WO2020192145A1 - 用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质 - Google Patents

用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020192145A1
WO2020192145A1 PCT/CN2019/118547 CN2019118547W WO2020192145A1 WO 2020192145 A1 WO2020192145 A1 WO 2020192145A1 CN 2019118547 W CN2019118547 W CN 2019118547W WO 2020192145 A1 WO2020192145 A1 WO 2020192145A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal power
power unit
equivalent impedance
unit module
uhv
Prior art date
Application number
PCT/CN2019/118547
Other languages
English (en)
French (fr)
Inventor
王铁柱
牛拴保
郭剑波
马士聪
孙华东
赵兵
柯贤波
王吉利
汪梦军
曾思成
张曦
王姗姗
吴萍
Original Assignee
中国电力科学研究院有限公司
国家电网公司西北分部
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网公司西北分部, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2020192145A1 publication Critical patent/WO2020192145A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • This application relates to the technical field of power system operation control, for example, to a method, device, equipment, and storage medium for determining the number of startups of an UHV DC transmission end AC system.
  • UHV DC transmission has point-to-point, ultra-long-distance, large-capacity power transmission capabilities, and is a core technology to solve the problem of reverse distribution of energy and power loads.
  • the UHVDC commutation failure or the blocking fault occurs, it will bring a large power disturbance to the sending-end power grid, and accompanied by transient overvoltage, it may cause nearby new energy units
  • the network was disconnected due to insufficient high-pressure resistance.
  • the transient overvoltage problem at the sending end caused by UHV DC power disturbance has become the main factor restricting the DC transmission capacity. This problem can be effectively alleviated by supporting thermal power units at the UHV DC transmission end.
  • the engineering mainly adopts the method of simulation analysis to calculate the transient voltage rise, and there is no effective theoretical calculation method; for the minimum number of power-on units of the nearby thermal power unit To be sure, the engineering also mainly adopts the method of simulation analysis and trial and error, and the workload is huge.
  • This application provides a method, device, equipment and storage medium for determining the number of start-ups of the UHV DC transmission end AC system to solve how to determine the minimum of the UHV DC transmission end thermal power unit under transient overvoltage conditions. The number of boot problems.
  • the UHV DC transmission end AC system includes: an AC main network module and a thermal power unit module, the AC main network module and all The thermal power unit modules are all connected to a converter, and the connection point between the AC main network module and the thermal power unit module and the converter is a UHV DC transmission end, and the method includes:
  • the equivalent impedance of the single branch system is determined according to the parameters of the currently powered-on unit in the thermal power unit module, and the equivalent impedance of the single branch system Calculating the transient voltage rise of the converter based on impedance; wherein, the single branch system is an equivalent circuit of the UHV DC transmission end AC system;
  • the transient pressure rise expression of the converter is obtained, and it is determined that the transient pressure rise expression corresponds to The maximum value of the equivalent impedance of the single branch system under the condition that the transient voltage rise does not exceed the preset maximum voltage rise threshold, wherein the single branch system is the UHV DC transmission end Equivalent circuit of AC system;
  • the minimum number of power-on units of the thermal power unit module is determined when the equivalent impedance of the thermal power unit module does not exceed the maximum equivalent impedance of the thermal power unit module.
  • the UHV DC transmission end AC system includes: an AC main network module and a thermal power unit module, the AC main network module and The thermal power unit modules are all connected to a converter, and the connection point between the AC main network module and the thermal power unit module and the converter is a UHV DC transmission end, and the device includes:
  • the transient voltage rise calculation unit is configured to calculate the equivalent impedance of the single branch system according to the parameters of the currently powered-on unit in the thermal power unit module in the case of power disturbances in the UHV DC transmission end AC system, and Calculate the transient voltage rise of the converter according to the equivalent impedance of the single branch system; wherein, the single branch system is the equivalent circuit of the UHV DC transmission end AC system;
  • the maximum value determining unit of the equivalent impedance is configured to obtain the transient voltage rise expression of the converter when the calculated transient voltage rise is greater than or equal to the preset maximum voltage rise threshold, and Determine the maximum value of the equivalent impedance of the single-branch system when the transient pressure rise corresponding to the transient pressure rise expression does not exceed the preset maximum pressure rise threshold, wherein the single branch system
  • the branch circuit system is the equivalent circuit of the UHV DC sending end AC system
  • the maximum equivalent impedance calculation unit of the thermal power unit module is configured to calculate the maximum equivalent impedance of the thermal power unit module according to the maximum value of the equivalent impedance
  • the minimum power-on quantity determining unit is configured to determine, according to the parameters of the thermal power unit module, the thermal power unit in the thermal power unit module when the equivalent impedance of the thermal power unit module does not exceed the maximum equivalent impedance of the thermal power unit module The minimum number of units to start up.
  • the present application also provides a device including a processor and a memory, and a computer program is stored on the memory, and the computer program is executed by the processor to implement the method described in any embodiment of the present application.
  • the present application also provides a computer storage medium storing a computer program, which when executed by the processor implements the method described in any embodiment of the present application.
  • FIG. 1 is a flowchart of a method for determining the number of startups of an UHV DC transmission end AC system according to an embodiment of the application;
  • FIG. 2 is a topological structure diagram of a UHV DC transmission end AC system provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of an equivalent circuit of an UHV DC sending end AC system provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a device for determining the number of startups of an UHV DC sending end AC system provided by an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 1 is a flowchart of a method for determining the number of startups of an UHV DC transmission end AC system according to an embodiment of the application.
  • the method for determining the number of startups of the UHV DC transmission end AC system provided by the embodiment of the present application can determine the minimum number of startups of the UHV DC transmission end AC system in consideration of transient overvoltage. It can be used for the analysis and operation of the actual power grid; and while ensuring the accuracy of the calculation results, it simplifies the difficulty of analysis and calculation, has high engineering applicability, and can effectively ensure the safe and stable operation of the power grid.
  • the UHV DC sending end AC system includes: an AC main network module and a DC nearby thermal power unit module. Both the AC main network module and the thermal power unit module are connected to the converter, and the connection point between the AC main network module and the thermal power unit module and the converter is the UHV DC sending end.
  • Fig. 2 is a topological structure diagram of a UHV DC transmission end AC system provided by an embodiment of the application.
  • the UHV DC transmission end AC system provided by the embodiment of the present application includes two parts: an AC main network module and a thermal power unit module; in Fig.
  • Gen_1 to Gen_N are N thermal power units supporting the nearby area
  • E G1 ⁇ E GN represents the equivalent internal potential of the corresponding unit
  • Z G1 ⁇ Z GN represents the equivalent impedance of the corresponding unit
  • Z T1 ⁇ Z TN represents the equivalent impedance of the corresponding step-up transformer of the corresponding unit
  • Z L represents the thermal power unit to the special
  • U S represents the equivalent internal potential of the AC main network module
  • Z S represents the equivalent impedance of the AC main network module
  • U 2 represents the AC voltage at the UHV DC transmission end
  • P 2 represents the injected UHV
  • Q 2 represents the reactive power injected into the UHV DC sending end
  • P s represents the active power sent by the AC main network module
  • Q s represents the reactive power sent by the AC main network module.
  • FIG. 3 is a schematic diagram of an equivalent circuit of an UHV DC sending end AC system provided by an embodiment of the application.
  • the equivalent circuit includes: U 1 is the internal potential of the equivalent AC system, P 1 represents the active power sent by the equivalent AC system, Q 1 represents the reactive power sent by the equivalent AC system, and Z eq represents Equivalent impedance of an equivalent AC system.
  • R eq is the real part of Z eq
  • X eq is the imaginary part of Z eq.
  • the method provided in the embodiment of the present application includes the following steps.
  • Step 1010 In the case of power disturbance in the UHV DC AC system, determine the equivalent impedance of the single branch system according to the parameters of the currently powered-on unit in the thermal power unit module, and according to the equivalent impedance of the single branch system Calculate the transient pressure rise of the converter.
  • the single branch system is an equivalent circuit of the UHV DC sending end AC system.
  • determining the equivalent impedance of the single branch system according to the parameters of the currently powered-on unit in the thermal power unit module includes: using the following formula Determine the equivalent impedance of a single branch system:
  • Z eq is the equivalent impedance of the single branch system
  • Z Gi is the equivalent impedance of the i-th thermal power unit in the thermal power unit module
  • Z Ti is the equivalent of the step-up transformer corresponding to the i-th thermal power unit in the thermal power unit module
  • Z L is the equivalent impedance of the transmission line from the thermal power unit module to the UHV DC transmission end
  • Z S is the equivalent impedance of the AC main network module
  • N is the current number of thermal power units in the thermal power unit module.
  • calculating the transient voltage rise of the converter according to the equivalent impedance of the single-branch system includes: calculating the transient voltage rise of the converter by the following formula:
  • ⁇ S 2 2 P 21 2 +Q 21 2 -P 2 2 -Q 2 2 ,
  • ⁇ U 2 is the transient voltage rise of the converter
  • U 2 is the AC voltage at the UHV DC sending end
  • P 2 is the active power injected into the UHV DC sending end
  • Q 2 is the inverter at the UHV DC sending end.
  • Power; P 21 and Q 21 are respectively the active power and reactive power injected into the UHV DC transmission end under the condition of power disturbance in the UHV DC transmission end AC system
  • U 1 is the internal potential of the single branch system
  • P 1 Is the active power sent by the single-branch system
  • Q 1 is the reactive power sent by the single-branch system
  • Z eq is the equivalent impedance of the single-branch system.
  • X eq is the imaginary part of Z eq .
  • the method for calculating the transient voltage rise of the converter at the UHV DC transmission end provided by the embodiments of the present application under the condition of UHV DC power disturbance can simplify the difficulty of analysis and calculation while ensuring the accuracy of the calculation result.
  • Step 1020 In the case that the calculated transient pressure rise is greater than or equal to the preset maximum pressure rise threshold, obtain the transient pressure rise expression of the converter, and determine the transient pressure rise expression The maximum value of the equivalent impedance of the single-branch system when the transient voltage rise corresponding to the formula does not exceed the preset maximum voltage rise threshold, wherein the single-branch system is the UHV DC The equivalent circuit of the sending end AC system.
  • the maximum value of the equivalent impedance of the single-branch system when it is determined that the transient pressure rise corresponding to the transient pressure rise expression does not exceed the preset maximum pressure rise threshold includes: the maximum value of the equivalent impedance of the single branch system is determined by the following formula:
  • Z eq MAX is the maximum value of the equivalent impedance of the single branch system
  • max X eq is the transient pressure rise corresponding to the transient pressure rise expression does not exceed the preset maximum pressure rise threshold
  • the maximum value of the imaginary part of Z eq is the preset maximum pressure rise threshold.
  • Step 1030 Calculate the maximum equivalent impedance of the thermal power unit module according to the maximum value of the equivalent impedance.
  • calculating the maximum equivalent impedance of the thermal power unit module according to the maximum value of the equivalent impedance includes: calculating the maximum equivalent impedance of the thermal power unit module by the following formula:
  • Z GeqMAX is the maximum equivalent impedance of the thermal power unit module
  • Z L is the equivalent impedance of the transmission line from the thermal power unit to the UHV DC transmission end module
  • Z S is the equivalent impedance of the AC main network module.
  • Step 1040 Determine, according to the parameters of the thermal power unit module, the minimum number of power-on units of the thermal power unit module when the equivalent impedance of the thermal power unit module does not exceed the maximum equivalent impedance of the thermal power unit module .
  • the minimum value of the thermal power unit module is determined based on the parameters of the thermal power unit module when the equivalent impedance of the thermal power unit module does not exceed the maximum equivalent impedance of the thermal power unit module.
  • the number of start-ups includes: determining the minimum number of start-ups of the thermal power unit in the thermal power unit module through the following formula:
  • minM is the minimum number of power-on units in the thermal power unit module
  • Z Gi is the equivalent impedance of the i-th thermal power unit in the thermal power unit module
  • Z Ti is the i-th thermal power unit in the thermal power unit module The equivalent impedance of the corresponding step-up transformer.
  • the various parameter information of the power system are: the rated voltage of the system is 525kV, the rated power is 1000MW; the equivalent impedance Z s of the AC main network of the UHV DC transmission end AC system is 0.00023+j0.
  • the AC voltage U 2 of the UHV DC transmission end is 0.99pu
  • the active and reactive power P 2 and Q 2 injected into the UHV DC transmission end are 3600MW and 0Mvar respectively; injected when the UHV DC power is disturbed
  • the active power and reactive power P 21 and Q 21 of the UHV DC sending end are 0MW and -2400Mvar respectively
  • 10 thermal power units are equipped in the DC near zone, and the equivalent impedance Z G of each thermal power unit is 0+j0.29p.u ., the equivalent impedance Z T of the step-up transformer of each thermal power unit is 0.0039+j0.18p.u., and the equivalent impedance Z L of the transmission line from the thermal power unit module to the UHV DC transmission end is 0.0001+j0.01p.u. .;
  • the allowable transient voltage rise ⁇ U 2MAX is 0.1pu, then the steps to determine the minimum number of power-on units in the thermal power unit module are as follows:
  • the transient pressure rise ⁇ U 2 can be calculated to be 0.17 pu, and the transient pressure rise at this time exceeds the maximum allowable transient pressure rise ⁇ U 2MAX .
  • the maximum value Z eqMAX of the equivalent impedance of the AC system after the equivalent value can be calculated to be 0+j0.0398p.u.
  • the maximum equivalent impedance Z GeqMAX of the thermal power unit module can be calculated to be 0+j0.0884p.u.
  • FIG. 4 is a schematic structural diagram of a device for determining the number of startups of an UHV DC transmission end AC system provided by an embodiment of the application.
  • the UHV DC sending end AC system includes: an AC main network module and a thermal power unit module, the AC main network module and the thermal power unit module are both connected to a converter, the AC main network module and the thermal power unit module The connection point between the module and the converter is the UHV DC transmission end. As shown in FIG.
  • the device 400 for determining the number of startups of the UHV DC transmission end AC system includes: a transient voltage rise calculation unit 401, a maximum equivalent impedance determination unit 402, The maximum equivalent impedance calculation unit 403 and the minimum power-on quantity determination unit 404 of the thermal power unit module.
  • the transient voltage rise calculation unit 401 is configured to calculate the equivalent impedance of the single branch system according to the parameters of the currently powered-on unit in the thermal power unit module in the case of a power disturbance in the UHV DC transmission end AC system, And calculate the transient voltage rise of the converter according to the equivalent impedance of the single branch system.
  • the single branch system is an equivalent circuit of the UHV DC sending end AC system.
  • the transient voltage rise calculation unit 401 is configured to determine according to the parameters of the currently powered-on unit in the thermal power unit module when a power disturbance occurs in the UHV DC transmission end AC system by using the following formula Equivalent impedance of single branch system:
  • Z eq is the equivalent impedance of the single branch system
  • Z Gi is the equivalent impedance of the i-th thermal power unit in the thermal power unit module
  • Z Ti is the corresponding impedance of the i-th thermal power unit in the thermal power unit module
  • the Z L is the equivalent impedance of the transmission line from the thermal power unit module to the UHV DC transmission end
  • Z S is the equivalent impedance of the AC main network module
  • N is The current number of power-on units of the thermal power unit in the thermal power unit module.
  • the transient voltage rise calculation unit 401 is configured to calculate the transient voltage rise of the converter according to the equivalent impedance of the single branch system by using the following formula:
  • ⁇ S 2 2 P 21 2 +Q 21 2 -P 2 2 -Q 2 2 ,
  • ⁇ U 2 is the transient voltage rise of the converter
  • U 2 is the AC voltage at the UHV DC sending end
  • P 2 is the active power injected into the UHV DC sending end
  • Q 2 is the reactive power injected into the UHV DC sending end
  • P 21 and Q 21 are the active power and reactive power injected into the UHV DC transmission end under the condition of power disturbance in the UHV DC transmission end AC system
  • U 1 is the internal potential of the single branch system
  • P 1 is the single The active power sent by the branch system
  • Q 1 is the reactive power sent by the single branch system
  • Z eq is the equivalent impedance of the single branch system
  • X eq is the imaginary part of Z eq .
  • the maximum value determining unit 402 of the equivalent impedance is configured to obtain the inverter's maximum voltage when the calculated transient voltage rise is greater than or equal to a preset maximum voltage rise threshold.
  • Transient pressure rise expression and determine the maximum value of the equivalent impedance of the single-branch system when the transient pressure rise corresponding to the transient pressure rise expression does not exceed the preset maximum pressure rise threshold, where ,
  • the single branch system is an equivalent circuit of the UHV DC sending end AC system.
  • the maximum value determination unit 402 of the equivalent impedance is configured to determine the maximum value of the equivalent impedance when the transient voltage rise corresponding to the transient voltage rise expression does not exceed a preset maximum voltage rise threshold. value:
  • Z eq MAX is the maximum value of the equivalent impedance of the single-branch system
  • X eqMAX is when the transient pressure rise corresponding to the transient pressure rise expression does not exceed the preset maximum pressure rise threshold
  • Z The maximum value of the imaginary part of eq ; ⁇ U 2MAX is the preset maximum pressure rise threshold.
  • the maximum equivalent impedance calculation unit 403 of the thermal power unit module is configured to calculate the maximum equivalent impedance of the thermal power unit module according to the maximum value of the equivalent impedance.
  • the maximum equivalent impedance calculation unit 403 of the thermal power unit module is configured to calculate the maximum equivalent impedance of the thermal power unit module according to the maximum value of the equivalent impedance through the following formula:
  • Z GeqMAX is the maximum equivalent impedance of the thermal power unit module
  • Z L is the equivalent impedance of the transmission line from the thermal power unit module to the UHV DC transmission end
  • Z S is the equivalent impedance of the AC main network module.
  • the minimum power-on quantity determining unit 404 is configured to determine that the equivalent impedance of the thermal power unit module does not exceed the maximum equivalent value of the thermal power unit module according to the parameters of the thermal power unit module supporting the DC near zone The minimum number of power-on units in the thermal power unit module in the case of impedance.
  • the minimum power-on quantity determining unit 405 is configured to determine that the equivalent impedance of the thermal power unit module does not exceed the maximum equivalent impedance of the thermal power unit module according to the parameters of the thermal power unit module by the following formula The minimum number of power-on units of the thermal power unit in the thermal power unit module:
  • minM is the minimum number of thermal power units in the thermal power unit module
  • Z Gi is the equivalent impedance of the i-th thermal power unit in the thermal power unit module
  • Z Ti is the corresponding value of the i-th thermal power unit in the thermal power unit module The equivalent impedance of the step-up transformer.
  • the device 400 for determining the number of startups of the UHV DC transmission end AC system in the embodiment of the present application corresponds to the method for determining the number of startups of the UHV DC transmission end AC system in another embodiment of the present application. No longer.
  • Figure 5 is a schematic structural diagram of a device provided by an embodiment of the application.
  • the device includes a processor 60 and a memory 61; the number of processors 60 in the device can be one or more, as shown in Figure 5
  • a processor 60 is taken as an example; the processor 60 and the memory 61 in the device may be connected by a bus or other methods, and the connection by a bus is taken as an example in FIG. 6.
  • the memory 61 can be configured to store software programs, computer-executable programs, and modules, such as a method for determining the minimum power-on quantity of the UHV DC transmission end AC system in the embodiment of the present application Corresponding program instructions/modules.
  • the processor 60 executes at least one functional application and data processing of the device by running software programs, instructions, and modules stored in the memory 61.
  • the memory 61 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, etc.
  • the memory 61 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 61 may include a memory remotely provided with respect to the processor 60, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, when the computer-executable instructions are executed by a computer processor, they are used to execute the AC system for determining the UHV DC transmission end provided by any embodiment of the present application.
  • the UHV DC sending end AC system includes: an AC main network module and a thermal power unit module, the AC main network module and the thermal power unit module are both connected to a converter, the AC main The connection point between the grid module and the thermal power unit module and the converter is the UHV DC transmission end, and the method includes: in the case of a power disturbance in the UHV DC transmission end AC system, according to the thermal power
  • the parameters of the currently powered-on unit in the unit module determine the equivalent impedance of the single-branch system, and calculate the transient voltage rise of the converter according to the equivalent impedance of the single-branch system; wherein, the single-branch system Is the equivalent circuit of the UHV DC transmission end AC system; in the case that the calculated transient voltage rise is greater than or equal to the preset maximum voltage rise threshold, the transient voltage rise of the converter is obtained Expression, and determine the maximum value of the equivalent impedance of the single branch system when the transient pressure rise corresponding to the transient pressure rise expression does not
  • the storage medium containing computer-executable instructions provided by this embodiment is not limited to the above-mentioned method operations, and can also execute the method for determining the UHV DC transmission end AC system provided by any embodiment of this application. Related operations in the number of boot methods.
  • This application can be implemented with the help of software and general hardware, or can be implemented with hardware. Based on this understanding, the technical solution of this application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute any of this application
  • a computer device which can be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本文公开了一种用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质,该方法包括:在特高压直流送端交流系统出现功率扰动的情况下,根据当前开机机组的参数确定单支路系统的等值阻抗,根据单支路系统的等值阻抗计算换流器的暂态压升;在计算出的暂态压升大于或等于最大升压阈值的情况下,获取暂态压升表达式,确定在暂态压升表达式对应的暂态压升不超过最大压升阈值的情况下的单支路系统的等值阻抗的最大值;根据等值阻抗的最大值计算火电机组模块的最大等值阻抗;根据火电机组模块的参数确定在火电机组模块的等值阻抗不超过火电机组模块的最大等值阻抗的情况下的火电机组的最小开机数量。

Description

用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质
本申请要求在2019年03月27日提交中国专利局、申请号为201910237602.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力系统运行控制技术领域,例如,涉及一种用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质。
背景技术
特高压直流输电具备点对点、超远距离、大容量送电能力,是解决能源与电力负荷逆向分布问题的核心技术。在电网实际运行过程中,当特高压直流发生换相失败或发生闭锁故障时,将会给送端电网带来较大的功率扰动,并伴随发生暂态过电压,可能引起近区新能源机组因耐高压能力不足而脱网。特高压直流功率扰动引起的送端暂态过电压问题成为制约直流输送能力的主要因素。通过在特高压直流送端配套火电机组,可以有效缓解该问题。
对于大容量特高压直流功率扰动引起的送端暂态过电压问题,工程上主要采取仿真分析的方法计算暂态压升,缺乏有效的理论计算方法;对于近区配套火电机组的最小开机数的确定,工程上也主要采用仿真分析加试凑的方法,工作量巨大。
因此,需要一种确定特高压直流送端的火电机组的最小开机数量的方法,以通过有效的理论计算方法,确定考虑暂态过电压的特高压直流送端的火电机组的开机数量,保障电网的安全、稳定运行。
发明内容
本申请提供了一种用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质,以解决如何确定暂态过电压工况时的特高压直流送端的火电机组的最小开机数量的问题。
本申请提供了一种用于确定特高压直流送端交流系统的开机数量的方法,所述特高压直流送端交流系统包括:交流主网模块和火电机组模块,所述交流主网模块和所述火电机组模块均与换流器连接,所述交流主网模块和所述火电机组模块与所述换流器的连接点为特高压直流送端,所述方法包括:
计算在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火 电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升;其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;
在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;
根据所述等值阻抗的最大值计算所述火电机组模块的最大等值阻抗;
根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
本申请还提供了一种用于确定特高压直流送端交流系统的开机数量的装置,所述特高压直流送端交流系统包括:交流主网模块和火电机组模块,所述交流主网模块和所述火电机组模块均与换流器连接,所述交流主网模块和所述火电机组模块与所述换流器的连接点为特高压直流送端,所述装置包括:
暂态压升计算单元,设置为计算在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升;其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;
等值阻抗的最大值确定单元,设置为在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;
火电机组模块的最大等值阻抗计算单元,设置为根据所述等值阻抗的最大值计算所述火电机组模块的最大等值阻抗;
最小开机数量确定单元,设置为根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
本申请还提供了一种设备,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时实现本申请任意实施例所述的方法。
本申请还提供了一种计算机存储介质,存储有计算机程序,所述计算机程 序被所述处理器执行时实现本申请任意实施例所述的方法。
附图说明
图1为本申请实施例提供的一种用于确定特高压直流送端交流系统的开机数量的方法的流程图;
图2为本申请实施例提供的一种特高压直流送端交流系统拓扑结构图;
图3为本申请实施例提供的一种特高压直流送端交流系统等值电路示意图;
图4为本申请实施例提供的一种用于确定特高压直流送端交流系统的开机数量的装置的结构示意图;
图5为本申请实施例提供的一种设备的结构示意图。
具体实施方式
参考附图介绍本申请的示例性实施方式,本申请可以用许多不同的形式来实施,并且不局限于本文描述的实施例,提供这些实施例是为了公开本申请。对于表示在附图中的示例性实施方式中的术语并不是对本申请的限定。在附图中,相同的单元/元件使用相同的附图标记。
本文使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图1为本申请实施例提供的一种用于确定特高压直流送端交流系统的开机数量的方法的流程图。如图1所示,本申请的实施方式提供的用于确定特高压直流送端交流系统的开机数量的方法能够在考虑暂态过电压的情况下确定特高压直流送端交流系统的最小开机数量,可用于实际电网的分析和运行;并且在保证计算结果准确性的同时,简化了分析计算难度,具有较高的工程适用性,能够有效地保障电网的安全、稳定运行。
本实施例中,所述特高压直流送端交流系统包括:交流主网模块和直流近区配套火电机组模块。交流主网模块和火电机组模块均与换流器连接,交流主网模块和所述火电机组模块与换流器的连接点为特高压直流送端。
图2为本申请实施例提供的一种特高压直流送端交流系统拓扑结构图。如图2所示,本申请的实施方式提供的特高压直流送端交流系统包括交流主网模块和火电机组模块两部分;图2中,Gen_1~Gen_N为近区配套的N台火电机组,E G1~E GN表示相应机组的等值内电势,Z G1~Z GN表示相应机组的等值阻抗,Z T1~Z TN表示相应机组对应升压变压器的等值阻抗,Z L表示火电机组至特高压 直流送端的输电线路等值阻抗,U S表示交流主网模块等值内电势,Z S表示交流主网模块等值阻抗,U 2表示特高压直流送端的交流电压,P 2表示注入特高压直流送端的有功功率,Q 2表示注入特高压直流送端的无功功率,P s表示交流主网模块送出的有功功率,Q s表示交流主网模块送出的无功功率。
图3为本申请实施例提供的一种特高压直流送端交流系统等值电路示意图。如图3所示,等值电路包括:U 1为等值交流系统的内电势,P 1表示等值交流系统送出的有功功率,Q 1表示等值交流系统送出的无功功率,Z eq表示等值交流系统的等值阻抗。
本实施例中,在等值电路中,U 1、P 1、Q 1、Z eq的取值根据下述公式计算:
Figure PCTCN2019118547-appb-000001
上述公式中,R eq为Z eq的实部,X eq为Z eq的虚部。
参见图1,本申请实施例提供的方法包括如下步骤。
步骤1010,在特高压直流交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升。
本实施例中,单支路系统为所述特高压直流送端交流系统的等值电路。
在一实施例中,在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,包括:通过如下公式确定单支路系统的等值阻抗:
Figure PCTCN2019118547-appb-000002
其中,Z eq为单支路系统的等值阻抗,Z Gi为火电机组模块中第i组火电机组 的等值阻抗,Z Ti为火电机组模块中第i组火电机组对应的升压变压器的等值阻抗,所述Z L为火电机组模块至特高压直流送端的输电线路的等值阻抗,Z S为交流主网模块的等值阻抗,N为火电机组模块中火电机组的当前开机数量。
一实施例中,根据所述单支路系统的等值阻抗计算所述换流器的暂态压升,包括:通过如下公式计算换流器的暂态压升:
Figure PCTCN2019118547-appb-000003
ΔP 2=P 21-P 2
ΔQ 2=Q 21-Q 2
ΔS 2 2=P 21 2+Q 21 2-P 2 2-Q 2 2
上述公式中,△U 2为换流器的暂态压升;U 2为特高压直流送端的交流电压;P 2为注入特高压直流送端的有功功率;Q 2为注入特高压直流送端的无功功率;P 21、Q 21分别为在特高压直流送端交流系统出现功率扰动的情况下注入特高压直流送端的有功功率和无功功率;U 1为单支路系统的内电势;P 1为单支路系统送出的有功功率;Q 1为单支路系统送出的无功功率;Z eq为单支路系统的等值阻抗X eq为Z eq的虚部。
本申请的实施方式提供的在特高压直流功率扰动的情况下,特高压直流送端的换流器的暂态压升的计算方法,可以在保证计算结果准确性的同时,简化分析计算难度。
步骤1020,在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,其中,所述单支路系统为所述特高压直流送端交流系统的等值电路。
一实施例中,所述在确定所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,包括:通过如下公式确定所述单支路系统的等值阻抗的最大值:
Z eqMAX=max X eq
Figure PCTCN2019118547-appb-000004
上述公式中,Z eq MAX为单支路系统的等值阻抗的最大值;max X eq为在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下,Z eq的虚部的最大值;△U 2MAX为预设的最大压升阈值。
步骤1030,根据所述等值阻抗的最大值计算火电机组模块的最大等值阻抗。
一实施例中,所述根据所述等值阻抗的最大值计算火电机组模块的最大等值阻抗,包括:通过如下公式计算火电机组模块的最大等值阻抗:
Figure PCTCN2019118547-appb-000005
上述公式中,Z GeqMAX为火电机组模块的最大等值阻抗;Z L为火电机组至特高压直流送端模块的输电线路的等值阻抗;Z S为交流主网模块的等值阻抗。
步骤1040,根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
一实施例中,所述根据所述火电机组模块的参数,确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块的最小开机数量,包括:通过如下公式确定所述火电机组模块中火电机组的最小开机数量:
Figure PCTCN2019118547-appb-000006
上述公式中,minM为火电机组模块中火电机组的最小开机数量;Z Gi为所述火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述火电机组模块中第i组火电机组对应的升压变压器的等值阻抗。以下举例说明本申请的实施方式
在本申请的实施方式中,电力系统的多种参数信息分别为:系统额定电压为525kV,额定功率为1000MW;特高压直流送端交流系统的交流主网等值阻抗Z s为0.00023+j0.0668p.u.;特高压直流送端的交流电压U 2为0.99p.u.;初始时注入特高压直流送端的有功功率和无功功率P 2、Q 2分别为3600MW、0Mvar;特高压直流功率扰动时注入特高压直流送端的有功功率和无功功率P 21、Q 21分别为0MW、-2400Mvar;直流近区配套10台火电机组,每台火电机组等值阻抗Z G均为0+j0.29p.u.,每台火电机组的升压变压器等值阻抗Z T均为0.0039+j0.18p.u.,火电机组模块至特高压直流送端的输电线路等值阻抗Z L为 0.0001+j0.01p.u.;允许的暂态压升△U 2MAX为0.1p.u.,则确定火电机组模块中火电机组的最小开机数量的步骤如下:
S10,利用公式(1)计算得到等值后的交流系统的内电势U 1为1.02p.u.,等值后的交流系统送出的有功功率P 1为3636MW;等值后的交流系统送出的无功功率Q 1为896Mvar。
Figure PCTCN2019118547-appb-000007
S20,利用公式(2)至(5)可以计算得到暂态压升△U 2为0.17p.u.,此时暂态压升超过了允许的最大暂态压升△U 2MAX
Figure PCTCN2019118547-appb-000008
ΔP 2=P 21-P 2   (3)
ΔQ 2=Q 21-Q 2    (4)
ΔS 2 2=P 21 2+Q 21 2-P 2 2-Q 2 2    (5)
S30,利用公式(6)至(7)可以计算得到等值后的交流系统的等值阻抗的最大值Z eqMAX为0+j0.0398p.u.。
Z eqMAX=max X eq   (6)
Figure PCTCN2019118547-appb-000009
S40,利用公式(8)可以计算得到火电机组模块的最大等值阻抗Z GeqMAX为0+j0.0884p.u.。
Figure PCTCN2019118547-appb-000010
S50,利用公式(9)可以计算得到最小开机台数为6台。
Figure PCTCN2019118547-appb-000011
图4为本申请实施例提供的一种用于确定特高压直流送端交流系统的开机数量的装置的结构示意图。所述特高压直流送端交流系统包括:交流主网模块和火电机组模块,所述交流主网模块和所述火电机组模块均与换流器连接,所述交流主网模块和所述火电机组模块与所述换流器的连接点为特高压直流送端。如图4所示,本申请的实施方式提供的用于确定特高压直流送端交流系统的开机数量的装置400,包括:暂态压升计算单元401、等值阻抗的最大值确定单元402、火电机组模块的最大等值阻抗计算单元403和最小开机数量确定单元404。
所述暂态压升计算单元401,设置为计算在特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升。
本实施例中,所述单支路系统为所述特高压直流送端交流系统的等值电路。
一实施例中,所述暂态压升计算单元401是设置为通过如下公式在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗:
Figure PCTCN2019118547-appb-000012
其中,Z eq为所述单支路系统的等值阻抗,Z Gi为所述火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述火电机组模块中第i组火电机组对应的升压变压器的等值阻抗,所述Z L为所述火电机组模块至所述特高压直流送端的输电线路的等值阻抗,Z S为所述交流主网模块的等值阻抗,N为所述火电机组模块中火电机组的当前开机数量。
一实施例中,所述暂态压升计算单元401是设置为通过如下公式根据所述 单支路系统的等值阻抗计算所述换流器的暂态压升:
Figure PCTCN2019118547-appb-000013
ΔP 2=P 21-P 2
ΔQ 2=Q 21-Q 2
ΔS 2 2=P 21 2+Q 21 2-P 2 2-Q 2 2
其中,△U 2为换流器的暂态压升;U 2为特高压直流送端的交流电压;P 2为注入特高压直流送端的有功功率;Q 2为注入特高压直流送端的无功功率;P 21、Q 21分别为在特高压直流送端交流系统出现功率扰动的情况下注入特高压直流送端的有功功率和无功功率;U 1为单支路系统的内电势;P 1为单支路系统送出的有功功率;Q 1为单支路系统送出的无功功率;Z eq为单支路系统的等值阻抗,X eq为Z eq的虚部。
本施例中,所述等值阻抗的最大值确定单元402,设置为在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定在所述暂态压升表达式对应的暂态压升不超过预设的最大压升阈值的情况下的单支路系统的等值阻抗的最大值,其中,所述单支路系统为所述特高压直流送端交流系统的等值电路。
一实施例中,所述等值阻抗的最大值确定单元402是设置为确定所述暂态压升表达式对应的暂态压升不超过预设的最大压升阈值时的等值阻抗的最大值:
Z eqMAX=max X eq
Figure PCTCN2019118547-appb-000014
其中,Z eq MAX为单支路系统的等值阻抗的最大值;X eqMAX为在所述暂态压升表达式对应的暂态压升不超过预设的最大压升阈值的情况下,Z eq的虚部的最大值;△U 2MAX为预设的最大压升阈值。
本实施例中,所述火电机组模块的最大等值阻抗计算单元403,设置为根据所述等值阻抗的最大值计算火电机组模块的最大等值阻抗。
一实施例中,所述火电机组模块的最大等值阻抗计算单元403是设置为通 过如下公式根据所述等值阻抗的最大值计算火电机组模块的最大等值阻抗:
Figure PCTCN2019118547-appb-000015
其中,Z GeqMAX为火电机组模块的最大等值阻抗;Z L为火电机组模块至特高压直流送端的输电线路的等值阻抗;Z S为交流主网模块的等值阻抗。
本实施例中,所述最小开机数量确定单元404,设置为根据所述直流近区配套火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
一实施例中,所述最小开机数量确定单元405是设置为通过如下公式根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下火电机组模块中火电机组的的最小开机数量:
Figure PCTCN2019118547-appb-000016
其中,minM为火电机组模块中火电机组的最小开机数量;Z Gi为所述火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述火电机组模块中第i组火电机组对应的升压变压器的等值阻抗。
本申请的实施例的用于确定特高压直流送端交流系统的开机数量的装置400与本申请的另一个实施例的用于确定特高压直流送端交流系统的开机数量的方法相对应,本文不再赘述。
图5为本申请实施例提供的一种设备的结构示意图,如图5所示,该设备包括处理器60和存储器61;设备中处理器60的数量可以是一个或多个,图5中以一个处理器60为例;设备中的处理器60和存储器61可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的一种用于确定特高压直流送端交流系统的最小开机数量的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行设备的至少一种功能应用以及 数据处理。
存储器61可主要包括存储程序区和存储数据区,存储器61中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行本申请任意实施例提供的用于确定特高压直流送端交流系统的最小开机数量的方法,所述特高压直流送端交流系统包括:交流主网模块和火电机组模块,所述交流主网模块和所述火电机组模块均与换流器连接,所述交流主网模块和所述火电机组模块与所述换流器的连接点为特高压直流送端,所述方法包括:在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升;其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值;根据所述等值阻抗的最大值计算所述火电机组模块的最大等值阻抗,其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
本实施例所提供的包含计算机可执行指令的存储介质,计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的用于确定特高压直流送端交流系统的开机数量的方法中的相关操作。
本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only  Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的用于确定特高压直流送端交流系统的开机数量的方法。
本文使用的所有术语都根据他们在技术领域的通常含义被解释,除非在本文中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外说明。这里公开的任何方法的步骤都没必要以公开的顺序运行,除非另外说明。

Claims (12)

  1. 一种用于确定特高压直流送端交流系统的开机数量的方法,所述特高压直流送端交流系统包括:交流主网模块和火电机组模块,所述交流主网模块和所述火电机组模块均与换流器连接,所述交流主网模块和所述火电机组模块与所述换流器的连接点为特高压直流送端,所述方法包括:
    在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升;其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;
    在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,其中,所述暂态压升表达式包括所述单支路系统的等值阻抗变量;
    根据所述等值阻抗的最大值计算所述火电机组模块的最大等值阻抗;
    根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
  2. 根据权利要求1所述的方法,其中,所述在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,包括:在所述特高压直流送端交流系统出现功率扰动的情况下,通过如下公式确定单支路系统的等值阻抗:
    Figure PCTCN2019118547-appb-100001
    其中,Z eq为所述单支路系统的等值阻抗,Z Gi为所述火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述火电机组模块中第i组火电机组对应的升压变压器的等值阻抗,所述Z L为所述火电机组模块至所述特高压直流送端的输电线路的等值阻抗,Z S为所述交流主网模块的等值阻抗,N为所述火电机组模块中火电机组的当前开机数量;
    所述根据所述单支路系统的等值阻抗计算所述换流器的暂态压升,包括:通过如下公式计算所述换流器的暂态压升:
    Figure PCTCN2019118547-appb-100002
    ΔP 2=P 21-P 2
    ΔQ 2=Q 21-Q 2
    ΔS 2 2=P 21 2+Q 21 2-P 2 2-Q 2 2
    其中,△U 2为所述换流器的暂态压升;U 2为所述特高压直流送端的交流电压;P 2为注入所述特高压直流送端的有功功率;Q 2为注入所述特高压直流送端的无功功率;P 21、Q 21分别为在所述特高压直流送端交流系统出现功率扰动的情况下注入所述特高压直流送端的有功功率和无功功率;U 1为所述单支路系统的内电势;P 1为所述单支路系统送出的有功功率;Q 1为所述单支路系统送出的无功功率;Z eq为所述单支路系统的等值阻抗,X eq为Z eq的虚部。
  3. 根据权利要求2所述的方法,其中,所述确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,包括:通过如下公式确定所述单支路系统的等值阻抗的最大值:
    Z eqMAX=maxX eq
    Figure PCTCN2019118547-appb-100003
    其中,Z eq MAX为所述单支路系统的等值阻抗的最大值;max X eq为在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下,Z eq的虚部的最大值;△U 2MAX为所述预设的最大压升阈值。
  4. 根据权利要求3所述的方法,其中,所述根据所述等值阻抗的最大值计算所述火电机组模块的最大等值阻抗,包括:通过如下公式计算所述火电机组模块的最大等值阻抗:
    Figure PCTCN2019118547-appb-100004
    其中,Z GeqMAX为所述火电机组模块的最大等值阻抗;Z L为所述火电机组模块至所述特高压直流送端的输电线路的等值阻抗;Z S为交流主网模块的等值阻抗;Z eq MAX为所述单支路系统的等值阻抗的最大值。
  5. 根据权利要求4所述的方法,其中,所述根据所述直流近区配套火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的 最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量,包括:通过如下公式确定所述火电机组模块中火电机组的最小开机数量:
    Figure PCTCN2019118547-appb-100005
    其中,minM为所述火电机组模块中火电机组的最小开机数量;Z Gi为所述直流近区配套火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述直流近区配套火电机组模块中第i组火电机组对应的升压变压器的等值阻抗,Z GeqMAX为所述火电机组模块的最大等值阻抗。
  6. 一种用于确定特高压直流送端交流系统的开机数量的装置,所述特高压直流送端交流系统包括:交流主网模块和火电机组模块,所述交流主网模块和所述火电机组模块均与换流器连接,所述交流主网模块和所述火电机组模块与所述换流器的连接点为特高压直流送端,所述装置包括:
    暂态压升计算单元,设置为在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗,并根据所述单支路系统的等值阻抗计算所述换流器的暂态压升;其中,所述单支路系统为所述特高压直流送端交流系统的等值电路;
    等值阻抗的最大值确定单元,设置为在计算出的所述暂态压升大于或等于预设的最大升压阈值的情况下,获取所述换流器的暂态压升表达式,并确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值,其中,所述暂态压升表达式包括所述单支路系统的等值阻抗变量;
    火电机组模块的最大等值阻抗计算单元,设置为根据所述等值阻抗的最大值计算所述火电机组模块的最大等值阻抗;
    最小开机数量确定单元,设置为根据所述火电机组模块的参数确定在所述火电机组模块的等值阻抗不超过所述火电机组模块的最大等值阻抗的情况下的所述火电机组模块中火电机组的最小开机数量。
  7. 根据权利要求6所述的系统,其中,所述暂态压升计算单元是设置为通过如下公式在所述特高压直流送端交流系统出现功率扰动的情况下,根据所述火电机组模块中当前开机机组的参数确定单支路系统的等值阻抗:
    Figure PCTCN2019118547-appb-100006
    其中,Z eq为所述单支路系统的等值阻抗,Z Gi为所述火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述火电机组模块中第i组火电机组对应的升压变压器的等值阻抗,所述Z L为所述火电机组模块至所述特高压直流送端的输电线路的等值阻抗,Z S为所述交流主网模块的等值阻抗,N为所述火电机组模块中火电机组的当前开机数量;
    所述暂态压升计算单元是设置为通过如下公式根据所述单支路系统的等值阻抗计算所述换流器的暂态压升:
    Figure PCTCN2019118547-appb-100007
    ΔP 2=P 21-P 2
    ΔQ 2=Q 21-Q 2
    ΔS 2 2=P 21 2+Q 21 2-P 2 2-Q 2 2
    其中,△U 2为所述换流器的暂态压升;U 2为所述特高压直流送端的交流电压;P 2为注入所述特高压直流送端的有功功率;Q 2为注入所述特高压直流送端的无功功率;P 21、Q 21分别为在所述特高压直流送端交流系统出现功率扰动的情况下注入所述特高压直流送端的有功功率和无功功率;U 1为所述单支路系统的内电势;P 1为所述单支路系统送出的有功功率;Q 1为所述单支路系统送出的无功功率;Z eq为所述单支路系统的等值阻抗,X eq为Z eq的虚部。
  8. 根据权利要求7所述的系统,其中,所述等值阻抗的最大值确定单元是设置为通过如下公式确定在所述暂态压升表达式对应的暂态压升不超过所述预设的最大压升阈值的情况下的所述单支路系统的等值阻抗的最大值:
    Z eqMAX=maxX eq
    Figure PCTCN2019118547-appb-100008
    其中,Z eq MAX为所述单支路系统的等值阻抗的最大值;X eqMAX为在所述暂态 压升表达式对应的暂态压升不超过预设的最大压升阈值的情况下,Z eq的虚部的最大值;△U 2MAX为所述预设的最大压升阈值。
  9. 根据权利要求8所述的系统,其中,所述火电机组模块的最大等值阻抗计算单元是设置为通过如下公式计算所述火电机组模块的最大等值阻抗:
    Figure PCTCN2019118547-appb-100009
    其中,Z GeqMAX为所述火电机组模块的最大等值阻抗;Z L为所述火电机组模块至所述特高压直流送端的输电线路的等值阻抗;Z S为交流主网模块的等值阻抗;Z eq MAX为所述单支路系统的等值阻抗的最大值。
  10. 根据权利要求9所述的系统,其中,所述最小开机数量确定单元是设置为通过如下公式确定所述火电机组模块的最小开机数量:
    Figure PCTCN2019118547-appb-100010
    其中,minM为所述最小开机数量;Z Gi为所述火电机组模块中第i组火电机组的等值阻抗,Z Ti为所述火电机组模块中第i组火电机组对应的升压变压器的等值阻抗,Z GeqMAX为所述火电机组模块的最大等值阻抗。
  11. 一种设备,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1-5任一项所述的方法。
  12. 一种计算机存储介质,存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1-5任一项所述的方法。
PCT/CN2019/118547 2019-03-27 2019-11-14 用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质 WO2020192145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910237602.1 2019-03-27
CN201910237602.1A CN109980672B (zh) 2019-03-27 2019-03-27 用于确定特高压直流送端的最小开机数量的方法及系统

Publications (1)

Publication Number Publication Date
WO2020192145A1 true WO2020192145A1 (zh) 2020-10-01

Family

ID=67080925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118547 WO2020192145A1 (zh) 2019-03-27 2019-11-14 用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN109980672B (zh)
WO (1) WO2020192145A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433426A (zh) * 2021-08-30 2021-09-24 国网江西省电力有限公司电力科学研究院 直流输电系统的换流母线临界故障位置计算方法及装置
CN114024305A (zh) * 2021-11-04 2022-02-08 中国南方电网有限责任公司超高压输电公司广州局 高压直流输电系统的50hz谐波放大倍数检测方法和装置
CN115776132A (zh) * 2023-02-10 2023-03-10 四川大学 高压直流系统的控制方法、装置和电子设备
CN117171502A (zh) * 2023-11-02 2023-12-05 国网经济技术研究院有限公司 风火打捆的多直流外送电力系统直流故障过电压峰值计算方法
CN117313293A (zh) * 2023-11-30 2023-12-29 山东大学 一种直驱风电场小信号等值建模方法、系统、终端及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797897B (zh) * 2019-10-14 2022-09-09 中国电力科学研究院有限公司 一种确定特高压直流送端新能源最大占比的方法及系统
CN111987749B (zh) * 2020-08-19 2023-01-20 国网陕西省电力公司 特高压直流故障后暂态过电压约束的电网机组调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410845A (zh) * 2016-10-14 2017-02-15 国家电网公司 特高压大功率直流馈入后受端电网的调峰方法
CN107968434A (zh) * 2017-12-08 2018-04-27 国网辽宁省电力有限公司电力科学研究院 一种大容量直流功率扰动下风机暂态过电压分析方法
CN108306300A (zh) * 2018-01-30 2018-07-20 中国电力科学研究院有限公司 一种用于确定主网断面上统一潮流控制器容量的方法及系统
CN109088427A (zh) * 2018-07-23 2018-12-25 国网青海省电力公司经济技术研究院 一种交直流混联电网内常规机组最小开机方案确定方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712005B (zh) * 2017-01-11 2019-04-30 东南大学 一种计及需求响应的电网安全优化调度方法
CN106953335B (zh) * 2017-03-27 2019-05-28 国网浙江省电力公司电力科学研究院 一种基于交直流连锁故障的最小开机方式确定方法
CN109038532B (zh) * 2018-07-25 2022-07-26 深圳供电局有限公司 一种基于直流潮流等值的分布式输配协同机组组合方法
CN109118024B (zh) * 2018-09-25 2021-07-27 国网福建省电力有限公司 一种考虑火电机组多阶段状态转移的电力系统多资源调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410845A (zh) * 2016-10-14 2017-02-15 国家电网公司 特高压大功率直流馈入后受端电网的调峰方法
CN107968434A (zh) * 2017-12-08 2018-04-27 国网辽宁省电力有限公司电力科学研究院 一种大容量直流功率扰动下风机暂态过电压分析方法
CN108306300A (zh) * 2018-01-30 2018-07-20 中国电力科学研究院有限公司 一种用于确定主网断面上统一潮流控制器容量的方法及系统
CN109088427A (zh) * 2018-07-23 2018-12-25 国网青海省电力公司经济技术研究院 一种交直流混联电网内常规机组最小开机方案确定方法及系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433426A (zh) * 2021-08-30 2021-09-24 国网江西省电力有限公司电力科学研究院 直流输电系统的换流母线临界故障位置计算方法及装置
CN113433426B (zh) * 2021-08-30 2021-12-31 国网江西省电力有限公司电力科学研究院 直流输电系统的换流母线临界故障位置计算方法及装置
CN114024305A (zh) * 2021-11-04 2022-02-08 中国南方电网有限责任公司超高压输电公司广州局 高压直流输电系统的50hz谐波放大倍数检测方法和装置
CN114024305B (zh) * 2021-11-04 2024-03-19 中国南方电网有限责任公司超高压输电公司广州局 高压直流输电系统的50hz谐波放大倍数检测方法和装置
CN115776132A (zh) * 2023-02-10 2023-03-10 四川大学 高压直流系统的控制方法、装置和电子设备
CN115776132B (zh) * 2023-02-10 2023-05-23 四川大学 高压直流系统的控制方法、装置和电子设备
CN117171502A (zh) * 2023-11-02 2023-12-05 国网经济技术研究院有限公司 风火打捆的多直流外送电力系统直流故障过电压峰值计算方法
CN117171502B (zh) * 2023-11-02 2024-02-06 国网经济技术研究院有限公司 风火打捆的多直流外送电力系统直流故障过电压峰值计算方法
CN117313293A (zh) * 2023-11-30 2023-12-29 山东大学 一种直驱风电场小信号等值建模方法、系统、终端及介质
CN117313293B (zh) * 2023-11-30 2024-02-27 山东大学 一种直驱风电场小信号等值建模方法、系统、终端及介质

Also Published As

Publication number Publication date
CN109980672A (zh) 2019-07-05
CN109980672B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2020192145A1 (zh) 用于确定特高压直流送端交流系统的开机数量的方法、装置、设备及存储介质
Lian et al. Distributed resilient optimal current sharing control for an islanded DC microgrid under DoS attacks
CN106340897B (zh) 一种配电网分布式电源准入容量的确定方法
CN104485684A (zh) 一种含双馈风电机组的电力系统故障电流计算方法
Ouyang et al. Current-limit control method to prevent subsequent commutation failure of LCC-HVDC based on adaptive trigger voltage
CN112928781B (zh) 双馈风机暂态稳定控制方法、系统、计算机设备和介质
Hongfu et al. An approximate power flow method to deal with the non-convergence problem of power flow calculation
CN106099979B (zh) 一种考虑电网稳定限制的机组进相能力分析方法
Emadi et al. A reference current perturbation method for islanding detection of a multi-inverter system
CN111725815B (zh) 一种特高压直流弱受端电网的同步调相机配置方法
Yin et al. A novel evaluation method for the risk of simultaneous commutation failure in multi-infeed HVDC-systems that considers DC current rise
Vournas et al. Transmission support using Wind Farm controls during voltage stability emergencies
Wanik et al. Influence of distributed generations and renewable energy resources power plant on power system transient stability
CN109885983B (zh) 抑制系统短路电流的高阻抗变压器阻抗参数确定方法
CN109376392B (zh) 一种串联型补偿装置的过电压计算方法及系统
Liu et al. Temporary overvoltage assessment and suppression in heterogeneous renewable energy power systems
Mahvash et al. A look-up table based approach for fault ride-through capability enhancement of a grid connected DFIG wind turbine
Chapagain et al. Stability impact of IEEE 1547 operational mode changes under high DER penetration in the presence of cyber adversary
Sayed et al. Impact of forced and unforced system parameter variations on network stability and system economics of radial MTDC networks
Bot et al. Using DGUPFC to control the voltage of multi-feeder smart distribution system
Tan et al. Fault division method of multi-infeed HVDC tranmission system based on fault current limiting technology
Wang et al. Reliability analysis of excitation control modes of a synchronous condenser during grid-integration at the speed-falling stage
Pacis et al. Effect of widespread variation of distributed generation (DG) on the line performance of a radial distribution network
Chang et al. Optimal multiobjective planning of dynamic series compensation devices for power quality improvement
CN110429646A (zh) 基于可控串补参数调整的失步中心侵入机群下的柔性外推方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921555

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19921555

Country of ref document: EP

Kind code of ref document: A1