WO2019009054A1 - Substrate treatment system, substrate cleaning method, and storage medium - Google Patents

Substrate treatment system, substrate cleaning method, and storage medium Download PDF

Info

Publication number
WO2019009054A1
WO2019009054A1 PCT/JP2018/023178 JP2018023178W WO2019009054A1 WO 2019009054 A1 WO2019009054 A1 WO 2019009054A1 JP 2018023178 W JP2018023178 W JP 2018023178W WO 2019009054 A1 WO2019009054 A1 WO 2019009054A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
processing
wafer
liquid
Prior art date
Application number
PCT/JP2018/023178
Other languages
French (fr)
Japanese (ja)
Inventor
菅野 至
賢治 関口
明徳 相原
信博 緒方
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2019527611A priority Critical patent/JPWO2019009054A1/en
Publication of WO2019009054A1 publication Critical patent/WO2019009054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • Embodiments disclosed herein relate to a substrate processing system, a substrate cleaning method, and a storage medium.
  • a film forming treatment liquid containing an acrylic resin as a component is supplied to the substrate to form a treatment film on the substrate, and then the peeling treatment solution is supplied to the treatment film.
  • the processing film is peeled off from the substrate together with the particles.
  • the substrate cleaning method described in Patent Document 1 removes the processing film and the particles from the substrate by supplying a dissolving processing solution to the processing film to dissolve the processing film. According to the substrate cleaning method, particles attached to the substrate can be removed without affecting the surface of the substrate.
  • One aspect of the embodiment provides a technology capable of realizing inexpensively thickening of a treatment film used for removing particles attached to a substrate.
  • a substrate processing system includes a holding unit, a peeling processing liquid supply unit, and a dissolving processing liquid supply unit.
  • the holding portion holds the substrate on which the treatment film containing the phenolic resin soluble in the organic solvent is formed.
  • the peeling treatment liquid supply unit supplies, to the treatment film, a peeling treatment liquid that peels the treatment film from the substrate.
  • the dissolution processing liquid supply unit supplies a dissolution processing liquid for dissolving the processing membrane to the processing membrane.
  • thickening of the processing film used to remove particles attached to the substrate can be realized at low cost.
  • FIG. 1A is an explanatory view of a substrate cleaning method according to the present embodiment.
  • FIG. 1B is an explanatory view of a substrate cleaning method according to the present embodiment.
  • FIG. 1C is an explanatory view of a substrate cleaning method according to the present embodiment.
  • FIG. 1D is an explanatory view of a substrate cleaning method according to the present embodiment.
  • FIG. 1E is an explanatory view of a substrate cleaning method according to the present embodiment.
  • FIG. 2 is a schematic view showing the configuration of the substrate cleaning system according to the present embodiment.
  • FIG. 3 is a schematic view showing the configuration of a substrate cleaning apparatus according to the present embodiment.
  • FIG. 4A is a diagram showing an example of the configuration of a processing liquid supply system connected to the first liquid supply unit.
  • FIG. 4B is a diagram showing an example of the configuration of the processing liquid supply system connected to the second liquid supply unit.
  • FIG. 5 is a flowchart showing a processing procedure of the substrate cleaning process performed by the substrate cleaning system according to the present embodiment.
  • FIG. 6 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution soluble in alkali.
  • FIG. 7 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution that is poorly soluble in alkali.
  • FIG. 8 is a flow chart showing a modification (part 1) of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
  • FIG. 1 is a modification of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
  • FIG. 9 is a flowchart showing a modification (part 2) of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
  • FIG. 10 is a flowchart showing a modification of the removal process.
  • FIG. 11 is a flowchart showing a modified example of the removal process in the case of using a diluted organic solvent as the stripping treatment liquid.
  • FIG. 12A is an explanatory diagram of the dilution organic solvent supply processing (part 1).
  • FIG. 12B is an explanatory diagram of the dilution organic solvent supply processing (part 2).
  • FIG. 12C is an explanatory diagram of the dilution organic solvent supply processing (part 3).
  • FIG. 13 is a flowchart showing a processing procedure of a substrate cleaning process performed by a substrate cleaning system according to another embodiment.
  • FIG. 14A is an explanatory diagram of a first film formation promotion process.
  • FIG. 14B is a schematic view showing the configuration of the substrate cleaning system when the first film formation promotion process is performed.
  • FIG. 15A is an explanatory diagram of the second film formation promotion processing (part 1).
  • FIG. 15B is an explanatory diagram of the second film formation promotion process (part 2).
  • FIG. 15C is an explanatory diagram of the second film formation promotion process (part 3).
  • FIG. 15D is a schematic view (No. 1) showing the configuration of the substrate cleaning system when the second film formation promotion process is performed.
  • FIG. 15E is a schematic view (No.
  • FIG. 15F is a schematic diagram (No. 3) showing the configuration of the substrate cleaning system when the second film formation promotion process is performed.
  • FIG. 16A is an explanatory diagram of a third film formation promotion process.
  • FIG. 16B is a schematic view showing the configuration of the substrate cleaning system when the third film formation promotion process is performed.
  • FIG. 17 is a flowchart showing the procedure of the chamber cleaning process.
  • FIG. 18A is a diagram (part 1) illustrating an operation example of a chamber cleaning process.
  • FIG. 18B is a diagram (part 2) showing an operation example of a chamber cleaning process.
  • FIG. 18C is a diagram (part 3) showing an operation example of the chamber cleaning process.
  • FIG. 18D is a diagram showing an operation example of a chamber cleaning process (part 4).
  • FIG. 18E is a diagram (No. 5) showing an operation example of a chamber cleaning process.
  • FIG. 18F is a diagram showing an operation example of a chamber cleaning process (part 6).
  • FIG. 18G is a diagram showing an exemplary operation of the chamber cleaning process (7).
  • FIG. 18H is a diagram showing an operation example of a chamber cleaning process (part 8).
  • a film formation treatment solution containing an acrylic resin as a component is supplied to the substrate to form a treatment film on the substrate, and then a peeling treatment solution is supplied to the treatment film to perform treatment.
  • the film is peeled off the substrate together with the particles.
  • the substrate cleaning method described in Patent Document 1 removes the processing film and the particles from the substrate by supplying a dissolving processing solution to the processing film to dissolve the processing film. According to the substrate cleaning method, particles attached to the substrate can be removed without affecting the surface of the substrate.
  • the substrate cleaning method described in Patent Document 1 has room for further improvement in that the thickened processing film can be realized inexpensively.
  • FIGS. 1A to 1E are explanatory views of a substrate cleaning method according to the present embodiment.
  • film formation on a pattern formation surface of a substrate such as a silicon wafer or a compound semiconductor wafer (hereinafter sometimes referred to as“ wafer W ”) Supply the processing solution.
  • the film-forming process liquid which concerns on this embodiment contains [A] solvent and [B] phenol resin.
  • the film forming process liquid supplied to the pattern formation surface of the wafer W is solidified or hardened to become a process film.
  • the pattern P attached to the pattern formed on the wafer W is covered with the processing film (see FIG. 1B).
  • solidification here means solidifying
  • hardening means that molecules connect and polymerize (for example, bridge
  • the peeling processing liquid is supplied to the processing film on the wafer W.
  • the peeling treatment liquid is a treatment liquid for peeling the above-mentioned treatment film from the wafer W.
  • the peeling processing solution penetrates into the processing film and reaches the interface between the processing film and the wafer W.
  • the peeling treatment liquid enters the interface between the treatment film and the wafer W, so that the treatment film peels off from the wafer W in the “film” state, and the particles P attached to the pattern formation surface are treated accordingly
  • the film is peeled off from the wafer W together with the film (see FIG. 1C).
  • a solution processing solution for dissolving the processing film is supplied to the processing film peeled off from the wafer W.
  • the treatment film is dissolved, and the particles P taken into the treatment film are suspended in the dissolution treatment solution.
  • the dissolution treatment liquid and the dissolved treatment film are washed away with pure water or the like, whereby the particles P are removed from the wafer W (see FIG. 1E).
  • the processing film formed on the wafer W is separated from the wafer W in the “film” state, so that the particle P attached to the pattern or the like is processed together with the processing film. It was decided to remove from W.
  • the substrate cleaning method according to the present embodiment since the particles are removed without utilizing the chemical action, it is possible to suppress the erosion of the base film due to the etching action or the like.
  • the particles P can be removed with a weak force as compared to the conventional substrate cleaning method using physical force, it is possible to suppress pattern collapse.
  • the substrate cleaning method according to the present embodiment it is possible to easily remove the particle P having a small particle diameter, which is difficult to remove by the conventional substrate cleaning method using physical force.
  • the film-forming process liquid which concerns on this embodiment contains an [A] solvent and a [B] phenol resin.
  • [B] Phenolic resin is less expensive than acrylic resin used in conventional film forming solution.
  • the main film-forming treatment solution containing a phenolic resin as a component is easy to thicken as compared with the conventional film-forming treatment liquid containing an acrylic resin as a component. Therefore, according to the substrate cleaning method according to the present embodiment, thickening of the processing film used for removing the particles P attached to the wafer W can be realized at low cost. By thickening the treated film, the upper portion of the pattern is less likely to be exposed from the treated film, so that it is possible to prevent the particles P attached to the upper portion of the pattern from remaining without being removed.
  • the treated film according to the present embodiment containing a phenol resin is less soluble in an organic solvent (such as thinner or IPA described later) as a solution treatment liquid, as compared to a conventional treated film containing an acrylic resin. .
  • an organic solvent such as thinner or IPA described later
  • the time for which the state of the “film” is maintained after the supply of the organic solvent is longer than that of the conventional treated film.
  • the treatment film according to the present embodiment the treatment film can be peeled from the wafer W in a more “film” state as compared with the case where a conventional treatment film is used. That is, the state shown in FIG. 1C can be continued for a long time. As a result, the peeling force is improved, so that particles can be more reliably removed from the wafer W.
  • the wafer W after cleaning is in a state before applying the film forming process liquid, that is, a state in which the pattern formation surface is exposed.
  • the film formation treatment solution can further contain a low molecular weight organic acid (hereinafter, also simply referred to as “[C] organic acid”).
  • the low molecular weight organic acid means an acid containing one or more carbon atoms in one molecule and having no repeating structure generated by polymerization or condensation reaction. Although the molecular weight is not limited, it is generally 40 or more and 2000 or less.
  • the film-forming treatment liquid further facilitates removal of the particles P from the surface of the wafer W by containing the [C] organic acid.
  • the film-forming treatment liquid may contain optional components in addition to the components [A] to [C] as long as the effects of the present disclosure are not impaired. Each component will be described below.
  • the solvent is a component that dissolves the [B] phenolic resin.
  • [C] When adding an organic acid, it is preferable to dissolve the [C] organic acid.
  • Examples of the solvent include organic solvents such as alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents and the like; water and the like.
  • alcohol solvents include, for example, monohydric alcohols having 1 to 18 carbon atoms.
  • examples of the monohydric alcohol having 1 to 18 carbon atoms include ethanol, isopropyl alcohol, amyl alcohol, 4-methyl-2-pentanol, cyclohexanol and the like.
  • examples of the monohydric alcohol having 1 to 18 carbon atoms include 3,3,5-trimethylcyclohexanol, furfuryl alcohol, benzyl alcohol, diacetone alcohol and the like.
  • examples of alcohol solvents include, for example, dihydric alcohols having 2 to 12 carbon atoms.
  • Examples of the divalent alcohol having 2 to 12 carbon atoms include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol and the like.
  • examples of the alcohol solvent include a monohydric alcohol having 1 to 18 carbon atoms or a partial ether of a dihydric alcohol having 2 to 12 carbon atoms.
  • ether solvents include, for example, dialkyl ether solvents.
  • dialkyl ether solvents include diethyl ether, dipropyl ether, dibutyl ether, diisoamyl ether and the like.
  • examples of ether solvents include cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, and aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • Examples of ketone solvents include, for example, chain ketone solvents.
  • Examples of the chain ketone solvent include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, diethyl ketone and the like.
  • examples of chain ketone solvents include methyl-iso-butyl ketone, 2-heptanone, ethyl n-butyl ketone, methyl n-hexyl ketone, di-iso-butyl ketone, trimethylnonanone and the like.
  • ketone solvents include cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone and the like.
  • amide solvents include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone.
  • strand-shaped amide system solvent is mentioned, for example.
  • chain amide solvents include N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and the like. It can be mentioned.
  • ester solvents include monohydric alcohol carboxylate solvents such as ethyl acetate, butyl acetate, benzyl acetate, cyclohexyl acetate, ethyl lactate and the like.
  • ester solvents include polyhydric alcohol partial ether carboxylate solvents such as monocarboxylates of alkylene glycol monoalkyl ethers and monocarboxylates of dialkylene glycol monoalkyl ethers.
  • ester solvents include cyclic ester solvents such as butyrolactone, carbonate solvents such as diethyl carbonate, and polyvalent carboxylic acid alkyl ester solvents such as diethyl oxalate and diethyl phthalate.
  • hydrocarbon solvents include aliphatic hydrocarbon solvents.
  • aliphatic hydrocarbon solvents include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, Examples include cyclohexane, methylcyclohexane and the like.
  • a hydrocarbon type solvent an aromatic hydrocarbon type solvent is mentioned.
  • aromatic hydrocarbon solvent examples include benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene and the like.
  • aromatic hydrocarbon solvent for example, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene and the like.
  • organic solvents are preferred.
  • organic solvent alcohol solvents and ether solvents are preferable, and monoalcohol solvents and dialkyl ether solvents are more preferable.
  • organic solvent 4-methyl-2-pentanol, diisoamyl ether, propylene glycol monoethyl ether, ethoxypropanol and ethyl lactate are more preferable.
  • the content of water in the solvent is preferably 20% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less, and particularly preferably 0% by mass. [A] By setting the water content in the solvent to the above upper limit or less, the strength of the treated film to be formed can be more appropriately reduced, and as a result, the particle removal performance can be improved.
  • the lower limit of the content of the solvent (A) is preferably 50% by mass, more preferably 60% by mass, and still more preferably 70% by mass.
  • As an upper limit of the said content 99.9 mass% is preferable, 99 mass% is more preferable, and 95 mass% is more preferable.
  • the film forming treatment liquid By setting the content of the solvent between the above lower limit and the upper limit, the film forming treatment liquid further improves the particle removal performance with respect to the silicon nitride substrate.
  • the film-forming treatment liquid may contain one or more solvents [A].
  • phenolic resin a novolak-type phenol resin, resol phenol resin, etc. are mentioned, for example.
  • novolac type phenol resins hereinafter referred to as novolac resins
  • novolac resins include phenol novolac resins, cresol novolac resins, and bisphenol A novolac resins.
  • the film forming solution may further contain a [C] organic acid.
  • [C] Addition of the organic acid makes it easier to remove the treatment film formed on the substrate surface.
  • the upper limit of the molecular weight of the organic acid is, for example, 500, preferably 400, and more preferably 300.
  • the lower limit of the molecular weight of the organic acid is, for example, 50, preferably 55.
  • Examples of the organic acid [C] include monocarboxylic acids.
  • Examples of monocarboxylic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, cyclohexanecarboxylic acid, cyclohexylacetic acid, 1-adamantanecarboxylic acid, benzoic acid, phenylacetic acid and the like.
  • the fluorine atom containing monocarboxylic acid is mentioned, for example.
  • fluorine atom-containing monocarboxylic acid examples include difluoroacetic acid, trifluoroacetic acid, pentafluoropropanoic acid, heptafluorobutanoic acid, fluorophenylacetic acid, difluorobenzoic acid and the like.
  • a [C] organic acid hetero atom containing monocarboxylic acid is mentioned, for example.
  • hetero atom-containing monocarboxylic acid include 10-hydroxydecanoic acid, thiolacetic acid, 5-oxohexanoic acid, 3-methoxycyclohexanecarboxylic acid, camphorcarboxylic acid, dinitrobenzoic acid, nitrophenylacetic acid and the like.
  • monocarboxylic acids such as double bond containing monocarboxylic acids, such as (meth) acrylic acid, crotonic acid, and cinnamic acid
  • monocarboxylic acids such as double bond containing monocarboxylic acids, such as (meth) acrylic acid, crotonic acid, and cinnamic acid
  • polycarboxylic acid is mentioned, for example.
  • polycarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, dodecanedicarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid and the like, and examples of polycarboxylic acids include Hexafluoroglutaric acid, cyclohexane hexacarboxylic acid, 1,4-naphthalene dicarboxylic acid and the like can be mentioned.
  • [C] organic acid the partial esterified thing of the said polycarboxylic acid etc. are mentioned, for example.
  • the lower limit of the solubility of the organic acid in water at 25 ° C. is preferably 5% by mass, more preferably 7% by mass, and still more preferably 10% by mass.
  • the upper limit of the solubility is preferably 50% by mass, more preferably 40% by mass, and still more preferably 30% by mass.
  • the organic acid is preferably solid at 25 ° C. If the [C] organic acid is solid at 25 ° C., it is considered that the solid [C] organic acid precipitates in the treatment film formed from the film formation treatment solution, and the removability is further improved.
  • organic acid a polyvalent carboxylic acid is preferable, and oxalic acid, malic acid and citric acid are more preferable, from the viewpoint of facilitating removal of the treated film.
  • the lower limit of the content of the [C] organic acid in the film forming solution is preferably 0.01% by mass, more preferably 0.05% by mass, and still more preferably 0.1% by mass. As a maximum of the above-mentioned content, 30 mass% is preferred, 20 mass% is more preferred, and 5 mass% is still more preferred.
  • the lower limit of the content of the [C] organic acid with respect to the total solid content in the film forming solution is preferably 0.5% by mass, more preferably 1% by mass, and still more preferably 3% by mass. As a maximum of the above-mentioned content, 30 mass% is preferred, 20 mass% is more preferred, and 5 mass% is still more preferred.
  • [C] By setting the content of the organic acid between the above lower limit and the above upper limit, removal of the treated film can be made easier. Specifically, by setting the content of the [C] organic acid to 0.1% by mass or more, the permeability of the stripping treatment liquid into the treated membrane can be enhanced, and the treated membrane can be made more "membrane". The wafer W can be peeled off as it is. That is, the peeling force can be improved. Further, by setting the content of the [C] organic acid to 5% by mass or less, it is possible to suppress the decrease in peel strength due to the decrease in strength of the treated film.
  • the film forming solution may contain any component other than the above components [A] to [C].
  • surfactant etc. are mentioned, for example.
  • nonionic surfactant As said surfactant, a nonionic surfactant is mentioned, for example.
  • the nonionic surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene n-octylphenyl ether.
  • examples of the nonionic surfactant include polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate and the like.
  • content of the said surfactant it is 2 mass% or less normally, and 1 mass% or less is preferable.
  • FIG. 2 is a schematic view showing the configuration of the substrate cleaning system according to the present embodiment.
  • the X axis, the Y axis, and the Z axis orthogonal to one another are defined, and the positive direction of the Z axis is the vertically upward direction.
  • the substrate cleaning system 1 includes a loading / unloading station 2 and a processing station 3.
  • the loading / unloading station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier placement unit 11 and a transport unit 12.
  • a plurality of transfer containers (hereinafter, referred to as “carrier C”) capable of accommodating a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
  • the transport unit 12 is provided adjacent to the carrier placement unit 11.
  • a substrate transfer device 121 and a delivery unit 122 are provided in the transfer unit 12.
  • the substrate transfer device 121 includes a wafer holding mechanism that holds the wafer W.
  • the substrate transfer device 121 can move in the horizontal direction and the vertical direction and can pivot around the vertical axis, and transfer the wafer W between the carrier C and the delivery unit 122 using the wafer holding mechanism. Do.
  • the processing station 3 is provided adjacent to the transport unit 12.
  • the processing station 3 includes a transport unit 13 and a plurality of substrate cleaning devices 14.
  • the plurality of substrate cleaning devices 14 are provided side by side on both sides of the transport unit 13.
  • the transport unit 13 internally includes a substrate transport device 131.
  • the substrate transfer device 131 includes a wafer holding mechanism that holds the wafer W. Also, the substrate transfer device 131 can move in the horizontal direction and the vertical direction and can pivot about the vertical axis, and the wafer holding mechanism is used to transfer the wafer W between the delivery unit 122 and the substrate cleaning device 14. Transport.
  • the substrate cleaning apparatus 14 is an apparatus for performing a substrate cleaning process based on the above-described substrate cleaning method. The specific configuration of the substrate cleaning apparatus 14 will be described later.
  • the substrate cleaning system 1 further includes a control device 4.
  • the control device 4 is a device that controls the operation of the substrate cleaning system 1.
  • the control device 4 is, for example, a computer, and includes a control unit 15 and a storage unit 16.
  • the storage unit 16 stores a program for controlling various processes such as the substrate cleaning process.
  • the control unit 15 controls the operation of the substrate cleaning system 1 by reading and executing the program stored in the storage unit 16.
  • the control unit 15 is, for example, a central processing unit (CPU) or a micro processor unit (MPU), and the storage unit 16 is, for example, a read only memory (ROM) or a random access memory (RAM).
  • the program may be recorded in a storage medium readable by a computer, and may be installed in the storage unit 16 of the control device 4 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
  • the substrate transfer device 121 of the loading / unloading station 2 takes out the wafer W from the carrier C, and places the taken-out wafer W on the delivery unit 122.
  • the wafer W placed on the delivery unit 122 is taken out of the delivery unit 122 by the substrate transfer device 131 of the processing station 3 and carried into the substrate cleaning device 14 and subjected to the substrate cleaning process by the substrate cleaning device 14.
  • the cleaned wafer W is unloaded from the substrate cleaning apparatus 14 by the substrate transfer apparatus 131 and placed on the delivery unit 122, and then returned to the carrier C by the substrate transfer apparatus 121.
  • FIG. 3 is a schematic view showing the configuration of the substrate cleaning apparatus 14 according to the present embodiment.
  • 4A is a diagram showing an example of the configuration of the treatment liquid supply system connected to the first liquid supply unit
  • FIG. 4B is an example of the configuration of the treatment liquid supply system connected to the second liquid supply unit.
  • the substrate cleaning apparatus 14 includes a chamber 20, a substrate holding mechanism 30, a liquid supply unit 40, and a recovery cup 50.
  • the chamber 20 accommodates the substrate holding mechanism 30, the liquid supply unit 40, and the recovery cup 50.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
  • the FFU 21 forms a downflow in the chamber 20.
  • the FFU 21 is connected to the downflow gas supply source 23 via a valve 22.
  • the FFU 21 discharges downflow gas (for example, dry air) supplied from the downflow gas supply source 23 into the chamber 20.
  • the substrate holding mechanism 30 includes a rotation holding unit 31, a support unit 32, and a drive unit 33.
  • the rotation holding unit 31 is provided substantially at the center of the chamber 20.
  • a holding member 311 for holding the wafer W from the side surface is provided on the upper surface of the rotation holding unit 31.
  • the wafer W is horizontally held by the holding member 311 in a state of being slightly separated from the upper surface of the rotation holding unit 31.
  • the support portion 32 is a member extending in the vertical direction, and a proximal end portion of the support portion 32 is rotatably supported by the drive portion 33, and horizontally supports the rotation holding portion 31 at the distal end portion.
  • the drive unit 33 rotates the support unit 32 around the vertical axis.
  • the substrate holding mechanism 30 rotates the column unit 32 using the drive unit 33 to rotate the rotation holding unit 31 supported by the column unit 32, thereby holding the wafer W held by the rotation holding unit 31. Rotate.
  • the liquid supply unit 40 includes a first liquid supply unit 40_1 and a second liquid supply unit 40_2.
  • the first liquid supply unit 40_1 supplies various processing liquids to the wafer W held by the substrate holding mechanism 30.
  • the first liquid supply unit 40_1 includes the nozzles 41_1 to 41_3, an arm 42_1 horizontally supporting the nozzles 41_1 to 41_3, and a pivoting elevating mechanism 43_1 pivoting and elevating the arm 42_1.
  • the nozzle 41_1 is connected to an acid-based processing liquid supply source 45a via a flow rate regulator 46a and a valve 44a.
  • the acid-based treatment liquid supplied from the acid-based treatment liquid supply source 45a is discharged.
  • the acid-based treatment liquid is, for example, SPM (mixed liquid of sulfuric acid and hydrogen peroxide solution).
  • the nozzle 41_2 is connected to the alkaline processing liquid supply source 45b via the flow rate adjuster 46b and the valve 44b, and discharges the alkaline processing liquid supplied from the alkaline processing liquid supply source 45b.
  • the alkaline processing solution is, for example, SC1 (a mixed solution of ammonia, hydrogen peroxide and water).
  • the nozzle 41_3 is connected to the pretreatment liquid supply source 45c via the flow rate adjuster 46c and the valve 44c, and discharges the pretreatment liquid supplied from the pretreatment liquid supply source 45c.
  • the pretreatment liquid is, for example, a solvent [A] contained in the film formation liquid. [A] The solvent is supplied to the wafer W before the film formation processing liquid is supplied, in order to easily spread the film formation processing liquid on the wafer W.
  • the pretreatment liquid may be, for example, ozone water.
  • the ozone water is used for a hydrophilization treatment to hydrophilize the surface of the wafer W.
  • the nozzle 41_3 is connected to the A + B supply source 45d via the flow rate regulator 46d and the valve 44d, and to the C supply source 45e via the flow rate regulator 46e and the valve 44e.
  • a mixed solution of the [A] solvent and the [B] phenol resin is supplied from the A + B source 45d, and the [C] organic acid is supplied from the C source 45e.
  • the mixed solution of [A] solvent and [B] phenol resin and [C] organic acid are mixed in the flow path leading to the nozzle 41_3 to be a film formation processing solution and discharged from the nozzle 41_3.
  • the mixing ratio of the mixture of [A] solvent and [B] phenol resin to [C] organic acid is adjusted by the control unit 15 controlling the flow rate adjusters 46 d and 46 e.
  • a mixing tank may be provided in the middle part of the said flow path, and the liquid mixture of [A] solvent and [B] phenol resin, and [C] organic acid may be mixed in this mixing tank.
  • the second liquid supply unit 40_2 includes the nozzles 41_4 to 41_6, an arm 42_2 horizontally supporting the nozzles 41_4 to 41_6, and a pivoting elevating mechanism 43_2 pivoting and elevating the arm 42_2.
  • the nozzle 41_4 is connected to the DIW supply source 45f via a flow rate regulator 46f and a valve 44f. Further, the nozzle 41_4 is connected to the alkaline aqueous solution supply source 45g via the flow rate regulator 46g and the valve 44g. Further, the nozzle 41_4 is connected to the organic solvent supply source 45h via a flow rate regulator 46h and a valve 44h.
  • the nozzle 41_4 discharges DIW supplied from the DIW supply source 45f, an alkaline aqueous solution supplied from the alkaline aqueous solution supply source 45g, or an organic solvent supplied from the organic solvent supply source 45h. Further, for example, when the valve 44 f and the valve 44 g are opened, a mixed solution of DIW and an aqueous alkali solution, that is, a diluted aqueous alkali solution is discharged from the nozzle 41 _ 4. Further, for example, when the valve 44 f and the valve 44 h are opened, a mixed liquid of DIW and an organic solvent, that is, a diluted organic solvent is discharged from the nozzle 41 _ 4. The mixing ratio is adjusted by the control unit 15 controlling the flow rate regulators 46f to 46h.
  • DIW is an example of a peeling processing liquid for peeling the processing film from the wafer W.
  • the alkaline aqueous solution is an example of a dissolution treatment solution for dissolving the treatment film.
  • the aqueous alkaline solution is, for example, an alkaline developer.
  • the alkaline developer may contain, for example, at least one of aqueous ammonia, an aqueous solution of quaternary ammonium hydroxide such as tetra methyl ammonium hydroxide (TMAH), and an aqueous solution of choline.
  • TMAH tetra methyl ammonium hydroxide
  • the organic solvent is another example of the dissolution treatment solution for dissolving the treatment film.
  • the organic solvent for example, thinner, IPA (isopropyl alcohol), MIBC (4-methyl-2-pentanol), toluene, acetic acid esters, alcohols, glycols (propylene glycol monomethyl ether) and the like can be used.
  • the nozzle 41_5 is connected to the DIW supply source 45i via the flow rate regulator 46i and the valve 44i, and discharges DIW supplied from the DIW supply source 45i.
  • DIW discharged from the nozzle 41_5 is an example of a rinse treatment liquid used in a rinse treatment described later.
  • the nozzle 41_6 is connected to the IPA supply source 45j via the flow rate regulator 46j and the valve 44j, and discharges the IPA supplied from the IPA supply source 45j.
  • the IPA discharged from the nozzle 41_6 is an example of a dry solvent used in the drying process described later.
  • the nozzle 41_4, the arm 42_2, the turning and elevating mechanism 43_2, the valve 44f, the flow rate adjuster 46f, and the DIW supply source 45f are examples of the “peeling treatment liquid supply unit”.
  • the nozzle 41_4, the arm 42_2, the pivoting elevating mechanism 43_2, the valve 44g (valve 44h), the flow rate regulator 46g (flow rate regulator 46h) and the alkaline aqueous solution supply source 45g (organic solvent supply source 45h) Part is an example of a part.
  • nozzle 41_3, the arm 42_1, the pivoting elevating mechanism 43_1, the valves 44d and 44e, the A + B supply source 45d, the C supply source 45e, and the flow rate adjusters 46d and 46e are examples of the “film forming processing liquid supply unit”.
  • the first liquid supply unit 40_1 includes the plurality of nozzles 41_1 to 41_3, and the second liquid supply unit 40_2 includes the plurality of nozzles 41_4 to 41_6.
  • the first liquid supply unit 40_1 and the second liquid supply Each of the units 40_2 may have one nozzle.
  • the plurality of nozzles 41_1 to 41_6 may be provided in one arm.
  • First and second rotary cups 101 and 102 that rotate integrally with the rotary holding portion 31 are provided on the peripheral edge portion of the rotary holding portion 31. As shown in FIG. 3, the second rotary cup 102 is disposed inside the first rotary cup 101.
  • the first rotating cup 101 and the second rotating cup 102 are generally formed in a ring shape.
  • the first and second rotating cups 101 and 102 guide the processing liquid scattered from the rotating wafer W to the collection cup 50.
  • the recovery cup 50 includes a first cup 50a, a second cup 50b, and a third cup 50c in order from the inside closer to the rotation center of the wafer W held and rotated by the rotation holding unit 31. Further, the recovery cup 50 is provided with a cylindrical inner wall portion 54d centered on the rotation center of the wafer W on the inner peripheral side of the first cup 50a.
  • the first to third cups 50 a to 50 c and the inner wall 54 d are provided on the bottom 53 of the recovery cup 50.
  • the first cup 50a includes a first peripheral wall portion 54a and a first liquid receiving portion 55a.
  • the first peripheral wall portion 54a is erected from the bottom portion 53 and is formed in a cylindrical shape (for example, a cylindrical shape).
  • a space is formed between the first peripheral wall portion 54a and the inner wall portion 54d, and the space is used as a first drainage groove 501a for collecting and discharging the treatment liquid and the like.
  • the first liquid receiving portion 55a is provided above the upper surface 54a1 of the first peripheral wall 54a.
  • the first cup 50 a includes the first lifting mechanism 56, and is configured to be able to move up and down by the first lifting mechanism 56.
  • the first lifting and lowering mechanism 56 includes a first support member 56a and a first lifting and lowering drive unit 56b.
  • the first support member 56a is a plurality of (e.g., three, only one in FIG. 3) long members.
  • the first support member 56a is movably inserted into an insertion hole formed in the first peripheral wall 54a.
  • a cylindrical rod may be used as the first support member 56a, but the present invention is not limited to this.
  • the first support member 56a is positioned so that the upper end is exposed from the upper surface 54a1 of the first peripheral wall 54a, and is connected to the lower surface of the first liquid receiver 55a to support the first liquid receiver 55a from below.
  • the first elevation driving unit 56b is connected to the lower end of the first support member 56a.
  • the first elevation driving unit 56b raises and lowers the first support member 56a, for example, in the Z-axis direction, whereby the first support member 56a raises and lowers the first liquid receiver 55a with respect to the first peripheral wall 54a.
  • an air cylinder can be used as the 1st raising / lowering drive part 56b.
  • the first elevation driving unit 56 b is controlled by the control device 4.
  • the first liquid receiving unit 55a driven by the first elevation driving unit 56b is moved between the processing position for receiving the processing liquid scattered from the rotating wafer W and the retracted position retracted downward from the processing position. It will be.
  • the first liquid receiving portion 55a when the first liquid receiving portion 55a is at the processing position, an opening is formed inside the upper end of the first liquid receiving portion 55a, and a flow path that leads from the opening to the first drainage groove 501a is formed.
  • the inner wall portion 54 d includes an extending portion 54 d 1 extended so as to incline toward the peripheral portion of the rotation holding portion 31.
  • the first liquid receiving portion 55a When the first liquid receiving portion 55a is in the retracted position, the first liquid receiving portion 55a abuts on the extending portion 54d1 of the inner wall portion 54d, the opening at the upper end is closed, and the flow path leading to the first drainage groove 501a is blocked.
  • the second cup 50b is configured the same as the first cup 50a. Specifically, the second cup 50b includes a second peripheral wall 54b, a second liquid receiver 55b, and a second lifting mechanism 57, and is adjacent to the first peripheral wall 54a of the first cup 50a. Be placed.
  • the second peripheral wall portion 54 b is provided upright on the outer peripheral side of the first peripheral wall portion 54 a at the bottom portion 53 and is formed in a tubular shape.
  • a space formed between the second peripheral wall 54b and the first peripheral wall 54a is used as a second drainage groove 501b for collecting and discharging the treatment liquid and the like.
  • the second liquid receiving portion 55b is located on the outer peripheral side of the first liquid receiving portion 55a, and is provided above the upper surface 54b1 of the second peripheral wall 54b.
  • the second lifting and lowering mechanism 57 includes a second support member 57a and a second lifting and lowering drive unit 57b.
  • the second support members 57a are a plurality of (e.g., three, only one is shown in FIG. 3) elongated members, and are movably inserted into the insertion holes formed in the second peripheral wall 54b.
  • a cylindrical rod can be used as the second support member 57a, but the present invention is not limited to this.
  • the second support member 57a is positioned such that the upper end is exposed from the upper surface 54b1 of the second peripheral wall 54b, and is connected to the lower surface of the second liquid receiver 55b to support the second liquid receiver 55b from below. .
  • the upper surface 54b1 of the second peripheral wall 54b is positioned below the upper surface 54a1 of the first peripheral wall 54a in the vertical direction.
  • the second elevation driving unit 57b is connected to the lower end of the second support member 57a.
  • the second elevation driving unit 57 b raises and lowers the second support member 57 a in, for example, the Z-axis direction.
  • the second support member 57a raises and lowers the second liquid receiving portion 55b with respect to the second peripheral wall portion 54b.
  • an air cylinder can be used as the 2nd raising / lowering drive part 57b.
  • the second elevation driving unit 57 b is also controlled by the control device 4.
  • the second liquid receiver 55b is also moved between the processing position and the retracted position. Specifically, when the second liquid receiving portion 55b is at the processing position and the first liquid receiving portion 55a is at the retracted position, an opening is formed inside the upper end of the second liquid receiving portion 55b, and A flow path leading to the drainage groove 501b is formed.
  • the second liquid receiving portion 55b when the second liquid receiving portion 55b is in the retracted position, the second liquid receiving portion 55b abuts on the first liquid receiving portion 55a, and the opening at the upper end is closed to flow to the second drainage groove 501b. The road is blocked.
  • the second liquid receiving portion 55b at the retracted position is in contact with the first liquid receiving portion 55a, but is not limited thereto.
  • the second liquid receiving portion 55b may be in contact with the inner wall 54d to close the opening at the upper end You may
  • the third cup 50c includes a third peripheral wall portion 54c and a third liquid receiving portion 55c, and is disposed adjacent to the second cup 50b opposite to the first cup 50a.
  • the third peripheral wall portion 54c is erected on the outer peripheral side of the second peripheral wall portion 54b at the bottom portion 53, and is formed in a tubular shape. Then, a space between the third peripheral wall portion 54c and the second peripheral wall portion 54b is used as a third drainage groove 501c for collecting and discharging the treatment liquid and the like.
  • the third liquid receiving portion 55c is formed to be continuous with the upper end of the third peripheral wall portion 54c.
  • the third liquid receiving portion 55c is formed to surround the periphery of the wafer W held by the rotation holding portion 31 and to extend above the first liquid receiving portion 55a and the second liquid receiving portion 55b.
  • the third liquid receiving portion 55c has an opening formed inside the upper end of the third liquid receiving portion 55c when both the first and second liquid receiving portions 55a and 55b are in the retracted position, A flow path is formed which leads from the opening to the third drainage groove 501c.
  • the third liquid receiver 55c is in the position where the second liquid receiver 55b is raised, or in the position where both the first liquid receiver 55a and the second liquid receiver 55b are raised. In this case, the second liquid receiver 55b abuts. Thereby, the opening at the upper end inside is closed, and the flow passage leading to the third drainage groove 501c is closed.
  • the drainage ports 51a to 51c are formed at intervals along 50 circumferential directions.
  • the treatment liquid discharged from the drainage port 51a is an acid type treatment liquid
  • the treatment liquid discharged from the drainage port 51b is an alkali type processing liquid
  • the treatment liquid discharged from the drainage port 51c is an organic processing liquid
  • the case of (film formation processing solution, organic solvent, etc.) will be described as an example.
  • the types of treatment liquid discharged from the above-described drainage ports 51a to 51c are merely illustrative and not limitative.
  • the drainage port 51a is connected to the drainage pipe 91a.
  • the drainage pipe 91a has a valve 62a interposed in the middle, and is branched into a first drainage pipe 91a1 and a second drainage pipe 91a2 at the position of the valve 62a.
  • the valve 62a for example, a three-way valve that can be switched between a valve closing position, a position where the discharge path is opened to the first liquid discharge pipe 91a1 side, and a position open to the second liquid discharge pipe 91a2 side Can be used.
  • the first drainage pipe 91a1 is connected to the acid-based treatment liquid supply source 45a (for example, a tank for storing the acid-based treatment liquid), and acid treatment of drainage is performed. It returns to the liquid supply source 45a. That is, the first drain pipe 91a1 functions as a circulation line.
  • the second drainage pipe 91a2 will be described later.
  • the drainage port 51b is connected to the drainage pipe 91b.
  • a valve 62b is inserted in the middle of the drain pipe 91b.
  • the drainage port 51c is connected to the drainage pipe 91c.
  • a valve 62c is inserted in the middle of the drain pipe 91c. The valves 62 b and 62 c are controlled by the controller 4.
  • the substrate processing apparatus 14 performs substrate processing
  • the first liquid receiving portion 55 a or the second cup 50 b of the first cup 50 a according to the type of processing liquid used in each processing during substrate processing.
  • the second liquid receiver 55b is moved up and down to switch the drainage ports 51a to 51c.
  • the control device 4 raises the first cup 50a and the second cup 50b. That is, the control device 4 raises the first and second support members 56a and 57a via the first and second elevation driving units 56b and 57b, and raises the first liquid receiving portion 55a to the processing position. Thereby, the control device 4 forms a flow path leading from the opening at the upper inner side of the first liquid receiving portion 55a to the first drainage groove 501a. As a result, the acid-based processing liquid supplied to the wafer W flows into the first drain groove 501a.
  • control device 4 controls the valve 62a to open the discharge path to the first drain pipe 91a1 side.
  • the acid-based treatment liquid flowing into the first drainage groove 501a is returned to the acid-based treatment liquid supply source 45a via the drainage pipe 91a and the first drainage pipe 91a1.
  • the acid-based processing solution returned to the acid-based processing solution supply source 45 a is again supplied to the wafer W.
  • the first cup 50 a is connected to a circulation line that circulates the recovered acid-based processing solution and supplies it again to the wafer W.
  • the control device 4 raises only the second cup 50 b. That is, the control device 4 raises the second support member 57a via the second elevation drive unit 57b and raises the second liquid receiving portion 55b to the processing position, whereby the inner end of the upper end of the second liquid receiving portion 55b is obtained.
  • a flow path leading from the opening to the second drainage groove 501b is formed in advance.
  • the 1st cup 50a shall descend
  • the alkaline processing liquid supplied to the wafer W flows into the second drainage groove 501b.
  • the control device 4 opens the valve 62b.
  • the alkaline processing liquid in the second drainage groove 501b is drained to the outside of the substrate cleaning device 14 through the drainage pipe 91b.
  • the drainage pipe 91 b functions as a drainage line for discharging the recovered alkaline processing liquid to the outside of the substrate cleaning apparatus 14.
  • the control device 4 lowers the first and second cups 50a and 50b (see FIG. 3). That is, the control device 4 lowers the first and second support members 56a and 57a via the first and second elevation driving units 56b and 57b, and moves the first and second liquid receivers 55a and 55b to the retracted position. Let down. By doing this, a flow path is formed which leads from the opening at the upper end inside of the third liquid receiving portion 55c to the third drainage groove 501c. Thus, the organic processing liquid supplied to the wafer W flows into the third drain groove 501c.
  • control device 4 keeps the valve 62 c open, so that the organic processing liquid in the third drainage groove 501 c is drained to the outside of the substrate cleaning device 14 through the drainage pipe 91 c.
  • Exhaust ports 52a, 52b and 52c are formed in the bottom 53 of the collection cup 50, the first peripheral wall 54a and the second peripheral wall 54b, respectively.
  • the exhaust ports 52a, 52b, 52c are connected to a single exhaust pipe, and the exhaust pipe is branched into first to third exhaust pipes 93a to 93c at the downstream side of the exhaust. Further, a valve 64a is inserted in the first exhaust pipe 93a, a valve 64b is inserted in the second exhaust pipe 93b, and a valve 64c is inserted in the third exhaust pipe 93c.
  • the first exhaust pipe 93a is an acidic exhaust pipe
  • the second exhaust pipe 93b is an alkaline exhaust pipe
  • the third exhaust pipe 93c is an organic exhaust pipe.
  • FIG. 5 is a flowchart showing the processing procedure of the substrate cleaning process performed by the substrate cleaning system 1 according to the present embodiment.
  • Each device provided in the substrate cleaning system 1 executes each processing procedure shown in FIG. 5 according to the control of the control unit 15.
  • a substrate loading process is performed (step S101).
  • the wafer W loaded into the chamber 20 by the substrate transfer apparatus 131 (see FIG. 2) is held by the holding member 311 of the substrate holding mechanism 30.
  • the wafer W is held by the holding member 311 with the pattern formation surface facing upward.
  • the rotation holding unit 31 is rotated by the driving unit 33.
  • the wafer W rotates with the rotation holding unit 31 in a state of being horizontally held by the rotation holding unit 31.
  • step S102 preprocessing is performed (step S102).
  • the nozzle 41_1 of the first liquid supply unit 40_1 is located above the center of the wafer W.
  • the valve 44a is opened for a predetermined time, whereby the acid-based processing liquid is supplied to the pattern formation surface of the wafer W on which the resist is not formed.
  • the acid-based processing solution supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, the pattern formation surface of the wafer W is processed by the acid-based processing liquid.
  • the nozzle 41_5 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44i is opened for a predetermined time to supply DIW to the patterned surface of the wafer W.
  • the first cup 50a and the second cup 50b are raised, whereby the flow passage from the opening at the upper inner end of the first liquid receiving portion 55a to the first drainage groove 501a Form.
  • the acid-based processing liquid supplied to the wafer W flows into the first drain groove 501a.
  • the nozzle 41_2 of the first liquid supply unit 40_1 is located above the center of the wafer W.
  • the valve 44 b is opened for a predetermined time to supply the alkaline processing liquid to the pattern formation surface of the wafer W.
  • the alkaline processing liquid supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, the pattern formation surface of the wafer W is processed by the alkaline processing liquid.
  • the nozzle 41_5 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44i is opened for a predetermined time to supply DIW to the patterned surface of the wafer W. Thereby, the alkaline processing liquid remaining on the wafer W is washed away by the DIW.
  • the nozzle 41_3 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, so that the [A] solvent, which is a pretreatment liquid, is supplied to the pattern formation surface of the wafer W on which the resist is not formed.
  • the [A] solvent supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W.
  • the film forming process liquid is the wafer in the film forming process liquid supply process (step S103) described later. While it is easy to spread on the upper surface of W, it becomes easy to enter into the crevice of a pattern. Therefore, it is possible to reduce the amount of use of the film forming treatment liquid and to more reliably remove the particles P which have entered into the gaps of the pattern. In addition, the processing time of the film forming process liquid supply process can be shortened.
  • the nozzle 41_3 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time to supply ozone water, which is a pretreatment liquid, to the pattern formation surface of the wafer W on which the resist is not formed.
  • ozone water supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, the pattern formation surface of the wafer W is hydrophilized.
  • the peeling processing liquid easily penetrates the interface (pattern formation surface) of the wafer W that has been hydrophilized, so that the removability of the processing film can be further improved.
  • hydrogen peroxide water for example, may be used as a pretreatment liquid instead of ozone water. Note that the preprocessing of step S102 does not necessarily need to be performed.
  • a film forming process liquid supply process is performed (step S103).
  • the nozzle 41_3 of the first liquid supply unit 40_1 is located above the center of the wafer W.
  • the valves 44d and 44e are opened for a predetermined time, so that the mixed solution of the [A] solvent and the [B] phenol resin and the [C] organic acid are respectively supplied to the flow path leading to the nozzle 41_3.
  • These are mixed in the flow path to form a film formation treatment solution, and are supplied to the pattern formation surface of the wafer W on which no resist is formed.
  • the film forming process liquid is supplied onto the wafer W without passing through the resist.
  • the film forming process liquid supplied to the wafer W spreads on the surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, a liquid film of the film forming treatment liquid is formed on the pattern formation surface of the wafer W.
  • the thickness of the treated film to be formed is preferably 10 nm to 5,000 nm, and more preferably 20 nm to 500 nm.
  • the film-forming treatment liquid according to the present embodiment containing the [B] phenolic resin as a component is easy to thicken as compared with the conventional film-forming treatment liquid containing an acrylic resin as a component. Also, phenolic resins are less expensive than acrylic resins. Therefore, according to the substrate cleaning method according to the present embodiment, thickening of the processing film used for removing the particles P attached to the wafer W can be realized at low cost.
  • a drying process is performed (step S104).
  • the film forming process liquid is dried by increasing the rotation speed of the wafer W for a predetermined time.
  • the organic solvent contained in the film forming treatment liquid is vaporized, solid content contained in the film forming treatment liquid is solidified or hardened, and the treatment film is formed on the pattern formation surface of the wafer W .
  • the drying process in step S104 may be, for example, a process of reducing the pressure in the chamber 20 by a pressure reducing device (not shown), or a process of reducing the humidity in the chamber 20 by the downflow gas supplied from the FFU 21. It may be The film formation treatment liquid can also be solidified or cured by these treatments.
  • the substrate cleaning apparatus 14 may cause the wafer W to stand by in the substrate cleaning apparatus 14 until the film forming process liquid is naturally solidified or cured.
  • the film formation processing liquid is solidified by stopping the rotation of the wafer W or rotating the wafer W at such a rotation speed that the film formation processing solution is not shaken off and the surface of the wafer W is not exposed. It may be cured.
  • the substrate cleaning apparatus 14 performs removal processing (step S105).
  • the removal process the processing film formed on the wafer W is removed.
  • the particles P on the wafer W are removed together with the processing film. The specific content of the removal process will be described later.
  • step S106 the drying process is performed on the wafer W which has been subjected to the rinse process in step S105 (step S106).
  • the nozzle 41_6 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44 j is opened for a predetermined time to supply the dry solvent IPA on the wafer W.
  • DIW on the wafer W is replaced with IPA.
  • the rotation speed of the wafer W is increased for a predetermined time to shake off the IPA remaining on the surface of the wafer W to dry the wafer W. Thereafter, the rotation of the wafer W is stopped.
  • a substrate unloading process is performed (step S107).
  • the wafer W is taken out of the chamber 20 of the substrate cleaning apparatus 14 by the substrate transfer apparatus 131 (see FIG. 2).
  • the wafer W is accommodated in the carrier C mounted on the carrier mounting unit 11 via the delivery unit 122 and the substrate transfer device 121.
  • the substrate cleaning process for one wafer W is completed.
  • step S105 a specific example of the removal process of step S105 will be described. Below, the removal process in the case of using the film-forming process liquid soluble in alkali and the removal process in the case of using the film-forming process liquid which is poorly soluble in alkali are each demonstrated.
  • FIG. 6 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution soluble in alkali.
  • DIW supply processing is performed (step S201).
  • the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44 f is opened for a predetermined time to supply DIW, which is a peeling processing liquid, to the processing film formed on the wafer W.
  • DIW which is a peeling processing liquid
  • the DIW penetrates into the processing film, reaches the interface between the processing film and the wafer W, and peels the processing film from the wafer W. Thereby, the particles P attached to the pattern formation surface of the wafer W are peeled off from the wafer W together with the processing film.
  • an alkaline aqueous solution supply process is performed (step S202).
  • the valve 44 g is opened for a predetermined time, whereby the alkaline aqueous solution, which is a dissolution treatment solution, is supplied to the treatment film peeled off from the wafer W. Thereby, the treatment film is dissolved.
  • a rinse process is performed in the substrate cleaning apparatus 14 (step S203).
  • the nozzle 41_5 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44i is opened for a predetermined time to supply DIW as a rinse liquid to the rotating wafer W.
  • DIW DIW as a rinse liquid
  • the treatment film can be dissolved by using an alkaline aqueous solution as the dissolution treatment liquid.
  • FIG. 7 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution that is poorly soluble in alkali.
  • step S301 DIW supply processing similar to that in step S201 described above is performed.
  • an organic solvent supply process is performed (step S302).
  • the valve 44 h is opened for a predetermined time, so that the organic solvent, which is a dissolving process liquid, is supplied to the process film peeled off from the wafer W. Thereby, the treatment film is dissolved.
  • step S303 the same rinse process as step S203 is performed.
  • step S303 the removal process is completed, and the process proceeds to the drying process of step S106.
  • the treatment film can be dissolved by using an organic solvent such as thinner as the dissolution treatment solution. Further, since no alkaline aqueous solution is used, damage to the wafer W and the underlayer can be further suppressed.
  • step S303 is performed after the organic solvent supply process (step S302), since the organic solvent volatilizes on the wafer W, the rinse process (step S303) is necessarily performed. I do not need to
  • FIG. 8 is a flow chart showing a modification (part 1) of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
  • step S401 DIW supply processing
  • step S402 organic solvent supply processing
  • step S403 an alkaline aqueous solution supply process (step S403) is performed.
  • the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44 g is opened for a predetermined time to supply the aqueous alkali solution to the wafer W.
  • the same rinse process (step S404) as that in step S303 is performed, and the removal process ends.
  • the aqueous alkali solution may be supplied to the wafer W after the organic solvent supply processing.
  • the alkaline aqueous solution By supplying the alkaline aqueous solution, zeta potentials of the same polarity can be generated on the wafer W and the particles P. Thereby, since the wafer W and the particles P come to repel each other, it is possible to prevent the reattachment of the particles P to the wafer W.
  • FIG. 9 is a flowchart showing a modification (part 2) of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
  • step S501 DIW supply processing similar to step S301 is performed (step S501).
  • step S502 an alkaline aqueous solution supply process is performed (step S502).
  • the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W.
  • the valve 44 g is opened for a predetermined time to supply the aqueous alkali solution to the wafer W.
  • the organic solvent supply process step S503 similar to step S302 and the rinse process (step S504) similar to step S303 are performed, and the removal process is completed.
  • the rinse process in step S504 may be omitted.
  • the alkaline aqueous solution may be supplied to the wafer W after the DIW supply processing.
  • a specific component contained in the processing film may partially remain.
  • components soluble in an alkaline aqueous solution are also included.
  • the present modification by supplying the alkaline aqueous solution to the wafer W after the DIW supply processing, among the components of the processing film remaining on the wafer W, the component soluble in the alkaline aqueous solution is dissolved. Can be removed. Therefore, according to the present modification, it is possible to suppress the film residue of the processing film.
  • the substrate cleaning apparatus 14 may perform the same alkaline aqueous solution supply process as step S403 after the organic solvent supply process (step S503).
  • the processing film on the wafer W is peeled off from the wafer W by DIW supply processing, and then the processing film is dissolved by performing the aqueous alkali solution supply processing or the organic solvent supply processing.
  • the present invention is not limited to this, and the process of peeling the treatment film from the wafer W and the treatment of dissolving the peeled treatment film may be performed in parallel in one process. This point will be described with reference to FIG.
  • FIG. 10 is a flowchart showing a modification of the removal process.
  • the processing procedure of the removal processing shown in FIG. 10 can be applied to both the case where a film forming treatment solution soluble in alkali is used and the case where a film forming treatment solution hardly soluble in alkali is used.
  • the substrate cleaning apparatus 14 performs removal liquid supply processing (step S601).
  • the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, one of the valves 44g and 44h and the valve 44f are opened for a predetermined time to supply the diluted aqueous alkali solution or the organic solvent to the wafer W.
  • the aqueous alkali solution or the organic solvent can be peeled off from the wafer W with almost no dissolution of the processing film because the concentration is low. Therefore, as in the case of supplying DIW, the particles P are peeled off from the wafer W together with the processing film. After that, the processing film peeled off from the wafer W is dissolved by a low concentration aqueous alkali solution or an organic solvent. Thereafter, a rinse process (step S602) similar to that of step S303 is performed, and the removal process is completed. In the case where the diluted organic solvent is used as the removal liquid, the rinse process in step S602 does not necessarily have to be performed.
  • the process of peeling the treated film from the wafer W and the process of dissolving the peeled treated film are performed in parallel in one step. be able to. Thereby, the time required for the substrate cleaning process can be shortened.
  • the concentration of the alkaline aqueous solution or the organic solvent may be gradually increased by controlling any of the flow rate regulators 46f to 46h.
  • the substrate cleaning apparatus 14 may supply an alkaline aqueous solution or an organic solvent having a first concentration, and then supply an alkaline aqueous solution or an organic solvent having a second concentration (> first concentration).
  • the substrate processing system (for example, corresponding to the substrate cleaning system 1) according to this embodiment includes the holding unit (for example, corresponding to the substrate holding mechanism 30) and the peeling processing liquid supply unit (for example, the nozzle 41_4, the arm 42_2) , Equivalent to the pivoting elevating mechanism 43_2, the valve 44f, the flow rate regulator 46f and the DIW supply source, and a solution processing solution supply unit (for example, the nozzle 41_4, the arm 42_2, the pivoting elevating mechanism 43_2, the valves 44g and 44h, an alkaline aqueous solution source 45 g, corresponding to organic solvents 45 h and flow rate regulators 46 g, 46 h).
  • the holding unit for example, corresponding to the substrate holding mechanism 30
  • the peeling processing liquid supply unit for example, the nozzle 41_4, the arm 42_2
  • Equivalent to the pivoting elevating mechanism 43_2 for example, the valve 44f, the flow rate regulator 46f and the DIW supply source
  • a solution processing solution supply unit for example,
  • the holding unit holds a substrate (for example, corresponding to the wafer W) on which a treatment film containing a phenol resin (for example, novolac resin) soluble in an organic solvent (for example, IPA) is formed.
  • the peeling treatment liquid supply unit supplies, to the treatment film, a peeling treatment liquid that peels the treatment film from the substrate.
  • the dissolution processing liquid supply unit supplies a dissolution processing liquid for dissolving the processing membrane to the processing membrane.
  • the “film formation processing liquid supply unit” and the “removal liquid supply unit” are provided in one chamber 20
  • the “film formation processing liquid supply unit” and The removal liquid supply units may be provided in separate chambers.
  • the substrate cleaning system 1 has a chamber (first chamber) from which the second liquid supply unit 40_2 is removed from the substrate cleaning apparatus 14 shown in FIG. 3 and the first liquid supply unit 40_1 from the substrate cleaning apparatus 14 shown in FIG. You may provide with the chamber (2nd chamber) removed.
  • the substrate cleaning system 1 does not necessarily have to include the “film formation processing liquid supply unit”. That is, the substrate cleaning system 1 may load the wafer W on which the processing film is formed from the outside and perform the processing of steps S105 to S107 shown in FIG.
  • the peeling treatment liquid may be misty DIW.
  • DIW is directly supplied to the treatment film by using the nozzle
  • the treatment film is provided by raising the humidity in the chamber using a humidifier or the like.
  • DIW may be supplied indirectly.
  • DIW which is pure water at normal temperature
  • heated pure water may be used as the peeling treatment liquid.
  • the stripping solution may be CO 2 water (DIW mixed with CO 2 gas), an acid or alkaline aqueous solution, a surfactant-added aqueous solution, a fluorinated solvent such as HFE (hydrofluoroether), diluted IPA (diluted with pure water) And at least one of the following IPA: isopropyl alcohol).
  • the film forming treatment liquid is formed so that a treatment film which is low in adhesion to the wafer W and easily peeled off is formed.
  • the treated film to be formed is likely to be peeled off, but on the other hand, the water repellency may be increased and it may be difficult to penetrate with DIW alone. Therefore, in such a case, it is preferable to use an organic solvent diluted with pure water such as diluted IPA (hereinafter, referred to as "dilution organic solvent”) as the peeling treatment liquid.
  • diluted IPA diluted IPA
  • FIG. 11 is a flowchart showing a modified example of the removal process in the case of using a diluted organic solvent as the stripping treatment liquid.
  • 12A to 12C are explanatory views (part 1) to (part 3) of the dilution organic solvent supply processing.
  • FIG. 11 corresponds to FIG. 7 already shown. Also, in FIGS. 12A to 12C, the illustration of the valve is omitted.
  • the substrate cleaning device 14 first performs a diluted organic solvent supply process instead of the DIW supply process of step S301 of FIG. Step S701).
  • the diluted organic solvent having a concentration that allows penetration into the processed film without dissolving the processed film formed on the wafer W, for example, a concentration of 10% or less in the case of diluted IPA It is supplied to W.
  • the peeling processing liquid can be made to penetrate even to the processing film that has reached the deep portion of the pattern formed on the wafer W, so high particle removal is possible even with the wafer W on which the pattern is formed. Performance can be obtained.
  • step S702 the same organic solvent supply process as step S302 is performed.
  • step S703 the same rinse process as step S303 is performed.
  • the removal process is completed, and the process proceeds to the drying process of step S106.
  • the diluted organic solvent supply source 45k is directly connected via the nozzle 41_4.
  • the diluted organic solvent can be supplied to the wafer W.
  • DIW may be supplied from the DIW supply source 45f
  • the organic solvent may be supplied from the organic solvent supply source 45h to supply the diluted organic solvent internally mixed to the wafer W from the nozzle 41_4.
  • the organic solvent is supplied to the wafer W from the organic solvent supply source 45h and mixed on the wafer W to obtain diluted organic It is also possible to produce a solvent. In this case, DIW and the organic solvent may be simultaneously supplied to the wafer W.
  • the peeling treatment solution can be further permeated into the treatment film by using the diluted organic solvent as the peeling treatment solution. Moreover, thereby, even if it is the wafer W in which the pattern was formed, high particle removal performance can be obtained.
  • the removing process is performed after the film forming process liquid supply process is performed after the drying process has been described (see steps S103 to S105 in FIG. 5).
  • the present invention is not limited to this.
  • the “film formation acceleration process” may be performed to accelerate the solidification or hardening of the film formation process liquid.
  • FIG. 13 is a flowchart showing a processing procedure of the substrate cleaning process performed by the substrate cleaning system 1 ′ according to another embodiment.
  • FIG. 13 corresponds to FIG. 5 already shown.
  • step S801 to S804 As shown in FIG. 13, in the substrate cleaning apparatus 14 of the substrate cleaning system 1 ′, first, substrate loading processing, pretreatment, film forming processing liquid supply processing, and drying similar to steps S101 to S104 of FIG. A process is performed (steps S801 to S804).
  • a film formation promoting process is performed (step S805).
  • a process of promoting solidification or hardening of the film forming process liquid supplied to the surface of the wafer W, such as heating of the wafer W is performed.
  • the specific aspect of this process is later mentioned using FIG. 14A or subsequent ones.
  • the film formation processing solution that has reached the deep part of the pattern formed on the wafer W can be reliably solidified or cured, and the adhesion between the processing film and the particles can be improved. . That is, even in the wafer W on which the pattern is formed, even particles in the deep part of the pattern can be reliably attached to the processing film, and high particle removal performance can be obtained.
  • step S806 to S808 the removal process, the drying process, and the substrate unloading process similar to steps S105 to S107 are performed (steps S806 to S808), and the substrate cleaning process for one wafer W is completed. .
  • FIG. 14A is an explanatory diagram of a first film formation promotion process.
  • FIG. 14B is a schematic view showing the configuration of the substrate cleaning system 1 ′ when the first film formation promotion process is performed.
  • the substrate cleaning device 14 may be numbered in the form of “_number” to distinguish each of the plurality of substrate cleaning devices 14.
  • the bake apparatus 60 is provided, and the film formation treatment liquid supplied to the wafer W by baking the wafer W by the bake apparatus 60. Is heated to accelerate the solidification or hardening of the film formation treatment solution.
  • the first film formation promotion process may be performed before the drying process of step S804 described above.
  • the conditions for baking the wafer W preferably include a temperature of 70 ° to 120 °, and a time of about 60 seconds or less.
  • the “film formation promoting unit” including the baking apparatus 60 is at least a chamber 20 different from the chamber 20 in which the film forming treatment liquid supply process is performed Provided.
  • baking processing can be improved in performance, and baking processing and film formation processing liquid supply processing can be performed in parallel in separate chambers.
  • the film forming processing liquid supply process is performed by the substrate cleaning apparatuses 14_3 to 14_6, and the removal process is performed by the substrate cleaning apparatuses 14_9 to 14_12.
  • the bake apparatus 60 is accommodated in the substrate cleaning apparatus 14_1, 14_2, 14_7 and 14_8 having the chamber 20 different from them, and the first film formation promotion processing is performed by the substrate cleaning apparatus 14_1, 14_2, 14_7 and 14_8. It is good to do.
  • FIGS. 15A to 15C are explanatory views (part 1) to (part 3) of the second film formation promotion processing.
  • 15D to 15F are schematic views (No. 1) to (No. 3) showing the configuration of the substrate cleaning system 1 'when the second film formation promotion process is performed.
  • the nozzle 41 _ 7 is provided via the support portion 32. Then, the film forming process on the front surface side of the wafer W is performed by supplying the high-temperature DIW from the nozzle 41 _ 7 to the back surface side of the wafer W horizontally held in a state separated from the upper surface of the rotation holding unit 31 by the holding member 311. Heat the solution.
  • nozzle 41_7 is not limited to DIW, as long as it is a high temperature fluid, for example, high temperature nitrogen gas or steam may be used.
  • high temperature fluid is supplied from the front surface side of the wafer W via the nozzle 41 as shown in FIG.
  • the deposition treatment solution may be directly heated by performing this process.
  • the second film formation promotion process shown in FIGS. 15A and 15B may be performed during supply of the film formation process liquid, that is, in parallel with the film formation process liquid supply process.
  • the wafer W is preheated by supplying a high temperature fluid to the wafer W from the nozzle 41 or the nozzle 41_7 before the film forming solution is supplied to the wafer W.
  • the film formation treatment solution may be indirectly heated.
  • the “film formation promoting unit” including the nozzle 41 _ 7 and the nozzle 41 is in the same chamber 20 as the chamber 20 in which the film forming treatment liquid supply process and removal process are performed. It can be provided.
  • the deposition processing solution supply processing, the second deposition promotion processing, and the removal processing may be combined in each of the substrate cleaning devices 14_1 to 14_12. it can.
  • the film forming processing liquid supply process is arranged to be performed by the substrate cleaning devices 14_1 to 14_6, the second substrate cleaning device 14_7 to 14_12 having a chamber 20 different from the above is used.
  • the film formation promoting process and the removal process can be arranged.
  • the deposition processing liquid supply processing and the second deposition promotion processing are combined and performed by the substrate cleaning apparatus 14_1 to 14_6, and the removal processing is performed by the substrate cleaning apparatus 14_7 to 14_12. It shall be.
  • the substrate holding mechanism 30 of the substrate cleaning apparatus 14_1 to 14_6 holds the wafer W by a vacuum chuck or the like
  • at least the second film formation promotion process (FIGS. 15B and 15C) from the front side of the wafer W is performed. This can be performed by each of the substrate cleaning devices 14_1 to 14_6.
  • FIG. 16A is an explanatory diagram of a third film formation promotion process.
  • FIG. 16B is a schematic view showing the configuration of the substrate cleaning system 1 ′ when the third film formation promotion process is performed.
  • the heat source 70 as a “film formation promotion unit” is provided at any position of the transport units 12 and 13.
  • the film forming treatment liquid is heated by the heat of the heat source 70.
  • the film forming solution may be heated from either the front side or the back side of the wafer W.
  • the heat source 70 shown to FIG. 16B is a halogen lamp etc., for example.
  • the heat source 70 may be, for example, a transport path in the transport unit 13 or a substrate transport apparatus. It can be provided on the 131 wafer holding mechanism. Further, the heat source 70 can be provided in the delivery unit 122 or the like of the transport unit 12.
  • the heat source 70 heats the film formation treatment liquid while the wafer W supplied with the film formation treatment liquid is held by the wafer holding mechanism.
  • a film forming process is performed by irradiating ultraviolet light from the UV light source after providing the UV (Ultraviolet) light source instead of the heat source 70 instead of the heat source 70.
  • the solidification or curing of the liquid may be promoted.
  • the solution processing solution may be a solution obtained by adding a hydrogen peroxide solution to an alkali developing solution.
  • the solution processing solution may be an acid developing solution such as acetic acid, formic acid, hydroxyacetic acid or the like.
  • the solution treatment solution may contain a surfactant.
  • the surfactant functions to weaken the surface tension, so that the reattachment of the particles P to the wafer W or the like can be suppressed.
  • the unnecessary object to be removed is not limited to the particle P, and may be, for example, another substance such as a polymer remaining on the substrate after dry etching or after ashing.
  • the film forming process liquid splashed from the wafer W forms a process film and adheres to each place in the chamber 20. May be contaminated.
  • the film forming treatment liquid according to the present embodiment is poorly soluble in DIW, it is difficult to remove the treatment film from the inside of the chamber 20 only by supplying DIW as the cleaning liquid.
  • FIG. 17 is a flowchart showing the procedure of the chamber cleaning process.
  • a dilution organic solvent supply process is performed (step S901).
  • the dilution organic solvent supply process is a process of supplying a dilution organic solvent to a place other than the wafer W in the chamber 20.
  • the diluted organic solvent is an example of a mixed solution of a stripping treatment solution and a dissolving treatment solution, and is, for example, a mixed solution of DIW and IPA.
  • the diluted organic solvent has lower surface tension than DIW and high permeability to the treated membrane. For this reason, DIW can be easily permeated into the interface between the adhesion surface of the treatment film and the treatment film in the chamber 20. That is, the processing film can be easily peeled off from the adhesion surface in the chamber 20.
  • DIW supply processing is performed (step S902).
  • the DIW supply process is a process of supplying DIW to a place other than the wafer W in the chamber 20.
  • DIW is an example of a peeling treatment liquid.
  • the processing film Since the processing film is in a state of being easily peeled off from the adhering surface in the chamber 20 by the dilution organic solvent supplying process described above, the processing film is easily removed from the adhering surface in the chamber 20 by supplying DIW. be able to.
  • DIW which is the peeling process liquid
  • the diluted organic solvent which is a mixture of the peeling process liquid and the dissolving process liquid
  • FIGS. 18A to 18H are diagrams showing an operation example of the chamber cleaning process.
  • the chamber cleaning process may be a process of cleaning the rotation holding unit 31, the holding member 311, the first rotation cup 101, and the second rotation cup 102.
  • the dilution organic solvent and DIW are sequentially supplied from the nozzle 41_4 while reciprocating the nozzle 41_4 between the central portion and the outer peripheral portion of the rotation holding unit 31.
  • the treatment film attached to the holding member 311 and the first rotation cup 101 and the second rotation cup 102 disposed on the outer circumferences of the rotation holding portion 31 and the rotation holding portion 31 can be removed.
  • the nozzle 41_4 is disposed in the chamber 20, and is an example of a cleaning liquid supply unit that supplies the cleaning liquid (dilution organic solvent and DIW) to the area other than the wafer W in the chamber 20. .
  • the chamber cleaning process may be a process of cleaning the first to third drainage grooves 501a to 501c.
  • the substrate cleaning apparatus 14 includes the cleaning liquid supply unit 80_1 that supplies the cleaning liquid (diluted organic solvent and DIW) to the first drain groove 501a.
  • the cleaning liquid supply unit 80_1 includes cleaning liquid supply pipes 81a and 81b, valves 82a and 82b, and flow rate adjusters 84a and 84b.
  • One end of the cleaning liquid supply pipe 81a is connected to the DIW supply source 45f, and the other end is connected to the drainage port 51a of the first cup 50a.
  • One end of the cleaning liquid supply pipe 81b is connected to the cleaning liquid supply pipe 81a, and the other end is connected to the organic solvent supply source 45h.
  • valve 82 a and the flow rate regulator 84 a are provided in the cleaning liquid supply pipe 81 a and controlled by the controller 4. Further, the valve 82 b and the flow rate regulator 84 b are provided in the cleaning liquid supply pipe 81 b and controlled by the control device 4.
  • the diluted organic solvent is supplied to the first drainage groove 501a by opening the valves 82a and 82b for a predetermined time.
  • the diluted organic solvent is stored in the first drain groove 501a, and the diluted organic solvent stored in the first drain groove 501a passes over the top surface 54a1 of the first circumferential wall 54a, and is transferred to the second drain groove 501b.
  • the diluted organic solvent is stored in the second drainage groove 501b.
  • the diluted organic solvent stored in the second drainage groove 501b passes over the upper surface 54b1 of the second peripheral wall 54b and overflows to the third drainage groove 501c, whereby the dilution organic solvent is also diluted in the third drainage groove 501c.
  • the solvent is stored.
  • DIW is supplied to the first drainage groove 501a by opening only the valve 82a for a predetermined time.
  • DIW is stored in the first to third drainage grooves 501a to 501c.
  • DIW is drained from the drainage ports 51a to 51c.
  • the treatment film attached to the first to third drainage grooves 501a to 501c can be removed.
  • the exhaust cup 50d may be disposed further outside the third cup 50c inside the chamber 20, and the mist guard 50e may be disposed further outside the exhaust cup 50d.
  • the exhaust cup 50d includes an outer peripheral cylindrical portion 50d1 and a protruding portion 50d2 protruding inward in the radial direction of the outer peripheral cylindrical portion 50d1 from an upper end portion of the outer peripheral cylindrical portion 50d1.
  • the mist guard 50e also includes an outer peripheral cylindrical portion 50e1 and an overhang portion 50e2 protruding inward in the radial direction of the outer peripheral cylindrical portion 50e1 from the upper end portion of the outer peripheral cylindrical portion 50e1.
  • the exhaust cup 50d is stationary, and the mist guard 50e can be lifted and lowered by a lifting mechanism (not shown).
  • the chamber cleaning process may be, for example, a process of cleaning the exhaust path 505 formed between the third cup 50c and the exhaust cup 50d.
  • the nozzle 41_4 is disposed on the further outer peripheral side of the first rotary cup 101, and in a space formed between the first rotary cup 101 and the overhang portion 50d2 of the exhaust cup 50d (that is, at the inlet of the exhaust path 505). Diluted organic solvent and DIW are sequentially supplied to it.
  • the treatment film attached to the exhaust path 505 can be removed.
  • the diluted organic solvent and DIW leak out from the gap between the first rotating cup 101 and the third cup 50c, thereby removing the treated film attached to the gap and the treated film attached to the extended portion 54d1 and the like. it can.
  • the chamber cleaning process may be a process of cleaning the lower surface of the overhang portion 50e2 of the mist guard 50e and the upper surface of the overhang portion 50d2 of the exhaust cup 50d.
  • the substrate cleaning apparatus 14 includes, for example, a cleaning solution supply unit 80_2 that supplies a cleaning solution to the lower surface of the overhanging portion 50e2 of the mist guard 50e.
  • the cleaning liquid supply unit 80_2 includes a nozzle 41_8.
  • the nozzle 41 _ 8 is provided, for example, on the upper surface of the overhang portion 50 d 2 of the exhaust cup 50 d.
  • the nozzle 41 _ 8 is connected to the DIW supply source 45 f via the cleaning solution supply pipe 81 a, the flow rate regulator 84 a and the valve 82 a, and to the organic solvent supply source 45 h via the cleaning solution supply pipes 81 a and 81 b, the flow rate regulator 84 b and the valve 82 b.
  • the diluted organic solvent is stored in the space between the overhang portion 50e2 of the mist guard 50e and the overhang portion 50d2 of the exhaust cup 50d by supplying the dilution organic solvent from the nozzle 41_8. . Thereafter, after the diluted organic solvent is discharged from the drainage path (not shown), DIW is supplied from the nozzle 41 _ 8 to supply DIW to the space between the overhang 50 e 2 of the mist guard 50 e and the overhang 50 d 2 of the exhaust cup 50 d. Store Thereafter, DIW is drained from a drain path (not shown). As a result, the processing film attached to the lower surface of the overhang 50e2 of the mist guard 50e and the upper surface of the overhang 50d2 of the exhaust cup 50d can be removed.
  • the chamber cleaning process may be a process of cleaning the lower surface of the rotation holding unit 31 of the substrate holding mechanism 30.
  • the substrate cleaning apparatus 14 includes the cleaning liquid supply unit 80_3 that supplies the cleaning liquid to the lower surface of the rotation holding unit 31.
  • the cleaning liquid supply unit 80_3 includes a nozzle 41_9.
  • the nozzle 41 _ 9 is provided, for example, at the upper end of the inner wall 54 d.
  • the nozzle 41 _ 9 is connected to the DIW supply source 45 f via the cleaning solution supply pipe 81 a, the flow rate regulator 84 a and the valve 82 a, and to the organic solvent supply source 45 h via the cleaning solution supply pipes 81 a and 81 b, the flow rate regulator 84 b and the valve 82 b Connected
  • the diluted organic solvent and DIW are sequentially supplied from the nozzle 41 _ 9 to the lower surface of the rotating holding unit 31. Thereby, the treatment film attached to the lower surface of the rotation holding unit 31 can be removed.
  • the chamber cleaning process may be a process of cleaning the exhaust path.
  • the substrate cleaning apparatus 14 supplies the cleaning liquid supply unit 80_4 for supplying the cleaning liquid to the inside of the joining portion 601 where the exhausts discharged from the exhaust ports 52a to 52c join and the duct 602 connected to the joining portion 601. Prepare.
  • the merging portion 601 and the duct 602 are provided in the H portion shown in FIG.
  • the cleaning liquid supply unit 80_4 includes a nozzle 41_10 and a nozzle 41_11.
  • the nozzle 41 _ 10 is provided, for example, on the ceiling of the merging portion 601. Further, the nozzle 41 _ 11 is provided, for example, on the wall surface of the rising portion of the duct 602.
  • the nozzle 41_10 and the nozzle 41_11 are connected to the DIW supply source 45f via the cleaning solution supply pipe 81a, the flow rate regulator 84a and the valve 82a, and the organic solvent is supplied via the cleaning solution supply pipes 81a and 81b, the flow rate regulator 84b and the valve 82b Connected to source 45h.
  • the diluted organic solvent and DIW are sequentially supplied to the lower surface of the rotating and holding unit 31 rotating from the nozzle 41_10 and the nozzle 41_11. Thereby, the treatment film attached to the merging portion 601 and the duct 602 can be removed.
  • a nozzle cleaning unit 603 that cleans the nozzles 41_4 to 41_6 may be disposed inside the chamber 20.
  • the nozzle cleaning unit 603 includes a storage tank for the cleaning liquid, and cleans the nozzles 41_4 to 41_6 by immersing the nozzles 41_4 to 41_6 in the cleaning liquid stored in the storage tank.
  • the nozzle cleaning unit 603 may be used as the cleaning solution supply unit 80_5.
  • the nozzle cleaning unit 603 as the cleaning solution supply unit 80_5 is connected to the DIW supply source 45f via the cleaning solution supply pipe 81a, the flow rate adjuster 84a, and the valve 82a.
  • the nozzle cleaning unit 603 as the cleaning solution supply unit 80_5 is connected to the organic solvent supply source 45h via the cleaning solution supply pipes 81a and 81b, the flow rate adjuster 84b, and the valve 82b.
  • the diluted organic solvent is stored in the storage tank of the nozzle cleaning unit 603, and the nozzles 41_4 to 41_6 are immersed in the diluted organic solvent stored in the storage tank for a predetermined time, and then diluted from the storage tank. Drain the organic solvent. Subsequently, DIW is stored in the storage tank of the nozzle cleaning unit 603, and the nozzles 41_4 to 41_6 are immersed in the DIW stored in the storage tank for a predetermined time. Thus, the treatment film attached to the nozzles 41_4 to 41_6 can be removed.
  • the cleaning liquid supply unit 80 _ 5 may include the nozzle 41 _ 12 at the ceiling of the chamber 20 located above the nozzle cleaning unit 603.
  • the nozzle 41_12 is connected to the DIW supply source 45f via the cleaning solution supply pipe 81a, the flow rate regulator 84a and the valve 82a, and to the organic solvent supply source 45h via the cleaning solution supply pipes 81a and 81b, the flow rate regulator 84b and the valve 82b.
  • the nozzles 41_4 to 41_6 are immersed and cleaned in the nozzle cleaning unit 603, the diluted organic solvent and DIW are sequentially supplied from the nozzle 41_12 to the arm 42_2.
  • the treatment film attached to the nozzles 41_4 to 41_6 can be removed.
  • the chamber cleaning process may be a process for cleaning the space in the chamber 20 as a whole.
  • the substrate cleaning apparatus 14 includes the cleaning liquid supply unit 80_6 that supplies the cleaning liquid entirely to the space in the chamber 20.
  • the cleaning liquid supply unit 80_6 includes a nozzle 41_13.
  • a plurality of nozzles 41 _ 13 are provided on the inner wall in the vicinity of the ceiling of the chamber 20.
  • the nozzle 41 _ 13 is connected to the DIW supply source 45 f via the cleaning solution supply pipe 81 a, the flow rate regulator 84 a and the valve 82 a, and to the organic solvent supply source 45 h via the cleaning solution supply pipes 81 a and 81 b, the flow rate regulator 84 b and the valve 82 b.
  • the diluted organic solvent and DIW are sequentially supplied from the nozzle 41_13. Thereby, the inside of the chamber 20 can be entirely cleaned.
  • the process film attached to each place in the chamber 20 can be appropriately removed.

Abstract

The substrate treatment system according to an embodiment of the present invention is provided with a holding unit, a peeling solution supply unit, and a dissolving solution supply unit. The holding unit holds a substrate, on which a treatment film containing a phenol resin is formed, said phenol resin being soluble in organic solvents. The peeling solution supply unit supplies the treatment film with a peeling solution that peels the treatment film from the substrate. The dissolving solution supply unit supplies the treatment film with a dissolving solution that dissolves the treatment film.

Description

基板処理システム、基板洗浄方法および記憶媒体Substrate processing system, substrate cleaning method and storage medium
 開示の実施形態は、基板処理システム、基板洗浄方法および記憶媒体に関する。 Embodiments disclosed herein relate to a substrate processing system, a substrate cleaning method, and a storage medium.
 従来、シリコンウェハや化合物半導体ウェハ等の基板からパーティクルを除去するための各種の手法が提案されている。 Heretofore, various methods have been proposed for removing particles from a substrate such as a silicon wafer or a compound semiconductor wafer.
 例えば、特許文献1に記載の基板洗浄方法は、アクリル樹脂を成分とする成膜処理液を基板へ供給して基板上に処理膜を形成した後、処理膜に対して剥離処理液を供給して処理膜をパーティクルとともに基板から剥離させる。その後、特許文献1に記載の基板洗浄方法は、処理膜に対して溶解処理液を供給して処理膜を溶解させることによって処理膜およびパーティクルを基板上から除去する。かかる基板洗浄方法によれば、基板の表面に影響を与えることなく、基板に付着したパーティクルを除去することができる。 For example, in the substrate cleaning method described in Patent Document 1, a film forming treatment liquid containing an acrylic resin as a component is supplied to the substrate to form a treatment film on the substrate, and then the peeling treatment solution is supplied to the treatment film. The processing film is peeled off from the substrate together with the particles. After that, the substrate cleaning method described in Patent Document 1 removes the processing film and the particles from the substrate by supplying a dissolving processing solution to the processing film to dissolve the processing film. According to the substrate cleaning method, particles attached to the substrate can be removed without affecting the surface of the substrate.
特開2016-036012号公報JP, 2016-036012, A
 実施形態の一態様は、基板に付着したパーティクルの除去に用いられる処理膜の厚膜化を安価に実現することができる技術を提供する。 One aspect of the embodiment provides a technology capable of realizing inexpensively thickening of a treatment film used for removing particles attached to a substrate.
 実施形態の一態様に係る基板処理システムは、保持部と、剥離処理液供給部と、溶解処理液供給部とを備える。保持部は、有機溶媒に可溶なフェノール樹脂を含有する処理膜が形成された基板を保持する。剥離処理液供給部は、処理膜を基板から剥離させる剥離処理液を処理膜に対して供給する。溶解処理液供給部は、処理膜を溶解させる溶解処理液を処理膜に対して供給する。 A substrate processing system according to an aspect of the embodiment includes a holding unit, a peeling processing liquid supply unit, and a dissolving processing liquid supply unit. The holding portion holds the substrate on which the treatment film containing the phenolic resin soluble in the organic solvent is formed. The peeling treatment liquid supply unit supplies, to the treatment film, a peeling treatment liquid that peels the treatment film from the substrate. The dissolution processing liquid supply unit supplies a dissolution processing liquid for dissolving the processing membrane to the processing membrane.
 実施形態の一態様によれば、基板に付着したパーティクルの除去に用いられる処理膜の厚膜化を安価に実現することができる。 According to one aspect of the embodiment, thickening of the processing film used to remove particles attached to the substrate can be realized at low cost.
図1Aは、本実施形態に係る基板洗浄方法の説明図である。FIG. 1A is an explanatory view of a substrate cleaning method according to the present embodiment. 図1Bは、本実施形態に係る基板洗浄方法の説明図である。FIG. 1B is an explanatory view of a substrate cleaning method according to the present embodiment. 図1Cは、本実施形態に係る基板洗浄方法の説明図である。FIG. 1C is an explanatory view of a substrate cleaning method according to the present embodiment. 図1Dは、本実施形態に係る基板洗浄方法の説明図である。FIG. 1D is an explanatory view of a substrate cleaning method according to the present embodiment. 図1Eは、本実施形態に係る基板洗浄方法の説明図である。FIG. 1E is an explanatory view of a substrate cleaning method according to the present embodiment. 図2は、本実施形態に係る基板洗浄システムの構成を示す模式図である。FIG. 2 is a schematic view showing the configuration of the substrate cleaning system according to the present embodiment. 図3は、本実施形態に係る基板洗浄装置の構成を示す模式図である。FIG. 3 is a schematic view showing the configuration of a substrate cleaning apparatus according to the present embodiment. 図4Aは、第1液供給部に接続される処理液供給系の構成の一例を示す図である。FIG. 4A is a diagram showing an example of the configuration of a processing liquid supply system connected to the first liquid supply unit. 図4Bは、第2液供給部に接続される処理液供給系の構成の一例を示す図である。FIG. 4B is a diagram showing an example of the configuration of the processing liquid supply system connected to the second liquid supply unit. 図5は、本実施形態に係る基板洗浄システムが実行する基板洗浄処理の処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a processing procedure of the substrate cleaning process performed by the substrate cleaning system according to the present embodiment. 図6は、アルカリに可溶な成膜処理液を用いる場合における除去処理の処理手順を示すフローチャートである。FIG. 6 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution soluble in alkali. 図7は、アルカリに難溶な成膜処理液を用いる場合における除去処理の処理手順を示すフローチャートである。FIG. 7 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution that is poorly soluble in alkali. 図8は、アルカリに難溶な成膜処理液を用いる場合における除去処理の変形例(その1)を示すフローチャートである。FIG. 8 is a flow chart showing a modification (part 1) of the removal process in the case of using a film forming solution which is poorly soluble in alkali. 図9は、アルカリに難溶な成膜処理液を用いる場合における除去処理の変形例(その2)を示すフローチャートである。FIG. 9 is a flowchart showing a modification (part 2) of the removal process in the case of using a film forming solution which is poorly soluble in alkali. 図10は、除去処理の変形例を示すフローチャートである。FIG. 10 is a flowchart showing a modification of the removal process. 図11は、剥離処理液として希釈有機溶剤を用いる場合における除去処理の変形例を示すフローチャートである。FIG. 11 is a flowchart showing a modified example of the removal process in the case of using a diluted organic solvent as the stripping treatment liquid. 図12Aは、希釈有機溶剤供給処理の説明図(その1)である。FIG. 12A is an explanatory diagram of the dilution organic solvent supply processing (part 1). 図12Bは、希釈有機溶剤供給処理の説明図(その2)である。FIG. 12B is an explanatory diagram of the dilution organic solvent supply processing (part 2). 図12Cは、希釈有機溶剤供給処理の説明図(その3)である。FIG. 12C is an explanatory diagram of the dilution organic solvent supply processing (part 3). 図13は、その他の実施形態に係る基板洗浄システムが実行する基板洗浄処理の処理手順を示すフローチャートである。FIG. 13 is a flowchart showing a processing procedure of a substrate cleaning process performed by a substrate cleaning system according to another embodiment. 図14Aは、第1の成膜促進処理の説明図である。FIG. 14A is an explanatory diagram of a first film formation promotion process. 図14Bは、第1の成膜促進処理を実行する場合における基板洗浄システムの構成を示す模式図である。FIG. 14B is a schematic view showing the configuration of the substrate cleaning system when the first film formation promotion process is performed. 図15Aは、第2の成膜促進処理の説明図(その1)である。FIG. 15A is an explanatory diagram of the second film formation promotion processing (part 1). 図15Bは、第2の成膜促進処理の説明図(その2)である。FIG. 15B is an explanatory diagram of the second film formation promotion process (part 2). 図15Cは、第2の成膜促進処理の説明図(その3)である。FIG. 15C is an explanatory diagram of the second film formation promotion process (part 3). 図15Dは、第2の成膜促進処理を実行する場合における基板洗浄システムの構成を示す模式図(その1)である。FIG. 15D is a schematic view (No. 1) showing the configuration of the substrate cleaning system when the second film formation promotion process is performed. 図15Eは、第2の成膜促進処理を実行する場合における基板洗浄システムの構成を示す模式図(その2)である。FIG. 15E is a schematic view (No. 2) showing the configuration of the substrate cleaning system when the second film formation promotion process is performed. 図15Fは、第2の成膜促進処理を実行する場合における基板洗浄システムの構成を示す模式図(その3)である。FIG. 15F is a schematic diagram (No. 3) showing the configuration of the substrate cleaning system when the second film formation promotion process is performed. 図16Aは、第3の成膜促進処理の説明図である。FIG. 16A is an explanatory diagram of a third film formation promotion process. 図16Bは、第3の成膜促進処理を実行する場合における基板洗浄システムの構成を示す模式図である。FIG. 16B is a schematic view showing the configuration of the substrate cleaning system when the third film formation promotion process is performed. 図17は、チャンバ洗浄処理の手順を示すフローチャートである。FIG. 17 is a flowchart showing the procedure of the chamber cleaning process. 図18Aは、チャンバ洗浄処理の動作例を示す図(その1)である。FIG. 18A is a diagram (part 1) illustrating an operation example of a chamber cleaning process. 図18Bは、チャンバ洗浄処理の動作例を示す図(その2)である。FIG. 18B is a diagram (part 2) showing an operation example of a chamber cleaning process. 図18Cは、チャンバ洗浄処理の動作例を示す図(その3)である。FIG. 18C is a diagram (part 3) showing an operation example of the chamber cleaning process. 図18Dは、チャンバ洗浄処理の動作例を示す図(その4)である。FIG. 18D is a diagram showing an operation example of a chamber cleaning process (part 4). 図18Eは、チャンバ洗浄処理の動作例を示す図(その5)である。FIG. 18E is a diagram (No. 5) showing an operation example of a chamber cleaning process. 図18Fは、チャンバ洗浄処理の動作例を示す図(その6)である。FIG. 18F is a diagram showing an operation example of a chamber cleaning process (part 6). 図18Gは、チャンバ洗浄処理の動作例を示す図(その7)である。FIG. 18G is a diagram showing an exemplary operation of the chamber cleaning process (7). 図18Hは、チャンバ洗浄処理の動作例を示す図(その8)である。FIG. 18H is a diagram showing an operation example of a chamber cleaning process (part 8).
 以下、添付図面を参照して、本願の開示する基板処理システム、基板洗浄方法および記憶媒体の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示による基板処理システム、基板洗浄方法および記憶媒体が限定されるものではない。 Hereinafter, embodiments of a substrate processing system, a substrate cleaning method, and a storage medium disclosed in the present application will be described in detail with reference to the attached drawings. The substrate processing system, the substrate cleaning method, and the storage medium according to the present disclosure are not limited by the embodiments described below.
 特許文献1に記載の基板洗浄方法は、アクリル樹脂を成分とする成膜処理液を基板へ供給して基板上に処理膜を形成した後、処理膜に対して剥離処理液を供給して処理膜をパーティクルとともに基板から剥離させる。その後、特許文献1に記載の基板洗浄方法は、処理膜に対して溶解処理液を供給して処理膜を溶解させることによって処理膜およびパーティクルを基板上から除去する。かかる基板洗浄方法によれば、基板の表面に影響を与えることなく、基板に付着したパーティクルを除去することができる。しかしながら、特許文献1に記載の基板洗浄方法には、処理膜の厚膜化を安価に実現するという点でさらなる改善の余地がある。 In the substrate cleaning method described in Patent Document 1, a film formation treatment solution containing an acrylic resin as a component is supplied to the substrate to form a treatment film on the substrate, and then a peeling treatment solution is supplied to the treatment film to perform treatment. The film is peeled off the substrate together with the particles. After that, the substrate cleaning method described in Patent Document 1 removes the processing film and the particles from the substrate by supplying a dissolving processing solution to the processing film to dissolve the processing film. According to the substrate cleaning method, particles attached to the substrate can be removed without affecting the surface of the substrate. However, the substrate cleaning method described in Patent Document 1 has room for further improvement in that the thickened processing film can be realized inexpensively.
 例えば、アクリル樹脂を成分とする成膜処理液は厚膜化が難しく、基板上に形成されるパターンの深さによっては、パターンの上部が処理膜から露出することで、パターンの上部に付着したパーティクルが適切に除去されないおそれがある。また、厚膜化できたとしても、処理膜を厚くするほど成膜処理液中のアクリル樹脂の含有量が増えるため、処理コストが増加するおそれがある。そこで、基板に付着したパーティクルの除去に用いられる処理膜の厚膜化を安価に実現することができる技術の提供が期待されている。 For example, it is difficult to form a film forming solution containing an acrylic resin as a thick film, and depending on the depth of the pattern formed on the substrate, the upper part of the pattern is exposed from the treated film and adheres to the upper part of the pattern Particles may not be removed properly. Further, even if the film thickness can be increased, the content of the acrylic resin in the film forming treatment solution is increased as the thickness of the treatment film is increased, so that the treatment cost may be increased. Therefore, it is expected to provide a technology capable of realizing the thickening of a processing film used for removing particles attached to a substrate at low cost.
<基板洗浄方法の内容>
 まず、本実施形態に係る基板洗浄方法の内容について図1A~図1Eを用いて説明する。図1A~図1Eは、本実施形態に係る基板洗浄方法の説明図である。
<Contents of substrate cleaning method>
First, the contents of the substrate cleaning method according to the present embodiment will be described with reference to FIGS. 1A to 1E. 1A to 1E are explanatory views of a substrate cleaning method according to the present embodiment.
 図1Aに示すように、本実施形態に係る基板洗浄方法では、シリコンウェハや化合物半導体ウェハ等の基板(以下、「ウェハW」と記載する場合もある)のパターン形成面に対し、「成膜処理液」を供給する。本実施形態に係る成膜処理液は、[A]溶媒と、[B]フェノール樹脂とを含有する。 As shown in FIG. 1A, in the substrate cleaning method according to the present embodiment, “film formation on a pattern formation surface of a substrate such as a silicon wafer or a compound semiconductor wafer (hereinafter sometimes referred to as“ wafer W ”) Supply the processing solution. The film-forming process liquid which concerns on this embodiment contains [A] solvent and [B] phenol resin.
 ウェハWのパターン形成面に供給された成膜処理液は、固化または硬化して処理膜となる。これにより、ウェハW上に形成されたパターンやパターンに付着したパーティクルPがこの処理膜に覆われた状態となる(図1B参照)。なお、ここでいう「固化」とは、固体化することを意味し、「硬化」とは、分子同士が連結して高分子化すること(例えば架橋や重合等)を意味する。 The film forming process liquid supplied to the pattern formation surface of the wafer W is solidified or hardened to become a process film. As a result, the pattern P attached to the pattern formed on the wafer W is covered with the processing film (see FIG. 1B). In addition, "solidification" here means solidifying, and "hardening" means that molecules connect and polymerize (for example, bridge | crosslinking, superposition | polymerization etc.).
 つづいて、図1Bに示すように、ウェハW上の処理膜に対して剥離処理液が供給される。剥離処理液とは、前述の処理膜をウェハWから剥離させる処理液である。 Subsequently, as shown in FIG. 1B, the peeling processing liquid is supplied to the processing film on the wafer W. The peeling treatment liquid is a treatment liquid for peeling the above-mentioned treatment film from the wafer W.
 剥離処理液は、処理膜上に供給された後、処理膜中に浸透していき処理膜とウェハWとの界面に到達する。このように、処理膜とウェハWとの界面に剥離処理液が入り込むことで、処理膜は「膜」の状態でウェハWから剥離し、これに伴い、パターン形成面に付着したパーティクルPが処理膜とともにウェハWから剥離する(図1C参照)。 After being supplied onto the processing film, the peeling processing solution penetrates into the processing film and reaches the interface between the processing film and the wafer W. As described above, the peeling treatment liquid enters the interface between the treatment film and the wafer W, so that the treatment film peels off from the wafer W in the “film” state, and the particles P attached to the pattern formation surface are treated accordingly The film is peeled off from the wafer W together with the film (see FIG. 1C).
 つづいて、図1Dに示すように、ウェハWから剥離された処理膜に対し、処理膜を溶解させる溶解処理液が供給される。これにより、処理膜は溶解し、処理膜に取り込まれていたパーティクルPは、溶解処理液中に浮遊した状態となる。その後、溶解処理液や溶解した処理膜を純水等で洗い流すことにより、パーティクルPは、ウェハW上から除去される(図1E参照)。 Subsequently, as shown in FIG. 1D, a solution processing solution for dissolving the processing film is supplied to the processing film peeled off from the wafer W. As a result, the treatment film is dissolved, and the particles P taken into the treatment film are suspended in the dissolution treatment solution. Thereafter, the dissolution treatment liquid and the dissolved treatment film are washed away with pure water or the like, whereby the particles P are removed from the wafer W (see FIG. 1E).
 このように、本実施形態に係る基板洗浄方法では、ウェハW上に形成された処理膜をウェハWから「膜」の状態で剥離させることで、パターン等に付着したパーティクルPを処理膜とともにウェハWから除去することとした。 As described above, in the substrate cleaning method according to the present embodiment, the processing film formed on the wafer W is separated from the wafer W in the “film” state, so that the particle P attached to the pattern or the like is processed together with the processing film. It was decided to remove from W.
 したがって、本実施形態に係る基板洗浄方法によれば、化学的作用を利用することなくパーティクル除去を行うため、エッチング作用等による下地膜の侵食を抑えることができる。 Therefore, according to the substrate cleaning method according to the present embodiment, since the particles are removed without utilizing the chemical action, it is possible to suppress the erosion of the base film due to the etching action or the like.
 また、本実施形態に係る基板洗浄方法によれば、従来の物理力を利用した基板洗浄方法と比較して弱い力でパーティクルPを除去することができるため、パターン倒れを抑制することもできる。 Further, according to the substrate cleaning method according to the present embodiment, since the particles P can be removed with a weak force as compared to the conventional substrate cleaning method using physical force, it is possible to suppress pattern collapse.
 さらに、本実施形態に係る基板洗浄方法によれば、従来の物理力を利用した基板洗浄方法では除去が困難であった、粒子径が小さいパーティクルPを容易に除去することが可能となる。 Furthermore, according to the substrate cleaning method according to the present embodiment, it is possible to easily remove the particle P having a small particle diameter, which is difficult to remove by the conventional substrate cleaning method using physical force.
 上述したように、本実施形態に係る成膜処理液は、[A]溶媒と、[B]フェノール樹脂とを含有する。[B]フェノール樹脂は、従来の成膜処理液に用いられるアクリル樹脂と比較して安価である。また、[B]フェノール樹脂を成分とする本成膜処理液は、従来のアクリル樹脂を成分とする成膜処理液と比較して厚膜化が容易である。したがって、本実施形態に係る基板洗浄方法によれば、ウェハWに付着したパーティクルPの除去に用いられる処理膜の厚膜化を安価に実現することができる。処理膜を厚膜化することで、パターンの上部が処理膜から露出しにくくなるため、パターンの上部に付着したパーティクルPが除去されずに残存することを防止することができる。 As mentioned above, the film-forming process liquid which concerns on this embodiment contains an [A] solvent and a [B] phenol resin. [B] Phenolic resin is less expensive than acrylic resin used in conventional film forming solution. In addition, the main film-forming treatment solution containing a phenolic resin as a component is easy to thicken as compared with the conventional film-forming treatment liquid containing an acrylic resin as a component. Therefore, according to the substrate cleaning method according to the present embodiment, thickening of the processing film used for removing the particles P attached to the wafer W can be realized at low cost. By thickening the treated film, the upper portion of the pattern is less likely to be exposed from the treated film, so that it is possible to prevent the particles P attached to the upper portion of the pattern from remaining without being removed.
 また、[B]フェノール樹脂を含有する本実施形態に係る処理膜は、アクリル樹脂を含有する従来の処理膜と比べて、溶解処理液としての有機溶剤(後述するシンナーやIPAなど)に溶けにくい。このため、[B]フェノール樹脂を含有する本実施形態に係る処理膜は、有機溶剤が供給された後、「膜」の状態が保たれる時間が従来の処理膜よりも長い。このため、本実施形態に係る処理膜を用いることで、従来の処理膜を用いた場合と比べ、処理膜をより「膜」の状態のままウェハWから剥離させることができる。すなわち、図1Cに示す状態を長く継続させることができる。これにより、剥離力が向上するため、パーティクルをより確実にウェハWから除去することができる。 [B] The treated film according to the present embodiment containing a phenol resin is less soluble in an organic solvent (such as thinner or IPA described later) as a solution treatment liquid, as compared to a conventional treated film containing an acrylic resin. . For this reason, in the treated film according to the embodiment containing the [B] phenol resin, the time for which the state of the “film” is maintained after the supply of the organic solvent is longer than that of the conventional treated film. For this reason, by using the treatment film according to the present embodiment, the treatment film can be peeled from the wafer W in a more “film” state as compared with the case where a conventional treatment film is used. That is, the state shown in FIG. 1C can be continued for a long time. As a result, the peeling force is improved, so that particles can be more reliably removed from the wafer W.
 なお、本実施形態に係る基板洗浄方法において、処理膜は、ウェハWに成膜された後、パターン露光を行うことなくウェハWから全て除去される。したがって、洗浄後のウェハWは、成膜処理液を塗布する前の状態、すなわち、パターン形成面が露出した状態となる。 In the substrate cleaning method according to the present embodiment, after the treatment film is formed on the wafer W, it is completely removed from the wafer W without performing pattern exposure. Therefore, the wafer W after cleaning is in a state before applying the film forming process liquid, that is, a state in which the pattern formation surface is exposed.
 成膜処理液は、さらに低分子有機酸(以下、単に「[C]有機酸」ともいう)を含有することができる。ここで低分子有機酸とは一分子内に1つ以上の炭素原子を含み、かつ重合または縮合反応により生ずる繰り返し構造を有しない酸をいう。分子量は限定されないが、一般的には40以上2000以下である。成膜処理液は、[C]有機酸を含有することにより、ウェハW表面からのパーティクルPの除去がさらに容易となる。 The film formation treatment solution can further contain a low molecular weight organic acid (hereinafter, also simply referred to as “[C] organic acid”). Here, the low molecular weight organic acid means an acid containing one or more carbon atoms in one molecule and having no repeating structure generated by polymerization or condensation reaction. Although the molecular weight is not limited, it is generally 40 or more and 2000 or less. The film-forming treatment liquid further facilitates removal of the particles P from the surface of the wafer W by containing the [C] organic acid.
 成膜処理液は[A]~[C]成分以外に、本開示による効果を損なわない範囲において、任意成分を含有していてもよい。
 以下、各成分について説明する。
The film-forming treatment liquid may contain optional components in addition to the components [A] to [C] as long as the effects of the present disclosure are not impaired.
Each component will be described below.
<[A]溶媒>
 [A]溶媒は、[B]フェノール樹脂を溶解する成分である。[C]有機酸を添加する場合、[C]有機酸を溶解するものであることが好ましい。
<[A] solvent>
[A] The solvent is a component that dissolves the [B] phenolic resin. [C] When adding an organic acid, it is preferable to dissolve the [C] organic acid.
 [A]溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等の有機溶媒;水等が挙げられる。 [A] Examples of the solvent include organic solvents such as alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents and the like; water and the like.
 アルコール系溶媒の例としては、たとえば、炭素数1~18の1価のアルコールが挙げられる。炭素数1~18の1価のアルコールとしては、たとえば、エタノール、イソプロピルアルコール、アミルアルコール、4-メチル-2-ペンタノール、シクロヘキサノール等が挙げられる。また、炭素数1~18の1価のアルコールとしては、たとえば、3,3,5-トリメチルシクロヘキサノール、フルフリルアルコール、ベンジルアルコール、ジアセトンアルコール等が挙げられる。また、アルコール系溶媒の例としては、たとえば、炭素数2~12の2価のアルコールが挙げられる。炭素数2~12の2価のアルコールとしては、たとえば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等が挙げられる。また、アルコール系溶媒の例としては、炭素数1~18の1価のアルコールまたは炭素数2~12の2価のアルコールの部分エーテルなどが挙げられる。 Examples of alcohol solvents include, for example, monohydric alcohols having 1 to 18 carbon atoms. Examples of the monohydric alcohol having 1 to 18 carbon atoms include ethanol, isopropyl alcohol, amyl alcohol, 4-methyl-2-pentanol, cyclohexanol and the like. Further, examples of the monohydric alcohol having 1 to 18 carbon atoms include 3,3,5-trimethylcyclohexanol, furfuryl alcohol, benzyl alcohol, diacetone alcohol and the like. Further, examples of alcohol solvents include, for example, dihydric alcohols having 2 to 12 carbon atoms. Examples of the divalent alcohol having 2 to 12 carbon atoms include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol and the like. Further, examples of the alcohol solvent include a monohydric alcohol having 1 to 18 carbon atoms or a partial ether of a dihydric alcohol having 2 to 12 carbon atoms.
 エーテル系溶媒の例としては、たとえば、ジアルキルエーテル系溶媒が挙げられる。ジアルキルエーテル系溶媒としては、たとえば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジイソアミルエーテル等が挙げられる。また、エーテル系溶媒の例としては、たとえば、テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒、ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒等が挙げられる。 Examples of ether solvents include, for example, dialkyl ether solvents. Examples of dialkyl ether solvents include diethyl ether, dipropyl ether, dibutyl ether, diisoamyl ether and the like. Further, examples of ether solvents include cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, and aromatic ring-containing ether solvents such as diphenyl ether and anisole.
 ケトン系溶媒の例としては、たとえば、鎖状ケトン系溶媒が挙げられる。鎖状ケトン系溶媒としては、たとえば、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン等が挙げられる。また、鎖状ケトン系溶媒としては、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等が挙げられる。また、ケトン系溶媒の例としては、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。 Examples of ketone solvents include, for example, chain ketone solvents. Examples of the chain ketone solvent include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, diethyl ketone and the like. Further, examples of chain ketone solvents include methyl-iso-butyl ketone, 2-heptanone, ethyl n-butyl ketone, methyl n-hexyl ketone, di-iso-butyl ketone, trimethylnonanone and the like. Further, examples of ketone solvents include cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone and the like.
 アミド系溶媒の例としては、たとえば、N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒が挙げられる。また、アミド系溶媒の例としては、たとえば、鎖状アミド系溶媒が挙げられる。鎖状アミド系溶媒としては、たとえば、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等が挙げられる。 Examples of amide solvents include cyclic amide solvents such as N, N'-dimethylimidazolidinone and N-methylpyrrolidone. Moreover, as an example of an amide system solvent, a chain | strand-shaped amide system solvent is mentioned, for example. Examples of chain amide solvents include N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and the like. It can be mentioned.
 エステル系溶媒の例としては、たとえば、酢酸エチル、酢酸ブチル、酢酸ベンジル、酢酸シクロヘキシル、乳酸エチル等の1価アルコールカルボキシレート系溶媒が挙げられる。また、エステル系溶媒の例としては、たとえば、アルキレングリコールモノアルキルエーテルのモノカルボキシレート、ジアルキレングリコールモノアルキルエーテルのモノカルボキシレート等の多価アルコール部分エーテルカルボキシレート系溶媒が挙げられる。また、エステル系溶媒の例としては、たとえば、ブチロラクトン等の環状エステル系溶媒、ジエチルカーボネート等のカーボネート系溶媒、シュウ酸ジエチル、フタル酸ジエチル等の多価カルボン酸アルキルエステル系溶媒等が挙げられる。 Examples of ester solvents include monohydric alcohol carboxylate solvents such as ethyl acetate, butyl acetate, benzyl acetate, cyclohexyl acetate, ethyl lactate and the like. In addition, examples of ester solvents include polyhydric alcohol partial ether carboxylate solvents such as monocarboxylates of alkylene glycol monoalkyl ethers and monocarboxylates of dialkylene glycol monoalkyl ethers. Examples of ester solvents include cyclic ester solvents such as butyrolactone, carbonate solvents such as diethyl carbonate, and polyvalent carboxylic acid alkyl ester solvents such as diethyl oxalate and diethyl phthalate.
 炭化水素系溶媒としては、たとえば、脂肪族炭化水素系溶媒が挙げられる。脂肪族炭化水素系溶媒としては、n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。また、炭化水素系溶媒としては、芳香族炭化水素系溶媒が挙げられる。芳香族炭化水素系溶媒としては、たとえば、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン等が挙げられる。また、芳香族炭化水素系溶媒としては、たとえば、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等が挙げられる。 Examples of hydrocarbon solvents include aliphatic hydrocarbon solvents. Examples of aliphatic hydrocarbon solvents include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, Examples include cyclohexane, methylcyclohexane and the like. Moreover, as a hydrocarbon type solvent, an aromatic hydrocarbon type solvent is mentioned. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene and the like. Further, as the aromatic hydrocarbon solvent, for example, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene and the like.
 これらの中で、有機溶媒が好ましい。有機溶媒としては、アルコール系溶媒、エーテル系溶媒が好ましく、モノアルコール系溶媒、ジアルキルエーテル系溶媒がより好ましい。また、有機溶媒としては、4-メチル-2-ペンタノール、ジイソアミルエーテル、プロピレングリコールモノエチルエーテル、エトキシプロパノール、乳酸エチルがさらに好ましい。 Of these, organic solvents are preferred. As the organic solvent, alcohol solvents and ether solvents are preferable, and monoalcohol solvents and dialkyl ether solvents are more preferable. Further, as the organic solvent, 4-methyl-2-pentanol, diisoamyl ether, propylene glycol monoethyl ether, ethoxypropanol and ethyl lactate are more preferable.
 [A]溶媒中の水の含有率としては、20質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましく、0質量%が特に好ましい。[A]溶媒中の水の含有率を上記上限以下とすることで、形成される処理膜の強度をより適度に低下させることができ、その結果パーティクル除去性能を向上させることができる。 [A] The content of water in the solvent is preferably 20% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less, and particularly preferably 0% by mass. [A] By setting the water content in the solvent to the above upper limit or less, the strength of the treated film to be formed can be more appropriately reduced, and as a result, the particle removal performance can be improved.
 [A]溶媒の含有量の下限としては、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましい。上記含有量の上限としては、99.9質量%が好ましく、99質量%がより好ましく、95質量%がさらに好ましい。[A]溶媒の含有量を上記下限と上限との間とすることで、成膜処理液は、窒化ケイ素基板に対するパーティクル除去性能がより向上する。成膜処理液は、[A]溶媒を1種又は2種以上含有していてもよい。 The lower limit of the content of the solvent (A) is preferably 50% by mass, more preferably 60% by mass, and still more preferably 70% by mass. As an upper limit of the said content, 99.9 mass% is preferable, 99 mass% is more preferable, and 95 mass% is more preferable. [A] By setting the content of the solvent between the above lower limit and the upper limit, the film forming treatment liquid further improves the particle removal performance with respect to the silicon nitride substrate. The film-forming treatment liquid may contain one or more solvents [A].
<[B]フェノール樹脂>
 [B]フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、レゾールフェノール樹脂等が挙げられる。これらの中で、ノボラック型フェノール樹脂(以下、ノボラック樹脂と記載する)が好ましい。ノボラック樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等が挙げられる。
<[B] phenolic resin>
[B] As a phenol resin, a novolak-type phenol resin, resol phenol resin, etc. are mentioned, for example. Among these, novolac type phenol resins (hereinafter referred to as novolac resins) are preferable. Examples of novolac resins include phenol novolac resins, cresol novolac resins, and bisphenol A novolac resins.
<[C]有機酸>
 成膜処理液は、さらに[C]有機酸を含むことができる。[C]有機酸を加えることにより、基板表面に形成された処理膜の除去がより容易となる。[C]有機酸の分子量の上限としては、例えば、500であり、400が好ましく、300がより好ましい。[C]有機酸の分子量の下限としては、例えば、50であり、55が好ましい。
<[C] organic acid>
The film forming solution may further contain a [C] organic acid. [C] Addition of the organic acid makes it easier to remove the treatment film formed on the substrate surface. [C] The upper limit of the molecular weight of the organic acid is, for example, 500, preferably 400, and more preferably 300. [C] The lower limit of the molecular weight of the organic acid is, for example, 50, preferably 55.
 [C]有機酸としては、たとえば、モノカルボン酸が挙げられる。モノカルボン酸としては、たとえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、シクロヘキサンカルボン酸、シクロヘキシル酢酸、1-アダマンタンカルボン酸、安息香酸、フェニル酢酸等が挙げられる。また、[C]有機酸としては、たとえば、フッ素原子含有モノカルボン酸が挙げられる。フッ素原子含有モノカルボン酸としては、たとえば、ジフルオロ酢酸、トリフルオロ酢酸、ペンタフルオロプロパン酸、ヘプタフルオロブタン酸、フルオロフェニル酢酸、ジフルオロ安息香酸等が挙げられる。また、[C]有機酸としては、たとえば、ヘテロ原子含有モノカルボン酸が挙げられる。ヘテロ原子含有モノカルボン酸としては、たとえば、10-ヒドロキシデカン酸、チオール酢酸、5-オキソヘキサン酸、3-メトキシシクロヘキサンカルボン酸、カンファーカルボン酸、ジニトロ安息香酸、ニトロフェニル酢酸等が挙げられる。また、[C]有機酸としては、たとえば、(メタ)アクリル酸、クロトン酸、ケイ皮酸等の二重結合含有モノカルボン酸などのモノカルボン酸が挙げられる。また、[C]有機酸としては、たとえば、ポリカルボン酸が挙げられる。ポリカルボン酸としては、たとえば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ドデカンジカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸等が挙げられる、また、ポリカルボン酸としては、たとえば、ヘキサフルオログルタル酸、シクロヘキサンヘキサカルボン酸、1,4-ナフタレンジカルボン酸等が挙げられる。また、[C]有機酸としては、たとえば、上記ポリカルボン酸の部分エステル化物などが挙げられる。 Examples of the organic acid [C] include monocarboxylic acids. Examples of monocarboxylic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, cyclohexanecarboxylic acid, cyclohexylacetic acid, 1-adamantanecarboxylic acid, benzoic acid, phenylacetic acid and the like. Moreover, as a [C] organic acid, the fluorine atom containing monocarboxylic acid is mentioned, for example. Examples of the fluorine atom-containing monocarboxylic acid include difluoroacetic acid, trifluoroacetic acid, pentafluoropropanoic acid, heptafluorobutanoic acid, fluorophenylacetic acid, difluorobenzoic acid and the like. Moreover, as a [C] organic acid, hetero atom containing monocarboxylic acid is mentioned, for example. Examples of the hetero atom-containing monocarboxylic acid include 10-hydroxydecanoic acid, thiolacetic acid, 5-oxohexanoic acid, 3-methoxycyclohexanecarboxylic acid, camphorcarboxylic acid, dinitrobenzoic acid, nitrophenylacetic acid and the like. Moreover, as a [C] organic acid, monocarboxylic acids, such as double bond containing monocarboxylic acids, such as (meth) acrylic acid, crotonic acid, and cinnamic acid, are mentioned, for example. Moreover, as a [C] organic acid, polycarboxylic acid is mentioned, for example. Examples of polycarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, dodecanedicarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid and the like, and examples of polycarboxylic acids include Hexafluoroglutaric acid, cyclohexane hexacarboxylic acid, 1,4-naphthalene dicarboxylic acid and the like can be mentioned. Moreover, as [C] organic acid, the partial esterified thing of the said polycarboxylic acid etc. are mentioned, for example.
 [C]有機酸の25℃における水に対する溶解度の下限としては、5質量%が好ましく、7質量%がより好ましく、10質量%がさらに好ましい。上記溶解度の上限としては、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。上記溶解度を上記下限と上記上限の間とすることで、形成される処理膜の除去をより容易にすることができる。 [C] The lower limit of the solubility of the organic acid in water at 25 ° C. is preferably 5% by mass, more preferably 7% by mass, and still more preferably 10% by mass. The upper limit of the solubility is preferably 50% by mass, more preferably 40% by mass, and still more preferably 30% by mass. By setting the solubility to be between the lower limit and the upper limit, removal of the formed treatment film can be made easier.
 [C]有機酸は、25℃において固体であることが好ましい。[C]有機酸が25℃において固体であると、成膜処理液から形成された処理膜中に固体状の[C]有機酸が析出すると考えられ、除去性がより向上する。 [C] The organic acid is preferably solid at 25 ° C. If the [C] organic acid is solid at 25 ° C., it is considered that the solid [C] organic acid precipitates in the treatment film formed from the film formation treatment solution, and the removability is further improved.
 [C]有機酸としては、処理膜の除去をより容易とする観点から、多価カルボン酸が好ましく、シュウ酸、リンゴ酸、クエン酸がより好ましい。 [C] As the organic acid, a polyvalent carboxylic acid is preferable, and oxalic acid, malic acid and citric acid are more preferable, from the viewpoint of facilitating removal of the treated film.
 成膜処理液中の[C]有機酸の含有量の下限としては、0.01質量%が好ましく、0.05質量%がより好ましく、0.1質量%がさらに好ましい。上記含有量の上限としては、30質量%が好ましく、20質量%がより好ましく、5質量%がさらに好ましい。
 成膜処理液中の全固形分に対する[C]有機酸の含有量の下限としては、0.5質量%が好ましく、1質量%がより好ましく、3質量%がさらに好ましい。上記含有量の上限としては、30質量%が好ましく、20質量%がより好ましく、5質量%がさらに好ましい。
 [C]有機酸の含有量を上記下限と上記上限との間とすることで、処理膜の除去をより容易とすることができる。具体的には、[C]有機酸の含有量を0.1質量%以上とすることで、処理膜中への剥離処理液の浸透性を高めることができ、処理膜をより「膜」の状態のままウェハWから剥離させることができる。つまり、剥離力を向上させることができる。また、[C]有機酸の含有量を5質量%以下とすることで、処理膜の強度が低下することによる剥離力の低下を抑えることができる。
The lower limit of the content of the [C] organic acid in the film forming solution is preferably 0.01% by mass, more preferably 0.05% by mass, and still more preferably 0.1% by mass. As a maximum of the above-mentioned content, 30 mass% is preferred, 20 mass% is more preferred, and 5 mass% is still more preferred.
The lower limit of the content of the [C] organic acid with respect to the total solid content in the film forming solution is preferably 0.5% by mass, more preferably 1% by mass, and still more preferably 3% by mass. As a maximum of the above-mentioned content, 30 mass% is preferred, 20 mass% is more preferred, and 5 mass% is still more preferred.
[C] By setting the content of the organic acid between the above lower limit and the above upper limit, removal of the treated film can be made easier. Specifically, by setting the content of the [C] organic acid to 0.1% by mass or more, the permeability of the stripping treatment liquid into the treated membrane can be enhanced, and the treated membrane can be made more "membrane". The wafer W can be peeled off as it is. That is, the peeling force can be improved. Further, by setting the content of the [C] organic acid to 5% by mass or less, it is possible to suppress the decrease in peel strength due to the decrease in strength of the treated film.
<任意成分>
 成膜処理液は、上記[A]~[C]成分以外の任意成分を含有していてもよい。任意成分としては、例えば、界面活性剤等が挙げられる。
<Optional component>
The film forming solution may contain any component other than the above components [A] to [C]. As an arbitrary component, surfactant etc. are mentioned, for example.
 上記界面活性剤としては、たとえば、ノニオン系界面活性剤が挙げられる。ノニオン系界面活性剤としては、たとえば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル等が挙げられる。また、ノニオン系界面活性剤としては、たとえば、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等が挙げられる。
 上記界面活性剤の含有量としては、通常、2質量%以下であり、1質量%以下が好ましい。
As said surfactant, a nonionic surfactant is mentioned, for example. Examples of the nonionic surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene n-octylphenyl ether. Further, examples of the nonionic surfactant include polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate and the like.
As content of the said surfactant, it is 2 mass% or less normally, and 1 mass% or less is preferable.
<基板洗浄システムの構成>
 次に、本実施形態に係る基板洗浄システムの構成について図2を用いて説明する。図2は、本実施形態に係る基板洗浄システムの構成を示す模式図である。なお、以下においては、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
<Configuration of Substrate Cleaning System>
Next, the configuration of the substrate cleaning system according to the present embodiment will be described with reference to FIG. FIG. 2 is a schematic view showing the configuration of the substrate cleaning system according to the present embodiment. In the following, in order to clarify the positional relationship, the X axis, the Y axis, and the Z axis orthogonal to one another are defined, and the positive direction of the Z axis is the vertically upward direction.
 図2に示すように、基板洗浄システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 2, the substrate cleaning system 1 includes a loading / unloading station 2 and a processing station 3. The loading / unloading station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚のウェハWを水平状態で収容可能な複数の搬送容器(以下、「キャリアC」と記載する)が載置される。 The loading / unloading station 2 includes a carrier placement unit 11 and a transport unit 12. A plurality of transfer containers (hereinafter, referred to as “carrier C”) capable of accommodating a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
 搬送部12は、キャリア載置部11に隣接して設けられる。搬送部12の内部には、基板搬送装置121と、受渡部122とが設けられる。 The transport unit 12 is provided adjacent to the carrier placement unit 11. A substrate transfer device 121 and a delivery unit 122 are provided in the transfer unit 12.
 基板搬送装置121は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置121は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてキャリアCと受渡部122との間でウェハWの搬送を行う。 The substrate transfer device 121 includes a wafer holding mechanism that holds the wafer W. In addition, the substrate transfer device 121 can move in the horizontal direction and the vertical direction and can pivot around the vertical axis, and transfer the wafer W between the carrier C and the delivery unit 122 using the wafer holding mechanism. Do.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部13と、複数の基板洗浄装置14とを備える。複数の基板洗浄装置14は、搬送部13の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transport unit 12. The processing station 3 includes a transport unit 13 and a plurality of substrate cleaning devices 14. The plurality of substrate cleaning devices 14 are provided side by side on both sides of the transport unit 13.
 搬送部13は、内部に基板搬送装置131を備える。基板搬送装置131は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置131は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部122と基板洗浄装置14との間でウェハWの搬送を行う。 The transport unit 13 internally includes a substrate transport device 131. The substrate transfer device 131 includes a wafer holding mechanism that holds the wafer W. Also, the substrate transfer device 131 can move in the horizontal direction and the vertical direction and can pivot about the vertical axis, and the wafer holding mechanism is used to transfer the wafer W between the delivery unit 122 and the substrate cleaning device 14. Transport.
 基板洗浄装置14は、上述した基板洗浄方法に基づく基板洗浄処理を実行する装置である。かかる基板洗浄装置14の具体的な構成については、後述する。 The substrate cleaning apparatus 14 is an apparatus for performing a substrate cleaning process based on the above-described substrate cleaning method. The specific configuration of the substrate cleaning apparatus 14 will be described later.
 また、基板洗浄システム1は、制御装置4を備える。制御装置4は、基板洗浄システム1の動作を制御する装置である。かかる制御装置4は、例えばコンピュータであり、制御部15と記憶部16とを備える。記憶部16には、基板洗浄処理等の各種の処理を制御するプログラムが格納される。制御部15は、記憶部16に記憶されたプログラムを読み出して実行することによって基板洗浄システム1の動作を制御する。制御部15は、例えばCPU(Central Processing Unit)やMPU(Micro Processor Unit)等であり、記憶部16は、例えばROM(Read Only Memory)やRAM(Random Access Memory)等である。 The substrate cleaning system 1 further includes a control device 4. The control device 4 is a device that controls the operation of the substrate cleaning system 1. The control device 4 is, for example, a computer, and includes a control unit 15 and a storage unit 16. The storage unit 16 stores a program for controlling various processes such as the substrate cleaning process. The control unit 15 controls the operation of the substrate cleaning system 1 by reading and executing the program stored in the storage unit 16. The control unit 15 is, for example, a central processing unit (CPU) or a micro processor unit (MPU), and the storage unit 16 is, for example, a read only memory (ROM) or a random access memory (RAM).
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部16にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The program may be recorded in a storage medium readable by a computer, and may be installed in the storage unit 16 of the control device 4 from the storage medium. Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
 上記のように構成された基板洗浄システム1では、まず、搬入出ステーション2の基板搬送装置121が、キャリアCからウェハWを取り出し、取り出したウェハWを受渡部122に載置する。受渡部122に載置されたウェハWは、処理ステーション3の基板搬送装置131によって受渡部122から取り出されて基板洗浄装置14へ搬入され、基板洗浄装置14によって基板洗浄処理が施される。洗浄後のウェハWは、基板搬送装置131により基板洗浄装置14から搬出されて受渡部122に載置された後、基板搬送装置121によってキャリアCに戻される。 In the substrate cleaning system 1 configured as described above, first, the substrate transfer device 121 of the loading / unloading station 2 takes out the wafer W from the carrier C, and places the taken-out wafer W on the delivery unit 122. The wafer W placed on the delivery unit 122 is taken out of the delivery unit 122 by the substrate transfer device 131 of the processing station 3 and carried into the substrate cleaning device 14 and subjected to the substrate cleaning process by the substrate cleaning device 14. The cleaned wafer W is unloaded from the substrate cleaning apparatus 14 by the substrate transfer apparatus 131 and placed on the delivery unit 122, and then returned to the carrier C by the substrate transfer apparatus 121.
<基板洗浄装置の構成>
 次に、基板洗浄装置14の構成について図3、図4Aおよび図4Bを参照して説明する。図3は、本実施形態に係る基板洗浄装置14の構成を示す模式図である。また、図4Aは、第1液供給部に接続される処理液供給系の構成の一例を示す図であり、図4Bは、第2液供給部に接続される処理液供給系の構成の一例を示す図である。
<Configuration of Substrate Cleaning Device>
Next, the configuration of the substrate cleaning apparatus 14 will be described with reference to FIGS. 3, 4A and 4B. FIG. 3 is a schematic view showing the configuration of the substrate cleaning apparatus 14 according to the present embodiment. 4A is a diagram showing an example of the configuration of the treatment liquid supply system connected to the first liquid supply unit, and FIG. 4B is an example of the configuration of the treatment liquid supply system connected to the second liquid supply unit. FIG.
 図3に示すように、基板洗浄装置14は、チャンバ20と、基板保持機構30と、液供給部40と、回収カップ50とを備える。 As shown in FIG. 3, the substrate cleaning apparatus 14 includes a chamber 20, a substrate holding mechanism 30, a liquid supply unit 40, and a recovery cup 50.
 チャンバ20は、基板保持機構30と液供給部40と回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates the substrate holding mechanism 30, the liquid supply unit 40, and the recovery cup 50. An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20. The FFU 21 forms a downflow in the chamber 20.
 FFU21は、バルブ22を介してダウンフローガス供給源23に接続される。FFU21は、ダウンフローガス供給源23から供給されるダウンフローガス(例えば、ドライエア)をチャンバ20内に吐出する。 The FFU 21 is connected to the downflow gas supply source 23 via a valve 22. The FFU 21 discharges downflow gas (for example, dry air) supplied from the downflow gas supply source 23 into the chamber 20.
 基板保持機構30は、回転保持部31と、支柱部32と、駆動部33とを備える。回転保持部31は、チャンバ20の略中央に設けられる。回転保持部31の上面には、ウェハWを側面から保持する保持部材311が設けられる。ウェハWは、かかる保持部材311によって回転保持部31の上面からわずかに離間した状態で水平保持される。 The substrate holding mechanism 30 includes a rotation holding unit 31, a support unit 32, and a drive unit 33. The rotation holding unit 31 is provided substantially at the center of the chamber 20. A holding member 311 for holding the wafer W from the side surface is provided on the upper surface of the rotation holding unit 31. The wafer W is horizontally held by the holding member 311 in a state of being slightly separated from the upper surface of the rotation holding unit 31.
 支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において回転保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。 The support portion 32 is a member extending in the vertical direction, and a proximal end portion of the support portion 32 is rotatably supported by the drive portion 33, and horizontally supports the rotation holding portion 31 at the distal end portion. The drive unit 33 rotates the support unit 32 around the vertical axis.
 かかる基板保持機構30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された回転保持部31を回転させ、これにより、回転保持部31に保持されたウェハWを回転させる。 The substrate holding mechanism 30 rotates the column unit 32 using the drive unit 33 to rotate the rotation holding unit 31 supported by the column unit 32, thereby holding the wafer W held by the rotation holding unit 31. Rotate.
 液供給部40は、第1液供給部40_1と、第2液供給部40_2とを含む。第1液供給部40_1は、基板保持機構30に保持されたウェハWに対して各種の処理液を供給する。かかる第1液供給部40_1は、ノズル41_1~41_3と、ノズル41_1~41_3を水平に支持するアーム42_1と、アーム42_1を旋回および昇降させる旋回昇降機構43_1とを備える。 The liquid supply unit 40 includes a first liquid supply unit 40_1 and a second liquid supply unit 40_2. The first liquid supply unit 40_1 supplies various processing liquids to the wafer W held by the substrate holding mechanism 30. The first liquid supply unit 40_1 includes the nozzles 41_1 to 41_3, an arm 42_1 horizontally supporting the nozzles 41_1 to 41_3, and a pivoting elevating mechanism 43_1 pivoting and elevating the arm 42_1.
 図4Aに示すように、ノズル41_1は、流量調整器46aおよびバルブ44aを介して酸系処理液供給源45aに接続される。 As shown in FIG. 4A, the nozzle 41_1 is connected to an acid-based processing liquid supply source 45a via a flow rate regulator 46a and a valve 44a.
 かかるノズル41_1からは、酸系処理液供給源45aから供給される酸系処理液が吐出される。酸系処理液は、例えば、SPM(硫酸と過酸化水素水との混合液)である。 From the nozzle 41_1, the acid-based treatment liquid supplied from the acid-based treatment liquid supply source 45a is discharged. The acid-based treatment liquid is, for example, SPM (mixed liquid of sulfuric acid and hydrogen peroxide solution).
 ノズル41_2は、流量調整器46bおよびバルブ44bを介してアルカリ系処理液供給源45bに接続され、アルカリ系処理液供給源45bから供給されるアルカリ系処理液を吐出する。アルカリ系処理液は、例えば、SC1(アンモニア、過酸化水素および水の混合液)である。 The nozzle 41_2 is connected to the alkaline processing liquid supply source 45b via the flow rate adjuster 46b and the valve 44b, and discharges the alkaline processing liquid supplied from the alkaline processing liquid supply source 45b. The alkaline processing solution is, for example, SC1 (a mixed solution of ammonia, hydrogen peroxide and water).
 ノズル41_3は、流量調整器46cおよびバルブ44cを介して前処理液供給源45cに接続され、前処理液供給源45cから供給される前処理液を吐出する。前処理液は、例えば成膜処理液に含まれる[A]溶媒である。[A]溶媒は、ウェハW上に成膜処理液を広げ易くするために、成膜処理液が供給される前のウェハWに供給される。また、前処理液は、例えばオゾン水であってもよい。オゾン水は、ウェハWの表面を親水化する親水化処理に用いられる。 The nozzle 41_3 is connected to the pretreatment liquid supply source 45c via the flow rate adjuster 46c and the valve 44c, and discharges the pretreatment liquid supplied from the pretreatment liquid supply source 45c. The pretreatment liquid is, for example, a solvent [A] contained in the film formation liquid. [A] The solvent is supplied to the wafer W before the film formation processing liquid is supplied, in order to easily spread the film formation processing liquid on the wafer W. Further, the pretreatment liquid may be, for example, ozone water. The ozone water is used for a hydrophilization treatment to hydrophilize the surface of the wafer W.
 また、ノズル41_3は、流量調整器46dおよびバルブ44dを介してA+B供給源45dに、流量調整器46eおよびバルブ44eを介してC供給源45eに、それぞれ接続される。 In addition, the nozzle 41_3 is connected to the A + B supply source 45d via the flow rate regulator 46d and the valve 44d, and to the C supply source 45e via the flow rate regulator 46e and the valve 44e.
 A+B供給源45dからは、[A]溶媒および[B]フェノール樹脂の混合液が供給され、C供給源45eからは[C]有機酸が供給される。[A]溶媒および[B]フェノール樹脂の混合液と[C]有機酸とは、ノズル41_3へ至る流路内で混合されて成膜処理液となりノズル41_3から吐出される。[A]溶媒および[B]フェノール樹脂の混合液と[C]有機酸との混合比率は、制御部15が流量調整器46d,46eを制御することによって調整される。 A mixed solution of the [A] solvent and the [B] phenol resin is supplied from the A + B source 45d, and the [C] organic acid is supplied from the C source 45e. The mixed solution of [A] solvent and [B] phenol resin and [C] organic acid are mixed in the flow path leading to the nozzle 41_3 to be a film formation processing solution and discharged from the nozzle 41_3. The mixing ratio of the mixture of [A] solvent and [B] phenol resin to [C] organic acid is adjusted by the control unit 15 controlling the flow rate adjusters 46 d and 46 e.
 [A]溶媒、[B]フェノール樹脂および[C]有機酸をはじめから混合しておくと、経時変化によって[C]有機酸が析出する可能性がある。このため、上記のように[A]溶媒および[B]フェノール樹脂の混合液と[C]有機酸とをノズル41_3から吐出する直前に混合する構成とすることで、[C]有機酸の析出を抑えることができる。 When the solvent (A), the phenol resin (B) and the organic acid (C) are mixed from the beginning, there is a possibility that the organic acid (C) may be precipitated with the passage of time. For this reason, precipitation of the [C] organic acid is made by mixing the mixed solution of the [A] solvent and the [B] phenol resin and the [C] organic acid just before discharging from the nozzle 41_3 as described above. Can be reduced.
 なお、上記流路の中途部に混合槽を設け、この混合槽内で[A]溶媒および[B]フェノール樹脂の混合液と[C]有機酸とを混合させてもよい。 In addition, a mixing tank may be provided in the middle part of the said flow path, and the liquid mixture of [A] solvent and [B] phenol resin, and [C] organic acid may be mixed in this mixing tank.
 第2液供給部40_2は、ノズル41_4~41_6と、ノズル41_4~41_6を水平に支持するアーム42_2と、アーム42_2を旋回および昇降させる旋回昇降機構43_2とを備える。 The second liquid supply unit 40_2 includes the nozzles 41_4 to 41_6, an arm 42_2 horizontally supporting the nozzles 41_4 to 41_6, and a pivoting elevating mechanism 43_2 pivoting and elevating the arm 42_2.
 図4Bに示すように、ノズル41_4は、流量調整器46fおよびバルブ44fを介してDIW供給源45fに接続される。また、ノズル41_4は、流量調整器46gおよびバルブ44gを介してアルカリ水溶液供給源45gに接続される。また、ノズル41_4は、流量調整器46hおよびバルブ44hを介して有機溶剤供給源45hに接続される。 As shown in FIG. 4B, the nozzle 41_4 is connected to the DIW supply source 45f via a flow rate regulator 46f and a valve 44f. Further, the nozzle 41_4 is connected to the alkaline aqueous solution supply source 45g via the flow rate regulator 46g and the valve 44g. Further, the nozzle 41_4 is connected to the organic solvent supply source 45h via a flow rate regulator 46h and a valve 44h.
 かかるノズル41_4からは、DIW供給源45fから供給されるDIW、アルカリ水溶液供給源45gから供給されるアルカリ水溶液または有機溶剤供給源45hから供給される有機溶剤が吐出される。また、例えばバルブ44fとバルブ44gとが開くことにより、DIWとアルカリ水溶液との混合液すなわち希釈されたアルカリ水溶液がノズル41_4から吐出される。また、例えばバルブ44fとバルブ44hとが開くことにより、DIWと有機溶剤との混合液すなわち希釈された有機溶剤がノズル41_4から吐出される。これらの混合比率は、制御部15が流量調整器46f~46hを制御することによって調整される。 The nozzle 41_4 discharges DIW supplied from the DIW supply source 45f, an alkaline aqueous solution supplied from the alkaline aqueous solution supply source 45g, or an organic solvent supplied from the organic solvent supply source 45h. Further, for example, when the valve 44 f and the valve 44 g are opened, a mixed solution of DIW and an aqueous alkali solution, that is, a diluted aqueous alkali solution is discharged from the nozzle 41 _ 4. Further, for example, when the valve 44 f and the valve 44 h are opened, a mixed liquid of DIW and an organic solvent, that is, a diluted organic solvent is discharged from the nozzle 41 _ 4. The mixing ratio is adjusted by the control unit 15 controlling the flow rate regulators 46f to 46h.
 DIWは、処理膜をウェハWから剥離させる剥離処理液の一例である。アルカリ水溶液は、処理膜を溶解させる溶解処理液の一例である。アルカリ水溶液は、例えばアルカリ現像液である。アルカリ現像液としては、例えばアンモニア水、テトラメチルアンモニウムヒドロキシド(TMAH:Tetra Methyl Ammonium Hydroxide)等の4級水酸化アンモニウム水溶液、コリン水溶液、の少なくとも一つを含んでいればよい。 DIW is an example of a peeling processing liquid for peeling the processing film from the wafer W. The alkaline aqueous solution is an example of a dissolution treatment solution for dissolving the treatment film. The aqueous alkaline solution is, for example, an alkaline developer. The alkaline developer may contain, for example, at least one of aqueous ammonia, an aqueous solution of quaternary ammonium hydroxide such as tetra methyl ammonium hydroxide (TMAH), and an aqueous solution of choline.
 有機溶剤は、処理膜を溶解させる溶解処理液の他の一例である。有機溶剤としては、例えばシンナー、IPA(イソプロピルアルコール)、MIBC(4-メチル-2-ペンタノール)、トルエン、酢酸エステル類、アルコール類、グリコール類(プロピレングリコールモノメチルエーテル)などを用いることができる。 The organic solvent is another example of the dissolution treatment solution for dissolving the treatment film. As the organic solvent, for example, thinner, IPA (isopropyl alcohol), MIBC (4-methyl-2-pentanol), toluene, acetic acid esters, alcohols, glycols (propylene glycol monomethyl ether) and the like can be used.
 ノズル41_5は、流量調整器46iおよびバルブ44iを介してDIW供給源45iに接続され、DIW供給源45iから供給されるDIWを吐出する。ノズル41_5から吐出されるDIWは、後述するリンス処理において用いられるリンス処理液の一例である。 The nozzle 41_5 is connected to the DIW supply source 45i via the flow rate regulator 46i and the valve 44i, and discharges DIW supplied from the DIW supply source 45i. DIW discharged from the nozzle 41_5 is an example of a rinse treatment liquid used in a rinse treatment described later.
 ノズル41_6は、流量調整器46jおよびバルブ44jを介してIPA供給源45jに接続され、IPA供給源45jから供給されるIPAを吐出する。ノズル41_6から吐出されるIPAは、後述する乾燥処理において用いられる乾燥溶媒の一例である。 The nozzle 41_6 is connected to the IPA supply source 45j via the flow rate regulator 46j and the valve 44j, and discharges the IPA supplied from the IPA supply source 45j. The IPA discharged from the nozzle 41_6 is an example of a dry solvent used in the drying process described later.
 ノズル41_4、アーム42_2、旋回昇降機構43_2、バルブ44f、流量調整器46fおよびDIW供給源45fは、「剥離処理液供給部」の一例である。また、ノズル41_4、アーム42_2、旋回昇降機構43_2、バルブ44g(バルブ44h)、流量調整器46g(流量調整器46h)およびアルカリ水溶液供給源45g(有機溶剤供給源45h)は、「溶解処理液供給部」の一例である。 The nozzle 41_4, the arm 42_2, the turning and elevating mechanism 43_2, the valve 44f, the flow rate adjuster 46f, and the DIW supply source 45f are examples of the “peeling treatment liquid supply unit”. In addition, the nozzle 41_4, the arm 42_2, the pivoting elevating mechanism 43_2, the valve 44g (valve 44h), the flow rate regulator 46g (flow rate regulator 46h) and the alkaline aqueous solution supply source 45g (organic solvent supply source 45h) Part is an example of a part.
 また、ノズル41_3、アーム42_1、旋回昇降機構43_1、バルブ44d,44e、A+B供給源45d、C供給源45eおよび流量調整器46d,46eは、「成膜処理液供給部」の一例である。 Further, the nozzle 41_3, the arm 42_1, the pivoting elevating mechanism 43_1, the valves 44d and 44e, the A + B supply source 45d, the C supply source 45e, and the flow rate adjusters 46d and 46e are examples of the “film forming processing liquid supply unit”.
 ここでは、第1液供給部40_1が複数のノズル41_1~41_3を備え、第2液供給部40_2が複数のノズル41_4~41_6を備えることとしたが、第1液供給部40_1および第2液供給部40_2は、それぞれノズルを1つずつ備えてもよい。また、複数のノズル41_1~41_6は、1つのアームに設けられてもよい。 Here, the first liquid supply unit 40_1 includes the plurality of nozzles 41_1 to 41_3, and the second liquid supply unit 40_2 includes the plurality of nozzles 41_4 to 41_6. However, the first liquid supply unit 40_1 and the second liquid supply Each of the units 40_2 may have one nozzle. Also, the plurality of nozzles 41_1 to 41_6 may be provided in one arm.
 回転保持部31の周縁部には、回転保持部31とともに一体的に回転する第1、第2回転カップ101,102が設けられる。図3に示すように、第2回転カップ102は、第1回転カップ101よりも内側に配置される。 First and second rotary cups 101 and 102 that rotate integrally with the rotary holding portion 31 are provided on the peripheral edge portion of the rotary holding portion 31. As shown in FIG. 3, the second rotary cup 102 is disposed inside the first rotary cup 101.
 これら第1回転カップ101や第2回転カップ102は、全体的にはリング状に形成される。第1、第2回転カップ101,102は、回転保持部31とともに回転させられると、回転するウェハWから飛散した処理液を回収カップ50へ案内する。 The first rotating cup 101 and the second rotating cup 102 are generally formed in a ring shape. When the first and second rotating cups 101 and 102 are rotated together with the rotation holding unit 31, the first and second rotating cups 101 and 102 guide the processing liquid scattered from the rotating wafer W to the collection cup 50.
 回収カップ50は、回転保持部31によって保持され回転するウェハWの回転中心に近い内側から順に、第1カップ50aと、第2カップ50bと、第3カップ50cとを備える。また、回収カップ50は、第1カップ50aの内周側に、ウェハWの回転中心を中心とする円筒状の内壁部54dを備える。 The recovery cup 50 includes a first cup 50a, a second cup 50b, and a third cup 50c in order from the inside closer to the rotation center of the wafer W held and rotated by the rotation holding unit 31. Further, the recovery cup 50 is provided with a cylindrical inner wall portion 54d centered on the rotation center of the wafer W on the inner peripheral side of the first cup 50a.
 第1~第3カップ50a~50cおよび内壁部54dは、回収カップ50の底部53の上に設けられる。具体的には、第1カップ50aは、第1周壁部54aと、第1液受部55aとを備える。 The first to third cups 50 a to 50 c and the inner wall 54 d are provided on the bottom 53 of the recovery cup 50. Specifically, the first cup 50a includes a first peripheral wall portion 54a and a first liquid receiving portion 55a.
 第1周壁部54aは、底部53から立設されるとともに、筒状(例えば円筒状)に形成される。第1周壁部54aと内壁部54dとの間には空間が形成され、かかる空間は、処理液などを回収して排出するための第1排液溝501aとされる。第1液受部55aは、第1周壁部54aの上面54a1の上方に設けられる。 The first peripheral wall portion 54a is erected from the bottom portion 53 and is formed in a cylindrical shape (for example, a cylindrical shape). A space is formed between the first peripheral wall portion 54a and the inner wall portion 54d, and the space is used as a first drainage groove 501a for collecting and discharging the treatment liquid and the like. The first liquid receiving portion 55a is provided above the upper surface 54a1 of the first peripheral wall 54a.
 また、第1カップ50aは、第1昇降機構56を備え、かかる第1昇降機構56によって昇降可能に構成される。詳しくは、第1昇降機構56は、第1支持部材56aと、第1昇降駆動部56bとを備える。 In addition, the first cup 50 a includes the first lifting mechanism 56, and is configured to be able to move up and down by the first lifting mechanism 56. Specifically, the first lifting and lowering mechanism 56 includes a first support member 56a and a first lifting and lowering drive unit 56b.
 第1支持部材56aは、複数(例えば3本。図3では1本のみ図示)の長尺状の部材である。第1支持部材56aは、第1周壁部54a内に形成される挿通孔に移動可能に挿通される。なお、第1支持部材56aとしては、例えば円柱状のロッドを用いることができるが、これに限定されるものではない。 The first support member 56a is a plurality of (e.g., three, only one in FIG. 3) long members. The first support member 56a is movably inserted into an insertion hole formed in the first peripheral wall 54a. For example, a cylindrical rod may be used as the first support member 56a, but the present invention is not limited to this.
 第1支持部材56aは、上端が第1周壁部54aの上面54a1から露出するように位置されるとともに、第1液受部55aの下面に接続されて第1液受部55aを下方から支持する。一方、第1支持部材56aの下端には、第1昇降駆動部56bが接続される。 The first support member 56a is positioned so that the upper end is exposed from the upper surface 54a1 of the first peripheral wall 54a, and is connected to the lower surface of the first liquid receiver 55a to support the first liquid receiver 55a from below. . On the other hand, the first elevation driving unit 56b is connected to the lower end of the first support member 56a.
 第1昇降駆動部56bは、第1支持部材56aを例えばZ軸方向に昇降させ、これにより第1支持部材56aは、第1液受部55aを第1周壁部54aに対して昇降させる。なお、第1昇降駆動部56bとしては、エアシリンダを用いることができる。また、第1昇降駆動部56bは、制御装置4によって制御される。 The first elevation driving unit 56b raises and lowers the first support member 56a, for example, in the Z-axis direction, whereby the first support member 56a raises and lowers the first liquid receiver 55a with respect to the first peripheral wall 54a. In addition, an air cylinder can be used as the 1st raising / lowering drive part 56b. In addition, the first elevation driving unit 56 b is controlled by the control device 4.
 第1昇降駆動部56bによって駆動される第1液受部55aは、回転するウェハWから飛散した処理液を受ける処理位置と、処理位置から下方側に退避した退避位置との間で移動させられることとなる。 The first liquid receiving unit 55a driven by the first elevation driving unit 56b is moved between the processing position for receiving the processing liquid scattered from the rotating wafer W and the retracted position retracted downward from the processing position. It will be.
 詳しくは、第1液受部55aが処理位置にあるとき、第1液受部55aの上端の内側に開口が形成され、開口から第1排液溝501aへと通じる流路が形成される。 Specifically, when the first liquid receiving portion 55a is at the processing position, an opening is formed inside the upper end of the first liquid receiving portion 55a, and a flow path that leads from the opening to the first drainage groove 501a is formed.
 他方、図3に示すように、内壁部54dは、回転保持部31の周縁部へ向けて傾斜するようにして延設される延設部54d1を備える。第1液受部55aは、退避位置にあるとき、内壁部54dの延設部54d1に当接し、上端内側の開口が閉じて第1排液溝501aへと通じる流路が閉塞される。 On the other hand, as shown in FIG. 3, the inner wall portion 54 d includes an extending portion 54 d 1 extended so as to incline toward the peripheral portion of the rotation holding portion 31. When the first liquid receiving portion 55a is in the retracted position, the first liquid receiving portion 55a abuts on the extending portion 54d1 of the inner wall portion 54d, the opening at the upper end is closed, and the flow path leading to the first drainage groove 501a is blocked.
 第2カップ50bは、第1カップ50aと同様な構成とされる。具体的には、第2カップ50bは、第2周壁部54bと、第2液受部55bと、第2昇降機構57とを備え、第1カップ50aの第1周壁部54a側に隣接して配置される。 The second cup 50b is configured the same as the first cup 50a. Specifically, the second cup 50b includes a second peripheral wall 54b, a second liquid receiver 55b, and a second lifting mechanism 57, and is adjacent to the first peripheral wall 54a of the first cup 50a. Be placed.
 第2周壁部54bは、底部53において第1周壁部54aの外周側に立設され、筒状に形成される。そして、第2周壁部54bと第1周壁部54aとの間に形成される空間が、処理液などを回収して排出するための第2排液溝501bとされる。 The second peripheral wall portion 54 b is provided upright on the outer peripheral side of the first peripheral wall portion 54 a at the bottom portion 53 and is formed in a tubular shape. A space formed between the second peripheral wall 54b and the first peripheral wall 54a is used as a second drainage groove 501b for collecting and discharging the treatment liquid and the like.
 第2液受部55bは、第1液受部55aの外周側に位置されるとともに、第2周壁部54bの上面54b1の上方に設けられる。 The second liquid receiving portion 55b is located on the outer peripheral side of the first liquid receiving portion 55a, and is provided above the upper surface 54b1 of the second peripheral wall 54b.
 第2昇降機構57は、第2支持部材57aと、第2昇降駆動部57bとを備える。第2支持部材57aは、複数(例えば3本。図3では1本のみ図示)の長尺状の部材であり、第2周壁部54b内に形成される挿通孔に移動可能に挿通される。なお、第2支持部材57aとしては、例えば円柱状のロッドを用いることができるが、これに限られない。 The second lifting and lowering mechanism 57 includes a second support member 57a and a second lifting and lowering drive unit 57b. The second support members 57a are a plurality of (e.g., three, only one is shown in FIG. 3) elongated members, and are movably inserted into the insertion holes formed in the second peripheral wall 54b. For example, a cylindrical rod can be used as the second support member 57a, but the present invention is not limited to this.
 第2支持部材57aは、上端が第2周壁部54bの上面54b1から露出するように位置されるとともに、第2液受部55bの下面に接続されて第2液受部55bを下方から支持する。なお、第2周壁部54bの上面54b1は、第1周壁部54aの上面54a1に対して鉛直方向において下方となるように位置される。 The second support member 57a is positioned such that the upper end is exposed from the upper surface 54b1 of the second peripheral wall 54b, and is connected to the lower surface of the second liquid receiver 55b to support the second liquid receiver 55b from below. . The upper surface 54b1 of the second peripheral wall 54b is positioned below the upper surface 54a1 of the first peripheral wall 54a in the vertical direction.
 第2支持部材57aの下端には、第2昇降駆動部57bが接続される。第2昇降駆動部57bは、第2支持部材57aを例えばZ軸方向に昇降させる。これにより、第2支持部材57aは、第2液受部55bを第2周壁部54bに対して昇降させる。 The second elevation driving unit 57b is connected to the lower end of the second support member 57a. The second elevation driving unit 57 b raises and lowers the second support member 57 a in, for example, the Z-axis direction. Thereby, the second support member 57a raises and lowers the second liquid receiving portion 55b with respect to the second peripheral wall portion 54b.
 なお、第2昇降駆動部57bとしては、エアシリンダを用いることができる。また、第2昇降駆動部57bも、制御装置4によって制御される。 In addition, an air cylinder can be used as the 2nd raising / lowering drive part 57b. In addition, the second elevation driving unit 57 b is also controlled by the control device 4.
 そして、第2液受部55bも処理位置と退避位置との間で移動させられることとなる。詳しくは、第2液受部55bが処理位置にあり、かつ、第1液受部55aが退避位置にあるとき、第2液受部55bの上端の内側に開口が形成され、開口から第2排液溝501bへと通じる流路が形成される。 Then, the second liquid receiver 55b is also moved between the processing position and the retracted position. Specifically, when the second liquid receiving portion 55b is at the processing position and the first liquid receiving portion 55a is at the retracted position, an opening is formed inside the upper end of the second liquid receiving portion 55b, and A flow path leading to the drainage groove 501b is formed.
 他方、図3に示すように、第2液受部55bは、退避位置にあるとき、第1液受部55aに当接し、上端内側の開口が閉じて第2排液溝501bへと通じる流路が閉塞される。なお、上記では、退避位置の第2液受部55bは、第1液受部55aに当接するようにしたが、これに限られず、例えば内壁部54dに当接して上端内側の開口を閉じるようにしてもよい。 On the other hand, as shown in FIG. 3, when the second liquid receiving portion 55b is in the retracted position, the second liquid receiving portion 55b abuts on the first liquid receiving portion 55a, and the opening at the upper end is closed to flow to the second drainage groove 501b. The road is blocked. In the above, the second liquid receiving portion 55b at the retracted position is in contact with the first liquid receiving portion 55a, but is not limited thereto. For example, the second liquid receiving portion 55b may be in contact with the inner wall 54d to close the opening at the upper end You may
 第3カップ50cは、第3周壁部54cと、第3液受部55cとを備え、第2カップ50bに対して第1カップ50aとは反対側に隣接して配置される。第3周壁部54cは、底部53において第2周壁部54bの外周側に立設され、筒状に形成される。そして、第3周壁部54cと第2周壁部54bとの間の空間が、処理液などを回収して排出するための第3排液溝501cとされる。 The third cup 50c includes a third peripheral wall portion 54c and a third liquid receiving portion 55c, and is disposed adjacent to the second cup 50b opposite to the first cup 50a. The third peripheral wall portion 54c is erected on the outer peripheral side of the second peripheral wall portion 54b at the bottom portion 53, and is formed in a tubular shape. Then, a space between the third peripheral wall portion 54c and the second peripheral wall portion 54b is used as a third drainage groove 501c for collecting and discharging the treatment liquid and the like.
 第3液受部55cは、第3周壁部54cの上端から連続するように形成される。第3液受部55cは、回転保持部31に保持されたウェハWの周囲を囲むとともに、第1液受部55aや第2液受部55bの上方まで延びるように形成される。 The third liquid receiving portion 55c is formed to be continuous with the upper end of the third peripheral wall portion 54c. The third liquid receiving portion 55c is formed to surround the periphery of the wafer W held by the rotation holding portion 31 and to extend above the first liquid receiving portion 55a and the second liquid receiving portion 55b.
 第3液受部55cは、図3に示すように、第1、第2液受部55a,55bがともに退避位置にあるとき、第3液受部55cの上端の内側に開口が形成され、開口から第3排液溝501cへと通じる流路が形成される。 As shown in FIG. 3, the third liquid receiving portion 55c has an opening formed inside the upper end of the third liquid receiving portion 55c when both the first and second liquid receiving portions 55a and 55b are in the retracted position, A flow path is formed which leads from the opening to the third drainage groove 501c.
 一方、第3液受部55cは、第2液受部55bが上昇させられた位置にある場合、または第1液受部55aおよび第2液受部55bの両方が上昇させられた位置にある場合、第2液受部55bが当接する。これにより、上端内側の開口が閉じて第3排液溝501cへと通じる流路が閉塞される。 On the other hand, the third liquid receiver 55c is in the position where the second liquid receiver 55b is raised, or in the position where both the first liquid receiver 55a and the second liquid receiver 55b are raised. In this case, the second liquid receiver 55b abuts. Thereby, the opening at the upper end inside is closed, and the flow passage leading to the third drainage groove 501c is closed.
 上記した第1~第3カップ50a~50cに対応する底部53、正確には第1~第3排液溝501a~501cに対応する底部53にはそれぞれ、排液口51a~51cが、回収カップ50の円周方向に沿って間隔をあけつつ形成される。 At the bottoms 53 corresponding to the first to third cups 50a to 50c described above, exactly the bottoms 53 corresponding to the first to third drainage grooves 501a to 501c, the drainage ports 51a to 51c respectively They are formed at intervals along 50 circumferential directions.
 ここで、排液口51aから排出される処理液が酸系処理液、排液口51bから排出される処理液がアルカリ系処理液、排液口51cから排出される処理液が有機系処理液(成膜処理液、有機溶剤など)である場合を例にとって説明する。なお、上記した各排液口51a~51cから排出される処理液の種類は、あくまでも例示であって限定されるものではない。 Here, the treatment liquid discharged from the drainage port 51a is an acid type treatment liquid, the treatment liquid discharged from the drainage port 51b is an alkali type processing liquid, and the treatment liquid discharged from the drainage port 51c is an organic processing liquid The case of (film formation processing solution, organic solvent, etc.) will be described as an example. The types of treatment liquid discharged from the above-described drainage ports 51a to 51c are merely illustrative and not limitative.
 排液口51aは、排液管91aに接続される。排液管91aは、途中にバルブ62aが介挿され、かかるバルブ62aの位置で第1排液管91a1と第2排液管91a2とに分岐される。なお、バルブ62aとしては、例えば、閉弁位置と、排出経路を第1排液管91a1側に開放する位置と、第2排液管91a2側に開放する位置との間で切り替え可能な三方弁を用いることができる。 The drainage port 51a is connected to the drainage pipe 91a. The drainage pipe 91a has a valve 62a interposed in the middle, and is branched into a first drainage pipe 91a1 and a second drainage pipe 91a2 at the position of the valve 62a. In addition, as the valve 62a, for example, a three-way valve that can be switched between a valve closing position, a position where the discharge path is opened to the first liquid discharge pipe 91a1 side, and a position open to the second liquid discharge pipe 91a2 side Can be used.
 上記した酸系処理液が再利用可能である場合、第1排液管91a1は、酸系処理液供給源45a(例えば酸系処理液を貯留するタンク)に接続され、排液を酸系処理液供給源45aへ戻す。すなわち、第1排液管91a1は、循環ラインとして機能する。なお、第2排液管91a2については後述する。 If the above-mentioned acid-based treatment liquid is reusable, the first drainage pipe 91a1 is connected to the acid-based treatment liquid supply source 45a (for example, a tank for storing the acid-based treatment liquid), and acid treatment of drainage is performed. It returns to the liquid supply source 45a. That is, the first drain pipe 91a1 functions as a circulation line. The second drainage pipe 91a2 will be described later.
 排液口51bは、排液管91bに接続される。排液管91bの途中には、バルブ62bが介挿される。また、排液口51cは、排液管91cに接続される。排液管91cの途中には、バルブ62cが介挿される。なお、バルブ62b,62cは、制御装置4によって制御される。 The drainage port 51b is connected to the drainage pipe 91b. A valve 62b is inserted in the middle of the drain pipe 91b. Further, the drainage port 51c is connected to the drainage pipe 91c. A valve 62c is inserted in the middle of the drain pipe 91c. The valves 62 b and 62 c are controlled by the controller 4.
 そして、基板洗浄装置14は、基板処理を行う際、基板処理中の各処理にて使用する処理液の種類などに応じて、第1カップ50aの第1液受部55aや第2カップ50bの第2液受部55bを昇降させ、排液口51a~51cの切り替えを実行する。 Then, when the substrate processing apparatus 14 performs substrate processing, the first liquid receiving portion 55 a or the second cup 50 b of the first cup 50 a according to the type of processing liquid used in each processing during substrate processing. The second liquid receiver 55b is moved up and down to switch the drainage ports 51a to 51c.
 例えば、酸系処理液をウェハWへ吐出してウェハWを処理する場合、制御装置4は、第1カップ50aおよび第2カップ50bを上昇させておく。すなわち、制御装置4は、第1、第2昇降駆動部56b,57bを介して第1、第2支持部材56a,57aを上昇させ、第1液受部55aを処理位置まで上昇させる。これにより、制御装置4は、第1液受部55aの上端内側の開口から第1排液溝501aへと通じる流路を形成しておく。これにより、ウェハWへ供給された酸系処理液は、第1排液溝501aに流れ込むこととなる。 For example, when the acid-based processing liquid is discharged onto the wafer W to process the wafer W, the control device 4 raises the first cup 50a and the second cup 50b. That is, the control device 4 raises the first and second support members 56a and 57a via the first and second elevation driving units 56b and 57b, and raises the first liquid receiving portion 55a to the processing position. Thereby, the control device 4 forms a flow path leading from the opening at the upper inner side of the first liquid receiving portion 55a to the first drainage groove 501a. As a result, the acid-based processing liquid supplied to the wafer W flows into the first drain groove 501a.
 また、制御装置4は、バルブ62aを制御して排出経路を第1排液管91a1側に開放するようにしておく。これにより、第1排液溝501aに流れ込んだ酸系処理液は、排液管91aおよび第1排液管91a1を介して酸系処理液供給源45aへ戻される。そして、酸系処理液供給源45aへ戻された酸系処理液は、ウェハWへ再び供給される。このように、第1カップ50aは、回収した酸系処理液を循環させてウェハWへ再度供給する循環ラインに接続される。 Further, the control device 4 controls the valve 62a to open the discharge path to the first drain pipe 91a1 side. As a result, the acid-based treatment liquid flowing into the first drainage groove 501a is returned to the acid-based treatment liquid supply source 45a via the drainage pipe 91a and the first drainage pipe 91a1. Then, the acid-based processing solution returned to the acid-based processing solution supply source 45 a is again supplied to the wafer W. As described above, the first cup 50 a is connected to a circulation line that circulates the recovered acid-based processing solution and supplies it again to the wafer W.
 また、例えばアルカリ系処理液をウェハWへ吐出してウェハWを処理する場合、制御装置4は、第2カップ50bのみを上昇させておく。すなわち、制御装置4は、第2昇降駆動部57bを介して第2支持部材57aを上昇させ、第2液受部55bを処理位置まで上昇させることで、第2液受部55bの上端内側の開口から第2排液溝501bへと通じる流路を形成しておく。なお、ここで第1カップ50aは、下降しているものとする。これにより、ウェハWへ供給されたアルカリ系処理液は、第2排液溝501bに流れ込むこととなる。 Further, for example, when the alkali-based processing liquid is discharged onto the wafer W to process the wafer W, the control device 4 raises only the second cup 50 b. That is, the control device 4 raises the second support member 57a via the second elevation drive unit 57b and raises the second liquid receiving portion 55b to the processing position, whereby the inner end of the upper end of the second liquid receiving portion 55b is obtained. A flow path leading from the opening to the second drainage groove 501b is formed in advance. In addition, the 1st cup 50a shall descend | fall here. Thus, the alkaline processing liquid supplied to the wafer W flows into the second drainage groove 501b.
 また、制御装置4は、バルブ62bを開放しておく。これにより、第2排液溝501bのアルカリ系処理液は、排液管91bを介して基板洗浄装置14の外部へ排出される。このように、排液管91bは、回収したアルカリ系処理液を基板洗浄装置14外部へ排出する排液ラインとして機能する。 Moreover, the control device 4 opens the valve 62b. As a result, the alkaline processing liquid in the second drainage groove 501b is drained to the outside of the substrate cleaning device 14 through the drainage pipe 91b. As described above, the drainage pipe 91 b functions as a drainage line for discharging the recovered alkaline processing liquid to the outside of the substrate cleaning apparatus 14.
 また、例えば有機系処理液をウェハWへ吐出してウェハWを処理する場合、制御装置4は、第1、第2カップ50a,50bを下降させておく(図3参照)。すなわち、制御装置4は、第1、第2昇降駆動部56b,57bを介して第1、第2支持部材56a,57aを下降させ、第1、第2液受部55a,55bを退避位置まで下降させる。このようにすることで、第3液受部55cの上端内側の開口から第3排液溝501cへと通じる流路を形成しておく。これにより、ウェハWへ供給された有機系処理液は、第3排液溝501cに流れ込むこととなる。 Further, for example, when the organic processing liquid is discharged onto the wafer W to process the wafer W, the control device 4 lowers the first and second cups 50a and 50b (see FIG. 3). That is, the control device 4 lowers the first and second support members 56a and 57a via the first and second elevation driving units 56b and 57b, and moves the first and second liquid receivers 55a and 55b to the retracted position. Let down. By doing this, a flow path is formed which leads from the opening at the upper end inside of the third liquid receiving portion 55c to the third drainage groove 501c. Thus, the organic processing liquid supplied to the wafer W flows into the third drain groove 501c.
 また、制御装置4は、バルブ62cを開放しておき、よって第3排液溝501cの有機系処理液は、排液管91cを介して基板洗浄装置14の外部へ排出される。 Further, the control device 4 keeps the valve 62 c open, so that the organic processing liquid in the third drainage groove 501 c is drained to the outside of the substrate cleaning device 14 through the drainage pipe 91 c.
 回収カップ50の底部53、第1周壁部54aおよび第2周壁部54bにはそれぞれ、排気口52a,52b,52cが形成される。また、排気口52a,52b,52cは、1本の排気管に接続され、かかる排気管は排気の下流側において第1~第3排気管93a~93cに分岐される。また、第1排気管93aにはバルブ64aが介挿され、第2排気管93bにはバルブ64bが、第3排気管93cにはバルブ64cが介挿される。 Exhaust ports 52a, 52b and 52c are formed in the bottom 53 of the collection cup 50, the first peripheral wall 54a and the second peripheral wall 54b, respectively. The exhaust ports 52a, 52b, 52c are connected to a single exhaust pipe, and the exhaust pipe is branched into first to third exhaust pipes 93a to 93c at the downstream side of the exhaust. Further, a valve 64a is inserted in the first exhaust pipe 93a, a valve 64b is inserted in the second exhaust pipe 93b, and a valve 64c is inserted in the third exhaust pipe 93c.
 第1排気管93aは酸性の排気用の排気管であり、第2排気管93bはアルカリ性の排気用、第3排気管93cは有機系排気用の排気管である。これらは、基板処理の各処理に応じて制御装置4によって切り替えられる。 The first exhaust pipe 93a is an acidic exhaust pipe, the second exhaust pipe 93b is an alkaline exhaust pipe, and the third exhaust pipe 93c is an organic exhaust pipe. These are switched by the control device 4 in accordance with each process of substrate processing.
 例えば、酸性の排気を生じる処理の実行に際しては、第1排気管93aへの切り替えが制御装置4によって行われ、バルブ64aを介して酸性の排気が排出される。同様に、アルカリ性の排気を生じる処理の場合、第2排気管93bへの切り替えが制御装置4によって行われ、バルブ64bを介してアルカリ性の排気が排出される。また、有機系排気を生じる処理の場合、第3排気管93cへの切り替えが制御装置4によって行われ、バルブ64cを介して有機系排気が排出される。 For example, at the time of execution of the process which produces acidic exhaust, switching to the 1st exhaust pipe 93a is performed by the control apparatus 4, and acidic exhaust is discharged | emitted via valve | bulb 64a. Similarly, in the case of the process which produces alkaline exhaust, switching to the 2nd exhaust pipe 93b is performed by the control apparatus 4, and alkaline exhaust is discharged | emitted via valve | bulb 64b. Moreover, in the case of the process which produces organic type exhaust_gas | exhaustion, the switching to the 3rd exhaust pipe 93c is performed by the control apparatus 4, and organic type exhaust_gas | exhaustion is discharged | emitted via valve | bulb 64c.
<基板洗浄システムの具体的動作>
 次に、基板洗浄装置14の具体的動作について図5を参照して説明する。図5は、本実施形態に係る基板洗浄システム1が実行する基板洗浄処理の処理手順を示すフローチャートである。基板洗浄システム1が備える各装置は、制御部15の制御に従って図5に示す各処理手順を実行する。
<Concrete operation of substrate cleaning system>
Next, the specific operation of the substrate cleaning apparatus 14 will be described with reference to FIG. FIG. 5 is a flowchart showing the processing procedure of the substrate cleaning process performed by the substrate cleaning system 1 according to the present embodiment. Each device provided in the substrate cleaning system 1 executes each processing procedure shown in FIG. 5 according to the control of the control unit 15.
 図5に示すように、基板洗浄装置14では、まず、基板搬入処理が行われる(ステップS101)。かかる基板搬入処理では、基板搬送装置131(図2参照)によってチャンバ20内に搬入されたウェハWが基板保持機構30の保持部材311により保持される。このときウェハWは、パターン形成面が上方を向いた状態で保持部材311に保持される。その後、駆動部33によって回転保持部31が回転する。これにより、ウェハWは、回転保持部31に水平保持された状態で回転保持部31とともに回転する。 As shown in FIG. 5, in the substrate cleaning apparatus 14, first, a substrate loading process is performed (step S101). In the substrate loading process, the wafer W loaded into the chamber 20 by the substrate transfer apparatus 131 (see FIG. 2) is held by the holding member 311 of the substrate holding mechanism 30. At this time, the wafer W is held by the holding member 311 with the pattern formation surface facing upward. Thereafter, the rotation holding unit 31 is rotated by the driving unit 33. Thus, the wafer W rotates with the rotation holding unit 31 in a state of being horizontally held by the rotation holding unit 31.
 つづいて、基板洗浄装置14では、前処理が行われる(ステップS102)。まず、第1液供給部40_1のノズル41_1がウェハWの中央上方に位置する。その後、バルブ44aが所定時間開放されることにより、レジストが形成されていないウェハWのパターン形成面に対して酸系処理液が供給される。ウェハWへ供給された酸系処理液は、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。これにより、ウェハWのパターン形成面が酸系処理液によって処理される。その後、第2液供給部40_2のノズル41_5がウェハWの中央上方に位置する。その後、バルブ44iが所定時間開放されることにより、ウェハWのパターン形成面にDIWが供給される。これにより、ウェハWに残存する酸系処理液がDIWによって洗い流される。 Subsequently, in the substrate cleaning apparatus 14, preprocessing is performed (step S102). First, the nozzle 41_1 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valve 44a is opened for a predetermined time, whereby the acid-based processing liquid is supplied to the pattern formation surface of the wafer W on which the resist is not formed. The acid-based processing solution supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, the pattern formation surface of the wafer W is processed by the acid-based processing liquid. Thereafter, the nozzle 41_5 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44i is opened for a predetermined time to supply DIW to the patterned surface of the wafer W. Thus, the acid-based processing solution remaining on the wafer W is washed away by the DIW.
 なお、酸系処理液の供給時においては、第1カップ50aおよび第2カップ50bを上昇させることで、第1液受部55aの上端内側の開口から第1排液溝501aへと通じる流路を形成しておく。これにより、ウェハWへ供給された酸系処理液は、第1排液溝501aに流れ込むこととなる。 At the time of supply of the acid-based treatment liquid, the first cup 50a and the second cup 50b are raised, whereby the flow passage from the opening at the upper inner end of the first liquid receiving portion 55a to the first drainage groove 501a Form. As a result, the acid-based processing liquid supplied to the wafer W flows into the first drain groove 501a.
 つづいて、第1液供給部40_1のノズル41_2がウェハWの中央上方に位置する。その後、バルブ44bが所定時間開放されることにより、ウェハWのパターン形成面に対してアルカリ系処理液が供給される。ウェハWへ供給されたアルカリ系処理液は、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。これにより、ウェハWのパターン形成面がアルカリ系処理液によって処理される。その後、第2液供給部40_2のノズル41_5がウェハWの中央上方に位置する。その後、バルブ44iが所定時間開放されることにより、ウェハWのパターン形成面にDIWが供給される。これにより、ウェハWに残存するアルカリ系処理液がDIWによって洗い流される。 Subsequently, the nozzle 41_2 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valve 44 b is opened for a predetermined time to supply the alkaline processing liquid to the pattern formation surface of the wafer W. The alkaline processing liquid supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, the pattern formation surface of the wafer W is processed by the alkaline processing liquid. Thereafter, the nozzle 41_5 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44i is opened for a predetermined time to supply DIW to the patterned surface of the wafer W. Thereby, the alkaline processing liquid remaining on the wafer W is washed away by the DIW.
 なお、アルカリ系処理液の供給時においては、第2カップ50bのみを上昇させることで、第2液受部55bの上端内側の開口から第2排液溝501bへと通じる流路を形成しておく。これにより、ウェハWへ供給されたアルカリ系処理液は、第2排液溝501bに流れ込むこととなる。 At the time of supply of the alkaline treatment liquid, only the second cup 50b is raised to form a flow passage from the opening at the upper inner end of the second liquid receiving portion 55b to the second drainage groove 501b. deep. Thus, the alkaline processing liquid supplied to the wafer W flows into the second drainage groove 501b.
 つづいて、前処理としてプリウェット処理を行う場合、第1液供給部40_1のノズル41_3がウェハWの中央上方に位置する。その後、バルブ44cが所定時間開放されることにより、レジストが形成されていないウェハWのパターン形成面に対して前処理液である[A]溶媒が供給される。ウェハWへ供給された[A]溶媒は、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。 Subsequently, when pre-wet processing is performed as pre-processing, the nozzle 41_3 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, so that the [A] solvent, which is a pretreatment liquid, is supplied to the pattern formation surface of the wafer W on which the resist is not formed. The [A] solvent supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W.
 このように、成膜処理液と親和性のある[A]溶媒を事前にウェハWに塗り広げておくことで、後述する成膜処理液供給処理(ステップS103)において、成膜処理液がウェハWの上面に広がり易くなるとともに、パターンの隙間にも入り込み易くなる。したがって、成膜処理液の使用量を削減することができるとともに、パターンの隙間に入り込んだパーティクルPをより確実に除去することが可能となる。また、成膜処理液供給処理の処理時間の短縮化を図ることもできる。 As described above, by spreading the [A] solvent having affinity to the film forming process liquid on the wafer W in advance, the film forming process liquid is the wafer in the film forming process liquid supply process (step S103) described later. While it is easy to spread on the upper surface of W, it becomes easy to enter into the crevice of a pattern. Therefore, it is possible to reduce the amount of use of the film forming treatment liquid and to more reliably remove the particles P which have entered into the gaps of the pattern. In addition, the processing time of the film forming process liquid supply process can be shortened.
 また、前処理として親水化処理を行う場合、第1液供給部40_1のノズル41_3がウェハWの中央上方に位置する。その後、バルブ44cが所定時間開放されることにより、レジストが形成されていないウェハWのパターン形成面に対して前処理液であるオゾン水が供給される。ウェハWへ供給されたオゾン水は、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。これにより、ウェハWのパターン形成面が親水化される。 When the hydrophilization treatment is performed as the pretreatment, the nozzle 41_3 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time to supply ozone water, which is a pretreatment liquid, to the pattern formation surface of the wafer W on which the resist is not formed. The ozone water supplied to the wafer W spreads on the patterned surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, the pattern formation surface of the wafer W is hydrophilized.
 このように、親水化処理を行うことで、親水化されたウェハWの界面(パターン形成面)に剥離処理液が浸透し易くなるため、処理膜の除去性をさらに向上させることができる。なお、親水化処理を前処理として行う場合、オゾン水に代えて、例えば過酸化水素水を前処理液として使用してもよい。なお、ステップS102の前処理は、必ずしも行われることを要しない。 As described above, by performing the hydrophilization treatment, the peeling processing liquid easily penetrates the interface (pattern formation surface) of the wafer W that has been hydrophilized, so that the removability of the processing film can be further improved. When the hydrophilization treatment is performed as pretreatment, hydrogen peroxide water, for example, may be used as a pretreatment liquid instead of ozone water. Note that the preprocessing of step S102 does not necessarily need to be performed.
 つづいて、基板洗浄装置14では、成膜処理液供給処理が行われる(ステップS103)。かかる成膜処理液供給処理では、第1液供給部40_1のノズル41_3がウェハWの中央上方に位置する。その後、バルブ44d,44eが所定時間開放されることにより、ノズル41_3へ至る流路に、[A]溶媒および[B]フェノール樹脂の混合液と[C]有機酸とがそれぞれ供給される。これらは、上記流路内で混合されて成膜処理液となり、レジストが形成されていないウェハWのパターン形成面に供給される。このように、成膜処理液は、レジストを介することなくウェハW上に供給される。 Subsequently, in the substrate cleaning apparatus 14, a film forming process liquid supply process is performed (step S103). In the film forming process liquid supply process, the nozzle 41_3 of the first liquid supply unit 40_1 is located above the center of the wafer W. Thereafter, the valves 44d and 44e are opened for a predetermined time, so that the mixed solution of the [A] solvent and the [B] phenol resin and the [C] organic acid are respectively supplied to the flow path leading to the nozzle 41_3. These are mixed in the flow path to form a film formation treatment solution, and are supplied to the pattern formation surface of the wafer W on which no resist is formed. As described above, the film forming process liquid is supplied onto the wafer W without passing through the resist.
 ウェハWへ供給された成膜処理液は、ウェハWの回転に伴う遠心力によってウェハWの表面に広がる。これにより、ウェハWのパターン形成面に成膜処理液の液膜が形成される。形成される処理膜の膜厚は、10nm~5,000nmが好ましく、20nm~500nmがより好ましい。上述したように、[B]フェノール樹脂を成分とする本実施形態に係る成膜処理液は、従来のアクリル樹脂を成分とする成膜処理液と比較して厚膜化が容易である。また、フェノール樹脂はアクリル樹脂と比較して安価である。したがって、本実施形態に係る基板洗浄方法によれば、ウェハWに付着したパーティクルPの除去に用いられる処理膜の厚膜化を安価に実現することができる。 The film forming process liquid supplied to the wafer W spreads on the surface of the wafer W by the centrifugal force accompanying the rotation of the wafer W. Thereby, a liquid film of the film forming treatment liquid is formed on the pattern formation surface of the wafer W. The thickness of the treated film to be formed is preferably 10 nm to 5,000 nm, and more preferably 20 nm to 500 nm. As described above, the film-forming treatment liquid according to the present embodiment containing the [B] phenolic resin as a component is easy to thicken as compared with the conventional film-forming treatment liquid containing an acrylic resin as a component. Also, phenolic resins are less expensive than acrylic resins. Therefore, according to the substrate cleaning method according to the present embodiment, thickening of the processing film used for removing the particles P attached to the wafer W can be realized at low cost.
 つづいて、基板洗浄装置14では、乾燥処理が行われる(ステップS104)。かかる乾燥処理では、例えばウェハWの回転速度を所定時間増加させることによって成膜処理液を乾燥させる。これにより、例えば成膜処理液に含まれる有機溶媒の一部または全部が気化して成膜処理液に含まれる固形分が固化または硬化し、ウェハWのパターン形成面に処理膜が形成される。 Subsequently, in the substrate cleaning apparatus 14, a drying process is performed (step S104). In the drying process, for example, the film forming process liquid is dried by increasing the rotation speed of the wafer W for a predetermined time. Thereby, for example, part or all of the organic solvent contained in the film forming treatment liquid is vaporized, solid content contained in the film forming treatment liquid is solidified or hardened, and the treatment film is formed on the pattern formation surface of the wafer W .
 なお、ステップS104の乾燥処理は、例えば、図示しない減圧装置によってチャンバ20内を減圧状態にする処理であってもよいし、FFU21から供給されるダウンフローガスによってチャンバ20内の湿度を低下させる処理であってもよい。これらの処理によっても、成膜処理液を固化または硬化させることができる。 The drying process in step S104 may be, for example, a process of reducing the pressure in the chamber 20 by a pressure reducing device (not shown), or a process of reducing the humidity in the chamber 20 by the downflow gas supplied from the FFU 21. It may be The film formation treatment liquid can also be solidified or cured by these treatments.
 また、基板洗浄装置14は、成膜処理液が自然に固化または硬化するまでウェハWを基板洗浄装置14で待機させてもよい。また、ウェハWの回転を停止させたり、成膜処理液が振り切られてウェハWの表面が露出することがない程度の回転数でウェハWを回転させたりすることによって成膜処理液を固化または硬化させてもよい。 In addition, the substrate cleaning apparatus 14 may cause the wafer W to stand by in the substrate cleaning apparatus 14 until the film forming process liquid is naturally solidified or cured. In addition, the film formation processing liquid is solidified by stopping the rotation of the wafer W or rotating the wafer W at such a rotation speed that the film formation processing solution is not shaken off and the surface of the wafer W is not exposed. It may be cured.
 つづいて、基板洗浄装置14では、除去処理が行われる(ステップS105)。かかる除去処理では、ウェハW上に形成された処理膜が除去される。これにより、ウェハW上のパーティクルPが処理膜とともに除去される。かかる除去処理の具体的な内容については、後述する。 Subsequently, the substrate cleaning apparatus 14 performs removal processing (step S105). In the removal process, the processing film formed on the wafer W is removed. Thus, the particles P on the wafer W are removed together with the processing film. The specific content of the removal process will be described later.
 つづいて、基板洗浄装置14では、ステップS105でリンス処理まで行われたウェハWに対して乾燥処理が行われる(ステップS106)。かかる乾燥処理では、第2液供給部40_2のノズル41_6がウェハWの中央上方に位置する。その後、バルブ44jが所定時間開放されることにより、ウェハW上に乾燥溶媒であるIPAが供給される。これにより、ウェハW上のDIWがIPAに置換される。また、乾燥処理では、ウェハWの回転速度を所定時間増加させることによって、ウェハWの表面に残存するIPAを振り切ってウェハWを乾燥させる。その後、ウェハWの回転が停止する。 Subsequently, in the substrate cleaning apparatus 14, the drying process is performed on the wafer W which has been subjected to the rinse process in step S105 (step S106). In the drying process, the nozzle 41_6 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44 j is opened for a predetermined time to supply the dry solvent IPA on the wafer W. Thus, DIW on the wafer W is replaced with IPA. In the drying process, the rotation speed of the wafer W is increased for a predetermined time to shake off the IPA remaining on the surface of the wafer W to dry the wafer W. Thereafter, the rotation of the wafer W is stopped.
 つづいて、基板洗浄装置14では、基板搬出処理が行われる(ステップS107)。かかる基板搬出処理では、基板搬送装置131(図2参照)によって、基板洗浄装置14のチャンバ20からウェハWが取り出される。その後、ウェハWは、受渡部122および基板搬送装置121を経由して、キャリア載置部11に載置されたキャリアCに収容される。かかる基板搬出処理が完了すると、1枚のウェハWについての基板洗浄処理が完了する。 Subsequently, in the substrate cleaning apparatus 14, a substrate unloading process is performed (step S107). In the substrate unloading process, the wafer W is taken out of the chamber 20 of the substrate cleaning apparatus 14 by the substrate transfer apparatus 131 (see FIG. 2). Thereafter, the wafer W is accommodated in the carrier C mounted on the carrier mounting unit 11 via the delivery unit 122 and the substrate transfer device 121. When the substrate unloading process is completed, the substrate cleaning process for one wafer W is completed.
 次に、ステップS105の除去処理の具体例について説明する。以下では、アルカリに可溶な成膜処理液を用いる場合の除去処理と、アルカリに難溶な成膜処理液を用いる場合の除去処理とについてそれぞれ説明する。 Next, a specific example of the removal process of step S105 will be described. Below, the removal process in the case of using the film-forming process liquid soluble in alkali and the removal process in the case of using the film-forming process liquid which is poorly soluble in alkali are each demonstrated.
 まず、アルカリに可溶な成膜処理液を用いる場合の除去処理の例について図6を参照して説明する。図6は、アルカリに可溶な成膜処理液を用いる場合における除去処理の処理手順を示すフローチャートである。 First, an example of the removal process in the case of using a film forming process liquid soluble in alkali will be described with reference to FIG. FIG. 6 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution soluble in alkali.
 図6に示すように、基板洗浄装置14では、まず、DIW供給処理が行われる(ステップS201)。かかるDIW供給処理では、第2液供給部40_2のノズル41_4がウェハWの中央上方に位置する。その後、バルブ44fが所定時間開放されることにより、ウェハW上に形成された処理膜に対して剥離処理液であるDIWが供給される。処理膜へ供給されたDIWは、ウェハWの回転に伴う遠心力によって処理膜上に広がる。 As shown in FIG. 6, in the substrate cleaning apparatus 14, first, DIW supply processing is performed (step S201). In the DIW supply process, the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44 f is opened for a predetermined time to supply DIW, which is a peeling processing liquid, to the processing film formed on the wafer W. The DIW supplied to the processing film spreads on the processing film by the centrifugal force accompanying the rotation of the wafer W.
 DIWは、処理膜中に浸透し、処理膜とウェハWとの界面に到達して、処理膜をウェハWから剥離させる。これにより、ウェハWのパターン形成面に付着したパーティクルPが処理膜とともにウェハWから剥離される。 The DIW penetrates into the processing film, reaches the interface between the processing film and the wafer W, and peels the processing film from the wafer W. Thereby, the particles P attached to the pattern formation surface of the wafer W are peeled off from the wafer W together with the processing film.
 つづいて、基板洗浄装置14では、アルカリ水溶液供給処理が行われる(ステップS202)。かかるアルカリ水溶液供給処理では、バルブ44gが所定時間開放されることにより、ウェハWから剥離された処理膜に対して溶解処理液であるアルカリ水溶液が供給される。これにより、処理膜は溶解する。 Subsequently, in the substrate cleaning apparatus 14, an alkaline aqueous solution supply process is performed (step S202). In the alkaline aqueous solution supply process, the valve 44 g is opened for a predetermined time, whereby the alkaline aqueous solution, which is a dissolution treatment solution, is supplied to the treatment film peeled off from the wafer W. Thereby, the treatment film is dissolved.
 溶解処理液としてアルカリ水溶液を用いた場合、ウェハWおよびパーティクルPに同一極性のゼータ電位を生じさせることができる。これにより、ウェハWとパーティクルPとが反発し合うようになるため、パーティクルPのウェハWへの再付着を防止することができる。 When an alkaline aqueous solution is used as the solution processing solution, zeta potentials of the same polarity can be generated on the wafer W and the particles P. Thereby, since the wafer W and the particles P come to repel each other, it is possible to prevent the reattachment of the particles P to the wafer W.
 つづいて、基板洗浄装置14では、リンス処理が行われる(ステップS203)。かかるリンス処理では、第2液供給部40_2のノズル41_5がウェハWの中央上方に位置する。その後、バルブ44iが所定時間開放されることにより、回転するウェハWに対してDIWがリンス液として供給される。これにより、溶解した処理膜やアルカリ水溶液中に浮遊するパーティクルPが、DIWとともにウェハWから除去される。これにより、除去処理が終了し、ステップS106の乾燥処理へ移行する。 Subsequently, a rinse process is performed in the substrate cleaning apparatus 14 (step S203). In the rinse process, the nozzle 41_5 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44i is opened for a predetermined time to supply DIW as a rinse liquid to the rotating wafer W. As a result, the dissolved processing film and the particles P floating in the alkaline aqueous solution are removed from the wafer W together with the DIW. Thus, the removal process is completed, and the process proceeds to the drying process of step S106.
 このように、アルカリに可溶な成膜処理液を用いる場合には、溶解処理液としてアルカリ水溶液を用いることで、処理膜を溶解させることができる。 As described above, in the case of using a film-forming treatment liquid that is soluble in alkali, the treatment film can be dissolved by using an alkaline aqueous solution as the dissolution treatment liquid.
 次に、アルカリに難溶な成膜処理液を用いる場合の除去処理の例について図7を参照して説明する。図7は、アルカリに難溶な成膜処理液を用いる場合における除去処理の処理手順を示すフローチャートである。 Next, an example of the removal process in the case of using a film forming solution which is poorly soluble in alkali will be described with reference to FIG. FIG. 7 is a flowchart showing the processing procedure of the removal processing in the case of using a film forming processing solution that is poorly soluble in alkali.
 図7に示すように、基板洗浄装置14では、まず、上述したステップS201と同様のDIW供給処理が行われる(ステップS301)。 As shown in FIG. 7, in the substrate cleaning apparatus 14, first, DIW supply processing similar to that in step S201 described above is performed (step S301).
 つづいて、基板洗浄装置14では、有機溶剤供給処理が行われる(ステップS302)。かかる有機溶剤供給処理では、バルブ44hが所定時間開放されることにより、ウェハWから剥離された処理膜に対して溶解処理液である有機溶剤が供給される。これにより、処理膜は溶解する。 Subsequently, in the substrate cleaning apparatus 14, an organic solvent supply process is performed (step S302). In the organic solvent supply process, the valve 44 h is opened for a predetermined time, so that the organic solvent, which is a dissolving process liquid, is supplied to the process film peeled off from the wafer W. Thereby, the treatment film is dissolved.
 つづいて、基板洗浄装置14では、ステップS203と同様のリンス処理が行われる(ステップS303)。これにより、除去処理が終了し、ステップS106の乾燥処理へ移行する。 Subsequently, in the substrate cleaning apparatus 14, the same rinse process as step S203 is performed (step S303). Thus, the removal process is completed, and the process proceeds to the drying process of step S106.
 このように、アルカリに難溶な成膜処理液を用いる場合には、溶解処理液としてシンナーなどの有機溶剤を用いることで、処理膜を溶解させることができる。また、アルカリ水溶液を使用しないため、ウェハWや下地膜へのダメージをさらに抑制することができる。 As described above, in the case of using a film forming treatment solution that is poorly soluble in alkali, the treatment film can be dissolved by using an organic solvent such as thinner as the dissolution treatment solution. Further, since no alkaline aqueous solution is used, damage to the wafer W and the underlayer can be further suppressed.
 なお、ここでは、有機溶剤供給処理(ステップS302)の後に、リンス処理(ステップS303)を行うこととしたが、有機溶剤はウェハW上で揮発するため、リンス処理(ステップS303)は必ずしも行われることを要しない。 Here, although the rinse process (step S303) is performed after the organic solvent supply process (step S302), since the organic solvent volatilizes on the wafer W, the rinse process (step S303) is necessarily performed. I do not need to
 次に、アルカリに難溶な成膜処理液を用いる場合における除去処理の変形例について図8を参照して説明する。図8は、アルカリに難溶な成膜処理液を用いる場合における除去処理の変形例(その1)を示すフローチャートである。 Next, a modification of the removal process in the case of using a film forming solution which is poorly soluble in alkali will be described with reference to FIG. FIG. 8 is a flow chart showing a modification (part 1) of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
 図8に示すように、基板洗浄装置14では、まず、DIW供給処理(ステップS401)を行い、つづいて、有機溶剤供給処理(ステップS402)を行う。これらの処理は、上述したステップS301およびステップS302の処理と同様である。 As shown in FIG. 8, in the substrate cleaning apparatus 14, first, DIW supply processing (step S401) is performed, and subsequently, organic solvent supply processing (step S402) is performed. These processes are similar to the processes of steps S301 and S302 described above.
 つづいて、基板洗浄装置14では、アルカリ水溶液供給処理(ステップS403)が行われる。かかるアルカリ水溶液供給処理では、第2液供給部40_2のノズル41_4がウェハWの中央上方に位置する。その後、バルブ44gが所定時間開放されることにより、ウェハWに対してアルカリ水溶液が供給される。その後、基板洗浄装置14では、ステップS303と同様のリンス処理(ステップS404)が行われて、除去処理が終了する。 Subsequently, in the substrate cleaning apparatus 14, an alkaline aqueous solution supply process (step S403) is performed. In the alkaline aqueous solution supply process, the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44 g is opened for a predetermined time to supply the aqueous alkali solution to the wafer W. Thereafter, in the substrate cleaning apparatus 14, the same rinse process (step S404) as that in step S303 is performed, and the removal process ends.
 このように、有機溶剤供給処理後のウェハWに対してアルカリ水溶液を供給してもよい。アルカリ水溶液を供給することで、ウェハWおよびパーティクルPに同一極性のゼータ電位を生じさせることができる。これにより、ウェハWとパーティクルPとが反発し合うようになるため、パーティクルPのウェハWへの再付着を防止することができる。 Thus, the aqueous alkali solution may be supplied to the wafer W after the organic solvent supply processing. By supplying the alkaline aqueous solution, zeta potentials of the same polarity can be generated on the wafer W and the particles P. Thereby, since the wafer W and the particles P come to repel each other, it is possible to prevent the reattachment of the particles P to the wafer W.
 つづいて、アルカリに難溶な成膜処理液を用いる場合における除去処理のその他の変形例について図9を参照して説明する。図9は、アルカリに難溶な成膜処理液を用いる場合における除去処理の変形例(その2)を示すフローチャートである。 Subsequently, another modified example of the removal process in the case of using a film forming solution which is poorly soluble in alkali will be described with reference to FIG. FIG. 9 is a flowchart showing a modification (part 2) of the removal process in the case of using a film forming solution which is poorly soluble in alkali.
 図9に示すように、基板洗浄装置14では、まず、ステップS301と同様のDIW供給処理が行われる(ステップS501)。 As shown in FIG. 9, in the substrate cleaning apparatus 14, first, DIW supply processing similar to step S301 is performed (step S501).
 つづいて、基板洗浄装置14では、アルカリ水溶液供給処理が行われる(ステップS502)。かかるアルカリ水溶液供給処理では、第2液供給部40_2のノズル41_4がウェハWの中央上方に位置する。その後、バルブ44gが所定時間開放されることにより、ウェハWに対してアルカリ水溶液が供給される。その後、基板洗浄装置14では、ステップS302と同様の有機溶剤供給処理(ステップS503)およびステップS303と同様のリンス処理(ステップS504)が行われて、除去処理が終了する。なお、ステップS504のリンス処理は、省略してもよい。 Subsequently, in the substrate cleaning apparatus 14, an alkaline aqueous solution supply process is performed (step S502). In the alkaline aqueous solution supply process, the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, the valve 44 g is opened for a predetermined time to supply the aqueous alkali solution to the wafer W. Thereafter, in the substrate cleaning apparatus 14, the organic solvent supply process (step S503) similar to step S302 and the rinse process (step S504) similar to step S303 are performed, and the removal process is completed. The rinse process in step S504 may be omitted.
 このように、DIW供給処理後のウェハWに対してアルカリ水溶液を供給してもよい。DIW供給処理後のウェハWには、処理膜に含まれる特定の成分が部分的に残存する可能性がある。この特定の成分のなかには、アルカリ水溶液に可溶な成分も含まれる。これに対し、本変形例のように、DIW供給処理後のウェハWに対してアルカリ水溶液を供給することで、ウェハWに残存する処理膜の成分のうちアルカリ水溶液に可溶な成分を溶解して除去することができる。したがって、本変形例によれば、処理膜の膜残りを抑えることができる。 As described above, the alkaline aqueous solution may be supplied to the wafer W after the DIW supply processing. In the wafer W after the DIW supply processing, a specific component contained in the processing film may partially remain. Among the specific components, components soluble in an alkaline aqueous solution are also included. On the other hand, as in the present modification, by supplying the alkaline aqueous solution to the wafer W after the DIW supply processing, among the components of the processing film remaining on the wafer W, the component soluble in the alkaline aqueous solution is dissolved. Can be removed. Therefore, according to the present modification, it is possible to suppress the film residue of the processing film.
 なお、基板洗浄装置14は、有機溶剤供給処理(ステップS503)の後に、ステップS403と同様のアルカリ水溶液供給処理を行ってもよい。 The substrate cleaning apparatus 14 may perform the same alkaline aqueous solution supply process as step S403 after the organic solvent supply process (step S503).
 上述した各除去処理の例では、DIW供給処理によってウェハW上の処理膜をウェハWから剥離させ、その後、アルカリ水溶液供給処理または有機溶剤供給処理を行うことによって処理膜を溶解させることとした。しかし、これに限らず、処理膜をウェハWから剥離する処理と、剥離した処理膜を溶解する処理とを1つの工程で並行して行ってもよい。かかる点について図10を参照して説明する。 In the example of each removal process described above, the processing film on the wafer W is peeled off from the wafer W by DIW supply processing, and then the processing film is dissolved by performing the aqueous alkali solution supply processing or the organic solvent supply processing. However, the present invention is not limited to this, and the process of peeling the treatment film from the wafer W and the treatment of dissolving the peeled treatment film may be performed in parallel in one process. This point will be described with reference to FIG.
 図10は、除去処理の変形例を示すフローチャートである。なお、図10に示す除去処理の処理手順は、アルカリに可溶な成膜処理液を用いる場合およびアルカリに難溶な成膜処理液を用いる場合の両方に適用することができる。 FIG. 10 is a flowchart showing a modification of the removal process. The processing procedure of the removal processing shown in FIG. 10 can be applied to both the case where a film forming treatment solution soluble in alkali is used and the case where a film forming treatment solution hardly soluble in alkali is used.
 図10に示すように、基板洗浄装置14では、除去液供給処理を行う(ステップS601)。かかる除去液供給処理では、第2液供給部40_2のノズル41_4がウェハWの中央上方に位置する。その後、バルブ44gおよびバルブ44hの一方とバルブ44fとが所定時間開放されることにより、ウェハWに対して希釈されたアルカリ水溶液または有機溶剤が供給される。 As shown in FIG. 10, the substrate cleaning apparatus 14 performs removal liquid supply processing (step S601). In the removal liquid supply process, the nozzle 41_4 of the second liquid supply unit 40_2 is located above the center of the wafer W. Thereafter, one of the valves 44g and 44h and the valve 44f are opened for a predetermined time to supply the diluted aqueous alkali solution or the organic solvent to the wafer W.
 かかるアルカリ水溶液または有機溶剤は、低濃度であるため、処理膜をほとんど溶解させることなく、ウェハWから剥離させることができる。このため、DIWを供給した場合と同様、パーティクルPは、処理膜とともにウェハWから剥離される。そして、その後、ウェハWから剥離した処理膜は、低濃度のアルカリ水溶液または有機溶剤によって溶解される。その後、ステップS303と同様のリンス処理(ステップS602)が行われて、除去処理が終了する。なお、希釈した有機溶剤を除去液として用いる場合、ステップS602のリンス処理は、必ずしも行われることを要しない。 The aqueous alkali solution or the organic solvent can be peeled off from the wafer W with almost no dissolution of the processing film because the concentration is low. Therefore, as in the case of supplying DIW, the particles P are peeled off from the wafer W together with the processing film. After that, the processing film peeled off from the wafer W is dissolved by a low concentration aqueous alkali solution or an organic solvent. Thereafter, a rinse process (step S602) similar to that of step S303 is performed, and the removal process is completed. In the case where the diluted organic solvent is used as the removal liquid, the rinse process in step S602 does not necessarily have to be performed.
 このように、DIWで希釈したアルカリ水溶液または有機溶剤を除去液として用いることにより、処理膜をウェハWから剥離する処理と、剥離した処理膜を溶解する処理とを1つの工程で並行して行うことができる。これにより、基板洗浄処理に要する時間を短縮させることができる。 As described above, by using an alkaline aqueous solution or an organic solvent diluted with DIW as a removal solution, the process of peeling the treated film from the wafer W and the process of dissolving the peeled treated film are performed in parallel in one step. be able to. Thereby, the time required for the substrate cleaning process can be shortened.
 なお、基板洗浄装置14では、流量調整器46f~46hの何れかを制御することにより、アルカリ水溶液または有機溶剤の濃度を徐々に高くしてもよい。例えば、基板洗浄装置14は、第1濃度のアルカリ水溶液または有機溶剤を供給した後、第2濃度(>第1濃度)のアルカリ水溶液または有機溶剤を供給してもよい。 In the substrate cleaning apparatus 14, the concentration of the alkaline aqueous solution or the organic solvent may be gradually increased by controlling any of the flow rate regulators 46f to 46h. For example, the substrate cleaning apparatus 14 may supply an alkaline aqueous solution or an organic solvent having a first concentration, and then supply an alkaline aqueous solution or an organic solvent having a second concentration (> first concentration).
 上述してきたように、本実施形態に係る基板処理システム(例えば基板洗浄システム1に相当)は、保持部(例えば基板保持機構30に相当)と、剥離処理液供給部(例えばノズル41_4、アーム42_2、旋回昇降機構43_2、バルブ44f、流量調整器46fおよびDIW供給源45fに相当)と、溶解処理液供給部(例えばノズル41_4、アーム42_2、旋回昇降機構43_2、バルブ44g,44h、アルカリ水溶液供給源45g、有機溶剤45hおよび流量調整器46g,46hに相当)とを備える。保持部は、有機溶媒(例えばIPA)に可溶なフェノール樹脂(例えばノボラック樹脂)を含有する処理膜が形成された基板(例えばウェハWに相当)を保持する。剥離処理液供給部は、処理膜を基板から剥離させる剥離処理液を処理膜に対して供給する。溶解処理液供給部は、処理膜を溶解させる溶解処理液を処理膜に対して供給する。 As described above, the substrate processing system (for example, corresponding to the substrate cleaning system 1) according to this embodiment includes the holding unit (for example, corresponding to the substrate holding mechanism 30) and the peeling processing liquid supply unit (for example, the nozzle 41_4, the arm 42_2) , Equivalent to the pivoting elevating mechanism 43_2, the valve 44f, the flow rate regulator 46f and the DIW supply source, and a solution processing solution supply unit (for example, the nozzle 41_4, the arm 42_2, the pivoting elevating mechanism 43_2, the valves 44g and 44h, an alkaline aqueous solution source 45 g, corresponding to organic solvents 45 h and flow rate regulators 46 g, 46 h). The holding unit holds a substrate (for example, corresponding to the wafer W) on which a treatment film containing a phenol resin (for example, novolac resin) soluble in an organic solvent (for example, IPA) is formed. The peeling treatment liquid supply unit supplies, to the treatment film, a peeling treatment liquid that peels the treatment film from the substrate. The dissolution processing liquid supply unit supplies a dissolution processing liquid for dissolving the processing membrane to the processing membrane.
 したがって、本実施形態に係る基板処理システム1によれば、基板に付着したパーティクルPの除去に用いられる処理膜の厚膜化を安価に実現することができる。 Therefore, according to the substrate processing system 1 which concerns on this embodiment, thickening of the process film used for the removal of the particle P adhering to the board | substrate can be implement | achieved inexpensively.
(その他の実施形態)
 上述してきた実施形態では、「成膜処理液供給部」と「除去液供給部」とが1つのチャンバ20内に設けられる場合の例を示したが、「成膜処理液供給部」と「除去液供給部」とは、それぞれ別々のチャンバ内に設けられてもよい。例えば、基板洗浄システム1は、図3に示す基板洗浄装置14から第2液供給部40_2を取り除いたチャンバ(第1チャンバ)と、図3に示す基板洗浄装置14から第1液供給部40_1を取り除いたチャンバ(第2チャンバ)とを備えてもよい。
(Other embodiments)
In the embodiment described above, an example in which the “film formation processing liquid supply unit” and the “removal liquid supply unit” are provided in one chamber 20 has been described, but the “film formation processing liquid supply unit” and The removal liquid supply units may be provided in separate chambers. For example, the substrate cleaning system 1 has a chamber (first chamber) from which the second liquid supply unit 40_2 is removed from the substrate cleaning apparatus 14 shown in FIG. 3 and the first liquid supply unit 40_1 from the substrate cleaning apparatus 14 shown in FIG. You may provide with the chamber (2nd chamber) removed.
 また、基板洗浄システム1は、必ずしも「成膜処理液供給部」を備えることを要しない。すなわち、基板洗浄システム1は、処理膜が形成されたウェハWを外部から搬入して図5に示すステップS105~S107の処理を行うものであってもよい。 Further, the substrate cleaning system 1 does not necessarily have to include the “film formation processing liquid supply unit”. That is, the substrate cleaning system 1 may load the wafer W on which the processing film is formed from the outside and perform the processing of steps S105 to S107 shown in FIG.
 また、上述してきた実施形態では、液体状のDIWを剥離処理液として用いる場合の例について説明したが、剥離処理液は、ミスト状のDIWであってもよい。 In the embodiment described above, an example in the case of using liquid DIW as the peeling treatment liquid has been described, but the peeling treatment liquid may be misty DIW.
 また、上述してきた実施形態では、ノズルを用いることによって、DIWを処理膜に直接供給する場合の例について説明したが、例えば加湿装置などを用いてチャンバ内の湿度を高めることによって、処理膜に対してDIWを間接的に供給するようにしてもよい。 Also, in the embodiment described above, an example in which DIW is directly supplied to the treatment film by using the nozzle has been described, but, for example, the treatment film is provided by raising the humidity in the chamber using a humidifier or the like. Alternatively, DIW may be supplied indirectly.
 また、上述してきた実施形態では、常温の純水であるDIWを剥離処理液として用いる場合の例について説明したが、例えば加熱された純水を剥離処理液として用いてもよい。これにより、処理膜の除去性をさらに高めることができる。 In the embodiment described above, an example in which DIW which is pure water at normal temperature is used as the peeling treatment liquid has been described. However, for example, heated pure water may be used as the peeling treatment liquid. Thereby, the removability of the treated film can be further enhanced.
 また、上述してきた実施形態では、剥離処理液としてDIWを用いる場合の例について説明した。しかし、ウェハW上に形成された処理膜を溶解させることなく(あるいは、溶解させる前に)剥離させるプロセスが実行可能な組合せであれば、剥離処理液の種類は問わない。例えば、剥離処理液は、CO2水(CO2ガスが混合されたDIW)、酸またはアルカリ性の水溶液、界面活性剤添加水溶液、HFE(ハイドロフルオロエーテル)等のフッ素系溶剤、希釈IPA(純水で希釈されたIPA:イソプロピルアルコール)、の少なくとも一つを含んでいればよい。 Further, in the embodiment described above, the example in the case of using DIW as the peeling processing liquid has been described. However, the type of the stripping treatment liquid does not matter as long as the process of stripping is possible without dissolving (or before melting) the processing film formed on the wafer W. For example, the stripping solution may be CO 2 water (DIW mixed with CO 2 gas), an acid or alkaline aqueous solution, a surfactant-added aqueous solution, a fluorinated solvent such as HFE (hydrofluoroether), diluted IPA (diluted with pure water) And at least one of the following IPA: isopropyl alcohol).
 例えば、ウェハWとの密着性が低く、剥離しやすい処理膜が形成されるように成膜処理液を組成したものとする。かかる場合、形成される処理膜は、剥離しやすくなる反面、撥水性が高まってDIWのみでは浸透しにくくなる可能性がある。このため、このような場合、剥離処理液として、希釈IPAのような純水で希釈された有機溶剤(以下、「希釈有機溶剤」と言う)を用いることが好ましい。 For example, it is assumed that the film forming treatment liquid is formed so that a treatment film which is low in adhesion to the wafer W and easily peeled off is formed. In such a case, the treated film to be formed is likely to be peeled off, but on the other hand, the water repellency may be increased and it may be difficult to penetrate with DIW alone. Therefore, in such a case, it is preferable to use an organic solvent diluted with pure water such as diluted IPA (hereinafter, referred to as "dilution organic solvent") as the peeling treatment liquid.
 かかる剥離処理液として希釈有機溶剤を用いる場合について図11~図12Cを用いて説明する。図11は、剥離処理液として希釈有機溶剤を用いる場合における除去処理の変形例を示すフローチャートである。図12A~図12Cは、希釈有機溶剤供給処理の説明図(その1)~(その3)である。なお、図11は、既に示した図7に対応している。また、図12A~図12Cでは、バルブの図示を省略している。 The case of using a diluted organic solvent as the peeling treatment liquid will be described with reference to FIGS. 11 to 12C. FIG. 11 is a flowchart showing a modified example of the removal process in the case of using a diluted organic solvent as the stripping treatment liquid. 12A to 12C are explanatory views (part 1) to (part 3) of the dilution organic solvent supply processing. FIG. 11 corresponds to FIG. 7 already shown. Also, in FIGS. 12A to 12C, the illustration of the valve is omitted.
 図11に示すように、剥離処理液として希釈有機溶剤を用いる場合、基板洗浄装置14では、まず、上述した図7のステップS301のDIW供給処理に代えて、希釈有機溶剤供給処理が行われる(ステップS701)。 As shown in FIG. 11, in the case of using a diluted organic solvent as the peeling process liquid, the substrate cleaning device 14 first performs a diluted organic solvent supply process instead of the DIW supply process of step S301 of FIG. Step S701).
 かかる希釈有機溶剤供給処理では、ウェハW上に形成された処理膜を溶解させることなく処理膜へ浸透する程度の濃度、例えば希釈IPAであれば10%以下の濃度である希釈有機溶剤が、ウェハWへ供給される。 In the diluted organic solvent supply process, the diluted organic solvent having a concentration that allows penetration into the processed film without dissolving the processed film formed on the wafer W, for example, a concentration of 10% or less in the case of diluted IPA It is supplied to W.
 これにより、ウェハW上に形成されたパターンの深部にまで到達した処理膜に対しても剥離処理液を浸透させることが可能となるので、パターンが形成されたウェハWであっても高いパーティクル除去性能を得ることができる。 As a result, the peeling processing liquid can be made to penetrate even to the processing film that has reached the deep portion of the pattern formed on the wafer W, so high particle removal is possible even with the wafer W on which the pattern is formed. Performance can be obtained.
 つづいて、基板洗浄装置14では、ステップS302と同様の有機溶剤供給処理が行われる(ステップS702)。 Subsequently, in the substrate cleaning apparatus 14, the same organic solvent supply process as step S302 is performed (step S702).
 そして、基板洗浄装置14では、ステップS303と同様のリンス処理が行われる(ステップS703)。これにより、除去処理が終了し、ステップS106の乾燥処理へ移行する。 Then, in the substrate cleaning apparatus 14, the same rinse process as step S303 is performed (step S703). Thus, the removal process is completed, and the process proceeds to the drying process of step S106.
 なお、希釈有機溶剤の具体的な供給方法としては、例えば図12Aに示すように、希釈有機溶剤供給源45kを設けることとしたうえで、かかる希釈有機溶剤供給源45kからノズル41_4を介して直接にウェハWへ希釈有機溶剤を供給することができる。 In addition, as a specific method of supplying the diluted organic solvent, for example, as shown in FIG. 12A, after providing the diluted organic solvent supply source 45k, the diluted organic solvent supply source 45k is directly connected via the nozzle 41_4. The diluted organic solvent can be supplied to the wafer W.
 また、例えば図12Bに示すように、DIW供給源45fからDIWを、有機溶剤供給源45hから有機溶剤を供給することで、内部混合した希釈有機溶剤をノズル41_4からウェハWへ供給してもよい。 For example, as shown in FIG. 12B, DIW may be supplied from the DIW supply source 45f, and the organic solvent may be supplied from the organic solvent supply source 45h to supply the diluted organic solvent internally mixed to the wafer W from the nozzle 41_4. .
 また、例えば図12Cに示すように、DIW供給源45fからDIWをウェハWへ供給した後に、有機溶剤供給源45hから有機溶剤をウェハWへ供給し、ウェハW上で混合することで、希釈有機溶剤を生成することとしてもよい。また、この場合、DIWと有機溶剤とが同時にウェハWへ供給されてもよい。 Further, for example, as shown in FIG. 12C, after DIW is supplied to the wafer W from the DIW supply source 45f, the organic solvent is supplied to the wafer W from the organic solvent supply source 45h and mixed on the wafer W to obtain diluted organic It is also possible to produce a solvent. In this case, DIW and the organic solvent may be simultaneously supplied to the wafer W.
 このように、浸透性が低い成膜処理液を用いる場合には、剥離処理液として希釈有機溶剤を用いることで、処理膜へ剥離処理液をより浸透させることができる。また、これにより、パターンが形成されたウェハWであっても高いパーティクル除去性能を得ることができる。 As described above, in the case of using a film forming treatment solution having low permeability, the peeling treatment solution can be further permeated into the treatment film by using the diluted organic solvent as the peeling treatment solution. Moreover, thereby, even if it is the wafer W in which the pattern was formed, high particle removal performance can be obtained.
 また、上述してきた実施形態では、成膜処理液供給処理から乾燥処理が行われた後、除去処理が行われる場合の例について説明した(図5のステップS103~ステップS105参照)。しかし、これに限らず、除去処理が行われる前に、成膜処理液の固化または硬化を促進させる「成膜促進処理」を行うこととしてもよい。 Further, in the embodiment described above, an example in which the removing process is performed after the film forming process liquid supply process is performed after the drying process has been described (see steps S103 to S105 in FIG. 5). However, the present invention is not limited to this. Before the removal process is performed, the “film formation acceleration process” may be performed to accelerate the solidification or hardening of the film formation process liquid.
 かかるその他の実施形態について、図13~図16Bを用いて説明する。まず、図13は、その他の実施形態に係る基板洗浄システム1’が実行する基板洗浄処理の処理手順を示すフローチャートである。なお、図13は、既に示した図5に対応している。 Such other embodiments will be described with reference to FIGS. 13 to 16B. First, FIG. 13 is a flowchart showing a processing procedure of the substrate cleaning process performed by the substrate cleaning system 1 ′ according to another embodiment. FIG. 13 corresponds to FIG. 5 already shown.
 図13に示すように、基板洗浄システム1’の基板洗浄装置14では、まず、上述した図5のステップS101~ステップS104と同様の、基板搬入処理、前処理、成膜処理液供給処理および乾燥処理が行われる(ステップS801~ステップS804)。 As shown in FIG. 13, in the substrate cleaning apparatus 14 of the substrate cleaning system 1 ′, first, substrate loading processing, pretreatment, film forming processing liquid supply processing, and drying similar to steps S101 to S104 of FIG. A process is performed (steps S801 to S804).
 つづいて、基板洗浄装置14では、成膜促進処理が行われる(ステップS805)。かかる成膜促進処理では、ウェハWの表面へ供給された成膜処理液の固化または硬化を促進させる処理、一例としてウェハWの加熱等の処理が行われる。かかる処理の具体的な態様については、図14A以降を用いて後述する。 Subsequently, in the substrate cleaning apparatus 14, a film formation promoting process is performed (step S805). In the film formation promoting process, a process of promoting solidification or hardening of the film forming process liquid supplied to the surface of the wafer W, such as heating of the wafer W, is performed. The specific aspect of this process is later mentioned using FIG. 14A or subsequent ones.
 かかる成膜促進処理を経ることにより、例えばウェハWに形成されたパターンの深部にまで到達した成膜処理液を確実に固化または硬化させ、処理膜とパーティクルとの付着力を向上させることができる。すなわち、パターンが形成されたウェハWであっても、かかるパターンの深部にあるパーティクルまでも確実に処理膜へ付着させ、高いパーティクル除去性能を得ることができる。 By passing through such film formation acceleration processing, for example, the film formation processing solution that has reached the deep part of the pattern formed on the wafer W can be reliably solidified or cured, and the adhesion between the processing film and the particles can be improved. . That is, even in the wafer W on which the pattern is formed, even particles in the deep part of the pattern can be reliably attached to the processing film, and high particle removal performance can be obtained.
 そして、基板洗浄装置14では、ステップS105~ステップS107と同様の、除去処理、乾燥処理および基板搬出処理が行われ(ステップS806~ステップS808)、1枚のウェハWについての基板洗浄処理が完了する。 Then, in the substrate cleaning apparatus 14, the removal process, the drying process, and the substrate unloading process similar to steps S105 to S107 are performed (steps S806 to S808), and the substrate cleaning process for one wafer W is completed. .
 次に、成膜促進処理の具体的な態様について説明する。まず、第1の態様としての成膜促進処理について説明する。図14Aは、第1の成膜促進処理の説明図である。また、図14Bは、第1の成膜促進処理を実行する場合における基板洗浄システム1’の構成を示す模式図である。なお、以下では、基板洗浄装置14を「_番号」の形式で付番して、複数の基板洗浄装置14のそれぞれを区別する場合がある。 Next, specific modes of the film formation promotion process will be described. First, the film formation promoting process according to the first aspect will be described. FIG. 14A is an explanatory diagram of a first film formation promotion process. FIG. 14B is a schematic view showing the configuration of the substrate cleaning system 1 ′ when the first film formation promotion process is performed. In the following, the substrate cleaning device 14 may be numbered in the form of “_number” to distinguish each of the plurality of substrate cleaning devices 14.
 図14Aに示すように、第1の成膜促進処理では、例えばベイク装置60を設けることとしたうえで、かかるベイク装置60によりウェハWをベイクすることでウェハWへ供給された成膜処理液を加熱し、成膜処理液の固化または硬化を促進させる。なお、第1の成膜促進処理は、上述したステップS804の乾燥処理の前に行ってもよい。また、ウェハWをベイクする条件は、温度を70°~120°、時間を60秒以下程度とすることが好ましい。 As shown in FIG. 14A, in the first film formation promotion process, for example, the bake apparatus 60 is provided, and the film formation treatment liquid supplied to the wafer W by baking the wafer W by the bake apparatus 60. Is heated to accelerate the solidification or hardening of the film formation treatment solution. The first film formation promotion process may be performed before the drying process of step S804 described above. The conditions for baking the wafer W preferably include a temperature of 70 ° to 120 °, and a time of about 60 seconds or less.
 第1の態様として、かかる第1の成膜促進処理を行う場合、ベイク装置60を含む「成膜促進部」は、少なくとも成膜処理液供給処理が行われるチャンバ20とは別のチャンバ20に設けられる。これにより、ベイク処理を高性能化することができ、また、ベイク処理と成膜処理液供給処理とを別々のチャンバで並行処理することができるようになる。 As a first aspect, when the first film formation promoting process is performed, the “film formation promoting unit” including the baking apparatus 60 is at least a chamber 20 different from the chamber 20 in which the film forming treatment liquid supply process is performed Provided. As a result, baking processing can be improved in performance, and baking processing and film formation processing liquid supply processing can be performed in parallel in separate chambers.
 具体的には、図14Bに示すように、例えば成膜処理液供給処理を基板洗浄装置14_3~14_6にて行い、除去処理を基板洗浄装置14_9~14_12にて行う配置とする。この場合、これらとは別のチャンバ20を有する基板洗浄装置14_1、14_2、14_7および14_8へベイク装置60を収容し、かかる基板洗浄装置14_1、14_2、14_7および14_8にて第1の成膜促進処理を行うとよい。 Specifically, as shown in FIG. 14B, for example, the film forming processing liquid supply process is performed by the substrate cleaning apparatuses 14_3 to 14_6, and the removal process is performed by the substrate cleaning apparatuses 14_9 to 14_12. In this case, the bake apparatus 60 is accommodated in the substrate cleaning apparatus 14_1, 14_2, 14_7 and 14_8 having the chamber 20 different from them, and the first film formation promotion processing is performed by the substrate cleaning apparatus 14_1, 14_2, 14_7 and 14_8. It is good to do.
 次に、第2の態様としての成膜促進処理について説明する。図15A~図15Cは、第2の成膜促進処理の説明図(その1)~(その3)である。また、図15D~図15Fは、第2の成膜促進処理を実行する場合における基板洗浄システム1’の構成を示す模式図(その1)~(その3)である。 Next, a film formation promoting process according to a second embodiment will be described. FIGS. 15A to 15C are explanatory views (part 1) to (part 3) of the second film formation promotion processing. 15D to 15F are schematic views (No. 1) to (No. 3) showing the configuration of the substrate cleaning system 1 'when the second film formation promotion process is performed.
 図15Aに示すように、第2の成膜促進処理では、例えば基板保持機構30において、支柱部32を介してノズル41_7を設けることとした。そして、そのうえで、保持部材311によって回転保持部31の上面から離間した状態で水平保持されたウェハWの裏面側へ、ノズル41_7から高温のDIWを供給することによってウェハWの表面側の成膜処理液を加熱する。 As shown in FIG. 15A, in the second film formation promotion process, for example, in the substrate holding mechanism 30, the nozzle 41 _ 7 is provided via the support portion 32. Then, the film forming process on the front surface side of the wafer W is performed by supplying the high-temperature DIW from the nozzle 41 _ 7 to the back surface side of the wafer W horizontally held in a state separated from the upper surface of the rotation holding unit 31 by the holding member 311. Heat the solution.
 これにより、ウェハWの表面側の成膜処理液の固化または硬化を間接的に促進させることができる。なお、ノズル41_7から供給するのはDIWに限らず高温の流体であればよく、例えば高温の窒素ガスであったり、水蒸気であったりしてもよい。 Thereby, solidification or hardening of the film formation processing solution on the front surface side of the wafer W can be indirectly promoted. Note that what is supplied from the nozzle 41_7 is not limited to DIW, as long as it is a high temperature fluid, for example, high temperature nitrogen gas or steam may be used.
 また、ウェハWの裏面からに限らず、ウェハWの表面側へ供給された成膜処理液に対し、図15Bに示すように、ノズル41を介してウェハWの表面側から高温の流体を供給することによって、成膜処理液を直接的に加熱することとしてもよい。 Further, not only from the back surface of the wafer W, but also to the film forming processing solution supplied to the front surface side of the wafer W, high temperature fluid is supplied from the front surface side of the wafer W via the nozzle 41 as shown in FIG. The deposition treatment solution may be directly heated by performing this process.
 また、図15Aおよび図15Bに示す第2の成膜促進処理は、成膜処理液の供給中に、すなわち成膜処理液供給処理と並行して行われてもよい。 The second film formation promotion process shown in FIGS. 15A and 15B may be performed during supply of the film formation process liquid, that is, in parallel with the film formation process liquid supply process.
 また、図15Aおよび図15Bでは、成膜処理液が供給された後あるいは供給中に第2の成膜促進処理を行う場合の例を示した。これに限らず、図15Cに示すように、成膜処理液がウェハWへ供給される前に、ウェハWへノズル41あるいはノズル41_7から高温の流体を供給することによってウェハWを予め加熱し、間接的に成膜処理液を加熱することとしてもよい。 15A and 15B show an example in which the second film formation promotion process is performed after or while the film formation process liquid is supplied. Not limited to this, as shown in FIG. 15C, the wafer W is preheated by supplying a high temperature fluid to the wafer W from the nozzle 41 or the nozzle 41_7 before the film forming solution is supplied to the wafer W. The film formation treatment solution may be indirectly heated.
 このような第2の成膜促進処理を行う場合、例えばノズル41_7やノズル41を含む「成膜促進部」は、成膜処理液供給処理や除去処理が行われるチャンバ20と同一のチャンバ20に設けることができる。 When such a second film formation promoting process is performed, for example, the “film formation promoting unit” including the nozzle 41 _ 7 and the nozzle 41 is in the same chamber 20 as the chamber 20 in which the film forming treatment liquid supply process and removal process are performed. It can be provided.
 具体的には、図15Dに示すように、例えば成膜処理液供給処理、第2の成膜促進処理および除去処理をあわせて、基板洗浄装置14_1~14_12のそれぞれにて行う配置とすることができる。 Specifically, as shown in FIG. 15D, for example, the deposition processing solution supply processing, the second deposition promotion processing, and the removal processing may be combined in each of the substrate cleaning devices 14_1 to 14_12. it can.
 また、図15Eに示すように、例えば成膜処理液供給処理を基板洗浄装置14_1~14_6にて行う配置とした場合、これとは別のチャンバ20を有する基板洗浄装置14_7~14_12にて第2の成膜促進処理および除去処理を行う配置とすることができる。 Further, as shown in FIG. 15E, for example, when the film forming processing liquid supply process is arranged to be performed by the substrate cleaning devices 14_1 to 14_6, the second substrate cleaning device 14_7 to 14_12 having a chamber 20 different from the above is used. The film formation promoting process and the removal process can be arranged.
 また、図15Fに示すように、例えば成膜処理液供給処理および第2の成膜促進処理をあわせて基板洗浄装置14_1~14_6にて行い、除去処理を基板洗浄装置14_7~14_12にて行う配置としたものとする。この場合、基板洗浄装置14_1~14_6の基板保持機構30がウェハWをバキュームチャック等で保持する場合には、少なくともウェハWの表面側からの第2の成膜促進処理(図15B,15C)を各基板洗浄装置14_1~14_6にて行うことができる。 In addition, as shown in FIG. 15F, for example, the deposition processing liquid supply processing and the second deposition promotion processing are combined and performed by the substrate cleaning apparatus 14_1 to 14_6, and the removal processing is performed by the substrate cleaning apparatus 14_7 to 14_12. It shall be. In this case, when the substrate holding mechanism 30 of the substrate cleaning apparatus 14_1 to 14_6 holds the wafer W by a vacuum chuck or the like, at least the second film formation promotion process (FIGS. 15B and 15C) from the front side of the wafer W is performed. This can be performed by each of the substrate cleaning devices 14_1 to 14_6.
 次に、第3の態様としての成膜促進処理について説明する。図16Aは、第3の成膜促進処理の説明図である。また、図16Bは、第3の成膜促進処理を実行する場合における基板洗浄システム1’の構成を示す模式図である。 Next, a film formation promoting process according to a third aspect will be described. FIG. 16A is an explanatory diagram of a third film formation promotion process. FIG. 16B is a schematic view showing the configuration of the substrate cleaning system 1 ′ when the third film formation promotion process is performed.
 図16Aに示すように、第3の成膜促進処理では、例えば搬送部12,13のいずれかの位置に「成膜促進部」としての熱源70を設けることとした。そのうえで、第3の成膜促進処理では、表面へ成膜処理液が供給されたウェハWが熱源70の近傍を通過する際に、かかる熱源70の熱により成膜処理液を加熱する。これにより、ウェハWの表面側の成膜処理液の固化または硬化を促進させることができる。なお、成膜処理液は、ウェハWの表面側および裏面側のいずれから加熱されてもよい。 As shown in FIG. 16A, in the third film formation promotion process, for example, the heat source 70 as a “film formation promotion unit” is provided at any position of the transport units 12 and 13. In addition, in the third film formation promoting process, when the wafer W whose film forming treatment solution is supplied to the surface passes near the heat source 70, the film forming treatment liquid is heated by the heat of the heat source 70. Thereby, solidification or hardening of the film formation processing solution on the front surface side of the wafer W can be promoted. The film forming solution may be heated from either the front side or the back side of the wafer W.
 図16Bに示す熱源70は、例えばハロゲンランプ等である。基板洗浄装置14_1~14_6にて成膜処理液供給処理を行い、基板洗浄装置14_7~14_12にて除去処理を行う配置とした場合、熱源70は、たとえば、搬送部13における搬送経路や基板搬送装置131のウェハ保持機構に設けることができる。また、熱源70は、搬送部12の受渡部122等に設けることができる。熱源70は、基板搬送装置131のウェハ保持機構に設けられた場合、成膜処理液が供給されたウェハWがこのウェハ保持機構により保持される間に、成膜処理液を加熱する。 The heat source 70 shown to FIG. 16B is a halogen lamp etc., for example. When the film deposition processing liquid supply process is performed by the substrate cleaning apparatuses 14_1 to 14_6 and the removal process is performed by the substrate cleaning apparatuses 14_7 to 14_12, the heat source 70 may be, for example, a transport path in the transport unit 13 or a substrate transport apparatus. It can be provided on the 131 wafer holding mechanism. Further, the heat source 70 can be provided in the delivery unit 122 or the like of the transport unit 12. When the heat source 70 is provided in the wafer holding mechanism of the substrate transfer device 131, the heat source 70 heats the film formation treatment liquid while the wafer W supplied with the film formation treatment liquid is held by the wafer holding mechanism.
 なお、かかる第3の成膜促進処理では、熱源70に限らず、熱源70に代えて例えばUV(Ultraviolet)光源を設けることとしたうえで、かかるUV光源による紫外光の照射により、成膜処理液の固化または硬化を促進させることとしてもよい。 In the third film formation promoting process, a film forming process is performed by irradiating ultraviolet light from the UV light source after providing the UV (Ultraviolet) light source instead of the heat source 70 instead of the heat source 70. The solidification or curing of the liquid may be promoted.
 また、上述してきた各実施形態では、溶解処理液としてアルカリ現像液を用いる場合の例について説明してきたが、溶解処理液は、アルカリ現像液に過酸化水素水を加えたものであってもよい。このように、アルカリ現像液に過酸化水素水を加えることによって、アルカリ現像液によるウェハW表面の面荒れを抑制することができる。また、溶解処理液は、酢酸、蟻酸、ヒドロキシ酢酸等の酸性現像液であってもよい。 Moreover, although the example in the case of using an alkali developing solution as a solution processing solution was demonstrated in each embodiment mentioned above, the solution processing solution may be a solution obtained by adding a hydrogen peroxide solution to an alkali developing solution. . Thus, the surface roughness of the surface of the wafer W due to the alkaline developer can be suppressed by adding the hydrogen peroxide solution to the alkaline developer. The solution processing solution may be an acid developing solution such as acetic acid, formic acid, hydroxyacetic acid or the like.
 さらに、溶解処理液は、界面活性剤を含んでいてもよい。界面活性剤には表面張力を弱める働きがあるため、パーティクルPのウェハW等への再付着を抑制することができる。また、除去対象の不要物としてはパーティクルPに限らず、例えばドライエッチング後またはアッシング後に基板上に残存するポリマー等の他の物質でも良い。 Furthermore, the solution treatment solution may contain a surfactant. The surfactant functions to weaken the surface tension, so that the reattachment of the particles P to the wafer W or the like can be suppressed. Further, the unnecessary object to be removed is not limited to the particle P, and may be, for example, another substance such as a polymer remaining on the substrate after dry etching or after ashing.
 ところで、成膜処理液供給処理および除去処理が行われる基板洗浄装置14においては、ウェハWから飛散した成膜処理液が処理膜となってチャンバ20内の各場所に付着することによってチャンバ20内が汚染されるおそれがある。 By the way, in the substrate cleaning apparatus 14 in which the film forming process liquid supply process and the removing process are performed, the film forming process liquid splashed from the wafer W forms a process film and adheres to each place in the chamber 20. May be contaminated.
 このため、例えば定期的にチャンバ20の内部を洗浄することが望ましい。しかし、本実施形態に係る成膜処理液はDIWに難溶であるため、洗浄液としてDIWを供給しただけではチャンバ20内から処理膜を除去することは困難である。 For this reason, it is desirable to clean the inside of the chamber 20 periodically, for example. However, since the film forming treatment liquid according to the present embodiment is poorly soluble in DIW, it is difficult to remove the treatment film from the inside of the chamber 20 only by supplying DIW as the cleaning liquid.
 そこで、以下では、チャンバ20の内部に付着した処理膜を適切に除去するためのチャンバ洗浄処理について説明する。図17は、チャンバ洗浄処理の手順を示すフローチャートである。 Therefore, in the following, a chamber cleaning process for appropriately removing the processing film attached to the inside of the chamber 20 will be described. FIG. 17 is a flowchart showing the procedure of the chamber cleaning process.
 図17に示すように、チャンバ洗浄処理においては、まず、希釈有機溶剤供給処理が行われる(ステップS901)。希釈有機溶剤供給処理は、チャンバ20内におけるウェハW以外の場所に対して希釈有機溶剤を供給する処理である。希釈有機溶剤は、剥離処理液と溶解処理液との混合液の一例であり、例えば、DIWとIPAとの混合液である。 As shown in FIG. 17, in the chamber cleaning process, first, a dilution organic solvent supply process is performed (step S901). The dilution organic solvent supply process is a process of supplying a dilution organic solvent to a place other than the wafer W in the chamber 20. The diluted organic solvent is an example of a mixed solution of a stripping treatment solution and a dissolving treatment solution, and is, for example, a mixed solution of DIW and IPA.
 希釈有機溶剤は、DIWと比べて表面張力が低く、処理膜への浸透性が高い。このため、チャンバ20における処理膜の付着面と処理膜との界面部分にDIWを容易に浸透させることができる。つまり、処理膜がチャンバ20内の付着面から剥離し易い状態とすることができる。 The diluted organic solvent has lower surface tension than DIW and high permeability to the treated membrane. For this reason, DIW can be easily permeated into the interface between the adhesion surface of the treatment film and the treatment film in the chamber 20. That is, the processing film can be easily peeled off from the adhesion surface in the chamber 20.
 つづいて、DIW供給処理が行われる(ステップS902)。DIW供給処理は、チャンバ20内におけるウェハW以外の場所に対し、DIWを供給する処理である。DIWは、剥離処理液の一例である。 Subsequently, DIW supply processing is performed (step S902). The DIW supply process is a process of supplying DIW to a place other than the wafer W in the chamber 20. DIW is an example of a peeling treatment liquid.
 上述した希釈有機溶剤供給処理によって、処理膜はチャンバ20内の付着面から剥離し易い状態となっているため、DIWを供給することによってかかる処理膜をチャンバ20内の付着面から容易に除去することができる。 Since the processing film is in a state of being easily peeled off from the adhering surface in the chamber 20 by the dilution organic solvent supplying process described above, the processing film is easily removed from the adhering surface in the chamber 20 by supplying DIW. be able to.
 このように、チャンバ洗浄処理においては、チャンバ20内におけるウェハW以外の場所に対し、剥離処理液と溶解処理液との混合液である希釈有機溶剤を供給した後で剥離処理液であるDIWを供給する。これにより、チャンバ20の内部に付着した処理膜を適切に除去することができる。 As described above, in the chamber cleaning process, DIW, which is the peeling process liquid, is supplied after supplying the diluted organic solvent, which is a mixture of the peeling process liquid and the dissolving process liquid, to a location other than the wafer W in the chamber 20. Supply. Thus, the treatment film attached to the inside of the chamber 20 can be properly removed.
 次に、上述したチャンバ洗浄処理の具体的な動作例について図18A~図18Hを参照して説明する。図18A~図18Hは、チャンバ洗浄処理の動作例を示す図である。 Next, a specific operation example of the above-described chamber cleaning process will be described with reference to FIGS. 18A to 18H. 18A to 18H are diagrams showing an operation example of the chamber cleaning process.
 例えば、図18Aに示すように、チャンバ洗浄処理は、回転保持部31、保持部材311、第1回転カップ101および第2回転カップ102を洗浄する処理であってもよい。この場合、例えば、回転保持部31を回転させた状態で、ノズル41_4を回転保持部31の中心部と外周部との間で往復させながら、ノズル41_4から希釈有機溶剤およびDIWを順次供給する。これにより、回転保持部31および回転保持部31の外周部に配置される保持部材311、第1回転カップ101および第2回転カップ102に付着した処理膜を除去することができる。 For example, as shown in FIG. 18A, the chamber cleaning process may be a process of cleaning the rotation holding unit 31, the holding member 311, the first rotation cup 101, and the second rotation cup 102. In this case, for example, while rotating the rotation holding unit 31, the dilution organic solvent and DIW are sequentially supplied from the nozzle 41_4 while reciprocating the nozzle 41_4 between the central portion and the outer peripheral portion of the rotation holding unit 31. As a result, the treatment film attached to the holding member 311 and the first rotation cup 101 and the second rotation cup 102 disposed on the outer circumferences of the rotation holding portion 31 and the rotation holding portion 31 can be removed.
 なお、図18Aに示す例において、ノズル41_4は、チャンバ20内に配置され、チャンバ20内におけるウェハW以外の場所に対して洗浄液(希釈有機溶剤およびDIW)を供給する洗浄液供給部の一例である。 In the example shown in FIG. 18A, the nozzle 41_4 is disposed in the chamber 20, and is an example of a cleaning liquid supply unit that supplies the cleaning liquid (dilution organic solvent and DIW) to the area other than the wafer W in the chamber 20. .
 また、図18Bに示すように、チャンバ洗浄処理は、第1~第3排液溝501a~501cを洗浄する処理であってもよい。この場合、基板洗浄装置14は、第1排液溝501aに洗浄液(希釈有機溶剤およびDIW)を供給する洗浄液供給部80_1を備える。 Further, as shown in FIG. 18B, the chamber cleaning process may be a process of cleaning the first to third drainage grooves 501a to 501c. In this case, the substrate cleaning apparatus 14 includes the cleaning liquid supply unit 80_1 that supplies the cleaning liquid (diluted organic solvent and DIW) to the first drain groove 501a.
 洗浄液供給部80_1は、洗浄液供給管81a,81bと、バルブ82a,82bと、流量調整器84a,84bとを備える。洗浄液供給管81aは、一端がDIW供給源45fに接続され、他端が第1カップ50aの排液口51aに接続される。洗浄液供給管81bは、一端が洗浄液供給管81aに接続され、他端が有機溶剤供給源45hに接続される。 The cleaning liquid supply unit 80_1 includes cleaning liquid supply pipes 81a and 81b, valves 82a and 82b, and flow rate adjusters 84a and 84b. One end of the cleaning liquid supply pipe 81a is connected to the DIW supply source 45f, and the other end is connected to the drainage port 51a of the first cup 50a. One end of the cleaning liquid supply pipe 81b is connected to the cleaning liquid supply pipe 81a, and the other end is connected to the organic solvent supply source 45h.
 バルブ82aおよび流量調整器84aは、洗浄液供給管81aに設けられ、制御装置4によって制御される。また、バルブ82bおよび流量調整器84bは、洗浄液供給管81bに設けられ、制御装置4によって制御される。 The valve 82 a and the flow rate regulator 84 a are provided in the cleaning liquid supply pipe 81 a and controlled by the controller 4. Further, the valve 82 b and the flow rate regulator 84 b are provided in the cleaning liquid supply pipe 81 b and controlled by the control device 4.
 図18Bに示すチャンバ洗浄処理では、バルブ82aおよびバルブ82bを所定時間開放することにより、第1排液溝501aに希釈有機溶剤を供給する。これにより、第1排液溝501aに希釈有機溶剤が貯留され、第1排液溝501aに貯留された希釈有機溶剤が第1周壁部54aの上面54a1を乗り越えて、第2排液溝501bへオーバーフローすることにより、第2排液溝501bに希釈有機溶剤が貯留される。さらに、第2排液溝501bに貯留された希釈有機溶剤が第2周壁部54bの上面54b1を乗り越えて、第3排液溝501cへオーバーフローすることにより、第3排液溝501cにも希釈有機溶剤が貯留される。 In the chamber cleaning process shown in FIG. 18B, the diluted organic solvent is supplied to the first drainage groove 501a by opening the valves 82a and 82b for a predetermined time. As a result, the diluted organic solvent is stored in the first drain groove 501a, and the diluted organic solvent stored in the first drain groove 501a passes over the top surface 54a1 of the first circumferential wall 54a, and is transferred to the second drain groove 501b. By overflowing, the diluted organic solvent is stored in the second drainage groove 501b. Furthermore, the diluted organic solvent stored in the second drainage groove 501b passes over the upper surface 54b1 of the second peripheral wall 54b and overflows to the third drainage groove 501c, whereby the dilution organic solvent is also diluted in the third drainage groove 501c. The solvent is stored.
 つづいて、各排液口51a~51cから希釈有機溶剤を排出した後、バルブ82aのみを所定時間開放することにより、第1排液溝501aにDIWを供給する。これにより、第1~第3排液溝501a~501cにDIWが貯留される。その後、各排液口51a~51cからDIWを排出する。これにより、第1~第3排液溝501a~501cに付着した処理膜を除去することができる。 Subsequently, after the diluted organic solvent is drained from the drainage ports 51a to 51c, DIW is supplied to the first drainage groove 501a by opening only the valve 82a for a predetermined time. Thus, DIW is stored in the first to third drainage grooves 501a to 501c. Thereafter, DIW is drained from the drainage ports 51a to 51c. Thus, the treatment film attached to the first to third drainage grooves 501a to 501c can be removed.
 また、図18Cに示すように、チャンバ20の内部には、第3カップ50cのさらに外周に排気カップ50dが配置され、排気カップ50dのさらに外周にミストガード50eが配置される場合がある。排気カップ50dは、外周筒部50d1と、外周筒部50d1の上端部から外周筒部50d1の径方向内側に張り出す張出部50d2とを備える。同様に、ミストガード50eも、外周筒部50e1と、外周筒部50e1の上端部から外周筒部50e1の径方向内側に張り出す張出部50e2とを備える。なお、排気カップ50dは不動であり、ミストガード50eは図示しない昇降機構によって昇降可能である。 Further, as shown in FIG. 18C, the exhaust cup 50d may be disposed further outside the third cup 50c inside the chamber 20, and the mist guard 50e may be disposed further outside the exhaust cup 50d. The exhaust cup 50d includes an outer peripheral cylindrical portion 50d1 and a protruding portion 50d2 protruding inward in the radial direction of the outer peripheral cylindrical portion 50d1 from an upper end portion of the outer peripheral cylindrical portion 50d1. Similarly, the mist guard 50e also includes an outer peripheral cylindrical portion 50e1 and an overhang portion 50e2 protruding inward in the radial direction of the outer peripheral cylindrical portion 50e1 from the upper end portion of the outer peripheral cylindrical portion 50e1. The exhaust cup 50d is stationary, and the mist guard 50e can be lifted and lowered by a lifting mechanism (not shown).
 このような場合、チャンバ洗浄処理は、例えば、第3カップ50cと排気カップ50dとの間に形成される排気経路505を洗浄する処理であってもよい。例えば、ノズル41_4を第1回転カップ101のさらに外周側に配置させ、第1回転カップ101と排気カップ50dの張出部50d2との間に形成される空間(すなわち、排気経路505の入り口)に対して希釈有機溶剤およびDIWを順次供給する。これにより、排気経路505に付着した処理膜を除去することができる。また、第1回転カップ101と第3カップ50cとの隙間から希釈有機溶剤およびDIWが漏れ出ることで、かかる隙間に付着した処理膜や延設部54d1等に付着した処理膜も除去することができる。 In such a case, the chamber cleaning process may be, for example, a process of cleaning the exhaust path 505 formed between the third cup 50c and the exhaust cup 50d. For example, the nozzle 41_4 is disposed on the further outer peripheral side of the first rotary cup 101, and in a space formed between the first rotary cup 101 and the overhang portion 50d2 of the exhaust cup 50d (that is, at the inlet of the exhaust path 505). Diluted organic solvent and DIW are sequentially supplied to it. Thus, the treatment film attached to the exhaust path 505 can be removed. In addition, the diluted organic solvent and DIW leak out from the gap between the first rotating cup 101 and the third cup 50c, thereby removing the treated film attached to the gap and the treated film attached to the extended portion 54d1 and the like. it can.
 また、図18Dに示すように、チャンバ洗浄処理は、ミストガード50eの張出部50e2の下面と排気カップ50dの張出部50d2の上面とを洗浄する処理であってもよい。この場合、基板洗浄装置14は、例えば、ミストガード50eの張出部50e2の下面に対して洗浄液を供給する洗浄液供給部80_2を備える。 Further, as shown in FIG. 18D, the chamber cleaning process may be a process of cleaning the lower surface of the overhang portion 50e2 of the mist guard 50e and the upper surface of the overhang portion 50d2 of the exhaust cup 50d. In this case, the substrate cleaning apparatus 14 includes, for example, a cleaning solution supply unit 80_2 that supplies a cleaning solution to the lower surface of the overhanging portion 50e2 of the mist guard 50e.
 洗浄液供給部80_2は、ノズル41_8を備える。ノズル41_8は、例えば、排気カップ50dの張出部50d2の上面に設けられる。ノズル41_8は、洗浄液供給管81a、流量調整器84aおよびバルブ82aを介してDIW供給源45fに接続され、洗浄液供給管81a,81b、流量調整器84bおよびバルブ82bを介して有機溶剤供給源45hに接続される。 The cleaning liquid supply unit 80_2 includes a nozzle 41_8. The nozzle 41 _ 8 is provided, for example, on the upper surface of the overhang portion 50 d 2 of the exhaust cup 50 d. The nozzle 41 _ 8 is connected to the DIW supply source 45 f via the cleaning solution supply pipe 81 a, the flow rate regulator 84 a and the valve 82 a, and to the organic solvent supply source 45 h via the cleaning solution supply pipes 81 a and 81 b, the flow rate regulator 84 b and the valve 82 b. Connected
 図18Dに示すチャンバ洗浄処理では、ノズル41_8から希釈有機溶剤を供給することにより、ミストガード50eの張出部50e2と排気カップ50dの張出部50d2との間の空間に希釈有機溶剤を貯留する。その後、図示しない排液経路から希釈有機溶剤を排出した後、ノズル41_8からDIWを供給することにより、ミストガード50eの張出部50e2と排気カップ50dの張出部50d2との間の空間にDIWを貯留する。その後、図示しない排液経路からDIWを排出する。これにより、ミストガード50eの張出部50e2の下面および排気カップ50dの張出部50d2の上面に付着した処理膜を除去することができる。 In the chamber cleaning process shown in FIG. 18D, the diluted organic solvent is stored in the space between the overhang portion 50e2 of the mist guard 50e and the overhang portion 50d2 of the exhaust cup 50d by supplying the dilution organic solvent from the nozzle 41_8. . Thereafter, after the diluted organic solvent is discharged from the drainage path (not shown), DIW is supplied from the nozzle 41 _ 8 to supply DIW to the space between the overhang 50 e 2 of the mist guard 50 e and the overhang 50 d 2 of the exhaust cup 50 d. Store Thereafter, DIW is drained from a drain path (not shown). As a result, the processing film attached to the lower surface of the overhang 50e2 of the mist guard 50e and the upper surface of the overhang 50d2 of the exhaust cup 50d can be removed.
 また、図18Eに示すように、チャンバ洗浄処理は、基板保持機構30の回転保持部31の下面を洗浄する処理であってもよい。この場合、基板洗浄装置14は、回転保持部31の下面に対して洗浄液を供給する洗浄液供給部80_3を備える。 Further, as shown in FIG. 18E, the chamber cleaning process may be a process of cleaning the lower surface of the rotation holding unit 31 of the substrate holding mechanism 30. In this case, the substrate cleaning apparatus 14 includes the cleaning liquid supply unit 80_3 that supplies the cleaning liquid to the lower surface of the rotation holding unit 31.
 洗浄液供給部80_3は、ノズル41_9を備える。ノズル41_9は、例えば、内壁部54dの上端部に設けられる。ノズル41_9は、洗浄液供給管81a、流量調整器84aおよびバルブ82aを介してDIW供給源45fに接続され、洗浄液供給管81a,81b、流量調整器84bおよびバルブ82bを介して有機溶剤供給源45hに接続される。 The cleaning liquid supply unit 80_3 includes a nozzle 41_9. The nozzle 41 _ 9 is provided, for example, at the upper end of the inner wall 54 d. The nozzle 41 _ 9 is connected to the DIW supply source 45 f via the cleaning solution supply pipe 81 a, the flow rate regulator 84 a and the valve 82 a, and to the organic solvent supply source 45 h via the cleaning solution supply pipes 81 a and 81 b, the flow rate regulator 84 b and the valve 82 b Connected
 図18Eに示すチャンバ洗浄処理では、回転する回転保持部31の下面に対してノズル41_9から希釈有機溶剤およびDIWを順次供給する。これにより、回転保持部31の下面に付着した処理膜を除去することができる。 In the chamber cleaning process shown in FIG. 18E, the diluted organic solvent and DIW are sequentially supplied from the nozzle 41 _ 9 to the lower surface of the rotating holding unit 31. Thereby, the treatment film attached to the lower surface of the rotation holding unit 31 can be removed.
 また、図18Fに示すように、チャンバ洗浄処理は、排気経路を洗浄する処理であってもよい。この場合、基板洗浄装置14は、各排気口52a~52cから排出された排気が合流する合流部601の内部および合流部601に接続されるダクト602に対して洗浄液を供給する洗浄液供給部80_4を備える。なお、合流部601およびダクト602は、図3に示すH部に設けられる。 Further, as shown in FIG. 18F, the chamber cleaning process may be a process of cleaning the exhaust path. In this case, the substrate cleaning apparatus 14 supplies the cleaning liquid supply unit 80_4 for supplying the cleaning liquid to the inside of the joining portion 601 where the exhausts discharged from the exhaust ports 52a to 52c join and the duct 602 connected to the joining portion 601. Prepare. The merging portion 601 and the duct 602 are provided in the H portion shown in FIG.
 洗浄液供給部80_4は、ノズル41_10およびノズル41_11を備える。ノズル41_10は、例えば、合流部601の天井部に設けられる。また、ノズル41_11は、例えば、ダクト602の上昇部分の壁面に設けられる。ノズル41_10およびノズル41_11は、洗浄液供給管81a、流量調整器84aおよびバルブ82aを介してDIW供給源45fに接続され、洗浄液供給管81a,81b、流量調整器84bおよびバルブ82bを介して有機溶剤供給源45hに接続される。 The cleaning liquid supply unit 80_4 includes a nozzle 41_10 and a nozzle 41_11. The nozzle 41 _ 10 is provided, for example, on the ceiling of the merging portion 601. Further, the nozzle 41 _ 11 is provided, for example, on the wall surface of the rising portion of the duct 602. The nozzle 41_10 and the nozzle 41_11 are connected to the DIW supply source 45f via the cleaning solution supply pipe 81a, the flow rate regulator 84a and the valve 82a, and the organic solvent is supplied via the cleaning solution supply pipes 81a and 81b, the flow rate regulator 84b and the valve 82b Connected to source 45h.
 図18Fに示すチャンバ洗浄処理では、ノズル41_10およびノズル41_11から回転する回転保持部31の下面に対して希釈有機溶剤およびDIWを順次供給する。これにより、合流部601およびダクト602に付着した処理膜を除去することができる。 In the chamber cleaning process shown in FIG. 18F, the diluted organic solvent and DIW are sequentially supplied to the lower surface of the rotating and holding unit 31 rotating from the nozzle 41_10 and the nozzle 41_11. Thereby, the treatment film attached to the merging portion 601 and the duct 602 can be removed.
 また、図18Gに示すように、チャンバ20の内部には、ノズル41_4~41_6を洗浄するノズル洗浄部603が配置される場合がある。ノズル洗浄部603は、洗浄液の貯留槽を備え、貯留槽に貯留された洗浄液にノズル41_4~41_6を浸漬させることにより、ノズル41_4~41_6を洗浄する。 Further, as shown in FIG. 18G, a nozzle cleaning unit 603 that cleans the nozzles 41_4 to 41_6 may be disposed inside the chamber 20. The nozzle cleaning unit 603 includes a storage tank for the cleaning liquid, and cleans the nozzles 41_4 to 41_6 by immersing the nozzles 41_4 to 41_6 in the cleaning liquid stored in the storage tank.
 このようにチャンバ20の内部にノズル洗浄部603が配置される場合、かかるノズル洗浄部603を洗浄液供給部80_5として用いてもよい。洗浄液供給部80_5としてのノズル洗浄部603は、洗浄液供給管81a、流量調整器84aおよびバルブ82aを介してDIW供給源45fに接続される。また、洗浄液供給部80_5としてのノズル洗浄部603は、洗浄液供給管81a,81b、流量調整器84bおよびバルブ82bを介して有機溶剤供給源45hに接続される。 As described above, when the nozzle cleaning unit 603 is disposed inside the chamber 20, the nozzle cleaning unit 603 may be used as the cleaning solution supply unit 80_5. The nozzle cleaning unit 603 as the cleaning solution supply unit 80_5 is connected to the DIW supply source 45f via the cleaning solution supply pipe 81a, the flow rate adjuster 84a, and the valve 82a. The nozzle cleaning unit 603 as the cleaning solution supply unit 80_5 is connected to the organic solvent supply source 45h via the cleaning solution supply pipes 81a and 81b, the flow rate adjuster 84b, and the valve 82b.
 図18Gに示すチャンバ洗浄処理では、ノズル洗浄部603の貯留槽に希釈有機溶剤を貯留し、貯留槽に貯留された希釈有機溶剤にノズル41_4~41_6を所定時間浸漬させた後、貯留槽から希釈有機溶剤を排出する。つづいて、ノズル洗浄部603の貯留槽にDIWを貯留し、貯留槽に貯留されたDIWにノズル41_4~41_6を所定時間浸漬させる。これにより、ノズル41_4~41_6に付着した処理膜を除去することができる。 In the chamber cleaning process shown in FIG. 18G, the diluted organic solvent is stored in the storage tank of the nozzle cleaning unit 603, and the nozzles 41_4 to 41_6 are immersed in the diluted organic solvent stored in the storage tank for a predetermined time, and then diluted from the storage tank. Drain the organic solvent. Subsequently, DIW is stored in the storage tank of the nozzle cleaning unit 603, and the nozzles 41_4 to 41_6 are immersed in the DIW stored in the storage tank for a predetermined time. Thus, the treatment film attached to the nozzles 41_4 to 41_6 can be removed.
 また、洗浄液供給部80_5は、ノズル洗浄部603の上方に位置するチャンバ20の天井部にノズル41_12を備えていてもよい。ノズル41_12は、洗浄液供給管81a、流量調整器84aおよびバルブ82aを介してDIW供給源45fに接続され、洗浄液供給管81a,81b、流量調整器84bおよびバルブ82bを介して有機溶剤供給源45hに接続される。 In addition, the cleaning liquid supply unit 80 _ 5 may include the nozzle 41 _ 12 at the ceiling of the chamber 20 located above the nozzle cleaning unit 603. The nozzle 41_12 is connected to the DIW supply source 45f via the cleaning solution supply pipe 81a, the flow rate regulator 84a and the valve 82a, and to the organic solvent supply source 45h via the cleaning solution supply pipes 81a and 81b, the flow rate regulator 84b and the valve 82b. Connected
 この場合、ノズル41_4~41_6をノズル洗浄部603において浸漬洗浄させている間に、ノズル41_12からアーム42_2に対して希釈有機溶剤およびDIWを順次供給する。これにより、ノズル41_4~41_6に付着した処理膜だけでなくアーム42_2に付着した処理膜も除去することができる。 In this case, while the nozzles 41_4 to 41_6 are immersed and cleaned in the nozzle cleaning unit 603, the diluted organic solvent and DIW are sequentially supplied from the nozzle 41_12 to the arm 42_2. Thus, not only the treatment film attached to the nozzles 41_4 to 41_6 but also the treatment film attached to the arm 42_2 can be removed.
 また、図18Hに示すように、チャンバ洗浄処理は、チャンバ20内の空間を全体的に洗浄する処理であってもよい。この場合、基板洗浄装置14は、チャンバ20内の空間に対して洗浄液を全体的に供給する洗浄液供給部80_6を備える。 Further, as shown in FIG. 18H, the chamber cleaning process may be a process for cleaning the space in the chamber 20 as a whole. In this case, the substrate cleaning apparatus 14 includes the cleaning liquid supply unit 80_6 that supplies the cleaning liquid entirely to the space in the chamber 20.
 洗浄液供給部80_6は、ノズル41_13を備える。ノズル41_13は、例えば、チャンバ20の天井部近傍の内壁部に対して複数設けられる。ノズル41_13は、洗浄液供給管81a、流量調整器84aおよびバルブ82aを介してDIW供給源45fに接続され、洗浄液供給管81a,81b、流量調整器84bおよびバルブ82bを介して有機溶剤供給源45hに接続される。 The cleaning liquid supply unit 80_6 includes a nozzle 41_13. For example, a plurality of nozzles 41 _ 13 are provided on the inner wall in the vicinity of the ceiling of the chamber 20. The nozzle 41 _ 13 is connected to the DIW supply source 45 f via the cleaning solution supply pipe 81 a, the flow rate regulator 84 a and the valve 82 a, and to the organic solvent supply source 45 h via the cleaning solution supply pipes 81 a and 81 b, the flow rate regulator 84 b and the valve 82 b. Connected
 図18Hに示すチャンバ洗浄処理では、ノズル41_13から希釈有機溶剤およびDIWを順次供給する。これにより、チャンバ20の内部を全体的に洗浄することができる。 In the chamber cleaning process shown in FIG. 18H, the diluted organic solvent and DIW are sequentially supplied from the nozzle 41_13. Thereby, the inside of the chamber 20 can be entirely cleaned.
 このように、希釈有機溶剤供給処理およびDIW供給処理を含むチャンバ洗浄処理を行うことで、チャンバ20内の各場所に付着した処理膜を適切に除去することができる。 Thus, by performing the chamber cleaning process including the dilution organic solvent supply process and the DIW supply process, the process film attached to each place in the chamber 20 can be appropriately removed.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. Indeed, the embodiments described above may be embodied in various forms. In addition, the embodiments described above may be omitted, substituted, or changed in various forms without departing from the scope of the appended claims and the spirit thereof.
W ウェハ
P パーティクル
1,1’ 基板洗浄システム
2 搬入出ステーション
3 処理ステーション
4 制御装置
14 基板洗浄装置
20 チャンバ
21 FFU
30 基板保持機構
40_1,40_2 液供給部
45a 酸系処理液供給源
45b アルカリ径処理液供給源
45c 前処理液供給源
45d A+B供給源
45e C供給源
45f DIW供給源
45g アルカリ水溶液供給源
45h 有機溶剤供給源
45i DIW供給源
45j IPA供給源
W wafer P particle 1, 1 'substrate cleaning system 2 loading and unloading station 3 processing station 4 controller 14 substrate cleaning apparatus 20 chamber 21 FFU
30 substrate holding mechanism 40_1, 40_2 solution supply unit 45a acid type treatment solution supply source 45b alkali diameter treatment solution supply source 45c pretreatment solution supply source 45d A + B supply source 45e C supply source 45f DIW supply source 45g alkaline aqueous solution supply source 45h organic solvent Supply source 45i DIW supply source 45j IPA supply source

Claims (10)

  1.  有機溶媒に可溶なフェノール樹脂を含有する処理膜が形成された基板を保持する保持部と、
     前記処理膜を前記基板から剥離させる剥離処理液を前記処理膜に対して供給する剥離処理液供給部と、
     前記処理膜を溶解させる溶解処理液を前記処理膜に対して供給する溶解処理液供給部と
     を備える、基板処理システム。
    A holder for holding a substrate on which a treated film containing a phenolic resin soluble in an organic solvent is formed;
    A peeling treatment liquid supply unit configured to supply a peeling treatment liquid for peeling the treatment film from the substrate to the treatment film;
    And a solution processing solution supply unit for supplying a solution processing solution for dissolving the processing film to the processing film.
  2.  前記処理膜は、前記フェノール樹脂としてノボラック樹脂を含有する、請求項1に記載の基板処理システム。 The substrate processing system according to claim 1, wherein the processing film contains a novolak resin as the phenol resin.
  3.  前記基板に対して前記フェノール樹脂と前記有機溶媒とを含有する成膜処理液を供給する成膜処理液供給部
     を備え、
     前記基板上に、前記供給された成膜処理液が固化または硬化することにより前記処理膜が形成される、請求項1または2に記載の基板処理システム。
    A film formation processing liquid supply unit configured to supply a film formation processing liquid containing the phenolic resin and the organic solvent to the substrate;
    The substrate processing system according to claim 1, wherein the processing film is formed on the substrate by solidifying or curing the supplied film forming processing solution.
  4.  前記成膜処理液は、低分子有機酸をさらに含有する、請求項3に記載の基板処理システム。 The substrate processing system according to claim 3, wherein the film forming treatment liquid further contains a low molecular weight organic acid.
  5.  前記成膜処理液における前記低分子有機酸の濃度は、
     0.1質量%以上5質量%以下である、請求項4に記載の基板処理システム。
    The concentration of the low molecular weight organic acid in the film forming solution is
    The substrate processing system according to claim 4 which is 0.1 mass% or more and 5 mass% or less.
  6.  前記保持部、前記成膜処理液供給部、前記剥離処理液供給部および前記溶解処理液供給部を収容するチャンバと、
     前記チャンバ内に配置され、前記チャンバ内における前記基板以外の場所に対して洗浄液を供給する洗浄液供給部と
     を備え、
     前記洗浄液供給部は、
     前記チャンバ内における前記基板以外の場所に対し、前記剥離処理液と前記溶解処理液との混合液を供給した後で前記剥離処理液を供給する、請求項3~5のいずれか一つに記載の基板処理システム。
    A chamber for containing the holding unit, the film forming treatment liquid supply unit, the peeling treatment liquid supply unit, and the dissolving treatment liquid supply unit;
    And a cleaning solution supply unit disposed in the chamber for supplying a cleaning solution to a location other than the substrate in the chamber.
    The cleaning solution supply unit
    The method according to any one of claims 3 to 5, wherein after the mixed solution of the peeling treatment liquid and the dissolving treatment liquid is supplied to a location other than the substrate in the chamber, the peeling treatment liquid is supplied. Substrate processing system.
  7.  前記剥離処理液は、純水である、請求項1~5のいずれか一つに記載の基板処理システム。 The substrate processing system according to any one of claims 1 to 5, wherein the peeling treatment liquid is pure water.
  8.  前記溶解処理液は、有機溶剤である、請求項1~5のいずれか一つに記載の基板処理システム。 The substrate processing system according to any one of claims 1 to 5, wherein the solution processing solution is an organic solvent.
  9.  有機溶媒に可溶なフェノール樹脂を含有する処理膜を基板上に形成する処理膜形成工程と、
     前記基板上の処理膜に対して前記処理膜を除去する除去液を供給する除去液供給工程と
     を含む、基板洗浄方法。
    Forming a treated film containing a phenolic resin soluble in an organic solvent on a substrate;
    A removing liquid supply step of supplying a removing liquid for removing the processing film on the processing film on the substrate.
  10.  コンピュータ上で動作し、基板処理システムを制御するプログラムが記憶されたコンピュータ読取可能な記憶媒体であって、
     前記プログラムは、実行時に、請求項9に記載の基板洗浄方法が行われるように、コンピュータに前記基板処理システムを制御させる、記憶媒体。
    A computer readable storage medium that stores a program that runs on a computer and controls a substrate processing system, comprising:
    A storage medium which, when executed, causes a computer to control the substrate processing system so that the substrate cleaning method according to claim 9 is performed.
PCT/JP2018/023178 2017-07-03 2018-06-19 Substrate treatment system, substrate cleaning method, and storage medium WO2019009054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019527611A JPWO2019009054A1 (en) 2017-07-03 2018-06-19 Substrate processing system, substrate cleaning method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130483 2017-07-03
JP2017130483 2017-07-03

Publications (1)

Publication Number Publication Date
WO2019009054A1 true WO2019009054A1 (en) 2019-01-10

Family

ID=64949875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023178 WO2019009054A1 (en) 2017-07-03 2018-06-19 Substrate treatment system, substrate cleaning method, and storage medium

Country Status (3)

Country Link
JP (1) JPWO2019009054A1 (en)
TW (1) TW201919783A (en)
WO (1) WO2019009054A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189683A1 (en) * 2019-03-19 2020-09-24 Jsr株式会社 Composition and method for processing substrate
US20210365054A1 (en) * 2020-05-19 2021-11-25 Tokyo Electron Limited Substrate liquid processing apparatus and substrate liquid processing method
KR102652831B1 (en) * 2019-03-25 2024-03-29 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7355535B2 (en) * 2019-06-28 2023-10-03 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
TWI796778B (en) * 2020-09-09 2023-03-21 日商斯庫林集團股份有限公司 Substrate processing apparatus and substrate processing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051476A (en) * 2001-08-06 2003-02-21 Tokyo Electron Ltd Substrate processing apparatus and method
JP2009195835A (en) * 2008-02-22 2009-09-03 Tokyo Electron Ltd Processing apparatus, washing method, and storage medium
JP2014099583A (en) * 2012-08-07 2014-05-29 Tokyo Electron Ltd Substrate cleaning device, substrate cleaning systems, substrate cleaning method, and storage medium
JP2014107313A (en) * 2012-11-26 2014-06-09 Tokyo Electron Ltd Substrate cleaning method and substrate cleaning system
JP2014123704A (en) * 2012-11-26 2014-07-03 Tokyo Electron Ltd Substrate cleaning system, substrate cleaning method and storage medium
JP2015095583A (en) * 2013-11-13 2015-05-18 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning system and storage medium
JP2015119164A (en) * 2013-11-13 2015-06-25 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning system and storage medium
JP2016034006A (en) * 2014-07-31 2016-03-10 東京エレクトロン株式会社 Substrate cleaning method and storage medium
JP2016033198A (en) * 2014-07-31 2016-03-10 Jsr株式会社 Composition for cleaning semiconductor substrate
JP2017126616A (en) * 2016-01-12 2017-07-20 東京エレクトロン株式会社 Substrate processing device and method for cleaning substrate processing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051476A (en) * 2001-08-06 2003-02-21 Tokyo Electron Ltd Substrate processing apparatus and method
JP2009195835A (en) * 2008-02-22 2009-09-03 Tokyo Electron Ltd Processing apparatus, washing method, and storage medium
JP2014099583A (en) * 2012-08-07 2014-05-29 Tokyo Electron Ltd Substrate cleaning device, substrate cleaning systems, substrate cleaning method, and storage medium
JP2014107313A (en) * 2012-11-26 2014-06-09 Tokyo Electron Ltd Substrate cleaning method and substrate cleaning system
JP2014123704A (en) * 2012-11-26 2014-07-03 Tokyo Electron Ltd Substrate cleaning system, substrate cleaning method and storage medium
JP2015095583A (en) * 2013-11-13 2015-05-18 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning system and storage medium
JP2015119164A (en) * 2013-11-13 2015-06-25 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning system and storage medium
JP2016034006A (en) * 2014-07-31 2016-03-10 東京エレクトロン株式会社 Substrate cleaning method and storage medium
JP2016033198A (en) * 2014-07-31 2016-03-10 Jsr株式会社 Composition for cleaning semiconductor substrate
JP2017126616A (en) * 2016-01-12 2017-07-20 東京エレクトロン株式会社 Substrate processing device and method for cleaning substrate processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189683A1 (en) * 2019-03-19 2020-09-24 Jsr株式会社 Composition and method for processing substrate
KR102652831B1 (en) * 2019-03-25 2024-03-29 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing device
US20210365054A1 (en) * 2020-05-19 2021-11-25 Tokyo Electron Limited Substrate liquid processing apparatus and substrate liquid processing method
US11880213B2 (en) * 2020-05-19 2024-01-23 Tokyo Electron Limited Substrate liquid processing apparatus and substrate liquid processing method

Also Published As

Publication number Publication date
JPWO2019009054A1 (en) 2020-04-16
TW201919783A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
KR102447162B1 (en) Substrate cleaning method, substrate cleaning system and storage medium
WO2019009054A1 (en) Substrate treatment system, substrate cleaning method, and storage medium
CN110265325B (en) Substrate processing system and substrate cleaning method
JP5977727B2 (en) Substrate cleaning method, substrate cleaning system, and storage medium
JP6426936B2 (en) Substrate cleaning method and storage medium
TWI552220B (en) Substrate cleaning system, substrate cleaning method and memory media
US20140041685A1 (en) Substrate cleaning apparatus, substrate cleaning system, substrate cleaning method and memory medium
JP5677603B2 (en) Substrate cleaning system, substrate cleaning method, and storage medium
JP2016197762A (en) Substrate cleaning method and substrate cleaning system
JP7105950B2 (en) SUBSTRATE CLEANING METHOD, SUBSTRATE CLEANING SYSTEM AND STORAGE MEDIUM
JP6548790B2 (en) Substrate cleaning system, substrate cleaning method and storage medium
KR100757882B1 (en) method for removing photo resists on the substrate
JP2019212697A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827489

Country of ref document: EP

Kind code of ref document: A1