WO2020189300A1 - Rectifier and non-contact power-feeding system - Google Patents

Rectifier and non-contact power-feeding system Download PDF

Info

Publication number
WO2020189300A1
WO2020189300A1 PCT/JP2020/009346 JP2020009346W WO2020189300A1 WO 2020189300 A1 WO2020189300 A1 WO 2020189300A1 JP 2020009346 W JP2020009346 W JP 2020009346W WO 2020189300 A1 WO2020189300 A1 WO 2020189300A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
voltage
terminal
alternating current
flip
Prior art date
Application number
PCT/JP2020/009346
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 正人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2021507184A priority Critical patent/JPWO2020189300A1/ja
Publication of WO2020189300A1 publication Critical patent/WO2020189300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • One aspect of the present disclosure relates to a rectifier and a non-contact power supply system.
  • One aspect of the present disclosure is to suppress chattering generated in a switching element while suppressing an increase in power consumption.
  • the rectifying device is connected in series with a feeding unit that supplies an alternating current, a first switching element that switches between a conductive state and a non-conducting state with respect to the alternating current, and the first switching element.
  • a detection circuit to which an AC voltage corresponding to the AC current is applied, and a control circuit for switching between the conductive state and the non-conducting state of the first switching element based on the AC voltage.
  • chattering generated in the switching element can be suppressed while suppressing an increase in power consumption.
  • FIG. 1 An example of the time change of the drive state of the voltage detection element, the first switching element, and the second switching element in the rectifier shown in FIG. 1 is shown, and in particular, the time change of the AC voltage applied to the voltage detection element. It is a figure which shows the state. An example of the time change of the drive state of the voltage detection element, the first switching element, and the second switching element in the rectifier shown in FIG. 1 is shown, and in particular, the alternating current flowing through the first switching element and the gate drive are shown. It is a figure which shows the state of the time change of a voltage.
  • FIG. 5 is a diagram showing an example of an alternating current flow in a state where the first switching element is on and the second switching element is off in the rectifier device shown in FIG. 1.
  • FIG. 5 is a diagram showing an example of an alternating current flow in a state where the first switching element is off and the second switching element is on in the rectifier device shown in FIG. 1.
  • FIG. 1 is a diagram showing an example of the configuration of the non-contact power supply system 1 according to the first embodiment.
  • the non-contact power supply system 1 includes a power transmission device 2 and a rectifier device 5.
  • the non-contact power supply system 1 is an example of a system that wirelessly supplies electric power from the power transmission device 2 to the rectifier device 5.
  • various methods such as an electromagnetic induction method and a magnetic resonance method can be adopted.
  • the rectifying device 5 may be used for mobile devices such as smartphones and drones, and may be used for various electronic devices other than mobile devices.
  • the circuit configurations of the power transmission device 2 and the rectifier device 5 shown in FIG. 1 are examples, and the circuit configurations other than those shown in FIG. 1 may be used.
  • the power transmission device 2 wirelessly supplies electric power to the rectifier device 5, for example.
  • the power transmission device 2 includes, for example, a drive power supply 3, a power transmission coil L2, and a resonance capacitor C4.
  • the drive power supply 3 outputs an AC voltage.
  • the drive power supply 3 is realized by, for example, an inverter circuit.
  • the frequency of the drive power supply 3 is, for example, 150 kHz to 200 kHz in the case of the electromagnetic induction method and the ISM band band (for example, 6.78 MHz) in the case of the magnetic resonance method.
  • the resonance capacitor C4 is a capacitor for resonating with the power transmission coil L2.
  • the power transmission coil L2 transmits electric power to the rectifier 5 based on the AC voltage supplied from the drive power source 3.
  • one terminal of the resonance capacitor C4 is connected to the drive power supply 3, and the other terminal is connected to the power transmission coil L2.
  • the terminal of the power transmission coil L2 opposite to the terminal connected to the resonance capacitor C4 is connected to the drive power supply 3.
  • a closed circuit is formed by connecting a drive power supply 3, a resonance capacitor C4, and a power transmission coil L2 in series in order.
  • the rectifier 5 includes a half-wave rectifier circuit.
  • the rectifier 5 includes, for example, a power receiving coil (feeding unit) L1, a detection circuit 7, a first switching element M1, a second switching element M2, a storage capacitor (third storage unit) C3, and a control circuit 10.
  • the detection circuit 7 includes a first resonance capacitor (first storage unit) C1, a second resonance capacitor (second storage unit) C2, and a voltage detection element R1.
  • the ground GND1 to GND4 which will be described later, are reference potential points.
  • the power receiving coil L1 generates an alternating current by magnetically coupling with the power transmission coil L2 when the power transmission coil L2 of the power transmission device 2 is brought close to the power receiving coil L1.
  • the power receiving coil L1 is an element that wirelessly receives power from the power transmitting coil L2.
  • the power receiving coil L1 is an element that supplies an alternating current to the circuit in the rectifier device 5.
  • the rectifying device 5 may be provided with an AC power supply that outputs an AC voltage or an AC current instead of the power receiving coil L1. In this case, the power transmission device 2 is unnecessary.
  • the detection circuit 7 is a circuit for detecting a voltage for turning off the first switching element M1 as described later, based on the alternating current generated in the power receiving coil L1.
  • the detection circuit 7 is interposed between the power receiving coil L1 and the first switching element M1 and is connected in series with each of them.
  • the first resonance capacitor C1 is a capacitor for resonating with the power receiving coil L1 by being connected in series with the power receiving coil L1.
  • the first resonance capacitor C1 is interposed between the power receiving coil L1 and the first switching element M1 and is connected in series with each of them. That is, one terminal of the first resonant capacitor C1 is connected to the power receiving coil L1, and the other terminal is connected to the connection point P1 between the source terminal M1s of the first switching element M1 and the ground GND1 which will be described later. Has been done.
  • the second resonance capacitor C2 is connected in parallel with the first resonance capacitor C1 and the capacitance is adjusted between the second resonance capacitor C2 and the first resonance capacitor C1 to adjust the amount of alternating current flowing through the voltage detection element R1.
  • the voltage detection element R1 By connecting the voltage detection element R1 in series with the second resonance capacitor C2 and the first switching element M1, an AC voltage corresponding to the AC current flowing through the voltage detection element R1 is applied.
  • the voltage detection element R1 causes the first switching element M1 to detect a change in the AC voltage value according to a change in the AC current value inflow or outflow.
  • the detection circuit 7 for example, by connecting the first resonance capacitor C1 and the second resonance capacitor C2 in parallel, the alternating current flowing in or out of the first switching element M1 is diverted to cause a voltage detection element. It can be sent to R1. Therefore, a minute AC current that has been split can be passed through the voltage detection element R1, and power consumption can be reduced.
  • the detection circuit 7 may have a configuration in which the second resonance capacitor C2 is omitted and the voltage detection element R1 is provided between the first resonance capacitor C1 and the source terminal M1s of the first switching element M1.
  • the voltage detection element R1 is, for example, a resistor, but is not limited to the resistor, and may be a component capable of detecting or detecting an AC voltage based on an AC current.
  • the second resonance capacitor C2 and the voltage detection element R1 are connected in series.
  • the series circuit in which the second resonance capacitor C2 and the voltage detection element R1 are connected is connected in parallel with the first resonance capacitor C1.
  • one terminal is connected to the connection point P2 between the connection point P1 and one terminal of the first resonance capacitor C1
  • the other terminal is one terminal of the second resonance capacitor C2. Is connected to.
  • the terminal on the opposite side to the terminal connected to the voltage detection element R1 is connected to the connection point P3 between the power receiving coil L1 and the first resonance capacitor C1.
  • the connection point where the voltage detection element R1 and the second resonance capacitor C2 are connected is referred to as a connection point P4.
  • the first switching element M1 is, for example, a transistor such as a MOSFET (metal-oxide-semiconductor field-effect transistor).
  • the first switching element M1 has a source terminal M1s, a drain terminal M1d, and a gate terminal M1g.
  • the first switching element M1 is turned on between the source terminal M1s and the drain terminal M1d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M1g by the control circuit 10. It switches between conductive state) and off (non-conducting state).
  • the source terminal M1s is connected to the ground GND1 and is also connected to the first resonance capacitor C1 and the voltage detection element R1 via the connection points P1 and P2.
  • the drain terminal M1d is connected to the source terminal M2s of the second switching element M2, and is also connected to the power receiving coil L1 via the connection point P5 between the drain terminal M1d and the source terminal M2s.
  • the gate terminal M1g is connected to the output terminal of the RS flip-flop circuit 11 via a buffer BUF1 provided in the control circuit 10 described later.
  • the second switching element M2 is connected in series with each of the first switching element M1 and the power receiving coil L1.
  • the second switching element M2 is, for example, a transistor such as a MOSFET.
  • the second switching element M2 has a source terminal M2s, a drain terminal M2d, and a gate terminal M2g.
  • the second switching element M2 is turned on between the source terminal M2s and the drain terminal M2d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M2g by the control circuit 10. It switches between conductive state) and off (non-conducting state).
  • the source terminal M2s is connected to the drain terminal M1d of the first switching element M1 via the connection point P5, and is also connected to the power receiving coil L1.
  • the drain terminal M2d is connected to the connection point P6 and branches in two directions at the connection point P6. While branching in two directions at the connection point P6, one path is connected to the storage capacitor C3, and the other path is connected to the negative input terminal of the comparator CMP3 described later.
  • the gate terminal M2g is connected to the output terminal of the RS flip-flop circuit 12 via the buffer BUF2 included in the control circuit 10.
  • the storage capacitor C3 is, for example, a rechargeable power source for operating an electronic device equipped with a rectifier device 5.
  • the power storage capacitor C3 is connected to the power receiving coil L1 and the first switching element M1 via the second switching element M2.
  • one terminal is connected to the drain terminal M2d of the second switching element M2 and the negative input terminal of the comparator CMP3 via the connection point P6, and the other terminal is connected.
  • the terminal is connected to the ground GND4.
  • the control circuit 10 switches between on (conducting state) and off (non-conducting state) of the first switching element M1 based on the AC voltage applied to the voltage detection element R1, and turns on (non-conducting state) of the second switching element M2. It switches between conductive state) and off (non-conducting state).
  • the control circuit 10 controls each of the first switching element M1 and the second switching element M2 so that on and off are reversed.
  • the control circuit 10 includes, for example, comparators CMP1 to CMP3, RS flip-flop circuits 11 and 12, a level shift circuit 13, an inverter INV1, and buffers BUF1 and BUF2.
  • the comparator CMP1 monitors the AC voltage applied to the voltage detection element R1.
  • the comparator CMP11 controls the reset input of the RS flip-flop circuits 11 and 12 based on the comparison result between the AC voltage applied to the voltage detection element R1 and the threshold voltage Vth1 (first threshold voltage).
  • the negative side input terminal is connected to the connection point P4 between the second resonance capacitor C2 and the voltage detection element R1
  • the positive side input terminal is via the voltage source VTH1 that outputs the threshold voltage Vth1. Is connected to the ground GND2.
  • the output terminal of the comparator CMP1 branches in two directions at the connection point P7, one path is connected to the reset input terminal of the RS flip-flop circuit 11, and the other path is the inverter INV1 and the level shift connected in order. It is connected to the reset input terminal of the RS flip-flop circuit 12 via the circuit 13.
  • the comparator CMP2 controls the set input of the RS flip-flop circuit 11 based on the comparison result between the voltage between the drain terminal M1d and the source terminal M1s of the first switching element M1 and the threshold voltage Vth2.
  • the comparator CMP2 detects the timing at which the first switching element M1 turns on.
  • the negative side input terminal is connected to the connection point P8 between the connection point P5 and the drain terminal M1d of the first switching element M1, and the positive side input terminal is a voltage that outputs the threshold voltage Vth2. It is connected to the ground GND3 via the source VTH2.
  • the output terminal of the comparator CMP2 is connected to the set input terminal of the RS flip-flop circuit 11.
  • the comparator CMP3 controls the set input of the RS flip-flop circuit 12 based on the comparison result between the voltage between the drain terminal M2d and the source terminal M2s of the second switching element M2 and the threshold voltage Vth3.
  • the positive side input terminal is connected to the connection point P5 via the voltage source VTH3 that outputs the threshold voltage Vth3, and the negative side input terminal is connected to the connection point P6.
  • the output terminal of the comparator CMP3 is connected to the set input terminal of the RS flip-flop circuit 12.
  • the RS flip-flop circuit 11 controls the gate drive voltage of the first switching element M1 based on the outputs of the comparator CMP1 and the comparator CMP2, respectively.
  • the set input terminal is connected to the output terminal of the comparator CMP2
  • the reset input terminal is connected to the output terminal of the comparator CMP1 via the connection point P7
  • the output terminal is the first via the buffer BUF1. It is connected to the gate terminal M1g of the switching element M1.
  • the RS flip-flop circuit 12 controls the gate drive voltage of the second switching element M2 based on the outputs of the comparator CMP2 and the comparator CMP3, respectively.
  • the set input terminal is connected to the output terminal of the comparator CMP3
  • the reset input terminal is connected to the output terminal of the comparator CMP1 via the level shift circuit 13 and the inverter INV1, and the output terminal is the buffer BUF2. It is connected to the gate terminal M2g of the second switching element M2 via.
  • the level shift circuit 13 and the inverter INV1 are connected between the output terminal of the comparator CMP1 and the reset input terminal of the RS flip-flop circuit 12.
  • the level shift circuit 13 matches the ground potentials of the first switching element M1 and the second switching element M2.
  • the circuit configuration of the control circuit 10 described with reference to FIG. 1 is an example, and the control circuit 10 has the first switching element M1 and the second switching element based on the AC voltage applied to the voltage detection element R1. Any circuit configuration may be used as long as it can be controlled so as to invert the on and off of each of the M2.
  • a transistor such as the first switching element M1 and the second switching element M2 as an element for rectifying an alternating current, it is possible to reduce power consumption as compared with the case where a diode is used.
  • the second switching element M2 may be formed of a diode instead of a transistor.
  • FIG. 2A to 2C are diagrams showing an example of the time change of the drive state of the voltage detection element R1, the first switching element M1, and the second switching element M2 in the rectifier device 5 shown in FIG. ..
  • FIG. 2A shows a state of time change of the AC voltage applied to the voltage detection element R1
  • FIG. 2B shows a state of time change of the AC current flowing through the first switching element M1 and the gate drive voltage
  • FIG. 2C shows the state of time change.
  • the state of the time change of the alternating current flowing through the second switching element M2 and the gate drive voltage is shown.
  • FIG. 3 is a diagram showing an example of an alternating current flow in a rectifier 5 shown in FIG. 1 in a state where the first switching element M1 is on and the second switching element M2 is off.
  • FIG. 4 is a diagram showing an example of an alternating current flow in a rectifier 5 shown in FIG. 1 in a state where the first switching element M1 is off and the second switching element M2 is on.
  • the path of the alternating current when the first switching element M1 is on and the path of the alternating current when the first switching element M1 is off will be described in order.
  • FIG. 3 shows the flow of alternating current during the period from time t0 to t1 and the period from time t2 to t3 in FIGS. 2A to 2C. Since the period from time t2 to t3 is the same as the period from time t0 to t1, the description thereof will be omitted.
  • the control circuit 10 turns on the first switching element M1 and turns off the second switching element M2.
  • the drain source voltage M1_Vds which is the voltage between the terminals M1s, has a low level (negative level), and the source / drain current M1_Isd flows from the source terminal M1s to the drain terminal M1d. Further, since the second switching element M2 is off during the period from time t0 to t1 in FIG. 2C and as shown in FIG. 3, the drain terminal M2d and the drain terminal M2d in the second switching element M2 are based on the connection point P5.
  • the drain source voltage M2_Vds which is the voltage between the source terminals M2s, has a high level (positive level), and no current (source / drain current M2_Isd) flows from the source terminal M2s to the drain terminal M2d.
  • the alternating current flowing through the power receiving coil L1 is the alternating current I1 during the period from time t0 to t1
  • the alternating current I1 flows from the source terminal M1s of the first switching element M1 to the drain terminal M1d and reaches the connection point P5. Therefore, it does not flow in the direction of the second switching element M2, but flows from the connection point P5 through the power receiving coil L1, and at the connection point P3, branches in the direction of flowing to the first resonance capacitor C1 and the direction of flow to the second resonance capacitor C2.
  • the shunt current of the alternating current I1 flowing through the second resonance capacitor C2 further flows through the voltage detection element R1 and merges with the shunt current of the alternating current I1 flowing through the first resonance capacitor C1 at the connection point P2. Then, the alternating current I1 flows into the source terminal M1s of the first switching element M1 via the connection point P1.
  • control circuit 10 since the control circuit 10 turns off the second switching element M2 when the first switching element M1 is turned on, the alternating current I1 does not flow to the storage capacitor C3, and the storage capacitor C3 Will not be charged.
  • FIG. 4 shows the flow of alternating current during the period from time t1 to t2 in FIGS. 2A to 2C.
  • the control circuit 10 turns off the first switching element M1 and turns on the second switching element M2. Then, the power receiving coil L1 receives power from the power transmission coil L2 (see FIG. 1) and the like.
  • the polarity of the AC current flowing through the voltage detection element R1 changes, that is, the AC voltage applied to the voltage detection element R1 decreases, and the threshold value The voltage becomes less than Vth1.
  • the drain source voltage M1_Vds is set in the first switching element M1 with reference to the ground GND1. It is a high level (positive level), and no current (source / drain current M1_Isd) flows from the source terminal M1s to the drain terminal M1d. Further, as shown in FIGS.
  • the drain source voltage M2_Vds is low level (negative level) in the second switching element M2 with reference to the connection point P5.
  • the source / drain current M2_Isd flows from the source terminal M2s to the drain terminal M2d.
  • the alternating current flowing through the power receiving coil L1 is the alternating current I2 during the period from time t1 to t2
  • the alternating current I2 does not flow from the connection point P1 toward the source terminal M1s of the first switching element M1 and is connected.
  • the current branches into the direction of flow to the first resonance capacitor C1 and the direction of flow to the voltage detection element R1 and the second resonance capacitor C2.
  • the shunt currents flowing through the first resonance capacitor C1 and the voltage detection element R1 and the second resonance capacitor C2 merge at the connection point P3, pass through the power receiving coil L1 and the connection point P5, and then switch to the second.
  • the alternating current I2 flowing between the source terminal M2s and the drain terminal M2d is also referred to as a source drain current M2_Isd). Then, the alternating current I2 output from the drain terminal M2d is supplied to the storage capacitor C3 via the connection point P6.
  • the rectifier 5 includes the second switching element M2 connected in series with the first switching element M1. Further, the rectifier 5 includes a power storage capacitor C3 which is connected to the power receiving coil L1 and the first switching element M1 via the second switching element M2 and stores electricity based on the alternating current I2. Then, the control circuit 10 switches the on and off of the second switching element M2 so as to be inverted with the on and off of the first switching element M1. As a result, when the first switching element M1 is turned off and the second switching element M2 is turned on, the storage capacitor C3 can be charged based on the alternating current I2 passing through the second switching element M2.
  • FIG. 5 is a diagram showing an example of the operation of the control circuit 10 in the rectifier device 5 shown in FIG. Using FIGS. 2A to 5, the operation of the control circuit 10 when turning on the first switching element M1 from off to on, and the control circuit when turning off the first switching element M1 from on to off. The 10 operations will be described in order.
  • the AC voltage V_R1 of the voltage detection element R1 becomes equal to or higher than the threshold voltage Vth1 supplied by the voltage source VTH1.
  • the comparator CMP1 detects that the AC voltage V_R1 of the voltage detection element R1 becomes equal to or higher than the threshold voltage Vth1 and outputs a low-level output signal CP1.
  • the comparator CMP1 inputs the low-level output signal CP1 to the reset input terminal of the RS flip-flop circuit 11, and level-shifts the high-level output signal CP1 inverted signal in which the output signal CP1 is inverted by the inverter INV1.
  • Input is made to the reset input terminal of the RS flip-flop circuit 12 via the circuit 13.
  • the comparator CMP1 monitors whether or not the AC voltage of the voltage detecting element R1 connected in series with the first switching element M1 becomes less than the threshold voltage Vth1. Since the level shift circuit 13 is provided between the output terminal of the comparator CMP1 and the reset input terminal of the RS flip-flop circuit 12, the ground potentials of the first switching element M1 and the second switching element M2 are matched. be able to.
  • the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 falls and the voltage source VTH2 supplies the voltage source VTH2 with reference to the ground GND1.
  • the threshold voltage is less than Vth2.
  • the comparator CMP2 detects that the drain source voltage M1_Vds of the first switching element M1 has become less than the threshold voltage Vth2, and outputs a high-level output signal CP2. To do.
  • the comparator CMP2 inputs the high-level output signal CP2 to the set input terminal of the RS flip-flop circuit 11. In this way, the comparator CMP2 monitors whether or not the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 becomes less than the threshold voltage Vth2.
  • the low level output signal CP1 is input to the reset input terminal by the comparator CMP1, and the high level output signal CP2 is set by the comparator CMP2. Since it has been input to the input terminal, a high-level output signal Q1 is output, and a high-level gate drive voltage M1_Vg is applied to the gate terminal M1g of the first switching element M1 via the buffer BUF1. As a result, the first switching element M1 is turned on. Then, as shown in FIGS. 2B and 3, the source / drain current M1_Isd begins to flow between the source terminal M1s and the drain terminal M1d of the first switching element M1. In this way, the first switching element M1 controls the rise of the gate drive voltage based on the change in the drain source voltage M1_Vds of the switching element M1 monitored by the comparator CMP2.
  • the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 rises with reference to the connection point P5, and the voltage source VTH3 is supplied.
  • the threshold voltage is Vth3 or higher.
  • the comparator CMP3 detects that the drain source voltage M2_Vds of the second switching element M2 becomes equal to or higher than the threshold voltage Vth3, and outputs a low-level output signal CP3. Output.
  • the comparator CMP3 inputs the low-level output signal CP3 to the set input terminal of the RS flip-flop circuit 12. In this way, the comparator CMP3 monitors whether or not the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 becomes less than the threshold voltage Vth3.
  • a high level output signal CP1 inverting signal is input to the reset input terminal by the comparator CMP1 and the inverter INV1, and the low level is input by the comparator CMP3. Since the output signal CP3 is input to the set input terminal, the low-level output signal Q2 is output, and the low-level gate drive voltage M2_Vg is applied to the gate terminal M2g of the second switching element M2 via the buffer BUF2. As a result, the second switching element M2 is turned off. Then, as shown in FIGS. 2C and 3, the source / drain current M2_Isd does not flow between the source terminal M2s and the drain terminal M2d of the second switching element M2.
  • the comparator CMP1 and the RS flipflop circuit 12 are applied to the voltage detection element R1 connected in series to the source terminal M2s and the drain terminal M2d of the second switching element M2 via the first switching element M1.
  • the second switching element M2 is turned off based on the AC voltage V_R1.
  • the inverter INV1 is provided between the output terminal of the comparator CMP1 and the reset input terminal of the RS flip-flop circuit 12, the first switching element M1 is turned on and off based on the output signal from the comparator CMP1. , The on and off of the second switching element M2 can be inverted.
  • the voltage detection element R1 is not parallel to the source terminal M2s and the drain terminal M2d of the second switching element M2, but is connected in series via the first switching element M1.
  • the comparator CMP1 and the RS flipflop circuit 12 are based on the alternating current input or output to the source terminal M2s and the drain terminal M2d of the second switching element M2 (that is, the alternating current flowing through the voltage detection element R1). Turn off the switching element M2. Therefore, immediately before the second switching element M2 is turned off, the second switching element M2 is turned off where the current was flowing between the source terminal M2s and the drain terminal M2d, so that the voltage between the source terminal M2s and the drain terminal M2d is increased.
  • the second switching element M2 can be turned off without being affected by the voltage change.
  • the comparator CMP1 and the RS flip-flop circuit 12 can suppress the occurrence of chattering and turn off the second switching element M2.
  • the AC voltage V_R1 of the voltage detection element R1 becomes less than the threshold voltage Vth1 supplied by the voltage source VTH1.
  • the comparator CMP1 detects that the AC voltage V_R1 of the voltage detection element R1 has become less than the threshold voltage Vth1, and outputs a high-level output signal CP1.
  • the comparator CMP1 inputs the high-level output signal CP1 to the reset input terminal of the RS flip-flop circuit 11, and level-shifts the low-level output signal CP1 inverted signal in which the output signal CP1 is inverted by the inverter INV1.
  • Input is made to the reset input terminal of the RS flip-flop circuit 12 via the circuit 13.
  • the comparator CMP1 monitors whether or not the AC voltage of the voltage detecting element R1 connected in series with the first switching element M1 becomes less than the threshold voltage Vth1.
  • the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 rises and is supplied by the voltage source VTH2 with reference to the ground GND1.
  • the threshold voltage is Vth2 or higher.
  • the comparator CMP2 detects that the drain source voltage M1_Vds of the first switching element M1 becomes equal to or higher than the threshold voltage Vth2, and outputs a low-level output signal CP2. To do.
  • the comparator CMP2 inputs the low-level output signal CP2 to the set input terminal of the RS flip-flop circuit 11. In this way, the comparator CMP2 monitors whether or not the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 becomes less than the threshold voltage Vth2.
  • the high level output signal CP1 is input to the reset input terminal by the comparator CMP1, and the low level output signal CP2 is set by the comparator CMP2. Since it is input to the input terminal, the low-level output signal Q1 is output, and the low-level gate drive voltage M1_Vg is applied to the gate terminal M1g of the first switching element M1 via the buffer BUF1. As a result, the first switching element M1 is turned off. Then, as shown in FIGS. 2B and 4, the source / drain current M1_Isd does not flow between the source terminal M1s and the drain terminal M1d of the first switching element M1.
  • the comparator CMP1 and the RS flip-flop circuit 11 turn off the first switching element M1 based on the AC voltage V_R1 applied to the voltage detection element R1 connected in series with the source terminal M1s and the drain terminal M1d. ..
  • the switching element when the switching element is turned off based on the AC voltage applied to the voltage detection element connected in parallel to the source terminal and the drain terminal of the switching element, the source terminal and the source terminal and the drain terminal immediately before the switching element is turned off Chattering occurs due to the influence of the voltage change between the source terminal and the drain terminal that occurs when the switching element is turned off where the current is flowing between the drain terminals.
  • the voltage detection element R1 is connected in series with the source terminal M1s and the drain terminal M1d of the first switching element M1 instead of in parallel. Then, the comparator CMP1 and the RS flipflop circuit 11 are first based on the alternating current input or output to the source terminal M1s and the drain terminal M1d of the first switching element M1 (that is, the alternating current flowing through the voltage detection element R1). Turn off the switching element M1. Therefore, immediately before the first switching element M1 is turned off, the voltage changes between the source terminal M1s and the drain terminal M1d by turning off the first switching element M1 where the current was flowing between the source terminal M1s and the drain terminal M1d. Even if the above occurs, the first switching element M1 can be turned off without being affected by the voltage change. Therefore, the comparator CMP1 and the RS flip-flop circuit 11 can suppress the occurrence of chattering and turn off the first switching element M1.
  • the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 falls with reference to the connection point P5, and the voltage source VTH3 becomes The supplied threshold voltage is less than Vth3.
  • the comparator CMP3 detects that the drain source voltage M2_Vds of the second switching element M2 has become less than the threshold voltage Vth3, and outputs a high-level output signal CP3. To do.
  • the comparator CMP3 inputs the high-level output signal CP3 to the set input terminal of the RS flip-flop circuit 12. In this way, the comparator CMP3 monitors whether or not the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 becomes less than the threshold voltage Vth3.
  • the low level output signal CP1 inverting signal is input to the reset input terminal by the comparator CMP1 and the inverter INV1, and the high level is input by the comparator CMP3. Since the output signal CP3 is input to the set input terminal, the high level output signal Q2 is output, and the high level gate drive voltage M2_Vg is applied to the gate terminal M2g of the second switching element M2 via the buffer BUF2. As a result, the second switching element M2 is turned on. Then, as shown at time t1 and FIG. 4 in FIG. 2C, the source / drain current M2_Isd begins to flow between the source terminal M2s and the drain terminal M2d of the second switching element M2. As a result, the storage capacitor C3 can be charged through the second switching element M2.
  • the threshold voltage Vth1 0V
  • the threshold voltage Vth2 0V
  • the threshold voltage Vth1 is preferably a potential at which the first switching element M1 turns off before the AC voltage V_R1 becomes zero (positive state). Further, the threshold voltage Vth3 and the threshold voltage Vth2 are preferably negative potentials.
  • the inversion timing of the output signal of the comparator CMP1 can be more reliably and earlier than the inversion timing of the output signals of the comparator CMP2 and the comparator CMP3. That is, the rectifier 5 can be operated more reliably so that the comparators CMP2 and CMP3 invert the output signal after the comparator CMP1 inverts the output signal.
  • the comparators CMP2 and CMP3 operate after the comparator CMP1 operates, even if the signal delay in the control circuit 10 is taken into consideration, the malfunction of the control circuit 10 can be prevented more reliably.
  • the on and off timings of the first switching element M1 and the second switching element M2 can be controlled based on the change in the AC voltage of the voltage detecting element R1.
  • the values of the threshold voltage Vth1, the threshold voltage Vth2, and the threshold voltage Vth3 may be determined based on the characteristics of the comparators CMP1, CMP2, and CMP3, and the characteristics of the first switching element M1 and the second switching element M2. By adjusting each of the threshold voltages Vth1 to Vth3 in this way, it is possible to control the inversion timing of the output signals of the comparators CMP1 to CMP3.
  • the threshold voltage Vth1 can be set to about several mV to several tens of mV
  • the threshold voltage Vth2 can be set to about ⁇ 50 mV to ⁇ 300 mV
  • the threshold voltage Vth3 can be set to about ⁇ 50 mV to ⁇ 300 mV.
  • the voltage detection element R1 to which the AC voltage V_R1 as a reference for turning off the first switching element M1 is applied is the first switching. It is connected to the drain terminal M1d and the source terminal M1s of the element M1 in series instead of in parallel. Therefore, when the first switching element M1 turns off, it is possible to suppress the occurrence of chattering due to a voltage change between the drain terminal M1d and the source terminal M1s of the first switching element M1.
  • the voltage detection element R1 is also connected to the drain terminal M2d and the source terminal M2s of the second switching element M2 in series via the first switching element M1 instead of in parallel. Therefore, it is possible to suppress the occurrence of chattering due to the voltage change between the drain terminal M2d and the source terminal M2s of the second switching element M2 when the second switching element M2 turns off.
  • the rectifier 5 unlike the full-wave rectifier circuit described in Patent Document 1, a sub synchronous rectifier transistor for preventing chattering is provided for each of the first switching element M1 and the second switching element M2. It is not necessary to install them in parallel. Therefore, according to the rectifier 5, a half-wave rectifier circuit that is driven with lower power consumption and suppresses the occurrence of chattering in a smaller circuit area than the full-wave rectifier circuit described in Patent Document 1 is provided. Can be configured. As a result, by mounting the rectifier 5 on various electronic devices, it is possible to obtain a miniaturized electronic device with low power consumption. In particular, by mounting the rectifier 5 on a mobile device, it is possible to obtain a mobile device with low power consumption and miniaturization.
  • FIG. 6 is a diagram showing an example of the configuration of the rectifying device 5A according to the second embodiment.
  • the non-contact power feeding system 1 shown in FIG. 1 or the like may include the rectifying device 5A shown in FIG. 6 instead of the rectifying device 5.
  • the rectifying device 5A includes a control circuit 10A in place of the control circuit 10 provided in the rectifying device 5 (FIG. 1 and the like).
  • the control circuit 10A includes a comparator CMP4 instead of the inverter INV1 provided in the control circuit 10 (FIG. 1 and the like).
  • the output terminal of the comparator CMP1 is connected to the reset input terminal of the RS flip-flop circuit 11 without branching in two directions, and is not connected to the reset input terminal of the RS flip-flop circuit 12. ..
  • the positive input terminal is connected to the connection point P8 between the negative input terminal of the comparator CMP1 and the connection point P4, and the negative input terminal has a threshold voltage Vth4 (second threshold voltage). It is connected to the ground GND5 via the output voltage source VTH4.
  • the output terminal of the comparator CMP4 is connected to the reset input terminal of the RS flip-flop circuit 12 via the level shift circuit 13.
  • the other configuration of the rectifier 5A is the same as that of the rectifier 5 (FIG. 1 and the like).
  • the comparator CMP1 controls the reset input of the RS flip-flop circuit 11 based on the comparison result between the AC voltage of the voltage detection element R1 and the threshold voltage Vth1. Specifically, when the AC voltage of the voltage detection element R1 becomes less than the threshold voltage Vth1, the comparator CMP1 inputs a high level output signal to the reset input terminal of the RS flip flop circuit 11, and the AC voltage of the voltage detection element R1. When the threshold voltage Vth1 or higher is reached, a low-level output signal is input to the reset input terminal of the RS flip-flop circuit 11.
  • the comparator CMP4 controls the reset input of the RS flip-flop circuit 12 based on the comparison result between the AC voltage of the voltage detection element R1 and the threshold voltage Vth4. Specifically, when the AC voltage of the voltage detection element R1 becomes less than the threshold voltage Vth4, the comparator CMP4 inputs a high level output signal to the reset input terminal of the RS flip flop circuit 12, and the AC voltage of the voltage detection element R1. When the threshold voltage Vth4 or higher is reached, a low-level output signal is input to the reset input terminal of the RS flip-flop circuit 11.
  • the reset input timing of the RS flip-flop circuit 11 and the reset input timing of the RS flip-flop circuit 12 can be individually adjusted by the separate threshold voltages Vth1 and Vth4. it can. That is, according to the rectifier 5A, the turn-off timing of the first switching element M1 and the turn-off timing of the second switching element M2 can be adjusted by different threshold voltages Vth1 and Vth4.
  • the turn-off timing of the first switching element M1 and the turn-off timing of the second switching element M2 can be more accurately matched. As a result, it is possible to obtain a rectifier 5A that can be charged efficiently.
  • the output terminal of the comparator CMP1 is directly connected to the reset input terminal of the RS flip-flop circuit 11, while the output terminal of the comparator CMP4 resets the RS flip-flop circuit 12 via the level shift circuit 13. It is connected to the input terminal. Therefore, the reset input of the RS flip-flop circuit 12 is more likely to be delayed than the reset input of the RS flip-flop circuit 11. In other words, the turn-off timing of the second switching element M2 is more likely to be delayed than the turn-off timing of the first switching element M1.
  • the threshold voltage Vth2 of the comparator CMP2 is set to be smaller than the threshold voltage Vth4 of the comparator CMP4 by about several tens of mV to several hundreds of mV.
  • the threshold voltage Vth4 is made larger than the threshold voltage Vth1.
  • the comparator CMP4 can output an inverted signal from the output terminal before the comparator CMP2.
  • the turn-off timing of the second switching element M2 can be matched with the turn-off timing of the first switching element M1.
  • FIG. 7 is a diagram showing an example of an alternating current flow in a state where the first switching element M1 and the fourth switching element M4 are on in the rectifier device 5B according to the third embodiment.
  • FIG. 8 is a diagram showing an example of an alternating current flow in a state where the second switching element M2 and the third switching element M3 are on in the rectifier device 5B according to the third embodiment.
  • the non-contact power feeding system 1 shown in FIG. 1 and the like may include the rectifying device 5B shown in FIGS. 7 and 8 in place of the rectifying device 5.
  • the rectifier 5B is a full-wave rectifier circuit.
  • the rectifying device 5B includes a control circuit 10B in place of the control circuit 10 provided in the rectifying device 5 (FIG. 1 and the like), and further includes a third switching element M3 and a fourth switching element M4.
  • the control circuit 10B includes, for example, the level shift circuits 13B1, 13B2, 13B3 and the inverter INV1B in place of the level shift circuit 13 and the inverter INV1 provided in the control circuit 10 (FIG. 1 and the like).
  • the connection relationship between the power receiving coil L1, the first resonance capacitor C1, the second resonance capacitor C2, and the voltage detection element R1 is the same as that of the control circuit 10 (FIG. 1 and the like).
  • the source terminal M1s is connected to the ground GND1.
  • the drain terminal M1d is branched in three directions via the connection point P11, and the first path is connected from the connection point P11 to the voltage detection element R1 and the first resonance capacitor C1 via the connection point P2, respectively.
  • the second path is connected from the connection point P11 to the source terminal M2s of the second switching element M2, and the third path is connected from the connection point P11 to the negative input terminal of the comparator CMP2.
  • the gate terminal M1g is connected to the connection point P12 via the buffer BUF1, branches in two directions from the connection point P12, and the first path is connected to the output terminal of the RS flip-flop circuit 11 from the connection point P12.
  • the second path is connected to the level shift circuit 13B2 from the connection point P12.
  • the source terminal M2s is connected to each of the voltage detection element R1 and the first resonance capacitor C1 via the connection point P11, and is also connected to the drain terminal M1d of the first switching element M1. There is.
  • the drain terminal M2d is connected to one terminal of the storage capacitor C3 via the connection point P13.
  • the gate terminal M2g is connected to the output terminal of the RS flip-flop circuit 12 via the buffer BUF4, the level shift circuit 13B3, and the connection point P14.
  • the third switching element M3 is a transistor such as a MOSFET.
  • the third switching element M3 has a source terminal M3s, a drain terminal M3d, and a gate terminal M3g.
  • the third switching element M3 is turned on between the source terminal M3s and the drain terminal M3d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M3g by the control circuit 10B. It switches between conductive state) and off (non-conducting state).
  • the source terminal M3s is connected to the ground GND6 which is a reference potential point.
  • the drain terminal M3d is connected to the source terminal M4s of the fourth switching element M4 via the connection point P15, and is also connected to one terminal of the power receiving coil L1.
  • the gate terminal M3g is connected to the output terminal of the RS flip-flop circuit 12 via the buffer BUF3 and the connection point P14.
  • the fourth switching element M4 is, for example, a transistor such as a MOSFET.
  • the fourth switching element M4 has a source terminal M4s, a drain terminal M4d, and a gate terminal M4g.
  • the fourth switching element M4 is turned on between the source terminal M4s and the drain terminal M4d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M4g by the control circuit 10B. It switches between conductive state) and off (non-conducting state).
  • the source terminal M4s is connected to the drain terminal M3d of the third switching element M3 via the connection point P15, and is also connected to one terminal of the power receiving coil L1.
  • the drain terminal M4d is connected to one terminal of the storage capacitor C3 via the connection point P13.
  • the gate terminal M4g is connected to the output terminal of the RS flip-flop circuit 11 via the buffer BUF2, the level shift circuit 13B2, and the connection point P12.
  • the comparator CMP1 is connected to the connection point P16 between the connection point P2 and the connection point P11 via the voltage source VTH1 whose negative input terminal outputs the threshold voltage Vth1.
  • the positive input terminal of the comparator CMP1 is connected to the connection point P4.
  • the output terminal of the comparator CMP1 is connected to the connection point P17 via the level shift circuit 13B1 and branches in two directions from the connection point P17.
  • the first path is connected to the reset input terminal of the RS flip-flop circuit from the connection point P17, and the second path is connected to the reset input terminal of the RS flip-flop circuit 12 from the connection point P17 via the inverter INV1B. ..
  • the comparator CMP2 is connected to the ground GND3 via the voltage source VTH2 whose positive input terminal outputs the threshold voltage Vth2.
  • the negative input terminal of the comparator CMP2 is connected to the connection point P11.
  • the output terminal of the comparator CMP2 is connected to the set input terminal of the RS flip-flop circuit 11.
  • the comparator CMP3 is connected to the ground GND7, which is the reference potential point, via the voltage source VTH3 whose positive input terminal outputs the threshold voltage Vth3.
  • the negative input terminal of the comparator CMP3 is connected to the connection point P18 between the connection point P15 and the drain terminal M3d of the third switching element M3.
  • the output terminal of the comparator CMP3 is connected to the set input terminal of the RS flip-flop circuit 12.
  • the set input terminal is connected to the output terminal of the comparator CMP2, and the reset input terminal is connected to the output terminal of the comparator CMP1 via the connection point P17 and the level shift circuit 13B1.
  • the output terminal of the RS flip-flop circuit 11 branches in two directions via the connection point P12, the first path is connected to the gate terminal M1g of the first switching element M1 via the buffer BUF1, and the second path is a level shift circuit. It is connected to the gate terminal M4g of the fourth switching element M4 via 13B2 and the buffer BUF2.
  • the set input terminal is connected to the output terminal of the comparator CMP3, and the reset input terminal is connected to the output terminal of the comparator CMP1 via the inverter INV1B, the connection point P17 and the level shift circuit 13B1. ..
  • the output terminal of the RS flip-flop circuit 12 branches in two directions via the connection point P14, the first path is connected to the gate terminal M3g of the third switching element M3 via the buffer BUF3, and the second path is level-shifted. It is connected to the gate terminal M4g of the fourth switching element M4 via the circuit 13B3 and the buffer BUF4.
  • the comparator CMP2 When the drain-source voltage of the first switching element M1 becomes low level and becomes less than the threshold voltage Vth2, the comparator CMP2 outputs a high level output signal to the set input terminal of the RS flip-flop circuit 11. At this time, the AC voltage applied to the voltage detection element R1 becomes less than the threshold voltage Vth1, and the comparator CMP1 outputs a low-level output signal to the level shift circuit 13B1. Then, the low level output signal output from the level shift circuit 13B1 is input to the reset input terminal of the RS flip-flop circuit 11, and the inverted signal inverted to the high level by the inverter INV1B through the connection point P17 is transmitted. It is input to the reset input terminal of the RS flip-flop circuit 12.
  • the RS flip-flop circuit 11 outputs a high-level output signal because the low-level output signal is input to the reset input terminal by the comparator CMP1 and the high-level output signal is input to the set input terminal by the comparator CMP2. Then, the RS flip-flop circuit 11 applies a high-level gate drive voltage to the gate terminal M1g of the first switching element M1 via the buffer BUF1, and applies a high-level gate drive voltage via the level shift circuit 13B2 and the buffer BUF2 to the fourth switching element M4. A high level gate drive voltage is applied to the gate terminal M4g of the above. As a result, the RS flip-flop circuit 11 turns on the first switching element M1 and the fourth switching element M4.
  • the comparator CMP3 outputs a low level output signal to the set input terminal of the RS flip-flop circuit 12.
  • the RS flip-flop circuit 12 outputs a low-level output signal because the high-level inverted signal is input to the reset input terminal by the comparator CMP1 and the low-level output signal is input to the set input terminal by the comparator CMP3. .. Then, the RS flip-flop circuit 12 applies a low-level gate drive voltage to the gate terminal M3g of the third switching element M3 via the buffer BUF3, and applies a low-level gate drive voltage via the level shift circuit 13B3 and the buffer BUF4 to the second switching element M2. A low-level gate drive voltage is applied to the gate terminal M2g of the above. As a result, the S flip-flop circuit 12 turns off the second switching element M2 and the third switching element M3.
  • the alternating current I1B becomes the source terminal M1s of the first switching element M1. Flows from the drain terminal M1d, does not flow from the connection point P11 toward the second switching element M2, and flows into the connection point P2. Then, the alternating current I1B branches from the connection point P2, flows through the first resonance capacitor C1 in one path, flows through the voltage detection element R1 and the second resonance capacitor C2 in the other path, and merges at the connection point P3. To do.
  • the alternating current I1B merged at the connection point P3 flows through the power receiving coil L1 and the connection point P15, flows from the source terminal M4s of the fourth switching element M4 to the drain terminal M4d, passes through the connection point P13, and reaches the storage capacitor C3. Be supplied. As a result, the storage capacitor C3 is charged.
  • the comparator CMP1 When the AC voltage applied to the voltage detection element R1 becomes the threshold voltage Vth1 or higher, the comparator CMP1 outputs a high-level output signal to the level shift circuit 13B1. Then, the high-level output signal output from the level shift circuit 13B1 is input to the reset input terminal of the RS flip-flop circuit 11, and the inverted signal inverted to the low level by the inverter INV1B through the connection point P17 is transmitted. It is input to the reset input terminal of the RS flip-flop circuit 12. At this time, since the voltage between the drain sources of the first switching element M1 becomes high level and becomes the threshold voltage Vth2 or more, the comparator CMP2 outputs a low level output signal to the set input terminal of the RS flip-flop circuit 11.
  • the RS flip-flop circuit 11 outputs the low-level output signal because the high-level output signal is input to the reset input terminal by the comparator CMP1 and the low-level output signal is input to the set input terminal by the comparator CMP2. .. Then, the RS flip-flop circuit 11 applies a low-level gate drive voltage to the gate terminal M1g of the first switching element M1 via the buffer BUF1, and applies a low-level gate drive voltage via the level shift circuit 13B2 and the buffer BUF2 to the fourth switching element M4. A low-level gate drive voltage is applied to the gate terminal M4g of the above. As a result, the RS flip-flop circuit 11 turns off the first switching element M1 and the fourth switching element M4.
  • the comparator CMP3 when the voltage between the drain sources of the third switching element M3 becomes low level and becomes less than the threshold voltage Vth3, the comparator CMP3 outputs a high level output signal to the set input terminal of the RS flip-flop circuit 12.
  • the RS flip-flop circuit 12 outputs a high-level output signal because the low-level inverted signal is input to the reset input terminal by the comparator CMP1 and the high-level output signal is input to the set input terminal by the comparator CMP3. To do. Then, the RS flip-flop circuit 12 applies a high-level gate drive voltage to the gate terminal M3g of the third switching element M3 via the buffer BUF3, and applies a high-level gate drive voltage via the level shift circuit 13B3 and the buffer BUF4 to the second switching element M2. A high level gate drive voltage is applied to the gate terminal M2g of the above. As a result, the RS flip-flop circuit 12 turns on the second switching element M2 and the third switching element M3.
  • the alternating current I2B becomes the source terminal M3s of the third switching element M3. Flows from the drain terminal M3d, does not flow from the connection point P15 in the direction of the fourth switching element M4, and flows into the connection point P3 via the power receiving coil L1. Then, the alternating current I2B branches from the connection point P3, flows through the first resonance capacitor C1 in one path, flows through the second resonance capacitor C2 and the voltage detection element R1 in the other path, and merges at the connection point P2. To do. Then, the alternating current I2B merged at the connection point P2 flows into the connection point P11.
  • the alternating current I2B does not flow from the connection point P11 in the direction of the first switching element M1, but flows from the source terminal M4s of the fourth switching element M4 to the drain terminal M4d, and is supplied to the storage capacitor C3 via the connection point P13. Will be done. As a result, the storage capacitor C3 is charged.
  • the control circuit 10B is operated so as to invert the on and off of the first switching element M1 and the fourth switching element M4 and the second switching element M2 and the third switching element M3. Since the reference potential (potential of the connection point P4) detected by the comparator CMP1 based on the voltage detection element R1 is different from the reference potential of each of the first switching element M1 and the third switching element M3, the comparator CMP1 is the level shift circuit 13B1. The output signal is input to each of the RS flip-flop circuits 11 and 12 via. Further, since the fourth switching element M4 has a different reference potential from the first switching element M1, the RS flip-flop circuit 11 operates the fourth switching element M4 via the level shift circuit 13B1. Further, since the second switching element M2 has a different reference potential from the third switching element M3, the RS flip-flop circuit 12 operates the second switching element M2 via the level shift circuit 13B3.
  • the first switching element M1 is connected in series with the voltage detection element R1. Further, the second switching element M2 is connected in series with the voltage detection element R1. Then, the comparator CMP1 and the RS flip-flop circuit 11 turn off the first switching element M1 and the fourth switching element M4 based on the change in the AC voltage applied to the voltage detection element R1. Therefore, the first switching element M1 and the fourth switching element M4 can be turned off while suppressing chattering.
  • the third switching element M3 is connected in series to the voltage detection element R1 via the power receiving coil L1 and the second resonance capacitor C2. Further, the fourth switching element M4 is connected in series via a power receiving coil L1 and a second resonance capacitor C2. Then, the comparator CMP1 and the RS flip-flop circuit 12 turn off the second switching element M2 and the third switching element M3 based on the change in the AC voltage applied to the voltage detection element R1. Therefore, the second switching element M2 and the third switching element M3 can be turned off while suppressing chattering.
  • the present disclosure is not limited to the above-described embodiment, and is substantially the same as the configuration shown in the above-described embodiment, a configuration that exhibits the same action and effect, or a configuration that can achieve the same purpose. May be replaced with.
  • Non-contact power supply system 2 Power transmission device 3 Drive power supply 5, 5A, 5B Rectifier 7 Detection circuit 10, 10A, 10B Control circuit 11, 12 Flip-flop circuit 13, 13B1 to 13B3 Level shift circuit BUF1 to BUF4 Buffer C1 1st Resonant capacitor (first power storage unit) C2 2nd resonant capacitor (2nd storage unit) C3 power storage capacitor (third power storage unit) C4 Resonant capacitor CMP1 to CMP4 Comparator INV1, INV1B Inverter L1 Power receiving coil (feeding unit) L2 Power transmission coil M1 1st switching element M2 2nd switching element M3 3rd switching element M4 4th switching element R1 Voltage detection element

Abstract

This rectifier comprises a power feeder for supplying alternating current, a first switching element in which a switch is made between a conduction state and a non-conduction state with respect to the alternating current, a detection circuit which is connected in series to the first switching element and to which an AC voltage that corresponds to the alternating current is applied, and a control circuit for switching between the conduction state and the non-conduction state of the first switching element on the basis of the AC voltage. Chattering occurring in a switching element is thereby suppressed while an increase in power consumption is limited.

Description

整流装置、および、非接触給電システムRectifier and non-contact power supply system
 本開示の一態様は、整流装置、および、非接触給電システムに関する。本出願は、2019年3月20日に日本に出願された特願2019-052085号の優先権を主張し、その内容をここに援用する。 One aspect of the present disclosure relates to a rectifier and a non-contact power supply system. This application claims the priority of Japanese Patent Application No. 2019-052085 filed in Japan on March 20, 2019, the contents of which are incorporated herein by reference.
 特許文献1に記載の全波整流回路では、メインのローサイドスイッチであるメインの同期整流用トランジスタに、並列に、サブのローサイドスイッチであるサブの同期整流用トランジスタを接続している。そして、サブの同期整流用トランジスタは、メインの同期整流用トランジスタとは異なるタイミングでオンとオフとが切り替わるように制御される。特許文献1によると、これにより、メインの同期整流用トランジスタをオフした際に発生するチャタリングを防止することができるとされている。 In the full-wave rectifier circuit described in Patent Document 1, a sub synchronous rectifier transistor, which is a sub low-side switch, is connected in parallel to a main synchronous rectifier transistor which is a main low-side switch. Then, the sub synchronous rectification transistor is controlled so as to be switched on and off at a timing different from that of the main synchronous rectification transistor. According to Patent Document 1, this makes it possible to prevent chattering that occurs when the main synchronous rectification transistor is turned off.
特開2017‐169268号公報JP-A-2017-169268
 特許文献1に記載の全波整流回路によると、サブの同期整流用トランジスタが必要であるため、トランジスタの数が増える。このため、数が増えたトランジスタをオン及びオフするための消費電力も増加してしまう。本開示の一態様は、消費電力の増加を抑えつつ、スイッチング素子に発生するチャタリングを抑制することを目的とする。 According to the full-wave rectifier circuit described in Patent Document 1, the number of transistors increases because a sub synchronous rectifier transistor is required. Therefore, the power consumption for turning on and off the increased number of transistors also increases. One aspect of the present disclosure is to suppress chattering generated in a switching element while suppressing an increase in power consumption.
 本開示の一態様に係る整流装置は、交流電流を供給する給電部と、前記交流電流に対する導通状態および非導通状態が切り替わる第1スイッチング素子と、前記第1スイッチング素子に対して直列に接続され、前記交流電流に応じた交流電圧が印加される検出回路と、前記交流電圧に基づいて、前記第1スイッチング素子の前記導通状態および前記非導通状態を切り替える制御回路とを備える。 The rectifying device according to one aspect of the present disclosure is connected in series with a feeding unit that supplies an alternating current, a first switching element that switches between a conductive state and a non-conducting state with respect to the alternating current, and the first switching element. A detection circuit to which an AC voltage corresponding to the AC current is applied, and a control circuit for switching between the conductive state and the non-conducting state of the first switching element based on the AC voltage.
 本開示の一態様によれば、消費電力の増加を抑えつつ、スイッチング素子に発生するチャタリングを抑制することができる。 According to one aspect of the present disclosure, chattering generated in the switching element can be suppressed while suppressing an increase in power consumption.
実施形態1に係る非接触給電システムの構成の一例を表す図である。It is a figure which shows an example of the structure of the non-contact power supply system which concerns on Embodiment 1. FIG. 図1に示す整流装置における、電圧検出素子と、第1スイッチング素子と、第2スイッチング素子との駆動状態の時間変化の様子の例を表し、特に、電圧検出素子に加わる交流電圧の時間変化の様子を表す図である。An example of the time change of the drive state of the voltage detection element, the first switching element, and the second switching element in the rectifier shown in FIG. 1 is shown, and in particular, the time change of the AC voltage applied to the voltage detection element. It is a figure which shows the state. 図1に示す整流装置における、電圧検出素子と、第1スイッチング素子と、第2スイッチング素子との駆動状態の時間変化の様子の例を表し、特に、第1スイッチング素子に流れる交流電流とゲート駆動電圧の時間変化の様子を表す図である。An example of the time change of the drive state of the voltage detection element, the first switching element, and the second switching element in the rectifier shown in FIG. 1 is shown, and in particular, the alternating current flowing through the first switching element and the gate drive are shown. It is a figure which shows the state of the time change of a voltage. 図1に示す整流装置における、電圧検出素子と、第1スイッチング素子と、第2スイッチング素子との駆動状態の時間変化の様子の例を表し、特に、第2スイッチング素子に流れる交流電流とゲート駆動電圧の時間変化の様子を表す図である。An example of the time change of the drive state of the voltage detection element, the first switching element, and the second switching element in the rectifier shown in FIG. 1 is shown, and in particular, the alternating current flowing through the second switching element and the gate drive are shown. It is a figure which shows the state of the time change of a voltage. 図1に示す整流装置において、第1スイッチング素子がオンであり、第2スイッチング素子がオフである状態の交流電流の流れの例を表す図である。FIG. 5 is a diagram showing an example of an alternating current flow in a state where the first switching element is on and the second switching element is off in the rectifier device shown in FIG. 1. 図1に示す整流装置において、第1スイッチング素子がオフであり、第2スイッチング素子がオンである状態の交流電流の流れの例を表す図である。FIG. 5 is a diagram showing an example of an alternating current flow in a state where the first switching element is off and the second switching element is on in the rectifier device shown in FIG. 1. 図1に示す整流装置における制御回路の動作の例を表す図である。It is a figure which shows the example of the operation of the control circuit in the rectifier apparatus shown in FIG. 実施形態2に係る整流装置の構成の一例を表す図である。It is a figure which shows an example of the structure of the rectifying apparatus which concerns on Embodiment 2. 実施形態3に係る整流装置において、第1スイッチング素子および第4スイッチング素子がオンである状態の交流電流の流れの例を表す図である。It is a figure which shows the example of the flow of the alternating current in the state which the 1st switching element and the 4th switching element are on in the rectifying apparatus which concerns on Embodiment 3. 実施形態3に係る整流装置において、第2スイッチング素子および第3スイッチング素子がオンである状態の交流電流の流れの例を表す図である。It is a figure which shows the example of the flow of the alternating current in the state which the 2nd switching element and the 3rd switching element are on in the rectifying apparatus which concerns on Embodiment 3.
 以下、本開示の実施形態について、図面を参照しつつ説明する。なお、図面については、同一又は同等の要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the drawings, the same or equivalent elements are designated by the same reference numerals, and duplicate description will be omitted.
 〔実施形態1〕
 (非接触給電システム1の構成)
 図1は、実施形態1に係る非接触給電システム1の構成の一例を表す図である。図1に示すように、非接触給電システム1は、送電装置2と、整流装置5とを有する。非接触給電システム1は、ワイヤレスで送電装置2から整流装置5へ電力を供給するシステムの一例である。送電装置2から整流装置5へ電力を供給する方式としては、例えば、電磁誘導方式、磁気共鳴方式等、各種の方式を採用することができる。整流装置5は、例えば、スマートフォン及びドローン等のモバイル機器に用いてもよいし、モバイル機器以外にも各種の電子機器に用いてもよい。なお、図1に示す送電装置2および整流装置5それぞれの回路構成は一例であり、図1に示した回路構成以外の構成であってもよい。
[Embodiment 1]
(Configuration of non-contact power supply system 1)
FIG. 1 is a diagram showing an example of the configuration of the non-contact power supply system 1 according to the first embodiment. As shown in FIG. 1, the non-contact power supply system 1 includes a power transmission device 2 and a rectifier device 5. The non-contact power supply system 1 is an example of a system that wirelessly supplies electric power from the power transmission device 2 to the rectifier device 5. As a method of supplying electric power from the power transmission device 2 to the rectifier device 5, various methods such as an electromagnetic induction method and a magnetic resonance method can be adopted. The rectifying device 5 may be used for mobile devices such as smartphones and drones, and may be used for various electronic devices other than mobile devices. The circuit configurations of the power transmission device 2 and the rectifier device 5 shown in FIG. 1 are examples, and the circuit configurations other than those shown in FIG. 1 may be used.
 送電装置2は、例えば、ワイヤレスで整流装置5へ電力を供給する。送電装置2は、例えば、駆動用電源3と、送電コイルL2と、共振コンデンサC4とを含む。駆動用電源3は交流電圧を出力する。駆動用電源3は、例えば、インバータ回路で実現される。駆動用電源3の周波数は、例えば、電磁誘導方式の場合は150kHz~200kHz、磁気共鳴方式の場合はISMバンド帯(例えば6.78MHz)が用いられる。共振コンデンサC4は、送電コイルL2と共振するためのコンデンサである。送電コイルL2は、駆動用電源3から供給された交流電圧に基づいて、整流装置5へ電力を送電する。 The power transmission device 2 wirelessly supplies electric power to the rectifier device 5, for example. The power transmission device 2 includes, for example, a drive power supply 3, a power transmission coil L2, and a resonance capacitor C4. The drive power supply 3 outputs an AC voltage. The drive power supply 3 is realized by, for example, an inverter circuit. The frequency of the drive power supply 3 is, for example, 150 kHz to 200 kHz in the case of the electromagnetic induction method and the ISM band band (for example, 6.78 MHz) in the case of the magnetic resonance method. The resonance capacitor C4 is a capacitor for resonating with the power transmission coil L2. The power transmission coil L2 transmits electric power to the rectifier 5 based on the AC voltage supplied from the drive power source 3.
 図1に示す例では、共振コンデンサC4の一方の端子は駆動用電源3と接続されており、他方の端子は送電コイルL2と接続されている。そして、送電コイルL2のうち、共振コンデンサC4と接続された端子とは逆側の端子は、駆動用電源3と接続されている。例えば、送電装置2は、駆動用電源3と、共振コンデンサC4と、送電コイルL2とが、順に直列に接続されることで閉回路が形成されている。これにより、駆動用電源3から、共振コンデンサC4および送電コイルL2へ交流電圧が供給されると、共振コンデンサC4と送電コイルL2とで共振する。そして、送電コイルL2は、送電コイルL2に近づけて配置された整流装置5へ電力を供給する。 In the example shown in FIG. 1, one terminal of the resonance capacitor C4 is connected to the drive power supply 3, and the other terminal is connected to the power transmission coil L2. The terminal of the power transmission coil L2 opposite to the terminal connected to the resonance capacitor C4 is connected to the drive power supply 3. For example, in the power transmission device 2, a closed circuit is formed by connecting a drive power supply 3, a resonance capacitor C4, and a power transmission coil L2 in series in order. As a result, when an AC voltage is supplied from the drive power supply 3 to the resonance capacitor C4 and the power transmission coil L2, the resonance capacitor C4 and the power transmission coil L2 resonate with each other. Then, the power transmission coil L2 supplies electric power to the rectifier 5 arranged close to the power transmission coil L2.
 整流装置5は半波整流回路を含む。整流装置5は、例えば、受電コイル(給電部)L1と、検出回路7と、第1スイッチング素子M1と、第2スイッチング素子M2と、蓄電コンデンサ(第3蓄電部)C3と、制御回路10とを有する。検出回路7は、第1共振コンデンサ(第1蓄電部)C1と、第2共振コンデンサ(第2蓄電部)C2と、電圧検出素子R1とを有する。なお、後述するグランドGND1~GND4は、基準の電位点である。 The rectifier 5 includes a half-wave rectifier circuit. The rectifier 5 includes, for example, a power receiving coil (feeding unit) L1, a detection circuit 7, a first switching element M1, a second switching element M2, a storage capacitor (third storage unit) C3, and a control circuit 10. Has. The detection circuit 7 includes a first resonance capacitor (first storage unit) C1, a second resonance capacitor (second storage unit) C2, and a voltage detection element R1. The ground GND1 to GND4, which will be described later, are reference potential points.
 受電コイルL1は、送電装置2の送電コイルL2が近づけられると、送電コイルL2と磁気結合することで交流電流を発生させる。例えば、受電コイルL1は、ワイヤレスで、送電コイルL2から受電する素子である。換言すると、受電コイルL1は、整流装置5内の回路へ交流電流を供給する素子である。なお、整流装置5を、ワイヤレスの受電装置として構成しない場合、受電コイルL1に変えて、交流電圧または交流電流を出力する交流電源を備えてもよい。この場合、送電装置2は不要である。 The power receiving coil L1 generates an alternating current by magnetically coupling with the power transmission coil L2 when the power transmission coil L2 of the power transmission device 2 is brought close to the power receiving coil L1. For example, the power receiving coil L1 is an element that wirelessly receives power from the power transmitting coil L2. In other words, the power receiving coil L1 is an element that supplies an alternating current to the circuit in the rectifier device 5. When the rectifying device 5 is not configured as a wireless power receiving device, it may be provided with an AC power supply that outputs an AC voltage or an AC current instead of the power receiving coil L1. In this case, the power transmission device 2 is unnecessary.
 検出回路7は、受電コイルL1に発生した交流電流に基づいて、後述するように、第1スイッチング素子M1をターンオフするための電圧を検出するための回路である。検出回路7は、受電コイルL1と、第1スイッチング素子M1との間に介在し、それぞれと直列に接続されている。 The detection circuit 7 is a circuit for detecting a voltage for turning off the first switching element M1 as described later, based on the alternating current generated in the power receiving coil L1. The detection circuit 7 is interposed between the power receiving coil L1 and the first switching element M1 and is connected in series with each of them.
 第1共振コンデンサC1は、受電コイルL1と直列に接続されることで、受電コイルL1と共振させるためのコンデンサである。第1共振コンデンサC1は、受電コイルL1と、第1スイッチング素子M1との間に介在し、それぞれと直列に接続されている。すなわち、第1共振コンデンサC1の一方の端子は受電コイルL1と接続されており、他方の端子は、後述する、第1スイッチング素子M1のソース端子M1sとグランドGND1との間の接続点P1に接続されている。 The first resonance capacitor C1 is a capacitor for resonating with the power receiving coil L1 by being connected in series with the power receiving coil L1. The first resonance capacitor C1 is interposed between the power receiving coil L1 and the first switching element M1 and is connected in series with each of them. That is, one terminal of the first resonant capacitor C1 is connected to the power receiving coil L1, and the other terminal is connected to the connection point P1 between the source terminal M1s of the first switching element M1 and the ground GND1 which will be described later. Has been done.
 第2共振コンデンサC2は、第1共振コンデンサC1と並列に接続され、第1共振コンデンサC1との間で容量が調整されることで、電圧検出素子R1に流す交流電流の量を調整する。電圧検出素子R1は、第2共振コンデンサC2および第1スイッチング素子M1それぞれと直列に接続されることで、自身を流れる交流電流に応じた交流電圧が印加される。換言すると、電圧検出素子R1は、第1スイッチング素子M1に流入又は流出する交流電流の値の変化に応じた交流電圧の値の変化を検出させる。 The second resonance capacitor C2 is connected in parallel with the first resonance capacitor C1 and the capacitance is adjusted between the second resonance capacitor C2 and the first resonance capacitor C1 to adjust the amount of alternating current flowing through the voltage detection element R1. By connecting the voltage detection element R1 in series with the second resonance capacitor C2 and the first switching element M1, an AC voltage corresponding to the AC current flowing through the voltage detection element R1 is applied. In other words, the voltage detection element R1 causes the first switching element M1 to detect a change in the AC voltage value according to a change in the AC current value inflow or outflow.
 このように検出回路7において、例えば、第1共振コンデンサC1と第2共振コンデンサC2とを並列に接続することで、第1スイッチング素子M1に流入又は流出する交流電流を分流させて、電圧検出素子R1に流すことができる。このため、分流された微小な値の交流電流を電圧検出素子R1に流すことができ、消費電力を低減することができる。なお、検出回路7は、第2共振コンデンサC2を省略し、電圧検出素子R1を、第1共振コンデンサC1と第1スイッチング素子M1のソース端子M1sとの間に設けた構成であってもよい。また、電圧検出素子R1は、例えば抵抗であるが、抵抗に限定されず、交流電流に基づいて交流電圧を検出させる又は検出することが可能な部品であればよい。 In this way, in the detection circuit 7, for example, by connecting the first resonance capacitor C1 and the second resonance capacitor C2 in parallel, the alternating current flowing in or out of the first switching element M1 is diverted to cause a voltage detection element. It can be sent to R1. Therefore, a minute AC current that has been split can be passed through the voltage detection element R1, and power consumption can be reduced. The detection circuit 7 may have a configuration in which the second resonance capacitor C2 is omitted and the voltage detection element R1 is provided between the first resonance capacitor C1 and the source terminal M1s of the first switching element M1. Further, the voltage detection element R1 is, for example, a resistor, but is not limited to the resistor, and may be a component capable of detecting or detecting an AC voltage based on an AC current.
 第2共振コンデンサC2と電圧検出素子R1とは、直列に接続されている。第2共振コンデンサC2と電圧検出素子R1とが接続された直列回路は、第1共振コンデンサC1と並列に接続されている。電圧検出素子R1は、一方の端子が、接続点P1と第1共振コンデンサC1の一方の端子との間の接続点P2と接続されており、他方の端子が第2共振コンデンサC2の一方の端子と接続されている。第2共振コンデンサC2のうち、電圧検出素子R1と接続された端子とは逆側の端子は、受電コイルL1と第1共振コンデンサC1との間の接続点P3と接続されている。なお、電圧検出素子R1と第2共振コンデンサC2とが接続された接続点を接続点P4と称する。 The second resonance capacitor C2 and the voltage detection element R1 are connected in series. The series circuit in which the second resonance capacitor C2 and the voltage detection element R1 are connected is connected in parallel with the first resonance capacitor C1. In the voltage detection element R1, one terminal is connected to the connection point P2 between the connection point P1 and one terminal of the first resonance capacitor C1, and the other terminal is one terminal of the second resonance capacitor C2. Is connected to. Of the second resonance capacitor C2, the terminal on the opposite side to the terminal connected to the voltage detection element R1 is connected to the connection point P3 between the power receiving coil L1 and the first resonance capacitor C1. The connection point where the voltage detection element R1 and the second resonance capacitor C2 are connected is referred to as a connection point P4.
 第1スイッチング素子M1は、例えば、MOSFET(metal-oxide-semiconductor field-effect transistor)等のトランジスタである。第1スイッチング素子M1は、ソース端子M1sと、ドレイン端子M1dと、ゲート端子M1gとを有する。第1スイッチング素子M1は、ゲート端子M1gに供給されるゲート駆動電圧が制御回路10によって制御されることで、受電コイルL1が流す交流電流に対する、ソース端子M1sとドレイン端子M1dとの間のオン(導通状態)とオフ(非導通状態)とが切り替わる。 The first switching element M1 is, for example, a transistor such as a MOSFET (metal-oxide-semiconductor field-effect transistor). The first switching element M1 has a source terminal M1s, a drain terminal M1d, and a gate terminal M1g. The first switching element M1 is turned on between the source terminal M1s and the drain terminal M1d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M1g by the control circuit 10. It switches between conductive state) and off (non-conducting state).
 ソース端子M1sは、グランドGND1と接続されると共に、接続点P1・P2を介して、第1共振コンデンサC1および電圧検出素子R1とも接続さている。ドレイン端子M1dは、第2スイッチング素子M2のソース端子M2sと接続されていると共に、ドレイン端子M1dとソース端子M2sとの間の接続点P5を介して、受電コイルL1とも接続されている。ゲート端子M1gは、後述する、制御回路10が備える、バッファBUF1を介してRSフリップフロップ回路11の出力端子と接続されている。 The source terminal M1s is connected to the ground GND1 and is also connected to the first resonance capacitor C1 and the voltage detection element R1 via the connection points P1 and P2. The drain terminal M1d is connected to the source terminal M2s of the second switching element M2, and is also connected to the power receiving coil L1 via the connection point P5 between the drain terminal M1d and the source terminal M2s. The gate terminal M1g is connected to the output terminal of the RS flip-flop circuit 11 via a buffer BUF1 provided in the control circuit 10 described later.
 第2スイッチング素子M2は、第1スイッチング素子M1および受電コイルL1それぞれと直列に接続されている。第2スイッチング素子M2は、例えば、MOSFET等のトランジスタである。第2スイッチング素子M2は、ソース端子M2sと、ドレイン端子M2dと、ゲート端子M2gとを有する。第2スイッチング素子M2は、ゲート端子M2gに供給されるゲート駆動電圧が制御回路10によって制御されることで、受電コイルL1が流す交流電流に対する、ソース端子M2sとドレイン端子M2dとの間のオン(導通状態)とオフ(非導通状態)とが切り替わる。 The second switching element M2 is connected in series with each of the first switching element M1 and the power receiving coil L1. The second switching element M2 is, for example, a transistor such as a MOSFET. The second switching element M2 has a source terminal M2s, a drain terminal M2d, and a gate terminal M2g. The second switching element M2 is turned on between the source terminal M2s and the drain terminal M2d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M2g by the control circuit 10. It switches between conductive state) and off (non-conducting state).
 ソース端子M2sは、上述のように、接続点P5を介して、第1スイッチング素子M1のドレイン端子M1dと接続されていると共に、受電コイルL1とも接続されている。ドレイン端子M2dは、接続点P6に接続されており、接続点P6にて2方向へ分岐している。接続点P6にて2方向へ分岐するうち、一方の経路は蓄電コンデンサC3と接続されており、他方の経路は、後述するコンパレータCMP3のマイナス側の入力端子と接続されている。ゲート端子M2gは、後述するように、制御回路10が備える、バッファBUF2を介してRSフリップフロップ回路12の出力端子と接続されている。 As described above, the source terminal M2s is connected to the drain terminal M1d of the first switching element M1 via the connection point P5, and is also connected to the power receiving coil L1. The drain terminal M2d is connected to the connection point P6 and branches in two directions at the connection point P6. While branching in two directions at the connection point P6, one path is connected to the storage capacitor C3, and the other path is connected to the negative input terminal of the comparator CMP3 described later. As will be described later, the gate terminal M2g is connected to the output terminal of the RS flip-flop circuit 12 via the buffer BUF2 included in the control circuit 10.
 蓄電コンデンサC3は、例えば、整流装置5が搭載された電子機器を動作させるための充電可能な電源である。蓄電コンデンサC3は、第2スイッチング素子M2を介して、受電コイルL1および第1スイッチング素子M1と接続されている。例えば、蓄電コンデンサC3は、上述のように、一方の端子が、接続点P6を介して、第2スイッチング素子M2のドレイン端子M2dおよびコンパレータCMP3のマイナス側の入力端子と接続されており、他方の端子はグランドGND4に接続されている。 The storage capacitor C3 is, for example, a rechargeable power source for operating an electronic device equipped with a rectifier device 5. The power storage capacitor C3 is connected to the power receiving coil L1 and the first switching element M1 via the second switching element M2. For example, in the storage capacitor C3, as described above, one terminal is connected to the drain terminal M2d of the second switching element M2 and the negative input terminal of the comparator CMP3 via the connection point P6, and the other terminal is connected. The terminal is connected to the ground GND4.
 制御回路10は、電圧検出素子R1に印加された交流電圧に基づいて、第1スイッチング素子M1のオン(導通状態)とオフ(非導通状態)とを切り替えたり、第2スイッチング素子M2のオン(導通状態)とオフ(非導通状態)とを切り替えたりする。制御回路10は、第1スイッチング素子M1および第2スイッチング素子M2それぞれを、オンとオフとが反転するように制御する。制御回路10は、例えば、コンパレータCMP1~CMP3と、RSフリップフロップ回路11・12と、レベルシフト回路13と、インバータINV1と、バッファBUF1・BUF2とを有する。 The control circuit 10 switches between on (conducting state) and off (non-conducting state) of the first switching element M1 based on the AC voltage applied to the voltage detection element R1, and turns on (non-conducting state) of the second switching element M2. It switches between conductive state) and off (non-conducting state). The control circuit 10 controls each of the first switching element M1 and the second switching element M2 so that on and off are reversed. The control circuit 10 includes, for example, comparators CMP1 to CMP3, RS flip- flop circuits 11 and 12, a level shift circuit 13, an inverter INV1, and buffers BUF1 and BUF2.
 コンパレータCMP1は、電圧検出素子R1に加わる交流電圧を監視する。コンパレータCMP11は、電圧検出素子R1に印加された交流電圧と、閾値電圧Vth1(第1閾値電圧)との比較結果に基づき、RSフリップフロップ回路11・12のリセット入力を制御する。コンパレータCMP1は、マイナス側の入力端子が、第2共振コンデンサC2および電圧検出素子R1間の接続点P4と接続されており、プラス側の入力端子が、閾値電圧Vth1を出力する電圧源VTH1を介してグランドGND2と接続されている。コンパレータCMP1の出力端子は接続点P7にて2方向へ分岐し、一方の経路はRSフリップフロップ回路11のリセット入力端子と接続されており、他方の経路は、順に接続されたインバータINV1およびレベルシフト回路13を介して、RSフリップフロップ回路12のリセット入力端子と接続されている。 The comparator CMP1 monitors the AC voltage applied to the voltage detection element R1. The comparator CMP11 controls the reset input of the RS flip- flop circuits 11 and 12 based on the comparison result between the AC voltage applied to the voltage detection element R1 and the threshold voltage Vth1 (first threshold voltage). In the comparator CMP1, the negative side input terminal is connected to the connection point P4 between the second resonance capacitor C2 and the voltage detection element R1, and the positive side input terminal is via the voltage source VTH1 that outputs the threshold voltage Vth1. Is connected to the ground GND2. The output terminal of the comparator CMP1 branches in two directions at the connection point P7, one path is connected to the reset input terminal of the RS flip-flop circuit 11, and the other path is the inverter INV1 and the level shift connected in order. It is connected to the reset input terminal of the RS flip-flop circuit 12 via the circuit 13.
 コンパレータCMP2は、第1スイッチング素子M1のドレイン端子M1dおよびソース端子M1s間電圧と、閾値電圧Vth2との比較結果に基づき、RSフリップフロップ回路11のセット入力を制御する。コンパレータCMP2は、第1スイッチング素子M1がターンオンするタイミングを検出する。コンパレータCMP2は、マイナス側の入力端子が、接続点P5と、第1スイッチング素子M1のドレイン端子M1dとの間の接続点P8と接続され、プラス側の入力端子が、閾値電圧Vth2を出力する電圧源VTH2を介してグランドGND3と接続されている。コンパレータCMP2の出力端子は、RSフリップフロップ回路11のセット入力端子と接続されている。 The comparator CMP2 controls the set input of the RS flip-flop circuit 11 based on the comparison result between the voltage between the drain terminal M1d and the source terminal M1s of the first switching element M1 and the threshold voltage Vth2. The comparator CMP2 detects the timing at which the first switching element M1 turns on. In the comparator CMP2, the negative side input terminal is connected to the connection point P8 between the connection point P5 and the drain terminal M1d of the first switching element M1, and the positive side input terminal is a voltage that outputs the threshold voltage Vth2. It is connected to the ground GND3 via the source VTH2. The output terminal of the comparator CMP2 is connected to the set input terminal of the RS flip-flop circuit 11.
 コンパレータCMP3は、第2スイッチング素子M2のドレイン端子M2dおよびソース端子M2s間電圧と、閾値電圧Vth3との比較結果に基づき、RSフリップフロップ回路12のセット入力を制御する。コンパレータCMP3は、プラス側の入力端子が、閾値電圧Vth3を出力する電圧源VTH3を介して接続点P5と接続され、マイナス側の入力端子が、接続点P6と接続されている。コンパレータCMP3の出力端子は、RSフリップフロップ回路12のセット入力端子と接続されている。 The comparator CMP3 controls the set input of the RS flip-flop circuit 12 based on the comparison result between the voltage between the drain terminal M2d and the source terminal M2s of the second switching element M2 and the threshold voltage Vth3. In the comparator CMP3, the positive side input terminal is connected to the connection point P5 via the voltage source VTH3 that outputs the threshold voltage Vth3, and the negative side input terminal is connected to the connection point P6. The output terminal of the comparator CMP3 is connected to the set input terminal of the RS flip-flop circuit 12.
 RSフリップフロップ回路11は、コンパレータCMP1およびコンパレータCMP2それぞれの出力に基づき、第1スイッチング素子M1のゲート駆動電圧を制御する。RSフリップフロップ回路11のうち、セット入力端子はコンパレータCMP2の出力端子と接続され、リセット入力端子は接続点P7を介してコンパレータCMP1の出力端子と接続され、出力端子はバッファBUF1を介して第1スイッチング素子M1のゲート端子M1gと接続されている。 The RS flip-flop circuit 11 controls the gate drive voltage of the first switching element M1 based on the outputs of the comparator CMP1 and the comparator CMP2, respectively. In the RS flip-flop circuit 11, the set input terminal is connected to the output terminal of the comparator CMP2, the reset input terminal is connected to the output terminal of the comparator CMP1 via the connection point P7, and the output terminal is the first via the buffer BUF1. It is connected to the gate terminal M1g of the switching element M1.
 RSフリップフロップ回路12は、コンパレータCMP2およびコンパレータCMP3それぞれの出力に基づき、第2スイッチング素子M2のゲート駆動電圧を制御する。RSフリップフロップ回路12のうち、セット入力端子はコンパレータCMP3の出力端子と接続され、リセット入力端子はレベルシフト回路13およびインバータINV1を介してコンパレータCMP1の出力端子と接続され、出力端子はバッファBUF2を介して第2スイッチング素子M2のゲート端子M2gと接続されている。 The RS flip-flop circuit 12 controls the gate drive voltage of the second switching element M2 based on the outputs of the comparator CMP2 and the comparator CMP3, respectively. In the RS flip-flop circuit 12, the set input terminal is connected to the output terminal of the comparator CMP3, the reset input terminal is connected to the output terminal of the comparator CMP1 via the level shift circuit 13 and the inverter INV1, and the output terminal is the buffer BUF2. It is connected to the gate terminal M2g of the second switching element M2 via.
 レベルシフト回路13とインバータINV1とは、コンパレータCMP1の出力端子と、RSフリップフロップ回路12のリセット入力端子との間に接続されている。レベルシフト回路13は、第1スイッチング素子M1と第2スイッチング素子M2とのグランド電位を合わせる。 The level shift circuit 13 and the inverter INV1 are connected between the output terminal of the comparator CMP1 and the reset input terminal of the RS flip-flop circuit 12. The level shift circuit 13 matches the ground potentials of the first switching element M1 and the second switching element M2.
 なお、図1を用いて説明した制御回路10の回路構成は一例であって、制御回路10は、電圧検出素子R1に印加される交流電圧に基づいて、第1スイッチング素子M1と第2スイッチング素子M2とのそれぞれのオンとオフとを反転させるように制御できる回路構成であればよい。交流電流を整流するための素子として、第1スイッチング素子M1および第2スイッチング素子M2のようにトランジスタを用いることで、ダイオードを用いた場合と比べて、低消費電力化を図ることができる。なお、整流装置5において、例えば、第2スイッチング素子M2をトランジスタではなく、ダイオードにて形成してもよい。 The circuit configuration of the control circuit 10 described with reference to FIG. 1 is an example, and the control circuit 10 has the first switching element M1 and the second switching element based on the AC voltage applied to the voltage detection element R1. Any circuit configuration may be used as long as it can be controlled so as to invert the on and off of each of the M2. By using a transistor such as the first switching element M1 and the second switching element M2 as an element for rectifying an alternating current, it is possible to reduce power consumption as compared with the case where a diode is used. In the rectifier 5, for example, the second switching element M2 may be formed of a diode instead of a transistor.
 (整流装置5を流れる交流電流の経路)
 図2A~図2Cは、図1に示す整流装置5における、電圧検出素子R1と、第1スイッチング素子M1と、第2スイッチング素子M2との駆動状態の時間変化の様子の例を表す図である。特に、図2Aは、電圧検出素子R1に加わる交流電圧の時間変化の様子を表し、図2Bは、第1スイッチング素子M1に流れる交流電流とゲート駆動電圧の時間変化の様子を表し、図2Cは、第2スイッチング素子M2に流れる交流電流とゲート駆動電圧の時間変化の様子を表している。
(Alternating current path through the rectifier 5)
2A to 2C are diagrams showing an example of the time change of the drive state of the voltage detection element R1, the first switching element M1, and the second switching element M2 in the rectifier device 5 shown in FIG. .. In particular, FIG. 2A shows a state of time change of the AC voltage applied to the voltage detection element R1, FIG. 2B shows a state of time change of the AC current flowing through the first switching element M1 and the gate drive voltage, and FIG. 2C shows the state of time change. , The state of the time change of the alternating current flowing through the second switching element M2 and the gate drive voltage is shown.
 図3は、図1に示す整流装置5において、第1スイッチング素子M1がオンであり、第2スイッチング素子M2がオフである状態の交流電流の流れの例を表す図である。図4は、図1に示す整流装置5において、第1スイッチング素子M1がオフであり、第2スイッチング素子M2がオンである状態の交流電流の流れの例を表す図である。以下、第1スイッチング素子M1がオンのときの交流電流の経路と、第1スイッチング素子M1がオフのときの交流電流の経路とを順に説明する。 FIG. 3 is a diagram showing an example of an alternating current flow in a rectifier 5 shown in FIG. 1 in a state where the first switching element M1 is on and the second switching element M2 is off. FIG. 4 is a diagram showing an example of an alternating current flow in a rectifier 5 shown in FIG. 1 in a state where the first switching element M1 is off and the second switching element M2 is on. Hereinafter, the path of the alternating current when the first switching element M1 is on and the path of the alternating current when the first switching element M1 is off will be described in order.
 ≪第1スイッチング素子M1がオンのときの交流電流I1の経路≫
 まず、図2A~図2Cおよび図3を用いて、第1スイッチング素子M1がオンであり、第2スイッチング素子M2がオフのときに整流装置5に流れる交流電流I1の経路について説明する。図3は、図2A~図2Cにおける、時刻t0からt1の期間、および、時刻t2からt3の期間の交流電流の流れの様子を表している。なお、時刻t2からt3の期間は、時刻t0からt1の期間と同様であるため説明を省略する。時刻t0からt1の期間では、制御回路10は、第1スイッチング素子M1をオンにし、第2スイッチング素子M2をオフにする。
<< Path of alternating current I1 when the first switching element M1 is on >>
First, the path of the alternating current I1 flowing through the rectifier 5 when the first switching element M1 is on and the second switching element M2 is off will be described with reference to FIGS. 2A to 2C and FIG. FIG. 3 shows the flow of alternating current during the period from time t0 to t1 and the period from time t2 to t3 in FIGS. 2A to 2C. Since the period from time t2 to t3 is the same as the period from time t0 to t1, the description thereof will be omitted. During the period from time t0 to t1, the control circuit 10 turns on the first switching element M1 and turns off the second switching element M2.
 そして、図2Aにおける時刻t0からt1の期間および図3に示すように、受電コイルL1が送電コイルL2(図1参照)から電力を受けると、電圧検出素子R1に交流電流が流れ、即ち、電圧検出素子R1へ印加される交流電圧V_R1は上昇し、閾値電圧Vth1以上になる。また、図2Bにおける時刻t0からt1の期間および図3に示すように、第1スイッチング素子M1はオンであるため、グランドGND1を基準とすると、第1スイッチング素子M1においては、ドレイン端子M1dおよびソース端子M1s間の電圧であるドレインソース電圧M1_Vdsはローレベル(負レベル)となっており、ソース端子M1sからドレイン端子M1dへソースドレイン電流M1_Isdが流れる。また、図2Cにおける時刻t0からt1の期間および図3に示すように、第2スイッチング素子M2はオフであるため、接続点P5を基準とすると、第2スイッチング素子M2においては、ドレイン端子M2dおよびソース端子M2s間の電圧であるドレインソース電圧M2_Vdsはハイレベル(正レベル)となっており、ソース端子M2sからドレイン端子M2dへは電流(ソースドレイン電流M2_Isd)は流れない。 Then, as shown in the period from time t0 to t1 in FIG. 2A and FIG. 3, when the power receiving coil L1 receives power from the power transmission coil L2 (see FIG. 1), an alternating current flows through the voltage detection element R1, that is, the voltage. The AC voltage V_R1 applied to the detection element R1 rises and becomes equal to or higher than the threshold voltage Vth1. Further, since the first switching element M1 is on during the period from time t0 to t1 in FIG. 2B and as shown in FIG. 3, the drain terminal M1d and the source are used in the first switching element M1 with reference to the ground GND1. The drain source voltage M1_Vds, which is the voltage between the terminals M1s, has a low level (negative level), and the source / drain current M1_Isd flows from the source terminal M1s to the drain terminal M1d. Further, since the second switching element M2 is off during the period from time t0 to t1 in FIG. 2C and as shown in FIG. 3, the drain terminal M2d and the drain terminal M2d in the second switching element M2 are based on the connection point P5. The drain source voltage M2_Vds, which is the voltage between the source terminals M2s, has a high level (positive level), and no current (source / drain current M2_Isd) flows from the source terminal M2s to the drain terminal M2d.
 このように、時刻t0からt1の期間に受電コイルL1に流れる交流電流を交流電流I1とすると、交流電流I1は、第1スイッチング素子M1のソース端子M1sからドレイン端子M1dを流れ、接続点P5にて第2スイッチング素子M2の方向には流れず、接続点P5から受電コイルL1を流れ、接続点P3にて、第1共振コンデンサC1へ流れる方向と第2共振コンデンサC2へ流れる方向へ分岐する。第2共振コンデンサC2を流れた交流電流I1の分流電流はさらに電圧検出素子R1を流れ、接続点P2にて、第1共振コンデンサC1を流れた交流電流I1の分流電流と合流する。そして、交流電流I1は、接続点P1を経て、第1スイッチング素子M1のソース端子M1sへ流入する。 As described above, assuming that the alternating current flowing through the power receiving coil L1 is the alternating current I1 during the period from time t0 to t1, the alternating current I1 flows from the source terminal M1s of the first switching element M1 to the drain terminal M1d and reaches the connection point P5. Therefore, it does not flow in the direction of the second switching element M2, but flows from the connection point P5 through the power receiving coil L1, and at the connection point P3, branches in the direction of flowing to the first resonance capacitor C1 and the direction of flow to the second resonance capacitor C2. The shunt current of the alternating current I1 flowing through the second resonance capacitor C2 further flows through the voltage detection element R1 and merges with the shunt current of the alternating current I1 flowing through the first resonance capacitor C1 at the connection point P2. Then, the alternating current I1 flows into the source terminal M1s of the first switching element M1 via the connection point P1.
 このように、制御回路10は、第1スイッチング素子M1をオンにしているときは、第2スイッチング素子M2をオフにしているため、交流電流I1は、蓄電コンデンサC3へは流れず、蓄電コンデンサC3は充電されない。 As described above, since the control circuit 10 turns off the second switching element M2 when the first switching element M1 is turned on, the alternating current I1 does not flow to the storage capacitor C3, and the storage capacitor C3 Will not be charged.
 ≪第2スイッチング素子M2がオンのときの交流電流I2の経路≫
 次に、図2A~図2Cおよび図4を用いて、第1スイッチング素子M1がオフであり、第2スイッチング素子M2がオンのときに整流装置5に流れる交流電流I2の経路について説明する。図4は、図2A~図2Cにおける、時刻t1からt2の期間の交流電流の流れの様子を表している。
<< Path of AC current I2 when the second switching element M2 is on >>
Next, the path of the alternating current I2 flowing through the rectifier 5 when the first switching element M1 is off and the second switching element M2 is on will be described with reference to FIGS. 2A to 2C and FIG. FIG. 4 shows the flow of alternating current during the period from time t1 to t2 in FIGS. 2A to 2C.
 時刻t1からt2の期間では、制御回路10は、第1スイッチング素子M1をオフにし、第2スイッチング素子M2をオンにする。そして、受電コイルL1が、送電コイルL2(図1参照)等から電力を受ける。 During the period from time t1 to t2, the control circuit 10 turns off the first switching element M1 and turns on the second switching element M2. Then, the power receiving coil L1 receives power from the power transmission coil L2 (see FIG. 1) and the like.
 そして、図2Aにおける時刻t1からt2の期間および図4に示すように、電圧検出素子R1に流れる交流電流の極性が変化し、即ち、電圧検出素子R1へ印加される交流電圧は下降し、閾値電圧Vth1未満になる。また、図2Bにおける時刻t1からt2の期間および図4に示すように、第1スイッチング素子M1がオフであるため、グランドGND1を基準とすると、第1スイッチング素子M1においては、ドレインソース電圧M1_Vdsはハイレベル(正レベル)となっており、ソース端子M1sからドレイン端子M1dへ電流(ソースドレイン電流M1_Isd)は流れない。また、図2Cおよび図4に示すように、第2スイッチング素子M2はオンであるため、接続点P5を基準とすると、第2スイッチング素子M2においては、ドレインソース電圧M2_Vdsはローレベル(負レベル)となっており、ソース端子M2sからドレイン端子M2dへソースドレイン電流M2_Isdが流れる。 Then, as shown in the period from time t1 to t2 in FIG. 2A and FIG. 4, the polarity of the AC current flowing through the voltage detection element R1 changes, that is, the AC voltage applied to the voltage detection element R1 decreases, and the threshold value The voltage becomes less than Vth1. Further, since the first switching element M1 is off as shown in the period from time t1 to t2 in FIG. 2B and FIG. 4, the drain source voltage M1_Vds is set in the first switching element M1 with reference to the ground GND1. It is a high level (positive level), and no current (source / drain current M1_Isd) flows from the source terminal M1s to the drain terminal M1d. Further, as shown in FIGS. 2C and 4, since the second switching element M2 is on, the drain source voltage M2_Vds is low level (negative level) in the second switching element M2 with reference to the connection point P5. The source / drain current M2_Isd flows from the source terminal M2s to the drain terminal M2d.
 このように、時刻t1からt2の期間に受電コイルL1に流れる交流電流を交流電流I2とすると、交流電流I2は、接続点P1から第1スイッチング素子M1のソース端子M1s方向には流れず、接続点P2にて、第1共振コンデンサC1へ流れる方向と、電圧検出素子R1および第2共振コンデンサC2へ流れる方向とへ分岐する。そして、第1共振コンデンサC1と、電圧検出素子R1および第2共振コンデンサC2とを流れたそれぞれの分流電流は、接続点P3にて合流し、受電コイルL1、接続点P5を経て、第2スイッチング素子M2のソース端子M2sおよびドレイン端子M2dを流れる(上述のように、ソース端子M2sおよびドレイン端子M2d間を流れる交流電流I2をソースドレイン電流M2_Isdとも称する)。そして、ドレイン端子M2dから出力された交流電流I2は、接続点P6を経て、蓄電コンデンサC3へ供給される。 As described above, assuming that the alternating current flowing through the power receiving coil L1 is the alternating current I2 during the period from time t1 to t2, the alternating current I2 does not flow from the connection point P1 toward the source terminal M1s of the first switching element M1 and is connected. At the point P2, the current branches into the direction of flow to the first resonance capacitor C1 and the direction of flow to the voltage detection element R1 and the second resonance capacitor C2. Then, the shunt currents flowing through the first resonance capacitor C1 and the voltage detection element R1 and the second resonance capacitor C2 merge at the connection point P3, pass through the power receiving coil L1 and the connection point P5, and then switch to the second. It flows through the source terminal M2s and the drain terminal M2d of the element M2 (as described above, the alternating current I2 flowing between the source terminal M2s and the drain terminal M2d is also referred to as a source drain current M2_Isd). Then, the alternating current I2 output from the drain terminal M2d is supplied to the storage capacitor C3 via the connection point P6.
 このように、整流装置5は、第1スイッチング素子M1と直列に接続された第2スイッチング素子M2を備える。また、整流装置5は、第2スイッチング素子M2を介して、受電コイルL1および第1スイッチング素子M1と接続され、交流電流I2に基づいて蓄電する蓄電コンデンサC3を備える。そして、制御回路10は、第2スイッチング素子M2のオンおよびオフを、第1スイッチング素子M1のオンおよびオフと反転するように切り替える。これにより、第1スイッチング素子M1がターンオフし、第2スイッチング素子M2がターンオンしたときに、第2スイッチング素子M2を通る交流電流I2に基づいて、蓄電コンデンサC3を充電することができる。 As described above, the rectifier 5 includes the second switching element M2 connected in series with the first switching element M1. Further, the rectifier 5 includes a power storage capacitor C3 which is connected to the power receiving coil L1 and the first switching element M1 via the second switching element M2 and stores electricity based on the alternating current I2. Then, the control circuit 10 switches the on and off of the second switching element M2 so as to be inverted with the on and off of the first switching element M1. As a result, when the first switching element M1 is turned off and the second switching element M2 is turned on, the storage capacitor C3 can be charged based on the alternating current I2 passing through the second switching element M2.
 (制御回路10の動作)
 図5は、図1に示す整流装置5における制御回路10の動作の例を表す図である。図2Aから図5を用いて、第1スイッチング素子M1をオフからオンへの切り替えるターンオンする際の制御回路10の動作と、第1スイッチング素子M1をオンからオフへの切り替えるターンオフする際の制御回路10の動作とを順に説明する。
(Operation of control circuit 10)
FIG. 5 is a diagram showing an example of the operation of the control circuit 10 in the rectifier device 5 shown in FIG. Using FIGS. 2A to 5, the operation of the control circuit 10 when turning on the first switching element M1 from off to on, and the control circuit when turning off the first switching element M1 from on to off. The 10 operations will be described in order.
 ≪第1スイッチング素子M1をターンオンする際の制御回路10の動作≫
 図2A~図2C、図3および図5を用いて、第1スイッチング素子M1をターンオンする際の制御回路10の動作について説明する。図2A~図2Cおよび図5において、制御回路10が、第1スイッチング素子M1をターンオンし、第2スイッチング素子M2をターンオフする時刻は、時刻t0のときと、t2のときである。ここでは、時刻t2のときを例に説明する。
<< Operation of the control circuit 10 when turning on the first switching element M1 >>
The operation of the control circuit 10 when the first switching element M1 is turned on will be described with reference to FIGS. 2A to 2C, FIGS. 3 and 5. In FIGS. 2A to 2C and 5, the times when the control circuit 10 turns on the first switching element M1 and turns off the second switching element M2 are at time t0 and at time t2. Here, the time t2 will be described as an example.
 図2Aの時刻t2および図3に示すように、電圧検出素子R1の交流電圧V_R1が、電圧源VTH1が供給する閾値電圧Vth1以上になる。そして、図3および図5の時刻t2に示すように、コンパレータCMP1は、電圧検出素子R1の交流電圧V_R1が閾値電圧Vth1以上になったことを検出し、ローレベルの出力信号CP1を出力する。これにより、コンパレータCMP1は、ローレベルの出力信号CP1をRSフリップフロップ回路11のリセット入力端子に入力すると共に、インバータINV1によって出力信号CP1が反転されたハイレベルの出力信号CP1反転信号を、レベルシフト回路13を介して、RSフリップフロップ回路12のリセット入力端子に入力する。このように、コンパレータCMP1は、第1スイッチング素子M1と直列に接続された電圧検出素子R1の交流電圧が閾値電圧Vth1未満になるか否かを監視する。そして、コンパレータCMP1の出力端子と、RSフリップフロップ回路12のリセット入力端子との間に、レベルシフト回路13を設けているため、第1スイッチング素子M1と第2スイッチング素子M2とのグランド電位を合わせることができる。 As shown at time t2 and FIG. 3 in FIG. 2A, the AC voltage V_R1 of the voltage detection element R1 becomes equal to or higher than the threshold voltage Vth1 supplied by the voltage source VTH1. Then, as shown at time t2 in FIGS. 3 and 5, the comparator CMP1 detects that the AC voltage V_R1 of the voltage detection element R1 becomes equal to or higher than the threshold voltage Vth1 and outputs a low-level output signal CP1. As a result, the comparator CMP1 inputs the low-level output signal CP1 to the reset input terminal of the RS flip-flop circuit 11, and level-shifts the high-level output signal CP1 inverted signal in which the output signal CP1 is inverted by the inverter INV1. Input is made to the reset input terminal of the RS flip-flop circuit 12 via the circuit 13. In this way, the comparator CMP1 monitors whether or not the AC voltage of the voltage detecting element R1 connected in series with the first switching element M1 becomes less than the threshold voltage Vth1. Since the level shift circuit 13 is provided between the output terminal of the comparator CMP1 and the reset input terminal of the RS flip-flop circuit 12, the ground potentials of the first switching element M1 and the second switching element M2 are matched. be able to.
 また、図2Bの時刻t2および図3に示すように、グランドGND1を基準にすると、第1スイッチング素子M1のドレイン端子M1dとソース端子M1s間のドレインソース電圧M1_Vdsは立下り、電圧源VTH2が供給する閾値電圧Vth2未満になる。すると、図3および図5の時刻t2に示すように、コンパレータCMP2は、第1スイッチング素子M1のドレインソース電圧M1_Vdsが閾値電圧Vth2未満になったことを検出し、ハイレベルの出力信号CP2を出力する。これにより、コンパレータCMP2は、ハイレベルの出力信号CP2をRSフリップフロップ回路11のセット入力端子に入力する。このように、コンパレータCMP2は、第1スイッチング素子M1のドレイン端子M1dとソース端子M1s間のドレインソース電圧M1_Vdsが閾値電圧Vth2未満になるか否かを監視する。 Further, as shown at time t2 and FIG. 3 in FIG. 2B, the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 falls and the voltage source VTH2 supplies the voltage source VTH2 with reference to the ground GND1. The threshold voltage is less than Vth2. Then, as shown at time t2 in FIGS. 3 and 5, the comparator CMP2 detects that the drain source voltage M1_Vds of the first switching element M1 has become less than the threshold voltage Vth2, and outputs a high-level output signal CP2. To do. As a result, the comparator CMP2 inputs the high-level output signal CP2 to the set input terminal of the RS flip-flop circuit 11. In this way, the comparator CMP2 monitors whether or not the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 becomes less than the threshold voltage Vth2.
 すると、図3および図5の時刻t2に示すように、RSフリップフロップ回路11は、コンパレータCMP1によってローレベルの出力信号CP1がリセット入力端子に入力され、コンパレータCMP2によってハイレベルの出力信号CP2がセット入力端子に入力されたため、ハイレベルの出力信号Q1を出力し、バッファBUF1を介して、第1スイッチング素子M1のゲート端子M1gに、ハイレベルのゲート駆動電圧M1_Vgを印加する。これにより、第1スイッチング素子M1はターンオンする。そして、図2Bおよび図3に示すように、第1スイッチング素子M1のソース端子M1sおよびドレイン端子M1d間にソースドレイン電流M1_Isdが流れ始める。このように、第1スイッチング素子M1は、コンパレータCMP2が監視する、スイッチング素子M1のドレインソース電圧M1_Vdsの変化に基づいて、ゲート駆動電圧の立ち上がりが制御される。 Then, as shown at time t2 in FIGS. 3 and 5, in the RS flip flop circuit 11, the low level output signal CP1 is input to the reset input terminal by the comparator CMP1, and the high level output signal CP2 is set by the comparator CMP2. Since it has been input to the input terminal, a high-level output signal Q1 is output, and a high-level gate drive voltage M1_Vg is applied to the gate terminal M1g of the first switching element M1 via the buffer BUF1. As a result, the first switching element M1 is turned on. Then, as shown in FIGS. 2B and 3, the source / drain current M1_Isd begins to flow between the source terminal M1s and the drain terminal M1d of the first switching element M1. In this way, the first switching element M1 controls the rise of the gate drive voltage based on the change in the drain source voltage M1_Vds of the switching element M1 monitored by the comparator CMP2.
 また、図2Cの時刻t2および図3に示すように、接続点P5を基準にすると、第2スイッチング素子M2のドレイン端子M2dとソース端子M2s間のドレインソース電圧M2_Vdsが立ち上がり、電圧源VTH3が供給する閾値電圧Vth3以上になる。すると、図3および図5のt=2に示すように、コンパレータCMP3は、第2スイッチング素子M2のドレインソース電圧M2_Vdsが閾値電圧Vth3以上になったことを検出し、ローレベルの出力信号CP3を出力する。 Further, as shown at time t2 and FIG. 3 in FIG. 2C, the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 rises with reference to the connection point P5, and the voltage source VTH3 is supplied. The threshold voltage is Vth3 or higher. Then, as shown in t = 2 in FIGS. 3 and 5, the comparator CMP3 detects that the drain source voltage M2_Vds of the second switching element M2 becomes equal to or higher than the threshold voltage Vth3, and outputs a low-level output signal CP3. Output.
 これにより、コンパレータCMP3は、ローレベルの出力信号CP3をRSフリップフロップ回路12のセット入力端子に入力する。このように、コンパレータCMP3は、第2スイッチング素子M2のドレイン端子M2dとソース端子M2s間のドレインソース電圧M2_Vdsが閾値電圧Vth3未満になるか否かを監視する。 As a result, the comparator CMP3 inputs the low-level output signal CP3 to the set input terminal of the RS flip-flop circuit 12. In this way, the comparator CMP3 monitors whether or not the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 becomes less than the threshold voltage Vth3.
 すると、図3および図5の時刻t2に示すように、RSフリップフロップ回路12は、コンパレータCMP1およびインバータINV1によってハイレベルの出力信号CP1反転信号がリセット入力端子に入力され、コンパレータCMP3によってローレベルの出力信号CP3がセット入力端子に入力されたため、ローレベルの出力信号Q2を出力し、バッファBUF2を介して、第2スイッチング素子M2のゲート端子M2gに、ローレベルのゲート駆動電圧M2_Vgを印加する。これにより、第2スイッチング素子M2はターンオフする。そして、図2Cおよび図3に示すように、第2スイッチング素子M2のソース端子M2sおよびドレイン端子M2d間にソースドレイン電流M2_Isdは流れない。 Then, as shown at time t2 in FIGS. 3 and 5, in the RS flip flop circuit 12, a high level output signal CP1 inverting signal is input to the reset input terminal by the comparator CMP1 and the inverter INV1, and the low level is input by the comparator CMP3. Since the output signal CP3 is input to the set input terminal, the low-level output signal Q2 is output, and the low-level gate drive voltage M2_Vg is applied to the gate terminal M2g of the second switching element M2 via the buffer BUF2. As a result, the second switching element M2 is turned off. Then, as shown in FIGS. 2C and 3, the source / drain current M2_Isd does not flow between the source terminal M2s and the drain terminal M2d of the second switching element M2.
 このように、コンパレータCMP1およびRSフリップフロップ回路12は、第1スイッチング素子M1を介して、第2スイッチング素子M2のソース端子M2sおよびドレイン端子M2dに直列に接続された電圧検出素子R1に印加された交流電圧V_R1に基づいて、第2スイッチング素子M2をターンオフする。また、コンパレータCMP1の出力端子と、RSフリップフロップ回路12のリセット入力端子との間にインバータINV1を設けているため、コンパレータCMP1からの出力信号に基づいて、第1スイッチング素子M1のオンおよびオフと、第2スイッチング素子M2のオンおよびオフとを反転させることができる。 As described above, the comparator CMP1 and the RS flipflop circuit 12 are applied to the voltage detection element R1 connected in series to the source terminal M2s and the drain terminal M2d of the second switching element M2 via the first switching element M1. The second switching element M2 is turned off based on the AC voltage V_R1. Further, since the inverter INV1 is provided between the output terminal of the comparator CMP1 and the reset input terminal of the RS flip-flop circuit 12, the first switching element M1 is turned on and off based on the output signal from the comparator CMP1. , The on and off of the second switching element M2 can be inverted.
 ここで、スイッチング素子のソース端子およびドレイン端子に並列に接続された電圧検出素子に印加された交流電圧に基づいてスイッチング素子をターンオフすると、スイッチング素子をターンオフする直前にソース端子およびドレイン端子間に電流が流れていたところにスイッチング素子をターンオフしたことで発生するソース端子およびドレイン端子間の電圧変化の影響によって、スイッチング素子のゲート駆動電圧が短期間に上昇と下降とを繰り返すチャタリングが発生する。 Here, when the switching element is turned off based on the AC voltage applied to the voltage detection element connected in parallel to the source terminal and the drain terminal of the switching element, a current is generated between the source terminal and the drain terminal immediately before the switching element is turned off. Due to the influence of the voltage change between the source terminal and the drain terminal generated by turning off the switching element where the switching element was flowing, chattering occurs in which the gate drive voltage of the switching element repeatedly rises and falls in a short period of time.
 一方、整流装置5によると、電圧検出素子R1は、第2スイッチング素子M2のソース端子M2sおよびドレイン端子M2dに並列ではなく、第1スイッチング素子M1を介して、直列に接続されている。そして、コンパレータCMP1およびRSフリップフロップ回路12は、第2スイッチング素子M2のソース端子M2sおよびドレイン端子M2dに入力又は出力される交流電流(すなわち電圧検出素子R1を流れる交流電流)に基づいて、第2スイッチング素子M2をターンオフする。このため、第2スイッチング素子M2をターンオフする直前に、ソース端子M2sおよびドレイン端子M2d間に電流が流れていたところに第2スイッチング素子M2をターンオフしたことでソース端子M2sおよびドレイン端子M2d間に電圧変化が生じても、その電圧変化の影響を受けずに、第2スイッチング素子M2をターンオフすることができる。この結果、コンパレータCMP1およびRSフリップフロップ回路12は、チャタリングの発生を抑制して、第2スイッチング素子M2をターンオフすることができる。 On the other hand, according to the rectifier 5, the voltage detection element R1 is not parallel to the source terminal M2s and the drain terminal M2d of the second switching element M2, but is connected in series via the first switching element M1. Then, the comparator CMP1 and the RS flipflop circuit 12 are based on the alternating current input or output to the source terminal M2s and the drain terminal M2d of the second switching element M2 (that is, the alternating current flowing through the voltage detection element R1). Turn off the switching element M2. Therefore, immediately before the second switching element M2 is turned off, the second switching element M2 is turned off where the current was flowing between the source terminal M2s and the drain terminal M2d, so that the voltage between the source terminal M2s and the drain terminal M2d is increased. Even if a change occurs, the second switching element M2 can be turned off without being affected by the voltage change. As a result, the comparator CMP1 and the RS flip-flop circuit 12 can suppress the occurrence of chattering and turn off the second switching element M2.
 ≪第1スイッチング素子M1をターンオフする際の制御回路10の動作≫
 図2A~図2C、図4および図5を用いて、第1スイッチング素子M1をターンオフする際の制御回路10の動作について説明する。図2A~図2Cおよび図5において、制御回路10が、第1スイッチング素子M1をターンオフし、第2スイッチング素子M2をターンオンする時刻は、時刻t1のときと、時刻t3のときである。ここでは、時刻t1のときを例に説明する。
<< Operation of the control circuit 10 when turning off the first switching element M1 >>
The operation of the control circuit 10 when the first switching element M1 is turned off will be described with reference to FIGS. 2A to 2C, FIGS. 4 and 5. In FIGS. 2A to 2C and 5, the time when the control circuit 10 turns off the first switching element M1 and turns on the second switching element M2 is at time t1 and at time t3. Here, the time t1 will be described as an example.
 図2Aの時刻t1および図4に示すように、電圧検出素子R1の交流電圧V_R1が、電圧源VTH1が供給する閾値電圧Vth1未満になる。すると、図4および図5の時刻t1に示すように、コンパレータCMP1は、電圧検出素子R1の交流電圧V_R1が閾値電圧Vth1未満になったことを検出し、ハイレベルの出力信号CP1を出力する。これにより、コンパレータCMP1は、ハイレベルの出力信号CP1をRSフリップフロップ回路11のリセット入力端子に入力すると共に、インバータINV1によって出力信号CP1が反転されたローレベルの出力信号CP1反転信号を、レベルシフト回路13を介して、RSフリップフロップ回路12のリセット入力端子に入力する。このように、コンパレータCMP1は、第1スイッチング素子M1と直列に接続された電圧検出素子R1の交流電圧が閾値電圧Vth1未満になるか否かを監視する。 As shown at time t1 and FIG. 4 in FIG. 2A, the AC voltage V_R1 of the voltage detection element R1 becomes less than the threshold voltage Vth1 supplied by the voltage source VTH1. Then, as shown at time t1 in FIGS. 4 and 5, the comparator CMP1 detects that the AC voltage V_R1 of the voltage detection element R1 has become less than the threshold voltage Vth1, and outputs a high-level output signal CP1. As a result, the comparator CMP1 inputs the high-level output signal CP1 to the reset input terminal of the RS flip-flop circuit 11, and level-shifts the low-level output signal CP1 inverted signal in which the output signal CP1 is inverted by the inverter INV1. Input is made to the reset input terminal of the RS flip-flop circuit 12 via the circuit 13. In this way, the comparator CMP1 monitors whether or not the AC voltage of the voltage detecting element R1 connected in series with the first switching element M1 becomes less than the threshold voltage Vth1.
 また、図2Bの時刻t1および図4に示すように、グランドGND1を基準にすると、第1スイッチング素子M1のドレイン端子M1dとソース端子M1s間のドレインソース電圧M1_Vdsは立ち上がり、電圧源VTH2が供給する閾値電圧Vth2以上になる。すると、図4および図5の時刻t1に示すように、コンパレータCMP2は、第1スイッチング素子M1のドレインソース電圧M1_Vdsが閾値電圧Vth2以上になったことを検出し、ローレベルの出力信号CP2を出力する。これにより、コンパレータCMP2は、ローレベルの出力信号CP2をRSフリップフロップ回路11のセット入力端子に入力する。このように、コンパレータCMP2は、第1スイッチング素子M1のドレイン端子M1dとソース端子M1s間のドレインソース電圧M1_Vdsが閾値電圧Vth2未満になるか否かを監視する。 Further, as shown at time t1 and FIG. 4 in FIG. 2B, the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 rises and is supplied by the voltage source VTH2 with reference to the ground GND1. The threshold voltage is Vth2 or higher. Then, as shown at time t1 in FIGS. 4 and 5, the comparator CMP2 detects that the drain source voltage M1_Vds of the first switching element M1 becomes equal to or higher than the threshold voltage Vth2, and outputs a low-level output signal CP2. To do. As a result, the comparator CMP2 inputs the low-level output signal CP2 to the set input terminal of the RS flip-flop circuit 11. In this way, the comparator CMP2 monitors whether or not the drain source voltage M1_Vds between the drain terminal M1d and the source terminal M1s of the first switching element M1 becomes less than the threshold voltage Vth2.
 すると、図4および図5の時刻t1に示すように、RSフリップフロップ回路11は、コンパレータCMP1によってハイレベルの出力信号CP1がリセット入力端子に入力され、コンパレータCMP2によってローレベルの出力信号CP2がセット入力端子に入力されたため、ローレベルの出力信号Q1を出力し、バッファBUF1を介して、第1スイッチング素子M1のゲート端子M1gに、ローレベルのゲート駆動電圧M1_Vgを印加する。これにより、第1スイッチング素子M1はターンオフする。そして、図2Bおよび図4に示すように、第1スイッチング素子M1のソース端子M1sおよびドレイン端子M1d間にソースドレイン電流M1_Isdが流れない。 Then, as shown at time t1 in FIGS. 4 and 5, in the RS flip flop circuit 11, the high level output signal CP1 is input to the reset input terminal by the comparator CMP1, and the low level output signal CP2 is set by the comparator CMP2. Since it is input to the input terminal, the low-level output signal Q1 is output, and the low-level gate drive voltage M1_Vg is applied to the gate terminal M1g of the first switching element M1 via the buffer BUF1. As a result, the first switching element M1 is turned off. Then, as shown in FIGS. 2B and 4, the source / drain current M1_Isd does not flow between the source terminal M1s and the drain terminal M1d of the first switching element M1.
 このように、コンパレータCMP1およびRSフリップフロップ回路11は、ソース端子M1sおよびドレイン端子M1dに直列に接続された電圧検出素子R1に印加された交流電圧V_R1に基づいて、第1スイッチング素子M1をターンオフする。 In this way, the comparator CMP1 and the RS flip-flop circuit 11 turn off the first switching element M1 based on the AC voltage V_R1 applied to the voltage detection element R1 connected in series with the source terminal M1s and the drain terminal M1d. ..
 ここで、上述のように、スイッチング素子のソース端子およびドレイン端子に並列に接続された電圧検出素子に印加された交流電圧に基づいてスイッチング素子をターンオフすると、スイッチング素子をターンオフする直前にソース端子およびドレイン端子間に電流が流れていたところにスイッチング素子をターンオフしたことで発生するソース端子およびドレイン端子間の電圧変化の影響によって、チャタリングが発生する。 Here, as described above, when the switching element is turned off based on the AC voltage applied to the voltage detection element connected in parallel to the source terminal and the drain terminal of the switching element, the source terminal and the source terminal and the drain terminal immediately before the switching element is turned off Chattering occurs due to the influence of the voltage change between the source terminal and the drain terminal that occurs when the switching element is turned off where the current is flowing between the drain terminals.
 一方、整流装置5によると、電圧検出素子R1は、第1スイッチング素子M1のソース端子M1sおよびドレイン端子M1dに並列ではなく、直列に接続されている。そして、コンパレータCMP1およびRSフリップフロップ回路11は、第1スイッチング素子M1のソース端子M1sおよびドレイン端子M1dに入力又は出力される交流電流(すなわち電圧検出素子R1を流れる交流電流)に基づいて、第1スイッチング素子M1をターンオフする。このため、第1スイッチング素子M1ターンオフする直前に、ソース端子M1sおよびドレイン端子M1d間に電流が流れていたところに第1スイッチング素子M1をターンオフしたことでソース端子M1sおよびドレイン端子M1d間に電圧変化が生じても、その電圧変化の影響を受けずに、第1スイッチング素子M1をターンオフすることができる。このため、コンパレータCMP1およびRSフリップフロップ回路11は、チャタリングの発生を抑制して、第1スイッチング素子M1をターンオフすることができる。 On the other hand, according to the rectifier 5, the voltage detection element R1 is connected in series with the source terminal M1s and the drain terminal M1d of the first switching element M1 instead of in parallel. Then, the comparator CMP1 and the RS flipflop circuit 11 are first based on the alternating current input or output to the source terminal M1s and the drain terminal M1d of the first switching element M1 (that is, the alternating current flowing through the voltage detection element R1). Turn off the switching element M1. Therefore, immediately before the first switching element M1 is turned off, the voltage changes between the source terminal M1s and the drain terminal M1d by turning off the first switching element M1 where the current was flowing between the source terminal M1s and the drain terminal M1d. Even if the above occurs, the first switching element M1 can be turned off without being affected by the voltage change. Therefore, the comparator CMP1 and the RS flip-flop circuit 11 can suppress the occurrence of chattering and turn off the first switching element M1.
 また、図2Cの時刻t1および図4に示すように、接続点P5を基準にすると、第2スイッチング素子M2のドレイン端子M2dとソース端子M2s間のドレインソース電圧M2_Vdsが立ち下がり、電圧源VTH3が供給する閾値電圧Vth3未満になる。すると、図4および図5の時刻t1に示すように、コンパレータCMP3は、第2スイッチング素子M2のドレインソース電圧M2_Vdsが閾値電圧Vth3未満になったことを検出し、ハイレベルの出力信号CP3を出力する。これにより、コンパレータCMP3は、ハイレベルの出力信号CP3をRSフリップフロップ回路12のセット入力端子に入力する。このように、コンパレータCMP3は、第2スイッチング素子M2のドレイン端子M2dとソース端子M2s間のドレインソース電圧M2_Vdsが閾値電圧Vth3未満になるか否かを監視する。 Further, as shown at time t1 and FIG. 4 in FIG. 2C, the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 falls with reference to the connection point P5, and the voltage source VTH3 becomes The supplied threshold voltage is less than Vth3. Then, as shown at time t1 in FIGS. 4 and 5, the comparator CMP3 detects that the drain source voltage M2_Vds of the second switching element M2 has become less than the threshold voltage Vth3, and outputs a high-level output signal CP3. To do. As a result, the comparator CMP3 inputs the high-level output signal CP3 to the set input terminal of the RS flip-flop circuit 12. In this way, the comparator CMP3 monitors whether or not the drain source voltage M2_Vds between the drain terminal M2d and the source terminal M2s of the second switching element M2 becomes less than the threshold voltage Vth3.
 すると、図4および図5の時刻t1に示すように、RSフリップフロップ回路12は、コンパレータCMP1およびインバータINV1によってローレベルの出力信号CP1反転信号がリセット入力端子に入力され、コンパレータCMP3によってハイレベルの出力信号CP3がセット入力端子に入力されたため、ハイレベルの出力信号Q2を出力し、バッファBUF2を介して、第2スイッチング素子M2のゲート端子M2gに、ハイレベルのゲート駆動電圧M2_Vgを印加する。これにより、第2スイッチング素子M2はターンオンする。そして、図2Cの時刻t1および図4に示すように、第2スイッチング素子M2のソース端子M2sおよびドレイン端子M2d間にソースドレイン電流M2_Isdが流れ始める。この結果、第2スイッチング素子M2を通じて、蓄電コンデンサC3を充電することができる。 Then, as shown at time t1 in FIGS. 4 and 5, in the RS flip flop circuit 12, the low level output signal CP1 inverting signal is input to the reset input terminal by the comparator CMP1 and the inverter INV1, and the high level is input by the comparator CMP3. Since the output signal CP3 is input to the set input terminal, the high level output signal Q2 is output, and the high level gate drive voltage M2_Vg is applied to the gate terminal M2g of the second switching element M2 via the buffer BUF2. As a result, the second switching element M2 is turned on. Then, as shown at time t1 and FIG. 4 in FIG. 2C, the source / drain current M2_Isd begins to flow between the source terminal M2s and the drain terminal M2d of the second switching element M2. As a result, the storage capacitor C3 can be charged through the second switching element M2.
 ここで、第1スイッチング素子M1および第2スイッチング素子M2は、端子間の容量充電エネルギーが放電されて内部に形成される寄生ダイオードが導通している期間にターンオンさせることが望ましい。このため、制御回路10内に信号の遅延がない理想状態を考えると、閾値電圧Vth1=0V、閾値電圧Vth2=0V、閾値電圧Vth3=0Vでよい。 Here, it is desirable that the first switching element M1 and the second switching element M2 are turned on during a period in which the capacitive charging energy between the terminals is discharged and the parasitic diode formed inside is conducting. Therefore, considering an ideal state in which there is no signal delay in the control circuit 10, the threshold voltage Vth1 = 0V, the threshold voltage Vth2 = 0V, and the threshold voltage Vth3 = 0V may be used.
 しかし、実際には、制御回路10内では、各素子間の信号に遅延が発生する。このため、閾値電圧Vth1は、交流電圧V_R1がゼロになる前(プラスの状態)に第1スイッチング素子M1がターンオフする電位であることが好ましい。また、閾値電圧Vth3および閾値電圧Vth2はマイナスの電位であることが好ましい。 However, in reality, a delay occurs in the signal between each element in the control circuit 10. Therefore, the threshold voltage Vth1 is preferably a potential at which the first switching element M1 turns off before the AC voltage V_R1 becomes zero (positive state). Further, the threshold voltage Vth3 and the threshold voltage Vth2 are preferably negative potentials.
 すなわち、例えば、閾値電圧Vth1>0、閾値電圧Vth2<0、閾値電圧Vth3<0であることが好ましい。これにより、例えば、時刻t1のとき、コンパレータCMP1の出力信号の反転タイミングを、コンパレータCMP2およびコンパレータCMP3それぞれの出力信号の反転タイミングよりも、より確実に、早くすることができる。すなわち、より確実に、コンパレータCMP1が出力信号を反転させた後、コンパレータCMP2・CMP3が出力信号を反転させるように、整流装置5を動作させることができる。このように、コンパレータCMP1が動作した後、コンパレータCMP2・CMP3が動作するため、制御回路10内での信号の遅延を考慮しても、より確実に、制御回路10の誤作動を防止しつつ、電圧検出素子R1の交流電圧の変化に基づいて、第1スイッチング素子M1および第2スイッチング素子M2それぞれのオンとオフのタイミングを制御することができる。 That is, for example, it is preferable that the threshold voltage Vth1> 0, the threshold voltage Vth2 <0, and the threshold voltage Vth3 <0. Thereby, for example, at time t1, the inversion timing of the output signal of the comparator CMP1 can be more reliably and earlier than the inversion timing of the output signals of the comparator CMP2 and the comparator CMP3. That is, the rectifier 5 can be operated more reliably so that the comparators CMP2 and CMP3 invert the output signal after the comparator CMP1 inverts the output signal. In this way, since the comparators CMP2 and CMP3 operate after the comparator CMP1 operates, even if the signal delay in the control circuit 10 is taken into consideration, the malfunction of the control circuit 10 can be prevented more reliably. The on and off timings of the first switching element M1 and the second switching element M2 can be controlled based on the change in the AC voltage of the voltage detecting element R1.
 閾値電圧Vth1、閾値電圧Vth2、および閾値電圧Vth3それぞれの値は、コンパレータCMP1・CMP2・CMP3それぞれの特性や、第1スイッチング素子M1および第2スイッチング素子M2それぞれの特性に基づいて決めればよい。このように、閾値電圧Vth1~Vth3それぞれを調整することで、コンパレータCMP1~CMP3それぞれの出力信号の反転タイミングを制御することができる。一例として、閾値電圧Vth1は数mV~数十mV程度、閾値電圧Vth2は-50mV~-300mV程度、閾値電圧Vth3は-50mV~-300mV程度とすることができる。 The values of the threshold voltage Vth1, the threshold voltage Vth2, and the threshold voltage Vth3 may be determined based on the characteristics of the comparators CMP1, CMP2, and CMP3, and the characteristics of the first switching element M1 and the second switching element M2. By adjusting each of the threshold voltages Vth1 to Vth3 in this way, it is possible to control the inversion timing of the output signals of the comparators CMP1 to CMP3. As an example, the threshold voltage Vth1 can be set to about several mV to several tens of mV, the threshold voltage Vth2 can be set to about −50 mV to −300 mV, and the threshold voltage Vth3 can be set to about −50 mV to −300 mV.
 (主な利点)
 図2A~図2C、図3および図4等に示したように、整流装置5では、第1スイッチング素子M1をターンオフする基準となる交流電圧V_R1が印加される電圧検出素子R1は、第1スイッチング素子M1のドレイン端子M1dおよびソース端子M1sに対して、並列ではなく直列に接続されている。このため、第1スイッチング素子M1がターンオフする際の、第1スイッチング素子M1のドレイン端子M1dおよびソース端子M1s間の電圧変化に起因するチャタリングの発生を抑制することができる。
(Main advantage)
As shown in FIGS. 2A to 2C, FIGS. 3 and 4, and the like, in the rectifying device 5, the voltage detection element R1 to which the AC voltage V_R1 as a reference for turning off the first switching element M1 is applied is the first switching. It is connected to the drain terminal M1d and the source terminal M1s of the element M1 in series instead of in parallel. Therefore, when the first switching element M1 turns off, it is possible to suppress the occurrence of chattering due to a voltage change between the drain terminal M1d and the source terminal M1s of the first switching element M1.
 また、電圧検出素子R1は、第2スイッチング素子M2のドレイン端子M2dおよびソース端子M2sに対しても、並列ではなく、第1スイッチング素子M1を介して直列に接続されている。このため、第2スイッチング素子M2がターンオフする際の、第2スイッチング素子M2のドレイン端子M2dおよびソース端子M2s間の電圧変化に起因するチャタリングの発生も抑制することができる。 Further, the voltage detection element R1 is also connected to the drain terminal M2d and the source terminal M2s of the second switching element M2 in series via the first switching element M1 instead of in parallel. Therefore, it is possible to suppress the occurrence of chattering due to the voltage change between the drain terminal M2d and the source terminal M2s of the second switching element M2 when the second switching element M2 turns off.
 そして、整流装置5によると、特許文献1に記載された全波整流回路とは異なり、チャタリングを防止するためのサブの同期用整流用トランジスタを、第1スイッチング素子M1および第2スイッチング素子M2それぞれに並列に設ける必要がない。このため、整流装置5によると、特許文献1に記載された全波整流回路と比べて、低消費電力で駆動し、かつ、小さい回路面積にて、チャタリングの発生を抑制した半波整流回路を構成することができる。これにより、整流装置5を各種の電子機器に搭載することで、低消費電力であり、小型化された電子機器を得ることができる。特に、整流装置5を、モバイル機器に搭載することで、低消費電力であり、小型化されたモバイル機器を得ることができる。 Then, according to the rectifier 5, unlike the full-wave rectifier circuit described in Patent Document 1, a sub synchronous rectifier transistor for preventing chattering is provided for each of the first switching element M1 and the second switching element M2. It is not necessary to install them in parallel. Therefore, according to the rectifier 5, a half-wave rectifier circuit that is driven with lower power consumption and suppresses the occurrence of chattering in a smaller circuit area than the full-wave rectifier circuit described in Patent Document 1 is provided. Can be configured. As a result, by mounting the rectifier 5 on various electronic devices, it is possible to obtain a miniaturized electronic device with low power consumption. In particular, by mounting the rectifier 5 on a mobile device, it is possible to obtain a mobile device with low power consumption and miniaturization.
 〔実施形態2〕
 本開示の実施形態2について、以下に説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図6は、実施形態2に係る整流装置5Aの構成の一例を表す図である。図1等に示した非接触給電システム1は、整流装置5に替えて、図6に示す整流装置5Aを備えていてもよい。整流装置5Aは、整流装置5(図1等)が備えていた制御回路10に替えて、制御回路10Aを備えている。制御回路10Aは、制御回路10(図1等)が備えていたインバータINV1に替えて、コンパレータCMP4を備えている。
[Embodiment 2]
The second embodiment of the present disclosure will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the first embodiment, and the description will not be repeated. FIG. 6 is a diagram showing an example of the configuration of the rectifying device 5A according to the second embodiment. The non-contact power feeding system 1 shown in FIG. 1 or the like may include the rectifying device 5A shown in FIG. 6 instead of the rectifying device 5. The rectifying device 5A includes a control circuit 10A in place of the control circuit 10 provided in the rectifying device 5 (FIG. 1 and the like). The control circuit 10A includes a comparator CMP4 instead of the inverter INV1 provided in the control circuit 10 (FIG. 1 and the like).
 本実施形態では、コンパレータCMP1の出力端子は、2方向に分岐せずに、RSフリップフロップ回路11のリセット入力端子と接続されており、RSフリップフロップ回路12のリセット入力端子とは接続されていない。コンパレータCMP4は、プラス側の入力端子が、コンパレータCMP1のマイナス側の入力端子と接続点P4との間の接続点P8に接続され、マイナス側の入力端子は閾値電圧Vth4(第2閾値電圧)を出力する電圧源VTH4を介してグランドGND5と接続されている。コンパレータCMP4の出力端子は、レベルシフト回路13を介してRSフリップフロップ回路12のリセット入力端子と接続されている。整流装置5Aの他の構成は、整流装置5(図1等)と同様である。 In the present embodiment, the output terminal of the comparator CMP1 is connected to the reset input terminal of the RS flip-flop circuit 11 without branching in two directions, and is not connected to the reset input terminal of the RS flip-flop circuit 12. .. In the comparator CMP4, the positive input terminal is connected to the connection point P8 between the negative input terminal of the comparator CMP1 and the connection point P4, and the negative input terminal has a threshold voltage Vth4 (second threshold voltage). It is connected to the ground GND5 via the output voltage source VTH4. The output terminal of the comparator CMP4 is connected to the reset input terminal of the RS flip-flop circuit 12 via the level shift circuit 13. The other configuration of the rectifier 5A is the same as that of the rectifier 5 (FIG. 1 and the like).
 整流装置5Aでは、コンパレータCMP1は、電圧検出素子R1の交流電圧と閾値電圧Vth1との比較結果に基づいて、RSフリップフロップ回路11のリセット入力を制御する。具体的には、コンパレータCMP1は、電圧検出素子R1の交流電圧が閾値電圧Vth1未満になると、ハイレベルの出力信号をRSフリップフロップ回路11のリセット入力端子に入力し、電圧検出素子R1の交流電圧が閾値電圧Vth1以上になると、ローレベルの出力信号をRSフリップフロップ回路11のリセット入力端子に入力する。 In the rectifier 5A, the comparator CMP1 controls the reset input of the RS flip-flop circuit 11 based on the comparison result between the AC voltage of the voltage detection element R1 and the threshold voltage Vth1. Specifically, when the AC voltage of the voltage detection element R1 becomes less than the threshold voltage Vth1, the comparator CMP1 inputs a high level output signal to the reset input terminal of the RS flip flop circuit 11, and the AC voltage of the voltage detection element R1. When the threshold voltage Vth1 or higher is reached, a low-level output signal is input to the reset input terminal of the RS flip-flop circuit 11.
 また、コンパレータCMP4は、電圧検出素子R1の交流電圧と閾値電圧Vth4との比較結果に基づいて、RSフリップフロップ回路12のリセット入力を制御する。具体的には、コンパレータCMP4は、電圧検出素子R1の交流電圧が閾値電圧Vth4未満になると、ハイレベルの出力信号をRSフリップフロップ回路12のリセット入力端子に入力し、電圧検出素子R1の交流電圧が閾値電圧Vth4以上になると、ローレベルの出力信号をRSフリップフロップ回路11のリセット入力端子に入力する。 Further, the comparator CMP4 controls the reset input of the RS flip-flop circuit 12 based on the comparison result between the AC voltage of the voltage detection element R1 and the threshold voltage Vth4. Specifically, when the AC voltage of the voltage detection element R1 becomes less than the threshold voltage Vth4, the comparator CMP4 inputs a high level output signal to the reset input terminal of the RS flip flop circuit 12, and the AC voltage of the voltage detection element R1. When the threshold voltage Vth4 or higher is reached, a low-level output signal is input to the reset input terminal of the RS flip-flop circuit 11.
 このように、整流装置5Aによると、RSフリップフロップ回路11のリセット入力のタイミングと、RSフリップフロップ回路12のリセット入力のタイミングとを、別々の閾値電圧Vth1・Vth4によって、個別に調整することができる。すなわち、整流装置5Aによると、第1スイッチング素子M1のターンオフのタイミングと、第2スイッチング素子M2のターンオフのタイミングとを、別々の閾値電圧Vth1・Vth4によって調整することができる。 As described above, according to the rectifier 5A, the reset input timing of the RS flip-flop circuit 11 and the reset input timing of the RS flip-flop circuit 12 can be individually adjusted by the separate threshold voltages Vth1 and Vth4. it can. That is, according to the rectifier 5A, the turn-off timing of the first switching element M1 and the turn-off timing of the second switching element M2 can be adjusted by different threshold voltages Vth1 and Vth4.
 これにより、第1スイッチング素子M1のターンオフのタイミングと、第2スイッチング素子M2のターンオフのタイミングとを、より正確に合わせることができる。この結果、効率よく、充電することが可能な整流装置5Aを得ることができる。 As a result, the turn-off timing of the first switching element M1 and the turn-off timing of the second switching element M2 can be more accurately matched. As a result, it is possible to obtain a rectifier 5A that can be charged efficiently.
 ここで、例えば、コンパレータCMP1の出力端子は、RSフリップフロップ回路11のリセット入力端子と直接接続されている一方、コンパレータCMP4の出力端子は、レベルシフト回路13を介してRSフリップフロップ回路12のリセット入力端子と接続されている。このため、RSフリップフロップ回路11のリセット入力と比べて、RSフリップフロップ回路12のリセット入力の方が遅延しやすい。換言すると、第1スイッチング素子M1のターンオフのタイミングと比べて、第2スイッチング素子M2のターンオフのタイミングの方が遅延しやすい。 Here, for example, the output terminal of the comparator CMP1 is directly connected to the reset input terminal of the RS flip-flop circuit 11, while the output terminal of the comparator CMP4 resets the RS flip-flop circuit 12 via the level shift circuit 13. It is connected to the input terminal. Therefore, the reset input of the RS flip-flop circuit 12 is more likely to be delayed than the reset input of the RS flip-flop circuit 11. In other words, the turn-off timing of the second switching element M2 is more likely to be delayed than the turn-off timing of the first switching element M1.
 そこで、例えば、コンパレータCMP2の閾値電圧Vth2を、コンパレータCMP4の閾値電圧Vth4に対して、数十mVから数百mV程度、小さくしておく。換言すると、閾値電圧Vth4を、閾値電圧Vth1よりも大きくしておく。これにより、コンパレータCMP4は、コンパレータCMP2よりも先に、出力端子から反転信号を出力することができる。この結果、第2スイッチング素子M2のターンオフのタイミングを、第1スイッチング素子M1のターンオフのタイミングに合わせることができる。 Therefore, for example, the threshold voltage Vth2 of the comparator CMP2 is set to be smaller than the threshold voltage Vth4 of the comparator CMP4 by about several tens of mV to several hundreds of mV. In other words, the threshold voltage Vth4 is made larger than the threshold voltage Vth1. As a result, the comparator CMP4 can output an inverted signal from the output terminal before the comparator CMP2. As a result, the turn-off timing of the second switching element M2 can be matched with the turn-off timing of the first switching element M1.
 〔実施形態3〕
 本開示の実施形態3について、以下に説明する。なお、説明の便宜上、実施形態1、2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図7は、実施形態3に係る整流装置5Bにおいて、第1スイッチング素子M1および第4スイッチング素子M4がオンである状態の交流電流の流れの例を表す図である。図8は、実施形態3に係る整流装置5Bにおいて、第2スイッチング素子M2および第3スイッチング素子M3がオンである状態の交流電流の流れの例を表す図である。図1等に示した非接触給電システム1は、整流装置5に替えて、図7および図8に示す整流装置5Bを備えていてもよい。
[Embodiment 3]
Embodiment 3 of the present disclosure will be described below. For convenience of explanation, the same reference numerals are added to the members having the same functions as the members described in the first and second embodiments, and the description is not repeated. FIG. 7 is a diagram showing an example of an alternating current flow in a state where the first switching element M1 and the fourth switching element M4 are on in the rectifier device 5B according to the third embodiment. FIG. 8 is a diagram showing an example of an alternating current flow in a state where the second switching element M2 and the third switching element M3 are on in the rectifier device 5B according to the third embodiment. The non-contact power feeding system 1 shown in FIG. 1 and the like may include the rectifying device 5B shown in FIGS. 7 and 8 in place of the rectifying device 5.
 まず、図7を用いて、実施形態3に係る整流装置5Bの構成の一例について説明する。整流装置5Bは、全波整流回路である。整流装置5Bは、整流装置5(図1等)が備えていた制御回路10に替えて、制御回路10Bを備え、さらに、第3スイッチング素子M3および第4スイッチング素子M4を備えている。制御回路10Bは、例えば、制御回路10(図1等)が備えていたレベルシフト回路13およびインバータINV1に替えて、レベルシフト回路13B1・13B2・13B3およびインバータINV1Bを備えている。受電コイルL1、第1共振コンデンサC1、第2共振コンデンサC2および電圧検出素子R1それぞれの接続関係は、制御回路10(図1等)と同様である。 First, an example of the configuration of the rectifying device 5B according to the third embodiment will be described with reference to FIG. 7. The rectifier 5B is a full-wave rectifier circuit. The rectifying device 5B includes a control circuit 10B in place of the control circuit 10 provided in the rectifying device 5 (FIG. 1 and the like), and further includes a third switching element M3 and a fourth switching element M4. The control circuit 10B includes, for example, the level shift circuits 13B1, 13B2, 13B3 and the inverter INV1B in place of the level shift circuit 13 and the inverter INV1 provided in the control circuit 10 (FIG. 1 and the like). The connection relationship between the power receiving coil L1, the first resonance capacitor C1, the second resonance capacitor C2, and the voltage detection element R1 is the same as that of the control circuit 10 (FIG. 1 and the like).
 第1スイッチング素子M1において、ソース端子M1sはグランドGND1と接続されている。ドレイン端子M1dは、接続点P11を介して3方向に分岐しており、第1経路は接続点P11から接続点P2を介して電圧検出素子R1および第1共振コンデンサC1それぞれと接続されており、第2経路は接続点P11から第2スイッチング素子M2のソース端子M2sと接続されており、第3経路は接続点P11からコンパレータCMP2のマイナス側の入力端子と接続されている。ゲート端子M1gは、バッファBUF1を介して接続点P12と接続されており、接続点P12から2方向に分岐しており、第1経路は接続点P12からRSフリップフロップ回路11の出力端子と接続されており、第2経路は接続点P12からレベルシフト回路13B2と接続されている。 In the first switching element M1, the source terminal M1s is connected to the ground GND1. The drain terminal M1d is branched in three directions via the connection point P11, and the first path is connected from the connection point P11 to the voltage detection element R1 and the first resonance capacitor C1 via the connection point P2, respectively. The second path is connected from the connection point P11 to the source terminal M2s of the second switching element M2, and the third path is connected from the connection point P11 to the negative input terminal of the comparator CMP2. The gate terminal M1g is connected to the connection point P12 via the buffer BUF1, branches in two directions from the connection point P12, and the first path is connected to the output terminal of the RS flip-flop circuit 11 from the connection point P12. The second path is connected to the level shift circuit 13B2 from the connection point P12.
 第2スイッチング素子M2において、ソース端子M2sは、接続点P11を介して、電圧検出素子R1および第1共振コンデンサC1それぞれと接続されていると共に、第1スイッチング素子M1のドレイン端子M1dとも接続されている。ドレイン端子M2dは、接続点P13を介して蓄電コンデンサC3の一方の端子と接続されている。ゲート端子M2gは、バッファBUF4、レベルシフト回路13B3および接続点P14を介して、RSフリップフロップ回路12の出力端子と接続されている。 In the second switching element M2, the source terminal M2s is connected to each of the voltage detection element R1 and the first resonance capacitor C1 via the connection point P11, and is also connected to the drain terminal M1d of the first switching element M1. There is. The drain terminal M2d is connected to one terminal of the storage capacitor C3 via the connection point P13. The gate terminal M2g is connected to the output terminal of the RS flip-flop circuit 12 via the buffer BUF4, the level shift circuit 13B3, and the connection point P14.
 第3スイッチング素子M3は、例えばMOSFET等のトランジスタである。第3スイッチング素子M3は、ソース端子M3sと、ドレイン端子M3dと、ゲート端子M3gとを有する。第3スイッチング素子M3は、ゲート端子M3gに供給されるゲート駆動電圧が制御回路10Bによって制御されることで、受電コイルL1が流す交流電流に対する、ソース端子M3sとドレイン端子M3dとの間のオン(導通状態)とオフ(非導通状態)とが切り替わる。 The third switching element M3 is a transistor such as a MOSFET. The third switching element M3 has a source terminal M3s, a drain terminal M3d, and a gate terminal M3g. The third switching element M3 is turned on between the source terminal M3s and the drain terminal M3d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M3g by the control circuit 10B. It switches between conductive state) and off (non-conducting state).
 第3スイッチング素子M3において、ソース端子M3sは基準の電位点であるグランドGND6と接続されている。ドレイン端子M3dは、接続点P15を介して、第4スイッチング素子M4のソース端子M4sと接続されていると共に、受電コイルL1の一方の端子とも接続されている。ゲート端子M3gは、バッファBUF3および接続点P14を介してRSフリップフロップ回路12の出力端子と接続されている。 In the third switching element M3, the source terminal M3s is connected to the ground GND6 which is a reference potential point. The drain terminal M3d is connected to the source terminal M4s of the fourth switching element M4 via the connection point P15, and is also connected to one terminal of the power receiving coil L1. The gate terminal M3g is connected to the output terminal of the RS flip-flop circuit 12 via the buffer BUF3 and the connection point P14.
 第4スイッチング素子M4は、例えば、MOSFET等のトランジスタである。第4スイッチング素子M4は、ソース端子M4sと、ドレイン端子M4dと、ゲート端子M4gとを有する。第4スイッチング素子M4は、ゲート端子M4gに供給されるゲート駆動電圧が制御回路10Bによって制御されることで、受電コイルL1が流す交流電流に対する、ソース端子M4sとドレイン端子M4dとの間のオン(導通状態)とオフ(非導通状態)とが切り替わる。 The fourth switching element M4 is, for example, a transistor such as a MOSFET. The fourth switching element M4 has a source terminal M4s, a drain terminal M4d, and a gate terminal M4g. The fourth switching element M4 is turned on between the source terminal M4s and the drain terminal M4d with respect to the alternating current flowing through the power receiving coil L1 by controlling the gate drive voltage supplied to the gate terminal M4g by the control circuit 10B. It switches between conductive state) and off (non-conducting state).
 第4スイッチング素子M4において、ソース端子M4sは、接続点P15を介して、第3スイッチング素子M3のドレイン端子M3dと接続されていると共に、受電コイルL1の一方の端子とも接続されている。ドレイン端子M4dは、接続点P13を介して蓄電コンデンサC3の一方の端子と接続されている。ゲート端子M4gはバッファBUF2、レベルシフト回路13B2および接続点P12を介して、RSフリップフロップ回路11の出力端子と接続されている。 In the fourth switching element M4, the source terminal M4s is connected to the drain terminal M3d of the third switching element M3 via the connection point P15, and is also connected to one terminal of the power receiving coil L1. The drain terminal M4d is connected to one terminal of the storage capacitor C3 via the connection point P13. The gate terminal M4g is connected to the output terminal of the RS flip-flop circuit 11 via the buffer BUF2, the level shift circuit 13B2, and the connection point P12.
 コンパレータCMP1は、マイナス側の入力端子が閾値電圧Vth1を出力する電圧源VTH1を介して、接続点P2と接続点P11との間の接続点P16と接続されている。コンパレータCMP1のプラス側の入力端子は接続点P4と接続されている。コンパレータCMP1の出力端子はレベルシフト回路13B1を介して接続点P17と接続されており、接続点P17から2方向に分岐している。第1経路は接続点P17からRSフリップフロップ回路のリセット入力端子と接続されており、第2経路は、接続点P17からインバータINV1Bを介してRSフリップフロップ回路12のリセット入力端子と接続されている。 The comparator CMP1 is connected to the connection point P16 between the connection point P2 and the connection point P11 via the voltage source VTH1 whose negative input terminal outputs the threshold voltage Vth1. The positive input terminal of the comparator CMP1 is connected to the connection point P4. The output terminal of the comparator CMP1 is connected to the connection point P17 via the level shift circuit 13B1 and branches in two directions from the connection point P17. The first path is connected to the reset input terminal of the RS flip-flop circuit from the connection point P17, and the second path is connected to the reset input terminal of the RS flip-flop circuit 12 from the connection point P17 via the inverter INV1B. ..
 コンパレータCMP2は、プラス側の入力端子が閾値電圧Vth2を出力する電圧源VTH2を介して、グランドGND3と接続されている。コンパレータCMP2のマイナス側の入力端子は接続点P11と接続されている。コンパレータCMP2の出力端子はRSフリップフロップ回路11のセット入力端子と接続されている。 The comparator CMP2 is connected to the ground GND3 via the voltage source VTH2 whose positive input terminal outputs the threshold voltage Vth2. The negative input terminal of the comparator CMP2 is connected to the connection point P11. The output terminal of the comparator CMP2 is connected to the set input terminal of the RS flip-flop circuit 11.
 コンパレータCMP3は、プラス側の入力端子が閾値電圧Vth3を出力する電圧源VTH3を介して、基準の電位点であるグランドGND7と接続されている。コンパレータCMP3のマイナス側の入力端子は接続点P15と第3スイッチング素子M3のドレイン端子M3dとの間の接続点P18と接続されている。コンパレータCMP3の出力端子は、RSフリップフロップ回路12のセット入力端子と接続されている。 The comparator CMP3 is connected to the ground GND7, which is the reference potential point, via the voltage source VTH3 whose positive input terminal outputs the threshold voltage Vth3. The negative input terminal of the comparator CMP3 is connected to the connection point P18 between the connection point P15 and the drain terminal M3d of the third switching element M3. The output terminal of the comparator CMP3 is connected to the set input terminal of the RS flip-flop circuit 12.
 RSフリップフロップ回路11のうち、セット入力端子はコンパレータCMP2の出力端子と接続され、リセット入力端子は接続点P17およびレベルシフト回路13B1を介してコンパレータCMP1の出力端子と接続されている。RSフリップフロップ回路11の出力端子は接続点P12を介して2方向に分岐し、第1経路はバッファBUF1を介して第1スイッチング素子M1のゲート端子M1gと接続され、第2経路はレベルシフト回路13B2およびバッファBUF2を介して第4スイッチング素子M4のゲート端子M4gと接続されている。 Of the RS flip-flop circuit 11, the set input terminal is connected to the output terminal of the comparator CMP2, and the reset input terminal is connected to the output terminal of the comparator CMP1 via the connection point P17 and the level shift circuit 13B1. The output terminal of the RS flip-flop circuit 11 branches in two directions via the connection point P12, the first path is connected to the gate terminal M1g of the first switching element M1 via the buffer BUF1, and the second path is a level shift circuit. It is connected to the gate terminal M4g of the fourth switching element M4 via 13B2 and the buffer BUF2.
 RSフリップフロップ回路12のうち、セット入力端子はコンパレータCMP3の出力端子と接続され、リセット入力端子は、インバータINV1B、接続点P17およびレベルシフト回路13B1を介してコンパレータCMP1の出力端子と接続されている。RSフリップフロップ回路12の出力端子は、接続点P14を介して2方向に分岐し、第1経路はバッファBUF3を介して第3スイッチング素子M3のゲート端子M3gと接続され、第2経路はレベルシフト回路13B3およびバッファBUF4を介して第4スイッチング素子M4のゲート端子M4gと接続されている。 In the RS flip-flop circuit 12, the set input terminal is connected to the output terminal of the comparator CMP3, and the reset input terminal is connected to the output terminal of the comparator CMP1 via the inverter INV1B, the connection point P17 and the level shift circuit 13B1. .. The output terminal of the RS flip-flop circuit 12 branches in two directions via the connection point P14, the first path is connected to the gate terminal M3g of the third switching element M3 via the buffer BUF3, and the second path is level-shifted. It is connected to the gate terminal M4g of the fourth switching element M4 via the circuit 13B3 and the buffer BUF4.
 次に、図7を用いて、整流装置5のうち、第1スイッチング素子M1および第4スイッチング素子M4がターンオンする際の制御回路10B動作および整流装置5に流れる交流電流I1Bの流れについて説明する。 Next, with reference to FIG. 7, the operation of the control circuit 10B when the first switching element M1 and the fourth switching element M4 of the rectifying device 5 turn on and the flow of the alternating current I1B flowing through the rectifying device 5 will be described.
 第1スイッチング素子M1のドレインソース間電圧が、ローレベルになり閾値電圧Vth2未満になると、コンパレータCMP2はハイレベルの出力信号をRSフリップフロップ回路11のセット入力端子へ出力する。このとき、電圧検出素子R1に印加された交流電圧が、閾値電圧Vth1未満になり、コンパレータCMP1は、ローレベルの出力信号をレベルシフト回路13B1へ出力する。そして、レベルシフト回路13B1から出力されたローレベルの出力信号は、RSフリップフロップ回路11のリセット入力端子へ入力されると共に、接続点P17を通りインバータINV1Bにてハイレベルへ反転された反転信号がRSフリップフロップ回路12のリセット入力端子へ入力される。 When the drain-source voltage of the first switching element M1 becomes low level and becomes less than the threshold voltage Vth2, the comparator CMP2 outputs a high level output signal to the set input terminal of the RS flip-flop circuit 11. At this time, the AC voltage applied to the voltage detection element R1 becomes less than the threshold voltage Vth1, and the comparator CMP1 outputs a low-level output signal to the level shift circuit 13B1. Then, the low level output signal output from the level shift circuit 13B1 is input to the reset input terminal of the RS flip-flop circuit 11, and the inverted signal inverted to the high level by the inverter INV1B through the connection point P17 is transmitted. It is input to the reset input terminal of the RS flip-flop circuit 12.
 RSフリップフロップ回路11は、コンパレータCMP1によってローレベルの出力信号がリセット入力端子に入力され、コンパレータCMP2によってハイレベルの出力信号がセット入力端子に入力されたため、ハイレベルの出力信号を出力する。そして、RSフリップフロップ回路11は、バッファBUF1を介して第1スイッチング素子M1のゲート端子M1gにハイレベルのゲート駆動電圧を印加し、レベルシフト回路13B2およびバッファBUF2を介して、第4スイッチング素子M4のゲート端子M4gにハイレベルのゲート駆動電圧を印加する。これにより、RSフリップフロップ回路11は、第1スイッチング素子M1および第4スイッチング素子M4をターンオンする。 The RS flip-flop circuit 11 outputs a high-level output signal because the low-level output signal is input to the reset input terminal by the comparator CMP1 and the high-level output signal is input to the set input terminal by the comparator CMP2. Then, the RS flip-flop circuit 11 applies a high-level gate drive voltage to the gate terminal M1g of the first switching element M1 via the buffer BUF1, and applies a high-level gate drive voltage via the level shift circuit 13B2 and the buffer BUF2 to the fourth switching element M4. A high level gate drive voltage is applied to the gate terminal M4g of the above. As a result, the RS flip-flop circuit 11 turns on the first switching element M1 and the fourth switching element M4.
 このとき、第3スイッチング素子M3のドレインソース間電圧が、ハイレベルになり閾値電圧Vth3以上になるので、コンパレータCMP3はローレベルの出力信号をRSフリップフロップ回路12のセット入力端子へ出力する。 At this time, since the voltage between the drain sources of the third switching element M3 becomes high level and becomes the threshold voltage Vth3 or more, the comparator CMP3 outputs a low level output signal to the set input terminal of the RS flip-flop circuit 12.
 すると、RSフリップフロップ回路12は、コンパレータCMP1によってハイレベルの反転信号がリセット入力端子に入力され、コンパレータCMP3によってローレベルの出力信号がセット入力端子に入力されたため、ローレベルの出力信号を出力する。そして、RSフリップフロップ回路12は、バッファBUF3を介して第3スイッチング素子M3のゲート端子M3gにローレベルのゲート駆動電圧を印加し、レベルシフト回路13B3およびバッファBUF4を介して、第2スイッチング素子M2のゲート端子M2gにローレベルのゲート駆動電圧を印加する。これにより、Sフリップフロップ回路12は、第2スイッチング素子M2および第3スイッチング素子M3をターンオフする。 Then, the RS flip-flop circuit 12 outputs a low-level output signal because the high-level inverted signal is input to the reset input terminal by the comparator CMP1 and the low-level output signal is input to the set input terminal by the comparator CMP3. .. Then, the RS flip-flop circuit 12 applies a low-level gate drive voltage to the gate terminal M3g of the third switching element M3 via the buffer BUF3, and applies a low-level gate drive voltage via the level shift circuit 13B3 and the buffer BUF4 to the second switching element M2. A low-level gate drive voltage is applied to the gate terminal M2g of the above. As a result, the S flip-flop circuit 12 turns off the second switching element M2 and the third switching element M3.
 このように、第1スイッチング素子M1および第4スイッチング素子M4がオンになり、第2スイッチング素子M2および第3スイッチング素子M3がオフになると、交流電流I1Bは、第1スイッチング素子M1のソース端子M1sからドレイン端子M1dを流れ、接続点P11から、第2スイッチング素子M2方向へは流れず、接続点P2へ流入する。そして、交流電流I1Bは、接続点P2から分岐し、一方の経路では第1共振コンデンサC1を流れ、他方の経路では、電圧検出素子R1および第2共振コンデンサC2を流れ、接続点P3にて合流する。そして、接続点P3にて合流した交流電流I1Bは、受電コイルL1、接続点P15を経て、第4スイッチング素子M4のソース端子M4sからドレイン端子M4dを流れ、接続点P13を経て、蓄電コンデンサC3へ供給される。これにより、蓄電コンデンサC3は充電される。 In this way, when the first switching element M1 and the fourth switching element M4 are turned on and the second switching element M2 and the third switching element M3 are turned off, the alternating current I1B becomes the source terminal M1s of the first switching element M1. Flows from the drain terminal M1d, does not flow from the connection point P11 toward the second switching element M2, and flows into the connection point P2. Then, the alternating current I1B branches from the connection point P2, flows through the first resonance capacitor C1 in one path, flows through the voltage detection element R1 and the second resonance capacitor C2 in the other path, and merges at the connection point P3. To do. Then, the alternating current I1B merged at the connection point P3 flows through the power receiving coil L1 and the connection point P15, flows from the source terminal M4s of the fourth switching element M4 to the drain terminal M4d, passes through the connection point P13, and reaches the storage capacitor C3. Be supplied. As a result, the storage capacitor C3 is charged.
 次に、図8を用いて、整流装置5のうち、第2スイッチング素子M2および第3スイッチング素子M3がターンオンする際の制御回路10B動作および整流装置5に流れる交流電流I2Bの流れについて説明する。 Next, with reference to FIG. 8, the operation of the control circuit 10B when the second switching element M2 and the third switching element M3 of the rectifying device 5 turn on and the flow of the alternating current I2B flowing through the rectifying device 5 will be described.
 電圧検出素子R1に印加された交流電圧が、閾値電圧Vth1以上になると、コンパレータCMP1は、ハイレベルの出力信号をレベルシフト回路13B1へ出力する。そして、レベルシフト回路13B1から出力されたハイレベルの出力信号は、RSフリップフロップ回路11のリセット入力端子へ入力されると共に、接続点P17を通りインバータINV1Bにてローレベルへ反転された反転信号がRSフリップフロップ回路12のリセット入力端子へ入力される。このとき、第1スイッチング素子M1のドレインソース間電圧が、ハイレベルになり閾値電圧Vth2以上になるので、コンパレータCMP2はローレベルの出力信号をRSフリップフロップ回路11のセット入力端子へ出力する。 When the AC voltage applied to the voltage detection element R1 becomes the threshold voltage Vth1 or higher, the comparator CMP1 outputs a high-level output signal to the level shift circuit 13B1. Then, the high-level output signal output from the level shift circuit 13B1 is input to the reset input terminal of the RS flip-flop circuit 11, and the inverted signal inverted to the low level by the inverter INV1B through the connection point P17 is transmitted. It is input to the reset input terminal of the RS flip-flop circuit 12. At this time, since the voltage between the drain sources of the first switching element M1 becomes high level and becomes the threshold voltage Vth2 or more, the comparator CMP2 outputs a low level output signal to the set input terminal of the RS flip-flop circuit 11.
 すると、RSフリップフロップ回路11は、コンパレータCMP1によってハイレベルの出力信号がリセット入力端子に入力され、コンパレータCMP2によってローレベルの出力信号がセット入力端子に入力されたため、ローレベルの出力信号を出力する。そして、RSフリップフロップ回路11は、バッファBUF1を介して第1スイッチング素子M1のゲート端子M1gにローレベルのゲート駆動電圧を印加し、レベルシフト回路13B2およびバッファBUF2を介して、第4スイッチング素子M4のゲート端子M4gにローレベルのゲート駆動電圧を印加する。これにより、RSフリップフロップ回路11は、第1スイッチング素子M1および第4スイッチング素子M4をターンオフする。 Then, the RS flip-flop circuit 11 outputs the low-level output signal because the high-level output signal is input to the reset input terminal by the comparator CMP1 and the low-level output signal is input to the set input terminal by the comparator CMP2. .. Then, the RS flip-flop circuit 11 applies a low-level gate drive voltage to the gate terminal M1g of the first switching element M1 via the buffer BUF1, and applies a low-level gate drive voltage via the level shift circuit 13B2 and the buffer BUF2 to the fourth switching element M4. A low-level gate drive voltage is applied to the gate terminal M4g of the above. As a result, the RS flip-flop circuit 11 turns off the first switching element M1 and the fourth switching element M4.
 また、第3スイッチング素子M3のドレインソース間電圧が、ローレベルになり閾値電圧Vth3未満になると、コンパレータCMP3はハイレベルの出力信号をRSフリップフロップ回路12のセット入力端子へ出力する。 Further, when the voltage between the drain sources of the third switching element M3 becomes low level and becomes less than the threshold voltage Vth3, the comparator CMP3 outputs a high level output signal to the set input terminal of the RS flip-flop circuit 12.
 このとき、RSフリップフロップ回路12は、コンパレータCMP1によってローレベルの反転信号がリセット入力端子に入力され、コンパレータCMP3によってハイレベルの出力信号がセット入力端子に入力されたため、ハイレベルの出力信号を出力する。そして、RSフリップフロップ回路12は、バッファBUF3を介して第3スイッチング素子M3のゲート端子M3gにハイレベルのゲート駆動電圧を印加し、レベルシフト回路13B3およびバッファBUF4を介して、第2スイッチング素子M2のゲート端子M2gにハイレベルのゲート駆動電圧を印加する。これにより、RSフリップフロップ回路12は、第2スイッチング素子M2および第3スイッチング素子M3をターンオンする。 At this time, the RS flip-flop circuit 12 outputs a high-level output signal because the low-level inverted signal is input to the reset input terminal by the comparator CMP1 and the high-level output signal is input to the set input terminal by the comparator CMP3. To do. Then, the RS flip-flop circuit 12 applies a high-level gate drive voltage to the gate terminal M3g of the third switching element M3 via the buffer BUF3, and applies a high-level gate drive voltage via the level shift circuit 13B3 and the buffer BUF4 to the second switching element M2. A high level gate drive voltage is applied to the gate terminal M2g of the above. As a result, the RS flip-flop circuit 12 turns on the second switching element M2 and the third switching element M3.
 このように、第1スイッチング素子M1および第4スイッチング素子M4がオフになり、第2スイッチング素子M2および第3スイッチング素子M3がオンになると、交流電流I2Bは、第3スイッチング素子M3のソース端子M3sからドレイン端子M3dを流れ、接続点P15から、第4スイッチング素子M4方向へは流れず、受電コイルL1を経て、接続点P3へ入流する。そして、交流電流I2Bは、接続点P3から分岐し、一方の経路では第1共振コンデンサC1を流れ、他方の経路では、第2共振コンデンサC2および電圧検出素子R1を流れ、接続点P2にて合流する。そして、接続点P2にて合流した交流電流I2Bは、接続点P11へ流入する。そして、交流電流I2Bは、接続点P11から、第1スイッチング素子M1方向へは流れず、第4スイッチング素子M4のソース端子M4sからドレイン端子M4dを流れ、接続点P13を経て、蓄電コンデンサC3へ供給される。これにより、蓄電コンデンサC3は充電される。 In this way, when the first switching element M1 and the fourth switching element M4 are turned off and the second switching element M2 and the third switching element M3 are turned on, the alternating current I2B becomes the source terminal M3s of the third switching element M3. Flows from the drain terminal M3d, does not flow from the connection point P15 in the direction of the fourth switching element M4, and flows into the connection point P3 via the power receiving coil L1. Then, the alternating current I2B branches from the connection point P3, flows through the first resonance capacitor C1 in one path, flows through the second resonance capacitor C2 and the voltage detection element R1 in the other path, and merges at the connection point P2. To do. Then, the alternating current I2B merged at the connection point P2 flows into the connection point P11. Then, the alternating current I2B does not flow from the connection point P11 in the direction of the first switching element M1, but flows from the source terminal M4s of the fourth switching element M4 to the drain terminal M4d, and is supplied to the storage capacitor C3 via the connection point P13. Will be done. As a result, the storage capacitor C3 is charged.
 このように、制御回路10Bは、第1スイッチング素子M1および第4スイッチング素子M4と、第2スイッチング素子M2および第3スイッチング素子M3とのオンとオフとを反転するように、動作させる。コンパレータCMP1が電圧検出素子R1に基づいて検出する基準電位(接続点P4の電位)は、第1スイッチング素子M1および第3スイッチング素子M3それぞれの基準電位とは異なるため、コンパレータCMP1はレベルシフト回路13B1を介して出力信号をRSフリップフロップ回路11・12それぞれに入力する。また、第4スイッチング素子M4は、第1スイッチング素子M1と基準電位が異なるため、RSフリップフロップ回路11はレベルシフト回路13B1を介して第4スイッチング素子M4を動作させる。また、第2スイッチング素子M2は、第3スイッチング素子M3と基準電位が異なるため、RSフリップフロップ回路12は、レベルシフト回路13B3を介して第2スイッチング素子M2を動作させる。 In this way, the control circuit 10B is operated so as to invert the on and off of the first switching element M1 and the fourth switching element M4 and the second switching element M2 and the third switching element M3. Since the reference potential (potential of the connection point P4) detected by the comparator CMP1 based on the voltage detection element R1 is different from the reference potential of each of the first switching element M1 and the third switching element M3, the comparator CMP1 is the level shift circuit 13B1. The output signal is input to each of the RS flip- flop circuits 11 and 12 via. Further, since the fourth switching element M4 has a different reference potential from the first switching element M1, the RS flip-flop circuit 11 operates the fourth switching element M4 via the level shift circuit 13B1. Further, since the second switching element M2 has a different reference potential from the third switching element M3, the RS flip-flop circuit 12 operates the second switching element M2 via the level shift circuit 13B3.
 以上のように、整流装置5Bにおいて、第1スイッチング素子M1は、電圧検出素子R1に対して直列に接続されている。また、第2スイッチング素子M2は、電圧検出素子R1に対して直列に接続されている。そして、コンパレータCMP1およびRSフリップフロップ回路11は、電圧検出素子R1に印加される交流電圧の変化に基づいて、第1スイッチング素子M1および第4スイッチング素子M4をターンオフする。このため、チャタリングを抑制しつつ、第1スイッチング素子M1および第4スイッチング素子M4をターンオフすることができる。 As described above, in the rectifier 5B, the first switching element M1 is connected in series with the voltage detection element R1. Further, the second switching element M2 is connected in series with the voltage detection element R1. Then, the comparator CMP1 and the RS flip-flop circuit 11 turn off the first switching element M1 and the fourth switching element M4 based on the change in the AC voltage applied to the voltage detection element R1. Therefore, the first switching element M1 and the fourth switching element M4 can be turned off while suppressing chattering.
 また、第3スイッチング素子M3は、電圧検出素子R1に対して、受電コイルL1および第2共振コンデンサC2を介して、直列に接続されている。さらに、第4スイッチング素子M4は、受電コイルL1および第2共振コンデンサC2を介して直列に接続されている。そして、コンパレータCMP1およびRSフリップフロップ回路12は、電圧検出素子R1に印加される交流電圧の変化に基づいて、第2スイッチング素子M2および第3スイッチング素子M3をターンオフする。このため、チャタリングを抑制しつつ、第2スイッチング素子M2および第3スイッチング素子M3をターンオフすることができる。 Further, the third switching element M3 is connected in series to the voltage detection element R1 via the power receiving coil L1 and the second resonance capacitor C2. Further, the fourth switching element M4 is connected in series via a power receiving coil L1 and a second resonance capacitor C2. Then, the comparator CMP1 and the RS flip-flop circuit 12 turn off the second switching element M2 and the third switching element M3 based on the change in the AC voltage applied to the voltage detection element R1. Therefore, the second switching element M2 and the third switching element M3 can be turned off while suppressing chattering.
 本開示は、上記実施の形態に限定されるものではなく、上記実施の形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えてもよい。 The present disclosure is not limited to the above-described embodiment, and is substantially the same as the configuration shown in the above-described embodiment, a configuration that exhibits the same action and effect, or a configuration that can achieve the same purpose. May be replaced with.
1  非接触給電システム
2  送電装置
3  駆動用電源
5、5A、5B 整流装置
7 検出回路
10、10A、10B 制御回路
11、12 フリップフロップ回路
13、13B1~13B3 レベルシフト回路
BUF1~BUF4 バッファ
C1 第1共振コンデンサ(第1蓄電部)
C2 第2共振コンデンサ(第2蓄電部)
C3 蓄電コンデンサ(第3蓄電部)
C4 共振コンデンサ
CMP1~CMP4 コンパレータ
INV1、INV1B インバータ
L1 受電コイル(給電部)
L2 送電コイル
M1 第1スイッチング素子
M2 第2スイッチング素子
M3 第3スイッチング素子
M4 第4スイッチング素子
R1 電圧検出素子
1 Non-contact power supply system 2 Power transmission device 3 Drive power supply 5, 5A, 5B Rectifier 7 Detection circuit 10, 10A, 10B Control circuit 11, 12 Flip-flop circuit 13, 13B1 to 13B3 Level shift circuit BUF1 to BUF4 Buffer C1 1st Resonant capacitor (first power storage unit)
C2 2nd resonant capacitor (2nd storage unit)
C3 power storage capacitor (third power storage unit)
C4 Resonant capacitor CMP1 to CMP4 Comparator INV1, INV1B Inverter L1 Power receiving coil (feeding unit)
L2 Power transmission coil M1 1st switching element M2 2nd switching element M3 3rd switching element M4 4th switching element R1 Voltage detection element

Claims (9)

  1.  交流電流を供給する給電部と、
     前記交流電流に対する導通状態および非導通状態が切り替わる第1スイッチング素子と、
     前記第1スイッチング素子に対して直列に接続され、前記交流電流に応じた交流電圧が印加される検出回路と、
     前記交流電圧に基づいて、前記第1スイッチング素子の前記導通状態および前記非導通状態を切り替える制御回路とを備える、整流装置。
    A power supply unit that supplies alternating current and
    A first switching element that switches between a conductive state and a non-conducting state with respect to the alternating current,
    A detection circuit connected in series to the first switching element and to which an alternating voltage corresponding to the alternating current is applied.
    A rectifier device including a control circuit for switching between the conductive state and the non-conducting state of the first switching element based on the AC voltage.
  2.  前記交流電流に対する導通状態および非導通状態が切り替わり、前記第1スイッチング素子と直列に接続された第2スイッチング素子と、
     前記制御回路は、前記第2スイッチング素子の導通状態および非導通状態を、前記第1スイッチング素子の導通状態および非導通状態と反転するように切り替える、請求項1に記載の整流装置。
    A second switching element that switches between a conductive state and a non-conducting state with respect to the alternating current and is connected in series with the first switching element.
    The rectifier according to claim 1, wherein the control circuit switches between the conductive state and the non-conducting state of the second switching element so as to reverse the conductive state and the non-conducting state of the first switching element.
  3.  前記第2スイッチング素子を介して、前記給電部および前記第1スイッチング素子と接続され、前記交流電流に基づいて蓄電する第3蓄電部を備える、請求項2に記載の整流装置。 The rectifying device according to claim 2, further comprising a third power storage unit that is connected to the power supply unit and the first switching element via the second switching element and stores electricity based on the alternating current.
  4.  前給電部は、ワイヤレスで受電して前記交流電流を供給する受電コイルを有する、請求項2又は3に記載の整流装置。 The rectifier according to claim 2 or 3, wherein the front power feeding unit has a power receiving coil that wirelessly receives power and supplies the alternating current.
  5.  前記制御回路は、前記交流電圧が、所定の第1閾値電圧未満になると、前記第1スイッチング素子を非導通状態に切り替え、前記第2スイッチング素子を導通状態に切り替え、
     前記第1閾値電圧は正である、請求項2~4の何れか1項に記載の整流装置。
    When the AC voltage becomes less than a predetermined first threshold voltage, the control circuit switches the first switching element to the non-conducting state and switches the second switching element to the conducting state.
    The rectifier according to any one of claims 2 to 4, wherein the first threshold voltage is positive.
  6.  前記制御回路は、前記交流電圧が、前記第1閾値電圧とは異なる所定の第2閾値電圧になると、前記第2スイッチング素子の導通状態と非導通状態とを切り替える、請求項5に記載の整流装置。 The rectification according to claim 5, wherein the control circuit switches between a conductive state and a non-conducting state of the second switching element when the AC voltage becomes a predetermined second threshold voltage different from the first threshold voltage. apparatus.
  7.  前記交流電流に対する導通状態および非導通状態が切り替わる第3スイッチング素子および第4スイッチング素子を備え、
     前記第3スイッチング素子は、前記検出回路に対して直列に接続され、
     前記第3蓄電部は、前記第4スイッチング素子を介して前記給電部および前記第3スイッチング素子と接続され、
     前記制御回路は、前記第1スイッチング素子および前記第4スイッチング素子の導通状態および非導通状態を、前記第2スイッチング素子および前記第3スイッチング素子の導通状態および非導通状態と反転するように切り替える、請求項3に記載の整流装置。
    A third switching element and a fourth switching element that switch between a conductive state and a non-conducting state with respect to the alternating current are provided.
    The third switching element is connected in series with the detection circuit.
    The third power storage unit is connected to the power feeding unit and the third switching element via the fourth switching element.
    The control circuit switches the conduction state and non-conduction state of the first switching element and the fourth switching element so as to be inverted with the conduction state and non-conduction state of the second switching element and the third switching element. The rectifying device according to claim 3.
  8.  前記検出回路は、
     前記給電部と前記第1スイッチング素子の間に介在し、前記第1スイッチング素子と直列に接続された第1蓄電部と、
     前記第1蓄電部と並列に接続された第2蓄電部と、
     前記第1蓄電部と並列に接続され、前記第2蓄電部と直列に接続された電圧検出素子と、を備える、請求項1~7の何れか1項に記載の整流装置。
    The detection circuit
    A first power storage unit interposed between the power feeding unit and the first switching element and connected in series with the first switching element.
    A second power storage unit connected in parallel with the first power storage unit,
    The rectifying device according to any one of claims 1 to 7, further comprising a voltage detecting element connected in parallel with the first power storage unit and connected in series with the second power storage unit.
  9.  請求項4に記載の整流装置と、
     前記受電コイルに対してワイヤレスで送電する送電コイルとを有する、非接触給電システム。
    The rectifying device according to claim 4 and
    A non-contact power feeding system having a power transmission coil that wirelessly transmits power to the power receiving coil.
PCT/JP2020/009346 2019-03-20 2020-03-05 Rectifier and non-contact power-feeding system WO2020189300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507184A JPWO2020189300A1 (en) 2019-03-20 2020-03-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-052085 2019-03-20
JP2019052085 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189300A1 true WO2020189300A1 (en) 2020-09-24

Family

ID=72520860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009346 WO2020189300A1 (en) 2019-03-20 2020-03-05 Rectifier and non-contact power-feeding system

Country Status (2)

Country Link
JP (1) JPWO2020189300A1 (en)
WO (1) WO2020189300A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195387A (en) * 2013-03-29 2014-10-09 Fuji Electric Co Ltd Power feeding device
JP2017169268A (en) * 2016-03-14 2017-09-21 株式会社東芝 Full-wave rectification circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195387A (en) * 2013-03-29 2014-10-09 Fuji Electric Co Ltd Power feeding device
JP2017169268A (en) * 2016-03-14 2017-09-21 株式会社東芝 Full-wave rectification circuit

Also Published As

Publication number Publication date
JPWO2020189300A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US9812983B2 (en) Synchronous rectifier circuit
US10511222B2 (en) Wireless power transmitter having low noise and high efficiency, and related methods
US20180358844A1 (en) Wireless power receiving terminal and wireless charging system
US9712077B2 (en) Active rectifier and circuit for compensating for reverse current leakage using time delay scheme for zero reverse leakage current
US9998180B2 (en) Apparatuses and related methods for modulating power of a wireless power receiver
US9998003B2 (en) DC-DC converter, power receiving device, and power feeding system
JP6266207B2 (en) Power receiving device
CN110022068B (en) Synchronous rectification gate driver with active clamper
EP3108581A1 (en) Switch controller with validation circuit for improved noise immunity
US9362963B2 (en) Radio-frequency signal reception circuit and isolated signal transmission apparatus
US7994737B2 (en) Drive circuit of DC/DC converter, light emitting apparatus and electronic device using the same
CN111327214A (en) Synchronous rectifier for wireless charging system
JP5324009B2 (en) Power receiving device and non-contact power transmission system using the same
US20170264210A1 (en) Chattering-less rectification circuit
US9106071B2 (en) Apparatus and methods of bootstrap and over voltage combination clamp for wireless power receiver
US20160322967A1 (en) Circuit constant variable circuit
US20120133419A1 (en) Trigger circuit and rectifier, in particular for a self-powered microsystem having a piezoelectric microgenerator
WO2020189300A1 (en) Rectifier and non-contact power-feeding system
US20150097439A1 (en) Apparatus and Methods of N-Type Load Switch Using Bootstrap Gate Drive for Wireless Power Receiver
JP7470185B2 (en) Rectifier and non-contact power supply system
CN113206604A (en) Method and apparatus for generating control signal and charging DC power in secondary synchronous rectifier
US10680462B2 (en) High frequency oscillator and wireless power supply device
KR101944387B1 (en) Method for controlling operation of an antenna both for wireless power transmission and data transmission using magnetic stripe transmission and a device for the same
EP3355457A1 (en) Contactless power transfer apparatus
JP2021040465A (en) Transmission device and power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772558

Country of ref document: EP

Kind code of ref document: A1