WO2020192142A1 - 可移动浮式液货过驳海工平台及过驳方法 - Google Patents

可移动浮式液货过驳海工平台及过驳方法 Download PDF

Info

Publication number
WO2020192142A1
WO2020192142A1 PCT/CN2019/118103 CN2019118103W WO2020192142A1 WO 2020192142 A1 WO2020192142 A1 WO 2020192142A1 CN 2019118103 W CN2019118103 W CN 2019118103W WO 2020192142 A1 WO2020192142 A1 WO 2020192142A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid cargo
area
tank
platform
tank container
Prior art date
Application number
PCT/CN2019/118103
Other languages
English (en)
French (fr)
Inventor
张冲
霍燕宁
Original Assignee
南京蒽天捷能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京蒽天捷能源科技有限公司 filed Critical 南京蒽天捷能源科技有限公司
Publication of WO2020192142A1 publication Critical patent/WO2020192142A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/002Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods
    • B63B25/004Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/10Arrangement of ship-based loading or unloading equipment for cargo or passengers of cranes
    • B63B27/12Arrangement of ship-based loading or unloading equipment for cargo or passengers of cranes of gantry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices

Definitions

  • the invention relates to an oil and gas transfer equipment, in particular to a liquid cargo or liquid cargo transit transportation system and method.
  • Liquid cargo includes liquefied natural gas LNG, liquid ethylene LEG, petroleum gas LPG, etc.
  • Tank container transportation is flexible and changeable. Such packaged goods can be directly sent to customers closer to customers by sea, river, and river transportation without resorting to special receiving stations.
  • the container port 2.1 hazardous chemicals terminal.
  • land and water transportation can be better connected, and water and land multimodal transportation can be carried out.
  • patent CN107575738 proposes an offshore platform.
  • the advantage of this platform is that the working environment is relatively stable and does not occupy land resources.
  • the disadvantage is that as an offshore fixed building, it is subject to Geographical constraints, very large investment, strict approval, long approval period, and at the same time filling and lifting in the same area, there are great safety risks.
  • the platform is only used as a storage liquid cargo, and the liquid cargo is transported to the transshipment ship through a pipeline, without the filling function.
  • a movable floating liquid cargo transfer offshore platform is provided to solve the above-mentioned problems existing in the prior art.
  • a transfer method based on the above-mentioned movable floating liquid cargo transfer offshore platform is provided.
  • a movable floating liquid cargo transfer offshore platform including a movable floating platform:
  • the movable floating platform includes a body, one end of the body is rotatably connected with a single-point mooring device, and the body is provided with a liquid cargo tank and a liquid cargo tank container filling and hoisting operation area located above the liquid cargo tank.
  • Type container is installed in the operation area; along the two sides of the liquid cargo tank container filling and hoisting operation area, there are bridge cranes that can move longitudinally; the liquid cargo tank is connected with a filling system for loading the tank container Filled with liquid;
  • the liquid cargo tank on the movable floating platform is connected with the liquid cargo bulk carrier through the pipeline system, and the liquid cargo is transferred to the bulk carrier;
  • the tank container carrier When the tank container carrier approaches the movable floating platform, the tank container is transferred to the tank container carrier through the bridge crane.
  • the liquid cargo tank container filling and hoisting operation area includes a first area and a second area spaced apart from the first area, in which a first bridge crane and a second bridge crane are respectively arranged ;
  • the first bridge crane transfers the empty tank container to the movable floating platform and stacks it in a predetermined manner; the tank container carrier moves to the second area; The second bridge crane transfers the tank container with liquid cargo to the tank container carrier; at the same time, it uses the filling device to fill the tank container in the first area.
  • the tank container is an elevating tank container, including a tank body, a frame body fixed around the tank body and forming a square support frame, and liquid inlets and liquid outlets respectively provided on the upper and lower sides of the tank body, and An automatic filling port arranged on one side of the tank body;
  • the automatic filling port includes a liquid introduction tube welded to the inner wall of the tank and opened in the circumferential direction, and a spring sleeved on the introduction tube and one end abuts against the end of the introduction tube , One end passes through the spring and the guide hole at the end of the introduction tube to extend into the tank, and the other end forms a stopper of the raised part that matches the inner diameter of the open end of the introduction tube, which is welded along the outside of the automatic filling port and covers the automatic filling
  • the guide tube for the installation port a push rod connected to the inner wall of the guide tube, one end is rotatably connected with the push rod, and the other end is connected with the stopper, and a filling joint assembly
  • the end of the guide tube is provided with a pressure-bearing pipe, and a one-way valve is provided in the pressure-bearing pipe.
  • the end of the ejector rod is provided with a stopper protrusion, and the inner wall of the guide tube is fixed with a stopper.
  • the stopper protrusion and the stopper The stop block abuts and prevents the ejector rod from continuing to move in the opposite direction.
  • the environmental monitoring system includes several sets of buoys arranged in a predetermined sea area and forming a grid layout, wind speed and direction sensors, seawater current meters and spectral remote sensors installed on the buoys, And a data processing center connected with the wind speed and direction sensor and the seawater flow meter signal; when the data processing center includes a regional wave short-term prediction module, the regional wave short-term prediction module is used to: receive the wind speed and direction sensor, the seawater current meter and the The wind direction, wind speed, wave height, wave direction, flow rate and flow direction data sent by the spectral remote sensor; preprocess and standardize the data; train the standardized data through the DBN model to obtain the trained data, and then use the BP algorithm to analyze the trained data Perform parameter tuning on the data to obtain tuning parameters; after processing at least three sets of data acquired at adjacent intervals, establish a wind vector field, a first wave vector field, and a flow vector field;
  • the ocean wave field of view image data every predetermined time, preprocess the image data, extract the texture of the ocean wave image, determine the wave crest line and calculate the wavelength based on the distance between two consecutive crest lines, and give each found Number the crests, and establish the crest field map; starting from the next frame of image, search for crests that appeared in the previous frame of image and find new crests, number the new crests, add the new crests to the crest field map, according to the new crest and The direction of the nearest wave crest and the interval time between the images are used to establish the wave crest propagation direction vector diagram; the first wave vector field and the wave crest propagation direction are compared, and the neural network is used to train the data to obtain the reference data; according to the reference data, the offshore engineering platform Take control to keep it stable;
  • a liquid cargo transfer method using the above-mentioned transfer offshore platform includes the following steps:
  • Step 1 The liquid cargo bulk carrier approaches the movable floating liquid cargo transfer offshore platform;
  • Step 2 Transfer the cargo from the bulk cargo ship to the cargo tank on the offshore platform via the unloading arm and the cargo tube bag in turn;
  • Step 3 Fill the cargo in the cargo tank into the tank container through the filling system on the mobile floating cargo transfer offshore platform;
  • Step 4 Leaning on the offshore platform next to the tanker tanker, the bridge crane hoists the empty containers on the ship to the tank container stacking area; after the lifting is completed, the tanker tanker moves to another In the operating area, the full container is hoisted onto the ship by the bridge crane.
  • the step four is further: the movable floating liquid cargo transfer offshore platform is provided with a first area and a second area, and the first bridge crane and the second bridge crane are respectively provided therein,
  • the liquid cargo tank container ship with empty containers first docks in the first area, and transfers the empty containers to the first area through the first bridge crane; after the lifting is completed, the liquid cargo tank container is transferred to the second area and passes
  • the second bridge crane lifts the full containers on the offshore platform to the ship; at the same time, another tanker container ship is docked in the first area, and the empty containers are hoisted and stacked in the first area by the first bridge crane .
  • a liquid cargo transfer method using the above transfer offshore platform includes the following steps:
  • Step 1 The tank container carrier with full tanks of liquid cargo departs from various marginal gas fields, moves to the movable floating liquid cargo transfer offshore platform, stops at the first area, and transfers the full tank via the first bridge crane To the offshore platform; the transport ship is transferred to the second area, and the second bridge crane transfers the empty container to the transport ship;
  • Step 2 Reverse filling through the filling system to transfer the liquid cargo in the tank container to the liquid cargo tank of the offshore platform;
  • Step 3 Lean and fix the liquid cargo bulk carrier on the offshore platform side;
  • Step 4 Transfer the liquid cargo in the cargo tank from the offshore platform to the liquid cargo bulk carrier through the material bag and the unloading arm, and transfer the liquid cargo bulk carrier to the predetermined address.
  • the step one further includes:
  • the movable floating liquid cargo transfer offshore platform is provided with a first area and a second area, in which a first bridge crane and a second bridge crane are respectively arranged, and the tank container ship with full tanks is first Park in the first area, and transfer the empty containers to the first area by the first bridge crane; after the lifting is completed, the liquid cargo tank container is transferred to the second area, and the full containers on the offshore platform are hoisted by the second bridge crane To the ship; at the same time, another liquid cargo tank container ship is docked in the first area, and the empty containers are hoisted and stacked in the first area by the first bridge crane.
  • the offshore engineering platform is equipped with cargo tanks, filling systems and tank containers, with buffering capacity and transfer functions. At the same time, the platform is equipped with hoisting and filling areas. The separated design makes the filling and hoisting more efficient and safe. better.
  • Figure 1 is a schematic plan view of the mobile floating LNG offshore sub-loading and collection transfer platform of the present invention.
  • Figures 2a and 2b are schematic diagrams of the movable floating transfer platform of the present invention.
  • Figure 3 is a schematic diagram of the implementation process of the present invention.
  • Fig. 4 is a partial structural diagram of the automatic filling port of the present invention.
  • movable floating platform 1 liquid cargo bulk carrier 2, liquid cargo tank container carrier 3, superstructure and smoke exhaust ventilation area 4, container bridge crane 5, liquid cargo tank container filling and hoisting operations Area A 6.
  • Liquid cargo tank container filling and hoisting operations Area B Liquid cargo receiving and unloading and tank container filling centralized control area 8, BOG reliquefaction module 9, upper LNG cargo pipe bag 10, liquid cargo receiving and unloading Material arm 11, crane track 12, liquid cargo tank dome that is liquid phase gas phase entrance and exit 13, single point mooring system 14, liquid cargo tank 15, liquid cargo tank container stacking and filling platform 16, liquid cargo tank container 17, Tank side wall 101, push rod 102, ejector rod 103, lead tube 104, stopper 105, spring 106, circumferential opening 107, first seal 108, stop block 109, connecting ring 110, one-way Valve 111, pressure pipe 112, flange 113, screw pipe 114, positioning sleeve 115.
  • a movable floating liquid cargo transfer offshore platform which includes a movable floating platform 1.
  • the movable floating platform 1 can mainly be modified by existing ships or platforms, or newly built according to actual needs. .
  • the displacement of the vessel is determined according to the actual needs of the project.
  • the movable floating platform 1 mainly includes at least one body that can float on the water surface or in a semi-submerged state. In order to fix the main body in a predetermined area without a fixed building (pier or offshore building) for fixing, this solution uses a single-point mooring device for fixing.
  • the single point mooring system 14 can use catenary buoy mooring devices and single anchor leg mooring devices, such as jacket tower rigid arm mooring devices, fixed tower single point mooring devices, and detachable turret buoy mooring devices. Mooring device and permanent turret mooring device. Piling can also be used. Through the mooring device, the offshore platform can rotate 360° with the ocean current, thereby reducing the impact of the ocean current on it and improving the stability.
  • a storage system is provided on the offshore platform body, such as a liquid cargo tank or a liquid cargo tank 15 in the cabin, and a liquid cargo tank container filling and hoisting operation area (liquid tank container stacking and filling platform 16) above the deck. ), used for stacking liquid cargo tank containers17.
  • the liquid cargo tank 15 is connected with a filling system for filling the tank container with liquid.
  • bridge cranes that can move longitudinally. It is used to realize the storage, filling and hoisting functions of the offshore platform body. That is to say, the above-mentioned functions can be realized on the offshore engineering platform body without extending to the dock, land or other transshipment ships through pipelines.
  • the offshore platform can be operated at a distance from the coast, and the safety is better.
  • the transshipment vessel no major structural transformation is required to transport tank containers. OK. Therefore, the offshore engineering platform of the present application has stronger functions, lower requirements on other ships, and better adaptability to the environment.
  • the floating platform is also provided with a superstructure and smoke exhaust ventilation area 4, a centralized control area 8 for liquid cargo unloading and tank container filling, and a BOG reliquefaction module 9.
  • the working process is generally as follows: When the liquid cargo bulk carrier 2 is close to the movable floating platform 1, the liquid cargo tank 15 on the movable floating platform 1 passes through the pipeline system (including the upper LNG cargo tube bladder 10 and the liquid cargo receiving and unloading Arm 11) is connected with the liquid cargo bulk carrier 2 to transfer the liquid cargo to the bulk carrier; when the tank container carrier approaches the movable floating platform 1, the tank container is transferred to the tank container carrier through the bridge crane .
  • the bridge crane moves through the crane track 12 arranged along the axis of the platform, thereby operating containers in different positions.
  • the liquid cargo tank container filling and hoisting operation area A 6 includes a first area and a second area spaced apart from the first area.
  • the first bridge crane and the second bridge crane are respectively arranged inside. That is, at least two work areas are set up to improve work efficiency and reduce waste of time and resources through alternate work. At the same time, the filling work and the lifting work are separated, and it is safer.
  • this program its working process is introduced as follows:
  • the first bridge crane transfers the empty tank container to the movable floating platform 1 and stacks it in a predetermined way; the tank container ship moves to the second area ; The second bridge crane transfers the tank container with liquid cargo to the tank container carrier; at the same time, it uses the filling device to fill the tank container in the first area.
  • multiple working areas may be set, and the working areas in the above embodiments are preferred embodiments. When multiple working areas are set up, the above-mentioned alternate working scheme can maximize the use of system resources.
  • the tank container is an elevating tank container, including a tank body, a frame body fixed around the tank body and forming a square support frame, the liquid inlet and the liquid outlet on the upper and lower sides of the tank body, and the The automatic filling port on one side of the tank body;
  • the automatic filling port includes an introduction tube 104 welded to the inner wall of the tank and a circumferential opening 107, sleeved in the introduction tube 104 and one end abuts against the end of the introduction tube 104
  • One end of the spring 106 passes through the guide hole at the end of the spring 106 and the introduction tube 104 and extends into the tank body, and the other end forms a stopper 105 that fits the inner diameter of the open end of the introduction tube 104, along the automatic filling
  • a guide tube welded on the outside of the port and covering the automatic filling port, a push rod 102 that is rotatably connected to the inner wall of the guide tube, one end is rotatably connected to the push rod 102,
  • the ejector rod 103 is set on the guide tube.
  • the screw connection pipe 114 and the guide pipe are fitted and connected and reinforced by the flange 113 connection.
  • a positioning part is provided on the outside of the stopper 105, and one end of the push rod 103 is located in the positioning part.
  • a first seal 108 is provided on the outer side of the stopper.
  • the filling end When filling, the filling end is adjusted to the side wall 101 of the tube body, the positioning sleeve 115 is opened, the threaded blocking member is turned down, the filling end enters the guide tube in a rotating manner, and the end of the filling end abuts and pushes
  • the rod 102 drives the push rod 103 to move, pushes the stopper 105, the pipeline is connected, and the liquid injection operation is performed. After the operation is completed, the filling tip is turned out and the relevant mechanism is reversely reset.
  • the spring 106 pushes the stopper 105 to seal, and at the same time, screw on the threaded blocker and cover the positioning sleeve 115. .
  • a pressure-bearing pipe 112 is provided at the end of the guide pipe, and a one-way valve 111 is provided in the pressure-bearing pipe 112.
  • the end of the ejector rod 103 is provided with a stopper protrusion, and the inner wall of the guide tube is fixed with a stopper 109.
  • the stopper protrusion and the stopper 109 abut Then, the ejector rod 103 is blocked from continuing to move in the reverse direction.
  • the position is limited by abutment to avoid rotation failure of the rotating rod and cause leakage.
  • the environmental monitoring system includes several sets of buoys arranged in a predetermined sea area and forming a grid layout, wind speed and direction sensors, seawater current meters and spectral remote sensors installed on the buoys, And a data processing center connected with the wind speed and direction sensor and the seawater flow meter signal; when the data processing center includes a regional wave short-term prediction module, the regional wave short-term prediction module is used to: receive the wind speed and direction sensor, the seawater current meter and the The wind direction, wind speed, wave height, wave direction, flow rate and flow direction data sent by the spectral remote sensor; preprocess and standardize the data; train the standardized data through the DBN model to obtain the trained data, and then use the BP algorithm to analyze the trained data Perform parameter tuning on the data to obtain tuning parameters; after processing at least three sets of data acquired at adjacent intervals, establish a wind vector field, a first wave vector field, and a flow vector field;
  • the ocean wave field of view image data every predetermined time, preprocess the image data, extract the texture of the ocean wave image, determine the wave crest line and calculate the wavelength based on the distance between two consecutive crest lines, and give each found Number the crests, and establish the crest field map; starting from the next frame of image, search for crests that appeared in the previous frame of image and find new crests, number the new crests, add the new crests to the crest field map, according to the new crest and The direction of the nearest wave crest and the interval time between the images are used to establish the wave crest propagation direction vector diagram; the first wave vector field and the wave crest propagation direction are compared, and the neural network is used to train the data to obtain the reference data; according to the reference data, the offshore engineering platform Control to keep it stable; when the wave crest in the current frame of image overlaps the wave crest of the next frame, and the overlap distance is less than the critical value, it is judged as the same wave crest and the numbers are combined.
  • a liquid cargo transfer method using the above-mentioned transfer offshore platform includes the following steps:
  • Step 1 The liquid cargo bulk carrier approaches the movable floating liquid cargo transfer offshore platform;
  • Step 2 Transfer the cargo from the bulk cargo ship to the cargo tank 15 on the offshore platform via the unloading arm and the cargo tube bag in turn;
  • Step 3 Fill the cargo in the cargo tank 15 into the tank container through the filling system on the mobile floating cargo transfer offshore platform;
  • Step 4 The liquid cargo tank container ship 3 is leaning on the offshore platform, and the empty container on the ship is hoisted to the tank container stacking area by the bridge crane; after the lifting is completed, the liquid cargo tank container ship 3 moves to In another operation area, the full container is hoisted onto the ship by a bridge crane.
  • the step four is further: the movable floating liquid cargo transfer offshore platform is provided with a first area and a second area, and the first bridge crane and the second bridge crane are respectively provided therein,
  • the liquid cargo tank container carrier 3 with empty containers first docks in the first area, and the empty containers are transferred to the first area through the first bridge crane; after the lifting is completed, the liquid cargo tank container 17 is transferred to the second area ,
  • the full container on the offshore platform is hoisted to the ship by the second bridge crane; at the same time, another tanker container ship 3 is docked in the first area, and the empty container is hoisted and stacked by the first bridge crane The first area.
  • Example 1 Transfer and sub-packaging of liquefied natural gas.
  • Step 1 Side mooring stage of LNG bulk carrier
  • the LNG bulk carrier is moored on the side of the offshore platform 1 fixed by a single-point mooring method with the assistance of tugboats, pushers, etc.
  • the LNG cargo is transferred from the LNG bulk carrier to the LNG cargo tank 15 on the platform via the LNG unloading arm 11 and the LNG cargo tube bladder 10 in turn.
  • Step 3 Large-scale filling stage of tank containers (take area B as an example, and vice versa)
  • the LNG tank container filling module on the transfer offshore platform is used to sub-package LNG in batches into the LNG tank containers stacked in Zone B.
  • Step 4 Replacement lifting stage of full and empty containers.
  • the LNG tank container ship sails into the area where the platform is located, and is moored on the other side of the platform.
  • the container bridge crane 5 hoists the empty container carried on the ship to the area where it was originally idle. Of tank containers are stacked in the filling area. After the empty container is completely lifted, it will be re-moored to the corresponding position in Zone B, and the full container in the third stage will be hoisted to the LNG tank container ship through the container bridge crane 5.
  • the platform can transfer cargo from bulk carriers to packaging cargo carriers without resorting to LNG special receiving devices and container port terminals.
  • a liquid cargo transfer method using the above transfer offshore platform includes the following steps:
  • Step 1 The tank container carrier with full tanks of liquid cargo departs from various marginal gas fields, moves to the movable floating liquid cargo transfer offshore platform, stops at the first area, and transfers the full tank via the first bridge crane To the offshore platform; the transport ship is transferred to the second area, and the second bridge crane transfers the empty container to the transport ship;
  • Step 2 Reverse filling through the filling system to transfer the liquid cargo in the tank container to the liquid cargo tank 15 of the offshore platform;
  • Step 3 The liquid cargo bulk carrier 2 is leaned against the offshore platform and fixed;
  • Step 4 Transfer the liquid cargo in the liquid cargo tank 15 from the offshore platform to the liquid cargo bulk carrier 2 through the material bag and the unloading arm, and transfer the liquid cargo bulk carrier 2 to the predetermined address.
  • the step one further includes:
  • the movable floating liquid cargo transfer offshore platform is provided with a first area and a second area, in which a first bridge crane and a second bridge crane are respectively arranged, and a tank container ship with full tanks 3 First stop at the first area, and transfer the empty containers to the first area for stacking by the first bridge crane; after the lifting is completed, the liquid cargo tank container 17 is transferred to the second area, and the full on the offshore platform is transferred by the second bridge crane.
  • the containers are hoisted onto the ship; at the same time, another tanker container ship 3 is docked in the first area, and the empty containers are hoisted and stacked in the first area by the first bridge crane.
  • Embodiment 2 Liquefied natural gas collection and barge: With the help of this platform, the barge transmission of liquid cargo from the LNG packaging transport ship-LNG container ship 3 to the LNG bulk transport ship 2 is realized.
  • Step 1 Lifting replacement of full and empty boxes.
  • the container bridge cranes 5 in area A and area B of the platform hoist the full containers collected by the LNG tank container ship from multiple marginal gas fields to the operation area A of the platform, and then the empty containers stacked in the operation area B Lift to LNG tank container ship.
  • Step 2 LNG collection and transfer stage-the cargo in the full tank is transported in reverse.
  • the LNG tank container filling module on the transfer offshore platform is used to reversely transport the liquid cargo in the full tank in the A zone to the LNG cargo tank 15 of the platform.
  • Step 3 The side mooring stage of the LNG bulk carrier.
  • the LNG bulk carrier is moored on the other side of the offshore platform fixed by single-point mooring with the assistance of tugboats, pushers, etc.
  • Step 4 LNG collection and transfer stage-the cargo in the full tank is transported in reverse.
  • a skid-mounted natural gas liquefaction device can be built for scattered gas sources in marginal gas fields, which can be transported to the floating LNG transfer offshore platform by LNG tank container ships, and then pass through the platform Perform reverse convergence and finally transfer to LNG bulk carrier, and then carry out long-distance ocean transportation to the demand side.
  • the platform is a mobile floating offshore platform integrating transfer, buffering, sub-packaging, collection and lifting. It has at least the following characteristics: Tank container stacking and batch filling area on the platform It is divided into two areas, A and B. In the middle of the A and B areas, the tank container filling and the LNG cargo receiving and unloading operation area are safely isolated, which can realize the LNG tank container filling in one area while the other area The loading and unloading of LNG tank containers can still be carried out, which effectively improves the operating efficiency of the platform and the turnover efficiency of LNG tank containers.
  • the platform is a movable floating platform 1, which is fixed by a single-point mooring method, which can be applied to the working environment of different water depths.
  • the single-point mooring method has a weather vane effect, which can avoid environmental factors such as wind, waves and currents to the greatest extent.
  • the platform as a whole can realize the rapid detachment of the single-point mooring pile (anchor).
  • anchor When the energy demand in winter is tight, it can be directly towed by the tugboat to moor and fix in the adjacent sea area of the area with tight energy demand.
  • Coastal areas conduct faster LNG transfer, sub-assembly, delivery and supply. It can effectively improve the transportation efficiency of container ships to the destination port and reduce transportation costs.
  • the platform has a certain capacity of LNG buffering capacity.
  • the innovative application of LNT’s A-BOX independent cargo tank 15 technology to the platform’s buffer cargo tank 15 cargo maintenance system can greatly increase the buffer capacity under the condition that the main body of the platform is limited in size. Different transfer media match the 15 cargo maintenance system with better compatibility.
  • the innovative design of the platform uses the container bridge crane 5 for the offshore work platform, as the main working method of LNG tank container lifting. A set of container cranes are set up on the A and B areas of the platform deck, and the track length arrangement of the two cranes is shared, which can completely cover the filling and stacking area of the two LNG tank containers on the platform A and B. Maximize the lifting efficiency of empty containers between the LNG tank container carrier and the platform.
  • the platform innovatively uses a suspended lift tank container filling workbench to realize large-scale filling operations for densely stacked LNG tank containers in a narrow space on the offshore platform, and at the same time the tank container filling
  • the platform has a reverse cycle unloading function, which can transfer the LNG in the tank container to the cargo tank 15 of the platform, and then the cargo pump in the cargo tank 15 will transport it to the nearby LNG carrier in reverse.
  • the platform function can enable large LNG bulk carriers to complete LNG liquid sub-packaging and transshipment without resorting to LNG special receiving devices, and use the packaging cargo carrier-LNG tank container to directly deliver the liquid cargo to the user.
  • the platform can simultaneously collect the associated gas from marginal gas fields or large oil fields where the annual gas production is not very large, and then transfer large amounts of LNG cargo to LNG bulk carriers for long-distance maritime transport, maximizing Combining various transportation methods, reducing transportation costs, and solving the problems of scattered gas source utilization and logistics economy.
  • the platform can also be used as a bulk cargo transfer, so that large LNG bulk carriers can be transferred to the LNG cargo tank 15 of the platform via the LNG unloading arm and tube bag of the platform. After the large LNG ship leaves, the small inland LNG bulk cargo The ship berths at the platform, and transfers the liquid cargo to the small LNG bulk carrier via the tube bag and the unloading arm. This method can solve the problem of two-way LNG transfer from the coast to the inland.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

一种可移动浮式液货过驳海工平台及过驳方法,该平台主要包括可移动浮式平台(1),可移动浮式平台(1)包括本体,本体的一端与单点系泊装置(14)转动连接。本体设置有液货舱(15)和位于液货舱(15)上方的液货罐式集装箱充装及吊装作业区(16),液货罐式集装箱安装于该作业区。沿液货罐式集装箱充装及吊装作业区(16)的两侧设置有可沿其纵向移动的桥机(5);液货舱(15)连接有充装系统,用于向罐式集装箱内充装液体。该可移动浮式液货过驳海工平台具有缓存能力和转驳功能,同时平台上设置有吊装和充装区域,分离式设计,充装和吊装的效率更高,安全性能更好。

Description

可移动浮式液货过驳海工平台及过驳方法 技术领域
本发明涉及一种油气转运设备,尤其是一种液货或液货过驳运输系统及方法。液货包括液化天然气LNG、液态乙烯LEG、石油气LPG等。
背景技术
基于罐式集装箱的专用运输已经成为行业热点,罐箱运输灵活多变,可在不借助于专用接收站的情况下,通过海运、江运、河运将此类包装货物直接送往距离客户更近的集装箱港口2.1类危化品码头。同时可以更好的衔接陆运与水运,进行水陆多式联运。
    为此,技术人员进行了改进,提出了一些新的方案。主要包括离岸式平台系统,例如专利CN107575738提出了一种离岸式平台,这种平台的优点在于工作环境较为稳定,不占用陆地资源,但是缺点在于作为一种离岸固定建筑物,其受地理空间限制、投资非常大、审批严格、审批周期长,同时充装和吊运在同一区域,安全隐患大。在另一种方案中,平台仅作为存储液货,通过管道向转运船输送液货,而不具有充装功能。这种方式的局限性比较大,或者需要较长的管道将其延伸至码头,或者需要转运船本身携带充装设备,而一般充装设备较大,安装在转运船上浪费空间和资源。
技术问题
提供一种可移动浮式液货过驳海工平台,以解决现有技术存在的上述问题。同时提供一种基于上述可移动浮式液货过驳海工平台的过驳方法。
技术解决方案
一种可移动浮式液货过驳海工平台,包括可移动浮式平台:
所述可移动浮式平台包括本体,本体的一端与单点系泊装置转动连接,所述本体设置有液货舱和位于液货舱上方的液货罐式集装箱充装及吊装作业区,液货罐式集装箱安装于该作业区;沿液货罐式集装箱充装及吊装作业区的两侧设置有可沿其纵向移动的桥机;所述液货舱连接有充装系统,用于向罐式集装箱内充装液体;
当液货散装运输船靠近可移动浮式平台时,可移动浮式平台上的液货舱通过管路系统与液货散装运输船连通,将液货转移至散装运输船;
当罐式集装箱运输船靠近可移动浮式平台时,通过桥机将罐式集装箱转移至罐式集装箱运输船。
在进一步的实施例中,所述液货罐式集装箱充装及吊装作业区包括第一区域以及与第一区域间隔设置的第二区域,其内分别设置有第一桥机和第二桥机;
当空的罐式集装箱运输船移动至第一区域时,第一桥机将空的罐式集装箱转移至可移动浮式平台,并按照预定的方式堆集;罐式集装箱运输船移动至第二区域;第二桥机将装有液货的罐式集装箱转移至罐式集装箱运输船;与此同时,采用充装装置向第一区域中的罐式集装箱进行充装。
所述罐式集装箱为升降式罐式集装箱,包括罐体,固定在罐体周围且组成方形支撑框的架体,分别设置在所述罐体上下两侧的进液口和出液口,以及设置在罐体一侧的自动充装口;所述自动充装口包括焊接于罐体内壁且周向开口的引液管,内套于引液管且一端与引液管末端抵接的弹簧,一端穿过弹簧和引液管末端的引导孔 延伸至罐体内、另一端形成与引液管开放端内径适配的凸起部的挡止件,沿自动充装口外侧焊接并覆盖自动充装口的导向管,转动连接在导向管内壁的推动杆,一端与推动杆转动连接另一端与挡止件连接的顶开杆,以及设置在导向管一端的充装接头组件;所述充装接头组件包括固定在导向管端部的密封连接环和螺接管,固定在密封连接环和螺接管之间的密封圈,以及固定在螺接管端部的定位套;所述螺接管与导向管之间嵌合连接并通过法兰连接加固。
在进一步的实施例中,所述导向管的端部设置有承压管,所述承压管内设置有单向阀。
在进一步的实施例中,所述顶开杆的末端设置有挡止凸起,所述导向管内壁固定有挡止块,当顶开杆反向运动至预期位置时,挡止凸起与挡止块抵接,阻挡顶开杆继续反向运动。
在进一步的实施例中,还包括环境监测系统,所述环境监测系统包括设置在预定海域并形成网格式布局的若干组浮标,安装在浮标上的风速风向传感器、海水流速仪和光谱遥感仪,以及与风速风向传感器和海水流速仪信号连接的数据处理中心;当数据处理中心包括区域海浪短期预测模块,所述区域海浪短期预测模块用于:每隔预定时间接收风速风向传感器、海水流速仪和光谱遥感仪发送的风向、风速、波高、波向、流速和流向数据;对数据进行预处理和标准化;通过DBN模型训练已标准化的数据,获得训练后的数据,然后通过BP算法对训练后的数据进行参数调优,得到调优参数;经至少三组相邻间隔时间获取的数据处理后,建立风矢量场、第一波矢量场和流矢量场;
每隔预定时间获取海浪视场图像数据,对图像数据进行预处理,提取海浪图像的纹理,确定海浪的波峰线并根据两个连续的波峰线之间的距离计算波长,给每个查找到的波峰编号,并建立波峰场图;下一帧图像开始,查找上一帧图像中出现的波峰并查找新的波峰,对新的波峰进行编号,将新波峰添加到波峰场图,根据新波峰与相邻最近的波峰的方向和图像的间隔时间,建立波峰传播方向矢量图;比较第一波矢量场和波峰传播方向,采用神经网络对数据进行训练,得到参考数据;根据参考数据对海工平台进行控制,从而使其保持稳定;
当前一帧图像中的波峰与后一帧的波峰出现重叠,且重叠距离小于临界值时,判断为同一波峰,将编号合并。
一种采用上述过驳海工平台的液货过驳方法,包括如下步骤:
步骤一、液货散装船靠近可移动浮式液货过驳海工平台;
步骤二、从液货散装船上将货物依次经由接卸料臂和货物管囊过驳传输至海工平台上的液货舱;
步骤三、通过可移动浮式液货过驳海工平台上的充装系统,将液货舱内的货物充装至罐式集装箱;
步骤四、液货罐式集装箱运输船旁靠于海工平台,由桥机将船上的空箱吊装至罐式集装箱堆放充装区;吊运完成后,液货罐式集装箱运输船移动至另一作业区,通过桥机将满箱吊装至船上。
在进一步的实施例中,所述步骤四进一步为:可移动浮式液货过驳海工平台设置有第一区域和第二区域,其内分别设置有第一桥机和第二桥机,载有空箱的液货罐式集装箱运输船首先停靠于第一区域,通过第一桥机将空箱转移至第一区域堆放;吊装完成后,液货罐式集装箱转移至第二区域,通过第二桥机将海工平台上的满箱吊装至船上;与此同时,另一液货罐式集装箱运输船停靠于第一区域,通过第一桥机将空箱吊装并堆放在第一区域。
一种采用上述过驳海工平台的液货过驳方法,包括如下步骤,
步骤一、载有满箱液货的罐式集装箱运输船从各个边际气田出发,移动至可移动浮式液货过驳海工平台,停靠在第一区域,通过第一桥机将满箱转移至海工平台;运输船转移至第二区域,第二桥机将空箱转移至运输船上;
步骤二、通过充装系统反向充装,将罐式集装箱内的液货转移至海工平台的液货舱;
步骤三、液货散装运输船旁靠在海工平台一侧并固定;
步骤四、通过物管囊和接卸料臂,将液货舱内的液货从海工平台,转移至液货散装运输船,通过液货散装运输船转移至预定地址。
在进一步的实施例中,所述步骤一进一步包括:
所述可移动浮式液货过驳海工平台设置有第一区域和第二区域,其内分别设置第一桥机和第二桥机,载有满箱的液货罐式集装箱运输船首先停靠于第一区域,通过第一桥机将空箱转移至第一区域堆放;吊装完成后,液货罐式集装箱转移至第二区域,通过第二桥机将海工平台上的满箱吊装至船上;与此同时,另一液货罐式集装箱运输船停靠于第一区域,通过第一桥机将空箱吊装并堆放在第一区域。
有益效果
海工平台设置有液货舱、充装系统和罐式集装箱,具有缓存能力和转驳功能,同时平台上设置有吊装和充装区域,分离式设计,充装和吊装的效率更高,安全性能更好。
附图说明
图1是本发明可移动浮式LNG海上分装和收集过驳平台的平面示意图。
图2a和图2b是本发明可移动浮式过驳平台的示意图。
图3是本发明的实施过程示意图。
图4是本发明自动充装口的局部结构示意图。
图中:可移动浮式平台1、液货散装运输船2、液货罐式集装箱运输船3、上层建筑及排烟通风区4、集装箱桥机5、液货罐式集装箱充装及吊装作业A区6、液货罐式集装箱充装及吊装作业B区7、液货接卸及罐式集装箱充装集中控制区8、BOG再液化模块9、上部LNG货物管囊10、液货接卸料臂11、吊机轨道12、液货舱穹顶即液相气相出入口13、单点系泊系统14、液货舱15、液货罐式集装箱堆载及充装平台16、液货罐式集装箱17、罐体侧壁101、推动杆102、顶开杆103、引液管104、挡止件105、弹簧106、周向开口107、第一密封件108、挡止块109、连接环110、单向阀111、承压管112、法兰113、螺接管114、定位套115。
本发明的实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。
为了解决当前存在的问题,申请人进行了深入地研究和探索,发现现有技术无法解决以下工作环境的运输。一、受内河航道水深、工程投资、审批周期、技术难度及大桥通航高度限制等因素影响,我国沿海向内陆地区的LNG运输问题遇到了很大瓶颈。二、岛屿区域,例如东南亚地区,油气资源丰富,可是对于许多零散的边际气田或者油田的伴生气源受到规模小且投资液化气专用码头条件的制约,一直无法找到合适的方式进行收集利用。现阶段一般采取的方式是直接利用火炬塔燃烧,避免天然气中的甲烷气体直接放空后形成的巨大温室效应和资源浪费。
针对上述问题,提供一种可移动浮式液货过驳海工平台,包括可移动浮式平台1,该可移动浮式平台1主要可以采用现有船只或平台改造,也可以根据实际需要新建。船只的排水量根据工程实际需要确定。可移动浮式平台1主要包括至少一个可浮在水面上或半潜状态的本体。为了将该本体固定在预定区域,且无需固定建筑物(码头或离岸建筑)进行固定,本方案采用单点系泊装置进行固定。单点系泊系统14可以采用悬链式浮筒系泊装置和单锚腿系泊装置,例如导管架塔式刚性臂系泊装置、固定塔式单点系泊装置、可解脱式转塔浮筒系泊装置和永久式转塔系泊装置。采用打桩的方式亦可。通过该系泊装置,海工平台可以随着海流进行360°转动,从而减少海流对其的影响,提高稳定性。
海工平台本体上设置有存储系统,例如在舱内设置液货罐或液货舱15,甲板上方设置液货罐式集装箱充装和吊装作业区(液货罐式集装箱堆载及充装平台16),用于堆放液货罐式集装箱17。液货舱15连接有充装系统,用于向罐式集装箱内充装液体。沿液货罐式集装箱充装及吊装作业A区6的两侧设置有可沿其纵向移动的桥机。用于实现海工平台本体的存储、充装和吊装功能。也就是说在海工平台本体上即可实现上述功能,而无需通过管道延伸至码头、陆地或其他转运船上。小型的转运船无需设置充装系统。通过这种一体式、全流程系统化设计,可以让海工平台在距离海岸较远的地方进行工作,安全性更好,同时,对于转运船只,无需进行大的结构改造,能够运输罐式集装箱即可。因此,本申请的海工平台,其功能更强,对其他船只的要求更低,对环境的适应性更好。
该浮式平台上还设置有上层建筑及排烟通风区4、液货接卸及罐式集装箱充装集中控制区8和BOG再液化模块9 。
工作流程大体如下:当液货散装运输船2靠近可移动浮式平台1时,可移动浮式平台1上的液货舱15通过管路系统(包括上部LNG货物管囊10和液货接卸料臂11)与液货散装运输船2连通,将液货转移至散装运输船;当罐式集装箱运输船靠近可移动浮式平台1时,通过桥机将罐式集装箱转移至罐式集装箱运输船。桥机通过沿平台轴向设置的吊机轨道12进行移动,从而对不同位置的集装箱进行操作。
需要注意的是,充装过程是在平台上直接完成的,而无需在运输船上完成,也无需用管道输送到陆地或其他船只。
为了提高工作效率和安全性,进行了进一步的改进,在优选的实施例中,液货罐式集装箱充装及吊装作业A区6包括第一区域以及与第一区域间隔设置的第二区域,其内分别设置有第一桥机和第二桥机。即设置至少两个作业区,通过交替进行工作,提高工作效率,减少时间和资源浪费,同时充装工作和吊装工作是分离的,也更加安全。在这个方案中,其工作过程介绍如下:
当空的罐式集装箱运输船移动至第一区域时,第一桥机将空的罐式集装箱转移至可移动浮式平台1,并按照预定的方式堆集;罐式集装箱运输船移动至第二区域;第二桥机将装有液货的罐式集装箱转移至罐式集装箱运输船;与此同时,采用充装装置向第一区域中的罐式集装箱进行充装。在其他实施例中,可以设置多个工作区域,上述实施例中的工作区域为优选实施例。在设置多个工作区域时,通过上述交替式工作方案,可以实现系统资源的最大化使用。
在本申请中,由于充装工作在平台上进行,因此需要对平台改进,上文已经陈述对工作区域进行优化,提高工作效率和安全性。
在充装时,还需要对安全性能进行进一步提升。现有罐式集装箱一般是在陆地进行充装,受海流海风的影响较小,虽然海工平台采用了稳定系统,但相对陆地,还具有一定的波动,同时,为了避免在极端情况下出现的问题。对充装结构进行了优化,具体如下:
罐式集装箱为升降式罐式集装箱,包括罐体,固定在罐体周围且组成方形支撑框的架体,分别设置在所述罐体上下两侧的进液口和出液口,以及设置在罐体一侧的自动充装口;所述自动充装口包括焊接于罐体内壁且周向开口107的引液管104,内套于引液管104且一端与引液管104末端抵接的弹簧106,一端穿过弹簧106和引液管104末端的引导孔延伸至罐体内、另一端形成与引液管104开放端内径适配的凸起部的挡止件105,沿自动充装口外侧焊接并覆盖自动充装口的导向管,转动连接在导向管内壁的推动杆102,一端与推动杆102转动连接另一端与挡止件105连接的顶开杆103,以及设置在导向管一端的充装接头组件;所述充装接头组件包括固定在导向管端部的密封连接环110和螺接管114,固定在密封连接环110和螺接管114之间的密封圈,以及固定在螺接管114端部的定位套115。;所述螺接管114与导向管之间嵌合连接并通过法兰113连接加固。挡止件105的外部设置有定位部,顶开杆103的一端位于该定位部中。挡止件的外侧设置有第一密封件108 。
在充装时,充装端头调整到管体侧壁101,打开定位套115,转下螺纹封堵件,充装端头以转动的方式进入导向管,充装端头的末端抵接推动杆102,带动顶开杆103移动,顶开挡止件105,管道连通,进行注液操作。操作完成后,充装端头转出,相关机构反向复位。弹簧106推动挡止件105密封,同时,旋上螺纹封堵件,盖上定位套115。。
在进一步的实施例中,导向管的端部设置有承压管112,所述承压管112内设置有单向阀111。所述顶开杆103的末端设置有挡止凸起,所述导向管内壁固定有挡止块109,当顶开杆103反向运动至预期位置时,挡止凸起与挡止块109抵接,阻挡顶开杆103继续反向运动。在极端情况下,为了避免材料失效 或其他原因造成的内部压力过大,则通过抵接的方式限位,避免转动杆转动失效,造成泄漏。
在进一步的实施例中,还包括环境监测系统,所述环境监测系统包括设置在预定海域并形成网格式布局的若干组浮标,安装在浮标上的风速风向传感器、海水流速仪和光谱遥感仪,以及与风速风向传感器和海水流速仪信号连接的数据处理中心;当数据处理中心包括区域海浪短期预测模块,所述区域海浪短期预测模块用于:每隔预定时间接收风速风向传感器、海水流速仪和光谱遥感仪发送的风向、风速、波高、波向、流速和流向数据;对数据进行预处理和标准化;通过DBN模型训练已标准化的数据,获得训练后的数据,然后通过BP算法对训练后的数据进行参数调优,得到调优参数;经至少三组相邻间隔时间获取的数据处理后,建立风矢量场、第一波矢量场和流矢量场;
每隔预定时间获取海浪视场图像数据,对图像数据进行预处理,提取海浪图像的纹理,确定海浪的波峰线并根据两个连续的波峰线之间的距离计算波长,给每个查找到的波峰编号,并建立波峰场图;下一帧图像开始,查找上一帧图像中出现的波峰并查找新的波峰,对新的波峰进行编号,将新波峰添加到波峰场图,根据新波峰与相邻最近的波峰的方向和图像的间隔时间,建立波峰传播方向矢量图;比较第一波矢量场和波峰传播方向,采用神经网络对数据进行训练,得到参考数据;根据参考数据对海工平台进行控制,从而使其保持稳定;当前一帧图像中的波峰与后一帧的波峰出现重叠,且重叠距离小于临界值时,判断为同一波峰,将编号合并。
如图1和图2a所示,进行转驳时,本发明的工作过程如下:
一种采用上述过驳海工平台的液货过驳方法,包括如下步骤:
步骤一、液货散装船靠近可移动浮式液货过驳海工平台;
步骤二、从液货散装船上将货物依次经由接卸料臂和货物管囊过驳传输至海工平台上的液货舱15;
步骤三、通过可移动浮式液货过驳海工平台上的充装系统,将液货舱15内的货物充装至罐式集装箱;
步骤四、液货罐式集装箱运输船3旁靠于海工平台,由桥机将船上的空箱吊装至罐式集装箱堆放充装区;吊运完成后,液货罐式集装箱运输船3移动至另一作业区,通过桥机将满箱吊装至船上。
在进一步的实施例中,所述步骤四进一步为:可移动浮式液货过驳海工平台设置有第一区域和第二区域,其内分别设置有第一桥机和第二桥机,载有空箱的液货罐式集装箱运输船3首先停靠于第一区域,通过第一桥机将空箱转移至第一区域堆放;吊装完成后,液货罐式集装箱17转移至第二区域,通过第二桥机将海工平台上的满箱吊装至船上;与此同时,另一液货罐式集装箱运输船3停靠于第一区域,通过第一桥机将空箱吊装并堆放在第一区域。
实施例一 、液化天然气的转驳分装。
过驳分装:借助该平台实现即从LNG散装运输船往LNG包装类运输船-LNG集装箱运输船的液货过驳传输。
其具体流程分为以下4个阶段:
步骤1、LNG散装运输船的旁靠系泊阶段
LNG散装运输船在拖轮、顶推轮等的辅助下旁靠系泊在采用单点系泊方式固定的该海工平台1的一侧。
步骤2、LNG货物卸料阶段
从LNG散装运输船上将LNG货物依次经由LNG接卸料臂11和LNG货物管囊10过驳传输到平台上的 LNG液货舱15。
步骤3、罐式集装箱规模化充装阶段(以B区为例,反之亦然)
利用该过驳海工平台上的LNG罐式集装箱充装模块将LNG批量分装到在B区堆载的LNG罐式集装箱。
步骤4、满箱和空箱的置换吊运阶段。
与步骤3同时,LNG罐式集装箱运输船航行进入平台所在区域范围内,旁靠系泊在该平台的另一侧,由集装箱桥机5将运输船上携带的空箱吊装到A区上原本闲置的罐式集装箱堆放充装区。空箱吊运全部完成后,将重新系泊旁靠至B区相应位置,通过集装箱桥机5将第3阶段充好的满箱吊至LNG罐式集装箱运输船。
该平台可以做到在不借助于LNG专用接收装置和集装箱港口码头的情况下,将散装运输船的货物过驳到包装类货物运输船上。
如图3所示,在进行收集过驳时,即为解决这一问题“对于许多零散的边际气田或者油田的伴生气源受到规模小且投资液化气专用码头条件的制约,一直无法找到合适的方式进行收集利用”。本发明的工作过程如下:
一种采用上述过驳海工平台的液货过驳方法,包括如下步骤,
步骤一、载有满箱液货的罐式集装箱运输船从各个边际气田出发,移动至可移动浮式液货过驳海工平台,停靠在第一区域,通过第一桥机将满箱转移至海工平台;运输船转移至第二区域,第二桥机将空箱转移至运输船上;
步骤二、通过充装系统反向充装,将罐式集装箱内的液货转移至海工平台的液货舱15;
步骤三、液货散装运输船2旁靠在海工平台一侧并固定;
步骤四、通过物管囊和接卸料臂,将液货舱15内的液货从海工平台,转移至液货散装运输船2,通过液货散装运输船2转移至预定地址。
在进一步的实施例中,所述步骤一进一步包括:
所述可移动浮式液货过驳海工平台设置有第一区域和第二区域,其内分别设置第一桥机和第二桥机,载有满箱的液货罐式集装箱运输船3首先停靠于第一区域,通过第一桥机将空箱转移至第一区域堆放;吊装完成后,液货罐式集装箱17转移至第二区域,通过第二桥机将海工平台上的满箱吊装至船上;与此同时,另一液货罐式集装箱运输船3停靠于第一区域,通过第一桥机将空箱吊装并堆放在第一区域。
实施例二、液化天然气收集过驳:借助该平台实现从LNG包装类运输船-LNG集装箱运输船3到LNG散装运输船2的液货过驳传输。
其具体流程同样分为4个阶段:
步骤1、满箱和空箱的吊运置换。
由该平台的A区和B区各自的集装箱桥机5将LNG罐式集装箱运输船从多个边际气田收集到的满箱吊至平台的作业A区,再将作业B区中堆放的空箱吊运至LNG罐式集装箱运输船。
步骤2、LNG的收集过驳阶段-满箱中的货料反向输送。
利用该过驳海工平台上的LNG罐式集装箱充装模块将A区中的满箱中的液货批量化的反向输送到该平台的LNG液货舱15中。
步骤3、LNG散装运输船的旁靠系泊阶段。
LNG散装运输船在拖轮、顶推轮等的辅助下旁靠系泊在采用单点系泊方式固定的该海工平台的另一侧。
步骤4、LNG的收集过驳阶段-满箱中的货料反向输送。
再将LNG液货舱15中的液货经由液货舱15穹顶即液相气相出入口13、上部LNG货物管囊、LNG接卸料臂输送到另一侧靠泊过来的LNG散装运输船中的液货舱15内。
借助本发明中的多功能海工过驳平台,可以对边际气田零散气源建撬装式天然气液化装置,利用LNG罐式集装箱运输船运输至浮式LNG过驳海工平台,然后通过该平台进行反向汇集最终过驳到LNG散装类运输船,再进行长距离的远洋运输至需求端。
技术创新点:该平台为集过驳、缓存、分装、收集和吊运为一体的可移动浮式海工平台,至少有以下特点:平台上的罐式集装箱堆载及批量化充装区域分为A、B两个区域,A,B区中间以罐式集装箱充装、LNG货物接卸料操控区进行安全隔离,可以实现在一个区域进行LNG罐式集装箱充装的同时,另外一个区域仍可进行LNG罐式集装箱的装卸船吊运作业,有效提高了该平台的作业效率和LNG罐式集装箱的周转效率。平台为可移动浮式平台1,采用的是单点系泊方式进行固定,可适用于不同水深的作业环境,同时单点系泊方式具有风向标效应,可以最大程度的避免风浪流等环境因素对平台主体以及在两侧旁靠系泊的LNG罐式集装箱运输船、LNG散装运输船的影响。同时该平台整体可实现对单点系泊桩(锚)的快速脱离,在冬季能源需求紧张时可以由拖轮直接拖至能源需求紧张地区的临近海域系泊固定,针对季节性LNG供应缺口加剧的沿海地区进行更加快捷的LNG过驳分装配送供应。能有效提高集装箱运输船至目的港的运输效率,降低运输成本。该平台具备一定容量的LNG缓存能力,创新将LNT公司A-BOX独立液货舱15技术应用到平台的缓存液货舱15货物维护系统,可在平台主体尺寸限定的情况下大幅提高缓存容量,可根据不同的过驳介质,匹配兼容性较好的液货舱15货物维护系统。该平台创新设计使用集装箱桥机5用于海工工作平台,作为LNG罐式集装箱吊运的主要工作方式。在平台甲板的A区和B区分别设置了一套集装箱桥吊,两台桥吊的轨道通长布置实现共用,可以实现完全覆盖平台A/B两个LNG罐式集装箱的充装码放区域。最大程度提升LNG罐式集装箱运输船与平台间的空箱往复吊装效率。该平台创新采用了悬吊升降式罐式集装箱充装工作台来实现在海工平台上的狭小空间范围内对密集堆放的LNG罐式集装箱进行规模化充装作业,同时该罐式集装箱充装平台具备反向循环卸料功能,可以实现将罐式集装箱中的LNG反过来传输至平台自带的液货舱15内,再由液货舱15内的货物泵反向输送到旁靠的LNG运输船上。该平台功能可以使得大型LNG散装运输船在不借助LNG专用接收装置的情况下也能完成LNG液态分装转运,利用包装类货物载体—LNG罐式集装箱直接将液货送达用户端。该平台同时可以做到对年产气量不是很大的边际气田或大型油田的伴生气进行液态收集,再将大体量的LNG货物过驳到LNG散装运输船进行长距离海上运输,最大化将各种运输方式综合,降低运输成本,解决零散气源利用及物流经济性问题。该平台同时可以作为散装货物的过驳,使得大型LNG散装货船经由该平台的LNG接卸料臂、管囊过驳到该平台的LNG液货舱15内,大型LNG船离开后,小型内河LNG散装船靠泊该平台,经由管囊、接卸料臂将液货过驳到小型LNG散装船内。该方法可以解决由沿海进入内地的LNG二程转运问题。
需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种可移动浮式液货过驳海工平台,其特征在于,包括可移动浮式平台:
    所述可移动浮式平台包括本体,本体的一端与单点系泊装置转动连接,所述本体设置有液货舱和位于液货舱上方的液货罐式集装箱充装及吊装作业区,液货罐式集装箱安装于该作业区;沿液货罐式集装箱充装及吊装作业区的两侧设置有可沿其纵向移动的桥机;所述液货舱连接有充装系统,用于向罐式集装箱内充装液体;
    当液货散装运输船靠近可移动浮式平台时,可移动浮式平台上的液货舱通过管路系统与液货散装运输船连通,将液货转移至散装运输船;
    当罐式集装箱运输船靠近可移动浮式平台时,通过桥机将罐式集装箱转移至罐式集装箱运输船。
  2. 根据权利要求1所述的可移动浮式液货过驳海工平台,其特征在于,
    所述液货罐式集装箱充装及吊装作业区包括第一区域以及与第一区域间隔设置的第二区域,其内分别设置有第一桥机和第二桥机;
    当空的罐式集装箱运输船移动至第一区域时,第一桥机将空的罐式集装箱转移至可移动浮式平台,并按照预定的方式堆集;罐式集装箱运输船移动至第二区域;第二桥机将装有液货的罐式集装箱转移至罐式集装箱运输船;与此同时,采用充装装置向第一区域中的罐式集装箱进行充装。
  3. 根据权利要求1所述的可移动浮式液货过驳海工平台,其特征在于,所述罐式集装箱为升降式罐式集装箱,包括罐体,固定在罐体周围且组成方形支撑框的架体,分别设置在所述罐体上下两侧的进液口和出液口,以及设置在罐体一侧的自动充装口;所述自动充装口包括焊接于罐体内壁且周向开口的引液管,内套于引液管且一端与引液管末端抵接的弹簧,一端穿过弹簧和引液管末端的引导孔 延伸至罐体内、另一端形成与引液管开放端内径适配的凸起部的挡止件,沿自动充装口外侧焊接并覆盖自动充装口的导向管,转动连接在导向管内壁的推动杆,一端与推动杆转动连接另一端与挡止件连接的顶开杆,以及设置在导向管一端的充装接头组件;所述充装接头组件包括固定在导向管端部的密封连接环和螺接管,固定在密封连接环和螺接管之间的密封圈,以及固定在螺接管端部的定位套;所述螺接管与导向管之间嵌合连接并通过法兰连接加固。
  4. 根据权利要求3所述的可移动浮式液货过驳海工平台,其特征在于,所述导向管的端部设置有承压管,所述承压管内设置有单向阀。
  5. 根据权利要求3所述的可移动浮式液货过驳海工平台,其特征在于,所述顶开杆的末端设置有挡止凸起,所述导向管内壁固定有挡止块,当顶开杆反向运动至预期位置时,挡止凸起与挡止块抵接,阻挡顶开杆继续反向运动。
  6. 根据权利要求1所述的可移动浮式液货过驳海工平台,其特征在于,还包括环境监测系统,所述环境监测系统包括设置在预定海域并形成网格式布局的若干组浮标,安装在浮标上的风速风向传感器、海水流速仪和光谱遥感仪,以及与风速风向传感器和海水流速仪信号连接的数据处理中心;当数据处理中心包括区域海浪短期预测模块,所述区域海浪短期预测模块用于:每隔预定时间接收风速风向传感器、海水流速仪和光谱遥感仪发送的风向、风速、波高、波向、流速和流向数据;对数据进行预处理和标准化;通过DBN模型训练已标准化的数据,获得训练后的数据,然后通过BP算法对训练后的数据进行参数调优,得到调优参数;经至少三组相邻间隔时间获取的数据处理后,建立风矢量场、第一波矢量场和流矢量场;
    每隔预定时间获取海浪视场图像数据,对图像数据进行预处理,提取海浪图像的纹理,确定海浪的波峰线并根据两个连续的波峰线之间的距离计算波长,给每个查找到的波峰编号,并建立波峰场图;下一帧图像开始,查找上一帧图像中出现的波峰并查找新的波峰,对新的波峰进行编号,将新波峰添加到波峰场图,根据新波峰与相邻最近的波峰的方向和图像的间隔时间,建立波峰传播方向矢量图;比较第一波矢量场和波峰传播方向,采用神经网络对数据进行训练,得到参考数据;根据参考数据对海工平台进行控制,从而使其保持稳定;
    当前一帧图像中的波峰与后一帧的波峰出现重叠,且重叠距离小于临界值时,判断为同一波峰,将编号合并。
  7. 一种采用权利要求1至6任一项所述过驳海工平台的液货过驳方法,其特征在于,包括如下步骤:
    步骤一、液货散装船靠近可移动浮式液货过驳海工平台;
    步骤二、从液货散装船上将货物依次经由接卸料臂和货物管囊过驳传输至海工平台上的液货舱;
    步骤三、通过可移动浮式液货过驳海工平台上的充装系统,将液货舱内的货物充装至罐式集装箱;
    步骤四、液货罐式集装箱运输船旁靠于海工平台,由桥机将船上的空箱吊装至罐式集装箱堆放充装区;吊运完成后,液货罐式集装箱运输船移动至另一作业区,通过桥机将满箱吊装至船上。
  8. 根据权利要求7所述的液货过驳方法,其特征在于,所述步骤四进一步为:
    可移动浮式液货过驳海工平台设置有第一区域和第二区域,其内分别设置有第一桥机和第二桥机,载有空箱的液货罐式集装箱运输船首先停靠于第一区域,通过第一桥机将空箱转移至第一区域堆放;吊装完成后,液货罐式集装箱转移至第二区域,通过第二桥机将海工平台上的满箱吊装至船上;与此同时,另一液货罐式集装箱运输船停靠于第一区域,通过第一桥机将空箱吊装并堆放在第一区域。
  9. 一种采用权利要求1至6任一项所述过驳海工平台的液货过驳方法,其特征在于,包括如下步骤,
    步骤一、载有满箱液货的罐式集装箱运输船从各个边际气田出发,移动至可移动浮式液货过驳海工平台,停靠在第一区域,通过第一桥机将满箱转移至海工平台;运输船转移至第二区域,第二桥机将空箱转移至运输船上;
    步骤二、通过充装系统反向充装,将罐式集装箱内的液货转移至海工平台的液货舱;
    步骤三、液货散装运输船旁靠在海工平台一侧并固定;
    步骤四、通过物管囊和接卸料臂,将液货舱内的液货从海工平台,转移至液货散装运输船,通过液货散装运输船转移至预定地址。
  10. 根据权利要求9所述的液货过驳方法,其特征在于,所述步骤一进一步包括:
    所述可移动浮式液货过驳海工平台设置有第一区域和第二区域,其内分别设置第一桥机和第二桥机,载有满箱的液货罐式集装箱运输船首先停靠于第一区域,通过第一桥机将空箱转移至第一区域堆放;吊装完成后,液货罐式集装箱转移至第二区域,通过第二桥机将海工平台上的满箱吊装至船上;与此同时,另一液货罐式集装箱运输船停靠于第一区域,通过第一桥机将空箱吊装并堆放在第一区域。
PCT/CN2019/118103 2019-03-28 2019-11-13 可移动浮式液货过驳海工平台及过驳方法 WO2020192142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910244082.7 2019-03-28
CN201910244082.7A CN109969350B (zh) 2019-03-28 2019-03-28 可移动浮式液货过驳海工平台及过驳方法

Publications (1)

Publication Number Publication Date
WO2020192142A1 true WO2020192142A1 (zh) 2020-10-01

Family

ID=67081362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118103 WO2020192142A1 (zh) 2019-03-28 2019-11-13 可移动浮式液货过驳海工平台及过驳方法

Country Status (2)

Country Link
CN (1) CN109969350B (zh)
WO (1) WO2020192142A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969350B (zh) * 2019-03-28 2020-01-17 南京蒽天捷能源科技有限公司 可移动浮式液货过驳海工平台及过驳方法
US11161573B1 (en) 2020-04-10 2021-11-02 Tritec Marine Ltd. Gas supply marine vessel and floating refueling facility
US11352250B2 (en) 2020-04-10 2022-06-07 Tritec Marine Ltd. Gas supply refueling facility
CN113191341A (zh) * 2021-07-01 2021-07-30 天津海翼科技有限公司 浮体平台检测的潜水器规划方法、系统、设备和潜水器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138029A (ko) * 2011-06-14 2012-12-24 대우조선해양 주식회사 선박 및 그 운용 방법
CN107479424A (zh) * 2017-09-22 2017-12-15 中国海洋石油总公司 一种lng罐箱流水线充装系统
CN107575738A (zh) * 2017-10-18 2018-01-12 上海宏华海洋油气装备有限公司 离岸平台式lng接收和分销系统
CN207164515U (zh) * 2017-09-22 2018-03-30 中国海洋石油总公司 一种lng罐箱流水线充装系统
WO2018064598A1 (en) * 2016-09-30 2018-04-05 Excelerate Energy Limited Partnership Method and system for heading control during ship-to-ship transfer of lng
CN109340557A (zh) * 2018-11-15 2019-02-15 上海宏华海洋油气装备有限公司 液化天然气集装箱加注及转运系统
CN109367710A (zh) * 2018-11-15 2019-02-22 上海宏华海洋油气装备有限公司 Lng集装箱灌装分销船
CN109969350A (zh) * 2019-03-28 2019-07-05 南京蒽天捷能源科技有限公司 可移动浮式液货过驳海工平台及过驳方法
CN110239674A (zh) * 2019-06-25 2019-09-17 南京蒽天捷能源科技有限公司 可移动串联式浮动液货过驳海工平台及过驳方法
CN110239673A (zh) * 2019-06-25 2019-09-17 南京蒽天捷能源科技有限公司 具有动力定位装置的可移动浮式液货过驳海工平台及过驳方法
CN110254645A (zh) * 2019-06-25 2019-09-20 南京蒽天捷能源科技有限公司 可移动浮式双侧作业lng过驳海工平台及过驳方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109110048B (zh) * 2018-08-19 2024-04-23 宜昌东江造船有限公司 船用lng装船应用方法及自航式lng罐式集装箱换装船
CN109359787B (zh) * 2018-12-06 2020-11-17 上海海事大学 一种小范围海域多模态海浪预测系统及其预测方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138029A (ko) * 2011-06-14 2012-12-24 대우조선해양 주식회사 선박 및 그 운용 방법
WO2018064598A1 (en) * 2016-09-30 2018-04-05 Excelerate Energy Limited Partnership Method and system for heading control during ship-to-ship transfer of lng
CN107479424A (zh) * 2017-09-22 2017-12-15 中国海洋石油总公司 一种lng罐箱流水线充装系统
CN207164515U (zh) * 2017-09-22 2018-03-30 中国海洋石油总公司 一种lng罐箱流水线充装系统
CN107575738A (zh) * 2017-10-18 2018-01-12 上海宏华海洋油气装备有限公司 离岸平台式lng接收和分销系统
CN109340557A (zh) * 2018-11-15 2019-02-15 上海宏华海洋油气装备有限公司 液化天然气集装箱加注及转运系统
CN109367710A (zh) * 2018-11-15 2019-02-22 上海宏华海洋油气装备有限公司 Lng集装箱灌装分销船
CN109969350A (zh) * 2019-03-28 2019-07-05 南京蒽天捷能源科技有限公司 可移动浮式液货过驳海工平台及过驳方法
CN110239674A (zh) * 2019-06-25 2019-09-17 南京蒽天捷能源科技有限公司 可移动串联式浮动液货过驳海工平台及过驳方法
CN110239673A (zh) * 2019-06-25 2019-09-17 南京蒽天捷能源科技有限公司 具有动力定位装置的可移动浮式液货过驳海工平台及过驳方法
CN110254645A (zh) * 2019-06-25 2019-09-20 南京蒽天捷能源科技有限公司 可移动浮式双侧作业lng过驳海工平台及过驳方法

Also Published As

Publication number Publication date
CN109969350B (zh) 2020-01-17
CN109969350A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020192142A1 (zh) 可移动浮式液货过驳海工平台及过驳方法
CN110239674B (zh) 可移动串联式浮动液货过驳海工平台及过驳方法
KR101797199B1 (ko) 천연 가스의 부유식 부둣가 액화를 위한 시스템 및 방법
CN101297144B (zh) 使用输送低温流体的悬垂状柔性导管的系统
US6829901B2 (en) Single point mooring regasification tower
KR101427086B1 (ko) 유체 운반 및 수송 방법 및 시스템
CN102963502A (zh) 用于海洋工程的单点系泊浮体装置
EP2534040B1 (en) Bow loading station with double deck for cryogenic fluid
CN101544272A (zh) 液体水下储存、装载和外卸装置
CN105000137A (zh) 扇面回转单点系泊输液系统
CN102963501A (zh) 一种单点系泊系统装置
CN104271437A (zh) 船舶系泊站
CN110254645B (zh) 可移动浮式双侧作业lng过驳海工平台及过驳方法
AU2021229217B1 (en) Hydrogen transportation and storage system
CN106516027A (zh) 一种带储油功能的深吃水半潜式生产平台
CN104590497A (zh) Fpso船
CN109110048A (zh) 船用lng装船应用方法及自航式lng罐式集装箱换装船
CN109110049B (zh) 半潜式lng换装船及船用lng装船应用方法
CN106430072A (zh) 一种悬链式单点系泊输油装置
CN110239673B (zh) 具有动力定位装置的可移动浮式液货过驳海工平台及过驳方法
CN106428429B (zh) 浮式生产储卸油装置长距离拖航的方法
CN217267278U (zh) Fsru船和lng船并靠码头
CN204473082U (zh) 一种非单点系泊海上原油储存设施的外输装置
CN206087215U (zh) 一种用于油品输送的水上浮筒
CN215752897U (zh) 一种独腿转台式外输单点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921021

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19921021

Country of ref document: EP

Kind code of ref document: A1