WO2020189345A1 - Gas barrier laminate and method for manufacturing same - Google Patents

Gas barrier laminate and method for manufacturing same Download PDF

Info

Publication number
WO2020189345A1
WO2020189345A1 PCT/JP2020/009714 JP2020009714W WO2020189345A1 WO 2020189345 A1 WO2020189345 A1 WO 2020189345A1 JP 2020009714 W JP2020009714 W JP 2020009714W WO 2020189345 A1 WO2020189345 A1 WO 2020189345A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
anchor coat
composition
coat layer
layer
Prior art date
Application number
PCT/JP2020/009714
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 宮井
一弘 鶴田
碧 伊藤
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Publication of WO2020189345A1 publication Critical patent/WO2020189345A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a gas barrier laminate, and more specifically, the gas barrier layer has a high adhesive force to a base material, and maintains an excellent adhesive force to a base material even when subjected to a retort sterilization treatment.
  • the present invention relates to a gas barrier laminate having excellent crack resistance and a method for producing the same.
  • Patent Documents 1 and 2 50 to 100% of metal atoms are iron or aluminum, 0 to 50% are selected from tin, titanium and zirconium, and 0 to 20% of metal atoms are zinc and chromium.
  • Patent Documents 1 and 2 50 to 100% of metal atoms are iron or aluminum, 0 to 50% are selected from tin, titanium and zirconium, and 0 to 20% of metal atoms are zinc and chromium.
  • a molded product having a gas permeation-preventing coating made of a metal salt of ortholithic acid selected from magnesium is described.
  • the layer (Y) contains a reaction product (R), and the reaction product (R) is a reaction product formed by at least a reaction between a metal oxide (A) and a phosphorus compound (B).
  • the number of waves (n 1 ) at which infrared absorption is maximized in the infrared absorption spectrum of the layer (Y) in the range of 800 to 1400 cm -1 is in the range of 1080 to 1130 cm -1 , and constitutes the metal oxide (A).
  • a composite structure is described in which the metal atom (M) is aluminum.
  • the composite structure has excellent gas barrier properties and water vapor barrier properties, and can maintain excellent super barrier properties at a high level even after retort treatment.
  • this composite structure is a base material after retort treatment.
  • the interlayer adhesion between the gas barrier layer and the gas barrier layer is inferior.
  • the following Patent Document 4 describes a base material (X), a layer (Z) laminated on the base material (X), and a layer (Z) laminated on the base material (Z).
  • the layer (Z) contains a reaction product of a polyol resin (K) having a silanol group in the resin skeleton and an isocyanate-based curing agent (L), and contains a polyol resin (K).
  • a multilayer structure has been proposed in which the layer (Y) is in the range of about 200 nm and contains the reaction product (D) of the compound (A) containing aluminum and the phosphorus compound (B).
  • an object of the present invention is that the gas barrier layer has a high adhesive force to the base material, the excellent adhesive force to the base material is maintained even when subjected to the retort sterilization treatment, and the crack resistance is also excellent. It is an object of the present invention to provide a gas barrier laminate and a method for producing the same.
  • an anchor coat layer composed of a polyurethane resin and a silane coupling agent is provided on at least one surface of the base material, and a gas barrier layer containing at least a metal oxide is provided on the anchor coat layer.
  • a gas barrier laminate characterized by this is provided.
  • the glass transition temperature of the anchor coat layer is 80 ° C. or higher.
  • the silane coupling agent is an epoxy silane coupling agent.
  • the silane coupling agent is contained in an amount of 1 to 60 parts by mass with respect to 100 parts by mass (solid content) of the polyurethane resin.
  • the metal oxide is a metal oxide of aluminum and / or iron.
  • the gas barrier layer contains a phosphoric acid compound.
  • the base material is a film made of polyethylene terephthalate, polybutylene terephthalate, or polypropylene. Is preferable.
  • an anchor coat layer forming composition containing a polyurethane resin and a silane coupling agent is applied to at least one surface of the base material, and the anchor coat layer forming composition is subjected to a drying treatment. After removing the solvent, the composition for forming a gas barrier layer containing a metal oxide and a phosphoric acid compound is applied onto the composition for forming an anchor coat layer, and then the composition is subjected to heat treatment to perform an anchor coat.
  • a method for producing the above-mentioned gas barrier laminate which comprises forming a layer and a gas barrier layer.
  • the gas barrier layer having excellent gas barrier properties is laminated on the base material with high adhesive force, and has excellent interlayer adhesion even after the retort sterilization treatment. Further, by using a polyurethane resin having a high glass transition temperature as the main agent constituting the anchor coat layer, crack resistance during heat treatment at the time of forming the gas barrier layer can be improved, and the composition for forming the gas barrier layer can be anchored. It can be continuously coated on the coating layer forming composition, and the suitability for continuous coating can be imparted.
  • polypropylene such as polyethylene terephthalate and polybutylene terephthalate is used as a base material. can do.
  • an anchor coat layer 2 composed of a polyurethane resin and a silane coupling agent is formed on the base material 1, and the anchor coat layer 2 is formed on the anchor coat layer 2.
  • a gas barrier layer 3 made of a metal oxide is formed therein.
  • the glass transition temperature (Tg) is 80 ° C. or higher. In particular, it is desirable to use one in the range of 100 to 120 ° C. When the glass transition temperature is lower than the above range, the heat resistance of the anchor coat layer becomes inferior to that in the above range, and the shrinkage rate due to heating between the anchor coat layer and the gas barrier layer becomes inferior. When the difference is generated, the gas barrier layer may be cracked and the barrier property may be deteriorated.
  • polyol component which is the main component of the polyurethane resin examples include glycols, polyester polyols, polyether polyols, acrylic polyols, and urethane modified products thereof, but it is particularly preferable to use glycols.
  • polyester polyol component examples include a polyester polyol obtained by reacting a polyvalent carboxylic acid or a dialkyl ester thereof or a mixture thereof with glycols or a mixture thereof.
  • the glass transition temperature of the polyester polyol is preferably ⁇ 50 to 100 ° C., more preferably ⁇ 20 ° C. to 80 ° C.
  • the number average molecular weight of these polyester polyols is preferably 1,000 to 100,000, more preferably 3,000 to 80,000.
  • glycol examples include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol and the like.
  • polyvalent carboxylic acid examples include aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid, and aliphatic polyvalent carboxylic acids such as adipic acid, azelaic acid, sebacic acid and cyclohexanedicarboxylic acid.
  • aromatic diisocyanate aromatic aliphatic diisocyanate, alicyclic diisocyanate, aliphatic diisocyanate and the like can be used.
  • aromatic diisocyanate include tolene diisocyanate (2,4- or 2,6-toluene diisocyanate or a mixture thereof) (TDI), phenylenediocyanate (m-, p-phenylenediocyanide isocyanate or a mixture thereof), 4,4.
  • NDI 1,5-naphthalenediocyanate
  • MDI diphenylmethane diisosinate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisosinate or a mixture thereof)
  • TODI 4,4'-toluene diisocyanate
  • SBA 4,4'-diphenyl ether diisocyanate
  • aromatic aliphatic diisocyanate examples include xylene diisocyanate (1,3- or 1,4-xylene diisocyanate or a mixture thereof) (XDI), tetramethylxylene diisocyanate (1,3- or 1,4-tetramethylxylene diisocyanate or (TMXDI), ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene and the like can be exemplified.
  • XDI xylene diisocyanate
  • TMXDI tetramethylxylene diisocyanate
  • ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene and the like can be exemplified.
  • alicyclic diisocyanate examples include 1,3-cyclopentenediisocyanate, cyclohexanediisocyanate (1,4-cyclohexanediisocyanate, 1,3-cyclohexanediisocyanate), and 3-isocyanatemethyl-3,5,5-trimethylcyclohexylisocyanate (iso).
  • IPDI Holodiisocyanate, IPDI), methylenebis (cyclohexylisocyanate) (4,4'-, 2,4'-or 2,2'-methylenebis (cyclohexylisocyanate)) (hydrogenated MDI), methylcyclohexanediisocyanate (methyl-2,4) -Cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), bis (isocyanatemethyl) cyclohexane (1,3- or 1,4-bis (isocyanatemethyl) cyclohexane or a mixture thereof) (hydrogenated XDI) and the like. it can.
  • aliphatic diisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylenedylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate) and hexamethylene.
  • trimethylene diisocyanate 1,2-propylene diisocyanate
  • butylene diisocyanate tetramethylene diisocyanate, 1,2-butylenedylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate
  • hexamethylene examples include diisocyanate, pendamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, and 2,6-diisamethylene methyl caffeate.
  • the polyisocyanate component is obtained by reacting with a polyfunctional polyisocyanate compound such as isocyanurate, burette, or allophanate derived from the above polyisocyanate monomer, or a trifunctional or higher functional polyol compound such as trimethylolpropane or glycerin.
  • a polyfunctional polyisocyanate compound containing a terminal isocyanate group or the like can also be used.
  • the polyisocyanate component has a glass transition temperature (Tg) of 50 ° C. or higher and a number average molecular weight (Mn) of 400 or higher, particularly a glass transition temperature (Tg) of 60 ° C. or higher and a number average molecular weight (Mn) of 500 ° C. or higher. Is preferable. In the present invention, it is preferable to use xylene diisocyanate among the above-mentioned isocyanate components.
  • silane coupling agent As the silane coupling agent used for the anchor coat layer, an epoxy silane coupling agent can be preferably used.
  • epoxysilane-based coupling agents include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-. Glycydoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like can be used.
  • silane coupling agent examples include tetramethoxysilane, tetraethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanatepropyltriethoxysilane, and the like, which are used as necessary. be able to.
  • composition for forming an anchor coat layer may be either water-based or solvent-based as long as it contains the polyurethane-based resin and the silane coupling agent, but is preferably an aqueous composition. From the above, it is desirable that the polyurethane resin used is a water-soluble or water-dispersible polyurethane.
  • the epoxysilane-based coupling agent is preferably contained in an amount of 1 to 60 parts by mass, particularly 15 to 30 parts by mass with respect to 100 parts by mass (solid content) of the polyurethane resin.
  • the content of the epoxy silane coupling agent is smaller than the above range, the crack resistance during drying cannot be satisfied as compared with the case of the above range, while the epoxy silane compound is more than the above range. At most, it is difficult to further improve the adhesion, and on the contrary, the heat resistance and water resistance may be impaired.
  • aqueous medium distilled water, ion-exchanged water, pure water and the like can be used as conventionally known aqueous media, and like the known aqueous compositions, organic solvents such as alcohols, polyhydric alcohols and derivatives thereof can be used. Can be contained. When such a co-solvent is used, it can be contained in an amount of 5 to 99% by weight based on the resin content in the aqueous composition. By containing the solvent in the above range, the film forming performance is improved.
  • an organic solvent one having an amphoteric property is preferable, and for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, methyl ethyl ketone, butyl cellosolve, propylene glycol monopropyl ether, ethylene glycol monoblu ether, propylene glycol.
  • examples thereof include monomethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, 3-methyl 3-methoxybutanol and the like.
  • composition for forming an anchor coat layer in addition to the above components, known curing accelerators, fillers, softeners, antiaging agents, stabilizers, adhesion accelerators, leveling agents, defoaming agents, plasticizers, and inorganic materials It can also contain fillers, tackifier resins, fibers, colorants such as pigments, and usable time extenders.
  • the gas barrier layer formed on the anchor coat layer formed by the above-mentioned composition for forming an anchor coat layer is formed by containing at least a metal oxide, and it is particularly preferable that the gas barrier layer further contains a phosphoric acid compound.
  • Metal oxide As the metal oxide, oxides such as aluminum, iron, zirconium, titanium, and silicon can be preferably used, and among them, aluminum and iron can be preferably used. These oxides can be used alone or in combination of two or more. Examples of the form of the metal oxide include hydrates, oxyhydroxides, oxides, and mixtures thereof. It is desirable that the metal oxide be used as a dispersion liquid as a slurry of alumina, iron sol, zirconia or the like by a conventionally known hydrolysis condensation or hydrothermal synthesis method.
  • these slurries are synthesized and dispersed by heating in the presence of inorganic or organic acids such as nitric acid, hydrochloric acid, perchloric acid, formic acid, acetic acid, citric acid, malic acid and lactic acid. It is desirable to use a dispersion liquid having excellent transparency and viscosity stability. Above all, a dispersion liquid using acetic acid, nitric acid and citric acid can be preferably used. By using such a dispersion liquid, it becomes easy to uniformly disperse the metal oxide in the coating film or the gas barrier layer coating film, and it becomes possible to improve the gas barrier property.
  • inorganic or organic acids such as nitric acid, hydrochloric acid, perchloric acid, formic acid, acetic acid, citric acid, malic acid and lactic acid.
  • a dispersion liquid having excellent transparency and viscosity stability.
  • a dispersion liquid using acetic acid, nitric acid and citric acid can
  • Phosphoric acid compounds include orthophosphoric acid, polyphosphoric acid, phosphorous acid, phosphoric acid and derivatives thereof.
  • polyphosphoric acid include pyrophosphoric acid, triphosphoric acid, and polyphosphoric acid in which four or more phosphoric acids are condensed.
  • Examples of the above derivatives include orthophosphoric acid, polyphosphoric acid, phosphorous acid, phosphonates, (partial) ester compounds, halides (chlorides and the like), dehydrated products (dilin pentoxide and the like) and the like.
  • the hydrogen atom directly bonded to the phosphorus atom of phosphonic acid may have various functional groups as an alkyl group.
  • Substituted compounds eg, nitrilotris (methylenephosphonic acid), N, N, N', N'-ethylenediaminetetrax (methylenephosphonic acid), etc.
  • salts thereof, (partial) ester compounds, halides and dehydrations. Things are also included.
  • an organic polymer having a phosphorus atom such as phosphorylated starch can also be used.
  • the composition for forming a barrier layer is composed of the above-mentioned metal oxide, preferably further containing a phosphoric acid compound, and as long as it contains these, it may be either an aqueous composition or a solvent-based composition. It is good, but it is preferable that it is an aqueous composition as in the composition for forming an anchor coat layer.
  • the ratio of the metal atom derived from the metal oxide to the phosphorus atom derived from the phosphorus compound is 80:20 to 20:80 (mol). It is desirable that it is in the range of ratio).
  • the amount of metal atoms When the amount of metal atoms is larger than the above range, the metal oxide becomes excessive with respect to the phosphoric acid compound, the bonds between the metal oxide particles become insufficient, and the hydroxyl groups existing on the surface of the inorganic compound The amount may increase and the barrier property and heat resistance may decrease.
  • the amount of metal atoms is smaller than the above range, the phosphoric acid compound becomes excessive with respect to the metal oxide, the amount of hydroxyl groups derived from the phosphoric acid group increases, and the barrier property and heat resistance may decrease. There is.
  • the phosphoric acid compound When the phosphoric acid compound is contained in the barrier layer forming composition, the phosphoric acid compound and the metal oxide are mixed in a solvent in which the phosphoric acid compound can be dissolved.
  • the composition for forming the barrier layer is also an aqueous composition as in the composition for forming the anchor coat layer
  • the above-mentioned aqueous medium should be used for the composition for forming the anchor coat layer. Is preferable.
  • the barrier layer forming composition may also contain a cross-linking agent, a metal complex, a polymer compound, a filler, a plasticizer, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant and the like. it can.
  • Base material As the base material for forming the anchor coat layer described above, a conventionally known base material made of a resin such as a thermoplastic resin or a thermosetting resin, a fiber such as paper or a non-woven fabric, or the like can be used, but preferably. , Film, sheet, or bottle-shaped, cup-shaped, tray-shaped, can-shaped, etc. manufactured from thermosetting thermoplastic resin by means such as extrusion molding, injection molding, blow molding, stretch blow molding, or press molding. Any packaging material can be mentioned.
  • the thermoplastic resin constituting the base material includes low-, medium- or high-density polyethylene, linear low-density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene-copolymer, ionomer, and ethylene-acetate.
  • Olefin-based copolymers such as vinyl copolymers and ethylene-vinyl alcohol copolymers; polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, and polyethylene naphthalate; nylon 6, nylon 6, 6, nylon 6 , 10, Polyamide such as metaxylylene adipamide; styrene copolymer such as polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin); Vinyl chloride-based copolymers such as polyvinyl chloride and vinyl chloride-vinyl acetate copolymers; acrylic copolymers such as polymethylmethacrylate, methylmethacrylate / ethylacrylate copolymers; polycarbonate and the like can be exemp
  • thermoplastics may be used alone or in the form of a blend of two or more, and the plastic substrate may be in a single layer configuration, for example simultaneous melt extrusion or other lamination. It may have a laminated structure of two or more layers according to the above.
  • additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants are added to 100 parts by mass of the resin, if desired. The total amount can be added in the range of 0.001 part to 5.0 part.
  • a fiber reinforcing material such as glass fiber, aromatic polyamide fiber, carbon fiber, pulp, cotton linter, or a powder reinforcing material such as carbon black or white carbon, or glass flakes
  • a fiber reinforcing material such as glass fiber, aromatic polyamide fiber, carbon fiber, pulp, cotton linter, or a powder reinforcing material such as carbon black or white carbon, or glass flakes
  • One type or two or more types of flake-shaped reinforcing materials such as aluminum flakes can be blended in an amount of 2 to 150 parts by mass as a total amount with respect to 100 parts by mass of the thermoplastic resin, and for the purpose of further increasing the amount, heavy or heavy.
  • thermoplastic resin one or more of soft calcium carbonate, mica, talc, kaolin, gypsum, clay, barium sulfate, alumina powder, silica powder, magnesium carbonate, etc., as a total amount of 5 to 100 parts by mass of the thermoplastic resin. It can also be formulated in an amount of 100 parts by mass according to a formulation known per se.
  • scaly inorganic fine powder for example, water-swellable mica, clay, etc., is known in an amount of 5 to 100 parts by mass as a total amount with respect to 100 parts by mass of the thermoplastic resin. There is no problem even if it is mixed according to the prescription of.
  • a thin film layer of an inorganic substance such as silicon oxide or aluminum oxide may be provided on a plastic base material physically or chemically by a vapor deposition method. Absent.
  • the base material may be a molded product such as a final film, a sheet, or a container, or this coating may be provided in advance on a premolded product for molding into a container.
  • preformed bodies include bottomed or bottomless tubular parisons for biaxial stretch blow molding, pipes for plastic molding, vacuum forming, pneumatic forming, sheets for plug-assisted forming, or Examples thereof include a heat seal lid and a film for bag making.
  • the above-mentioned composition for forming an anchor coat layer is first applied to at least one surface of the above-mentioned base material.
  • the coating amount of the composition for forming the anchor coat layer is determined by the contents of the polyurethane resin and the silane coupling agent in the composition, and although it cannot be unconditionally specified, the solid content weight of the coating film is 0.05 to 1. It is preferable to apply the coating so as to be in the range of 00 g / m 2 , particularly 0.10 to 0.50 g / m 2 .
  • the anchor coat layer may not be adhered to the base material as compared with the case of being in the above range, while if the amount of anchor coat applied is larger than the above range. It becomes inferior in economic efficiency.
  • the composition for forming an anchor coat layer coated on the substrate is dried at a temperature of 80 to 140 ° C. for 1 to 60 seconds, although it depends on the composition of the composition used and the amount of coating applied, so that the solvent in the composition can be obtained. To remove. As a result, even when the base material is made of a plastic having a low melting point such as polypropylene, the anchor coat layer can be economically formed without affecting it.
  • the composition for forming a gas barrier layer is applied onto the composition for forming an anchor coat layer in a dry state from which the solvent has been removed.
  • the coating amount of the composition for forming a gas barrier layer is determined by the content of the metal oxide and the phosphoric acid compound in the composition and cannot be unconditionally defined, but is 0.05 to 2.0 g in terms of the solid content weight of the coating film. It is preferable to apply the mixture in the range of / m 2 , especially 0.3 to 0.7 g / m 2 . If the amount of coating is less than the above range, sufficient barrier properties cannot be obtained. On the other hand, even if the amount of coating is larger than the above range, it is only inferior in economy and has no special merit.
  • the composition for forming the gas barrier layer is heated at a temperature of 80 to 180 ° C., particularly 120 to 160 ° C. for 1 second to 10 minutes, although it depends on the composition of the metal oxide in the composition used and the amount of coating.
  • a gas barrier layer is formed. This makes it possible to reduce the difference in shrinkage between the gas barrier layer and the anchor coat layer due to heating, improve the crack resistance of the gas barrier layer, and significantly improve the interlayer adhesion between the gas barrier layer and the anchor coat layer.
  • the gas barrier layer is prevented from peeling off from the substrate.
  • composition for forming an anchor coat layer and the composition for forming a gas barrier layer can be applied, dried or heat-treated by a conventionally known method.
  • the coating method is not limited to this, and for example, it can be spray-painted, immersed, or coated by a bar coater, a roll coater, a gravure coater, or the like.
  • the drying or heat treatment can be performed by oven drying (heating), infrared heating, high frequency heating or the like.
  • the gas barrier laminate of the present invention is formed of a two-layer structure on at least one surface of a base material, particularly a plastic base material, and the anchor coat layer formed on the plastic base material is in close contact with the plastic base material. It is a coating film having excellent properties, and a gas barrier layer made of a metal oxide and a phosphoric acid compound is formed on the coating film.
  • the barrier layer itself has sufficient gas barrier performance, particularly oxygen barrier property and water vapor barrier property, and the amount of oxygen permeation before retort (JIS K-7126).
  • the heat resistance of the gas barrier laminate can be evaluated by evaluating the adhesive strength of the gas barrier laminate to the plastic substrate by the T-peel test before and after the retort treatment by the method shown in the examples.
  • the body has a T-peel strength of 0.5 N / 15 mm or more even after the retort treatment, and has excellent heat resistance and water resistance.
  • Example 1 [Method for producing anchor coat paint (composition for forming anchor coat layer)]
  • the anchor coat paint was used as the anchor coat paint, and after adjusting the solid content to 6.5% using an aqueous solvent, the urethane-based resin emulsion was used.
  • 3-Glysidoxypropyltrimethoxysilane (LS-2940, manufactured by Shin-Etsu Chemical Co., Ltd.) was added as a silane coupling agent so that the solid content was 10 parts by weight with respect to 100 parts by weight.
  • the anchor coat coating material A-2 was obtained by stirring for a predetermined time and advancing the hydrolysis reaction of the silane coupling agent. Table 1 shows the composition of the anchor coat paint.
  • barrier coat paint composition for forming barrier layer
  • the metal oxide was used as the metal oxide, and the solid content was 3. using a water / methanol solvent. The ratio was adjusted to 6% and the water / methanol ratio was 80/20.
  • the sample of the gas barrier laminate was carried out as follows using the prepared anchor coat paint and barrier coat paint.
  • a plastic base material with a thickness of 12 ⁇ m manufactured by Toray Film Processing Co., Ltd., Lumirror P60
  • Apply the above-mentioned anchor coat paint to a coating amount of 0.3 g / m 2 using a bar coater, and in a box oven at 140 ° C. Drying was performed for -5 seconds.
  • the above-mentioned barrier coat paint was applied to a coating amount of 0.7 g / m 2 using a bar coater, and heat-dried at 180 ° C. for 1 minute in a box oven to obtain a gas barrier laminate.
  • a sample was obtained.
  • the laminated laminate sample for gas barrier property evaluation was a urethane-based adhesive (manufactured by Mitsui Chemicals, Inc., Takenate A-315 / Takenate A) having a coating amount of 4.0 g / m 2 on the barrier coat surface of the gas barrier laminate described above. -50) was applied with a bar coater, dried with a dryer, and then laminated with an unstretched polypropylene film having a thickness of 50 ⁇ m to obtain a gas barrier laminated film laminate shown in Example 1.
  • Example 2 In Example 1, the anchor coat paint A-3, the gas barrier laminate, and the gas barrier are formed in the same manner as in Example 1 except that 30 phr of 3-glycidoxyepoxysilane is blended as the silane coupling agent for the anchor coat paint. A laminate of sex-laminated film was obtained.
  • Example 3 In Example 1, the anchor coat paint A-4, the gas barrier laminate, and the gas barrier are used in the same manner as in Example 1 except that 60 phr of 3-glycidoxyepoxysilane is blended as the silane coupling agent for the anchor coat paint. A laminate of sex-laminated film was obtained.
  • Water vapor permeation amount (1.0 g / m 2 , day, atm) of each gas barrier laminate described in the examples was measured using a water vapor permeation amount measuring device (PERMATRAN-W 3/31 manufactured by Modern Control). The measurement conditions were a temperature of 40 ° C. and a relative humidity of 90%.
  • a pouch (130 cm ⁇ 170 cm) was prepared using an impulse sealer (manufactured by Fuji Impulse Co., Ltd., V-301) using a laminate laminate sample prepared using the gas barrier laminate.
  • the obtained pouch was filled with 200 g of pure water.
  • the sample was subjected to a hot water shower retort test at 121 ° C. for 30 minutes to prepare a laminated laminate sample for heat resistance evaluation.
  • Tg glass transition temperature of the urethane resin and the anchor coat layer composition was measured using a high-sensitivity differential scanning calorimeter system (DSC6220, manufactured by Hitachi High-Tech Science Co., Ltd.). The measurement was carried out by weighing the coating film on an aluminum pan in a predetermined amount and then measuring at a heating rate of 10 ° C./min.
  • the gas barrier laminate of the present invention has excellent gas barrier properties, has high adhesion to the base material of the gas barrier layer, and has excellent adhesion to the base material even when subjected to retort sterilization treatment. Therefore, it can be suitably used as a packaging material for applications such as retort sterilization treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention pertains to a gas barrier laminate, and provides a gas barrier laminate in which a gas barrier layer containing at least a metal oxide is formed on a substrate with an anchor coat layer , which comprises a polyurethane resin and a silane coupling agent, interposed therebetween, whereby the bonding force of the gas barrier layer to the substrate is maintained even when subjected to retort sterilization, and the laminate has superior crack resistance.

Description

ガスバリア性積層体及びその製造方法Gas barrier laminate and its manufacturing method
 本発明は、ガスバリア性積層体に関するものであり、より詳細には、ガスバリア層の基材への付着力が高く、レトルト殺菌処理に付された場合にも優れた基材への付着力が維持されていると共に、耐クラック性にも優れたガスバリア性積層体及びその製造方法に関する。 The present invention relates to a gas barrier laminate, and more specifically, the gas barrier layer has a high adhesive force to a base material, and maintains an excellent adhesive force to a base material even when subjected to a retort sterilization treatment. The present invention relates to a gas barrier laminate having excellent crack resistance and a method for producing the same.
 プラスチック基材上に、金属原子とリン原子とを構成成分として含む被膜を形成し、ガスバリア性積層体とすることが従来から知られている。
 例えば下記特許文献1及び2には、金属原子として50~100%が鉄又はアルミニウムであり、0~50%が、錫、チタン及びジルコニウムから選ばれ、金属原子の0~20%が亜鉛、クロム、マグネシウムから選ばれたオルトリン酸金属塩から成るガス透過防止被膜を有する成形品が記載されている。
 またアルミニウムを含むガスバリア層を有する多層構造体として、例えば下記特許文献3には、基材(X)と前記基材(X)に積層された層(Y)とを有する複合構造体であって、前記層(Y)は反応生成物(R)を含み、前記反応生成物(R)は、少なくとも金属酸化物(A)とリン化合物(B)とが反応してなる反応生成物であり、800~1400cm-1の範囲における前記層(Y)の赤外線吸収スペクトルにおいて赤外線吸収が最大となる波数(n)が1080~1130cm-1の範囲にあり、前記金属酸化物(A)を構成する金属原子(M)がアルミニウムである、複合構造体が記載されている。
It has been conventionally known that a film containing a metal atom and a phosphorus atom as constituent components is formed on a plastic base material to form a gas barrier laminate.
For example, in Patent Documents 1 and 2 below, 50 to 100% of metal atoms are iron or aluminum, 0 to 50% are selected from tin, titanium and zirconium, and 0 to 20% of metal atoms are zinc and chromium. , A molded product having a gas permeation-preventing coating made of a metal salt of ortholithic acid selected from magnesium is described.
Further, as a multilayer structure having a gas barrier layer containing aluminum, for example, in Patent Document 3 below, a composite structure having a base material (X) and a layer (Y) laminated on the base material (X). The layer (Y) contains a reaction product (R), and the reaction product (R) is a reaction product formed by at least a reaction between a metal oxide (A) and a phosphorus compound (B). The number of waves (n 1 ) at which infrared absorption is maximized in the infrared absorption spectrum of the layer (Y) in the range of 800 to 1400 cm -1 is in the range of 1080 to 1130 cm -1 , and constitutes the metal oxide (A). A composite structure is described in which the metal atom (M) is aluminum.
 上記複合構造体は、ガスバリア性及び水蒸気バリア性に優れ、レトルト処理後においても優れた超バリア性を高いレベルで維持できることが記載されているが、この複合構造体は、レトルト処理後の基材とガスバリア層との層間密着性に劣っているという問題があった。
 このような問題を解決するために、下記特許文献4には、基材(X)と、前記基材(X)上に積層された層(Z)と、前記層(Z)上に積層された層(Y)とを含み、層(Z)は、樹脂骨格中にシラノール基を有するポリオール系樹脂(K)とイソシアネート系硬化剤(L)との反応生成物を含み、ポリオール系樹脂(K)およびイソシアネート系硬化剤(L)に含まれるポリオール成分とイソシアネート成分が固形分重量比でポリオール成分:イソシアネート成分=4000:1~300:1の範囲にあり、層(Z)の厚さが1~200nmの範囲にあり、層(Y)がアルミニウムを含む化合物(A)とリン化合物(B)との反応生成物(D)を含む、多層構造体が提案されている。
It has been described that the composite structure has excellent gas barrier properties and water vapor barrier properties, and can maintain excellent super barrier properties at a high level even after retort treatment. However, this composite structure is a base material after retort treatment. There is a problem that the interlayer adhesion between the gas barrier layer and the gas barrier layer is inferior.
In order to solve such a problem, the following Patent Document 4 describes a base material (X), a layer (Z) laminated on the base material (X), and a layer (Z) laminated on the base material (Z). The layer (Z) contains a reaction product of a polyol resin (K) having a silanol group in the resin skeleton and an isocyanate-based curing agent (L), and contains a polyol resin (K). ) And the isocyanate component contained in the isocyanate-based curing agent (L) are in the range of polyol component: isocyanate component = 4000: 1 to 300: 1 in terms of solid content weight ratio, and the thickness of the layer (Z) is 1. A multilayer structure has been proposed in which the layer (Y) is in the range of about 200 nm and contains the reaction product (D) of the compound (A) containing aluminum and the phosphorus compound (B).
特公昭55-50789号公報Special Publication No. 55-50789 特公昭57-42032号公報Special Publication No. 57-42032 特許第4961054号Patent No. 4961054 特開2018-1574号公報JP-A-2018-1574
 しかしながら上記特許文献4に記載された多層構造体は、上記層(Z)上に上記層(Y)を形成する際、溶媒の除去とイソシアネート成分の反応が必要であり、連続的なガスバリア層を形成することが困難である。また上記層(Y)の形成に高温での加熱が必要であるため、耐熱性の低いプラスチック基材に適用することが困難であると共に、この高温での加熱により上記層(Y)と上記層(Z)の間に収縮率の差が生じて、バリア層である(Y)層にクラックが発生するおそれがあった。
 従って本発明の目的は、ガスバリア層の基材への付着力が高く、レトルト殺菌処理に付された場合にも優れた基材への付着力が維持されていると共に、耐クラック性にも優れたガスバリア性積層体及びその製造方法を提供することである。
However, in the multilayer structure described in Patent Document 4, when the layer (Y) is formed on the layer (Z), it is necessary to remove the solvent and react the isocyanate component, and a continuous gas barrier layer is formed. Difficult to form. Further, since the formation of the layer (Y) requires heating at a high temperature, it is difficult to apply it to a plastic base material having low heat resistance, and the heating at this high temperature causes the layer (Y) and the layer. There was a risk that a difference in shrinkage rate would occur between (Z) and cracks would occur in the barrier layer (Y).
Therefore, an object of the present invention is that the gas barrier layer has a high adhesive force to the base material, the excellent adhesive force to the base material is maintained even when subjected to the retort sterilization treatment, and the crack resistance is also excellent. It is an object of the present invention to provide a gas barrier laminate and a method for producing the same.
 本発明によれば、基材の少なくとも一方の表面に、ポリウレタン系樹脂とシランカップリング剤から成るアンカーコート層を有し、該アンカーコート層上に、少なくとも金属酸化物を含有するガスバリア層を有することを特徴とするガスバリア性積層体が提供される。
 本発明のガスバリア性積層体においては、
1.前記アンカーコート層のガラス転移温度が、80℃以上であること、
2.前記シランカップリング剤が、エポキシシラン系カップリング剤であること、
3.前記シランカップリング剤を、前記ポリウレタン系樹脂100質量部(固形分)に対して1~60質量部の量で含有すること、
4.前記金属酸化物が、アルミニウム及び/又は鉄の金属酸化物であること、
5.前記ガスバリア層が、リン酸化合物を含有すること、
6.前記基材が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンの何れかから成るフィルムであること、
が好適である。
According to the present invention, an anchor coat layer composed of a polyurethane resin and a silane coupling agent is provided on at least one surface of the base material, and a gas barrier layer containing at least a metal oxide is provided on the anchor coat layer. A gas barrier laminate characterized by this is provided.
In the gas barrier laminate of the present invention,
1. 1. The glass transition temperature of the anchor coat layer is 80 ° C. or higher.
2. 2. The silane coupling agent is an epoxy silane coupling agent.
3. 3. The silane coupling agent is contained in an amount of 1 to 60 parts by mass with respect to 100 parts by mass (solid content) of the polyurethane resin.
4. The metal oxide is a metal oxide of aluminum and / or iron.
5. The gas barrier layer contains a phosphoric acid compound.
6. The base material is a film made of polyethylene terephthalate, polybutylene terephthalate, or polypropylene.
Is preferable.
 本発明によればまた、ポリウレタン系樹脂とシランカップリング剤を含有するアンカーコート層形成用組成物を基材の少なくとも一方の表面に塗布し、該アンカーコート層形成用組成物を乾燥処理に付することにより溶媒を除去した後、該アンカーコート層形成用組成物上に、金属酸化物及びリン酸化合物を含有するガスバリア層形成用組成物を塗布した後、加熱処理に付することによりアンカーコート層及びガスバリア層を形成することを特徴とする上記ガスバリア性積層体の製造方法が提供される。 According to the present invention, an anchor coat layer forming composition containing a polyurethane resin and a silane coupling agent is applied to at least one surface of the base material, and the anchor coat layer forming composition is subjected to a drying treatment. After removing the solvent, the composition for forming a gas barrier layer containing a metal oxide and a phosphoric acid compound is applied onto the composition for forming an anchor coat layer, and then the composition is subjected to heat treatment to perform an anchor coat. Provided is a method for producing the above-mentioned gas barrier laminate, which comprises forming a layer and a gas barrier layer.
 本発明のガスバリア性積層体においては、優れたガスバリア性を有するガスバリア層が高い付着力で基材に積層されており、レトルト殺菌処理後も優れた層間密着性を有している。
 また、アンカーコート層を構成する主剤としてガラス転移温度の高いポリウレタン系樹脂を使用することにより、ガスバリア層形成時の加熱処理の際の耐クラック性を向上できると共に、ガスバリア層形成用組成物をアンカーコート層形成用組成物上に連続して塗工することができ、連続塗工適性も付与可能になる。
 また本発明のガスバリア性積層体の製造方法においては、比較的低温でアンカーコート層、ガスバリア層の形成が可能であるため、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステルの他、ポリプロピレンも基材として使用することができる。
In the gas barrier laminate of the present invention, the gas barrier layer having excellent gas barrier properties is laminated on the base material with high adhesive force, and has excellent interlayer adhesion even after the retort sterilization treatment.
Further, by using a polyurethane resin having a high glass transition temperature as the main agent constituting the anchor coat layer, crack resistance during heat treatment at the time of forming the gas barrier layer can be improved, and the composition for forming the gas barrier layer can be anchored. It can be continuously coated on the coating layer forming composition, and the suitability for continuous coating can be imparted.
Further, in the method for producing a gas barrier laminate of the present invention, since an anchor coat layer and a gas barrier layer can be formed at a relatively low temperature, polypropylene such as polyethylene terephthalate and polybutylene terephthalate is used as a base material. can do.
本発明のガスバリア性積層体の一例の断面構造を示す図である。It is a figure which shows the cross-sectional structure of an example of the gas barrier laminated body of this invention.
(アンカーコート層)
 本発明のガスバリア性積層体は、図1に示すように、基材1の上に、ポリウレタン系樹脂とシランカップリング剤から成るアンカーコート層2が形成されており、このアンカーコート層2の上に、金属酸化物から成るガスバリア層3が形成されている。
(Anchor coat layer)
In the gas barrier laminate of the present invention, as shown in FIG. 1, an anchor coat layer 2 composed of a polyurethane resin and a silane coupling agent is formed on the base material 1, and the anchor coat layer 2 is formed on the anchor coat layer 2. A gas barrier layer 3 made of a metal oxide is formed therein.
[ポリウレタン系樹脂]
 アンカーコート層を構成するポリウレタン系樹脂としては、従来よりアンカーコート層として使用されていた公知のポリウレタン系樹脂を使用することができるが、本発明においては、ガラス転移温度(Tg)が80℃以上、特に100~120℃の範囲にあるものを使用することが望ましい。上記範囲よりもガラス転移温度が低い場合には、上記範囲にある場合に比して、アンカーコート層の耐熱性に劣るようになると共に、アンカーコート層とガスバリア層との間に加熱による収縮率の差が生じた際にガスバリア層にクラックが生じ、バリア性が低下するおそれがある。
[Polyurethane resin]
As the polyurethane resin constituting the anchor coat layer, a known polyurethane resin that has been conventionally used as the anchor coat layer can be used, but in the present invention, the glass transition temperature (Tg) is 80 ° C. or higher. In particular, it is desirable to use one in the range of 100 to 120 ° C. When the glass transition temperature is lower than the above range, the heat resistance of the anchor coat layer becomes inferior to that in the above range, and the shrinkage rate due to heating between the anchor coat layer and the gas barrier layer becomes inferior. When the difference is generated, the gas barrier layer may be cracked and the barrier property may be deteriorated.
 ポリウレタン系樹脂の主剤であるポリオール成分としては、グリコール、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、或いはこれらのウレタン変性物等を例示できるが、特に、グリコールを用いることが好ましい。ポリエステルポリオール成分としては、多価カルボン酸もしくはそれらのジアルキルエステルまたはそれらの混合物と、グリコール類もしくはそれらの混合物とを反応させて得られるポリエステルポリオールが挙げられる。
 前記ポリエステルポリオールのガラス転移温度は、-50~100℃が好ましく、-20℃~80℃がより好ましい。また、これらのポリエステルポリオールの数平均分子量は1000~10万が好ましく、3000~8万がより好ましい。
 グリコールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6ーヘキサンジオールなどが挙げられる。
 多価カルボン酸としては、例えばイソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸、アジピン酸、アゼライン酸、セバシン酸,シクロヘキサンジカルボン酸の脂肪族多価カルボン酸が挙げられる。
Examples of the polyol component which is the main component of the polyurethane resin include glycols, polyester polyols, polyether polyols, acrylic polyols, and urethane modified products thereof, but it is particularly preferable to use glycols. Examples of the polyester polyol component include a polyester polyol obtained by reacting a polyvalent carboxylic acid or a dialkyl ester thereof or a mixture thereof with glycols or a mixture thereof.
The glass transition temperature of the polyester polyol is preferably −50 to 100 ° C., more preferably −20 ° C. to 80 ° C. The number average molecular weight of these polyester polyols is preferably 1,000 to 100,000, more preferably 3,000 to 80,000.
Examples of the glycol include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol and the like.
Examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid, and aliphatic polyvalent carboxylic acids such as adipic acid, azelaic acid, sebacic acid and cyclohexanedicarboxylic acid.
 ポリウレタン系樹脂の硬化剤であるイソシアネート成分としては、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、脂環族ジイソシアネート、脂肪族ジイソシアネート等を使用できる。
 芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4’-、2,4’-、または2,2’-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4’-トルイジンジイソシアネート(TODI)、4,4’-ジフェニルエーテルジイソシアネート等が例示できる。
 芳香脂肪族ジイソシアネートとしては、例えば、キシレンジイソシアネート(1,3-または1,4-キシレンジイソシアネートもしくはその混合物)(XDI)、テトラメチルキシレンジイソシアネート(1,3-または1,4-テトラメチルキシレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン等が例示できる。
As the isocyanate component which is a curing agent for the polyurethane resin, aromatic diisocyanate, aromatic aliphatic diisocyanate, alicyclic diisocyanate, aliphatic diisocyanate and the like can be used.
Examples of the aromatic diisocyanate include tolene diisocyanate (2,4- or 2,6-toluene diisocyanate or a mixture thereof) (TDI), phenylenediocyanate (m-, p-phenylenediocyanide isocyanate or a mixture thereof), 4,4. ′ -Diphenyldiisocyanate, 1,5-naphthalenediocyanate (NDI), diphenylmethane diisosinate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisosinate or a mixture thereof) (MDI), Examples thereof include 4,4'-toluene diisocyanate (TODI) and 4,4'-diphenyl ether diisocyanate.
Examples of the aromatic aliphatic diisocyanate include xylene diisocyanate (1,3- or 1,4-xylene diisocyanate or a mixture thereof) (XDI), tetramethylxylene diisocyanate (1,3- or 1,4-tetramethylxylene diisocyanate or (TMXDI), ω, ω'-diisocyanate-1,4-diethylbenzene and the like can be exemplified.
 脂環族ジイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロジイソシアネート、IPDI)、メチレンビス(シクロヘキシルイソシアネート)(4,4’-、2,4’-または2,2’-メチレンビス(シクロヘキシルイソシアネート))(水添MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート)、ビス(イソシアネートメチル)シクロヘキサン(1,3-または1,4-ビス(イソシアネートメチル)シクロヘキサンもしくはその混合物)(水添XDI)等を挙げることができる。 Examples of the alicyclic diisocyanate include 1,3-cyclopentenediisocyanate, cyclohexanediisocyanate (1,4-cyclohexanediisocyanate, 1,3-cyclohexanediisocyanate), and 3-isocyanatemethyl-3,5,5-trimethylcyclohexylisocyanate (iso). Holodiisocyanate, IPDI), methylenebis (cyclohexylisocyanate) (4,4'-, 2,4'-or 2,2'-methylenebis (cyclohexylisocyanate)) (hydrogenated MDI), methylcyclohexanediisocyanate (methyl-2,4) -Cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), bis (isocyanatemethyl) cyclohexane (1,3- or 1,4-bis (isocyanatemethyl) cyclohexane or a mixture thereof) (hydrogenated XDI) and the like. it can.
 脂肪族ジイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、ヘキサメチレンジイソシアネート、ペンダメチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカフェート等を挙げることができる。 Examples of the aliphatic diisocyanate include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylenedylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate) and hexamethylene. Examples thereof include diisocyanate, pendamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, and 2,6-diisamethylene methyl caffeate.
 ポリイソシアネート成分は、上記ポリイソシアネート単量体から誘導されたイソシアヌレート、ビューレット、アロファネート等の多官能ポリイソシアネート化合物、あるいはトリメチロールプロパン、グリセリン等の3官能以上のポリオール化合物との反応により得られる末端イソシアネート基含有の多官能ポリイソシアネート化合物等を用いることもできる。
 ポリイソシアネート成分は、ガラス転移温度(Tg)が50℃以上、数平均分子量(Mn)が400以上、特にガラス転移温度(Tg)が60℃以上、数平均分子量(Mn)が500以上であることが好ましい。
 本発明においては、上記イソシアネート成分の中でも、キシレンジイソシアネートを用いることが好適である。
The polyisocyanate component is obtained by reacting with a polyfunctional polyisocyanate compound such as isocyanurate, burette, or allophanate derived from the above polyisocyanate monomer, or a trifunctional or higher functional polyol compound such as trimethylolpropane or glycerin. A polyfunctional polyisocyanate compound containing a terminal isocyanate group or the like can also be used.
The polyisocyanate component has a glass transition temperature (Tg) of 50 ° C. or higher and a number average molecular weight (Mn) of 400 or higher, particularly a glass transition temperature (Tg) of 60 ° C. or higher and a number average molecular weight (Mn) of 500 ° C. or higher. Is preferable.
In the present invention, it is preferable to use xylene diisocyanate among the above-mentioned isocyanate components.
[シランカップリング剤]
 アンカーコート層に用いるシランカップリング剤としては、エポキシシラン系カップリング剤を好適に使用することができる。
 このようなエポキシシラン系カップリング剤としては、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン等を使用することができる。
 シランカップリング剤としては、他にテトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシランなどが挙げられ、必要に応じ使用することができる。
[Silane coupling agent]
As the silane coupling agent used for the anchor coat layer, an epoxy silane coupling agent can be preferably used.
Examples of such epoxysilane-based coupling agents include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-. Glycydoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like can be used.
Examples of the silane coupling agent include tetramethoxysilane, tetraethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-isocyanatepropyltriethoxysilane, and the like, which are used as necessary. be able to.
[アンカーコート層形成用組成物]
 本発明において、アンカーコート層形成用組成物は、上記ポリウレタン系樹脂及びシランカップリング剤を含有する限り、水系又は溶剤系のいずれであってもよいが、好適には水性組成物とすることが望ましいことから、用いるポリウレタン系樹脂は水溶性又は水分散性のポリウレタンであることが望ましい。
 アンカーコート層形成用組成物において、エポキシシラン系カップリング剤はポリウレタン系樹脂100質量部(固形分)に対して1~60質量部、特に15~30質量部の量で含有することが好ましい。上記範囲よりもエポキシシラン系カップリング剤の含有量が少ない場合は、上記範囲にある場合に比して乾燥時の耐クラック性能を満足することができず、一方上記範囲よりもエポキシシラン化合物が多くても更に密着性を向上させることは困難であり、かえって耐熱水性が損なわれるおそれがある。
[Composition for forming an anchor coat layer]
In the present invention, the composition for forming the anchor coat layer may be either water-based or solvent-based as long as it contains the polyurethane-based resin and the silane coupling agent, but is preferably an aqueous composition. From the above, it is desirable that the polyurethane resin used is a water-soluble or water-dispersible polyurethane.
In the composition for forming the anchor coat layer, the epoxysilane-based coupling agent is preferably contained in an amount of 1 to 60 parts by mass, particularly 15 to 30 parts by mass with respect to 100 parts by mass (solid content) of the polyurethane resin. When the content of the epoxy silane coupling agent is smaller than the above range, the crack resistance during drying cannot be satisfied as compared with the case of the above range, while the epoxy silane compound is more than the above range. At most, it is difficult to further improve the adhesion, and on the contrary, the heat resistance and water resistance may be impaired.
 また水性媒体としては、蒸留水、イオン交換水、純粋水等を従来公知の水性媒体を使用することができ、公知の水性組成物と同様に、アルコール、多価アルコール、その誘導体等の有機溶媒を含有することができる。このような共溶剤を用いる場合には、水性組成物中の樹脂分に対して、5~99重量%で含有することができる。上記範囲で溶剤を含有することにより、製膜性能が向上する。このような有機溶媒としては、両親媒性を有するものが好ましく、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、n―ブタノール、メチルエチルケトン、ブチルセロソルブ、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、3-メチル3-メトキシブタノール等が挙げられる。
 アンカーコート層形成用組成物においては、上記成分の他に、公知の硬化促進触媒、充填剤、軟化剤、老化防止剤、安定剤、接着促進剤、レベリング剤、消泡剤、可塑剤、無機フィラー、粘着付与性樹脂、繊維類、顔料等の着色剤、可使用時間延長剤等を含有することもできる。
As the aqueous medium, distilled water, ion-exchanged water, pure water and the like can be used as conventionally known aqueous media, and like the known aqueous compositions, organic solvents such as alcohols, polyhydric alcohols and derivatives thereof can be used. Can be contained. When such a co-solvent is used, it can be contained in an amount of 5 to 99% by weight based on the resin content in the aqueous composition. By containing the solvent in the above range, the film forming performance is improved. As such an organic solvent, one having an amphoteric property is preferable, and for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, methyl ethyl ketone, butyl cellosolve, propylene glycol monopropyl ether, ethylene glycol monoblu ether, propylene glycol. Examples thereof include monomethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, 3-methyl 3-methoxybutanol and the like.
In the composition for forming an anchor coat layer, in addition to the above components, known curing accelerators, fillers, softeners, antiaging agents, stabilizers, adhesion accelerators, leveling agents, defoaming agents, plasticizers, and inorganic materials It can also contain fillers, tackifier resins, fibers, colorants such as pigments, and usable time extenders.
(ガスバリア層)
 上述したアンカーコート層形成用組成物により形成されるアンカーコート層上に形成されるガスバリア層は、少なくとも金属酸化物を含有して成り、特に更にリン酸化合物を含有することが好適である。
(Gas barrier layer)
The gas barrier layer formed on the anchor coat layer formed by the above-mentioned composition for forming an anchor coat layer is formed by containing at least a metal oxide, and it is particularly preferable that the gas barrier layer further contains a phosphoric acid compound.
[金属酸化物]
 金属酸化物としては、アルミニウム、鉄、ジルコニウム、チタン、珪素等の酸化物を好適に使用することができ、中でもアルミニウム、鉄を好適に使用することができる。これらの酸化物は単独あるいは2種以上の組み合わせで使用することができる。金属酸化物の形態として、水和物やオキシ水酸化物、酸化物があり、またその混合物が挙げられる。
 上記金属酸化物は、従来公知の加水分解縮合や水熱合成法により、アルミナ、鉄ゾル、或いはジルコニア等のスラリーとして分散液として使用することが望ましい。またより好適には、これらのスラリーを硝酸、塩酸、過塩素酸、ギ酸、酢酸、クエン酸、リンゴ酸、乳酸等の無機酸或いは有機酸の存在下に加熱して合成と分散することにより、透明性及び粘度安定性に優れた分散液としたものを用いることが望ましい。中でも、酢酸、硝酸、クエン酸を用いた分散液を好適に使用することができる。このような分散液を使用することにより、金属酸化物を、塗料あるいはガスバリア層塗膜中に均一に分散させることが容易になり、ガスバリア性も向上させることが可能になる。
[Metal oxide]
As the metal oxide, oxides such as aluminum, iron, zirconium, titanium, and silicon can be preferably used, and among them, aluminum and iron can be preferably used. These oxides can be used alone or in combination of two or more. Examples of the form of the metal oxide include hydrates, oxyhydroxides, oxides, and mixtures thereof.
It is desirable that the metal oxide be used as a dispersion liquid as a slurry of alumina, iron sol, zirconia or the like by a conventionally known hydrolysis condensation or hydrothermal synthesis method. More preferably, these slurries are synthesized and dispersed by heating in the presence of inorganic or organic acids such as nitric acid, hydrochloric acid, perchloric acid, formic acid, acetic acid, citric acid, malic acid and lactic acid. It is desirable to use a dispersion liquid having excellent transparency and viscosity stability. Above all, a dispersion liquid using acetic acid, nitric acid and citric acid can be preferably used. By using such a dispersion liquid, it becomes easy to uniformly disperse the metal oxide in the coating film or the gas barrier layer coating film, and it becomes possible to improve the gas barrier property.
[リン酸化合物]
 リン酸化合物としては、オルトリン酸、ポリリン酸、亜リン酸、ホスホン酸およびそれらの誘導体が挙げられる。ポリリン酸の具体例としては、ピロリン酸、三リン酸、4つ以上のリン酸が縮合したポリリン酸などが挙げられる。上記の誘導体の例としては、オルトリン酸、ポリリン酸、亜リン酸、ホスホン酸塩、(部分)エステル化合物、ハロゲン化物(塩化物等)、脱水物(五酸化ニリン等)などが挙げられる。また、ホスホン酸の誘導体の例には、ホスホン酸(H-P(=O)(OH))のリン原子に直接結合した水素原子が種々の官能基を有していてもよいアルキル基に置換されている化合物(例えば、ニトリロトリス(メチレンホスホン酸)、N,N,N’,N’-エチレンジアミンテトラキス(メチレンホスホン酸)等)や、その塩、(部分)エステル化合物、ハロゲン化物および脱水物も含まれる。更に、リン酸化でんぷんなど、リン原子を有する有機高分子も使用することができる。これらのリン酸化合物は、単独或いは2種以上の組み合わせで使用することができる。
[Phosphate compound]
Phosphoric acid compounds include orthophosphoric acid, polyphosphoric acid, phosphorous acid, phosphoric acid and derivatives thereof. Specific examples of polyphosphoric acid include pyrophosphoric acid, triphosphoric acid, and polyphosphoric acid in which four or more phosphoric acids are condensed. Examples of the above derivatives include orthophosphoric acid, polyphosphoric acid, phosphorous acid, phosphonates, (partial) ester compounds, halides (chlorides and the like), dehydrated products (dilin pentoxide and the like) and the like. Further, in the example of the derivative of phosphonic acid, the hydrogen atom directly bonded to the phosphorus atom of phosphonic acid (HP (= O) (OH) 2 ) may have various functional groups as an alkyl group. Substituted compounds (eg, nitrilotris (methylenephosphonic acid), N, N, N', N'-ethylenediaminetetrax (methylenephosphonic acid), etc.) and salts thereof, (partial) ester compounds, halides and dehydrations. Things are also included. Further, an organic polymer having a phosphorus atom such as phosphorylated starch can also be used. These phosphoric acid compounds can be used alone or in combination of two or more.
[バリア層形成用組成物]
 本発明において、バリア層形成用組成物は、上述した金属酸化物、好適には更にリン酸化合物を含有して成り、これらを含有する限り、水系又は溶剤系のいずれの組成物であってもよいが、アンカーコート層形成用組成物と同様に水性組成物であることが好適である。
 バリア層形成用組成物において、金属酸化物と共に、リン酸化合物を使用する場合、金属酸化物に由来する金属原子とリン化合物に由来するリン原子の割合は、80:20~20:80(モル比)の範囲にあることが望ましい。上記範囲よりも金属原子の量が多い場合には、金属酸化物がリン酸化合物に対して過剰になり、金属酸化物の粒子同士の結合が不十分になると共に、無機化合物表面に存在する水酸基量が多くなり、バリア性と耐熱水性が低下するおそれがある。その一方、上記範囲より金属原子の量が少ない場合には、リン酸化合物が金属酸化物に対して過剰となり、リン酸基由来の水酸基の量が多くなり、バリア性と耐熱水性が低下するおそれがある。
 バリア層形成用組成物において、リン酸化合物を含有させる場合には、リン酸化合物を溶解可能な溶媒中で、リン酸化合物及び金属酸化物を混合する。バリア層形成用組成物においても、アンカーコート層形成用組成物と同様に、水性組成物であることが好適であることから、アンカーコート層形成用組成物について、上述した水性媒体を使用することが好ましい。
 バリア層形成用組成物においては、上記成分の他に、架橋剤、金属錯体、高分子化合物、充填剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤等を含有することもできる。
[Composition for forming a barrier layer]
In the present invention, the composition for forming a barrier layer is composed of the above-mentioned metal oxide, preferably further containing a phosphoric acid compound, and as long as it contains these, it may be either an aqueous composition or a solvent-based composition. It is good, but it is preferable that it is an aqueous composition as in the composition for forming an anchor coat layer.
When a phosphoric acid compound is used together with a metal oxide in the composition for forming a barrier layer, the ratio of the metal atom derived from the metal oxide to the phosphorus atom derived from the phosphorus compound is 80:20 to 20:80 (mol). It is desirable that it is in the range of ratio). When the amount of metal atoms is larger than the above range, the metal oxide becomes excessive with respect to the phosphoric acid compound, the bonds between the metal oxide particles become insufficient, and the hydroxyl groups existing on the surface of the inorganic compound The amount may increase and the barrier property and heat resistance may decrease. On the other hand, when the amount of metal atoms is smaller than the above range, the phosphoric acid compound becomes excessive with respect to the metal oxide, the amount of hydroxyl groups derived from the phosphoric acid group increases, and the barrier property and heat resistance may decrease. There is.
When the phosphoric acid compound is contained in the barrier layer forming composition, the phosphoric acid compound and the metal oxide are mixed in a solvent in which the phosphoric acid compound can be dissolved. Since it is preferable that the composition for forming the barrier layer is also an aqueous composition as in the composition for forming the anchor coat layer, the above-mentioned aqueous medium should be used for the composition for forming the anchor coat layer. Is preferable.
In addition to the above components, the barrier layer forming composition may also contain a cross-linking agent, a metal complex, a polymer compound, a filler, a plasticizer, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant and the like. it can.
(基材)
 上述したアンカーコート層を形成する基材としては、熱可塑性樹脂、熱硬化性樹脂等の樹脂、紙、不織布等の繊維等から成る従来公知の基材を使用することができるが、好適には、熱成形可能な熱可塑性樹脂から、押出成形、射出成形、ブロー成形、延伸ブロー成形或いはプレス成形等の手段で製造された、フィルム、シート、或いはボトル状、カップ状、トレイ状、缶形状等の任意の包装材を挙げることができる。
(Base material)
As the base material for forming the anchor coat layer described above, a conventionally known base material made of a resin such as a thermoplastic resin or a thermosetting resin, a fiber such as paper or a non-woven fabric, or the like can be used, but preferably. , Film, sheet, or bottle-shaped, cup-shaped, tray-shaped, can-shaped, etc. manufactured from thermosetting thermoplastic resin by means such as extrusion molding, injection molding, blow molding, stretch blow molding, or press molding. Any packaging material can be mentioned.
 基材を構成する熱可塑性樹脂としては、低-、中-或いは高-密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン-共重合体、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のオレフィン系共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン6,6、ナイロン6,10、メタキシリレンアジパミド等のポリアミド;ポリスチレン、スチレン-ブタジエンブロック共重合体、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体(ABS樹脂)等のスチレン系共重合体;ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体等の塩化ビニル系共重合体;ポリメチルメタクリレート、メチルメタクリレート・エチルアクリレート共重合体等のアクリル系共重合体;ポリカーボネート等を例示できる。
 本発明においては特に、ポリエチレンテレフタレート、ポリブチレンテレフタレート或いはポリプロピレンから成るシートを好適に使用できる。
The thermoplastic resin constituting the base material includes low-, medium- or high-density polyethylene, linear low-density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene-copolymer, ionomer, and ethylene-acetate. Olefin-based copolymers such as vinyl copolymers and ethylene-vinyl alcohol copolymers; polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, and polyethylene naphthalate; nylon 6, nylon 6, 6, nylon 6 , 10, Polyamide such as metaxylylene adipamide; styrene copolymer such as polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin); Vinyl chloride-based copolymers such as polyvinyl chloride and vinyl chloride-vinyl acetate copolymers; acrylic copolymers such as polymethylmethacrylate, methylmethacrylate / ethylacrylate copolymers; polycarbonate and the like can be exemplified.
In particular, in the present invention, a sheet made of polyethylene terephthalate, polybutylene terephthalate or polypropylene can be preferably used.
 これらの熱可塑性樹脂は単独で使用しても或いは2種以上のブレンド物の形で存在していてもよい、またプラスチック基体は、単層の構成でも、或いは例えば同時溶融押出しや、その他のラミネーションによる2層以上の積層構成であってもよい。
 前記溶融成形可能な熱可塑性樹脂には、所望に応じて顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、滑剤等の添加剤の1種或いは2種類以上を、樹脂100質量部に対して合計量として0.001部~5.0部の範囲内で添加することもできる。
 また、例えば、この容器を補強するために、ガラス繊維、芳香族ポリアミド繊維、カーボン繊維、パルプ、コットン・リンター等の繊維補強材、或いはカーボンブラック、ホワイトカーボン等の粉末補強材、或いはガラスフレーク、アルミフレーク等のフレーク状補強材の1種類或いは2種類以上を、前記熱可塑性樹脂100質量部に対して合計量として2~150質量部の量で配合でき、更に増量の目的で、重質乃至軟質の炭酸カルシウム、雲母、滑石、カオリン、石膏、クレイ、硫酸バリウム、アルミナ粉、シリカ粉、炭酸マグネシウム等の1種類或いは2種類以上を前記熱可塑性樹脂100質量部に対して合計量として5~100質量部の量でそれ自体公知の処方に従って配合することもできる。
 更に、ガスバリア性の向上を目的として、鱗片状の無機微粉末、例えば水膨潤性雲母、クレイ等を前記熱可塑性樹脂100質量部に対して合計量として5~100質量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
 同様に、ガスバリア性の向上を目的として、プラスチック基材上に物理的或いは化学的に気相蒸着法を用いて、例えば酸化ケイ素や酸化アルミニウムのような無機物系の薄膜層を設けても何ら差し支えない。
These thermoplastics may be used alone or in the form of a blend of two or more, and the plastic substrate may be in a single layer configuration, for example simultaneous melt extrusion or other lamination. It may have a laminated structure of two or more layers according to the above.
For the melt-moldable thermoplastic resin, one or more of additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants are added to 100 parts by mass of the resin, if desired. The total amount can be added in the range of 0.001 part to 5.0 part.
Further, for example, in order to reinforce this container, a fiber reinforcing material such as glass fiber, aromatic polyamide fiber, carbon fiber, pulp, cotton linter, or a powder reinforcing material such as carbon black or white carbon, or glass flakes, One type or two or more types of flake-shaped reinforcing materials such as aluminum flakes can be blended in an amount of 2 to 150 parts by mass as a total amount with respect to 100 parts by mass of the thermoplastic resin, and for the purpose of further increasing the amount, heavy or heavy. One or more of soft calcium carbonate, mica, talc, kaolin, gypsum, clay, barium sulfate, alumina powder, silica powder, magnesium carbonate, etc., as a total amount of 5 to 100 parts by mass of the thermoplastic resin. It can also be formulated in an amount of 100 parts by mass according to a formulation known per se.
Further, for the purpose of improving the gas barrier property, scaly inorganic fine powder, for example, water-swellable mica, clay, etc., is known in an amount of 5 to 100 parts by mass as a total amount with respect to 100 parts by mass of the thermoplastic resin. There is no problem even if it is mixed according to the prescription of.
Similarly, for the purpose of improving the gas barrier property, a thin film layer of an inorganic substance such as silicon oxide or aluminum oxide may be provided on a plastic base material physically or chemically by a vapor deposition method. Absent.
 また基材は、最終フィルム、シート、或いは容器等の成形品であっても良いし、容器に成形するための予備成形物にこの被覆を予め設けることもできる。このような予備成形体としては、二軸延伸ブロー成形のための有底又は無底の筒状パリソン、プラスチック罐成形のためのパイプ、真空成形、圧空成形、プラグアシスト成形のためのシート、或いはヒートシール蓋、製袋のためのフィルム等を挙げることができる。 Further, the base material may be a molded product such as a final film, a sheet, or a container, or this coating may be provided in advance on a premolded product for molding into a container. Such preformed bodies include bottomed or bottomless tubular parisons for biaxial stretch blow molding, pipes for plastic molding, vacuum forming, pneumatic forming, sheets for plug-assisted forming, or Examples thereof include a heat seal lid and a film for bag making.
(ガスバリア性積層体の製造方法)
 本発明のガスバリア性積層体の製造方法においては、上述した基材の少なくとも一方の表面に、まず前述したアンカーコート層形成用組成物を塗布する。
 アンカーコート層形成用組成物の塗工量は、組成物中のポリウレタン系樹脂及びシランカップリング剤の含有量によって決定され、一概に規定できないが塗膜の固形分重量で0.05~1.00g/m、特に0.10~0.50g/mの範囲となるように塗布することが好ましい。上記範囲よりもアンカーコート塗工量が少ないと、上記範囲にある場合に比してアンカーコート層を基材に固着させられないおそれがあり、一方上記範囲よりもアンカーコート塗工量が多いと経済性に劣るようになる。
 基体上に塗布されたアンカーコート層形成用組成物は、用いる組成物の組成及び塗工量にもよるが、80~140℃の温度で1~60秒間乾燥することにより、組成物中の溶媒を除去する。これにより基材がポリプロピレンのような融点の低いプラスチックから成る場合でも影響を与えることなく、経済的にアンカーコート層を形成できる。
(Manufacturing method of gas barrier laminate)
In the method for producing a gas barrier laminate of the present invention, the above-mentioned composition for forming an anchor coat layer is first applied to at least one surface of the above-mentioned base material.
The coating amount of the composition for forming the anchor coat layer is determined by the contents of the polyurethane resin and the silane coupling agent in the composition, and although it cannot be unconditionally specified, the solid content weight of the coating film is 0.05 to 1. It is preferable to apply the coating so as to be in the range of 00 g / m 2 , particularly 0.10 to 0.50 g / m 2 . If the amount of anchor coat applied is smaller than the above range, the anchor coat layer may not be adhered to the base material as compared with the case of being in the above range, while if the amount of anchor coat applied is larger than the above range. It becomes inferior in economic efficiency.
The composition for forming an anchor coat layer coated on the substrate is dried at a temperature of 80 to 140 ° C. for 1 to 60 seconds, although it depends on the composition of the composition used and the amount of coating applied, so that the solvent in the composition can be obtained. To remove. As a result, even when the base material is made of a plastic having a low melting point such as polypropylene, the anchor coat layer can be economically formed without affecting it.
 次いで溶媒が除去され乾燥状態にあるアンカーコート層形成用組成物の上に、ガスバリア層形成用組成物を塗布する。ガスバリア層形成用組成物の塗工量は、組成物中の金属酸化物及びリン酸化合物の含有量によって決定され、一概に規定できないが、塗膜の固形分重量で0.05~2.0g/m、特に0.3~0.7g/mの範囲となるように塗布することが好ましい。上記範囲よりも塗工量が少ないと、十分なバリア性が得られない。一方上記範囲よりも塗工量が多くても経済性に劣るだけで格別なメリットがない。
 次いで、ガスバリア層形成用組成物は、用いる組成物中の金属酸化物の組成及び塗工量にもよるが、80~180℃、特に120~160℃の温度で、1秒~10分間加熱することによって、ガスバリア層を形成する。これにより、ガスバリア層及びアンカーコート層の加熱による収縮の差を低減して、ガスバリア層の耐クラック性を向上させることが可能になると共に、ガスバリア層及びアンカーコート層間の層間密着性も顕著に向上し、レトルト殺菌に付された場合にも、ガスバリア層が基材から剥離することが防止される。
Next, the composition for forming a gas barrier layer is applied onto the composition for forming an anchor coat layer in a dry state from which the solvent has been removed. The coating amount of the composition for forming a gas barrier layer is determined by the content of the metal oxide and the phosphoric acid compound in the composition and cannot be unconditionally defined, but is 0.05 to 2.0 g in terms of the solid content weight of the coating film. It is preferable to apply the mixture in the range of / m 2 , especially 0.3 to 0.7 g / m 2 . If the amount of coating is less than the above range, sufficient barrier properties cannot be obtained. On the other hand, even if the amount of coating is larger than the above range, it is only inferior in economy and has no special merit.
Next, the composition for forming the gas barrier layer is heated at a temperature of 80 to 180 ° C., particularly 120 to 160 ° C. for 1 second to 10 minutes, although it depends on the composition of the metal oxide in the composition used and the amount of coating. By doing so, a gas barrier layer is formed. This makes it possible to reduce the difference in shrinkage between the gas barrier layer and the anchor coat layer due to heating, improve the crack resistance of the gas barrier layer, and significantly improve the interlayer adhesion between the gas barrier layer and the anchor coat layer. However, even when it is subjected to retort sterilization, the gas barrier layer is prevented from peeling off from the substrate.
 上述したアンカーコート層形成用組成物及びガスバリア層形成用組成物の塗布、及び乾燥或いは加熱処理は、従来公知の方法により行うことができる。
 塗布方法としては、これに限定されないが、例えばスプレー塗装、浸漬、或いはバーコーター、ロールコーター、グラビアコーター等により塗布することが可能である。
 また乾燥或いは加熱処理は、オーブン乾燥(加熱)、赤外線加熱、高周波加熱等により行うことができる。
The above-mentioned composition for forming an anchor coat layer and the composition for forming a gas barrier layer can be applied, dried or heat-treated by a conventionally known method.
The coating method is not limited to this, and for example, it can be spray-painted, immersed, or coated by a bar coater, a roll coater, a gravure coater, or the like.
Further, the drying or heat treatment can be performed by oven drying (heating), infrared heating, high frequency heating or the like.
(ガスバリア性積層体)
 本発明のガスバリア性積層体は、基材、特にプラスチック基材上の少なくとも一方の表面に2層構成で形成されて成り、プラスチック基材上に形成されるアンカーコート層はプラスチック基材との密着性に優れた塗膜であり、この塗膜の上に金属酸化物及びリン酸化合物から成るガスバリア層が形成されている。
 本発明の製造方法により製造されるガスバリア性積層体は、バリア層自体が充分なガスバリア性能、特に酸素バリア性及び水蒸気バリア性を有しており、レトルト前の酸素透過量(JIS K-7126に準拠)が1.0cc/m・day・atm(25℃-80%RHの環境下)以下、水蒸気透過量が1.0g/m・day・atm(40℃-90%RHの環境下)という優れたガスバリア性及び耐レトルト性を有している。
 また、実施例に示す方法で、レトルト処理前後のTピール試験により、ガスバリア積層体のプラスチック基材への付着力評価を行うことで、耐熱水性を評価することができ、本発明のガスバリア性積層体では、レトルト処理後においても0.5N/15mm以上のTピール強度を有しており、優れた耐熱水性を有している。
(Gas barrier laminate)
The gas barrier laminate of the present invention is formed of a two-layer structure on at least one surface of a base material, particularly a plastic base material, and the anchor coat layer formed on the plastic base material is in close contact with the plastic base material. It is a coating film having excellent properties, and a gas barrier layer made of a metal oxide and a phosphoric acid compound is formed on the coating film.
In the gas barrier laminate produced by the production method of the present invention, the barrier layer itself has sufficient gas barrier performance, particularly oxygen barrier property and water vapor barrier property, and the amount of oxygen permeation before retort (JIS K-7126). (Compliant) is 1.0 cc / m 2 · day · atm (under 25 ° C-80% RH environment) and water vapor permeation is 1.0 g / m 2 · day · atm (under 40 ° C-90% RH environment) ), Which has excellent gas barrier properties and retort resistance.
In addition, the heat resistance of the gas barrier laminate can be evaluated by evaluating the adhesive strength of the gas barrier laminate to the plastic substrate by the T-peel test before and after the retort treatment by the method shown in the examples. The body has a T-peel strength of 0.5 N / 15 mm or more even after the retort treatment, and has excellent heat resistance and water resistance.
 本発明を次の実施例によりさらに説明するが、本発明は次の例により何らかの制限を受けるものではない。なお、実施例及び比較例の各種測定方法及び評価方法は以下の通りである。 The present invention will be further described with reference to the following examples, but the present invention is not limited by the following examples. The various measurement methods and evaluation methods of Examples and Comparative Examples are as follows.
(実施例1)
[アンカーコート塗料(アンカーコート層形成用組成物)の作製方法]
 アンカーコート塗料として、ウレタン系樹脂エマルション溶液(三井化学製、WPB341、固形分=30%)を用い、水溶媒を用いて固形分が6.5%となるように調整した後、ウレタン系樹脂エマルションの固形分100重量部に対して10重量部となるよう、シランカップリング剤として、3-グリシドキシプロピルトリメトキシシラン(信越化学社製、LS-2940)を添加した。所定時間攪拌し、シランカップリング剤の加水分解反応を進めたものをアンカーコート塗料A-2とした。表1にアンカーコート塗料の組成を示す。
(Example 1)
[Method for producing anchor coat paint (composition for forming anchor coat layer)]
A urethane-based resin emulsion solution (manufactured by Mitsui Chemicals, WPB341, solid content = 30%) was used as the anchor coat paint, and after adjusting the solid content to 6.5% using an aqueous solvent, the urethane-based resin emulsion was used. 3-Glysidoxypropyltrimethoxysilane (LS-2940, manufactured by Shin-Etsu Chemical Co., Ltd.) was added as a silane coupling agent so that the solid content was 10 parts by weight with respect to 100 parts by weight. The anchor coat coating material A-2 was obtained by stirring for a predetermined time and advancing the hydrolysis reaction of the silane coupling agent. Table 1 shows the composition of the anchor coat paint.
[バリアコート塗料(バリア層形成用組成物)の作製方法]
 次いでバリアコート塗料として、金属酸化物としてアルミナゾル(川研ファインケミカル社製、アルミナゾル10A、固形分(Al換算)=10%)を用い、水/メタノール溶媒を用いて、固形分が3.6%、水/メタノールの比率が80/20となるように調整した。次いで、添加剤としてトリフルオロ酢酸(和光純薬)をアルミナゾルの固形分(Al換算)に対して40phr、オルトリン酸(和光純薬、濃度=85%)をアルミナゾルの固形分(Al換算)に対して110phrとなるよう加え、所定時間攪拌したものをバリアコート塗料T-2とした。表2にバリアコート塗料の組成を示す。
[Method for producing barrier coat paint (composition for forming barrier layer)]
Next, as the barrier coat paint, alumina sol (manufactured by Kawaken Fine Chemicals Co., Ltd., alumina sol 10A, solid content (Al 2 O 3 conversion) = 10%) was used as the metal oxide, and the solid content was 3. using a water / methanol solvent. The ratio was adjusted to 6% and the water / methanol ratio was 80/20. Next, as additives, trifluoroacetic acid (Wako Pure Chemical) was added to the solid content of alumina sol (Al 2 O 3 equivalent) at 40 phr, and orthophosphoric acid (Wako Pure Chemical, concentration = 85%) was added to the solid content of alumina sol (Al 2). O 3 basis) was added to a 110phr respect, and a barrier coating composition T-2 to a stirred for a predetermined time. Table 2 shows the composition of the barrier coat paint.
[ガスバリア性積層体サンプルの作製方法]
 ガスバリア性積層体のサンプルは、作製したアンカーコート塗料およびバリアコート塗料を用いて、以下の通り実施した。厚み12μmのプラスチック基材(東レフィルム加工製、ルミラーP60)上に、バーコーターを用いて前述のアンカーコート塗料を塗布量が0.3g/mになるように塗布、ボックスオーブンにて140℃-5秒間の乾燥を行った。その後、同様にバーコーターを用いて前述のバリアコート塗料を塗布量が0.7g/mになるように塗布、ボックスオーブンにて180℃-1分間の加熱乾燥を行い、ガスバリア性積層体のサンプルを得た。
[Method for preparing gas barrier laminate sample]
The sample of the gas barrier laminate was carried out as follows using the prepared anchor coat paint and barrier coat paint. On a plastic base material with a thickness of 12 μm (manufactured by Toray Film Processing Co., Ltd., Lumirror P60), apply the above-mentioned anchor coat paint to a coating amount of 0.3 g / m 2 using a bar coater, and in a box oven at 140 ° C. Drying was performed for -5 seconds. Then, similarly, the above-mentioned barrier coat paint was applied to a coating amount of 0.7 g / m 2 using a bar coater, and heat-dried at 180 ° C. for 1 minute in a box oven to obtain a gas barrier laminate. A sample was obtained.
[ガスバリア性ラミネートフィルム積層体 サンプルの作製方法]
 ガスバリア性評価用のラミネート積層体サンプルは、前述のガスバリア性積層体のバリアコート面に対し、塗布量4.0g/mのウレタン系接着剤(三井化学社製、タケネートA-315/タケネートA―50)をバーコーターにて塗布、ドライヤーにて乾燥した後、厚み50μmの無延伸ポリプロピレンフィルムをラミネートすることで作製し、実施例1に示すガスバリア性ラミネートフィルム積層体を得た。
[Method for preparing gas barrier laminated film laminate sample]
The laminated laminate sample for gas barrier property evaluation was a urethane-based adhesive (manufactured by Mitsui Chemicals, Inc., Takenate A-315 / Takenate A) having a coating amount of 4.0 g / m 2 on the barrier coat surface of the gas barrier laminate described above. -50) was applied with a bar coater, dried with a dryer, and then laminated with an unstretched polypropylene film having a thickness of 50 μm to obtain a gas barrier laminated film laminate shown in Example 1.
(実施例2)
 実施例1において、アンカーコート塗料のシランカップリング剤として、3-グリシドキシエポキシシランを30phr配合する以外は、実施例1と同様の方法でアンカーコート塗料A-3、ガスバリア性積層体、ガスバリア性ラミネートフィルム積層体を得た。
(Example 2)
In Example 1, the anchor coat paint A-3, the gas barrier laminate, and the gas barrier are formed in the same manner as in Example 1 except that 30 phr of 3-glycidoxyepoxysilane is blended as the silane coupling agent for the anchor coat paint. A laminate of sex-laminated film was obtained.
(実施例3)
 実施例1において、アンカーコート塗料のシランカップリング剤として、3-グリシドキシエポキシシランを60phr配合する以外は、実施例1と同様の方法でアンカーコート塗料A-4、ガスバリア性積層体、ガスバリア性ラミネートフィルム積層体を得た。
(Example 3)
In Example 1, the anchor coat paint A-4, the gas barrier laminate, and the gas barrier are used in the same manner as in Example 1 except that 60 phr of 3-glycidoxyepoxysilane is blended as the silane coupling agent for the anchor coat paint. A laminate of sex-laminated film was obtained.
(実施例4)
 実施例2において、バリアコート塗料の金属酸化物を鉄ゾル(多木化学工業社製、バイラールFe-C10、固形分(Fe換算)=10%)とし、オルトリン酸(和光純薬、濃度=85%)を鉄ゾルの固形分(Fe換算)に対して150phrとなるよう加えてバリアコート塗料T―1を作製する以外は、実施例1と同様の方法でガスバリア性積層体、ガスバリア性ラミネートフィルム積層体を得た。
(Example 4)
In Example 2, the metal oxide of the barrier coat paint was iron sol (manufactured by Taki Chemical Industry Co., Ltd., Bailal Fe-C10, solid content (Fe 2 O 3 conversion) = 10%), and ortholic acid (Wako Pure Chemical Industries, Ltd., Concentration = 85%) was added so as to be 150 phr with respect to the solid content (Fe 2 O 3 conversion) of the iron sol to prepare the barrier coat paint T-1, but the gas barrier lamination was carried out in the same manner as in Example 1. A body and a gas barrier laminate film laminate were obtained.
(評価方法)
 以下の評価方法を用いて、表3に示すように、ガスバリア性積層体、ガスバリア性ラミネート積層体の評価結果を得た。
(Evaluation method)
As shown in Table 3, the evaluation results of the gas barrier laminate and the gas barrier laminate were obtained by using the following evaluation methods.
[酸素透過量]
 実施例に記載の各ガスバリア積層体を酸素透過量測定装置(Modern Control社製、OX―TRAN2/21)を用いて酸素透過量(cc/m・day・atm)を測定した。測定条件は、温度40℃、相対湿度90%とした。
[Oxygen permeation]
Was measured oxygen transmission rate measuring apparatus each gas barrier laminate according (Modern Control Co., OX-TRAN2 / 21) Oxygen transmission amount with (cc / m 2 · day · atm) Example. The measurement conditions were a temperature of 40 ° C. and a relative humidity of 90%.
[水蒸気透過量]
 実施例に記載の各ガスバリア積層体を水蒸気透過量測定装置(Modern Control社製、PERMATRAN-W 3/31)を用いて水蒸気透過量(1.0g/m・day・atm)を測定した。測定条件は温度40℃、相対湿度90%とした。
[Water vapor permeation amount]
The water vapor permeation amount (1.0 g / m 2 , day, atm) of each gas barrier laminate described in the examples was measured using a water vapor permeation amount measuring device (PERMATRAN-W 3/31 manufactured by Modern Control). The measurement conditions were a temperature of 40 ° C. and a relative humidity of 90%.
[レトルト試験]
 ガスバリア積層体を用いて作製したラミネ-ト積層体サンプルを用いて、インパルスシーラー(富士インパルス社製、V-301)を用いてパウチ(130cm×170cm)を作製した。得られたパウチには純水200gを充填した。サンプルは121℃-30分の熱水シャワーレトルト試験を行うことで、耐熱水性評価用のラミネート積層体サンプルを作製した。
[Retort test]
A pouch (130 cm × 170 cm) was prepared using an impulse sealer (manufactured by Fuji Impulse Co., Ltd., V-301) using a laminate laminate sample prepared using the gas barrier laminate. The obtained pouch was filled with 200 g of pure water. The sample was subjected to a hot water shower retort test at 121 ° C. for 30 minutes to prepare a laminated laminate sample for heat resistance evaluation.
[ガラス転移温度 Tgの測定方法]
 ウレタン系樹脂およびアンカーコート層組成物のガラス転移温度(Tg)は、高感度示差走査型熱量計システム(日立ハイテクサイエンス社製、DSC6220)を用いて測定を行った。測定は、塗膜をアルミパンに所定量秤量した後、昇温速度は10℃/minで測定を行うことで結果を得た。
[Measurement method of glass transition temperature Tg]
The glass transition temperature (Tg) of the urethane resin and the anchor coat layer composition was measured using a high-sensitivity differential scanning calorimeter system (DSC6220, manufactured by Hitachi High-Tech Science Co., Ltd.). The measurement was carried out by weighing the coating film on an aluminum pan in a predetermined amount and then measuring at a heating rate of 10 ° C./min.
[Tピール強度]
 ガスバリア積層体のバリアコート面に塗布量4.0g/mのウレタン系接着剤を塗布し、厚み50μmの無延伸ポリプロピレンフィルムをラミネートしたサンプルについて、オートグラフ(AG-IS:島津製作所製)を用いて剥離時の試験力(N/15mm)を測定した。ピール強度は、接着剤未塗工部を境にした両側をそれぞれエアチャックで挟み、剥離幅15mm、試験速度300mm/分としたときのTピールにおける試験力を用いた。
[T peel strength]
An autograph (AG-IS: manufactured by Shimadzu Corporation) was used for a sample in which a urethane adhesive having a coating amount of 4.0 g / m 2 was applied to the barrier coat surface of the gas barrier laminate and a non-stretched polypropylene film having a thickness of 50 μm was laminated. The test force (N / 15 mm) at the time of peeling was measured using. For the peel strength, the test force at the T peel when the peeling width was 15 mm and the test speed was 300 mm / min by sandwiching both sides of the uncoated portion with the adhesive with air chucks was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のガスバリア性積層体は、優れたガスバリア性を有すると共に、ガスバリア層の基材への付着力が高く、レトルト殺菌処理に付された場合にも優れた基材への付着力を有しており、レトルト殺菌処理等に付される用途の包装材料として好適に使用することができる。 The gas barrier laminate of the present invention has excellent gas barrier properties, has high adhesion to the base material of the gas barrier layer, and has excellent adhesion to the base material even when subjected to retort sterilization treatment. Therefore, it can be suitably used as a packaging material for applications such as retort sterilization treatment.

Claims (8)

  1.  基材の少なくとも一方の表面に、ポリウレタン系樹脂とシランカップリング剤から成るアンカーコート層を有し、該アンカーコート層上に、少なくとも金属酸化物を含有するガスバリア層を有することを特徴とするガスバリア性積層体。 A gas barrier characterized by having an anchor coat layer composed of a polyurethane resin and a silane coupling agent on at least one surface of the base material, and having a gas barrier layer containing at least a metal oxide on the anchor coat layer. Sex laminate.
  2.  前記アンカーコート層のガラス転移温度が、80℃以上である請求項1記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the glass transition temperature of the anchor coat layer is 80 ° C. or higher.
  3.  前記シランカップリング剤が、エポキシシラン系カップリング剤である請求項1又は2に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1 or 2, wherein the silane coupling agent is an epoxy silane coupling agent.
  4.  前記シランカップリング剤を、前記ポリウレタン系樹脂100質量部(固形分)に対して1~60質量部の量で含有する請求項1~3の何れかに記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 3, which contains the silane coupling agent in an amount of 1 to 60 parts by mass with respect to 100 parts by mass (solid content) of the polyurethane resin.
  5.  前記金属酸化物が、アルミニウム及び/又は鉄の金属酸化物である請求項1~4の何れかに記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 4, wherein the metal oxide is a metal oxide of aluminum and / or iron.
  6.  前記ガスバリア層が、リン酸化合物を含有する請求項1~5の何れかに記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 5, wherein the gas barrier layer contains a phosphoric acid compound.
  7.  前記基材が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンの何れかから成るフィルムである請求項1~6の何れかに記載のガスバリア性積層体。 The gas barrier laminate according to any one of claims 1 to 6, wherein the base material is a film made of polyethylene terephthalate, polybutylene terephthalate, or polypropylene.
  8.  ポリウレタン系樹脂とシランカップリング剤を含有するアンカーコート層形成用組成物を基材の少なくとも一方の表面に塗布し、該アンカーコート層形成用組成物を乾燥処理に付することにより溶媒を除去した後、該アンカーコート層形成用組成物上に、金属酸化物及びリン酸化合物を含有するガスバリア層形成用組成物を塗布した後、加熱処理に付することによりアンカーコート層及びガスバリア層を形成することを特徴とする請求項1~7の何れかに記載のガスバリア性積層体の製造方法。 An anchor coat layer forming composition containing a polyurethane resin and a silane coupling agent was applied to at least one surface of the base material, and the anchor coat layer forming composition was subjected to a drying treatment to remove the solvent. After that, a composition for forming a gas barrier layer containing a metal oxide and a phosphoric acid compound is applied onto the composition for forming an anchor coat layer, and then the composition is subjected to heat treatment to form an anchor coat layer and a gas barrier layer. The method for producing a gas barrier laminate according to any one of claims 1 to 7, wherein the gas barrier laminate is produced.
PCT/JP2020/009714 2019-03-18 2020-03-06 Gas barrier laminate and method for manufacturing same WO2020189345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049773A JP2020151854A (en) 2019-03-18 2019-03-18 Gas barrier laminate and method for manufacturing the same
JP2019-049773 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189345A1 true WO2020189345A1 (en) 2020-09-24

Family

ID=72521028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009714 WO2020189345A1 (en) 2019-03-18 2020-03-06 Gas barrier laminate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2020151854A (en)
WO (1) WO2020189345A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195953A (en) * 2013-03-29 2014-10-16 東京インキ株式会社 Gas barrier laminate
JP2016150492A (en) * 2015-02-17 2016-08-22 凸版印刷株式会社 Gas barrier film
WO2018079495A1 (en) * 2016-10-24 2018-05-03 凸版印刷株式会社 Gas barrier film and color conversion member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195953A (en) * 2013-03-29 2014-10-16 東京インキ株式会社 Gas barrier laminate
JP2016150492A (en) * 2015-02-17 2016-08-22 凸版印刷株式会社 Gas barrier film
WO2018079495A1 (en) * 2016-10-24 2018-05-03 凸版印刷株式会社 Gas barrier film and color conversion member

Also Published As

Publication number Publication date
JP2020151854A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2020045629A1 (en) Heat-sealable laminate, layered substrate, laminate for gas barrier intermediate layer, laminate for packaging material, and packaging material
EP2588312A1 (en) Solventless laminating adhesive for flexible packaging laminations and laminated structures made with the adhesive
CN101516614A (en) Gas barrier film
WO2015079924A1 (en) Resin composition for gas barrier adhesive, and adhesive
TWI786161B (en) Solvent-based adhesive compositions
JP5311004B2 (en) Transparent gas barrier film, transparent packaging material
JP2021165322A (en) Solventless type adhesive, laminate and package
JP2023168376A (en) Laminate substrate, laminate for packaging material and packaging material
JP2024019263A (en) Solvent-free adhesive and laminate
JP2000007748A (en) Multifunctional polyurethane urea polyol resin composition and adhesive composition for laminate using the composition
JP2024059746A (en) Laminate for packaging material and packaging material
JP7092270B2 (en) Gas barrier film and paint composition for forming gas barrier layer
JP2024012580A (en) Laminate and packaging bag
WO2020189345A1 (en) Gas barrier laminate and method for manufacturing same
JP2023168377A (en) Laminate for packaging material and packaging material
WO2021193247A1 (en) Gas-barrier coating composition and gas-barrier laminate
JP5625346B2 (en) Biaxially oriented polyester film for vapor deposition
JP5463633B2 (en) Transparent gas barrier film, transparent packaging material
JP6405874B2 (en) Resin composition containing polyamide polyester and adhesive
WO2022075352A1 (en) Gas-barrier coating composition and gas-barrier laminate
JP2021102487A (en) Packaging material and packaging container
WO2024075645A1 (en) Gas-barrier coating composition and gas-barrier laminate
JP2024050807A (en) Heat-sealable laminate, laminate for packaging material, and packaging material
JP4549872B2 (en) Transparent gas barrier laminate
TW202346526A (en) High performance laminating adhesives with low free monomer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772560

Country of ref document: EP

Kind code of ref document: A1