WO2020189749A1 - 改変アデノウイルス及びこれを含む医薬 - Google Patents

改変アデノウイルス及びこれを含む医薬 Download PDF

Info

Publication number
WO2020189749A1
WO2020189749A1 PCT/JP2020/012196 JP2020012196W WO2020189749A1 WO 2020189749 A1 WO2020189749 A1 WO 2020189749A1 JP 2020012196 W JP2020012196 W JP 2020012196W WO 2020189749 A1 WO2020189749 A1 WO 2020189749A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
adenovirus
modified
modified adenovirus
cells
Prior art date
Application number
PCT/JP2020/012196
Other languages
English (en)
French (fr)
Inventor
史裕 東野
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2021507412A priority Critical patent/JP7406263B2/ja
Priority to EP20774238.8A priority patent/EP3943113A4/en
Priority to CA3135295A priority patent/CA3135295A1/en
Priority to US17/439,184 priority patent/US20220152133A1/en
Priority to CN202080021634.9A priority patent/CN113573741A/zh
Publication of WO2020189749A1 publication Critical patent/WO2020189749A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/761Adenovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10332Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal

Definitions

  • the present invention relates to a modified adenovirus incorporating a gene encoding an AU-rich element, which has specific cell-killing activity against cells in which the stabilization of mRNA containing the AU-rich element is enhanced, and a drug containing the same. Regarding.
  • Onyx-015 A typical example of an oncolytic virus is an adenovirus called Onyx-015, which lacks the gene encoding E1B55K (Non-Patent Document 1).
  • This adenovirus is a virus that cannot express the 55 kDa protein (E1B55K) encoded by the E1B gene, and the tumor suppressor gene p53 does not function normally (including the case where it expresses the mutant p53). Or, it shows a cell-killing effect on tumor cells in which the mRNA of the late virus gene is transported to the outside of the nucleus.
  • E1B55K 55 kDa protein
  • p53 the tumor suppressor gene p53 does not function normally
  • it shows a cell-killing effect on tumor cells in which the mRNA of the late virus gene is transported to the outside of the nucleus.
  • the main purpose of the present invention is to expand the range of applicable tumors, and to stabilize mRNA containing an AU-rich element (also called AU-Rich Element, also referred to as AU-rich sequence, hereinafter referred to as ARE) in tumor cells.
  • AU-rich element also called AU-Rich Element, also referred to as AU-rich sequence, hereinafter referred to as ARE
  • a modified adenovirus having a gene was presented (Patent Document 1).
  • ARE is a region rich in adenine (A) and uracil (U) that exists in the 3'terminal untranslated region of mRNA, and is the 3'non of mRNA transcribed from growth-related genes such as cancer genes or cytokine genes. Frequently present in the translation area.
  • mRNA containing ARE hereinafter referred to as ARE-mRNA
  • TTP Tristetraprolin
  • Zfp36L1, Zfp36L2, AUF1, KSRP, etc. recognize and bind to ARE. ..
  • the HuR protein binds to ARE, and HuR transports ARE-mRNA out of the nucleus and stabilizes it in cells under various stresses.
  • HuR Since HuR is stably localized in the cytoplasm in specific cells such as tumor cells and inflammation-related cells, ARE-mRNA is constitutively stabilized by HuR in modified viruses into which ARE has been introduced. It is expected to exhibit efficacy and safety that it proliferates selectively in these cells and does not proliferate in normal cells. Ensuring efficacy and safety, especially safety, is one of the most important issues for oncolytic viruses.
  • An object of the present invention is to provide a modified adenovirus having cell-killing activity against target cells and having high safety.
  • the enhancer sequence having the function of increasing the expression of the E1A gene, and the viral gene essential for self-proliferation, or at a position adjacent to the 3'untranslated region.
  • the modified adenovirus with a distance between 1500 bp and 4500 bp.
  • the modified adenovirus according to (4) which has a modified E4orf6 gene consisting of the nucleotide sequence shown in SEQ ID NO: 1 or the nucleotide sequence encoding the same amino acid sequence as the amino acid sequence encoded by the sequence.
  • the modified adenovirus according to (4) which has a modified E4orf6 gene encoding the amino acid sequence shown in SEQ ID NO: 2.
  • the modified adenovirus described in. (9) The modified adenovirus according to (8), wherein the viral gene essential for self-proliferation is the E1A gene.
  • a modified adenovirus having cell-killing activity against target cells and having high safety, and a drug containing this is effective against rheumatism in addition to cancer. It can be a therapeutic drug.
  • E1A protein results of analysis of the expression level of E1A protein when A549 cells derived from human alveolar basal epithelial adenocarcinoma are infected with modified adenovirus AdARET-R, wild-type adenovirus wt300 or E1B55k-deficient adenovirus dl1520 are shown. It is a figure. It is a graph which shows the cell killing activity of modified adenovirus AdARET-R against BJ cell which is a normal cell, or HeLa cell derived from human cervical cancer. It is a graph which shows the cell-killing activity of modified adenovirus AdARET-R against HeLa cells or A549 cells in comparison with control adenovirus AdARET.
  • the first aspect of the present invention is in the 3'untranslated region of the E1A gene, an enhancer sequence having a function of increasing the expression of the E1A gene, and a viral gene essential for self-proliferation, or in the 3'untranslated region. It relates to a modified adenovirus having an ARE introduced at an adjacent position, wherein the distance between the 5'end of the E1A gene and the end of the enhancer sequence is 1500 bp to 4500 bp.
  • the modified adenovirus of the present invention has an enhancer sequence having a function of increasing the expression of the E1A gene and the E1A gene.
  • adenovirus there are 51 types of adenovirus, and in the present invention, any serotype of adenovirus can be used, but it is preferable to use type 5 adenovirus, which is often used as a viral vector.
  • the E1A gene is a gene encoding the E1A protein that activates transcription of the adenovirus gene, whose expression is first induced among the adenovirus genes.
  • the E1A protein has a function of inducing the expression of each gene of E4, E1B, E3, E2, which is an early gene of adenovirus, and all late genes.
  • an enhancer sequence (hereinafter, also simply referred to as an enhancer) is a base sequence having a function of increasing gene expression in cooperation with a promoter that controls gene expression in eukaryotic DNA.
  • the enhancer is not limited as long as it has a function of increasing the expression of the E1A gene, and even a unique enhancer (E1A enhancer) existing upstream of the E1A gene of adenovirus is intracellular. It may be a heterogeneous enhancer incorporated to function in, such as a cytomegalovirus (CMV) -derived enhancer or a herpesvirus-derived enhancer.
  • a particularly preferable enhancer in the present invention is an E1A enhancer (SEQ ID NO: 5) present at -192 bp to -343 bp upstream of the E1A gene of type 5 adenovirus genomic DNA.
  • the enhancer may be arranged upstream or downstream of the E1A gene as long as it is arranged so as to be able to increase the expression of the E1A gene, and the base sequence of the enhancer.
  • the orientation may be the same as or opposite to the transcription direction of the E1A gene.
  • the lower limit of the distance between the 5'end of the E1A gene and the end of the enhancer sequence is 1500 bp, preferably 2500 bp, more preferably 2900 bp, and the upper limit is 4500 bp, preferably 3500 bp, more preferably 3200 bp.
  • the distances between the 5'end of the E1A gene and the end of the enhancer sequence are, for example, 1500 bp to 4500 bp, 2500 bp to 3500 bp, and 2900 bp to 3200 bp.
  • the distance between the 5'end of the E1A gene and the end of the enhancer sequence is the base at the end of the E1A gene 5'and the base at the end closer to the E1A gene of the enhancer, regardless of the arrangement and orientation of the E1A gene and the enhancer.
  • the base sequence between the 5'end of the E1A gene and the end of the enhancer sequence is not particularly limited, and other genes may be present, and non-transcriptional sequences, untranslated sequences, and the like may be present. ..
  • the modified adenovirus of the first aspect has an ARE introduced in the 3'untranslated region of the viral gene essential for self-proliferation or at a position adjacent to the 3'untranslated region.
  • ARE stabilizes ARE-mRNA in cells in relation to proteins that promote the degradation of ARE-mRNA such as Tristetraprolin (TTP), Zfp36L1, Zfp36L2, AUF1, and KSRP, or proteins that stabilize ARE-mRNA such as HuR. Anything that has a function of controlling sex may be used.
  • ARE is present in the 3'untranslated region of the c-fos gene, c-myc gene, TNF- ⁇ gene, cox-2 gene and various other genes involved in animal cell proliferation, differentiation induction or immune response. It is known that many kinds of base sequences have been reported. In the present invention, any such ARE can be used, but it is particularly preferable to use the ARE present in the human gene.
  • the number of AREs to be introduced may be one or a plurality, and may be one type or a plurality of types.
  • Preferred examples of ARE in the present invention are ARE (SEQ ID NO: 3) contained in the human TNF- ⁇ gene or ARE (SEQ ID NO: 6) contained in the human c-fos gene.
  • the ARE in the present invention includes not only the base sequence rich in A and U in the RNA molecule but also the base sequence rich in A and T (thymine) corresponding to ARE in the DNA molecule. Therefore, “having ARE” and “containing ARE” are also used when ARE is contained in the RNA molecule and the base sequence rich in A and T corresponding to ARE is contained in the DNA molecule. ..
  • "ARE is introduced” means that the genome or DNA molecule encoding the gene incorporates an A and T-rich base sequence corresponding to ARE so that ARE is contained in the mRNA molecule that is a transcript. Means.
  • viral genes that are essential for self-proliferation into which ARE is introduced include E1A gene, E1B gene, E4orf6 gene, E4orf3 gene, etc., and E1A gene is preferably used.
  • E1A gene is used as the viral gene into which the ARE is introduced
  • the modified adenovirus of the first aspect has an E1A having an ARE introduced within the 3'untranslated region or adjacent to the 3'untranslated region.
  • ARE is introduced in the 3'untranslated region of the viral gene or at a position adjacent to the 3'untranslated region.
  • ARE is preferably introduced at a position from the end of the ORF stop codon of the viral gene to the beginning of the poly A sequence.
  • the position adjacent to the 3'end untranslated region of the viral gene is that when mRNA is transcribed from the viral gene by RNA polymerase, ARE is contained at the 3'end of the mRNA by read through of RNA polymerase. It means a position where it can be used.
  • ARE has the function of promoting the rapid degradation of mRNA containing it together with TTP and the like. Therefore, by introducing ARE into the 3'untranslated region of a viral gene essential for self-proliferation or at a position adjacent to the 3'untranslated region, the mRNA transcribed from such a viral gene is destabilized. be able to.
  • the modified virus of the first aspect of the present invention contains proteins essential for proliferation encoded by ARE-mRNA in normal cells in which ARE-mRNA is rapidly degraded. Since it is not expressed, it cannot proliferate, but in cells in which the stabilization of ARE-mRNA is enhanced, the protein is stably expressed and can proliferate.
  • the modified adenovirus of the first aspect can be prepared by using various genetic engineering techniques known to those skilled in the art.
  • ARE is introduced into the cosmid vector pAxcwit or pAxcwit2 containing an adenovirus genomic DNA having an enhancer having a function of increasing the expression of the E1A gene, within the 3'untranslated region or adjacent to the 3'untranslated region.
  • a nucleic acid fragment containing a viral gene essential for self-proliferation and an E1A gene is used, or when an E1A gene is used as a viral gene essential for self-proliferation, it is within the 3'untranslated region or the 3'untranslated region.
  • a modified adenovirus DNA is constructed by incorporating a nucleic acid fragment containing the E1A gene into which ARE has been introduced at a position adjacent to the E1A gene so that the distance between the 5'end of the E1A gene and the enhancer sequence end is 1500 bp to 4500 bp. can do.
  • ARE is introduced into the adenovirus DNA at a position within the 3'untranslated region or adjacent to the 3'untranslated region.
  • Modified adenovirus DNA by incorporating a nucleic acid fragment containing an enhancer and an E1A gene into which ARE has been introduced and the distance between the 5'end of the E1A gene and the enhancer sequence end is 1500 bp to 4500 bp. Can be built.
  • the constructed modified adenovirus DNA is transfected into a packaging cell such as HEK293 cell or HEK293T cell to translate the viral structural protein and package the viral genome to obtain the modified adenovirus of the first aspect. It can be recovered as virus particles.
  • the modified adenovirus of the first aspect has an ARE introduced within the 3'untranslated region of the E1A gene, enhancer and viral gene essential for self-proliferation, or adjacent to the 3'untranslated region. And, as long as it can grow in the target cell, it may contain other genes or may lack genes that are not essential for virus growth.
  • the cosmid vectors pAxcwit and pAxcwit2 exemplified above lack the E1A, E1B and E3 genes of wild-type adenovirus.
  • the modified adenovirus of the present invention based on pAxcwit or pAxcwit2, it is necessary to integrate the E1A gene.
  • the E1B and E3 genes are not as important for virus growth in cells with enhanced ARE-mRNA stabilization, so modified adenovirus does not need to contain these genes.
  • the modified adenovirus of the first aspect has ARE introduced in the 3'untranslated region of the E1A gene, the enhancer and the viral gene essential for self-proliferation, or at a position adjacent to the 3'untranslated region.
  • the position and orientation of the gene on the genome may be different from that of the wild-type adenovirus.
  • a preferred example of the modified adenovirus of the first aspect is a nucleic acid fragment consisting of a partial sequence of E1A TATA box, E1A coding region, E1B promoter and E1B coding region, specifically, a base sequence of about 1627 bp from the E1B mRNA starting point.
  • it is a modified adenovirus that is integrated directly under the base sequence of the E1A enhancer in the direction opposite to the direction of the base sequence of the E1A enhancer, and further, ARE is integrated in the 3'untranslated region of the E1A gene. ..
  • the enhancement of cell-killing activity against tumor cells by the modified adenovirus of the present invention is presumed as follows.
  • an appropriate amount of E1A-ARE mRNA is transcribed by an appropriate transcription enhancing action by the enhancer.
  • the transcribed E1A-ARE mRNA is nuclear-transported, the E1A protein is stably synthesized, the adenovirus proliferates, and the tumor cells are lysed.
  • the preferred modified adenovirus of the present invention described above since it does not have a complete E1B gene, it is considered that it may have properties equivalent to those of Onyx-015 and the like described above.
  • Another aspect of the present invention is a modified adenovirus having an enhancer sequence having a function of increasing the expression of the E1A gene and the E1A gene and unable to express a normal E4orf6 protein, wherein the E1A gene 5'end. It relates to the modified adenovirus having a distance between the enhancer sequence and the end of the enhancer sequence of 1500 bp to 4500 bp.
  • the E4orf6 protein is a gene product of E4orf6, which is one of the early genes of adenovirus, and its oncodomain on the C-terminal side (in the case of type 5 adenovirus, it corresponds to positions 204 to 294 of the E4orf6 amino acid sequence).
  • E4orf6 protein and pp32 are mediated by the HuR protein, which binds directly to ARE.
  • E4orf6 protein in the present invention means inability to express E4orf6 protein having the same function as wild-type E4orf6 protein, typically onco of E4orf6 protein. Expressing an E4orf6 protein that retains the ⁇ -helix structure within the oncodomain by deleting all or part of the base sequence encoding the domain, or by causing one or more mutations in the base sequence. It means that you cannot do it.
  • the preferred modified adenovirus of the above embodiment has an enhancer sequence having a function of increasing the expression of the E1A gene and the E1A gene, and encodes the same amino acid sequence as the nucleotide sequence shown in SEQ ID NO: 1 or the amino acid sequence encoded by the same.
  • Modified adenovirus having a modified E4orf6 gene consisting of the nucleotide sequence to be used; having an enhancer sequence having a function of increasing the expression of the E1A gene and the E1A gene, and having a modified E4orf6 gene encoding the amino acid sequence shown in SEQ ID NO: 2.
  • Modified adenovirus or; a modified adenovirus having an enhancer sequence having a function of increasing the expression of the E1A gene and the E1A gene and lacking E4orf6, between the 5'end of the E1A gene and the end of the enhancer sequence.
  • the modified adenovirus having a distance of 1500 bp to 4500 bp.
  • modified adenovirus having a modified E4orf6 gene consisting of the nucleotide sequence shown in SEQ ID NO: 1 is an adenovirus called dl355 described in Halbert et al, J. Virology, 1985, Vol. 56, 250-257. Is.
  • An example of an adenovirus lacking E4orf6 is the adenovirus called dl366 described in Halbert et al.
  • the modified adenovirus of the present invention can be prepared by recombining based on dl355 or dl366 so that the distance between the 5'end of the E1A gene and the end of the enhancer sequence is 1500 bp to 4500 bp.
  • a modified adenovirus having a modified E4orf6 gene encoding the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 1 is also composed of a base sequence different from the base sequence shown in SEQ ID NO: 1 due to so-called codon degeneration. , Consists of one aspect of the invention.
  • the modified adenovirus of the present invention can exhibit high proliferative ability and cell-killing activity in cells in which ARE-mRNA stabilization is enhanced, it is a drug for treating diseases involving such cells. It can be used. Therefore, the present invention provides, as a further embodiment, a medicament containing an adenovirus for treating a disease involving cells in which ARE-mRNA is enhanced in stabilization, including the modified virus.
  • the stabilization of ARE-mRNA is enhanced does not mean that ARE-mRNA is transiently stabilized by various stresses, but as described above, for example, in tumor cells. It means a state in which ARE-mRNA can be constantly stabilized in the cell without requiring any stimulus.
  • ARE-mRNA stabilization is enhanced is a tumor cell (Lopez et al, Oncogene, 2003, 22: 7146-7154). Therefore, the medicament containing the modified adenovirus of the present invention can be used as an antitumor agent.
  • ARE-mRNA stabilization is peripheral mononucleosis and synovial cells (Thiele, et al., Exp. Cell Res., 2006, Vol. 312. No.) in patients with rheumatism. . 12).
  • peripheral mononuclear cells of rheumatoid patients the expression of TTP, which promotes the degradation of ARE-mRNA, is significantly reduced compared to that of healthy subjects, while the expression of TNF- ⁇ translated from ARE-mRNA is abnormally increased. It is known that the stabilization of ARE-mRNA is enhanced.
  • peripheral mononuclear cells and synovial cells with the modified adenovirus of the present invention, the peripheral mononuclear cells are selectively killed, and the expression of TNF- ⁇ is combined with that of osteoclasts due to inflammation. It is expected that the progression or worsening of rheumatism can be suppressed by suppressing the induction and further suppressing the proliferation of synovial cells that are targets of inflammation.
  • the medicine containing the modified adenovirus of the present invention can be used as a medicine for the treatment of rheumatism.
  • treatment includes all types of medically acceptable therapeutic interventions aimed at curing or transient remission of a disease. That is, the treatment of a disease involving cells in which the stabilization of mRNA including ARE is enhanced is medically acceptable for various purposes, including delaying or stopping the progression of the disease, regression or disappearance of a lesion, and the like. Including interventions to be performed.
  • the present invention provides a medicament containing the modified adenovirus of each of the above-mentioned aspects.
  • pharmaceuticals include any other virus, therapeutically effective agents, pharmaceutically acceptable carriers, buffers, excipients, adjuvants, preservatives, fillers, stabilizers, augmentations. It may be in the form of a pharmaceutical composition containing any of the ingredients commonly used in mucilage and / or formulations.
  • compositions containing a virus are well known to those skilled in the art, and those skilled in the art can use the ingredients described in the 17th revised Japanese Pharmacopoeia and other standards within the range of normal practicability, depending on the form of the formulation. Can be appropriately selected and used. In addition, it is preferable to use various components used in the preparation containing a virus.
  • the medicament of the present invention can be in any form suitable for administration, for example, solid, semi-solid or liquid forms such as solutions, lyophilized powders, emulsions, suspensions, tablets, pellets, capsules, etc. Not limited to these.
  • the medicament is used in the form of parenteral formulations such as injections, infusions and the like.
  • parenteral formulations such as injections, infusions and the like.
  • carriers that can be used in parenteral preparations include aqueous carriers that are usually used in preparations, such as physiological saline and isotonic solutions containing glucose, D-sorbitol, and the like.
  • Non-Patent Document 1 a conventional drug containing the oncolytic virus and other viral vectors described in Non-Patent Document 1 (Bischoff et al., Science, 1996, Vol.274, pp.373-376) is produced. It can be manufactured by a method of modifying these or by a method modified by the ordinary ability of a person skilled in the art.
  • the medicament of the present invention is administered to pet animals such as dogs and cats, domestic animals such as cows and pigs, and primates such as humans, especially humans.
  • Administration of the drug to the subject can be carried out, for example, following a conventional drug containing an oncolytic virus or other viral vector described in Non-Patent Document 1.
  • the route of administration will be determined by one of ordinary skill in the art, taking into account the form of the formulation, the disease, the site of the disease and various factors considered when administering the drug.
  • the preferred route of administration of the medicament of the present invention is, for example, parenteral administration such as intravascular administration (preferably intravenous administration), intraperitoneal administration, intraperitoneal administration, and local administration into or near a tumor.
  • parenteral administration such as intravascular administration (preferably intravenous administration), intraperitoneal administration, intraperitoneal administration, and local administration into or near a tumor.
  • the medicament of the present invention is administered to a subject by intravenous administration or topical administration into or near the tumor.
  • the administration may be a single administration or a repeated administration.
  • the medicament of the present invention is administered in an amount effective for treating a disease which is appropriately determined according to the usage, the age of the subject, the condition of the disease and other conditions.
  • the dose range is, for example, 1 ⁇ 10 3 to 1 ⁇ 10 14 per human subject, preferably 1 ⁇ 10 5 to 1 ⁇ 10 12 , More preferably 1 ⁇ 10 6 to 1 ⁇ 10 11 , and most preferably 1 ⁇ 10 7 to 1 ⁇ 10 10 plaque forming units (pfu), once or multiple times a day. It can be administered separately or intermittently.
  • the present invention also presents a method of treating a disease involving cells with enhanced ARE-mRNA stabilization, comprising administering to a subject in need thereof an effective amount of the modified adenovirus of each of the above embodiments. Is provided as another aspect.
  • the treatment of the disease using the medicine of the present invention is effective alone, but any other treatment, for example, the conventional treatment and the treatment using the medicine of the present invention may be used in combination.
  • any other treatment for example, the conventional treatment and the treatment using the medicine of the present invention may be used in combination.
  • chemotherapy using other anticancer agents, cancer immunotherapy, radiotherapy, or the like may be used in combination.
  • kits were performed according to the kit manufacturer's protocol. It should be noted that the present invention is not limited to the specific methodologies, protocols, cell lines, animal species and genera, constructs and reagents described herein, and these can be changed as appropriate. It is easily understood by those skilled in the art.
  • Example 1 1) Preparation of modified adenovirus in which ARE is introduced into the 3'untranslated region of the E1A gene E1 containing the E1A gene and E1B gene of type 5 adenovirus in the Escherichia coli vector pBR322 provided by Dr. T. Shenk of Princeton University.
  • the region-inserted plasmid pXhoIC (Logan et al, Cancer Cells 2, 527-532, 1984) was opened with the restriction enzyme HpaI.
  • E1A is incorporated with a synthetic double-stranded DNA fragment consisting of a base sequence corresponding to ARE (5'-gtgattattt attatttatt tattatttat ttatttacag-3', SEQ ID NO: 3) contained in the human TNF- ⁇ gene and its complementary strand.
  • ARE 5'-gtgattattt attatttatt tattatttat ttattttacag-3', SEQ ID NO: 3
  • pXhoIC-ARETNF which is a plasmid containing the E1 region in which the ARE was introduced into the 3'untranslated region of the gene.
  • PCR was performed using pXhoIC-ARETNF as a template and a primer set containing a sequence on the cosmid side of 15 base pairs at both ends to prepare an amplified fragment of the E1 region into which ARE was introduced.
  • This amplified fragment was incorporated into the SmiI restriction site of pAxcwit2 (Takarabio) containing the adenovirus genome lacking the E1A and E1B genes by the Infusion method, and ARE was introduced into the 3'untranslated region of the E1A gene.
  • PAx-ARETNF and pAx-ARETNF-R were constructed as plasmids containing the adenovirus genome.
  • the nucleotide sequence of the insert contained in both plasmids is shown in SEQ ID NO: 4.
  • pAx-ARETNF holds this insert in the same orientation as the E1A enhancer contained in pAxcwit2
  • pAx-ARETNF-R holds this insert in the opposite direction to the E1A enhancer contained in pAxcwit2.
  • the 1st to 1217th bases correspond to the E1A gene
  • the 1st to 43rd bases are the E1A upstream region containing the TATA box
  • the 105th to 1090th bases are the 105th to 1090th bases (partly intron).
  • the E1A coding region is the E1A coding region
  • the 1091-1217th base is the 3'untranslated region of the E1A gene
  • the 1120-1159th base is the introduced human TNF- ⁇ gene-derived ARE.
  • the bases at positions 1218 to 2913 correspond to a part of the E1B gene (up to the middle of the coding region of E1B55k).
  • the distance between the E1A mRNA start point and the enhancer sequence end in pAx-ARETNF-R is 203 bp
  • the distance between the E1A mRNA start point and the enhancer sequence end in pAx-ARETNF-R is 3029 bp.
  • a stock of recombinant adenovirus was prepared by infecting 293 cells with chain DNA obtained by cleaving pAx-ARETNF and pAx-ARETNF-R with the restriction enzyme pacI using Hilymax (Dojin Kagaku Kenkyusho). and further using a Fast-Trap adenovirus purification kit (EMD Millpore Co.) to prepare a purified virus (9.0 ⁇ 10 9 viral particle number / mL).
  • this virus will be referred to as AdARET and AdARET-R.
  • the wild-type type 5 adenovirus wt300 obtained from Dr. T Shenk
  • the E1B55k-deficient type 5 adenovirus dl1520 distributed by Dr. A. Berk, University of California
  • the cells were infected to prepare a purified virus.
  • Example 2 1) Preparation of modified adenovirus in which c-fos-derived ARE was introduced into the 3'untranslated region of the E1A gene pXhoIC was opened with the restriction enzyme HpaI, and ARE (5'-tttt attgtgtttt) contained in the human c-fos gene was opened.
  • the ARE was introduced into the 3'untranslated region of the E1A gene by incorporating a synthetic double-stranded DNA fragment consisting of the nucleotide sequence corresponding to taatttatttt attaagatgg attctcagat atttatattt ttattttatt ttttt -3', SEQ ID NO: 6) and its complementary strand.
  • a plasmid containing the E1 region, pXhoIC-AREFOS was constructed.
  • PCR was performed using pXhoIC-AREFOS as a template and a primer set containing a sequence on the cosmid side of 15 base pairs at both ends to prepare an amplified fragment of the E1 region into which ARE was introduced.
  • This amplified fragment was incorporated into the SmiI restriction site of pAxcwit2 by the Infusion method, and pAx-AREFOS and pAx-AREFOS-R were used as plasmids containing the adenovirus genome in which ARE was introduced into the 3'untranslated region of the E1A gene.
  • pAx-AREFOS and pAx-AREFOS-R were used as plasmids containing the adenovirus genome in which ARE was introduced into the 3'untranslated region of the E1A gene.
  • the nucleotide sequence of the insert contained in both plasmids is shown in SEQ ID NO: 7.
  • pAx-AREFOS has this insert in the same orientation as the E1A enhancer contained in pAxcwit2, and pAx-AREFOS-R has this insert in the opposite direction to the E1A enhancer contained in pAxcwit2.
  • the 1st to 1246th bases correspond to the E1A gene
  • the 1st to 43rd bases are the E1A upstream region containing the TATA box, and the 105th to 1090th bases (partly intron).
  • the E1A coding region is the E1A coding region
  • the 1091-1246th base is the 3'untranslated region of the E1A gene
  • the 1120-1188th base is the introduced human c-fos gene-derived ARE.
  • the 1247 to 2942 bases correspond to a part of the E1B gene (up to the middle of the coding region of E1B55k).
  • the distance between the E1A mRNA start point and the enhancer sequence end in pAx-AREFOS-R is 203 bp
  • the distance between the E1A mRNA start point and the enhancer sequence end in pAx-AREFOS-R is 3058 bp.
  • a stock of recombinant adenovirus was prepared by infecting 293 cells with Hilymax with the chain DNA obtained by cleaving pAx-AREFOS and pAx-AREFOS-R with the restriction enzyme pacI, and then Fast-Trap adenovirus.
  • Purified virus was prepared using a purification kit. Hereinafter, this virus will be referred to as AdAREF and AdAREF-R.
  • Example 3 Antitumor effect of modified virus in cancer-bearing mice transplanted with HeLa S3 cells
  • Human cervical cancer-derived HeLa S3 subcutaneously in 5-week-old nude mice (BALB / c nu / nu; female, n 5) Cells (1 x 10 6 ) were transplanted to form a tumor.
  • Day 0 was the day when the tumor diameter was confirmed to be 9-10 mm, and the adenovirus dl312 lacking the E1A gene, AdARET-R in Example 1 and AdAREF-R in Example 2 (1 ⁇ 10).
  • SEQ ID NO: 1 Nucleotide sequence of modified E4orf6 gene Nucleotide sequence No. 2
  • Nucleotide sequence of modified E4orf6 protein Nucleotide sequence No. 3 Nucleotide sequence of ARE of human TNF- ⁇ gene Nucleotide sequence No.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】 本発明は、標的細胞に対する殺細胞活性を有し、かつ安全性の高い改変アデノウイルスを提供することを目的とする。 【解決手段】 本発明は、E1A遺伝子、E1A遺伝子の発現を増大させる機能を持つエンハンサー配列、及び自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に若しくは当該3'非翻訳領域に隣接する位置に導入されたAU-リッチエレメントを有する改変アデノウイルス、又は;E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつ正常なE4orf6タンパク質を発現することができない改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである前記改変アデノウイルス、並びにこれらを含む医薬に関する。

Description

改変アデノウイルス及びこれを含む医薬
 本発明は、AU-リッチエレメントを含むmRNAの安定化が亢進している細胞に対する特異的な殺細胞活性を有する、AU-リッチエレメントをコードする遺伝子が組み込まれた改変アデノウイルス及びこれを含む医薬に関する。
 がんの治療において、がん細胞を攻撃する有効性と、正常な細胞は攻撃しない又は患者に重い副作用を与えない安全性とを同時に確保することは、今日においても重要な課題である。この課題に対して、がん細胞に対して特異的な殺細胞効果を示すいわゆる腫瘍溶解ウイルスを用いたがんの治療法が提唱され、実用化が進められている。
 腫瘍溶解ウイルスの代表例は、Onyx-015とよばれる、E1B55Kをコードする遺伝子を欠失したアデノウイルスである(非特許文献1)。このアデノウイルスは、E1B遺伝子によってコードされる55kDaのタンパク質(E1B55K)を発現することができないウイルスであり、腫瘍抑制遺伝子p53が正常に機能しない(変異p53を発現している場合を含む)腫瘍細胞、もしくはウイルス後期遺伝子のmRNAが核外に輸送される腫瘍細胞に対して殺細胞効果を示す。しかしながら、p53が正常に機能しない腫瘍細胞はがん種全体の約50%といわれており、Onyx-015の適用範囲はこれらのがん種に制限されるという問題が指摘される。
 本発明者は、適用可能な腫瘍の範囲を拡げることを主な目的とし、腫瘍細胞ではAUリッチエレメント(AU-Rich Element、AU-リッチ配列とも呼ばれる、以下AREと表す)を含むmRNAの安定化が亢進していることに着目して、自身の複製に必須なウイルス遺伝子の3’非翻訳領域内に又は当該3’非翻訳領域に隣接する位置にAREが導入された改変ウイルス、及び改変E4orf6(Early region 4 open reading frame 6)遺伝子を有する改変アデノウイルスを提示した(特許文献1)。
 AREは、mRNAの3'末端非翻訳領域に存在するアデニン(A)とウラシル(U)に富んだ領域であり、がん遺伝子又はサイトカイン遺伝子等の増殖関連遺伝子から転写されるmRNAの3'非翻訳領域に高頻度で存在する。AREを含むmRNA(以下、ARE-mRNAと表す)は、Tristetraprolin(TTP)、Zfp36L1、Zfp36L2、AUF1、KSRP等がAREを認識して結合することで、速やかに分解されることが知られている。一方で、AREにはHuRタンパク質が結合し、様々なストレスを受けた細胞内ではHuRによりARE-mRNAが核外へ輸送され、安定化される。
 HuRは腫瘍細胞や炎症関連細胞等の特定の細胞内で安定的に細胞質に局在していることから、AREが導入された改変ウイルスは、HuRによりARE-mRNAが恒常的に安定化されるこれらの細胞において選択的に増殖し、正常細胞では増殖しないという有効性と安全性を発揮するものと期待されている。有効性と安全性、特に安全性の確保は腫瘍溶解ウイルスにおいて最も重要な課題の1つである。
Bischoff et al., Science, 1996, Vol.274, pp.373-376
特開2016-160249号公報
 本発明は、標的細胞に対する殺細胞活性を有し、かつ安全性の高い改変アデノウイルスを提供することを目的とする。
 本発明者らは、特許文献1に記載されたAREが導入された改変アデノウイルスにおいて、E1A(Early region 1A)遺伝子とその発現を増強するエンハンサー配列との距離を調節することで、殺腫瘍細胞活性を維持しつつ安全性を高めることができることを見出し、下記の各発明を完成させた。
(1)E1A遺伝子、E1A遺伝子の発現を増大させる機能を持つエンハンサー配列、及び自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入されたAU-リッチエレメントを有する改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルス。
(2)自己の増殖に必須のウイルス遺伝子がE1A遺伝子である、(1)に記載の改変アデノウイルス。
(3)E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつ正常なE4orf6タンパク質を発現することができない改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルス。
(4)改変アデノウイルスが、オンコドメイン内にαヘリックス構造を有するE4orf6タンパク質を発現しないように改変されたアデノウイルスである、(3)に記載の改変アデノウイルス。
(5)配列番号1に示される塩基配列又はこれがコードするアミノ酸配列と同一のアミノ酸配列をコードする塩基配列からなる改変E4orf6遺伝子を有する、(4)に記載の改変アデノウイルス。
(6)配列番号2に示されるアミノ酸配列をコードする改変E4orf6遺伝子を有する、(4)に記載の改変アデノウイルス。
(7)E4orf6を欠失したアデノウイルスである、(4)に記載の改変アデノウイルス。
(8)自己の増殖に必須のウイルス遺伝子の3’非翻訳領域内に又は当該3’非翻訳領域に隣接する位置に導入されたAREを有する、(3)~(7)のいずれか一項に記載の改変アデノウイルス。
(9)自己の増殖に必須のウイルス遺伝子がE1A遺伝子である、(8)に記載の改変アデノウイルス。
(10)(1)~(9)のいずれか一項に記載の改変アデノウイルスを含む、AU-リッチエレメントを含むmRNAの安定化が亢進している細胞が関与する疾患を治療するための医薬。
(11)AU-リッチエレメントを含むmRNAの安定化が亢進している細胞が関与する疾患が悪性腫瘍又はリウマチである、(10)に記載の医薬。
 本発明によれば、標的細胞に対する殺細胞活性を有し、かつ安全性の高い改変アデノウイルスを提供することができ、またこれを含む医薬は、がんに加えてリウマチに対しても有効な治療薬となり得る。
ヒト肺胞基底上皮腺癌由来A549細胞に改変アデノウイルスAdARET-R、野生型アデノウイルスwt300又はE1B55k欠損アデノウイルスdl1520を感染させたときのE1Aタンパク質の発現量をウェスタンブロッティング法により解析した結果を示す図である。 改変アデノウイルスAdARET-Rの、正常細胞であるBJ細胞又はヒト子宮頸がん由来HeLa細胞に対する殺細胞活性を示すグラフである。 改変アデノウイルスAdARET-RのHeLa細胞又はA549細胞に対する殺細胞活性を、対照のアデノウイルスAdARETと比較して示すグラフである。 改変アデノウイルスAdARET-RのBJ細胞に対する殺細胞活性を、対照のアデノウイルスAdARETと比較して示すグラフである。 改変アデノウイルスAdAREF-RのA549細胞におけるE1A発現量を、対照のアデノウイルスAdAREFと比較して示すグラフである。 改変アデノウイルスAdAREF-RのHeLa細胞、A549細胞及びBJ細胞における増殖能(ウイルス生産)を、対照のアデノウイルスAdAREFと比較して示すグラフである。 HeLa S3細胞を移植した担癌マウスにおける改変アデノウイルスAdAREF-R及びAdARET-Rの抗腫瘍効果を、対照のアデノウイルスdl312と比較して示すグラフである。
 本発明の第1の態様は、E1A遺伝子、E1A遺伝子の発現を増大させる機能を持つエンハンサー配列、及び自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入されたAREを有する改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルスに関する。
 本発明の改変アデノウイルスは、E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有する。
 アデノウイルスには51種類の血清型が存在し、本発明においてはいずれの血清型のアデノウイルスも利用可能であるが、ウイルスベクターとして多く利用される5型アデノウイルスの利用が好ましい。
 E1A遺伝子は、アデノウイルス遺伝子の中で最初に発現が誘導される、アデノウイルス遺伝子の転写を活性化するE1Aタンパク質をコードする遺伝子である。E1Aタンパク質は、アデノウイルスの初期遺伝子であるE4、E1B、E3、E2の各遺伝子ならびに全ての後期遺伝子の発現を誘導する機能を有する。
 エンハンサー配列(以下、単にエンハンサーとも表す)は、真核生物のDNAにおいて遺伝子発現を制御するプロモーターと協同して遺伝子発現を増大させる機能を持つ塩基配列である。本発明において、エンハンサーは、E1A遺伝子の発現を増大させる機能を持つものであるかぎり制限はなく、アデノウイルスのE1A遺伝子上流に存在する固有のエンハンサー(E1Aエンハンサー)であっても、哺乳動物細胞内で機能するように組み込まれた異種のエンハンサー、例えばサイトメガロウイルス(CMV)由来のエンハンサーやヘルペスウイルス由来のエンハンサー等であってもよい。本発明において特に好ましいエンハンサーは、5型アデノウイルスゲノムDNAのE1A遺伝子上流-192bp~-343bpに存在するE1Aエンハンサー(配列番号5)である。
 本発明の改変アデノウイルスにおいて、エンハンサーは、E1A遺伝子の発現を増大させることが可能となるように配置される限り、E1A遺伝子の上流下流のいずれに配置されていてもよく、またエンハンサーの塩基配列の向きはE1A遺伝子の転写方向と同じ又は逆のいずれでもよい。E1A遺伝子5'末端とエンハンサー配列末端との間の距離は、その下限が1500bp、好ましくは2500bp、より好ましくは2900bpであり、その上限が4500bp、好ましくは3500bp、より好ましくは3200bpである。E1A遺伝子5'末端とエンハンサー配列末端との間の距離は、例えば1500bp~4500bp、2500bp~3500bp、2900bp~3200bpである。ここでE1A遺伝子5'末端とエンハンサー配列末端との間の距離とは、E1A遺伝子とエンハンサーの配置及び向きに拘わらず、E1A遺伝子5'末端の塩基とエンハンサーのE1A遺伝子に近い方の末端の塩基との間の塩基数を意味する。また、E1A遺伝子5'末端とエンハンサー配列末端との間の塩基配列には特に制限は無く、他の遺伝子が存在していてもよく、非転写配列や非翻訳配列等が存在していてもよい。
 第1の態様の改変アデノウイルスは、自己の増殖に必須のウイルス遺伝子の3’非翻訳領域内に又は当該3’非翻訳領域に隣接する位置に導入されたAREを有する。
 AREは、Tristetraprolin(TTP)、Zfp36L1、Zfp36L2、AUF1、KSRP等のARE-mRNAの分解を促進するタンパク質又はHuR等のARE-mRNAを安定化させるタンパク質との関係において細胞内におけるARE-mRNAの安定性を制御する機能を有するものであればよい。AREは、c-fos遺伝子、c-myc遺伝子、TNF-α遺伝子、cox-2遺伝子その他の、動物細胞の増殖、分化誘導又は免疫応答に関与する様々な遺伝子の3'非翻訳領域に存在することが知られており、多種類の塩基配列が報告されている。本発明においては、そのようなAREであればいずれも利用することができるが、特にヒト遺伝子に存在するAREの利用が好ましい。また導入されるAREは一個であっても複数個であってもよく、一種であっても複数種であってもよい。本発明において好ましいAREの例は、ヒトTNF-α遺伝子に含まれるARE(配列番号3)又はヒトc-fos遺伝子に含まれるARE(配列番号6)である。
 また、本発明におけるAREには、RNA分子中のAとUに富んだ塩基配列の他に、DNA分子におけるAREに相当するA及びT(チミン)に富んだ塩基配列も含まれる。したがって、「AREを有する」「AREが含まれる」は、RNA分子中にAREが含まれる他、DNA分子中にAREに相当するA及びTに富んだ塩基配列が含まれる場合にも使用される。また「AREが導入される」は、転写産物であるmRNA分子中にAREが含まれるように、遺伝子をコードするゲノム又はDNA分子にAREに相当するA及びTに富んだ塩基配列が組み込まれることを意味する。
 AREが導入される、自己の増殖に必須のウイルス遺伝子の例としては、E1A遺伝子、E1B遺伝子、E4orf6遺伝子、E4orf3遺伝子等を挙げることができ、E1A遺伝子が好ましく使用される。AREが導入されるウイルス遺伝子としてE1A遺伝子を用いる場合、第1の態様の改変アデノウイルスは、3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入されたAREを有するE1A遺伝子、及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有する改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルスと表される。
 AREは、前記ウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入される。特に、AREはウイルス遺伝子のORFの終始コドンの後ろからポリA配列が始まるまでの位置に導入されることが好ましい。またウイルス遺伝子の3'末端非翻訳領域に隣接する位置とは、ウイルス遺伝子からRNAポリメラーゼによってmRNAが転写される際に、RNAポリメラーゼのリードスルー(read through)によってmRNAの3'末端にAREが含まれるような位置を意味する。
 先に説明したように、AREはTTP等と共にこれを含むmRNAの速やかな分解を促す機能を有する。したがって、AREを自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入することで、かかるウイルス遺伝子から転写されるmRNAを不安定化させることができる。以下の推論に拘束されるものではないが、本発明の第1の態様の改変ウイルスは、ARE-mRNAが速やかに分解される通常の細胞ではARE-mRNAにコードされる増殖に必須のタンパク質が発現しないので増殖することができないが、ARE-mRNAの安定化が亢進している細胞では前記タンパク質は安定的に発現するので増殖することができる。
 第1の態様の改変アデノウイルスは、当業者に知られた種々の遺伝子工学的手法を用いて作成することができる。例えば、E1A遺伝子の発現を増大させる機能を持つエンハンサーを有するアデノウイルスゲノムDNAを含むコスミドベクターpAxcwit又はpAxcwit2に、3’非翻訳領域内に若しくは当該3’非翻訳領域に隣接する位置にAREが導入された自己の増殖に必須のウイルス遺伝子とE1A遺伝子とを含む核酸断片を、又は自己の増殖に必須のウイルス遺伝子としてE1A遺伝子を用いる場合は3’非翻訳領域内に若しくは当該3’非翻訳領域に隣接する位置にAREが導入されたE1A遺伝子を含む核酸断片を、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpとなるように組み込むことにより、改変アデノウイルスDNAを構築することができる。
 また、エンハンサーを有しないアデノウイルスDNAを基にする場合は、例えば当該アデノウイルスDNAに、3’非翻訳領域内に若しくは当該3’非翻訳領域に隣接する位置にAREが導入された自己の増殖に必須のウイルス遺伝子とE1A遺伝子とエンハンサーとを含む核酸断片、又は自己の増殖に必須のウイルス遺伝子としてE1A遺伝子を用いる場合は3’非翻訳領域内に若しくは当該3’非翻訳領域に隣接する位置にAREが導入されたE1A遺伝子とエンハンサーとを含む核酸断片であって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである核酸断片を組み込むことにより、改変アデノウイルスDNAを構築することができる。
 次いで構築された改変アデノウイルスDNAを、HEK293細胞又はHEK293T細胞等のパッケージング細胞にトランスフェクションすることで、ウイルス構造タンパク質の翻訳、ウイルスゲノムのパッケージングを経て、第1の態様の改変アデノウイルスをウイルス粒子として回収することができる。
 第1の態様の改変アデノウイルスは、E1A遺伝子、エンハンサー及び自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入されたAREを有し、かつ標的細胞において増殖可能である限り、他の遺伝子を含んでもよく、またウイルスの増殖に必須ではない遺伝子を欠損していてもよい。例えば、上で例示したコスミドベクターpAxcwit及びpAxcwit2は、野生型のアデノウイルスが有するE1A遺伝子、E1B遺伝子及びE3遺伝子を欠損している。pAxcwit又はpAxcwit2を基にして本発明の改変アデノウイルスを構築する場合、E1A遺伝子を組み込むことが必要となる。一方、E1B遺伝子及びE3遺伝子は、ARE-mRNAの安定化が亢進している細胞ではウイルスの増殖にE1Aほど重要ではないため、改変アデノウイルスはこれらの遺伝子を含む必要はない。
 また第1の態様の改変アデノウイルスは、E1A遺伝子、エンハンサー及び自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入されたAREを有し、かつ標的細胞において増殖可能である限り、野生型アデノウイルスとはゲノム上の遺伝子の位置や向きが異なっていてもよい。
 第1の態様の改変アデノウイルスの好ましい例は、E1A TATA box、E1Aコーディング領域、E1Bプロモーター及びE1Bコーディング領域の部分配列、具体的にはE1B mRNA開始点から約1627bpの塩基配列からなる核酸断片が、この順序で、E1Aエンハンサーの塩基配列の直下に、E1Aエンハンサーの塩基配列の向きとは逆向きに組み込まれ、さらにE1A遺伝子の3'非翻訳領域内にAREが組み込まれた改変アデノウイルスである。
 本発明の改変アデノウイルスによる腫瘍細胞に対する殺細胞活性の強化は次のように推察される。改変アデノウイルスが腫瘍細胞に感染すると、エンハンサーによる適度な転写増強作用によって適当量のE1A-ARE mRNAが転写される。転写されたE1A-ARE mRNAは核外輸送され、安定的にE1Aタンパク質が合成され、アデノウイルスが増殖して腫瘍細胞は溶解する。また、上記の本発明の好ましい改変アデノウイルスの別の例では、完全なE1B遺伝子を持たないため、前述のOnyx-015等と同等の性質も持ち得ると考えられる。
 本発明の別の態様は、E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつ正常なE4orf6タンパク質を発現することができない改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである前記改変アデノウイルスに関する。
 E4orf6タンパク質は、アデノウイルスの初期遺伝子の一つであるE4orf6の遺伝子産物であり、そのC末端側にあるオンコドメイン(5型アデノウイルスの場合はE4orf6アミノ酸配列の204位から294位に相当する)においてpp32タンパク質と相互作用すること、オンコドメインに存在するαヘリックス構造が前記相互作用に関与すること、及びこの相互作用を介してE4orf6タンパク質とpp32は、AREに直接結合するHuRタンパクを介して、3'非翻訳領域にAREを含むmRNAと結合し、CRM1非依存的に、強制的、恒常的にAREを含むmRNAを核外に輸送しかつ安定化することが知られている(Higashino et al, J. Cell Biol., 2005, Vol.170, pp15-20)。本発明における「正常なE4orf6タンパク質を発現することができない」とは、野生型のE4orf6タンパク質と同等の機能を持つE4orf6タンパク質を発現することができないことをいい、典型的には、E4orf6タンパク質のオンコドメインをコードする塩基配列の全部若しくは一部が欠失することによって、又は当該塩基配列に1若しくは複数の変異が生じることによって、オンコドメイン内のαヘリックス構造が保持されたE4orf6タンパク質を発現することができないことをいう。
 上記態様の好ましい改変アデノウイルスは、E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつ配列番号1に示される塩基配列又はこれがコードするアミノ酸配列と同一のアミノ酸配列をコードする塩基配列からなる改変E4orf6遺伝子を有する改変アデノウイルス;E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつ配列番号2に示されるアミノ酸配列をコードする改変E4orf6遺伝子を有する改変アデノウイルス、又は;E1A遺伝子、E1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつE4orf6を欠失した改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルスである。
 配列番号1に示される塩基配列からなる改変E4orf6遺伝子を有する改変アデノウイルスの例は、Halbert et al, J. Virology, 1985, Vol. 56, 250-257に記載されたdl355と称されるアデノウイルスである。また、E4orf6を欠失したアデノウイルスの例は、前記Halbert et alに記載されたdl366と称されるアデノウイルスである。本発明の改変アデノウイルスは、dl355又はdl366を元にして、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpとなるように組み換えることで作成することができる。ここで、エンハンサー、E1A遺伝子とエンハンサーとの間の距離、E1A遺伝子とエンハンサーとの位置関係は、前記第1の態様において説明したとおりである。なお、いわゆるコドン縮重によって配列番号1に示される塩基配列とは異なる塩基配列からなるが、依然として配列番号1に示される塩基配列がコードするアミノ酸配列をコードする改変E4orf6遺伝子を有する改変アデノウイルスも、本発明の1つの態様を構成する。
 本発明の改変アデノウイルスは、ARE-mRNAの安定化が亢進している細胞において高い増殖能及び殺細胞活性を示すことができることから、そのような細胞が関与する疾患を治療するための医薬として利用することができる。したがって、本発明は、前記改変ウイルスを含む、ARE-mRNAの安定化が亢進している細胞が関与する疾患を治療するためのアデノウイルスを含む医薬をさらなる態様として提供する。
 本発明において「ARE-mRNAの安定化が亢進している」とは、様々なストレスによって一過性にARE-mRNAが安定化されている状態ではなく、例えば腫瘍細胞のように、前記のような刺激を要することなく恒常的に細胞内においてARE-mRNAが安定化され得る状態を意味する。
 ARE-mRNAの安定化が亢進している宿主細胞の例は、腫瘍細胞である(Lopez et al, Oncogene, 2003, 22: 7146-7154)。したがって、本発明の改変アデノウイルスを含む医薬は、抗腫瘍薬として利用可能である。
 ARE-mRNAの安定化が亢進している宿主細胞の別の例は、リウマチ患者における末梢単核球及び滑膜細胞(Thiele, et al., Exp. Cell Res., 2006, Vol. 312. No. 12)である。リウマチ患者の末梢単核球では、ARE-mRNAの分解を促進するTTPの発現は健常人に比較して大きく低下している一方、ARE-mRNAから翻訳されるTNF-αの発現が異常亢進していることが知られており、ARE-mRNAの安定化が亢進していると推察される。したがって、末梢単核球及び滑膜細胞に本発明の改変アデノウイルスを感染させることによって当該末梢単核球を選択的に死滅させて、TNF-αの発現を、合わせて炎症による破骨細胞の誘導をも抑制し、さらに炎症の標的となる滑膜細胞の増殖を抑制することで、リウマチの進行ないし悪化を抑制することができるものと期待される。このように、本発明の改変アデノウイルスを含む医薬は、リウマチの治療のための医薬として利用可能である。
 本明細書において用いられる用語「治療」は、疾患の治癒又は一時的寛解を目的とする医学的に許容される全てのタイプの治療的介入を包含する。すなわち、AREを含むmRNAの安定化が亢進している細胞が関与する疾患の治療とは、当該疾患の進行の遅延又は停止、病変の退縮又は消失等を含む、種々の目的の医学的に許容される介入を包含する。
 本発明は、上述の各態様の改変アデノウイルスを含む医薬を提供する。医薬は、改変アデノウイルスに加えて、任意の他のウイルス、治療上有効な薬剤、薬学的に許容される担体、緩衝剤、賦形剤、アジュバント、防腐薬、充填剤、安定化剤、増粘剤及び/又は製剤に通常使用される任意の成分を含む医薬組成物の形態であってもよい。
 薬学的に許容される成分は当業者において周知であり、当業者が通常の実施能力の範囲内で、例えば第十七改正日本薬局方その他の規格書に記載された成分から製剤の形態に応じて適宜選択して使用することができる。また、ウイルスを含む製剤で利用されている各種の成分を利用することが好ましい。
 本発明の医薬は、投与に適した任意の形態、例えば溶液、凍結乾燥粉末、エマルジョン、懸濁液、錠剤、ペレット、カプセル等の固体形、半固体形又は液体形であることができるが、これらには限定されない。特定の実施形態において、医薬は、注射剤、点滴剤等の非経口製剤の形態で用いられる。非経口製剤に用いることができる担体としては、例えば、生理食塩水や、ブドウ糖、D-ソルビトール等を含む等張液といった、製剤において通常用いられる水性担体が挙げられる。
 上記の形態の医薬は、例えば前記非特許文献1(Bischoff et al., Science, 1996, Vol.274, pp.373-376)に記載の腫瘍溶解ウイルスその他のウイルスベクターを含む従来の医薬を製造する方法又は当業者の通常の能力によってこれらを改変した方法により、製造することができる。
 本発明の医薬は、イヌ、ネコ等の愛玩動物、ウシ、ブタ等の家畜動物及びヒト等の霊長類、特にヒトを対象として投与される。対象への医薬の投与は、例えば前記非特許文献1に記載の腫瘍溶解ウイルスその他のウイルスベクターを含む従来の医薬に倣って行うことができる。投与経路としては、製剤の形態、疾患、疾患部位及びその他の薬剤を投与する際に考慮される種々の因子に配慮して、当業者によって決定される。
 本発明の医薬の好ましい投与経路は、例えば血管内投与(好ましくは静脈内投与)、腹腔内投与、腸管内投与、腫瘍内又はその近傍への局所投与等の非経口投与である。好ましい実施形態の一つにおいて、本発明の医薬は、静脈内投与又は腫瘍内若しくはその近傍への局所投与により対象に投与される。投与は、単回投与であっても、反復投与であってもよい。
 本発明の医薬は、用法、対象の年齢、疾患の状態その他の条件に応じて適宜決定される疾患の治療に有効な量が投与される。対象、特にヒトに対して本発明の医薬を投与する場合、その用量範囲は、例えば、ヒト対象1人あたり、1×103~1×1014、好ましくは1×105~1×1012、より好ましくは1×106~1×1011、最も好ましくは1×107~1×1010のプラーク形成単位(p.f.u.)であることができ、これを1日に1回若しくは複数回に分けて、又は間歇的に投与することができる。
 本発明はまた、その必要がある対象に、有効量の上述の各態様の改変アデノウイルスを投与することを含む、ARE-mRNAの安定化が亢進している細胞が関与する疾患を治療する方法を別の態様として提供する。
 本発明の医薬を用いた疾患治療は、単独でも有効であるが、任意の他の治療、例えば旧来の治療と本発明の医薬を用いた治療とを併用してもよい。例えば、がん治療の場合に、他の抗がん剤を用いた化学療法、がん免疫療法又は放射線治療等を併用してもよい。
 以下、非限定的な実施例によって本発明をさらに詳細に説明する。実施例において、市販のキットを用いた操作はキット製造者のプロトコルに従って行った。なお本発明は、本明細書に記載の特定の方法論、プロトコル、細胞株、動物種及び属、コンストラクト並びに試薬に限定されるものではなく、これらは適宜変更することができるものであることは当業者に容易に理解されるものである。
実施例1
1)E1A遺伝子の3'非翻訳領域にAREが導入された改変アデノウイルスの調製
 プリンストン大学、T.Shenk博士より供与された、大腸菌ベクターpBR322に5型アデノウイルスのE1A遺伝子及びE1B遺伝子を含むE1領域が挿入されたプラスミドであるpXhoIC(Logan et al, Cancer Cells 2, 527-532, 1984)を、制限酵素HpaIで開環させた。これに、ヒトTNF-α遺伝子に含まれるARE(5’-gtgattattt attatttatt tattatttat ttatttacag-3'、配列番号3)に相当する塩基配列及びその相補鎖からなる合成二本鎖DNA断片を組み込んで、E1A遺伝子の3'非翻訳領域に前記AREが導入されたE1領域を含むプラスミドであるpXhoIC-ARETNFを構築した。
 pXhoIC-ARETNFを鋳型とし、両端に15base pairのコスミド側の配列を含んだプライマーセットを用いたPCRを行い、AREが導入されたE1領域の増幅断片を調製した。この増幅断片を、E1A遺伝子及びE1B遺伝子を欠いたアデノウイルスゲノムを含むpAxcwit2(タカラバイオ)のSmi I制限部位にIn fusion法で組み込んで、E1A遺伝子の3'非翻訳領域にAREが導入されたアデノウイルスゲノムを含むプラスミドとしてpAx-ARETNF及びpAx-ARETNF-Rを構築した。
 両プラスミドに含まれるインサートの塩基配列を配列番号4に示す。pAx-ARETNFはこのインサートをpAxcwit2中に含まれるE1Aエンハンサーと同じ向きに、pAx-ARETNF-RはこのインサートをpAxcwit2中に含まれるE1Aエンハンサーと逆向きに有する。配列番号4に示される塩基配列において、1~1217番目の塩基はE1A遺伝子に相当し、1~43番目の塩基がTATA boxを含むE1A上流領域、105~1090番目の塩基(一部にイントロンを含む)がE1Aのコーディング領域、1091~1217番目の塩基がE1A遺伝子の3'非翻訳領域であって、その中の1120~1159番目の塩基は導入されたヒトTNF-α遺伝子由来AREである。また、1218~2913番目の塩基はE1B遺伝子の一部(E1B55kのコーディング領域の途中まで)に相当する。また、pAx-ARETNFにおけるE1A mRNA開始点とエンハンサー配列末端との間の距離は203bpであり、pAx-ARETNF-RにおけるE1A mRNA開始点とエンハンサー配列末端との間の距離は3029bpである。
 pAx-ARETNF及びpAx-ARETNF-Rを制限酵素pacIで切断して得られる鎖状DNAを、Hilymax(同仁化学研究所社)を用いて293細胞に感染させることで組換えアデノウイルスのストックを調製し、さらにFast-Trap adenovirus purification kit(EMD Millpore社)を用いて、精製ウイルス(9.0×109ウイルス粒子数/mL)を調製した。以後、このウイルスをAdARET及びAdARET-Rと表す。
 また、野生型の5型アデノウイルスであるwt300(T Shenk博士より入手)、E1B55kを欠損した5型アデノウイルスであるdl1520(カリフォルニア大学、A.Berk博士より分与)を上と同様にして293細胞に感染させ、精製ウイルスを調製した。
2)改変ウイルスにおけるE1A発現量の評価
 1×105個のヒト肺胞基底上皮腺癌由来A549細胞株(ATCCから購入)を、2mlのDMEM(10%FBS)を含む6ウェルディシュに接種して、37℃で培養した。培地を除去し、新たに10%FBSを含むDMEMを2ml加え、さらに上記1)で調製したAdARET-RをMOI=1000、wt300又はdl1520をMOI=10となるように加えて、37℃でwt300、dl1520は24時間、AdARET-Rは48時間インキュベーションを行った。培養液からウイルスを回収し、タンパク質を抽出した後、M58抗体を用いたウエスタン法によりE1Aを検出した。その結果、他のウイルスに比べて、AdARET-RのE1A発現量は少ないことが確認された(図1)。
3)殺細胞活性の評価
 3×103個のヒト正常細胞である包皮皮膚線維芽由来BJ細胞及びヒト子宮頸がん由来HeLa細胞をそれぞれ、100μLのDMEM(10%FBS)を含む96ウェルディシュに接種して、37℃で培養した。培地を除去し、新たに10%FBSを含むDMEMを100μL加え、さらに上記1)で調製したAdARET-RをMOI=10000となるように加えて、37℃でインキュベーションを行った。培養開始から1、5、7日後に、Cell Proliferation kit II(XTT)(Roche社)を用いたXTTアッセイを行って、細胞生存率を測定した。アデノウイルスの代わりに同容量の培地を加えたウェルを対照(mock)とし、mockに対する相対的細胞生存率を算出した。その結果、AdARET-R はHeLa細胞に対して殺細胞活性を示す一方、正常細胞であるBJ細胞には殆ど殺細胞活性を示さないことが確認された(図2)。
4)殺細胞活性の評価
 上記3)と同様の方法でHeLa細胞及びA549細胞にAdARET-R又はAdARETをMOI = 0.01、0.1又は1となるように加えてインキュベーションを行い、培養開始から7日後のXTTアッセイにより細胞生存率を測定した。その結果、AdARET-R及びAdARETはいずれもがん細胞に対する殺細胞活性を示し、HeLa細胞に対してはAdARET よりもAdARET-Rが、A549細胞に対してはAdARET-RよりもAdARETが、より強い殺細胞活性を示すことが確認された(図3)。
5)正常細胞に対する殺細胞活性の比較
 上記3)と同様の方法でBJ細胞にAdARET-R又はAdARETをMOI = 0.01、0.1又は1となるように加えてインキュベーションを行い、培養開始から20日後のXTTアッセイにより細胞生存率を測定した。その結果、AdARET感染細胞よりもAdARET-R感染細胞の方が生存率が高く(図4)、AdARET-Rの方がAdARETよりも正常細胞に対して殺細胞活性が低いことが確認された。
実施例2
1)E1A遺伝子の3'非翻訳領域にc-fos由来AREが導入された改変アデノウイルスの調製
 pXhoICを制限酵素HpaIで開環させ、ヒトc-fos遺伝子に含まれるARE(5’- tttt attgtgtttt taatttattt attaagatgg attctcagat atttatattt ttattttatt ttttt -3’、配列番号6)に相当する塩基配列及びその相補鎖からなる合成二本鎖DNA断片を組み込んで、E1A遺伝子の3'非翻訳領域に前記AREが導入されたE1領域を含むプラスミドであるpXhoIC-AREFOSを構築した。
 pXhoIC-AREFOSを鋳型とし、両端に15base pairのコスミド側の配列を含んだプライマーセットを用いたPCRを行い、AREが導入されたE1領域の増幅断片を調製した。この増幅断片を、pAxcwit2のSmi I制限部位にIn fusion法で組み込んで、E1A遺伝子の3'非翻訳領域にAREが導入されたアデノウイルスゲノムを含むプラスミドとして、pAx-AREFOS及びpAx-AREFOS-Rを構築した。
 両プラスミドに含まれるインサートの塩基配列を配列番号7に示す。pAx-AREFOSはこのインサートをpAxcwit2中に含まれるE1Aエンハンサーと同じ向きに、pAx-AREFOS-RはこのインサートをpAxcwit2中に含まれるE1Aエンハンサーと逆向きに有する。配列番号7に示される塩基配列において、1~1246番目の塩基はE1A遺伝子に相当し、1~43番目の塩基がTATA boxを含むE1A上流領域、105~1090番目の塩基(一部にイントロンを含む)がE1Aのコーディング領域、1091~1246番目の塩基がE1A遺伝子の3'非翻訳領域であって、その中の1120~1188番目の塩基は導入されたヒトc-fos遺伝子由来AREである。また、1247~2942番目の塩基はE1B遺伝子の一部(E1B55kのコーディング領域の途中まで)に相当する。また、pAx-AREFOSにおけるE1A mRNA開始点とエンハンサー配列末端との間の距離は203bpであり、pAx-AREFOS-RにおけるE1A mRNA開始点とエンハンサー配列末端との間の距離は3058bpである。
 pAx-AREFOS及びpAx-AREFOS-Rを制限酵素pacIで切断して得られる鎖状DNAを、Hilymaxを用いて293細胞に感染させることで組換えアデノウイルスのストックを調製し、さらにFast-Trap adenovirus purification kitを用いて、精製ウイルスを調製した。以後、このウイルスをAdAREF及びAdAREF-Rと表す。
2)改変ウイルスにおけるE1A発現量の評価
 1×105個のA549細胞株を、2mlのDMEM(10%FBS)を含む6ウェルディシュに接種して、37℃で培養した。培地を除去し、新たに10%FBSを含むDMEMを2ml加え、さらに上記1)で調製したAdAREF又はAdAREF-RをMOI=10となるように加えて、37℃で72時間インキュベーションを行った。培養液からmRNAを回収し、E1A primer(Fw: 5’-GAACCACCTACCCTTCACG-3’(配列番号8)、Rev 5’-CCGCCAACATTACAGAGTCG-3(配列番号9))を用いた定量性real-time RT-PCR法により、E1A mRNAの定量を行った。その結果、AdAREFに比べて、AdAREF-RのE1A mRNA発現量が少ないことが確認された(図5)。
3)がん細胞及び正常細胞における改変ウイルスの増殖能の評価
 5×104個のHeLa細胞株、A549細胞株及びBJ細胞株を2mlのDMEM(10%FBS)を含む6ウェルディシュに接種して、37℃で培養した。培地を除去し、新たに10%FBSを含むDMEMを2ml加え、さらに上記1)で調製したAdAREF又はAdAREF-RをMOI=10となるように加えて、37℃で72時間インキュベーションを行った。インキュベーション後に培地からウイルスを回収し、Adeno-X(登録商標) Rapid Titer Kit(Clontech)によってウイルス外殻構成タンパクのヘクソンを293細胞を用いて染色することにより、ウイルス量を測定した。その結果、AdAREFに比べて、AdAREF-Rの方が正常細胞における増殖能が低いことが確認された(図6)。
実施例3 HeLa S3細胞を移植した担癌マウスにおける改変ウイルスの抗腫瘍効果
 5週齢のヌードマウス(BALB/c nu/nu;雌、n=5)の皮下にヒト子宮頸がん由来HeLa S3細胞(1×106個)を移植し、腫瘍を形成させた。腫瘍の直径が9-10 mmになったことを確認した日をDay 0として、E1A遺伝子を欠失したアデノウイルスdl312、実施例1のAdARET-R及び実施例2のAdAREF-R(1×109 vp; 100μl)を計2回(Day 1とDay 4)各腫瘍に直接投与し、腫瘍の体積(mm3、長径×短径×0.5により算出)を経時的に測定した。腫瘍体積の測定は、Day 0から5日おきに行った。その結果、AdAREF-R、AdARET-Rを投与した群では共に腫瘍の増大が抑制され、両ウイルスのin vivoでの効果が確認された(図7)。
配列番号1 改変E4orf6遺伝子の塩基配列
配列番号2 改変E4orf6タンパク質のアミノ酸配列
配列番号3 ヒトTNF-α遺伝子のAREの塩基配列
配列番号4 pAx-ARETNF及びpAx-ARETNF-Rのインサートの塩基配列
配列番号5 5型アデノウイルスE1A遺伝子のエンハンサーの塩基配列
配列番号6 ヒトc-fos遺伝子のAREの塩基配列
配列番号7 pAx-AREFOS及びpAx-AREFOS-Rのインサートの塩基配列
配列番号8 5型アデノウイルスE1A遺伝子を増幅するためのフォワードプライマー
配列番号9 5型アデノウイルスE1A遺伝子を増幅するためのリバースプライマー

Claims (11)

  1.  E1A遺伝子、E1A遺伝子の発現を増大させる機能を持つエンハンサー配列、及び自己の増殖に必須のウイルス遺伝子の3'非翻訳領域内に又は当該3'非翻訳領域に隣接する位置に導入されたAU-リッチエレメントを有する改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルス。
  2.  自己の増殖に必須のウイルス遺伝子がE1A遺伝子である、請求項1に記載の改変アデノウイルス。
  3.  E1A遺伝子及びE1A遺伝子の発現を増大させる機能を持つエンハンサー配列を有し、かつ正常なE4orf6タンパク質を発現することができない改変アデノウイルスであって、E1A遺伝子5'末端とエンハンサー配列末端との間の距離が1500bp~4500bpである、前記改変アデノウイルス。
  4.  改変アデノウイルスが、オンコドメイン内にαヘリックス構造を有するE4orf6タンパク質を発現しないように改変されたアデノウイルスである、請求項3に記載の改変アデノウイルス。
  5.  配列番号1に示される塩基配列又はこれがコードするアミノ酸配列と同一のアミノ酸配列をコードする塩基配列からなる改変E4orf6遺伝子を有する、請求項4に記載の改変アデノウイルス。
  6.  配列番号2に示されるアミノ酸配列をコードする改変E4orf6遺伝子を有する、請求項4に記載の改変アデノウイルス。
  7.  E4orf6を欠失したアデノウイルスである、請求項4に記載の改変アデノウイルス。
  8.  自己の増殖に必須のウイルス遺伝子の3’非翻訳領域内に又は当該3’非翻訳領域に隣接する位置に導入されたAREを有する、請求項3~7のいずれか一項に記載の改変アデノウイルス。
  9.  自己の増殖に必須のウイルス遺伝子がE1A遺伝子である、請求項8に記載の改変アデノウイルス。
  10.  請求項1~9のいずれか一項に記載の改変アデノウイルスを含む、AU-リッチエレメントを含むmRNAの安定化が亢進している細胞が関与する疾患を治療するための医薬。
  11.  AU-リッチエレメントを含むmRNAの安定化が亢進している細胞が関与する疾患が悪性腫瘍又はリウマチである、請求項10に記載の医薬。

     
PCT/JP2020/012196 2019-03-20 2020-03-19 改変アデノウイルス及びこれを含む医薬 WO2020189749A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021507412A JP7406263B2 (ja) 2019-03-20 2020-03-19 改変アデノウイルス及びこれを含む医薬
EP20774238.8A EP3943113A4 (en) 2019-03-20 2020-03-19 MODIFIED ADENOVIRUS AND MEDICATION COMPRISING IT
CA3135295A CA3135295A1 (en) 2019-03-20 2020-03-19 Modified adenovirus and medicine comprising same
US17/439,184 US20220152133A1 (en) 2019-03-20 2020-03-19 Modified adenovirus and medicine comprising same
CN202080021634.9A CN113573741A (zh) 2019-03-20 2020-03-19 修饰腺病毒和含有其的医药

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053895 2019-03-20
JP2019053895 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189749A1 true WO2020189749A1 (ja) 2020-09-24

Family

ID=72520204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012196 WO2020189749A1 (ja) 2019-03-20 2020-03-19 改変アデノウイルス及びこれを含む医薬

Country Status (7)

Country Link
US (1) US20220152133A1 (ja)
EP (1) EP3943113A4 (ja)
JP (1) JP7406263B2 (ja)
CN (1) CN113573741A (ja)
CA (1) CA3135295A1 (ja)
TW (1) TWI819203B (ja)
WO (1) WO2020189749A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160249A (ja) 2015-03-05 2016-09-05 国立大学法人北海道大学 腫瘍溶解改変アデノウイルス、疾患治療用改変ウイルス及びこれらを含むウイルス製剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900049B2 (en) * 1998-09-10 2005-05-31 Cell Genesys, Inc. Adenovirus vectors containing cell status-specific response elements and methods of use thereof
US9017672B2 (en) * 2012-05-11 2015-04-28 Immunicum Aktiebolag Hexon Tat-PTD modified adenovirus and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160249A (ja) 2015-03-05 2016-09-05 国立大学法人北海道大学 腫瘍溶解改変アデノウイルス、疾患治療用改変ウイルス及びこれらを含むウイルス製剤

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BISCHOFF ET AL., SCIENCE, vol. 274, 1996, pages 373 - 376
ELOIT M. ET AL.: "Isogenic adenoviruses type 5 expressing or not expressing the E1A gene : efficiency as virus vectors in the vaccination of permissive and non-permissive species", JOURNAL OF GENERAL VIROLOGY, vol. 76, 1995, pages 1583 - 1589, XP002028963 *
HALBERT D. N. ET AL.: "Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff", JOURNAL OF VIROLOGY, vol. 56, no. 1, 1985, pages 250 - 257, XP001000467 *
HALBERT ET AL., J. VIROLOGY, vol. 56, 1985, pages 250 - 257
HEARING P. ET AL.: "The adenovirus type 5 E1A enhancer contains two functionally distinct domains: one is specific for E1A and the other modulates all early units in cis", CELL, vol. 45, 1986, pages 229 - 236, XP024244018, DOI: 10.1016/0092-8674(86)90387-9 *
HIGASHINO ET AL., J. CELL BIOL., vol. 170, 2005, pages 15 - 20
LOGAN ET AL., CANCER CELLS, vol. 2, 1984, pages 527 - 532
LOPEZ ET AL., ONCOGENE, vol. 22, 2003, pages 7146 - 7154
MIKAWA YOHEI, TOWFIK ALAM MOHAMMAD, HOSSAIN ELORA, YANAGAWA-MATSUDA AYA, KITAMURA TETSUYA, YASUDA MOTOAKI, HABIBA UMMA, AHMED ISHR: "Conditionally replicative adenovirus controlled by the stabilization system of AU -rich elements containing mRNA", CANCERS, vol. 12, no. 5, 1205, 11 May 2020 (2020-05-11), pages 1 - 13, XP055851593, DOI: 10.3390/cancers12051205 *
See also references of EP3943113A4
THIELE ET AL., EXP. CELL RES., vol. 312, no. 12, 2006

Also Published As

Publication number Publication date
EP3943113A1 (en) 2022-01-26
US20220152133A1 (en) 2022-05-19
CA3135295A1 (en) 2020-09-24
JPWO2020189749A1 (ja) 2020-09-24
CN113573741A (zh) 2021-10-29
EP3943113A4 (en) 2023-05-10
JP7406263B2 (ja) 2023-12-27
TW202102677A (zh) 2021-01-16
TWI819203B (zh) 2023-10-21

Similar Documents

Publication Publication Date Title
KR101878274B1 (ko) 암 치료용 암 용해성 아데노바이러스
JP6639412B2 (ja) アルブミン結合部分を含んでなるアデノウイルス
JP3875990B2 (ja) 組換えアデノウイルスベクターおよび使用方法
FI118011B (fi) Menetelmä replikaatiokyvyn suhteen puutteellisen yhdistelmä-DNA-adenoviruksen tuottamiseksi
JP2022023074A (ja) 腫瘍選択的e1aおよびe1b変異体
US20100151576A1 (en) Targeted tumor therapy by use of recombinant adenovirus vectors that selectively replicate in hypoxic regions of tumors
Zhu et al. Oncolytic adenovirus armed with IL-24 inhibits the growth of breast cancer in vitro and in vivo
JPH06508039A (ja) 抗腫瘍治療のためのサイトカインを発現する組換え型欠損アデノウイルス
EP1553178B1 (en) Oncolytic virus growing selectively in tumor cells
Liu et al. Strategy of Cancer Targeting Gene-Viro-Therapy (CTGVT) a trend in both cancer gene therapy and cancer virotherapy
WO2003006640A1 (fr) Virus a proliferation specifique dans les cellules tumorales, qui peut exprimer un antioncogene avec une grande efficacite, et utilisation de ce virus
WO2020189749A1 (ja) 改変アデノウイルス及びこれを含む医薬
JP2022512903A (ja) Ad-REIC/Dkk-3とチェックポイント阻害剤とを用いた胸部がんの治療のための併用療法
JP4431091B2 (ja) 組換えアデノウイルスベクターおよび使用方法
JP2016160249A (ja) 腫瘍溶解改変アデノウイルス、疾患治療用改変ウイルス及びこれらを含むウイルス製剤
US11951141B2 (en) Replication-enhanced oncolytic adenoviruses
US20090175825A1 (en) Interferon alpha and antisense k-ras rna combination gene therapy
WO2021020554A1 (ja) REIC/Dkk-3遺伝子と抗腫瘍剤との併用による肝臓がんの治療方法
WO2022170919A1 (zh) 一种重组溶瘤腺病毒及其应用
JP2007528715A (ja) 新規アデノウイルスを用いた癌治療方法及び組成物
AU2022223330A1 (en) Viral delivery of a sialidase to treat cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774238

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021507412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3135295

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020774238

Country of ref document: EP

Effective date: 20211020