WO2020189683A1 - Composition and method for processing substrate - Google Patents

Composition and method for processing substrate Download PDF

Info

Publication number
WO2020189683A1
WO2020189683A1 PCT/JP2020/011755 JP2020011755W WO2020189683A1 WO 2020189683 A1 WO2020189683 A1 WO 2020189683A1 JP 2020011755 W JP2020011755 W JP 2020011755W WO 2020189683 A1 WO2020189683 A1 WO 2020189683A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
compound
film
composition
solvent
Prior art date
Application number
PCT/JP2020/011755
Other languages
French (fr)
Japanese (ja)
Inventor
崇 片切
和憲 高梨
智裕 松木
嘉奈子 植田
大貴 中津
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2021507375A priority Critical patent/JPWO2020189683A1/ja
Publication of WO2020189683A1 publication Critical patent/WO2020189683A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for treating a composition and a substrate.
  • Japanese Unexamined Patent Publication No. 7-74137 discloses a method of removing particles on the substrate surface by supplying a coating liquid to the substrate surface to form a thin film and then peeling the thin film with an adhesive tape or the like. ..
  • Japanese Unexamined Patent Publication No. 2014-99583 provides a substrate surface by supplying a treatment liquid for forming a film on the substrate surface, solidifying or curing the substrate, and then dissolving all of the treatment liquid solidified or cured by the removing solution.
  • a substrate cleaning apparatus and a substrate cleaning method for removing the particles of the above are disclosed.
  • the present invention in the process of forming a substrate treatment film on the surface of a semiconductor substrate and removing foreign substances on the substrate surface, minute particles on the substrate surface can be efficiently removed, and the formed substrate treatment film can be easily removed from the substrate surface. It is an object of the present invention to provide a composition for forming a substrate treatment film that can be removed and a method for treating a substrate.
  • the invention made to solve the above problems is a composition for forming a substrate treatment film for treating the surface of a semiconductor substrate by forming the surface of the semiconductor substrate and removing the composition.
  • a composition for forming a substrate-treated film which contains a first compound having two or more hydroxyl groups and a solvent, and the first compound has a melting point of 30 ° C. or higher and a molecular weight of 100 or higher and 500 or lower.
  • a method for treating a substrate which comprises a step, wherein the composition for forming a substrate treatment film contains a polymer compound, a first compound having two or more hydroxyl groups, and a solvent, and the melting point of the first compound.
  • the composition for forming a substrate treatment film contains a polymer compound, a first compound having two or more hydroxyl groups, and a solvent, and the melting point of the first compound.
  • composition and the substrate processing method of the present invention in the process of forming a substrate processing film on the substrate surface and removing foreign substances on the substrate surface, minute particles on the substrate surface can be efficiently removed and formed.
  • the substrate processing film can be easily removed from the substrate surface. Therefore, the present invention can be suitably used in the manufacturing process of a semiconductor device, which is expected to be further miniaturized and increased in aspect ratio in the future.
  • FIG. 1 is an explanatory view showing the formation of a coating film in the coating process.
  • FIG. 2 is an explanatory view showing the formation of a substrate treatment film in the coating process.
  • FIG. 3 is an explanatory diagram showing a removal step.
  • composition for forming a substrate treatment film The composition (hereinafter, also referred to as “composition for forming a substrate treatment film”) is used for forming a substrate treatment film for treating the surface of a semiconductor substrate by forming the composition on the surface of the semiconductor substrate and removing the composition. Specifically, the substrate-treated film-forming composition is obtained by contacting the substrate-treated film-forming composition with the substrate-treated film-forming composition and the substrate-treated film-removing liquid formed by the coating step. It is used in a method for processing a substrate including a step of making the substrate.
  • the substrate-treated film-forming composition includes a polymer compound (hereinafter, also referred to as “[A] polymer compound”) and a first compound having two or more hydroxyl groups (hereinafter, also referred to as “[B] compound”). And a solvent (hereinafter, also referred to as "[C] solvent”), the melting point of the compound [B] is 30 ° C. or higher, and the molecular weight is 100 or higher and 500 or lower.
  • a substrate-treated film is formed on the substrate surface, and by removing the substrate-treated film from the substrate, particles and the like adhering to the substrate surface, particularly the patterned substrate, are removed. It can be efficiently removed (hereinafter, also referred to as “particle removability"), and the formed substrate treatment film can be easily removed from the substrate surface (hereinafter, also referred to as “film removability").
  • substrate processing means removing contaminants such as particles adhering to a substrate from a substrate.
  • the substrate-treated film-forming composition may contain other optional components as long as the effects of the present invention are not impaired. ..
  • polymer compound means a compound having two or more repeating units, which has a polystyrene-equivalent molecular weight of 1,000 or more as measured by gel permeation chromatography (GPC) under the conditions described below. Means a compound.
  • the polymer compound [A] is not particularly limited, and examples thereof include novolak resin, acrylic resin, resole resin, aromatic ring-containing vinyl resin, and calixarene resin.
  • the polymer compound may contain an oligomer in the synthesis process or the like. The above oligomer may correspond to the [B] compound.
  • "oligomer” is a compound having 2 or more repeating units, and the molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) under the conditions described later is less than 1,000. Means a compound.
  • the polymer compound may be used alone or in combination of two or more.
  • the novolak resin is a chain polymer obtained by reacting a compound having an aromatic ring with an aldehyde compound using an acidic catalyst.
  • Examples of the compound having an aromatic ring include substituted or unsubstituted aromatic hydrocarbons having 6 to 20 carbon atoms.
  • Substituted or unsubstituted aromatic hydrocarbons having 6 to 20 carbon atoms include, for example, benzene, toluene, xylene, phenol, 3-methylphenol, 4-methylphenol, pyrogallol, cresol, naphthalene, ⁇ -naphthol, ⁇ -naphthol.
  • aldehyde compound examples include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and parahydroxybenzaldehyde. Of these, formaldehyde is preferred. In addition, paraformaldehyde may be used instead of formaldehyde, and paraaldehyde may be used instead of acetaldehyde.
  • aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and parahydroxybenzaldehyde.
  • formaldehyde is preferred.
  • paraformaldehyde may be used instead of formaldehyde
  • paraaldehyde may be used instead of acetaldehyde.
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and Lewis acids such as boron trifluoride, aluminum anhydride and zinc acetate. Can be mentioned. Of these, organic acids are preferred, and paratoluenesulfonic acids are more preferred.
  • the novolak resin preferably has a structural unit represented by the following formula (1) (hereinafter, also referred to as "structural unit (I)”) as a repeating unit.
  • the structural unit (I) is a structural unit represented by the following formula (1).
  • Ar 1 is a (m + 2) valent group obtained by removing (m + 2) hydrogen atoms on the aromatic ring from an arene having 6 to 20 carbon atoms.
  • R 1 is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms.
  • X is a monovalent heteroatom-containing group or a monovalent organic group.
  • m is an integer from 0 to 10. When m is 2 or more, a plurality of X's are the same or different from each other.
  • Examples of the arene having 6 to 20 carbon atoms giving Ar 1 include benzene, naphthalene, anthracene, phenanthrene, tetracene, pyrene, triphenylene, fluorene, and torquesen. Among these, benzene or naphthalene is preferable, and benzene is more preferable.
  • Examples of the monovalent heteroatom-containing group represented by X include a hydroxy group and a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • a hydroxy group is preferable.
  • Organic group means a group containing at least one carbon atom.
  • Examples of the monovalent organic group represented by X include a monovalent hydrocarbon group having 1 to 20 carbon atoms, a group containing a divalent heteroatom-containing group between carbon and carbon of the hydrocarbon group, and the above-mentioned carbide. Examples thereof include a group in which a part or all of the hydrogen atom of the hydrogen group or the group containing the divalent heteroatom-containing group is replaced with a monovalent heteroatom-containing group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a carbon number of carbon atoms. Examples thereof include 6 to 20 monovalent aromatic hydrocarbon groups.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkanes such as methane, ethane, propane and butane, alkenes such as ethane, propene and butane, and alkynes such as ethine, propine and butane. Examples thereof include groups excluding one hydrogen atom.
  • Examples of monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms include alicyclic saturated hydrocarbons such as cycloalkanes such as cyclopentane and cyclohexane, and bridging ring saturated hydrocarbons such as norbornan, adamantan, and tricyclodecane. Examples thereof include groups excluding one hydrogen atom possessed by cycloalkenes such as hydrogen, cyclopentene and cyclohexene, and alicyclic unsaturated hydrocarbons such as bridging ring unsaturated hydrocarbons such as norbornene and tricyclodecene.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a hydrogen atom or an alkyl group on the aromatic ring of an arene such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene, and methylanthracene.
  • Examples include groups excluding the hydrogen atom of.
  • hetero atom constituting the divalent or monovalent hetero atom-containing group
  • examples of the hetero atom constituting the divalent or monovalent hetero atom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
  • divalent heteroatom-containing group examples include -O-, -CO-, -S-, -CS-, -NR'-, a group in which two or more of these are combined, and the like.
  • R' is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— and —S— are preferred.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
  • an alkyl group or an oxy hydrocarbon group is preferable, an alkyl group or an alkyloxy group is more preferable, and a methyl group, an ethyl group, a propyl group, a butyl group, a methoxy group, an ethoxy group or a propoxy group.
  • m 1 to 3 is preferable, 1 or 2 is more preferable, and 1 is further preferable.
  • the structural unit (I) is preferably an integer in which m in the formula (1) is 1 or more, and at least one of X is a hydroxy group.
  • Examples of the substituted or unsubstituted alkylene group having 1 to 20 carbon atoms represented by R 1 include a methylene group, a methylmethylene group, a phenylmethylene group, a parahydroxyphenylmethylene group and the like. Among these, a methylene group or a methylmethylene group is preferable, and a methylene group is more preferable.
  • Acrylic resin is a polymer having a structural unit derived from (meth) acrylic acid or (meth) acrylic acid ester.
  • the (meth) acrylic acid ester include an alkyl (meth) acrylic acid such as methyl (meth) acrylic acid, an alicyclic hydrocarbon group ester of (meth) acrylic acid such as cyclohexyl (meth) acrylic acid, and (meth).
  • Aryl (meth) acrylic acid such as phenyl acrylate, 1,1,1,3,3,3-hexafluoro-2-propyl (meth) acrylic acid, 1,1,1-trifluoro- (meth) acrylic acid Examples thereof include (meth) acrylic acid-containing fluoroesters such as 2-hydroxy-2-trifluoromethyl-4-pentyl.
  • the resole resin is a polymer obtained by reacting a compound having an aromatic ring with an aldehyde compound using a basic catalyst.
  • Examples of the compound having an aromatic ring and the aldehyde compound include a compound having an aromatic ring and a compound similar to the aldehyde compound in the above novolak resin.
  • Examples of the basic catalyst include hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, lithium hydroxide, potassium hydroxide and calcium hydroxide, and amines such as ammonia, monoethanolamine, triethylamine and hexamethylenetetramine. Examples include compounds and basic substances such as sodium carbonate.
  • the aromatic ring-containing vinyl resin is a polymer having a structural unit derived from a compound having an aromatic ring and a polymerizable carbon-carbon double bond.
  • Examples of the compound having an aromatic ring and a polymerizable carbon-carbon double bond include styrene, methylstyrene, ⁇ -methylstyrene, vinylnaphthalene, and phenylvinyl ether.
  • the calixarene resin is a cyclic compound in which a plurality of aromatic rings to which phenolic hydroxyl groups are bonded are cyclically bonded via a hydrocarbon group.
  • Examples of the compound that gives an aromatic ring to which a phenolic hydroxyl group is bonded include phenol, methylphenol, t-butylphenol, naphthol and the like.
  • Examples of the hydrocarbon group include a methylene group and a methylmethylene group.
  • the lower limit of the weight average molecular weight (Mw) of the polymer compound is 1,000, preferably 2,000, more preferably 3,000, and even more preferably 5,000.
  • the upper limit of Mw is preferably 100,000, more preferably 80,000, and even more preferably 60,000.
  • Mw of the [A] polymer compound in the present specification a GPC column (2 “G2000HXL”, 1 “G3000HXL” and 1 “G4000HXL”) of Toso Co., Ltd. is used, and the flow rate: 1.0 mL / It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analytical conditions of minute, elution solvent: tetrahydrofuran, column temperature: 40 ° C.
  • the lower limit of the content ratio of the [A] polymer compound in all the components other than the [C] solvent of the substrate treatment film forming composition is preferably 70% by mass, more preferably 80% by mass, and further 90% by mass. It is preferable, and 95% by mass is particularly preferable.
  • As the upper limit of the content ratio 99.99% by mass is preferable, 99.9% by mass is more preferable, and 99.0% by mass is further preferable.
  • the compound [B] is a compound having 2 or more hydroxyl groups, a melting point of 30 ° C. or higher, and a molecular weight of 100 or more and 500 or less.
  • hydroxyl group means an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • the lower limit of the number of hydroxyl groups in the [B] compound is 2, preferably 3, and more preferably 4.
  • the upper limit of the number of hydroxyl groups is, for example, 20.
  • the lower limit of the melting point of the [B] compound is 30 ° C., preferably 40 ° C., more preferably 50 ° C., and even more preferably 90 ° C.
  • the upper limit of the melting point is, for example, 250 ° C.
  • the lower limit of the molecular weight of the [B] compound is 100, preferably 110, and more preferably 120.
  • the upper limit of the molecular weight is 500, preferably 450, and more preferably 400.
  • the [B] compound examples include a polyhydric alcohol compound, a polyhydric phenol compound, and a sugar compound. Further, the [B] compound may be an oligomer having two or more hydroxyl groups having a molecular weight of 100 or more and 500 or less contained in the above-mentioned [A] polymer compound.
  • polyhydric alcohol compound examples include erythritol, ribitol, trimethylolpropane, mesoerythritol, pentaerythritol, dipentaerythritol, martitol, lactitol, D-trethritol, D-arabinitol, ribitol, xylitol, sorbitol, galactitol, and D.
  • polyhydric phenol compound examples include catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and a compound represented by the following formula (B-7).
  • sugar compounds include glucose, galactose, xylose, lactose, mannose, talose, lambnorse, arabinose, glucosylmannose, liquisource, allose, altrose, growth, idose, ribose, erythrose, treose, psicose, fructose, sorbose, tagatose, etc.
  • erythritol, ribitol, sucrose, trehalose, catechol, pyrogallol or a compound represented by the above formula (B-7) is preferable from the viewpoint of further improving particle removability, and erythritol, ribitol, sucrose, etc.
  • Trehalose, pyrogallol or a compound represented by the above formula (B-7) is more preferable, and sucrose or a compound represented by the above formula (B-7) is further preferable.
  • the lower limit of the content of the [B] compound in the substrate treatment film forming composition is preferably 0.01 part by mass and more preferably 0.05 part by mass with respect to 100 parts by mass of the [A] polymer compound. , 0.1 parts by mass is more preferable.
  • the upper limit of the content is preferably 20 parts by mass, more preferably 10 parts by mass, and even more preferably 5 parts by mass.
  • the solvent [C] is not particularly limited as long as it dissolves or disperses the polymer compound [A], the compound [B], and other optional components contained as necessary.
  • the solvent may be used alone or in combination of two or more.
  • Examples of the [C] solvent include organic solvents and water.
  • the lower limit of the content ratio of the organic solvent in the [C] solvent is preferably 70% by mass, more preferably 90% by mass, further preferably 95% by mass, and 99% by mass. Especially preferable.
  • the content ratio of the organic solvent may be 100% by mass.
  • the upper limit of the content ratio of water in the solvent [C] is preferably 10% by mass, more preferably 2% by mass, still more preferably 1% by mass.
  • the lower limit of the water content is, for example, 0.01% by mass.
  • organic solvent examples include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents and the like.
  • the alcohol solvent examples include monoalcohols such as methanol, ethanol, n-propanol and n-butanol, polyhydric alcohols such as ethylene glycol, 1,2-propylene glycol and 1,2-butanediol, and propylene glycol monomethyl.
  • monoalcohols such as methanol, ethanol, n-propanol and n-butanol
  • polyhydric alcohols such as ethylene glycol, 1,2-propylene glycol and 1,2-butanediol
  • propylene glycol monomethyl examples thereof include polyhydric alcohol partial ethers such as ether and propylene glycol monoethyl ether, and lactic acid esters such as ethyl lactate and butyl lactate.
  • ketone solvent examples include chain ketones such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketones such as cyclohexanone.
  • ether solvent examples include chain ethers such as n-butyl ether and cyclic ethers such as tetrahydrofuran and 1,4-dioxane.
  • ester solvent examples include carbonates such as diethyl carbonate, acetic acid esters such as methyl acetate and ethyl acetate, lactones such as ⁇ -butyrolactone, and polyhydric alcohol partial ethers such as diethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Carboxylates and the like can be mentioned.
  • nitrogen-containing solvent examples include chain nitrogen-containing compounds such as N and N-dimethylacetamide, and cyclic nitrogen-containing compounds such as N-methylpyrrolidone.
  • an alcohol solvent or an ester solvent is preferable, polyhydric alcohol partial ethers, lactic acid esters or polyhydric alcohol partial ether carboxylates are more preferable, and propylene glycol monoethyl ether or propylene glycol monomethyl ether acetate is preferable. More preferred.
  • the lower limit of the content of the [C] solvent in the substrate treatment film forming composition is preferably 100 parts by mass, more preferably 300 parts by mass, and 500 parts by mass with respect to 100 parts by mass of the [A] polymer compound. Is more preferable, and 700 parts by mass is particularly preferable.
  • the upper limit of the content is preferably 10,000 parts by mass, more preferably 5,000 parts by mass, further preferably 3,000 parts by mass, and particularly preferably 2,000 parts by mass.
  • the lower limit of the content ratio of the [C] solvent in the substrate treatment film forming composition is preferably 50% by mass, more preferably 70% by mass, further preferably 80% by mass, and particularly preferably 85% by mass.
  • the upper limit of the content ratio is preferably 99% by mass, more preferably 97% by mass, further preferably 95% by mass, and particularly preferably 93% by mass.
  • the coating property for forming a substrate treatment film can be further improved by further containing a surfactant.
  • the surfactant include nonionic surfactants, cationic surfactants, anionic surfactants and the like.
  • nonionic surfactant examples include ether-type nonionic surfactants such as polyoxyethylene alkyl ether, ether ester-type nonionic surfactants such as polyoxyethylene ether of glycerin ester, polyethylene glycol fatty acid ester, and glycerin ester. , Ester-type nonionic surfactants such as sorbitan ester and the like.
  • Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
  • anionic surfactant examples include fatty acid soaps, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkylnaphthalene sulfonates, sulfonates such as ⁇ -olefin sulfonates, and higher alcohol sulfates.
  • carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkylnaphthalene sulfonates, sulfonates such as ⁇ -olefin sulfonates, and higher alcohol sulfates.
  • examples thereof include an ester salt, a sulfate ester salt such as an alkyl ether sulfate, and a phosphoric acid ester salt such as an alkyl phosphate.
  • the upper limit of the content of the surfactant is, for example, 2 parts by mass with respect to 100 parts by mass of the polymer compound [A].
  • the lower limit of the content is, for example, 0.01 parts by mass.
  • the substrate-treated film-forming composition is preferably obtained by mixing, for example, a [A] polymer compound, a [B] compound, a [C] solvent, and if necessary, other optional components in a predetermined ratio. It can be prepared by filtering the mixed solution with, for example, a filter having a pore size of 0.1 to 5 ⁇ m.
  • the substrate treatment method includes a step of applying a substrate treatment film forming composition to the substrate (hereinafter, also referred to as a “coating step”) and a substrate treatment film removal on the substrate treatment film formed by the above coating step. It includes a step of bringing the liquid into contact (hereinafter, also referred to as a “removal step”).
  • the above-mentioned composition for forming the substrate-treated film is used as the composition for forming the substrate-treated film.
  • the substrate treatment method since the above-mentioned substrate treatment film forming composition is used, minute particles on the substrate surface are formed in the process of forming the substrate treatment film on the substrate surface and removing foreign substances on the substrate surface. Can be efficiently removed, and the formed substrate treatment film can be easily removed from the substrate surface.
  • a composition for forming a substrate treatment film is applied to a substrate.
  • the substrate-treated film-forming composition the substrate-treated film-forming composition described above is used.
  • a substrate processing film is formed on the substrate.
  • the substrate may be a substrate on which no pattern is formed or a substrate on which a pattern is formed.
  • the substrate examples include a metal or semi-metal substrate such as a silicon substrate, an aluminum substrate, a nickel substrate, a chrome substrate, a molybdenum substrate, a tungsten substrate, a copper substrate, a tantalum substrate, a titanium substrate, a silicon nitride substrate, an alumina substrate, and a silicon dioxide substrate.
  • a metal or semi-metal substrate such as a silicon substrate, an aluminum substrate, a nickel substrate, a chrome substrate, a molybdenum substrate, a tungsten substrate, a copper substrate, a tantalum substrate, a titanium substrate, a silicon nitride substrate, an alumina substrate, and a silicon dioxide substrate.
  • a tantalum nitride substrate and a ceramic substrate such as titanium nitride.
  • a silicon substrate, a silicon nitride substrate or a titanium nitride substrate is preferable, and a silicon substrate is more preferable.
  • Examples of the pattern of the substrate on which the pattern is formed include a line-and-space pattern or trench pattern in which the line width of the space portion is 2,000 nm or less, 1,000 nm or less, 500 nm or less, and further 50 nm or less, or a diameter of 300 nm or less. Hole patterns of 150 nm or less, 100 nm or less, and further 50 nm or less can be mentioned.
  • the dimensions of the pattern formed on the substrate include, for example, a height of 100 nm or more, 200 nm or more, further 300 nm or more, a width of 50 nm or less, 40 nm or less, further 30 nm or less, and an aspect ratio (pattern height / pattern width). ) Is 3 or more, 5 or more, and even 10 or more fine patterns.
  • the substrate treatment film formed by applying the substrate treatment film forming composition to this substrate can embed the recesses of the pattern. .. By embedding the concave portion of the pattern in the substrate processing film, the particles adhering to the concave portion of the pattern can be removed more efficiently, and a more excellent effect of removing particles is exhibited.
  • Examples of the coating method of the composition for forming a substrate treatment film on a substrate include a rotary coating method (spin coating), a casting coating method, and a roll coating method. As a result, a coating film of the composition for forming a substrate treatment film is formed.
  • the substrate treatment film forming composition is applied onto the wafer W. As a result, a coating film of the composition for forming a substrate treatment film is formed.
  • the substrate-treated film-forming composition is formed on the substrate by volatilizing a part or all of the volatile components such as the solvent [C] from the coating film of the substrate-treated film-forming composition.
  • a substrate treatment film is formed by solidifying or hardening with.
  • solidification means solidification
  • curing means that molecules are connected to each other to increase the molecular weight (for example, cross-linking or polymerization).
  • the solidification or curing of the coating film can be promoted by heating and / or reducing the pressure of the coating film.
  • the lower limit of the heating temperature for solidification and / or hardening As the lower limit of the heating temperature for solidification and / or hardening, 30 ° C. is preferable, and 40 ° C. is more preferable.
  • the upper limit of the heating temperature is preferably 200 ° C., more preferably 100 ° C., and even more preferably 90 ° C.
  • As the lower limit of the heating time 5 seconds is preferable, 10 seconds is more preferable, and 30 seconds is further preferable.
  • the upper limit of the heating time 10 minutes is preferable, 5 minutes is more preferable, and 2 minutes is further preferable.
  • the lower limit of the average thickness of the substrate-treated film to be formed is preferably 10 nm, more preferably 20 nm, and even more preferably 50 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm.
  • the average thickness of the substrate-treated film is a value measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOOLLAM).
  • the substrate treatment film removing liquid is brought into contact with the substrate treatment film formed by the above coating process. By this step, the substrate processing film is removed from the substrate.
  • the substrate processing film removing liquid is brought into contact with the substrate processing film. As a result, all the substrate processing film is removed from the wafer W. As a result, the particles are removed from the wafer W together with the substrate processing film.
  • Water, an organic solvent, an alkaline aqueous solution, or the like can be used as the substrate treatment membrane removing liquid.
  • a liquid containing water is preferable, water or an alkaline aqueous solution is more preferable, and an alkaline aqueous solution is further preferable.
  • An alkaline developer can be used as the alkaline aqueous solution.
  • a known alkaline developer can be used. Specific examples include, for example, an aqueous solution containing at least one of ammonia, tetramethylammonium hydroxide (TMAH) and choline.
  • the organic solvent for example, thinner, isopropyl alcohol (IPA), 4-methyl-2-pentanol (MIBC), toluene, acetate esters, alcohols, glycols (propylene glycol monomethyl ether, etc.) and the like can be used. .. Further, the substrate treatment membrane is removed by sequentially using different types of substrate treatment membrane removal liquids, such as first contacting the substrate treatment membrane with water as a substrate treatment membrane removal liquid and then contacting an alkali developer. You may. By sequentially using different types of substrate treatment film removing solutions, the film removing property can be further improved.
  • IPA isopropyl alcohol
  • MIBC 4-methyl-2-pentanol
  • toluene acetate esters
  • alcohols glycols (propylene glycol monomethyl ether, etc.) and the like
  • the substrate treatment membrane is removed by sequentially using different types of substrate treatment membrane removal liquids, such as first contacting the substrate treatment membrane with water as a substrate treatment membrane removal liquid and then contacting
  • a zeta potential of the same polarity (minus in this case) is generated between the surface of the wafer W or the pattern and the surface of the particles by contacting the substrate treatment film removing solution such as an alkaline developer. ..
  • the particles separated from the wafer W or the like are charged with a zeta potential having the same polarity as the wafer W or the like, so that they repel each other with the wafer W or the like. As a result, reattachment of particles to the wafer W or the like can be further suppressed.
  • particles can be removed with a weaker force as compared with the conventional particle removing method using physical force, so that pattern collapse can be suppressed. Further, since the particles are removed without utilizing the chemical action, it is possible to suppress the erosion of the wafer W and the pattern due to the etching action and the like. Further, even particles having a small particle diameter or particles that have entered the gaps of the pattern, which were difficult to remove by the conventional particle removing method using physical force, can be easily removed.
  • the substrate treatment film removing liquid that comes into contact with the substrate is finally completely removed from the substrate. Therefore, the substrate after the processing method of the substrate is carried out is in the state before the coating process.
  • the processing method of the substrate can be performed by various known devices, storage media and the like.
  • a substrate cleaning device disclosed in Japanese Patent Application Laid-Open No. 2014-99583 can be mentioned.
  • the substrate treatment formed by the first supply unit that supplies the substrate treatment film forming composition to the substrate and the substrate treatment film forming composition supplied to the substrate by the first supply unit.
  • examples thereof include a substrate processing apparatus provided with a second supply unit that supplies a treated membrane removing liquid that dissolves the membrane onto the substrate treated membrane.
  • the storage medium is a computer-readable storage medium in which a program that operates on a computer and controls a substrate processing apparatus is stored, and the program is such that the processing method of the substrate is performed at the time of execution. Examples thereof include a storage medium that causes a computer to control the substrate processing apparatus.
  • Mw Weight average molecular weight
  • a GPC column (2 “G2000HXL”, 1 “G3000HXL”, 1 “G4000HXL” from Tosoh Co., Ltd.) was used, and the flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, The column temperature was measured at 40 ° C. by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard.
  • the numerical value attached to each structural unit indicates the content ratio (mol%) of each structural unit to all the structural units constituting the polymer compound (A-3).
  • composition for substrate treatment film formation Each component used in the composition for forming a substrate treatment film is shown below.
  • the mass part means a value when the mass of the solvent used is 100 parts by mass.
  • polymer compound (A) (hereinafter, "polymer compound (A)" -5) to (A-10) ”) were used.
  • the Mw of the polymer compound (A-5) is 7,000
  • the Mw of the polymer compound (A-6) is 7,000
  • the Mw of the polymer compound (A-7) is 8,000.
  • the Mw of the polymer compound (A-8) is 7,000
  • the Mw of the polymer compound (A-9) is 9,000
  • the Mw of the polymer compound (A-10) is 9,000. there were.
  • B-1 Erythritol (number of hydroxyl groups: 4, molecular weight: 122, melting point: 121 ° C)
  • B-2 Ribitol (number of hydroxyl groups: 5, molecular weight: 152, melting point: 102 ° C)
  • B-3 Sucrose (number of hydroxyl groups: 8, molecular weight: 342, melting point: 186 ° C)
  • B-4 Trehalose (number of hydroxyl groups: 8, molecular weight: 342, melting point: 97 ° C.
  • B-5 Catechol (number of hydroxyl groups: 2, molecular weight: 110, melting point: 105 ° C)
  • B-6 Pyrogallol (number of hydroxyl groups: 3, molecular weight: 126, melting point: 131 ° C)
  • B-7 Compound represented by the following formula (B-7) (number of hydroxyl groups: 5, molecular weight: 352, melting point: 175 ° C to 185 ° C)
  • Example 1 [A] 10 parts by mass of (A-1) as a polymer compound and 0.5 parts by mass of (B-1) as a [B] compound are added to 100 parts by mass of (C-1) as a [C] solvent. Dissolved. The obtained solution was filtered through a membrane filter having a pore size of 0.1 ⁇ m to prepare a substrate-treated film-forming composition (J-1).
  • Examples 2-27 and Comparative Examples 1-2 Compositions for forming a substrate-treated film (J-2) to (J-27) and (j-1) to the same as in Example 1 except that the components of the types and contents shown in Table 1 below were used. (J-2) was prepared. “-” In Table 1 indicates that the corresponding component was not used.
  • an 8-inch silicon wafer having a line-and-space pattern (1L1S, aspect ratio of 1) having a line width of 1,000 nm in the space portion is used, and silica particles having a particle size of 80 nm are adhered onto the substrate. It was.
  • Each substrate-treated film-forming composition was applied onto this substrate by a spin coating method under the conditions of 1,500 rpm and 30 seconds to obtain a substrate on which the substrate-treated film was formed.
  • a paddle developer is used to form a liquid film of 2.38 mass% tetramethylammonium hydroxide aqueous solution as a treated film-removing solution on the substrate-treated film to treat the substrate.
  • Immersion in the membrane remover was started. Thirty seconds after the start of immersion, the substrate was treated by washing with water and drying by a spin-drying method.
  • the film removability is "A" (extremely good) when the number of residual defects other than silica particles is less than 10 pieces / cm 2, and "B" (good) when the number of residual defects other than silica particles is 10 pieces / cm 2 or more and less than 50 pieces / cm 2. ) And 50 pieces / cm 2 or more, it was evaluated as "C" (defective).
  • the particle removal property is "A” (extremely good) when the removal rate of silica particles is 90% or more, “B” (good) when the removal rate is 50% or more and less than 90%, and “B” (good) when the removal rate is less than 50%. It was evaluated as “C” (defective).
  • the substrate-treated film-forming composition of the example had extremely good or good film removability and particle removability.
  • the substrate-treated film-forming composition of the comparative example had poor film removability and particle removability.
  • the particles and the particles are formed in the process of forming the substrate treatment film on the surface of the semiconductor substrate and removing the minute particles adhering to the substrate surface.
  • the substrate processing film can be easily removed from the surface of the substrate. Therefore, the present invention can be suitably used in the manufacturing process of a semiconductor device, which is expected to be further miniaturized in the future.

Abstract

The purpose of the present invention is to provide a composition for forming a substrate processing film and a method for processing a substrate, with which it is possible, in a process of forming a substrate processing film on a surface of a semiconductor substrate and removing foreign matter on the surface of the substrate, to efficiently remove minuscule particles on the surface of the substrate and to easily remove the formed substrate processing film from the surface of the substrate. Provided is a composition for forming a substrate processing film for processing a surface of a semiconductor substrate by forming the substrate processing film on the surface of the semiconductor substrate and then removing the substrate processing film, the composition comprising a polymer compound, a first compound having two or more hydroxyl groups, and a solvent, wherein the first compound has a melting point of 30°C or above and a molecular weight of 100 to 500 inclusive.

Description

組成物及び基板の処理方法Treatment method of composition and substrate
 本発明は、組成物及び基板の処理方法に関する。 The present invention relates to a method for treating a composition and a substrate.
 半導体基板の製造工程では、パターンが形成された基板の表面に付着するパーティクル等の汚染物質を除去するために洗浄が行われている。近年では、形成されるパターンの微細化、高アスペクト比化が進んできていることにより、例えばパターンサイズよりも微小なパーティクルをパターンが形成された基板から除去することはより困難となり、半導体基板の歩留まり低下の要因となっている。 In the semiconductor substrate manufacturing process, cleaning is performed to remove contaminants such as particles adhering to the surface of the patterned substrate. In recent years, as the formed pattern has become finer and the aspect ratio has been increased, it has become more difficult to remove particles smaller than the pattern size from the substrate on which the pattern is formed, for example. This is a factor in lowering the yield.
 特開平7-74137号公報には、基板表面に塗工液を供給して薄膜を形成した後、この薄膜を粘着テープ等で剥離することによって基板表面のパーティクルを除去する方法が開示されている。 Japanese Unexamined Patent Publication No. 7-74137 discloses a method of removing particles on the substrate surface by supplying a coating liquid to the substrate surface to form a thin film and then peeling the thin film with an adhesive tape or the like. ..
 特開2014-99583号公報には、基板表面に膜を形成するための処理液を供給し、固化又は硬化させた後、除去液によって固化又は硬化した処理液の全てを溶解させることにより基板表面のパーティクルを除去する基板洗浄装置及び基板洗浄方法が開示されている。 Japanese Unexamined Patent Publication No. 2014-99583 provides a substrate surface by supplying a treatment liquid for forming a film on the substrate surface, solidifying or curing the substrate, and then dissolving all of the treatment liquid solidified or cured by the removing solution. A substrate cleaning apparatus and a substrate cleaning method for removing the particles of the above are disclosed.
特開平7-74137号公報Japanese Unexamined Patent Publication No. 7-74137 特開2014-99583号公報JP-A-2014-99583
 本発明は半導体基板の表面に基板処理膜を形成してこの基板表面の異物を除去するプロセスにおいて、基板表面の微小なパーティクルを効率よく除去でき、かつ形成された基板処理膜を基板表面から容易に除去することができる基板処理膜を形成するための組成物及び基板の処理方法を提供することを課題とする。 According to the present invention, in the process of forming a substrate treatment film on the surface of a semiconductor substrate and removing foreign substances on the substrate surface, minute particles on the substrate surface can be efficiently removed, and the formed substrate treatment film can be easily removed from the substrate surface. It is an object of the present invention to provide a composition for forming a substrate treatment film that can be removed and a method for treating a substrate.
 上記課題を解決するためになされた発明は、半導体基板の表面に形成し、除去することで半導体基板の表面を処理する基板処理膜を形成するための組成物であって、高分子化合物と、2以上の水酸基を有する第1化合物と、溶媒とを含有し、上記第1化合物の融点が30℃以上、かつ分子量が100以上500以下である基板処理膜形成用組成物である。 The invention made to solve the above problems is a composition for forming a substrate treatment film for treating the surface of a semiconductor substrate by forming the surface of the semiconductor substrate and removing the composition. A composition for forming a substrate-treated film, which contains a first compound having two or more hydroxyl groups and a solvent, and the first compound has a melting point of 30 ° C. or higher and a molecular weight of 100 or higher and 500 or lower.
 上記課題を解決するためになされた別の発明は、基板に基板処理膜形成用組成物を塗工する工程と、上記塗工工程により形成された基板処理膜に基板処理膜除去液を接触させる工程とを備える基板の処理方法であって、上記基板処理膜形成用組成物が、高分子化合物と、2以上の水酸基を有する第1化合物と、溶媒とを含有し、上記第1化合物の融点が30℃以上、かつ分子量が100以上500以下である基板の処理方法である。 Another invention made to solve the above problems is a step of coating a substrate with a composition for forming a substrate treatment film and a step of bringing a substrate treatment film removing liquid into contact with the substrate treatment film formed by the above coating step. A method for treating a substrate, which comprises a step, wherein the composition for forming a substrate treatment film contains a polymer compound, a first compound having two or more hydroxyl groups, and a solvent, and the melting point of the first compound. Is a method for treating a substrate having a temperature of 30 ° C. or higher and a molecular weight of 100 or higher and 500 or lower.
 本発明の組成物及び基板の処理方法によれば、基板表面に基板処理膜を形成してこの基板表面の異物を除去するプロセスにおいて、基板表面の微小なパーティクルを効率よく除去でき、かつ形成された基板処理膜を基板表面から容易に除去することができる。従って、本発明は、今後ますます微細化や高アスペクト比化が進行すると予想される半導体素子の製造工程において好適に用いることができる。 According to the composition and the substrate processing method of the present invention, in the process of forming a substrate processing film on the substrate surface and removing foreign substances on the substrate surface, minute particles on the substrate surface can be efficiently removed and formed. The substrate processing film can be easily removed from the substrate surface. Therefore, the present invention can be suitably used in the manufacturing process of a semiconductor device, which is expected to be further miniaturized and increased in aspect ratio in the future.
図1は、塗工工程における塗膜の形成を示す説明図である。FIG. 1 is an explanatory view showing the formation of a coating film in the coating process. 図2は、塗工工程における基板処理膜の形成を示す説明図である。FIG. 2 is an explanatory view showing the formation of a substrate treatment film in the coating process. 図3は、除去工程を示す説明図である。FIG. 3 is an explanatory diagram showing a removal step.
<基板処理膜形成用組成物>
 当該組成物(以下、「基板処理膜形成用組成物」ともいう)は、半導体基板の表面に形成し、除去することで半導体基板の表面を処理する基板処理膜を形成するために用いられる。具体的には、当該基板処理膜形成用組成物は、基板に基板処理膜形成用組成物を塗工する工程と、上記塗工工程により形成された基板処理膜に基板処理膜除去液を接触させる工程とを備える基板の処理方法に用いられる。当該基板処理膜形成用組成物は、高分子化合物(以下、「[A]高分子化合物」ともいう)と、2以上の水酸基を有する第1化合物(以下、「[B]化合物」ともいう)と、溶媒(以下、「[C]溶媒」ともいう)とを含有し、上記[B]化合物の融点が30℃以上、かつ分子量が100以上500以下である。
<Composition for forming a substrate treatment film>
The composition (hereinafter, also referred to as “composition for forming a substrate treatment film”) is used for forming a substrate treatment film for treating the surface of a semiconductor substrate by forming the composition on the surface of the semiconductor substrate and removing the composition. Specifically, the substrate-treated film-forming composition is obtained by contacting the substrate-treated film-forming composition with the substrate-treated film-forming composition and the substrate-treated film-removing liquid formed by the coating step. It is used in a method for processing a substrate including a step of making the substrate. The substrate-treated film-forming composition includes a polymer compound (hereinafter, also referred to as “[A] polymer compound”) and a first compound having two or more hydroxyl groups (hereinafter, also referred to as “[B] compound”). And a solvent (hereinafter, also referred to as "[C] solvent"), the melting point of the compound [B] is 30 ° C. or higher, and the molecular weight is 100 or higher and 500 or lower.
 当該基板処理膜形成用組成物によれば、基板表面に基板処理膜を形成し、この基板処理膜を基板から除去することによって、基板表面、特にパターンが形成された基板に付着したパーティクル等を効率よく除去すること(以下、「パーティクル除去性」ともいう)ができ、かつ形成された基板処理膜を基板表面から容易に除去すること(以下、「膜除去性」ともいう)ができる。なお、本明細書において「基板処理」とは、基板に付着したパーティクル等の汚染物質を基板から除去することを意味する。 According to the substrate-treated film-forming composition, a substrate-treated film is formed on the substrate surface, and by removing the substrate-treated film from the substrate, particles and the like adhering to the substrate surface, particularly the patterned substrate, are removed. It can be efficiently removed (hereinafter, also referred to as "particle removability"), and the formed substrate treatment film can be easily removed from the substrate surface (hereinafter, also referred to as "film removability"). In addition, in this specification, "substrate processing" means removing contaminants such as particles adhering to a substrate from a substrate.
 当該基板処理膜形成用組成物は、[A]高分子化合物、[B]化合物及び[C]溶媒以外に、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。 In addition to the [A] polymer compound, the [B] compound and the [C] solvent, the substrate-treated film-forming composition may contain other optional components as long as the effects of the present invention are not impaired. ..
 以下、当該基板処理膜形成用組成物が含有する各成分について説明する。 Hereinafter, each component contained in the substrate treatment film forming composition will be described.
<[A]高分子化合物>
 本明細書において「高分子化合物」とは、2以上の繰り返し単位を有する化合物のうち、後述する条件によるゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算の分子量が1,000以上である化合物を意味する。
<[A] Polymer compound>
As used herein, the term "polymer compound" means a compound having two or more repeating units, which has a polystyrene-equivalent molecular weight of 1,000 or more as measured by gel permeation chromatography (GPC) under the conditions described below. Means a compound.
 [A]高分子化合物としては、特に制限されず、例えばノボラック樹脂、アクリル樹脂、レゾール樹脂、芳香環含有ビニル樹脂、カリックスアレーン樹脂などが挙げられる。[A]高分子化合物は、その合成過程等においてオリゴマーを含む場合がある。上記オリゴマーは、[B]化合物に該当する場合がある。なお、本明細書において「オリゴマー」とは、2以上の繰り返し単位を有する化合物のうち、後述する条件によるゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算の分子量が1,000未満である化合物を意味する。[A]高分子化合物は、1種単独で又は2種以上を組み合わせて用いることができる。 The polymer compound [A] is not particularly limited, and examples thereof include novolak resin, acrylic resin, resole resin, aromatic ring-containing vinyl resin, and calixarene resin. [A] The polymer compound may contain an oligomer in the synthesis process or the like. The above oligomer may correspond to the [B] compound. In addition, in this specification, "oligomer" is a compound having 2 or more repeating units, and the molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) under the conditions described later is less than 1,000. Means a compound. [A] The polymer compound may be used alone or in combination of two or more.
[ノボラック樹脂]
 ノボラック樹脂は、芳香環を有する化合物と、アルデヒド化合物とを酸性触媒を用いて反応させて得られる鎖状の重合体である。
[Novolak resin]
The novolak resin is a chain polymer obtained by reacting a compound having an aromatic ring with an aldehyde compound using an acidic catalyst.
 芳香環を有する化合物としては、置換又は非置換の炭素数6~20の芳香族炭化水素等が挙げられる。置換又は非置換の炭素数6~20の芳香族炭化水素としては、例えばベンゼン、トルエン、キシレン、フェノール、3-メチルフェノール、4-メチルフェノール、ピロガロール、クレゾール、ナフタレン、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、アントラセン、フェナントレン、テトラセン、ピレン、1-ヒドロキシピレン、トリフェニレン、フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(6-ヒドロキシナフチル)フルオレン、インデノフルオレン、トルクセン等が挙げられる。 Examples of the compound having an aromatic ring include substituted or unsubstituted aromatic hydrocarbons having 6 to 20 carbon atoms. Substituted or unsubstituted aromatic hydrocarbons having 6 to 20 carbon atoms include, for example, benzene, toluene, xylene, phenol, 3-methylphenol, 4-methylphenol, pyrogallol, cresol, naphthalene, α-naphthol, β-naphthol. , 1,5-Dihydroxynaphthalene, 2,7-Dihydroxynaphthalene, anthracene, phenanthrene, tetracene, pyrene, 1-hydroxypyrene, triphenylene, fluorene, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis Examples thereof include (6-hydroxynaphthyl) fluorene, indenofluorene, and torque sen.
 アルデヒド化合物としては、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、パラヒドロキシベンズアルデヒド等のアルデヒドなどが挙げられる。これらの中で、ホルムアルデヒドが好ましい。なお、ホルムアルデヒドの代わりにパラホルムアルデヒドを用いてもよく、アセトアルデヒドの代わりにパラアルデヒドを用いてもよい。 Examples of the aldehyde compound include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and parahydroxybenzaldehyde. Of these, formaldehyde is preferred. In addition, paraformaldehyde may be used instead of formaldehyde, and paraaldehyde may be used instead of acetaldehyde.
 酸性触媒としては、例えば塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、酢酸亜鉛等のルイス酸などが挙げられる。これらの中で、有機酸が好ましく、パラトルエンスルホン酸がより好ましい。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and Lewis acids such as boron trifluoride, aluminum anhydride and zinc acetate. Can be mentioned. Of these, organic acids are preferred, and paratoluenesulfonic acids are more preferred.
 ノボラック樹脂は、下記式(1)で表される構造単位(以下、「構造単位(I)」ともいう)を繰り返し単位として有することが好ましい。 The novolak resin preferably has a structural unit represented by the following formula (1) (hereinafter, also referred to as "structural unit (I)") as a repeating unit.
(構造単位(I))
 構造単位(I)は、下記式(1)で表される構造単位である。
(Structural unit (I))
The structural unit (I) is a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Arは、炭素数6~20のアレーンから芳香環上の(m+2)個の水素原子を除いた(m+2)価の基である。Rは、置換又は非置換の炭素数1~20のアルキレン基である。Xは、1価のヘテロ原子含有基又は1価の有機基である。mは、0~10の整数である。mが2以上の場合、複数のXは互いに同一又は異なる。 In the above formula (1), Ar 1 is a (m + 2) valent group obtained by removing (m + 2) hydrogen atoms on the aromatic ring from an arene having 6 to 20 carbon atoms. R 1 is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms. X is a monovalent heteroatom-containing group or a monovalent organic group. m is an integer from 0 to 10. When m is 2 or more, a plurality of X's are the same or different from each other.
 Arを与える炭素数6~20のアレーンとしては、例えばベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン、トリフェニレン、フルオレン、トルクセン等が挙げられる。これらの中で、ベンゼン又はナフタレンが好ましく、ベンゼンがより好ましい。 Examples of the arene having 6 to 20 carbon atoms giving Ar 1 include benzene, naphthalene, anthracene, phenanthrene, tetracene, pyrene, triphenylene, fluorene, and torquesen. Among these, benzene or naphthalene is preferable, and benzene is more preferable.
 Xで表される1価のヘテロ原子含有基としては、例えばヒドロキシ基、ハロゲン原子等が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。Xの1価のヘテロ原子含有基としては、ヒドロキシ基が好ましい。 Examples of the monovalent heteroatom-containing group represented by X include a hydroxy group and a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like. As the monovalent heteroatom-containing group of X, a hydroxy group is preferable.
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。Xで表される1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基、上記炭化水素基又は上記2価のヘテロ原子含有基を含む基が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。 "Organic group" means a group containing at least one carbon atom. Examples of the monovalent organic group represented by X include a monovalent hydrocarbon group having 1 to 20 carbon atoms, a group containing a divalent heteroatom-containing group between carbon and carbon of the hydrocarbon group, and the above-mentioned carbide. Examples thereof include a group in which a part or all of the hydrogen atom of the hydrogen group or the group containing the divalent heteroatom-containing group is replaced with a monovalent heteroatom-containing group.
 上記炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a carbon number of carbon atoms. Examples thereof include 6 to 20 monovalent aromatic hydrocarbon groups.
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン等のアルケン、エチン、プロピン、ブチン等のアルキンなどが有する1個の水素原子を除いた基等が挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkanes such as methane, ethane, propane and butane, alkenes such as ethane, propene and butane, and alkynes such as ethine, propine and butane. Examples thereof include groups excluding one hydrogen atom.
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンタン、シクロヘキサン等のシクロアルカン、ノルボルナン、アダマンタン、トリシクロデカン等の橋かけ環飽和炭化水素などの脂環式飽和炭化水素、シクロペンテン、シクロヘキセン等のシクロアルケン、ノルボルネン、トリシクロデセン等の橋かけ環不飽和炭化水素などの脂環式不飽和炭化水素などが有する1個の水素原子を除いた基などが挙げられる。 Examples of monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms include alicyclic saturated hydrocarbons such as cycloalkanes such as cyclopentane and cyclohexane, and bridging ring saturated hydrocarbons such as norbornan, adamantan, and tricyclodecane. Examples thereof include groups excluding one hydrogen atom possessed by cycloalkenes such as hydrogen, cyclopentene and cyclohexene, and alicyclic unsaturated hydrocarbons such as bridging ring unsaturated hydrocarbons such as norbornene and tricyclodecene.
 炭素数6~20の1価の芳香族炭化水素基としては、例えばベンゼン、トルエン、エチルベンゼン、キシレン、ナフタレン、メチルナフタレン、アントラセン、メチルアントラセン等のアレーンが有する芳香環上の水素原子又はアルキル基上の水素原子を除いた基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a hydrogen atom or an alkyl group on the aromatic ring of an arene such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene, and methylanthracene. Examples include groups excluding the hydrogen atom of.
 2価又は1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。 Examples of the hetero atom constituting the divalent or monovalent hetero atom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。これらの中で、-O-及び-S-が好ましい。 Examples of the divalent heteroatom-containing group include -O-, -CO-, -S-, -CS-, -NR'-, a group in which two or more of these are combined, and the like. R'is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— and —S— are preferred.
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。 Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
 Xの1価の有機基としては、アルキル基又はオキシ炭化水素基が好ましく、アルキル基又はアルキルオキシ基がより好ましく、メチル基、エチル基、プロピル基、ブチル基、メトキシ基、エトキシ基又はプロポキシ基が好ましい。
 mとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
 構造単位(I)は、式(1)中のmが1以上の整数であり、かつXのうち少なくとも1つがヒドロキシ基であることが好ましい。
As the monovalent organic group of X, an alkyl group or an oxy hydrocarbon group is preferable, an alkyl group or an alkyloxy group is more preferable, and a methyl group, an ethyl group, a propyl group, a butyl group, a methoxy group, an ethoxy group or a propoxy group. Is preferable.
As m, 1 to 3 is preferable, 1 or 2 is more preferable, and 1 is further preferable.
The structural unit (I) is preferably an integer in which m in the formula (1) is 1 or more, and at least one of X is a hydroxy group.
 Rで表される置換又は非置換の炭素数1~20のアルキレン基としては、例えばメチレン基、メチルメチレン基、フェニルメチレン基、パラヒドロキシフェニルメチレン基等が挙げられる。これらの中で、メチレン基又はメチルメチレン基が好ましく、メチレン基がより好ましい。 Examples of the substituted or unsubstituted alkylene group having 1 to 20 carbon atoms represented by R 1 include a methylene group, a methylmethylene group, a phenylmethylene group, a parahydroxyphenylmethylene group and the like. Among these, a methylene group or a methylmethylene group is preferable, and a methylene group is more preferable.
[アクリル樹脂]
 アクリル樹脂は、(メタ)アクリル酸又は(メタ)アクリル酸エステルに由来する構造単位を有する重合体である。(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル等の(メタ)アクリル酸アルキル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸の脂環式炭化水素基エステル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリール、(メタ)アクリル酸1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、(メタ)アクリル酸1,1,1-トリフルオロ-2-ヒドロキシ-2-トリフルオロメチル-4-ペンチル等の(メタ)アクリル酸含フッ素エステルなどが挙げられる。
[acrylic resin]
Acrylic resin is a polymer having a structural unit derived from (meth) acrylic acid or (meth) acrylic acid ester. Examples of the (meth) acrylic acid ester include an alkyl (meth) acrylic acid such as methyl (meth) acrylic acid, an alicyclic hydrocarbon group ester of (meth) acrylic acid such as cyclohexyl (meth) acrylic acid, and (meth). Aryl (meth) acrylic acid such as phenyl acrylate, 1,1,1,3,3,3-hexafluoro-2-propyl (meth) acrylic acid, 1,1,1-trifluoro- (meth) acrylic acid Examples thereof include (meth) acrylic acid-containing fluoroesters such as 2-hydroxy-2-trifluoromethyl-4-pentyl.
[レゾール樹脂]
 レゾール樹脂は、芳香環を有する化合物と、アルデヒド化合物とを塩基性触媒を用いて反応させて得られる重合体である。
[Resol resin]
The resole resin is a polymer obtained by reacting a compound having an aromatic ring with an aldehyde compound using a basic catalyst.
 芳香環を有する化合物及びアルデヒド化合物としては、上記ノボラック樹脂における芳香環を有する化合物及びアルデヒド化合物と同様の化合物等が挙げられる。 Examples of the compound having an aromatic ring and the aldehyde compound include a compound having an aromatic ring and a compound similar to the aldehyde compound in the above novolak resin.
 塩基性触媒としては、例えば水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、モノエタノールアミン、トリエチルアミン、ヘキサメチレンテトラミン等のアミン化合物、炭酸ナトリウム等の塩基性物質などが挙げられる。 Examples of the basic catalyst include hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, lithium hydroxide, potassium hydroxide and calcium hydroxide, and amines such as ammonia, monoethanolamine, triethylamine and hexamethylenetetramine. Examples include compounds and basic substances such as sodium carbonate.
[芳香環含有ビニル系樹脂]
 芳香環含有ビニル系樹脂は、芳香環及び重合性炭素-炭素二重結合を有する化合物に由来する構造単位を有する重合体である。芳香環及び重合性炭素-炭素二重結合を有する化合物としては、例えばスチレン、メチルスチレン、α-メチルスチレン、ビニルナフタレン、フェニルビニルエーテル等が挙げられる。
[Aromatic ring-containing vinyl resin]
The aromatic ring-containing vinyl resin is a polymer having a structural unit derived from a compound having an aromatic ring and a polymerizable carbon-carbon double bond. Examples of the compound having an aromatic ring and a polymerizable carbon-carbon double bond include styrene, methylstyrene, α-methylstyrene, vinylnaphthalene, and phenylvinyl ether.
[カリックスアレーン樹脂]
 カリックスアレーン樹脂は、フェノール性水酸基が結合する芳香環が炭化水素基を介して複数個環状に結合した環状化合物である。フェノール性水酸基が結合する芳香環を与える化合物としては、例えばフェノール、メチルフェノール、t-ブチルフェノール、ナフトール等が挙げられる。上記炭化水素基としては、例えばメチレン基、メチルメチレン基等が挙げられる。
[Calixarene resin]
The calixarene resin is a cyclic compound in which a plurality of aromatic rings to which phenolic hydroxyl groups are bonded are cyclically bonded via a hydrocarbon group. Examples of the compound that gives an aromatic ring to which a phenolic hydroxyl group is bonded include phenol, methylphenol, t-butylphenol, naphthol and the like. Examples of the hydrocarbon group include a methylene group and a methylmethylene group.
 [A]高分子化合物の重量平均分子量(Mw)の下限としては、1,000であり、2,000が好ましく、3,000がより好ましく、5,000がさらに好ましい。上記Mwの上限としては、100,000が好ましく、80,000がより好ましく、60,000がさらに好ましい。 [A] The lower limit of the weight average molecular weight (Mw) of the polymer compound is 1,000, preferably 2,000, more preferably 3,000, and even more preferably 5,000. The upper limit of Mw is preferably 100,000, more preferably 80,000, and even more preferably 60,000.
 本明細書における[A]高分子化合物のMwは、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した値である。 As the Mw of the [A] polymer compound in the present specification, a GPC column (2 “G2000HXL”, 1 “G3000HXL” and 1 “G4000HXL”) of Toso Co., Ltd. is used, and the flow rate: 1.0 mL / It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analytical conditions of minute, elution solvent: tetrahydrofuran, column temperature: 40 ° C.
 当該基板処理膜形成用組成物の[C]溶媒以外の全成分における[A]高分子化合物の含有割合の下限としては、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましく、95質量%が特に好ましい。上記含有割合の上限としては、99.99質量%が好ましく、99.9質量%がより好ましく、99.0質量%がさらに好ましい。 The lower limit of the content ratio of the [A] polymer compound in all the components other than the [C] solvent of the substrate treatment film forming composition is preferably 70% by mass, more preferably 80% by mass, and further 90% by mass. It is preferable, and 95% by mass is particularly preferable. As the upper limit of the content ratio, 99.99% by mass is preferable, 99.9% by mass is more preferable, and 99.0% by mass is further preferable.
<[B]化合物>
 [B]化合物は、2以上の水酸基を有し、融点が30℃以上、かつ分子量が100以上500以下である化合物である。本明細書において、「水酸基」とは、アルコール性水酸基又はフェノール性水酸基を意味する。当該基板処理膜形成用組成物は、[B]化合物を含有することにより、膜除去性及びパーティクル除去性を向上させることができる。
<[B] Compound>
The compound [B] is a compound having 2 or more hydroxyl groups, a melting point of 30 ° C. or higher, and a molecular weight of 100 or more and 500 or less. As used herein, the term "hydroxyl group" means an alcoholic hydroxyl group or a phenolic hydroxyl group. By containing the compound [B], the substrate-treated film-forming composition can improve the film-removing property and the particle-removing property.
 [B]化合物における水酸基の数の下限としては、2であり、3が好ましく、4がより好ましい。上記水酸基の数の上限としては、例えば20である。[B]化合物における水酸基の数が上記範囲内であることにより、パーティクル除去性を向上させることができる。 The lower limit of the number of hydroxyl groups in the [B] compound is 2, preferably 3, and more preferably 4. The upper limit of the number of hydroxyl groups is, for example, 20. When the number of hydroxyl groups in the [B] compound is within the above range, the particle removability can be improved.
 [B]化合物の融点の下限としては、30℃であり、40℃が好ましく、50℃がより好ましく、90℃がさらに好ましい。上記融点の上限としては、例えば250℃である。[B]化合物の融点が上記範囲内であることにより、[B]化合物が25℃で固体となり、当該基板処理膜形成用組成物により形成された基板処理膜中に固体状の[B]化合物が析出すると考えられ、膜除去性を向上させることができる。 The lower limit of the melting point of the [B] compound is 30 ° C., preferably 40 ° C., more preferably 50 ° C., and even more preferably 90 ° C. The upper limit of the melting point is, for example, 250 ° C. When the melting point of the [B] compound is within the above range, the [B] compound becomes a solid at 25 ° C., and the solid [B] compound is contained in the substrate-treated film formed by the substrate-treated film-forming composition. Is considered to precipitate, and the film removability can be improved.
 [B]化合物の分子量の下限としては、100であり、110が好ましく、120がより好ましい。上記分子量の上限としては、500であり、450が好ましく、400がより好ましい。[B]化合物の分子量が上記範囲内であることにより、パーティクル除去性を向上させることができる。 The lower limit of the molecular weight of the [B] compound is 100, preferably 110, and more preferably 120. The upper limit of the molecular weight is 500, preferably 450, and more preferably 400. When the molecular weight of the compound [B] is within the above range, the particle removability can be improved.
 [B]化合物としては、多価アルコール化合物、多価フェノール化合物、糖化合物などが挙げられる。また、[B]化合物としては、上記[A]高分子化合物中に含まれる分子量が100以上500以下の水酸基を2以上有するオリゴマーであってもよい。 Examples of the [B] compound include a polyhydric alcohol compound, a polyhydric phenol compound, and a sugar compound. Further, the [B] compound may be an oligomer having two or more hydroxyl groups having a molecular weight of 100 or more and 500 or less contained in the above-mentioned [A] polymer compound.
 多価アルコール化合物としては、例えばエリスリトール、リビトール、トリメチロールプロパン、メソエリスリトール、ペンタエリスリトール、ジペンタエリスリトール、マルチトール、ラクチトール、D-トレイトール、D-アラビニトール、リビトール、キシリトール、ソルビトール、ガラクチトール、D-マンニトール、アリトール、高級アルジトール、アダマンタンジオール、アダマンタントリオール、アダマンタンテトラオール、1,3-ジメチルアダマンタン-5,7-ジオール、ポリエチレングリコール、ポリビニルアルコールなどが挙げられる。 Examples of the polyhydric alcohol compound include erythritol, ribitol, trimethylolpropane, mesoerythritol, pentaerythritol, dipentaerythritol, martitol, lactitol, D-trethritol, D-arabinitol, ribitol, xylitol, sorbitol, galactitol, and D. -Mannitol, arythritol, higher argitol, adamantandiol, adamantantriol, adamantantetraol, 1,3-dimethyladamantan-5,7-diol, polyethylene glycol, polyvinyl alcohol and the like can be mentioned.
 多価フェノール化合物としては、例えばカテコール、レゾルシノール、ヒドロキノン、ピロガロール、フロログルシノール、下記式(B-7)で表される化合物などが挙げられる。 Examples of the polyhydric phenol compound include catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and a compound represented by the following formula (B-7).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 糖化合物としては、例えばグルコース、ガラクトース、キシロース、乳糖、マンノース、タロース、ラムノース、アラビノース、グルコシルマンノース、リキソース、アロース、アルトロース、グロース、イドース、リボース、エリトロース、トレオース、プシコース、フルクトース、ソルボース、タガトース、ペンツロース、テトロース、スクロース、マルトース、イソマルトース、セロビオース、ラクトース、トレハロース、コウジビオース、ソホロース、ニゲロース、ラミナリビオース、イソマルトース、ゲンチオビオース、メリビオース、ブランテオビオース、ツラノース、ビシアノース、アガロビオース、シラビオース、ルチノース、プリメプロース、キシロビオース、ロジメナビオース、アルドン酸、グルシトース、マルトトリオースなどが挙げられる。 Examples of sugar compounds include glucose, galactose, xylose, lactose, mannose, talose, lambnorse, arabinose, glucosylmannose, liquisource, allose, altrose, growth, idose, ribose, erythrose, treose, psicose, fructose, sorbose, tagatose, etc. Penturose, Tetrose, Sculose, Martose, Isomaltose, Cellobiose, Lactose, Trehalose, Kojibiose, Sophorose, Nigerose, Laminaribiose, Isomaltose, Genthiobiose, Meribiose, Blancteobiose, Turanose, Vicianorse, Agarobiose, Agarobiose , Xylose, Logimenabios, Aldonic acid, Glucitos, Maltotriose and the like.
 [B]化合物としては、パーティクル除去性をより向上できる観点から、エリスリトール、リビトール、スクロース、トレハロース、カテコール、ピロガロール又は上記式(B-7)で表される化合物が好ましく、エリスリトール、リビトール、スクロース、トレハロース、ピロガロール又は上記式(B-7)で表される化合物がより好ましく、スクロース又は上記式(B-7)で表される化合物がさらに好ましい。 As the compound [B], erythritol, ribitol, sucrose, trehalose, catechol, pyrogallol or a compound represented by the above formula (B-7) is preferable from the viewpoint of further improving particle removability, and erythritol, ribitol, sucrose, etc. Trehalose, pyrogallol or a compound represented by the above formula (B-7) is more preferable, and sucrose or a compound represented by the above formula (B-7) is further preferable.
 当該基板処理膜形成用組成物における[B]化合物の含有量の下限としては、[A]高分子化合物100質量部に対して、0.01質量部が好ましく、0.05質量部がより好ましく、0.1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。[B]化合物の含有量が上記範囲内であることにより、膜除去性及びパーティクル除去性をより向上させることができる。 The lower limit of the content of the [B] compound in the substrate treatment film forming composition is preferably 0.01 part by mass and more preferably 0.05 part by mass with respect to 100 parts by mass of the [A] polymer compound. , 0.1 parts by mass is more preferable. The upper limit of the content is preferably 20 parts by mass, more preferably 10 parts by mass, and even more preferably 5 parts by mass. When the content of the compound [B] is within the above range, the film removability and the particle removability can be further improved.
<[C]溶媒>
 [C]溶媒は、[A]高分子化合物、[B]化合物、及び必要に応じて含有されるその他の任意成分を溶解又は分散するものであれば特に限定されず用いることができる。[C]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
<[C] Solvent>
The solvent [C] is not particularly limited as long as it dissolves or disperses the polymer compound [A], the compound [B], and other optional components contained as necessary. [C] The solvent may be used alone or in combination of two or more.
 [C]溶媒としては、例えば有機溶媒、水等が挙げられる。[C]溶媒が有機溶媒を含む場合、[C]溶媒における有機溶媒の含有割合の下限としては、70質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。上記有機溶媒の含有割合は、100質量%であってもよい。[C]溶媒が水を含む場合、[C]溶媒における水の含有割合の上限としては、10質量%が好ましく、2質量%がより好ましく、1質量%がさらに好ましい。上記水の含有割合の下限としては、例えば0.01質量%である。 Examples of the [C] solvent include organic solvents and water. When the [C] solvent contains an organic solvent, the lower limit of the content ratio of the organic solvent in the [C] solvent is preferably 70% by mass, more preferably 90% by mass, further preferably 95% by mass, and 99% by mass. Especially preferable. The content ratio of the organic solvent may be 100% by mass. When the solvent [C] contains water, the upper limit of the content ratio of water in the solvent [C] is preferably 10% by mass, more preferably 2% by mass, still more preferably 1% by mass. The lower limit of the water content is, for example, 0.01% by mass.
 有機溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒等が挙げられる。 Examples of the organic solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents and the like.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、n-ブタノール等のモノアルコール類、エチレングリコール、1,2-プロピレングリコール、1,2-ブタンジオール等の多価アルコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の多価アルコール部分エーテル類、乳酸エチル、乳酸ブチル等の乳酸エステル類などが挙げられる。 Examples of the alcohol solvent include monoalcohols such as methanol, ethanol, n-propanol and n-butanol, polyhydric alcohols such as ethylene glycol, 1,2-propylene glycol and 1,2-butanediol, and propylene glycol monomethyl. Examples thereof include polyhydric alcohol partial ethers such as ether and propylene glycol monoethyl ether, and lactic acid esters such as ethyl lactate and butyl lactate.
 ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等の鎖状ケトン類、シクロヘキサノン等の環状ケトン類などが挙げられる。 Examples of the ketone solvent include chain ketones such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketones such as cyclohexanone.
 エーテル系溶媒としては、例えばn-ブチルエーテル等の鎖状エーテル類、テトラヒドロフラン、1,4-ジオキサン等の環状エーテル類などが挙げられる。 Examples of the ether solvent include chain ethers such as n-butyl ether and cyclic ethers such as tetrahydrofuran and 1,4-dioxane.
 エステル系溶媒としては、例えばジエチルカーボネート等のカーボネート類、酢酸メチル、酢酸エチル等の酢酸エステル類、γ-ブチロラクトン等のラクトン類、酢酸ジエチレングリコールモノメチルエーテル、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート類などが挙げられる。 Examples of the ester solvent include carbonates such as diethyl carbonate, acetic acid esters such as methyl acetate and ethyl acetate, lactones such as γ-butyrolactone, and polyhydric alcohol partial ethers such as diethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Carboxylates and the like can be mentioned.
 含窒素系溶媒としては、例えばN,N-ジメチルアセトアミド等の鎖状含窒素化合物類、N-メチルピロリドン等の環状含窒素化合物類などが挙げられる。 Examples of the nitrogen-containing solvent include chain nitrogen-containing compounds such as N and N-dimethylacetamide, and cyclic nitrogen-containing compounds such as N-methylpyrrolidone.
 有機溶媒としては、アルコール系溶媒又はエステル系溶媒が好ましく、多価アルコール部分エーテル類、乳酸エステル類又は多価アルコール部分エーテルカルボキシレート類がより好ましく、プロピレングリコールモノエチルエーテル又は酢酸プロピレングリコールモノメチルエーテルがさらに好ましい。 As the organic solvent, an alcohol solvent or an ester solvent is preferable, polyhydric alcohol partial ethers, lactic acid esters or polyhydric alcohol partial ether carboxylates are more preferable, and propylene glycol monoethyl ether or propylene glycol monomethyl ether acetate is preferable. More preferred.
 当該基板処理膜形成用組成物における[C]溶媒の含有量の下限としては、[A]高分子化合物100質量部に対して、100質量部が好ましく、300質量部がより好ましく、500質量部がさらに好ましく、700質量部が特に好ましい。上記含有量の上限としては、10,000質量部が好ましく、5,000質量部がより好ましく、3,000質量部がさらに好ましく、2,000質量部が特に好ましい。 The lower limit of the content of the [C] solvent in the substrate treatment film forming composition is preferably 100 parts by mass, more preferably 300 parts by mass, and 500 parts by mass with respect to 100 parts by mass of the [A] polymer compound. Is more preferable, and 700 parts by mass is particularly preferable. The upper limit of the content is preferably 10,000 parts by mass, more preferably 5,000 parts by mass, further preferably 3,000 parts by mass, and particularly preferably 2,000 parts by mass.
 当該基板処理膜形成用組成物における[C]溶媒の含有割合の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、85質量%が特に好ましい。上記含有割合の上限としては、99質量%が好ましく、97質量%がより好ましく、95質量%がさらに好ましく、93質量%が特に好ましい。 The lower limit of the content ratio of the [C] solvent in the substrate treatment film forming composition is preferably 50% by mass, more preferably 70% by mass, further preferably 80% by mass, and particularly preferably 85% by mass. The upper limit of the content ratio is preferably 99% by mass, more preferably 97% by mass, further preferably 95% by mass, and particularly preferably 93% by mass.
<その他の任意成分>
 その他の任意成分としては、例えば界面活性剤などが挙げられる。その他の任意成分は、1種単独で又は2種以上を組み合わせて用いることができる。
<Other optional ingredients>
Examples of other optional components include surfactants and the like. Other optional components may be used alone or in combination of two or more.
 当該基板処理膜形成用組成物は、界面活性剤をさらに含有することで塗工性をより向上させることができる。界面活性剤としては、例えばノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤等が挙げられる。 The coating property for forming a substrate treatment film can be further improved by further containing a surfactant. Examples of the surfactant include nonionic surfactants, cationic surfactants, anionic surfactants and the like.
 上記ノニオン性界面活性剤としては、例えばポリオキシエチレンアルキルエーテル等のエーテル型ノニオン性界面活性剤、グリセリンエステルのポリオキシエチレンエーテル等のエーテルエステル型ノニオン性界面活性剤、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等のエステル型ノニオン性界面活性剤などが挙げられる。 Examples of the nonionic surfactant include ether-type nonionic surfactants such as polyoxyethylene alkyl ether, ether ester-type nonionic surfactants such as polyoxyethylene ether of glycerin ester, polyethylene glycol fatty acid ester, and glycerin ester. , Ester-type nonionic surfactants such as sorbitan ester and the like.
 上記カチオン性界面活性剤としては、例えば脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。 Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
 上記アニオン性界面活性剤としては、例えば脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。 Examples of the anionic surfactant include fatty acid soaps, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkylnaphthalene sulfonates, sulfonates such as α-olefin sulfonates, and higher alcohol sulfates. Examples thereof include an ester salt, a sulfate ester salt such as an alkyl ether sulfate, and a phosphoric acid ester salt such as an alkyl phosphate.
 当該基板処理膜形成用組成物が界面活性剤を含有する場合、界面活性剤の含有量の上限としては、[A]高分子化合物100質量部に対して、例えば2質量部である。上記含有量の下限としては、例えば0.01質量部である。界面活性剤の含有量を上記範囲とすることで、塗工性をより向上させることができる。 When the substrate-treated film-forming composition contains a surfactant, the upper limit of the content of the surfactant is, for example, 2 parts by mass with respect to 100 parts by mass of the polymer compound [A]. The lower limit of the content is, for example, 0.01 parts by mass. By setting the content of the surfactant in the above range, the coatability can be further improved.
<基板処理膜形成用組成物の調製方法>
 当該基板処理膜形成用組成物は、例えば[A]高分子化合物、[B]化合物、[C]溶媒、及び必要に応じてその他の任意成分を所定の割合で混合し、好ましくは、得られた混合溶液を例えば孔径0.1~5μmのフィルター等でろ過することで調製することができる。
<Method for preparing composition for forming substrate treatment film>
The substrate-treated film-forming composition is preferably obtained by mixing, for example, a [A] polymer compound, a [B] compound, a [C] solvent, and if necessary, other optional components in a predetermined ratio. It can be prepared by filtering the mixed solution with, for example, a filter having a pore size of 0.1 to 5 μm.
<基板の処理方法>
 当該基板の処理方法は、基板に基板処理膜形成用組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成された基板処理膜に基板処理膜除去液を接触させる工程(以下、「除去工程」ともいう)とを備える。当該基板の処理方法では、上記基板処理膜形成用組成物として、上述の当該基板処理膜形成用組成物を用いる。
<Substrate processing method>
The substrate treatment method includes a step of applying a substrate treatment film forming composition to the substrate (hereinafter, also referred to as a “coating step”) and a substrate treatment film removal on the substrate treatment film formed by the above coating step. It includes a step of bringing the liquid into contact (hereinafter, also referred to as a “removal step”). In the method for treating the substrate, the above-mentioned composition for forming the substrate-treated film is used as the composition for forming the substrate-treated film.
 当該基板の処理方法によれば、上述の当該基板処理膜形成用組成物を用いるので、基板表面に基板処理膜を形成してこの基板表面の異物を除去するプロセスにおいて、基板表面の微小なパーティクルを効率よく除去でき、かつ形成された基板処理膜を基板表面から容易に除去することができる。 According to the substrate treatment method, since the above-mentioned substrate treatment film forming composition is used, minute particles on the substrate surface are formed in the process of forming the substrate treatment film on the substrate surface and removing foreign substances on the substrate surface. Can be efficiently removed, and the formed substrate treatment film can be easily removed from the substrate surface.
 以下、当該基板の処理方法が備える各工程について説明する。 Hereinafter, each process provided in the processing method of the substrate will be described.
[塗工工程]
 本工程では、基板に基板処理膜形成用組成物を塗工する。上記基板処理膜形成用組成物として、上述の当該基板処理膜形成用組成物を用いる。本工程により、基板上に基板処理膜が形成される。
[Coating process]
In this step, a composition for forming a substrate treatment film is applied to a substrate. As the substrate-treated film-forming composition, the substrate-treated film-forming composition described above is used. By this step, a substrate processing film is formed on the substrate.
 基板としては、パターンが形成されていない基板であってもよいし、パターンが形成された基板であってもよい。 The substrate may be a substrate on which no pattern is formed or a substrate on which a pattern is formed.
 基板としては、例えばシリコン基板、アルミニウム基板、ニッケル基板、クロム基板、モリブデン基板、タングステン基板、銅基板、タンタル基板、チタン基板等の金属又は半金属基板、窒化ケイ素基板、アルミナ基板、二酸化ケイ素基板、窒化タンタル基板、窒化チタン等のセラミック基板などが挙げられる。これらの中で、シリコン基板、窒化ケイ素基板又は窒化チタン基板が好ましく、シリコン基板がより好ましい。 Examples of the substrate include a metal or semi-metal substrate such as a silicon substrate, an aluminum substrate, a nickel substrate, a chrome substrate, a molybdenum substrate, a tungsten substrate, a copper substrate, a tantalum substrate, a titanium substrate, a silicon nitride substrate, an alumina substrate, and a silicon dioxide substrate. Examples thereof include a tantalum nitride substrate and a ceramic substrate such as titanium nitride. Among these, a silicon substrate, a silicon nitride substrate or a titanium nitride substrate is preferable, and a silicon substrate is more preferable.
 パターンが形成された基板のパターンとしては、例えばスペース部の線幅が2,000nm以下、1,000nm以下、500nm以下、さらには50nm以下のラインアンドスペースパターン又はトレンチパターンや、直径が300nm以下、150nm以下、100nm以下、さらには50nm以下のホールパターン等が挙げられる。 Examples of the pattern of the substrate on which the pattern is formed include a line-and-space pattern or trench pattern in which the line width of the space portion is 2,000 nm or less, 1,000 nm or less, 500 nm or less, and further 50 nm or less, or a diameter of 300 nm or less. Hole patterns of 150 nm or less, 100 nm or less, and further 50 nm or less can be mentioned.
 また、基板に形成されたパターンの寸法として、例えば高さが100nm以上、200nm以上、さらには300nm以上、幅が50nm以下、40nm以下、さらには30nm以下、アスペクト比(パターンの高さ/パターン幅)が、3以上、5以上、さらには10以上の微細なパターンなどが挙げられる。 The dimensions of the pattern formed on the substrate include, for example, a height of 100 nm or more, 200 nm or more, further 300 nm or more, a width of 50 nm or less, 40 nm or less, further 30 nm or less, and an aspect ratio (pattern height / pattern width). ) Is 3 or more, 5 or more, and even 10 or more fine patterns.
 なお、基板としてパターンが形成された基板を用いる場合、この基板に基板処理膜形成用組成物を塗工することで形成される基板処理膜は、パターンの凹部を埋め込めるものであることが好ましい。基板処理膜が、パターンの凹部を埋め込めることにより、パターンの凹部に付着したパーティクルをより効率的に除去することができ、より優れたパーティクル除去の効果が発揮される。 When a substrate on which a pattern is formed is used as the substrate, it is preferable that the substrate treatment film formed by applying the substrate treatment film forming composition to this substrate can embed the recesses of the pattern. .. By embedding the concave portion of the pattern in the substrate processing film, the particles adhering to the concave portion of the pattern can be removed more efficiently, and a more excellent effect of removing particles is exhibited.
 基板処理膜形成用組成物の基板への塗工方法としては、例えば回転塗工法(スピンコーティング)、流延塗工法、ロール塗工法等が挙げられる。これにより、基板処理膜形成用組成物の塗膜が形成される。 Examples of the coating method of the composition for forming a substrate treatment film on a substrate include a rotary coating method (spin coating), a casting coating method, and a roll coating method. As a result, a coating film of the composition for forming a substrate treatment film is formed.
 本工程の一適用例を、図面を参照しつつ詳細に説明する。 An application example of this process will be explained in detail with reference to the drawings.
 まず、図1に示すように、基板処理膜形成用組成物をウエハW上に塗工する。これにより、基板処理膜形成用組成物の塗膜が形成される。 First, as shown in FIG. 1, the substrate treatment film forming composition is applied onto the wafer W. As a result, a coating film of the composition for forming a substrate treatment film is formed.
 次に、図2に示すように、基板処理膜形成用組成物の塗膜から[C]溶媒等の揮発成分の一部又は全部を揮発させることによって、基板処理膜形成用組成物が基板上で固化又は硬化することにより、基板処理膜が形成される。なお、本明細書において「固化」とは固体化することを意味し、「硬化」とは分子同士が連結して分子量が増大すること(例えば架橋や重合等すること)を意味する。この際、パターンやウエハW等に付着したパーティクルは、基板処理膜に取り込まれてパターンやウエハW等から引き離される。 Next, as shown in FIG. 2, the substrate-treated film-forming composition is formed on the substrate by volatilizing a part or all of the volatile components such as the solvent [C] from the coating film of the substrate-treated film-forming composition. A substrate treatment film is formed by solidifying or hardening with. In addition, in this specification, "solidification" means solidification, and "curing" means that molecules are connected to each other to increase the molecular weight (for example, cross-linking or polymerization). At this time, the particles adhering to the pattern, the wafer W, etc. are taken into the substrate processing film and separated from the pattern, the wafer W, etc.
 この場合、上記塗膜を加熱及び/又は減圧することにより、上記塗膜の固化又は硬化を促進させることができる。 In this case, the solidification or curing of the coating film can be promoted by heating and / or reducing the pressure of the coating film.
 上記固化及び/又は硬化のための加熱温度の下限としては、30℃が好ましく、40℃がより好ましい。上記加熱温度の上限としては、200℃が好ましく、100℃がより好ましく、90℃がさらに好ましい。上記加熱時間の下限としては、5秒が好ましく、10秒がより好ましく、30秒がさらに好ましい。上記加熱時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。 As the lower limit of the heating temperature for solidification and / or hardening, 30 ° C. is preferable, and 40 ° C. is more preferable. The upper limit of the heating temperature is preferably 200 ° C., more preferably 100 ° C., and even more preferably 90 ° C. As the lower limit of the heating time, 5 seconds is preferable, 10 seconds is more preferable, and 30 seconds is further preferable. As the upper limit of the heating time, 10 minutes is preferable, 5 minutes is more preferable, and 2 minutes is further preferable.
 形成される基板処理膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましく、50nmがさらに好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。なお、基板処理膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した値である。 The lower limit of the average thickness of the substrate-treated film to be formed is preferably 10 nm, more preferably 20 nm, and even more preferably 50 nm. The upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm. The average thickness of the substrate-treated film is a value measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOOLLAM).
[除去工程]
 上記塗工工程により形成された基板処理膜に基板処理膜除去液を接触させる。本工程により、上記基板処理膜が基板から除去される。
[Removal process]
The substrate treatment film removing liquid is brought into contact with the substrate treatment film formed by the above coating process. By this step, the substrate processing film is removed from the substrate.
 本工程の一適用例を、図面を参照しつつ詳細に説明する。図3に示すように、基板処理膜に基板処理膜除去液を接触させる。これにより、ウエハWから基板処理膜を全て除去する。この結果、パーティクルは、基板処理膜と共にウエハWから除去される。 An application example of this process will be explained in detail with reference to the drawings. As shown in FIG. 3, the substrate processing film removing liquid is brought into contact with the substrate processing film. As a result, all the substrate processing film is removed from the wafer W. As a result, the particles are removed from the wafer W together with the substrate processing film.
 基板処理膜除去液としては、水、有機溶媒、アルカリ性水溶液などを用いることができる。基板処理膜除去液としては、水を含有する液が好ましく、水又はアルカリ性水溶液がより好ましく、アルカリ性水溶液がさらに好ましい。アルカリ性水溶液としては、アルカリ現像液を用いることができる。アルカリ現像液は公知のものを用いることができる。具体例としては、例えばアンモニア、テトラメチルアンモニウムヒドロキシド(TMAH)及びコリンのうちの少なくとも一つを含む水溶液等が挙げられる。有機溶媒としては、例えばシンナー、イソプロピルアルコール(IPA)、4-メチル-2-ペンタノール(MIBC)、トルエン、酢酸エステル類、アルコール類、グリコール類(プロピレングリコールモノメチルエーテル等)などを用いることができる。また、基板処理膜の除去は、まず、基板処理膜に基板処理膜除去液としての水を接触させ、次いで、アルカリ現像液を接触させるなど、異なる種類の基板処理膜除去液を順次用いて行ってもよい。異なる種類の基板処理膜除去液を順次用いることで、膜除去性をより向上させることができる。 Water, an organic solvent, an alkaline aqueous solution, or the like can be used as the substrate treatment membrane removing liquid. As the substrate treatment membrane removing liquid, a liquid containing water is preferable, water or an alkaline aqueous solution is more preferable, and an alkaline aqueous solution is further preferable. An alkaline developer can be used as the alkaline aqueous solution. A known alkaline developer can be used. Specific examples include, for example, an aqueous solution containing at least one of ammonia, tetramethylammonium hydroxide (TMAH) and choline. As the organic solvent, for example, thinner, isopropyl alcohol (IPA), 4-methyl-2-pentanol (MIBC), toluene, acetate esters, alcohols, glycols (propylene glycol monomethyl ether, etc.) and the like can be used. .. Further, the substrate treatment membrane is removed by sequentially using different types of substrate treatment membrane removal liquids, such as first contacting the substrate treatment membrane with water as a substrate treatment membrane removal liquid and then contacting an alkali developer. You may. By sequentially using different types of substrate treatment film removing solutions, the film removing property can be further improved.
 アルカリ現像液等の基板処理膜除去液を接触させることにより、ウエハWやパターンの表面とパーティクルの表面とには、図3に示すように、同一極性(ここでは、マイナス)のゼータ電位が生じる。ウエハW等から引き離されたパーティクルは、ウエハW等と同一極性のゼータ電位に帯電することで、ウエハW等と反発し合うようになる。これにより、パーティクルのウエハW等への再付着をより抑制することができる。 As shown in FIG. 3, a zeta potential of the same polarity (minus in this case) is generated between the surface of the wafer W or the pattern and the surface of the particles by contacting the substrate treatment film removing solution such as an alkaline developer. .. The particles separated from the wafer W or the like are charged with a zeta potential having the same polarity as the wafer W or the like, so that they repel each other with the wafer W or the like. As a result, reattachment of particles to the wafer W or the like can be further suppressed.
 このように、当該基板の処理方法によれば、従来の物理力を利用したパーティクル除去法と比較して弱い力でパーティクルを除去することができるため、パターン倒れを抑制することができる。また、化学的作用を利用することなくパーティクル除去を行うため、エッチング作用等によるウエハWやパターンの侵食を抑えることもできる。さらに、従来の物理力を利用したパーティクル除去法では除去が困難であった粒子径が小さいパーティクルやパターンの隙間に入り込んだパーティクルであっても容易に除去することができる。 As described above, according to the processing method of the substrate, particles can be removed with a weaker force as compared with the conventional particle removing method using physical force, so that pattern collapse can be suppressed. Further, since the particles are removed without utilizing the chemical action, it is possible to suppress the erosion of the wafer W and the pattern due to the etching action and the like. Further, even particles having a small particle diameter or particles that have entered the gaps of the pattern, which were difficult to remove by the conventional particle removing method using physical force, can be easily removed.
 基板に接触される基板処理膜除去液は、最終的には基板から全て取り除かれる。したがって、当該基板の処理方法を実施した後の基板は、上記塗工工程前の状態となる。 The substrate treatment film removing liquid that comes into contact with the substrate is finally completely removed from the substrate. Therefore, the substrate after the processing method of the substrate is carried out is in the state before the coating process.
 当該基板の処理方法は、公知の様々な装置、記憶媒体等によって行うことができる。好適な装置の例として、例えば特開2014-99583号公報に開示された基板洗浄装置を挙げることができる。具体的には、当該基板処理膜形成用組成物を基板へ供給する第1供給部と、上記第1供給部によって上記基板に供給された当該基板処理膜形成用組成物により形成された基板処理膜を溶解させる処理膜除去液を、基板処理膜上に供給する第2供給部を備える基板処理装置等が挙げられる。また、記憶媒体としては、コンピュータ上で動作し、基板処理装置を制御するプログラムが記憶されたコンピュータ読取可能な記憶媒体であって、上記プログラムは、実行時に、当該基板の処理方法が行われるように、コンピュータに上記基板処理装置を制御させる記憶媒体等が挙げられる。 The processing method of the substrate can be performed by various known devices, storage media and the like. As an example of a suitable device, for example, a substrate cleaning device disclosed in Japanese Patent Application Laid-Open No. 2014-99583 can be mentioned. Specifically, the substrate treatment formed by the first supply unit that supplies the substrate treatment film forming composition to the substrate and the substrate treatment film forming composition supplied to the substrate by the first supply unit. Examples thereof include a substrate processing apparatus provided with a second supply unit that supplies a treated membrane removing liquid that dissolves the membrane onto the substrate treated membrane. Further, the storage medium is a computer-readable storage medium in which a program that operates on a computer and controls a substrate processing apparatus is stored, and the program is such that the processing method of the substrate is performed at the time of execution. Examples thereof include a storage medium that causes a computer to control the substrate processing apparatus.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例における各物性は、下記方法により測定した。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Each physical property in the example was measured by the following method.
[重量平均分子量(Mw)]
 高分子化合物のMwは、GPCカラム(東ソー(株)の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[Weight average molecular weight (Mw)]
As the Mw of the polymer compound, a GPC column (2 “G2000HXL”, 1 “G3000HXL”, 1 “G4000HXL” from Tosoh Co., Ltd.) was used, and the flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, The column temperature was measured at 40 ° C. by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard.
<[A]高分子化合物の合成>
 下記式(A-1)~(A-4)で表される高分子化合物(以下、「高分子化合物(A-1)~(A-4)」ともいう)を以下の合成例に示す手順により合成した。
<[A] Synthesis of polymer compounds>
Procedures in which polymer compounds represented by the following formulas (A-1) to (A-4) (hereinafter, also referred to as "polymer compounds (A-1) to (A-4)") are shown in the following synthesis examples. Was synthesized by.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(A-3)中、各構造単位に付した数値は、高分子化合物(A-3)を構成する全構造単位に対する各構造単位の含有割合(モル%)を示す。 In the above formula (A-3), the numerical value attached to each structural unit indicates the content ratio (mol%) of each structural unit to all the structural units constituting the polymer compound (A-3).
[合成例1](高分子化合物(A-1)の合成)
 反応容器に、窒素雰囲気下、2-tert-ブチルフェノール100g、37質量%ホルムアルデヒド66.43g及びメチルイソブチルケトン282.94gを加えて溶解させた。得られた溶液を40℃に加熱した後、パラトルエンスルホン酸1.59gを加え、85℃で4時間反応させた。反応液を30℃以下に冷却し、この反応液をメタノール/水(50/50(質量比))の混合溶液に投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して上記高分子化合物(A-1)を得た。高分子化合物(A-1)のMwは7,000であった。
[Synthesis Example 1] (Synthesis of Polymer Compound (A-1))
To the reaction vessel, 100 g of 2-tert-butylphenol, 66.43 g of 37 mass% formaldehyde and 282.94 g of methyl isobutyl ketone were added and dissolved under a nitrogen atmosphere. After heating the obtained solution to 40 ° C., 1.59 g of paratoluenesulfonic acid was added, and the mixture was reacted at 85 ° C. for 4 hours. The reaction solution was cooled to 30 ° C. or lower, and the reaction solution was put into a mixed solution of methanol / water (50/50 (mass ratio)) and reprecipitated. The precipitate was collected with a filter paper and dried to obtain the above polymer compound (A-1). The Mw of the polymer compound (A-1) was 7,000.
[合成例2](高分子化合物(A-2)の合成)
 原料化合物を適宜選択し、合成例1と同様にして上記高分子化合物(A-2)を合成した。高分子化合物(A-2)のMwは10,000であった。
[Synthesis Example 2] (Synthesis of Polymer Compound (A-2))
The raw material compound was appropriately selected, and the polymer compound (A-2) was synthesized in the same manner as in Synthesis Example 1. The Mw of the polymer compound (A-2) was 10,000.
[合成例3](高分子化合物(A-3)の合成)
 反応容器に、窒素雰囲気下、メチルエチルケトン19.44gを仕込み、液温度を80℃に昇温した。別途アクリル酸t-ブチル20.00g、アクリル酸2-ヒドロキシエチル7.77g、ジメチル-2,2-アゾビスイソブチレート2.64g及びメチルエチルケトン36.10gから調製した溶液を上記液に対して80℃を維持しながら3時間かけて滴下した。さらに滴下後80℃で3時間熟成させることで、上記高分子化合物(A-3)を得た。高分子化合物(A-3)のMwは8,000であった。
[Synthesis Example 3] (Synthesis of Polymer Compound (A-3))
19.44 g of methyl ethyl ketone was charged into the reaction vessel under a nitrogen atmosphere, and the liquid temperature was raised to 80 ° C. A solution separately prepared from 20.00 g of t-butyl acrylate, 7.77 g of 2-hydroxyethyl acrylate, 2.64 g of dimethyl-2,2-azobisisobutyrate and 36.10 g of methyl ethyl ketone was added to the above solution by 80. The mixture was added dropwise over 3 hours while maintaining the temperature. Further, the polymer compound (A-3) was obtained by aging at 80 ° C. for 3 hours after dropping. The Mw of the polymer compound (A-3) was 8,000.
[合成例4](高分子化合物(A-4)の合成)
 原料化合物を適宜選択し、合成例3と同様にして上記高分子化合物(A-4)を合成した。高分子化合物(A-4)のMwは8,000であった。
[Synthesis Example 4] (Synthesis of Polymer Compound (A-4))
The raw material compound was appropriately selected, and the polymer compound (A-4) was synthesized in the same manner as in Synthesis Example 3. The Mw of the polymer compound (A-4) was 8,000.
<基板処理膜形成用組成物の調製>
 基板処理膜形成用組成物に用いた各成分を以下に示す。なお、以下の実施例及び比較例においては特に断りのない限り、質量部は使用した溶媒の質量を100質量部とした場合の値を意味する。
<Preparation of composition for substrate treatment film formation>
Each component used in the composition for forming a substrate treatment film is shown below. In the following Examples and Comparative Examples, unless otherwise specified, the mass part means a value when the mass of the solvent used is 100 parts by mass.
([A]高分子化合物)
 上記合成例で合成した高分子化合物(A-1)~(A-4)及び下記式(A-5)~(A-10)で表される高分子化合物(以下、「高分子化合物(A-5)~(A-10)ともいう」)を用いた。高分子化合物(A-5)のMwは7,000であり、高分子化合物(A-6)のMwは7,000であり、高分子化合物(A-7)のMwは8,000であり、高分子化合物(A-8)のMwは7,000であり、高分子化合物(A-9)のMwは9,000であり、高分子化合物(A-10)のMwは9,000であった。
([A] Polymer compound)
Polymer compounds represented by the polymer compounds (A-1) to (A-4) synthesized in the above synthesis example and the following formulas (A-5) to (A-10) (hereinafter, "polymer compound (A)" -5) to (A-10) ”) were used. The Mw of the polymer compound (A-5) is 7,000, the Mw of the polymer compound (A-6) is 7,000, and the Mw of the polymer compound (A-7) is 8,000. , The Mw of the polymer compound (A-8) is 7,000, the Mw of the polymer compound (A-9) is 9,000, and the Mw of the polymer compound (A-10) is 9,000. there were.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(A-5)~(A-8)及び(A-10)中、各構造単位に付した数値は、[A]高分子化合物を構成する全構造単位に対する各構造単位の含有割合(モル%)を示す。 In the above formulas (A-5) to (A-8) and (A-10), the numerical value assigned to each structural unit is the content ratio of each structural unit to all the structural units constituting the [A] polymer compound ( Mol%) is shown.
([B]化合物)
 B-1:エリスリトール(水酸基の数:4、分子量:122、融点:121℃)
 B-2:リビトール(水酸基の数:5、分子量:152、融点:102℃)
 B-3:スクロース(水酸基の数:8、分子量:342、融点:186℃)
 B-4:トレハロース(水酸基の数:8、分子量:342、融点:97℃(二水和物))
 B-5:カテコール(水酸基の数:2、分子量:110、融点:105℃)
 B-6:ピロガロール(水酸基の数:3、分子量:126、融点:131℃)
 B-7:下記式(B-7)で表される化合物(水酸基の数:5、分子量:352、融点:175℃~185℃)
([B] compound)
B-1: Erythritol (number of hydroxyl groups: 4, molecular weight: 122, melting point: 121 ° C)
B-2: Ribitol (number of hydroxyl groups: 5, molecular weight: 152, melting point: 102 ° C)
B-3: Sucrose (number of hydroxyl groups: 8, molecular weight: 342, melting point: 186 ° C)
B-4: Trehalose (number of hydroxyl groups: 8, molecular weight: 342, melting point: 97 ° C. (dihydrate))
B-5: Catechol (number of hydroxyl groups: 2, molecular weight: 110, melting point: 105 ° C)
B-6: Pyrogallol (number of hydroxyl groups: 3, molecular weight: 126, melting point: 131 ° C)
B-7: Compound represented by the following formula (B-7) (number of hydroxyl groups: 5, molecular weight: 352, melting point: 175 ° C to 185 ° C)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
([C]溶媒)
 C-1:プロピレングリコールモノエチルエーテル
 C-2:酢酸プロピレングリコールモノメチルエーテル
([C] Solvent)
C-1: Propylene glycol monoethyl ether C-2: Propylene glycol monomethyl ether acetate
[実施例1]
 [A]高分子化合物としての(A-1)10質量部及び[B]化合物としての(B-1)0.5質量部を、[C]溶媒としての(C-1)100質量部に溶解した。得られた溶液を孔径0.1μmのメンブランフィルターでろ過して、基板処理膜形成用組成物(J-1)を調製した。
[Example 1]
[A] 10 parts by mass of (A-1) as a polymer compound and 0.5 parts by mass of (B-1) as a [B] compound are added to 100 parts by mass of (C-1) as a [C] solvent. Dissolved. The obtained solution was filtered through a membrane filter having a pore size of 0.1 μm to prepare a substrate-treated film-forming composition (J-1).
[実施例2~27及び比較例1~2]
 下記表1に示す種類及び含有量の各成分を用いた以外は実施例1と同様にして、基板処理膜形成用組成物(J-2)~(J-27)及び(j-1)~(j-2)を調製した。表1中の「-」は、該当する成分を使用しなかったことを示す。
[Examples 2-27 and Comparative Examples 1-2]
Compositions for forming a substrate-treated film (J-2) to (J-27) and (j-1) to the same as in Example 1 except that the components of the types and contents shown in Table 1 below were used. (J-2) was prepared. “-” In Table 1 indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<基板の処理>
 実施例1~27及び比較例1~2の基板処理膜形成用組成物を用い、以下の方法により基板の処理を行った。
<Processing of substrate>
Using the substrate-treated film-forming compositions of Examples 1 to 27 and Comparative Examples 1 and 2, the substrate was treated by the following method.
 基板として、スペース部の線幅が1,000nmのラインアンドスペースパターン(1L1S、アスペクト比が1)が形成された8インチのシリコンウエハを用い、この基板上に粒径80nmのシリカ粒子を付着させた。この基板上に、1,500rpm、30秒の条件のスピンコート法により各基板処理膜形成用組成物を塗工し、基板処理膜が形成された基板を得た。上記基板処理膜を形成した後、パドル現像装置を用いて、基板処理膜上に処理膜除去液としての2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液の液膜を形成することで、基板処理膜除去液への浸漬を開始した。浸漬開始から30秒後に、水で洗浄し、スピンドライ法により乾燥させることにより、基板の処理を行った。 As a substrate, an 8-inch silicon wafer having a line-and-space pattern (1L1S, aspect ratio of 1) having a line width of 1,000 nm in the space portion is used, and silica particles having a particle size of 80 nm are adhered onto the substrate. It was. Each substrate-treated film-forming composition was applied onto this substrate by a spin coating method under the conditions of 1,500 rpm and 30 seconds to obtain a substrate on which the substrate-treated film was formed. After forming the above-mentioned substrate-treated film, a paddle developer is used to form a liquid film of 2.38 mass% tetramethylammonium hydroxide aqueous solution as a treated film-removing solution on the substrate-treated film to treat the substrate. Immersion in the membrane remover was started. Thirty seconds after the start of immersion, the substrate was treated by washing with water and drying by a spin-drying method.
<評価>
 上記処理した基板について、暗視野欠陥装置(KLA-TENCOR社の「KLA2800」)を用いて、基板の表面全体を分析することで、膜除去性及びパーティクル除去性を評価した。評価結果を下記表2に示す。
<Evaluation>
The film-removability and particle-removability of the treated substrate were evaluated by analyzing the entire surface of the substrate using a dark-field defect apparatus (“KLA2800” manufactured by KLA-TENCOR). The evaluation results are shown in Table 2 below.
(膜除去性)
 膜除去性は、シリカ粒子以外の残渣欠陥が10個/cm未満の場合は「A」(極めて良好)と、10個/cm以上50個/cm未満の場合は「B」(良好)と、50個/cm以上の場合は「C」(不良)と評価した。
(Membrane removability)
The film removability is "A" (extremely good) when the number of residual defects other than silica particles is less than 10 pieces / cm 2, and "B" (good) when the number of residual defects other than silica particles is 10 pieces / cm 2 or more and less than 50 pieces / cm 2. ) And 50 pieces / cm 2 or more, it was evaluated as "C" (defective).
(パーティクル除去性)
 パーティクル除去性は、シリカ粒子の除去率が90%以上の場合は「A」(極めて良好)と、50%以上90%未満の場合は「B」(良好)と、50%未満の場合は「C」(不良)と評価した。
(Particle removal property)
The particle removal property is "A" (extremely good) when the removal rate of silica particles is 90% or more, "B" (good) when the removal rate is 50% or more and less than 90%, and "B" (good) when the removal rate is less than 50%. It was evaluated as "C" (defective).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2に示すように、実施例の基板処理膜形成用組成物は、膜除去性及びパーティクル除去性が共に極めて良好又は良好であった。一方、比較例の基板処理膜形成用組成物は、膜除去性及びパーティクル除去性が共に不良であった。 As shown in Table 2, the substrate-treated film-forming composition of the example had extremely good or good film removability and particle removability. On the other hand, the substrate-treated film-forming composition of the comparative example had poor film removability and particle removability.
 本発明の基板処理膜形成用組成物及び基板の処理方法によれば、半導体基板表面に基板処理膜を形成してこの基板表面に付着した微小なパーティクルを除去するプロセスにおいて、上記パーティクル及び形成された基板処理膜を基板表面から容易に除去することができる。従って、本発明は、今後ますます微細化が進行すると予想される半導体素子の製造工程において好適に用いることができる。

 
According to the substrate treatment film forming composition and the substrate treatment method of the present invention, the particles and the particles are formed in the process of forming the substrate treatment film on the surface of the semiconductor substrate and removing the minute particles adhering to the substrate surface. The substrate processing film can be easily removed from the surface of the substrate. Therefore, the present invention can be suitably used in the manufacturing process of a semiconductor device, which is expected to be further miniaturized in the future.

Claims (8)

  1.  半導体基板の表面に形成し、除去することで半導体基板の表面を処理する基板処理膜を形成するための組成物であって、
     高分子化合物と、
     2以上の水酸基を有する第1化合物と、
     溶媒と
     を含有し、
     上記第1化合物の融点が30℃以上、かつ分子量が100以上500以下である組成物。
    A composition for forming a substrate processing film that treats the surface of a semiconductor substrate by forming it on the surface of the semiconductor substrate and removing it.
    With polymer compounds
    The first compound having two or more hydroxyl groups and
    Containing with solvent,
    A composition in which the melting point of the first compound is 30 ° C. or higher and the molecular weight is 100 or higher and 500 or lower.
  2.  上記第1化合物が3以上の水酸基を有する請求項1に記載の組成物。 The composition according to claim 1, wherein the first compound has 3 or more hydroxyl groups.
  3.  上記高分子化合物が、ノボラック樹脂、アクリル樹脂、レゾール樹脂、芳香環含有ビニル樹脂及びカリックスアレーン樹脂からなる群から選択される少なくとも1種である請求項1又は請求項2に記載の組成物。 The composition according to claim 1 or 2, wherein the polymer compound is at least one selected from the group consisting of novolak resin, acrylic resin, resol resin, aromatic ring-containing vinyl resin and calixarene resin.
  4.  上記溶媒が有機溶媒を含み、上記溶媒における上記有機溶媒の含有割合が70質量%以上である請求項1、請求項2又は請求項3に記載の組成物。 The composition according to claim 1, claim 2 or claim 3, wherein the solvent contains an organic solvent, and the content ratio of the organic solvent in the solvent is 70% by mass or more.
  5.  基板に基板処理膜形成用組成物を塗工する工程と、
     上記塗工工程により形成された基板処理膜に基板処理膜除去液を接触させる工程と
     を備える基板の処理方法であって、
     上記基板処理膜形成用組成物が、
     高分子化合物と、
     2以上の水酸基を有する第1化合物と、
     溶媒と
     を含有し、
     上記第1化合物の融点が30℃以上、かつ分子量が100以上500以下である基板の処理方法。
    The process of applying the composition for forming a substrate treatment film to the substrate, and
    It is a substrate processing method including a step of bringing a substrate treatment film removing liquid into contact with a substrate treatment film formed by the above coating process.
    The composition for forming a substrate treatment film is
    With polymer compounds
    The first compound having two or more hydroxyl groups and
    Containing with solvent,
    A method for treating a substrate having a melting point of 30 ° C. or higher and a molecular weight of 100 or higher and 500 or lower of the first compound.
  6.  上記第1化合物が3以上の水酸基を有する請求項5に記載の基板の処理方法。 The method for treating a substrate according to claim 5, wherein the first compound has 3 or more hydroxyl groups.
  7.  上記高分子化合物がノボラック樹脂、アクリル樹脂、レゾール樹脂、芳香環含有ビニル樹脂及びカリックスアレーン樹脂からなる群から選択される少なくとも1種である請求項5又は請求項6に記載の基板の処理方法。 The method for treating a substrate according to claim 5 or 6, wherein the polymer compound is at least one selected from the group consisting of novolak resin, acrylic resin, resole resin, aromatic ring-containing vinyl resin and calixarene resin.
  8.  上記溶媒が有機溶媒を含み、上記溶媒における上記有機溶媒の含有割合が70質量%以上である請求項5、請求項6又は請求項7に記載の基板の処理方法。

     
    The method for treating a substrate according to claim 5, claim 6 or claim 7, wherein the solvent contains an organic solvent, and the content ratio of the organic solvent in the solvent is 70% by mass or more.

PCT/JP2020/011755 2019-03-19 2020-03-17 Composition and method for processing substrate WO2020189683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507375A JPWO2020189683A1 (en) 2019-03-19 2020-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-050809 2019-03-19
JP2019050809 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189683A1 true WO2020189683A1 (en) 2020-09-24

Family

ID=72520145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011755 WO2020189683A1 (en) 2019-03-19 2020-03-17 Composition and method for processing substrate

Country Status (3)

Country Link
JP (1) JPWO2020189683A1 (en)
TW (1) TW202039713A (en)
WO (1) WO2020189683A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009513A (en) * 2010-06-22 2012-01-12 Fujifilm Corp Cleaning composition, cleaning method and method for manufacturing semiconductor device
JP2014049521A (en) * 2012-08-30 2014-03-17 Advanced Technology Materials Inc Cleaning agent for copper wiring semiconductor
JP2016034006A (en) * 2014-07-31 2016-03-10 東京エレクトロン株式会社 Substrate cleaning method and storage medium
WO2017056746A1 (en) * 2015-09-30 2017-04-06 Jsr株式会社 Film-forming composition for semiconductor substrate cleaning, and method for cleaning semiconductor substrate
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method
WO2018190278A1 (en) * 2017-04-13 2018-10-18 Jsr株式会社 Semiconductor substrate cleaning composition
WO2019009054A1 (en) * 2017-07-03 2019-01-10 東京エレクトロン株式会社 Substrate treatment system, substrate cleaning method, and storage medium
WO2020008965A1 (en) * 2018-07-04 2020-01-09 Jsr株式会社 Composition for forming substrate processing film, and method for processing substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009513A (en) * 2010-06-22 2012-01-12 Fujifilm Corp Cleaning composition, cleaning method and method for manufacturing semiconductor device
JP2014049521A (en) * 2012-08-30 2014-03-17 Advanced Technology Materials Inc Cleaning agent for copper wiring semiconductor
JP2016034006A (en) * 2014-07-31 2016-03-10 東京エレクトロン株式会社 Substrate cleaning method and storage medium
WO2017056746A1 (en) * 2015-09-30 2017-04-06 Jsr株式会社 Film-forming composition for semiconductor substrate cleaning, and method for cleaning semiconductor substrate
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method
WO2018190278A1 (en) * 2017-04-13 2018-10-18 Jsr株式会社 Semiconductor substrate cleaning composition
WO2019009054A1 (en) * 2017-07-03 2019-01-10 東京エレクトロン株式会社 Substrate treatment system, substrate cleaning method, and storage medium
WO2020008965A1 (en) * 2018-07-04 2020-01-09 Jsr株式会社 Composition for forming substrate processing film, and method for processing substrate

Also Published As

Publication number Publication date
TW202039713A (en) 2020-11-01
JPWO2020189683A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
TWI704219B (en) Film forming composition for cleaning semiconductor substrate and cleaning method of semiconductor substrate
JP6350080B2 (en) Semiconductor substrate cleaning composition
KR102498810B1 (en) Composition for cleaning semiconductor substrates
JP2013083833A (en) Material for forming resist underlay film and method for forming pattern
TWI826475B (en) Film-forming material for lithography, film-forming composition for lithography, underlayer film for lithography and method for forming pattern
KR102143283B1 (en) Composition for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
US20210115221A1 (en) Composition and substrate-treating method
WO2020189683A1 (en) Composition and method for processing substrate
KR102479248B1 (en) Composition for forming resist lower layer film for semiconductor, resist lower layer film, process for forming resist lower layer film, and process for producing patterned substrate
WO2020130094A1 (en) Composition for forming substrate treatment film and method for cleaning semiconductor substrate
KR20230062620A (en) Composition for forming a protective film, protective film, method for forming a protective film, and method for manufacturing a substrate
JP6951297B2 (en) Composition for forming an organic film and an organic film
KR20220157954A (en) Composition, method for forming resist underlayer film, and method for forming resist pattern
TW202110933A (en) Composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method and purification method
JP7123668B2 (en) SUBSTRATE WITH RESIST MULTILAYER FILM AND PATTERN FORMATION METHOD
TWI653284B (en) Composition for forming organic film
TWI653263B (en) Substrate with multilayer resist film and pattern forming method
TWI830827B (en) Resist primer film forming composition, resist primer film, and resist pattern forming method
TWI787419B (en) Method for producing dihydroxynaphthalene condensate and dihydroxynaphthalene condensate
TW202014440A (en) Underlayer film forming composition for multilayer resist processes and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774035

Country of ref document: EP

Kind code of ref document: A1