranged in a ring shape.
  • a second electrode layer 14 is provided on the side of the color filter layer 16 away from the first substrate 10.
  • the second electrode layer 14 includes a plurality of second electrodes 2 extending in a direction away from the color filter layer 16, each The second electrode is located in the middle area of the pixel area A and is arranged in a one-to-one correspondence with the pixel area A, that is, each pixel area A is provided with a second electrode 2.
  • each pixel area A light-shielding particles 3 are also provided.
  • the light-shielding particles 3 do not form an electric field between the first electrode 1 and the second electrode 2
  • the light-shielding particles 3 are located in the area defined by the color filter and the first electrode 1, for example, the light-shielding particles 3 are located on the color filter layer 16.
  • the light-shielding particles 3 can move to the middle area of the pixel area A under the drive of the electric field.
  • the light-shielding particles 3 can be provided in any film layer between the first electrode layer and the second electrode layer. In this embodiment, the light-shielding particles 3 are located between the color filter layer 16 and the second electrode layer 14 as an example, such as As shown in Figure 1. The light-shielding particles 3 can also be located between the color filter layer 16 and the first electrode layer 12, as shown in FIG. 2.
  • a display device includes the above-mentioned color filter substrate and an array substrate disposed opposite to the color filter substrate.
  • the array substrate includes a second substrate 20 and light emitting devices 21 arranged on the second substrate 20, and the light emitting devices 21 are arranged in a one-to-one correspondence with the pixel area A, that is, one light emitting device 21 corresponds to the red and green in the pixel area A. Color filters in three different colors of, blue.
  • a third electrode layer 18 is further provided between the second substrate 20 and the light emitting device 21.
  • the third electrode layer 18 may include a plurality of third electrodes 4 for driving the plurality of light emitting devices to emit light respectively.
  • the light emitting device 21 includes a first pole and a second pole.
  • the second electrode of the light emitting device 21 is connected to one of the third electrodes 4 in the third electrode layer 18, and the first electrode of the light emitting device 21 is connected to the second electrode 2 in the second electrode layer 14, or multiple pixel regions can be connected
  • the plurality of second electrodes are respectively used as the first electrodes of the plurality of light emitting devices 21, and the plurality of first electrodes of the plurality of pixel regions are electrically connected together.
  • the light-emitting device 21 may be symmetrically arranged with the second electrode 2 in the pixel area facing the pixel area as the center, as shown in FIG. 1.
  • FIG. 1 shows that a light emitting device 21 corresponds to a red filter R and a green filter G, this is only a question of the angle of the cross-sectional view. In fact, each light emitting device corresponds to the pixel area A. Color filters in three different colors of red, green and blue.
  • a driving method is provided, as shown in FIG. 5, the driving method is used to drive the above-mentioned display device.
  • a first electric field is generated between the first electrode layer and the second electrode layer, so that the light-shielding particles are located in a limited area that does not block the light transmission of the color filter layer.
  • the defined area is an area on one side of the color filter layer that overlaps with the projection of the peripheral area of each color filter in each pixel area on the first substrate.
  • a second electric field is generated between the first electrode layer and the second electrode layer, so that the light-shielding particles move under the action of the electric field between the first electrode layer and the second electrode layer to control the color filter.
  • the light transmission area of the layer is generated between the first electrode layer and the second electrode layer, so that the light-shielding particles move under the action of the electric field between the first electrode layer and the second electrode layer to control the color filter.
  • the first electric field may be an electric field required when the color filter layer is completely transparent, and the light-shielding particles do not block the color filter layer.
  • the second electric field may be an electric field between the first electrode layer and the second electrode layer when the display device is working. For different color filters in the color filter layer, the required electric field is generated by applying corresponding voltages to the first electrode and the second electrode corresponding to each color filter, thereby controlling the shading particles to block the color filter area.
  • the light-emitting device 21 on the array substrate is turned on.
  • the same voltage as that on the second electrode 2 is applied to the three first electrodes 1 in one pixel area, so that the first electrode 1 and the second electrode There is no electric field between 2 (that is, the electric field intensity is zero), and the light-shielding particle 3 is located in a limited area.
  • the light-shielding particle 3 achieves the state shown in FIG. 4, and the pixel unit emits white light.
  • the light-shielding particles 3 are positively charged, in the initial state, it can also be controlled to apply a negative voltage to the first electrode 1, no voltage or a positive voltage to the second electrode 2, using the principle of the same charge repulsion and the opposite sex attraction. , The light-shielding particles 3 are controlled to be located in a limited area, and the pixel unit emits white light.
  • red light + blue light display For the realization of a color display of light mixing of any two colors in a pixel unit, for example, red light + blue light display. At this time, it can be controlled to apply the same potential to the first electrode 1 and the second electrode 2 corresponding to the red filter R and the blue filter B. At this time, the light-shielding particles 3 do not move and maintain the initial position. Control the first electrode 1 and the second electrode 2 corresponding to the green filter G to load different voltages to generate an electric field between them, so that the light-shielding particles 3 move to the area where the green filter G is located. The area where the filter G is opaque, that is, the display of red light + blue light in a pixel unit is realized, as shown in FIG. 6.
  • the first electrode 1 and the second electrode 2 corresponding to the red filter R and the blue filter B are not energized, but the green filter G is The first electrode 1 is applied with a positive voltage, so that the first electrode 1 is positively charged, and the light-shielding particles 3 are controlled to move to the area where the green filter G is located by using the principle of same sex repulsion and opposite sex attraction. At this time, the green filter G The area is opaque, that is, the display of red light + blue light in a pixel unit is realized, as shown in FIG. 6.
  • the first electrode 1 and the second electrode 2 corresponding to the blue filter B can be controlled to load the same potential.
  • the light-shielding particles 3 do not move to maintain the initial position; the red filter R and the green filter G can be controlled.
  • the corresponding first electrode 1 and second electrode 2 are loaded with different voltages to generate an electric field between them, so that the light-shielding particles 3 move to the area where the red filter R and the green filter G are located, and the The voltage on the first electrode 1 corresponding to the red filter R and the green filter G is used to control the moving number of the light-shielding particles 3, thereby controlling the light transmission area of the red filter R and the green filter G, To achieve color display, that is, as shown in Figure 7.
  • control the second electrode 2 and the first electrode 1 corresponding to the blue filter B to have the same amount of electricity to control the light-shielding particles 3 corresponding to the blue filter B to maintain the initial position, and by controlling the red filter
  • the amount of electricity on the first electrode 1 corresponding to the light sheet R and the green filter G is used to control the moving amount of the light-shielding particles 3, thereby controlling the light transmission area of the red filter R and the green filter G to achieve color Display, that is, as shown in Figure 7.
  • one light-emitting device 21 on the array substrate can correspond to the three different color color filters in a pixel area A on the color filter substrate.
  • the light-transmitting area of the light sheet is used to realize the control of the light of different colors by one light-emitting device 21 and the control of different gray levels.
  • the light-emitting device 21 may specifically be a Micro LED or a mini LED.
  • other light-emitting elements such as LED, OLED, etc., can also be used.
  • the materials of the first electrode layer 12 and the second electrode layer 14 both include transparent conductive materials, such as indium tin oxide.
  • the material of the light-shielding particles 3 in this embodiment may specifically be various metal ions that have been ionized, including but not limited to Cu2+copper ion, Fe2+ferrous ion, Ni2+nickel ion, Cr3+chromium ion, Au3+gold ion and many more.
  • the color filters in each pixel area A may not be arranged in a ring shape, but may also be arranged in a row direction or a column direction.
  • the color filters in each pixel area A may correspond to different second electrodes 2 respectively.
  • the working principle is similar to the working principle of the above-mentioned structure and will not be described in detail.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种彩膜基板、显示装置及其驱动方法,彩膜基板,包括:第一基底(10);第一电极层(12)和第二电极层(14),其在第一基底(10)上堆叠设置;以及遮光粒子(3),其位于彩色滤光层(16)的一侧,用于在第一电极层(12)和第二电极层(14)之间的电场作用下移动,以控制彩色滤光层(16)的透光面积。

Description

彩膜基板、显示装置及其驱动方法
相关申请的交叉引用
本申请要求于2019年3月26日在中国知识产权局提交的申请号为201910231441.5的中国专利申请的优先权,该中国专利申请的全部内容通过引用合并于此。
技术领域
本公开属于显示技术领域,具体涉及一种彩膜基板、显示装
置及其驱动方法。
背景技术
Micro LED(Micro Light-Emitting Diode)技术,即LED微缩化和矩阵化技术,指的是在一个芯片上集成高密度微小尺寸的LED阵列的技术。Micro LED显示屏中的每一个像素可定址、单独驱动点亮,可看成是户外LED显示屏的微缩版,将像素点距离从毫米级降低至微米级。
Micro LED显示屏的底层是用通常的CMOS集成电路制造工艺制成的LED显示驱动电路,然后再用金属有机化合物化学气相沉淀(MOCVD,Metal-organic Chemical Vapor Deposition)机在集成电路上制作LED阵列,从而实现了微型显示屏,也就是所说的LED显示屏的缩小版。
发明内容
根据本公开的一个方面,提供了一种彩膜基板,包括:第一基底;第一电极层和第二电极层,其在所述第一基底上堆叠设置;彩色滤光层,其位于所述第一电极层和所述第二电极层之间;以及遮光粒子,其位于所述彩色滤光层的一侧,用于在所述第一电极层和所述第二电极层之间的电场作用下移动,以控制所述彩色滤光层的透光面积。
在一些实施例中,所述遮光粒子位于所述第一电极层与所述彩色滤光层之间;或者,所述遮光粒子位于所述第二电极层与所述彩色滤光层之间。
在一些实施例中,所述遮光粒子包括带电金属离子。
在一些实施例中,所述彩色滤光层包括多个彩色滤光片以及任意两相邻所述彩色滤光片之间的黑矩阵,针对所述彩色滤光层的所述多个彩色滤光片中的每一个分别设置有所述遮光粒子,所述彩膜基板划分为多个像素区;每个所述像素区中均包括多个不同颜色的所述彩色滤光片,所述第一电极层包括多个第一电极,所述第二电极层包括多个第二电极,所述多个第二电极中的一个被配置为驱动一个像素区中多个不同颜色的所述彩色滤光片对应的遮光粒子,所述多个第一电极中的多个电极被配置为分别驱动一个像素区中的多个不同颜色的所述彩色滤光片对应的遮光粒子。
在一些实施例中,所述第一电极层设置在所述彩色滤光层靠近所述第一基底的一侧;所述第二电极层设置在所述彩色滤光层远离所述第一基底的一侧。
在一些实施例中,所述一个像素区中的多个不同颜色的所述彩色滤光片均为扇形并组合形成环形,用于驱动该像素区中与各个彩色滤光片对应的遮光粒子的各第一电极在所述第一基底上的正投影位于该像素区中多个不同颜色的所述彩色滤光片的周边区域在所述第一基底上的正投影中;用于驱动该像素区中与多个不同颜色的所述彩色滤光片对应的遮光粒子的第二电极在所述第一基底上的正投影位于该像素区中多个不同颜色的所述彩色滤光片组成的环形的中间区域在所述第一基底上的正投影中。
在一些实施例中,所述一个像素区中的多个不同颜色的所述彩色滤光片组成的环形的中间区域设置有黑矩阵。
在一些实施例中,所述第一电极层和所述第二电极层均由氧化铟锡制成。
在一些实施例中,所述彩色滤光层包括多个滤光片组合,针对每个像素区设置有一个滤光片组合,每个所述滤光片组合包括 多种不同颜色的彩色滤光片.
在一些实施例中,每个所述滤光片组合中的不同颜色滤光片具有相同的尺寸,并且,针对每个滤光片设置有相同数量的遮光粒子。
在一些实施例中,每个所述像素区中的多个不同颜色的所述彩色滤光片包括红色滤光片、绿色滤光片、蓝色滤光片。
根据本公开的一个方面,提供了一种显示装置,包括以上所述的彩膜基板以及与所述彩膜基板相对设置的阵列基板。
在一些实施例中,所述彩膜基板划分为多个像素区;每个所述像素区中均包括多个不同颜色的彩色滤光片;所述阵列基板包括第二基底,以及设置在所述第二基底上的多个发光器件;其中,所述多个发光器件与所述多个像素区对应设置。
在一些实施例中,一个所述发光器件对应一个所述像素区设置。
在一些实施例中,所述发光器件包括Micro LED或者mini LED,并且所述发光器件包括第一极和第二极。
在一些实施例中,所述发光器件以正对像素区内的所述第二电极为中心对称设置。
在一些实施例中,所述阵列基板还包括多个第三电极,用于分别驱动所述多个发光器件发光。
在一些实施例中,多个像素区的多个第二电极分别用作所述多个发光器件的第一极,所述多个像素区的多个第一电极电连接在一起。
根据本公开的一个方面,提供了一种驱动方法,用于驱动以上所述的显示装置,所述方法包括:在第一电极层和第二电极层之间产生第一电场,使得遮光粒子位于不遮挡彩色滤光层透光的限定区域中;在所述第一电极层和所述第二电极层之间产生第二电场,使得所述遮光粒子在所述第一电极层和所述第二电极层之间的电场作用下移动,以控制所述彩色滤光层的透光面积。
在一些实施例中,所述限定区域包括在所述彩色滤光层的一 侧、与每个像素区中的每个彩色滤光片的周边区域在第一基底上的投影重叠对应的区域。
附图说明
图1为根据本公开的实施例的包括彩膜基板和阵列基板的显示装置的结构示意图;
图2为根据本公开的实施例的包括彩膜基板和阵列基板的显示装置的结构示意图;
图3为根据本公开的实施例的彩膜基板的示意图;
图4为根据本公开的实施例的一个像素区的放大图;
图5为根据本公开的实施例的用于显示装置的驱动方法流程图;
图6为根据本公开的实施例的彩膜基板实现红光+蓝光混色的遮光粒子排布示意图;以及
图7为根据本公开的实施例的彩膜基板实现彩色显示的遮光粒子排布示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
目前,Micro LED彩色显示主要还是通过R(红)、G(绿)、B(蓝)三种颜色混光实现,即R、G、B彩色滤光片下分别放置一颗Micro LED灯,通过单颗灯的控制实现灰阶及彩色显示。但是由于Micro LED小的特点造成量产困难。
根据本公开的一个方面,提供了一种彩膜基板,如图1所示,其中的彩膜基板包括:第一基底10;第一电极层12和第二电极层14,其在第一基底10上堆叠设置;彩色滤光层16,其位于第一电极层12和第二电极层14之间;遮光粒子3,其位于彩色滤光层16的一侧,用于在第一电极层12和第二电极层14之间的电场作用下移动,以控制彩色滤光层16的透光面积。
由于本实施例的彩膜基板中增加了遮光粒子,以及控制遮光粒子移动的第一电极层和第二电极层,这样一来,可以通过遮光粒子遮挡彩色滤光层来控制彩色滤光层的透光面积,进而控制透过彩色滤光层的光量。在本公开中,彩色滤光层是透光的,遮光粒子是不透光的,这样,遮光粒子遮挡彩色滤光层时,照射到该遮挡处的光不会透过遮光粒子,对整个彩膜基板来说,等同于该处的彩色滤光层不透光,从而实现了遮光粒子控制彩色滤光层的透光面积。
这样,就无需针对彩色滤光层中的每个滤光片分别设置发光器件来提供光线(即提供不同亮度的光线),仅一个发光器件提供一个亮度的光线就可以得到不同颜色不同亮度的光线。当然,也可以按照已有技术,采用一个发光器件对应一个彩色滤光片的设置方式。
当然,也可以将第一电极层12和第二电极层14设置在彩色滤光层的同侧,遮光粒子3位于第一电极层12和第二电极层14之间,使得遮光粒子3在第一电极层12和第二电极层14形成的电场作用下发生移动。
在一些实施例中,彩色滤光层16通常包括多个彩色滤光片(例如,红色滤光片R、绿色滤光片G、蓝色滤光片B),以及位于任意两相邻彩色滤光片之间的黑矩阵BM。针对多个彩色滤光片中的每一个可以分别设置有遮光粒子,以遮挡相应的彩色滤光片。可以将彩膜基板划分为多个像素区A,每个像素区A中均包括多个不同颜色的彩色滤光片,例如红色滤光片R、绿色滤光片G、蓝色滤光片B,如图3所示。可以将一个像素区中的多个滤光片作为一个组合,这样彩色滤光层可以包括多个滤光片组合。例如一个像素区中的红色滤光片R、绿色滤光片G、蓝色滤光片B可以作为一个组合,并且每个滤光片组合中的不同颜色滤光片具有相同的尺寸,针对每个滤光片可以设置相同数量的遮光粒子,从而有利于对整个彩膜基板上的遮光粒子进行控制。
如图1所示,第一电极层12包括多个第一电极1,第二电极 层14包括多个第二电极2,多个第二电极2中的一个被配置为驱动一个像素区中所有彩色滤光片对应的遮光粒子3,多个第一电极1中的多个电极被配置分别驱动一个像素区中的多个彩色滤光片对应的遮光粒子3。如图4所示,针对一个像素区中的红色滤光片、绿色滤光片、蓝色滤光片分别设置对应的第一电极1,一个像素区中的红色滤光片、绿色滤光片、蓝色滤光片共用一个第二电极2。
将本实施例中的彩膜基板应用至显示装置中,可以将一个发光器件对应彩膜基板中的一个像素区(与对应像素单元)中多个不同颜色滤光片,此时只需控制与每个彩色滤光片对应的第一电极1与第二电极2所形成的电场的强弱,从而控制遮光粒子的移动数量和移动位置,进而控制彩色滤光片的透光面积,以实现通过一个发光器件产生不同颜色不同亮度的光线。本实施例中的彩膜基板可以大大提高发光器件的利用率。
为了更清楚的理解本实施例中的彩膜基板结构,以彩色滤光层包括红色滤光片、绿色滤光片、蓝色滤光片为例进行说明。
如图3所示为根据本公开的一个实施例的一种显示状态下的彩膜基板的示意图。彩膜基板可划分为多个像素区A。该彩膜基板包括第一基底10,以及位于第一基底10上的彩色滤光层。该彩色滤光层包括红、绿、蓝三种不同颜色的彩色滤光片(即:红色滤光片R、绿色滤光片G、蓝色滤光片B),以及位于任意两相邻彩色滤光片之间的黑矩阵BM。每个像素区A中均包括三个彩色滤光片,分别为红色滤光片R、绿色滤光片G、蓝色滤光片B,且这三个彩色滤光片呈环形排布,也即每个彩色滤光片类似扇形。
如图4所示,用于驱动该像素区中与多个不同颜色的彩色滤光片对应的遮光粒子3的各第一电极1在第一基底10上的正投影位于该像素区中各彩色滤光片的周边区域在第一基底上的正投影中;用于驱动该像素区中与多个不同颜色的彩色滤光片对应的遮光粒子3的多个第二电极2在第一基底10上的正投影位于该像素区中多个不同颜色的彩色滤光片组成的环形的中间区域在第一基底10上的正投影中。并且,一个像素区中的多个不同颜色的彩色 滤光片组成的环形的中间区域设置有黑矩阵,这样第二电极2在第一基底10的正投影可落入黑矩阵在第一基底10的正投影中。一个像素区中的每个彩色滤光片的周边区域也设置有黑矩阵,在遮光粒子3不遮挡彩色滤光层16时,遮光粒子3可位于与该周边区域对应位置处。
特别的是,如图1所示,在本实施例的彩膜基板中,在第一基底10与彩色滤光层16之间设置有第一电极层12,该第一电极层包括朝向彩色滤光层16的方向延伸的多个第一电极1。如图4所示,每个第一电极1位于像素区A的周边区域,且与彩色滤光片一一对应设置,也即,每个像素区A中设置三个第一电极1,三个第一电极1呈环形排布。在彩色滤光层16的远离第一基底10的一侧设置有第二电极层14,该第二电极层14包括朝向远离彩色滤光层16的方向延伸的多个第二电极2,每个第二电极位于像素区A的中间区域,且与像素区A一一对应设置,也即每个像素区A中设置一个第二电极2。
在每个像素区A中还设置有遮光粒子3。遮光粒子3在第一电极1和第二电极2之间未形成电场时,遮光粒子3位于彩色滤光片与第一电极1所限定的区域内,例如,遮光粒子3位于彩色滤光层16的一侧、与每个像素中的每个彩色滤光片的周边区域在第一基底10上的投影重叠对应的区域中,如图1所示。在第一电极1和第二电极2之间形成电场后,遮光粒子3在电场的带动下可以向像素区A的中间区域移动。该遮光粒子3可以设置在第一电极层和第二电极层之间的任何膜层,在本实施例中以遮光粒子3位于彩色滤光层16与第二电极层14之间为例,如图1所示。遮光粒子3还可位于彩色滤光层16与第一电极层12之间,如图2所示。
根据本公开的一个方面,提供了一种显示装置。如图1所示,该显示装置包括上述的彩膜基板,以及与该彩膜基板相对设置的阵列基板。阵列基板包括第二基底20,以及设置在第二基底20上的发光器件21,且发光器件21与像素区A一一对应设置,也 即一个发光器件21对应一个像素区A中的红、绿、蓝三种不同颜色的彩色滤光片。如图1所示,在第二基底20与发光器件21之间还设置有第三电极层18,第三电极层18可包括多个第三电极4,用于分别驱动多个发光器件发光。发光器件21包括第一极和第二极。发光器件21的第二极与第三电极层18中的一个第三电极4连接,发光器件21的第一极与第二电极层14中的第二电极2连接,或者可将多个像素区的多个第二电极分别用作多个发光器件21的第一极,多个像素区的多个第一电极电连接在一起。在一个具体示例中,可以将发光器件21以正对像素区内的第二电极2为中心来对称设置,如图1所示。
在此需要说明的是,虽然图1示意的是一个发光器件21对应一个红色滤光片R和一个绿色滤光片G,这只是截面图的角度问题,实际上每一发光器件对应像素区A中的红、绿、蓝三种不同颜色的彩色滤光片。
根据本公开的一个方面,提供了一种驱动方法,如图5所示,该驱动方法用于驱动以上所述的显示装置。
在步骤S110中,在第一电极层和第二电极层之间产生第一电场,使得遮光粒子位于不遮挡彩色滤光层透光的限定区域中。该限定区域为在彩色滤光层的一侧、与每个像素区中的每个彩色滤光片的周边区域在第一基底上的投影重叠对应的区域。然后,在步骤S120中,在第一电极层和第二电极层之间产生第二电场,使得遮光粒子在第一电极层和第二电极层之间的电场作用下移动,以控制彩色滤光层的透光面积。第一电场可为彩色滤光层完全透光时,遮光粒子不遮挡彩色滤光层时所需的电场。第二电场可为显示装置工作时第一电极层和第二电极层之间的电场。针对彩色滤光层中的不同彩色滤光片,通过向各彩色滤光片对应的第一电极和第二电极施加对应的电压来产生所需的电场,进而控制遮光粒子遮挡彩色滤光片的面积。
具体地,将阵列基板上的发光器件21点亮,初始状态,向一个像素区中的三个第一电极1施加与第二电极2上相同的电压, 以使第一电极1和第二电极2之间无电场(即电场强度为零),遮光粒子3则位于限定区域中,此时遮光粒子3实现图4所示状态,该像素单元发白光。
当然,若已知遮光粒子3带正电荷,初始状态时,也可以控制向第一电极1加载负电压,向第二电极2不加载电压或者加载正电压,利用电荷同性相斥异性相吸原理,控制遮光粒子3位于限定区域中,该像素单元发白光。
对于实现一个像素单元中任意两种颜色的光混色的彩色显示时,例如红光+蓝光的显示。此时,可以控制向红色滤光片R和蓝色滤光片B对应的第一电极1与第二电极2加载相同电位,此时遮光粒子3不移动保持初始位置。控制绿色滤光片G所对应的第一电极1和第二电极2加载不同的电压,以使二者之间产生电场,以使遮光粒子3移动至绿色滤光片G所在区域,此时绿色滤光片G所在区域不透光,即实现一个像素单元中红光+蓝光的显示,也即如图6所示。
当然,若已知遮光粒子3带正电荷,此时不向红色滤光片R和蓝色滤光片B对应的第一电极1和第二电极2加电,而向绿色滤光片G对应的第一电极1加载正电压,以使该第一电极1带正电荷,利用同性相斥异性相吸原理,控制遮光粒子3向绿色滤光片G所在区域移动,此时绿色滤光片G所在区域不透光,即实现一个像素单元中红光+蓝光的显示,也即如图6所示。
对于一个像素单元中部分彩色滤光片的部分区域被遮光粒子3遮挡,以实现彩色显示,以红色滤光片R和绿色滤光片G的部分区域被遮光粒子3遮挡为例进行说明。此时,可以控制蓝色滤光片B对应的第一电极1与第二电极2加载相同电位,此时遮光粒子3不移动保持初始位置;控制红色滤光片R和绿色滤光片G所对应的第一电极1和第二电极2加载不同的电压,以使二者之间产生电场,以使遮光粒子3向红色滤光片R和绿色滤光片G所在区域移动,同时控制施加在红色滤光片R和绿色滤光片G所对应的第一电极1上的电压大小,以控制遮光粒子3的移动数量, 从而控制红色滤光片R和绿色滤光片G的透光面积,以实现彩色显示,也即如图7所示。
当然,也可以通过控制第二电极2和蓝色滤光片B所对应的第一电极1具有相同的电量,以控制蓝色滤光片B对应的遮光粒子3保持初始位置,通过控制红色滤光片R和绿色滤光片G所对应的第一电极1上电量大小,以控制遮光粒子3的移动数量,从而控制红色滤光片R和绿色滤光片G的透光面积,以实现彩色显示,也即如图7所示。
综上,在本实施例所提供的显示装置中,阵列基板上的一个发光器件21则可以对应彩膜基板上的一个像素区A中的三种不同颜色的彩色滤光片,此时只需控制与每个彩色滤光片对应的第一电极1与第二电极2所形成的电场的强弱(或者电荷电量的大小),从而控制遮光粒子3的移动数量和移动位置,进而控制彩色滤光片的透光面积,以实现一个发光器件21对不同颜色的光线的控制,实现不同灰阶的控制。
其中,在本实施例中,发光器件21具体可以是Micro LED或者mini LED。当然,也可以采用其他的发光元件,例如LED、OLED等。
其中,在本实施例中,第一电极层12和第二电极层14的材料均包括透明导电材料,例如氧化铟锡等。
其中,在本实施例中遮光粒子3的材料具体可以是所电离处理过的各种金属离子,具体包括但不限于Cu2+铜离子、Fe2+亚铁离子、Ni2+镍离子、Cr3+铬离子、Au3+金离子等等。
在此需要说明的是,本实施例的彩膜基板中,每个像素区A中的彩色滤光片可以不是呈环形排布的,也可以采用沿行方向或者列方向排布,此时每个像素区A中的彩色滤光片可以分别对应不同的第二电极2,工作原理与上述结构的工作原理相类似,不再详细描述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领 域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种彩膜基板,包括:
    第一基底;
    第一电极层和第二电极层,其在所述第一基底上堆叠设置;
    彩色滤光层,其位于所述第一电极层和所述第二电极层之间;以及
    遮光粒子,其位于所述彩色滤光层的一侧,用于在所述第一电极层和所述第二电极层之间的电场作用下移动,以控制所述彩色滤光层的透光面积。
  2. 根据权利要求1所述的彩膜基板,其中,
    所述遮光粒子位于所述第一电极层与所述彩色滤光层之间;或者,
    所述遮光粒子位于所述第二电极层与所述彩色滤光层之间。
  3. 根据权利要求2所述的彩膜基板,其中,所述遮光粒子包括带电金属离子。
  4. 根据权利要求1-3中任一项所述的彩膜基板,其中,
    所述彩色滤光层包括多个彩色滤光片以及任意两相邻所述彩色滤光片之间的黑矩阵,针对所述彩色滤光层的所述多个彩色滤光片中的每一个分别设置有所述遮光粒子,
    所述彩膜基板划分为多个像素区;每个所述像素区中均包括多个不同颜色的所述彩色滤光片,
    所述第一电极层包括多个第一电极,所述第二电极层包括多个第二电极,所述多个第二电极中的一个被配置为驱动一个像素区中多个不同颜色的所述彩色滤光片对应的遮光粒子,所述多个第一电极中的多个电极被配置为分别驱动一个像素区中的多个不 同颜色的所述彩色滤光片对应的遮光粒子。
  5. 根据权利要求4所述的彩膜基板,其中,所述第一电极层设置在所述彩色滤光层靠近所述第一基底的一侧;所述第二电极层设置在所述彩色滤光层远离所述第一基底的一侧。
  6. 根据权利要求5所述的彩膜基板,其中,所述一个像素区中的多个不同颜色的所述彩色滤光片均为扇形并组合形成环形,用于驱动该像素区中与各个彩色滤光片对应的遮光粒子的各第一电极在所述第一基底上的正投影位于该像素区中多个不同颜色的所述彩色滤光片的周边区域在所述第一基底上的正投影中;用于驱动该像素区中与多个不同颜色的所述彩色滤光片对应的遮光粒子的第二电极在所述第一基底上的正投影位于该像素区中多个不同颜色的所述彩色滤光片组成的环形的中间区域在所述第一基底上的正投影中。
  7. 根据权利要求6所述的彩膜基板,其中,所述一个像素区中的多个不同颜色的所述彩色滤光片组成的环形的中间区域设置有黑矩阵。
  8. 根据权利要求7所述的彩膜基板,其中,所述第一电极层和所述第二电极层均由氧化铟锡制成。
  9. 根据权利要求6所述的彩膜基板,其中,所述彩色滤光层包括多个滤光片组合,针对每个像素区设置有一个滤光片组合,每个所述滤光片组合包括多种不同颜色的彩色滤光片.
  10. 根据权利要求9所述的彩膜基板,其中,每个所述滤光片组合中的不同颜色滤光片具有相同的尺寸,并且,针对每个滤光片设置有相同数量的遮光粒子。
  11. 根据权利要求9或10所述的彩膜基板,其中,每个所述像素区中的多个不同颜色的所述彩色滤光片包括红色滤光片、绿色滤光片、蓝色滤光片。
  12. 一种显示装置,包括权利要求1-11中任意一项所述的彩膜基板以及与所述彩膜基板相对设置的阵列基板。
  13. 根据权利要求12所述的显示装置,其中,所述彩膜基板划分为多个像素区;每个所述像素区中均包括多个不同颜色的彩色滤光片;所述阵列基板包括第二基底,以及设置在所述第二基底上的多个发光器件;其中,所述多个发光器件与所述多个像素区对应设置。
  14. 根据权利要求13所述的显示装置,其中,一个所述发光器件对应一个所述像素区设置。
  15. 根据权利要求14所述的显示装置,其中,所述发光器件包括Micro LED或者mini LED,并且所述发光器件包括第一极和第二极。
  16. 根据权利要求15所述的显示装置,其中,所述发光器件以正对像素区内的所述第二电极为中心对称设置。
  17. 根据权利要求16所述的显示装置,其中,所述阵列基板还包括多个第三电极,用于分别驱动所述多个发光器件发光。
  18. 根据权利要求17所述的显示装置,其中,多个像素区的多个第二电极分别用作所述多个发光器件的第一极,所述多个像素区的多个第一电极电连接在一起。
  19. 一种驱动方法,用于驱动权利要求12-18中任一项所述的显示装置,所述方法包括:
    在第一电极层和第二电极层之间产生第一电场,使得遮光粒子位于不遮挡彩色滤光层透光的限定区域中;
    在所述第一电极层和所述第二电极层之间产生第二电场,使得所述遮光粒子在所述第一电极层和所述第二电极层之间的电场作用下移动,以控制所述彩色滤光层的透光面积。
  20. 根据权利要求19所述的方法,其中,所述限定区域包括在所述彩色滤光层的一侧、与每个像素区中的每个彩色滤光片的周边区域在第一基底上的投影重叠对应的区域。
PCT/CN2020/079923 2019-03-26 2020-03-18 彩膜基板、显示装置及其驱动方法 WO2020192522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910231441.5A CN109799561B (zh) 2019-03-26 2019-03-26 彩膜基板及显示装置
CN201910231441.5 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020192522A1 true WO2020192522A1 (zh) 2020-10-01

Family

ID=66563219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079923 WO2020192522A1 (zh) 2019-03-26 2020-03-18 彩膜基板、显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN109799561B (zh)
WO (1) WO2020192522A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799561B (zh) * 2019-03-26 2021-08-27 京东方科技集团股份有限公司 彩膜基板及显示装置
CN112310187A (zh) * 2020-11-03 2021-02-02 中山大学 彩色滤光元件、显示面板和显示调节装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879946A (zh) * 2012-09-26 2013-01-16 京东方科技集团股份有限公司 彩膜基板、液晶面板及彩膜基板的制备方法
US20140085705A1 (en) * 2012-09-24 2014-03-27 Electronics And Telecommunications Research Institute Color electronic paper display and method of fabricating the same
CN103869531A (zh) * 2012-12-10 2014-06-18 上海天马微电子有限公司 彩膜基板及其制造方法
CN109031762A (zh) * 2018-08-23 2018-12-18 合肥京东方光电科技有限公司 显示面板及其驱动方法、显示装置
CN109061958A (zh) * 2018-08-30 2018-12-21 京东方科技集团股份有限公司 一种掩膜版及其控制方法
CN109799561A (zh) * 2019-03-26 2019-05-24 京东方科技集团股份有限公司 彩膜基板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808384B (zh) * 2015-05-22 2017-07-04 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示面板、显示装置
CN205539855U (zh) * 2016-01-06 2016-08-31 成都京东方光电科技有限公司 一种显示基板、显示面板及显示装置
CN105789256A (zh) * 2016-03-18 2016-07-20 京东方科技集团股份有限公司 一种 oled 双面显示基板、制作方法及显示器
CN107589600B (zh) * 2017-09-22 2021-03-02 京东方科技集团股份有限公司 一种像素结构、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140085705A1 (en) * 2012-09-24 2014-03-27 Electronics And Telecommunications Research Institute Color electronic paper display and method of fabricating the same
CN102879946A (zh) * 2012-09-26 2013-01-16 京东方科技集团股份有限公司 彩膜基板、液晶面板及彩膜基板的制备方法
CN103869531A (zh) * 2012-12-10 2014-06-18 上海天马微电子有限公司 彩膜基板及其制造方法
CN109031762A (zh) * 2018-08-23 2018-12-18 合肥京东方光电科技有限公司 显示面板及其驱动方法、显示装置
CN109061958A (zh) * 2018-08-30 2018-12-21 京东方科技集团股份有限公司 一种掩膜版及其控制方法
CN109799561A (zh) * 2019-03-26 2019-05-24 京东方科技集团股份有限公司 彩膜基板及显示装置

Also Published As

Publication number Publication date
CN109799561A (zh) 2019-05-24
CN109799561B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
JP7229359B2 (ja) 表示基板、表示パネル及び表示装置
KR100817577B1 (ko) 탄소 나노튜브 전계방출 표시장치
US11289564B2 (en) Double-sided display panel and method for manufacturing the same
CN108933153A (zh) 显示面板及其制作方法、显示装置
CN110148621A (zh) 透明显示基板、阵列基板、显示面板及显示装置
JP2018125295A (ja) 有機発光表示装置及びその製造方法
US20120069064A1 (en) Display device and method of manufacture thereof
WO2021057095A1 (zh) 透明显示基板、透明显示面板及显示装置
US8981391B2 (en) Display panel with high transparency
WO2020192522A1 (zh) 彩膜基板、显示装置及其驱动方法
RU2007137098A (ru) Светозадерживающее дисплейное устройство с управляющим электрическим полем
WO2020133755A1 (zh) 一种显示面板
CN108258140A (zh) 有机发光装置
CN110085645B (zh) 显示装置
CN111987120A (zh) 像素显示组件、屏幕显示组件、显示屏及终端
CN108831319B (zh) 微led显示器件
TW200428082A (en) Display device and method for driving same
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
CN109473464A (zh) 一种显示面板及其制备方法
KR20040075282A (ko) 방출성의 고정된 포멧 디스플레이에 대한 디스플레이 소자어레이
CN111048655B (zh) 发光二极管芯片、显示面板及其制备方法和显示装置
US11289463B2 (en) Display panel
TWI687742B (zh) 顯示裝置
CN114551763A (zh) 显示基板及显示装置
CN113140610B (zh) 显示面板和显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778661

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20778661

Country of ref document: EP

Kind code of ref document: A1