WO2020189009A1 - Information processing device, information processing system, and method, and program - Google Patents

Information processing device, information processing system, and method, and program Download PDF

Info

Publication number
WO2020189009A1
WO2020189009A1 PCT/JP2020/002537 JP2020002537W WO2020189009A1 WO 2020189009 A1 WO2020189009 A1 WO 2020189009A1 JP 2020002537 W JP2020002537 W JP 2020002537W WO 2020189009 A1 WO2020189009 A1 WO 2020189009A1
Authority
WO
WIPO (PCT)
Prior art keywords
device state
state transition
information
unit
information processing
Prior art date
Application number
PCT/JP2020/002537
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 武中
俊也 中林
幸治 石丸
由也 山崎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2020189009A1 publication Critical patent/WO2020189009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/18Signals indicating condition of a camera member or suitability of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/26Power supplies; Circuitry or arrangement to switch on the power source; Circuitry to check the power source voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This disclosure relates to information processing devices, information processing systems, methods, and programs. More specifically, the present invention relates to an information processing device, an information processing system, a method, and a program for controlling power supply control and the like of an information processing device such as an image pickup device.
  • the imaging device includes image capturing processing, signal processing of captured images, recording processing of images after signal processing in a storage unit, reading of images stored in the storage unit and display processing for the display unit, AF, AE processing, etc. ,
  • various information processing devices such as smartphones (smartphones) also have a plurality of functional blocks that execute various different functions.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-023990
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-236492
  • Patent Document 1 discloses a control configuration that prevents the total power supply for a plurality of loads from exceeding a specified value
  • Patent Document 2 discloses a configuration in which a plurality of power supply means of a main power source and an auxiliary power source are provided, and the auxiliary power source is miniaturized by using the auxiliary power source as needed.
  • an information processing device such as an image pickup device having a plurality of functional blocks having different supply voltages and power supply timings
  • the state of the load current of each functional block is detected in real time, and the device responds to the detection result.
  • An object of the present invention is to provide an information processing device, an information processing system, a method, and a program capable of reducing power consumption, improving the number of shots that can be taken, and improving the time by changing the state.
  • the first aspect of the disclosure is A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit It is in an information processing device that changes the device state based on the power consumption of each of the plurality of functional blocks.
  • the second aspect of the present disclosure is An information processing system having an information processing device and a server capable of communicating with the information processing device.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
  • the server It is in an information processing system that stores time-series device status information received from the information processing device in a storage unit in the server.
  • the third aspect of the present disclosure is It is a device state control method executed in the information processing device.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit The present invention is a device state control method for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
  • the fourth aspect of the present disclosure is It is a device state transition data accumulation method executed in an information processing system having an information processing device and a server capable of communicating with the information processing device.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
  • the server This is a method of accumulating device state transition data in which time-series device state information received from the information processing device is stored in a storage unit in the server.
  • the fifth aspect of the present disclosure is A program that executes device status control processing in an information processing device.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the program is applied to the device state transition control unit. It is in a program that executes a device state control process for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
  • the program of the present disclosure is, for example, a program that can be provided by a storage medium or a communication medium that is provided in a computer-readable format to an information processing device or a computer system that can execute various program codes.
  • a program that can be provided by a storage medium or a communication medium that is provided in a computer-readable format to an information processing device or a computer system that can execute various program codes.
  • system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
  • a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed.
  • it has a power supply unit that individually supplies power to a plurality of functional blocks, a plurality of functional blocks, and a data processing unit having a device state transition control unit, and is a device state transition control unit. Transitions the device state based on the power consumption of each of the plurality of functional blocks.
  • the device state transition control unit outputs individual instruction information for each of the plurality of functional blocks, and controls each functional block individually.
  • the device state transition control unit executes device state transition control based on the temperature of each functional block, the remaining battery level, the remaining usable time, and the like, and also displays warning information.
  • the device state transition control unit executes device state transition control based on the temperature of each functional block, the remaining battery level, the remaining usable time, and the like, and also displays warning information.
  • FIG. 1 It is a figure which shows the flowchart explaining the processing example which executes the power reduction process based on the temperature detection result of the temperature detection part 141, and the battery level detection result of a battery remaining amount detection unit.
  • the image pickup apparatus 100 shown in FIG. 1 uses the battery 101 shown in the lower left of FIG. 1 as a power source.
  • the electric power from the battery 101 is supplied to the data processing unit 120 via the DC / DC converter unit 110, and various processes are executed in the data processing unit 120.
  • the image pickup apparatus 100 shown in FIG. 1 has a power supply unit including a battery 101, a DC / DC converter unit 110, and the like, and a data processing unit 120.
  • a current detection resistor 102 is connected in series to the battery 101.
  • the current flowing through the current detection resistor 102 is measured by the battery remaining amount management unit 103, and the battery remaining amount is calculated.
  • the battery level information measured by the battery level management unit 103 is input to the device state transition control unit 142 via the battery level detection unit 146 of the data processing unit 120. This process is continuously executed in real time.
  • the electric power of the battery 101 is supplied to the functional blocks 121 to 123 of the data processing unit 120 via the DC / DC converter unit 110.
  • the DC / DC converter unit 110 is a DC / DC (Direct Current / Direct Current) converter that converts the output voltage of the battery 101 into supply voltages VDD1 to VDD3 for the functional blocks 121 to 123 of the data processing unit 120.
  • Individual DC / DC converters 111, 113, 115 corresponding to each functional block 121 to 123 are provided in the DC / DC converter unit 110, and a process of converting the supply voltage to the supply voltage VDD1 to VDD3 for each functional block is performed. ing. Further, each of the DC / DC converters 111, 113, 115 is provided with individual current detection units 112, 114, 116, and each functional block 121 is provided via the DC / DC converters 111, 113, 115. The amount of supply current for ⁇ 123 is detected.
  • the amount of supply current corresponding to each functional block 121 to 123 detected by the current detection units 112, 114, 116 is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117.
  • the power calculation unit 145 calculates the power consumption of each of the functional blocks 121 to 123, and inputs the calculated value to the functional state transition control unit 142. This process is continuously executed in real time.
  • the individual DC / DC converters 111, 113, 115 corresponding to the functional blocks in the DC / DC converter unit 110 generate a conversion voltage based on the input voltage Vin, and process the data via a smoothing circuit including an inductor L and a capacitor C. It is supplied to each functional block 121 to 123 of the unit 120.
  • the smoothing circuit composed of the inductor L and the capacitor C smoothes the output voltages from the DC / DC converters 111, 113, 115 and supplies them to the functional blocks 121 to 123 of the data processing unit 120.
  • the functional blocks 121 to 123 of the data processing unit 120 are processing circuits that individually execute various functions executed by the image pickup apparatus 100.
  • the image pickup apparatus 100 includes, for example, image capturing processing, signal processing of captured images, recording processing of images after signal processing in a storage unit, reading of images stored in the storage unit and display processing for the display unit, AF, AE. Performs various processes such as processing.
  • the functional blocks 121 to 123 are blocks that execute any of these processes, for example.
  • each of the functional blocks 121 to 123 is provided with temperature detection units 131 to 133. These detect the temperature of each functional block 121-123. In the operating state, each of the functional blocks 121 to 123 generates heat because a current flows through the electric circuit in the block, and the temperature changes. The temperature detection units 131 to 133 observe this temperature change in units of functional blocks.
  • the temperature information for each functional block detected by the temperature detection units 131 to 133 is input to the device state transition control unit 142 via the temperature detection unit 141 of the data processing unit 120. Observation temperature information is also input to the temperature detection unit 141 from the temperature detection unit 170 other than the temperature detection unit corresponding to the functional block.
  • the temperature detection unit 170 is, for example, a temperature sensor or the like provided in the housing of the image pickup device, measures the temperature of the entire image pickup device or a part of the image pickup device, and inputs the measured temperature information to the temperature detection unit 141.
  • the temperature detection unit 141 inputs the temperature information of each functional block detected by the temperature detection units 131 to 133 and the temperature information detected by the temperature detection unit 170 to the device state transition control unit 142. This process is also continuously executed as a real-time process.
  • the device state transition control unit 142 of the data processing unit 120 receives each information input in real time, that is, (A) Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170, (B) Number of shots / remaining use time information, calculated by the calculation unit 143, (C) The amount of power for each functional block input from the power calculation unit 145, (D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146, Based on these input information, control is performed to transition the device state.
  • the device state transition process executed by the device state transition control unit 142 is, for example, control (mode change) such as activation / disabling of various functions executed in the image pickup apparatus, change of operation mode, and the like. Specifically, for example, the following control is performed. (1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors, (3) Execution and stop processing of communication functions, (4) Operation speed (processing speed) change processing, (5) Display execution, stop processing, (6) Display image quality control of the display unit, (7) Execution and stop of high load operation mode
  • These device state transition controls are performed by the control of each functional block 121 to 123 by the device state transition control unit 142. For example, it is executed as a process accompanied by output of state transition instruction information (control command) from the device state transition control unit 142 to each function block 121 to 123.
  • the number of possible shots / remaining usage time calculation unit 143 uses information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block to perform shooting that can be performed by the image pickup apparatus 100. Calculate the possible number of sheets and the remaining usage time. This calculation result is input to the device state transition control unit 142.
  • the device state transition control unit 142 outputs operation instruction information to the DC / DC converter unit 110 based on the input information of the above (a) to (d). As a result, the operation of the DC / DC converters 111, 113, 115 corresponding to each functional block in the DC / DC converter unit 110 is controlled. For example, the operation of the DC / DC converters 111, 113, 115 corresponding to each functional block is executed, stop control, output level (voltage) change control, and the like are performed.
  • the information storage unit 144 receives each information input by the device state transition control unit 142, that is, (A) Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170, (B) Number of shots / remaining usage time Information on the number of shots / remaining usage time calculated by the calculation unit 143, (C) The amount of power for each functional block input from the power calculation unit 145, (D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146, Record these input information.
  • A Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170
  • B Number of shots / remaining usage time Information on the number of shots / remaining usage time calculated by the calculation unit 143
  • C The amount of power for each functional block input from the power calculation unit 145
  • D The remaining amount of the battery 101 input from the battery remaining amount detection unit 146, Record these input information.
  • Each of these pieces of information is recorded in the information storage unit 144 as time-series information.
  • This recorded information may be further recorded in association with, for example, the user's user identifier of the imaging device. That is, it may be configured to record the usage mode corresponding to the user.
  • user information user ID
  • the device state transition control unit 142 of the data processing unit 120 is based on the user-corresponding usage mode information recorded in the information storage unit 144. It is possible to perform user-specific control.
  • the information storage unit 144 further includes information on the current setting state as a control result by the device state transition control unit 142, that is, (1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors, (3) Execution and stop processing of communication functions, (4) Operation speed (processing speed) change processing, (5) Display execution, stop processing, (6) Display image quality control of the display unit, (7) Execution and stop of high load operation mode These current setting states are also recorded.
  • the image pickup apparatus 100 performs an image pickup unit, a user-operable operation unit, an input unit, a display unit for displaying a captured image, a current state, and the like, and further overall processing. It has a control unit for controlling, a storage unit for storing a processing program, and the like.
  • FIG. 2 is a diagram illustrating an example of control processing by the device state transition control unit 142.
  • the following information is input to the device state transition control unit 142.
  • D The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
  • the device state transition control unit 142 inputs these information, outputs state transition instruction information to the functional blocks 121 to 123 based on the information, and changes the processing state of each functional block 121 to 123.
  • FIG. 2 shows the details of the input signal for the power calculation unit 145.
  • the current values (analog signals) detected by the current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 are converted into digital values by the A / D converter, and further, each of them is performed by the multiplexer 117. Sequential data of the current value detected by the current detection unit is generated and input to the power calculation unit 145.
  • the data input to the power calculation unit 145 is column data of the current value supplied to each functional block.
  • Current value output to functional blocks 1 and 121 3.0A
  • a data string (sequential data) indicating a series of current values in units of such functional blocks is generated by the multiplexer 117, and the sequential data is input to the power calculation unit 145.
  • the power calculation unit 145 acquires the current amount information supplied to each functional block according to the current value sequence of the functional block unit input from the multiplexer 117, and the current amount of the functional block unit and each of the predetermined values.
  • the real-time power consumption (power) of each functional block is calculated by using the input voltage values (VDD1 to 3) of the functional blocks.
  • the power information for each functional block calculated by the power calculation unit 145 is input to the device state transition control unit 142.
  • the device state transition control unit 142 receives information input from each component of the temperature detection unit 141, the number of possible shots / remaining usage time calculation unit 143, and the battery level detection unit 146. Based on this, the optimum state of the imaging device is determined, and the state transition to the optimum state is performed. For this transition process, the device state transition control unit 142 outputs a state transition instruction signal to each function block 121 to 123.
  • Each functional block 121 to 123 changes the processing mode of the processing executed in each functional block according to the state transition instruction signal input from the device state transition control unit 142. Specifically, for example, the following processing modes are changed.
  • Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors, (3) Execution and stop processing of communication functions, (4) Operation speed (processing speed) change processing, (5) Display execution, stop processing, (6) Display image quality control of the display unit, (7) Execution and stop of high load operation mode
  • FIG. 3 is a flowchart illustrating a sequence of processes executed by the imaging apparatus 100 of the present disclosure.
  • the process according to the flowchart shown in FIG. 3 can be executed according to, for example, a program stored in the storage unit of the image pickup apparatus 100. For example, it is executed under the control of a control unit having a CPU or the like having a program execution function.
  • a control unit having a CPU or the like having a program execution function.
  • Step S101 First, in step S101, the current value in units of functional blocks is detected. This process is performed by the current detection units 112, 114 corresponding to the functional blocks set in the individual DC / DC converters 111, 113, 115 corresponding to the functional blocks 121 to 123 in the DC / DC converter unit 110 shown in FIG. , 116.
  • the current detection units 112, 114, 116 detect the amount of current supplied to each of the functional blocks 121 to 123. This detected current amount is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117. As described above, for example, the following current values correspond to the functional blocks 121 to 123. [3.0A], [0.5A], [2.3A]
  • step S102 the power value for each functional block is calculated. This process is executed by the power calculation unit 145 of the data processing unit 120 shown in FIG.
  • the power calculation unit 145 acquires the current amount information supplied to each functional block according to the current value sequence of the functional block unit input from the multiplexer 117, and the current amount of the functional block unit and each of the predetermined values.
  • the real-time power consumption (power) of each functional block is calculated by using the input voltage values (VDD1 to 3) of the functional blocks.
  • the power information for each functional block calculated by the power calculation unit 145 is input to the device state transition control unit 142.
  • Step S103 Next, in step S103, the operating state of the device (imaging device in this example) is grasped. This process is executed by the device state transition control unit 142 of the data processing unit 120 shown in FIG.
  • the following information is input to the device state transition control unit 142.
  • the device state transition control unit 142 further refers to the information stored in the information storage unit 144 of the data processing unit 120, and refers to the current device setting information, that is, (1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors, (3) Execution and stop processing of communication functions, (4) Operation speed (processing speed) change processing, (5) Display execution, stop processing, (6) Display image quality control of the display unit, (7) Execution and stop of high-load operation mode These current setting states are also acquired to grasp the current device state.
  • Step S104 The process of step S104 is a process of storing the power value, the current value, and the like in the information storage unit 144.
  • the device state transition control unit 142 stores the following input information in the information storage unit 144.
  • These pieces of information are sequentially updated, and the latest information is stored in the information storage unit 144 in real time at any time in association with the time information.
  • Steps S111 to S112 The following processes of steps S111 to S112, processes of steps S121 to S124, processes of steps S131 to S133, and processes of steps S141 to S143 are executed in parallel.
  • step S111 it is determined whether or not there is a power reduction instruction from the user.
  • the user can input various instruction information via an input unit (not shown in FIG. 1). This instruction information is input to the device state transition control unit 142 of the data processing unit 120.
  • step S112 the device state transition control unit 142 executes the power reduction process according to the user instruction.
  • the power reduction process according to the user instruction is, for example, (1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors, (3) Execution and stop processing of communication functions, (4) Operation speed (processing speed) change processing, (5) Display execution, stop processing, (6) Display image quality control of the display unit, (7) Execution and stop of high-load operation mode This is a user-configurable process during these settings. A specific processing example will be described later.
  • step S111 If the device state transition control unit 142 does not detect the input of the power reduction instruction from the user in step S111, the process returns to step S101 and the processes of step S101 and subsequent steps are repeated.
  • Step S121 is a battery remaining amount information acquisition process. This process is executed by the battery level detection unit 146 of the data processing unit 120.
  • the battery 101 has a current detection resistor 102 connected in series, and the current flowing through the current detection resistor 102 is measured by the battery remaining amount management unit 103 to measure the remaining battery level. Is calculated.
  • the battery level information measured by the battery level management unit 103 is input to the battery level detection unit 146 of the data processing unit 120.
  • the battery level information acquired by the battery level detection unit 146 is input to the device state transition control unit 142. This process is continuously executed in real time.
  • step S122 it is determined whether or not the remaining battery level is smaller than the predetermined value.
  • This process is executed by the device state transition control unit 142 of the data processing unit 120.
  • the device state transition control unit 142 inputs the remaining amount information of the battery 101 from the battery remaining amount detecting unit 146, and determines whether or not the input remaining battery value is smaller than the predetermined value.
  • step S101 the process returns to step S101 and the process of step S101 or less is repeated.
  • step S112. the device state transition control unit 142 executes the power reduction process.
  • the power reduction process in this case is executed not as a process according to the user instruction but as a process for optimizing the operation mode. A specific processing example will be described later.
  • steps S123 to S124 are also executed in parallel with the processes of steps S122 to S112.
  • step S123 the number of remaining shots and the remaining usage time are calculated. This process is executed by the recordable number / remaining usage time calculation unit 143.
  • the recordable number / remaining usage time calculation unit 143 is executed by the image pickup apparatus 100 by using the information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block. Calculate the number of possible shots and the remaining usage time. This calculation result is input to the device state transition control unit 142.
  • step S124 the device state transition control unit 142 displays the number of recordable sheets / remaining use time calculated by the recordable number / remaining use time calculation unit 143 on the display unit.
  • the display data as shown in FIG. 4 is displayed on the display unit of the image pickup apparatus 100.
  • the number of possible shots and the remaining usage time can be always displayed on the display unit. For example, when the user inputs OK on the setting screen as shown in FIG. 5A, the number of shots that can be taken and the remaining usage time can be set to be always displayed on the display unit as shown in FIG. 5B. ..
  • Step S131 the temperature information is acquired and the process of predicting the temperature rise in the machine is executed. This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
  • the temperature detection unit 141 includes the temperature information of each functional block detected by the temperature detection units 131 to 133 mounted on the functional blocks 121 to 123, and the temperature detection unit 170.
  • the detected temperature information is input, and this input temperature information is transferred to the device state transition control unit 142.
  • the device state transition control unit 142 executes temperature rise prediction according to a predetermined algorithm based on these input temperature information. This temperature rise prediction is performed for each functional block and for the entire device.
  • step S132 the device state transition control unit 142 determines whether or not the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time based on the calculation information in step S131. .. If it is determined that the time is not shorter than the specified time, the process returns to step S101 and the process of step S101 or less is repeated.
  • step S133 the process of step S133 is executed.
  • the device state transition control unit 142 displays the device state information, specifically, the device state information on the display unit in step S133. Display a temperature rise warning. Specifically, for example, a warning is displayed as shown in FIG.
  • step S132 If it is determined in step S132 that the predicted time to reach the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time, the process of step S112, that is, the power reduction process is also executed.
  • Step S141 a process of determining whether or not an abnormal current is generated is executed for each functional block.
  • This process is executed by the device state transition control unit 142 that inputs the electric energy of each functional block unit calculated by the power calculation unit 145 of the data processing unit 120 shown in FIG.
  • the amount of current supplied to each of the functional blocks 121 to 123 detected by the current detection units 112, 114, 116 is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117, and the power calculation unit 145.
  • the power consumption of each of the functional blocks 121 to 123 is calculated, and the calculated value is input to the functional state transition control unit 142.
  • the functional state transition control unit 142 compares the electric energy of each functional block unit with the allowable power and current value of each functional block unit defined in advance, and determines whether or not an abnormal current exceeding the allowable current value is generated. This determination process is executed for each functional block.
  • step S142 If it is determined in step S142 that there is no functional block in which the abnormal current is detected, the abnormal current detection process of step S141 is continuously executed. On the other hand, if at least one functional block in which the abnormal current is detected is detected in step S142, the process proceeds to step S143.
  • the functional state transition control unit 142 displays a device abnormality detection message on the display unit in step S143. For example, as shown in FIG. 7A, a message output combined with an image showing an abnormality occurrence portion is executed, and an OK button for detecting that the abnormality has been confirmed by the user is displayed. When the user operates the OK button, the screen is switched to the display shown in FIG. 7B, and a message for causing the user to contact the service center is displayed.
  • the functional state transition control unit 142 executes a process of stopping the power supply to the functional block in which the abnormal current is generated. Specifically, the DC / DC converter operation instruction information is output to the DC / DC converter unit 110 to stop the power supply to the functional block in which the abnormal current is generated.
  • Example of processing to execute power reduction processing based on user instructions (2) Example of processing to execute power reduction processing based on the battery level detection result of battery level detection unit 146 (3) Number of remaining shots Processing example of displaying the calculation result of the remaining usage time calculation unit 143 on the display unit (4) Processing example of executing power reduction processing based on the temperature detection result of the temperature detection unit 141 (5) Temperature detection result of the temperature detection unit 141 Example of processing to execute a warning display on the display unit based on (6) Example of processing to execute power reduction processing based on the temperature detection result of the temperature detection unit 141 and the battery level detection result of the battery level detection unit 146 ( 7) Processing to display the calculation result of the remaining number of possible shots / remaining usage time calculation unit 143 on the display unit based on the temperature detection result of the temperature detection unit 141 and the battery remaining amount detection result of the battery remaining amount detection unit 146.
  • step S101 the current value in units of functional blocks is detected. This process is performed by the current detection units 112, 114 corresponding to the functional blocks set in the individual DC / DC converters 111, 113, 115 corresponding to the functional blocks 121 to 123 in the DC / DC converter unit 110 shown in FIG. , 116.
  • step S102 the power value for each functional block is calculated. This process is executed by the power calculation unit 145 of the data processing unit 120 shown in FIG.
  • the device state transition control unit 142 grasps the device operating state.
  • step S111 it is determined whether or not the device state transition control unit 142 has detected the input of the power reduction instruction from the user, and if so, the power reduction process according to the user instruction is executed. On the other hand, if the device state transition control unit 142 does not detect the input of the power reduction instruction from the user in step S111, the process returns to step S101 and the processes of step S101 and subsequent steps are repeated.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the battery level detection unit 146 acquires the battery level information in step S121, and the device state transition control unit 142 obtains the battery level information in step S122. It is determined whether or not the remaining battery level is smaller than the predetermined value.
  • step S101 the process returns to step S101 and the process of step S101 or less is repeated.
  • step S112. the device state transition control unit 142 executes the power reduction process.
  • the power reduction process in this case is executed not as a process according to the user instruction but as a process for optimizing the operation mode.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the battery remaining amount detection unit 146 acquires the battery remaining amount information in step S121, and then in step S123, the number of possible shots / remaining use
  • the time calculation unit 143 calculates the number of remaining shots and the remaining usage time.
  • the recordable number / remaining usage time calculation unit 143 is executed by the image pickup apparatus 100 by using the information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block. Calculate the number of possible shots and the remaining usage time. This calculation result is input to the device state transition control unit 142.
  • step S124 the device state transition control unit 142 displays the number of recordable sheets / remaining use time calculated by the recordable number / remaining use time calculation unit 143 on the display unit.
  • the display data as shown in FIG. 4 is displayed on the display unit of the image pickup apparatus 100.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed. This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
  • the temperature detection unit 141 includes the temperature information of each functional block detected by the temperature detection units 131 to 133 mounted on the functional blocks 121 to 123, and the temperature detection unit 170.
  • the temperature information detected by is input, and this input temperature information is transferred to the device state transition control unit 142.
  • the device state transition control unit 142 executes temperature rise prediction according to a predetermined algorithm based on these input temperature information. This temperature rise prediction is performed for each functional block and for the entire device.
  • step S132 the device state transition control unit 142 determines whether or not the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time based on the calculation information in step S131. .. If it is determined that the time is not shorter than the specified time, the process returns to step S101 and the process of step S101 or less is repeated.
  • step S112 the process of step S112, that is, the power reduction process is executed.
  • Example of processing for executing a warning display on the display unit based on the temperature detection result of the temperature detection unit 141 Next, an example of processing for executing power reduction processing based on the temperature detection result of the temperature detection unit 141 will be described. This processing example is executed according to the route shown by the thick line in FIG.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed. This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
  • the temperature detection unit 141 includes the temperature information of each functional block detected by the temperature detection units 131 to 133 mounted on the functional blocks 121 to 123, and the temperature detection unit 170.
  • the detected temperature information is input, and this input temperature information is transferred to the device state transition control unit 142.
  • the device state transition control unit 142 executes temperature rise prediction according to a predetermined algorithm based on these input temperature information. This temperature rise prediction is performed for each functional block and for the entire device.
  • step S132 the device state transition control unit 142 determines whether or not the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time based on the calculation information in step S131. .. If it is determined that the time is not shorter than the specified time, the process returns to step S101 and the process of step S101 or less is repeated.
  • step S133 the process of step S133 is executed.
  • the device state transition control unit 142 displays the device state information, specifically, the device state information on the display unit in step S133. Display a temperature rise warning. Specifically, for example, a warning is displayed as shown in FIG.
  • Example of processing for executing power reduction processing based on the temperature detection result of the temperature detection unit 141 and the battery remaining amount detection result of the battery remaining amount detection unit 146 Next, the temperature detection result of the temperature detection unit 141 and the battery An example of processing for executing the power reduction process based on the battery remaining amount detection result of the remaining battery level detection unit 146 will be described. This processing example is executed according to the route shown by the thick line in FIG.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed. This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
  • step S121 is executed.
  • the process of step S121 and the process of step S131 are processes executed in parallel.
  • FIG. 13 the connection line from step S131 to step S121 is shown by a dotted line.
  • step S121 the battery remaining amount detecting unit 146 acquires the battery remaining amount information, and the device state transition control unit 142 determines in step S122 whether or not the battery remaining amount is smaller than the predetermined value specified in advance.
  • step S101 the process returns to step S101 and the process of step S101 or less is repeated.
  • step S112. the device state transition control unit 142 executes the power reduction process.
  • the power reduction process in this case is executed not as a process according to the user instruction but as a process for optimizing the operation mode.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed. This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
  • step S121 is executed.
  • the process of step S121 and the process of step S131 are processes executed in parallel.
  • FIG. 13 the connection line from step S131 to step S121 is shown by a dotted line.
  • step S121 the battery level detection unit 146 acquires the battery level information. After that, in step S123, the number of possible shots / remaining use time calculation unit 143 calculates the number of possible shots and the remaining use time.
  • the recordable number / remaining usage time calculation unit 143 is executed by the image pickup apparatus 100 by using the information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block. Calculate the number of possible shots and the remaining usage time. This calculation result is input to the device state transition control unit 142.
  • step S124 the device state transition control unit 142 displays the number of recordable sheets / remaining use time calculated by the recordable number / remaining use time calculation unit 143 on the display unit.
  • the display data as shown in FIG. 4 is displayed on the display unit of the image pickup apparatus 100.
  • step S141 it is determined whether or not an abnormal current is generated in units of functional blocks. This process is executed by the device state transition control unit 142 that inputs the electric energy of each functional block unit calculated by the power calculation unit 145 of the data processing unit 120 shown in FIG.
  • the amount of current supplied to each of the functional blocks 121 to 123 detected by the current detection units 112, 114, 116 is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117, and the power calculation unit 145.
  • the power consumption of each of the functional blocks 121 to 123 is calculated, and the calculated value is input to the functional state transition control unit 142.
  • the functional state transition control unit 142 compares the electric energy of each functional block unit with the allowable power and current value of each functional block unit defined in advance, and determines whether or not an abnormal current exceeding the allowable current value is generated. This determination process is executed for each functional block.
  • step S142 If it is determined in step S142 that there is no functional block in which the abnormal current is detected, the abnormal current detection process of step S141 is continuously executed. On the other hand, if at least one functional block in which the abnormal current is detected is detected in step S142, the process proceeds to step S143.
  • the functional state transition control unit 142 displays a device abnormality detection message on the display unit in step S143. For example, as shown in FIG. 7A, a message output combined with an image showing an abnormality occurrence portion is executed, and an OK button for detecting that the abnormality has been confirmed by the user is displayed. When the user operates the OK button, the screen is switched to the display shown in FIG. 7B, and a message for causing the user to contact the service center is displayed.
  • the functional state transition control unit 142 executes a process of stopping the power supply to the functional block in which the abnormal current is generated. Specifically, the DC / DC converter operation instruction information is output to the DC / DC converter unit 110 to stop the power supply to the functional block in which the abnormal current is generated.
  • steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
  • the process of storing the power value, the current value, and the like in the information storage unit 144 is executed in step S104.
  • the device state transition control unit 142 stores the following input information in the information storage unit 144.
  • FIG. 17 is a flowchart illustrating a power saving mode setting processing sequence.
  • the power reduction process in step S112 described in the flowchart shown in FIG. 3 is executed in the following cases in addition to the process according to the user instruction in step S111.
  • step S122 When it is determined in step S122 that the remaining battery level is less than the specified value, When it is determined in step S132 that the time required to reach the specified temperature is shorter than the predetermined time, Power reduction processing is performed in each of these cases.
  • Step S201 First, in step S201, the user causes the display unit to display the power saving mode setting screen.
  • Step S202 According to the process of step S201, the setting screen as shown in step S202 is displayed on the display unit.
  • step S211 If the user selects (1) the recommended mode, the process proceeds to step S211. (2) When the user selection mode is selected, the process proceeds to step S212. (3) If optimization is selected for the operation mode, the process proceeds to step S213. (4) When not used is selected, the process returns to step S201.
  • Step S211 The display data shown in step S211 is a display example when the user selects the recommended mode in step S202.
  • the display unit displays the power reduction processing items executed in the recommended mode.
  • A High load operation mode prohibited
  • b Touch panel, proximity sensor stopped
  • c Communication stopped
  • flight mode Communication stopped
  • e Operation speed suppression
  • Step S212 The display data shown in step S212 is a display example when the user selects the user selection mode in step S202.
  • the power reduction processing items that can be executed in the user selection mode are displayed on the display unit.
  • the user checks a predetermined item and presses the enter button on this screen to determine the process to be executed in the user selection mode (steps S221 to S222).
  • Step S213 The display data shown in step S213 is a display example when the user selects optimization for the operation mode in step S202.
  • the display unit displays the power reduction processing items executed with the settings optimized for the operation mode.
  • A High load operation mode prohibited
  • b Touch panel, proximity sensor stopped
  • c Communication stopped
  • flight mode Communication stopped
  • e Operation speed suppression
  • the imaging device 100 of the present disclosure includes the device state transition control unit 142, and each information input by the device state transition control unit 142 in real time, that is, (A) Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170, (B) Number of shots / remaining use time information, calculated by the calculation unit 143, (C) The amount of power for each functional block input from the power calculation unit 145, (D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146, Based on these input information, control is performed to transition the device state. Further, these pieces of information are recorded in the information storage unit 144.
  • the image pickup apparatus 100 may be configured to execute communication with the server via the communication unit, transmit the acquired information (a) to (d) to the server, and store the acquired information (a) to (d) in the storage unit in the server.
  • the imaging device 100 transmits time-series device status information corresponding to the user to the server and stores it in a storage unit in the server.
  • the server can accumulate usage mode information of many users. Based on this accumulated information, the server generates a new device operation transition method that suits the usage of many users, and as the operation of the next model to be developed, the operation transition method that is more suitable for the user's usage than before. Can be generated. In addition, even with the same model, when the firmware is updated, the optimum operation transition method can be incorporated into the device.
  • the storage means in which the imaging device 100 stores the acquired information (a) to (d) is, for example, a built-in information recording device such as an SD card, or external information such as a hard disk drive or a solid state drive. Various devices such as a recording device can be used.
  • the information recorded in these storage means is transmitted to the server via a network such as the Internet. It is preferable that this transmission is executed according to the permission of the user.
  • the device state transition control unit 142 determines whether or not an abnormal current is generated in each functional block based on the electric energy of each functional block input from the power calculation unit 145. can do. Further, the device state transition control unit 142 corrects an abnormal current determination value (upper limit value) for determining an abnormal current stored in advance in the information storage unit 144 based on the acquired load current information for each functional block. Processing is also possible.
  • a correction allowable system and a correction non-allowable system may be provided for each power supply system.
  • the abnormal current determination value (upper limit value) may be limited so as not to be corrected in the increasing direction.
  • the power loss when an abnormality actually occurs in the device when a correction is made to increase the abnormal current judgment value is greater than in the case of the initially detected value.
  • a power supply system (functional block) that does not correct the abnormal current determination value may be provided.
  • the information storage unit 144 holds the detection variation characteristics of the current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110, and the detected current value is taken into consideration in consideration of the current detection variation characteristics.
  • the current and power corresponding to each functional block may be calculated with high accuracy based on the corrected value.
  • the recorded data for the information storage unit 144 is, for example, the following data.
  • User information Registered user (multiple users can be registered), non-registered user
  • Power status information Normal operation Power information for each functional block when an abnormal operation occurs
  • Operation mode information (4a) Still image shooting mode: Shooting mode (image quality setting: high / medium / low, etc.), live view operation, image capture, image data storage (4b) Movie shooting mode: recording mode (FHD, 4k video, etc.), EE image display operation, video recording
  • Load current value for each power system (5a) Average value: Average value for each operation mode (5b) Instantaneous value: Instantaneous current value array and peak value for one operation cycle for each operation mode (6) Overall device power consumption value: (6a) Average value: Average value for each operation mode (6b) Instantaneous value: Instantaneous power value array for one operation cycle and peak value for each operation mode (7) Power consumption value for each power supply system: (7a) Average value: Average value for each operation mode (7b) Instantaneous value: For each operation mode, instantaneous power value array for one operation cycle, and peak value (8) In-flight temperature value for each measurement point: For each operation mode , Temperature value at the timing of saving load current information and power consumption information. (9) Battery level: Battery level at the timing of saving load current information and power consumption information.
  • All or a combination of multiple items of this information is stored in the information storage unit 144, and by analyzing the stored data, the optimum device operation transition method, the optimum abnormal current value set value, etc. are analyzed and executed. Becomes possible.
  • the DC / DC converter unit 110 of the imaging device 100 of the present disclosure may be configured to measure the load current in the DC / DC converter by using the function already built in the DC / DC converter.
  • Recent DC / DC converter ICs have a built-in circuit that detects the current value passing through the inside of the IC in order to control the operation of the DC / DC converter. This circuit may be used to measure the current flowing inside the IC and average the values to obtain a current value equivalent to the output current value.
  • each component can be configured as one IC (integrated circuit).
  • IC integrated circuit
  • the example shown in FIG. 18 is an example composed of three ICs: a DC / DC converter IC201, a power calculation processing IC202, and a system microcomputer IC203.
  • the DC / DC converter IC 201 is an IC having current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 shown in FIG.
  • the power calculation processing IC 202 is an IC having an A / D converter, a multiplexer 117, and a power calculation unit 145.
  • the system microcomputer IC 203 is an IC having a device state transition control unit 142, a temperature detection unit 141, a remaining number of shots, a remaining usage time calculation unit 143, and a battery remaining amount detection unit 146.
  • the analog characteristics can be improved by manufacturing the DC / DC converter IC201 using the semiconductor process for the analog power supply.
  • a DC / DC converter IC having less temperature dependence can be configured by designing the IC to cancel the temperature characteristics of the entire analog circuit having different temperature characteristics for each functional block.
  • the example shown in FIG. 19 is an example configured by two ICs, a DC / DC converter IC201 and a system microcomputer IC204.
  • the DC / DC converter IC 201 is an IC having current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 shown in FIG.
  • the system microcomputer IC204 is an IC having an A / D converter, a multiplexer 117, a power calculation unit 145, a device state transition control unit 142, a temperature detection unit 141, a remaining number of shots, a remaining usage time calculation unit 143, and a battery remaining amount detection unit 146. Is.
  • the system microcomputer IC204 can acquire and calculate the load current values of a plurality of systems in parallel at the same time, and can judge the power consumption of each functional block at high speed, and can improve the operating speed. It becomes.
  • the example shown in FIG. 20 is an example configured by one IC of the DC / DC converter integrated system microcomputer IC205.
  • the DC / DC converter integrated system microcomputer IC205 includes a current detection unit 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 shown in FIG. 1, an A / D converter, a multiplexer 117, and a power calculation unit. It is an IC having 145, a device state transition control unit 142, a temperature detection unit 141, a remaining number of shots, a remaining usage time calculation unit 143, and a battery remaining amount detection unit 146.
  • the configuration is such that the presence or absence of an abnormal current is determined for each functional block, and the process of notifying the user of a warning even in the initial state of device failure and the operation of the device are stopped after the data storage is completed. Can be done.
  • a power supply unit that supplies power to multiple functional blocks individually, and It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit An information processing device that transitions device states based on the power consumption of each of the plurality of functional blocks.
  • the device state transition control unit is The information processing apparatus according to (1), wherein individual instruction information is output for each of the plurality of functional blocks to control each functional block individually.
  • the information processing device is It has a temperature detection unit that detects the temperature of each of the plurality of functional blocks.
  • the device state transition control unit The information processing apparatus according to (1) or (2), which executes device state transition control based on the temperature of each of the plurality of functional blocks.
  • the device state transition control unit is The information processing apparatus according to (3), which executes a warning display indicating a temperature rise on the display unit according to the temperature state of each of the plurality of functional blocks.
  • the information processing device is It has a battery level detector that detects the remaining battery level, which is the power supply source.
  • the device state transition control unit The information processing device according to any one of (1) to (4), which executes device state transition control based on the remaining battery level.
  • the information processing device is It has a remaining usage time calculation unit that calculates the remaining usable time of the information processing device.
  • the device state transition control unit The information processing apparatus according to any one of (1) to (5), which executes device state transition control based on the remaining usable time.
  • the information processing device is an imaging device, and has a remaining shooting possible number calculation unit for calculating the remaining shooting possible number.
  • the device state transition control unit The information processing apparatus according to any one of (1) to (6), which executes device state transition control based on the number of remaining shots.
  • the device state transition control unit is It is determined whether or not the current value of each of the plurality of functional blocks has reached a predetermined abnormal current value, and when a functional block having reached the abnormal current value is detected, a warning display indicating a device abnormality is displayed on the display unit.
  • the information processing apparatus according to any one of (1) to (7).
  • the power supply unit is It has a plurality of DC / DC converters that individually supply power to the plurality of functional blocks.
  • the device state transition control unit The information processing apparatus according to any one of (1) to (8), which outputs a control signal for each of the plurality of DC / DC converters.
  • the device state transition control unit is The information processing device according to any one of (1) to (9), which records device state information including power consumption information of each of the plurality of functional blocks in an information storage unit.
  • the device state transition control unit is The information processing apparatus according to (10), which records the device state information in the information storage unit as time-corresponding information.
  • the device state transition control unit is The information processing device according to (10) or (11), which records the device state information in the information storage unit as user-corresponding information.
  • the device state transition control unit is The information processing device according to any one of (1) to (12), wherein device status information including power consumption information of each of the plurality of functional blocks is transmitted to an external server and recorded in a storage unit in the server.
  • the information processing device is An IC having a DC / DC converter constituting the power supply unit and An IC having the device state transition control unit and The information processing apparatus according to any one of (1) to (13), which has an IC having a power calculation circuit for calculating the power consumption of each of the plurality of functional blocks.
  • the information processing device is The DC / DC converter constituting the power supply unit, the device state transition control unit, and the power calculation circuit for calculating the power consumption of each of the plurality of functional blocks are configured as one IC (1) to (1). 14) The information processing apparatus according to any one.
  • An information processing system having an information processing device and a server capable of communicating with the information processing device.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
  • the server An information processing system that stores time-series device status information received from the information processing device in a storage unit in the server.
  • the device state transition control unit is The time-series device status information is transmitted to the server as user-corresponding information,
  • the server The information processing system according to (16), which stores user-corresponding time-series device status information received from the information processing device in a storage unit in the server.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit A device state control method for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
  • the information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
  • the device state transition control unit A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
  • the server A device state transition data accumulation method for storing time-series device state information received from the information processing device in a storage unit in a server.
  • a program that executes device state control processing in an information processing device The information processing device A power supply unit that supplies power to multiple functional blocks individually, It has the plurality of functional blocks and a data processing unit having a device state transition control unit. The program is applied to the device state transition control unit. A program that executes device state control processing for transitioning device states based on the power consumption of each of the plurality of functional blocks.
  • the various processes described in the specification are not only executed in chronological order according to the description, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes.
  • the system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
  • the series of processes described in the specification can be executed by hardware, software, or a composite configuration of both.
  • executing processing by software install the program that records the processing sequence in the memory in the computer built in the dedicated hardware and execute it, or execute the program on a general-purpose computer that can execute various processing. It can be installed and run.
  • the program can be pre-recorded on a recording medium.
  • LAN Local Area Network
  • a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed. ..
  • it has a power supply unit that individually supplies power to a plurality of functional blocks, a plurality of functional blocks, and a data processing unit having a device state transition control unit, and is a device state transition control unit. Transitions the device state based on the power consumption of each of the plurality of functional blocks.
  • the device state transition control unit outputs individual instruction information for each of the plurality of functional blocks, and controls each functional block individually.
  • the device state transition control unit executes device state transition control based on the temperature of each functional block, the remaining battery level, the remaining usable time, and the like, and also displays warning information.
  • a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed.
  • Imaging device 101 Battery 102 Current detection resistance 103 Battery level management unit 110 DC / DC converter unit 111, 113, 115 DC / DC converter 112, 114, 116 Current detection unit 120 Data processing unit 121 to 123 Functional block 131 to 133 Temperature detection unit 141 Temperature detection unit 142 Equipment state transition control unit 143 Number of remaining shots, remaining usage time calculation unit 144 Information storage unit 145 Power calculation unit 146 Battery level detection unit 170 Temperature detection unit 201 DC / DC converter IC 202 Power calculation processing IC 203 System microcomputer IC 204 System microcomputer IC 205 DC / DC converter integrated system microcomputer IC

Abstract

An information processing device detects the power consumption and the temperature for each of a plurality of function blocks to thus control the equipment state on the basis of the information detected. The information processing device includes a power supply unit for supplying power individually to the plurality of function blocks, and a data processing unit that has the plurality of function blocks and an equipment-state transition controller; the equipment-state transition controller shifts the equipment state on the basis of the power consumption for each of the plurality of function blocks. The equipment-state transition controller outputs separate instruction information to each of the plurality of function blocks to thereby control each function block individually. Further, the equipment-state transition controller controls the shift of the equipment state on the basis of the temperature, the remaining battery level, the remaining available time and so forth of each function block and displays warning information.

Description

情報処理装置、情報処理システム、および方法、並びにプログラムInformation processing equipment, information processing systems, and methods, and programs
 本開示は、情報処理装置、情報処理システム、および方法、並びにプログラムに関する。さらに詳細には、撮像装置等の情報処理機器の電力供給制御等の制御を行う情報処理装置、情報処理システム、および方法、並びにプログラムに関する。 This disclosure relates to information processing devices, information processing systems, methods, and programs. More specifically, the present invention relates to an information processing device, an information processing system, a method, and a program for controlling power supply control and the like of an information processing device such as an image pickup device.
 例えば撮像装置は、画像の撮影処理、撮影画像の信号処理、信号処理後の画像の記憶部への記録処理、記憶部に格納された画像の読み出しと表示部に対する表示処理、AF、AE処理等、様々な処理を行う装置であり、これらの各機能を実行する複数の機能ブロックを有している。
 撮像装置に限らず、例えばスマホ(スマートフォン)等の様々な情報処理機器も様々な異なる機能を実行する複数の機能ブロックを有している。
For example, the imaging device includes image capturing processing, signal processing of captured images, recording processing of images after signal processing in a storage unit, reading of images stored in the storage unit and display processing for the display unit, AF, AE processing, etc. , A device that performs various processes, and has a plurality of functional blocks that execute each of these functions.
Not limited to the image pickup device, various information processing devices such as smartphones (smartphones) also have a plurality of functional blocks that execute various different functions.
 これら複数の機能ブロックに対して供給する電圧や、電力供給タイミングは、機能ブロックに応じた設定に制御することが必要となる。 It is necessary to control the voltage supplied to these multiple functional blocks and the power supply timing to the settings according to the functional blocks.
 撮像装置やスマホ等の携帯型機器の多くは、電源として電池(バッテリ)を有し、電池で電力供給が行われる。従って、消費電力の低減は大きな課題となる。
 撮像装置やスマホには省電力モードの設定によって電力消費を低減可能とした構成を有するものもあるが、省電力モード設定期間は、様々な機能が実行できなくなるという問題がある。
Many portable devices such as image pickup devices and smartphones have a battery as a power source, and the power is supplied by the battery. Therefore, reduction of power consumption becomes a big issue.
Some image pickup devices and smartphones have a configuration in which power consumption can be reduced by setting the power saving mode, but there is a problem that various functions cannot be executed during the power saving mode setting period.
 なお、消費電力の削減構成を開示した従来技術として、例えば特許文献1(特開2004-023990号公報)、特許文献2(特開2004-236492号公報)等がある。
 特許文献1は、複数の負荷に対する供給電力の総和が規定値を超えないようにする制御構成を開示している。
 特許文献2は、主電源と補助電源の複数の電力供給手段を持つ構成において、必要に応じて補助電源を使用することで、補助電源の小型化を実現する構成を開示している。
In addition, as the prior art which disclosed the power consumption reduction structure, there are, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-023990), Patent Document 2 (Japanese Patent Laid-Open No. 2004-236492) and the like.
Patent Document 1 discloses a control configuration that prevents the total power supply for a plurality of loads from exceeding a specified value.
Patent Document 2 discloses a configuration in which a plurality of power supply means of a main power source and an auxiliary power source are provided, and the auxiliary power source is miniaturized by using the auxiliary power source as needed.
特開2004-023990号公報Japanese Unexamined Patent Publication No. 2004-023990 特開2004-236492号公報Japanese Unexamined Patent Publication No. 2004-236492
 本開示は、供給電圧や、電力供給タイミングが異なる複数の機能ブロックを有する撮像装置等の情報処理機器において、各機能ブロックの負荷電流等の状態等をリアルタイムで検出し、検出結果に応じて機器状態を遷移させて、消費電力の低減や、撮影可能枚数、時間の向上等を可能とした情報処理装置、情報処理システム、および方法、並びにプログラムを提供することを目的とする。 According to the present disclosure, in an information processing device such as an image pickup device having a plurality of functional blocks having different supply voltages and power supply timings, the state of the load current of each functional block is detected in real time, and the device responds to the detection result. An object of the present invention is to provide an information processing device, an information processing system, a method, and a program capable of reducing power consumption, improving the number of shots that can be taken, and improving the time by changing the state.
 本開示の第1の側面は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる情報処理装置にある。
The first aspect of the disclosure is
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
It is in an information processing device that changes the device state based on the power consumption of each of the plurality of functional blocks.
 さらに、本開示の第2の側面は、
 情報処理装置と、該情報処理装置と通信可能なサーバを有する情報処理システムであり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力を含む機器状態に基づいて機器状態を遷移させる制御を実行するとともに、時系列の機器状態情報を前記サーバに送信する処理を実行し、
 前記サーバは、
 前記情報処理装置から受信する時系列の機器状態情報をサーバ内の記憶部に格納する情報処理システムにある。
Further, the second aspect of the present disclosure is
An information processing system having an information processing device and a server capable of communicating with the information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
The server
It is in an information processing system that stores time-series device status information received from the information processing device in a storage unit in the server.
 さらに、本開示の第3の側面は、
 情報処理装置において実行する機器状態制御方法であり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部が、
 前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる機器状態制御方法にある。
Further, the third aspect of the present disclosure is
It is a device state control method executed in the information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
The present invention is a device state control method for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
 さらに、本開示の第4の側面は、
 情報処理装置と、該情報処理装置と通信可能なサーバを有する情報処理システムにおいて実行する機器状態遷移データ集積方法であり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力を含む機器状態に基づいて機器状態を遷移させる制御を実行するとともに、時系列の機器状態情報を前記サーバに送信する処理を実行し、
 前記サーバは、
 前記情報処理装置から受信する時系列の機器状態情報をサーバ内の記憶部に格納する機器状態遷移データ集積方法にある。
Further, the fourth aspect of the present disclosure is
It is a device state transition data accumulation method executed in an information processing system having an information processing device and a server capable of communicating with the information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
The server
This is a method of accumulating device state transition data in which time-series device state information received from the information processing device is stored in a storage unit in the server.
 さらに、本開示の第5の側面は、
 情報処理装置において機器状態制御処理を実行させるプログラムであり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記プログラムは、前記機器状態遷移制御部に、
 前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる機器状態制御処理を実行させるプログラムにある。
Further, the fifth aspect of the present disclosure is
A program that executes device status control processing in an information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The program is applied to the device state transition control unit.
It is in a program that executes a device state control process for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
 なお、本開示のプログラムは、例えば、様々なプログラム・コードを実行可能な情報処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、情報処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。 The program of the present disclosure is, for example, a program that can be provided by a storage medium or a communication medium that is provided in a computer-readable format to an information processing device or a computer system that can execute various program codes. By providing such a program in a computer-readable format, processing according to the program can be realized on an information processing device or a computer system.
 本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。 Still other objectives, features and advantages of the present disclosure will be clarified by more detailed description based on the examples of the present disclosure and the accompanying drawings described below. In the present specification, the system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
 本開示の一実施例の構成によれば、複数の機能ブロック各々の電力消費量や温度を検出して、検出情報に基づく機器状態制御を実行する構成が実現される。
 具体的には、例えば、複数の機能ブロックに対して個別に電力供給を行う電力供給部と、複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、機器状態遷移制御部は、複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる。機器状態遷移制御部は、複数の機能ブロック各々に対して、個別の指示情報を出力して、各機能ブロックを個別に制御する。また、機器状態遷移制御部は、機能ブロック各々の温度、電池残量、残使用可能時間等に基づいて機器状態遷移制御を実行し、さらに警告情報の表示も実行する。
 本構成により、複数の機能ブロック各々の電力消費量や温度を検出して、検出情報に基づく機器状態制御を実行する構成が実現される。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
According to the configuration of one embodiment of the present disclosure, a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed.
Specifically, for example, it has a power supply unit that individually supplies power to a plurality of functional blocks, a plurality of functional blocks, and a data processing unit having a device state transition control unit, and is a device state transition control unit. Transitions the device state based on the power consumption of each of the plurality of functional blocks. The device state transition control unit outputs individual instruction information for each of the plurality of functional blocks, and controls each functional block individually. In addition, the device state transition control unit executes device state transition control based on the temperature of each functional block, the remaining battery level, the remaining usable time, and the like, and also displays warning information.
With this configuration, a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed.
It should be noted that the effects described in the present specification are merely exemplary and not limited, and may have additional effects.
本開示の撮像装置の構成例について説明する図である。It is a figure explaining the structural example of the image pickup apparatus of this disclosure. 機器状態遷移制御部による制御処理の一例を説明する図である。It is a figure explaining an example of the control process by a device state transition control unit. 本開示の撮像装置の実行する処理のシーケンスについて説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the sequence of the process to execute the image pickup apparatus of this disclosure. 撮像装置の表示部の表示データ出力例について説明する図である。It is a figure explaining the display data output example of the display part of the image pickup apparatus. 撮像装置の表示部の表示データ出力例について説明する図である。It is a figure explaining the display data output example of the display part of the image pickup apparatus. 撮像装置の表示部の表示データ出力例について説明する図である。It is a figure explaining the display data output example of the display part of the image pickup apparatus. 撮像装置の表示部の表示データ出力例について説明する図である。It is a figure explaining the display data output example of the display part of the image pickup apparatus. ユーザ指示に基づいて電力削減処理を実行する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which executes the power reduction processing based on a user instruction. 電池残量検知部の電池残量検知結果に基づいて電力削減処理を実行する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which executes the power reduction process based on the battery level detection result of the battery level detection part. 残撮影可能枚数・残使用時間計算部の算出結果を表示部に表示する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which displays the calculation result of the remaining shooting possible number | remaining use time calculation part on the display part. 温度検知部の温度検知結果に基づいて電力削減処理を実行する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which executes the power reduction processing based on the temperature detection result of the temperature detection unit. 温度検知部の温度検知結果に基づいて表示部に警告表示を実行する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which executes the warning display on the display part based on the temperature detection result of a temperature detection part. 温度検知部141の温度検知結果と、電池残量検知部の電池残量検知結果に基づいて電力削減処理を実行する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which executes the power reduction process based on the temperature detection result of the temperature detection part 141, and the battery level detection result of a battery remaining amount detection unit. 温度検知部の温度検知結果と、電池残量検知部の電池残量検知結果とに基づいて、残撮影可能枚数・残使用時間計算部の算出結果を表示部に表示する処理例について説明するフローチャートを示す図である。A flow chart for explaining a processing example of displaying the calculation result of the remaining number of possible shots / remaining usage time calculation unit on the display unit based on the temperature detection result of the temperature detection unit and the battery remaining amount detection result of the battery remaining amount detection unit. It is a figure which shows. 電力計算部の機能ブロック単位の電力検出結果に基づいて警告表示を表示部に表示する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which displays the warning display on the display part based on the power detection result of the function block unit of a power calculation part. 各種検出結果を情報記憶部に記録する処理例について説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing example which records various detection results in an information storage part. 省電力モードの設定処理シーケンスを説明するフローチャートについて説明する図である。It is a figure explaining the flowchart explaining the setting processing sequence of a power saving mode. IC(集積回路)構成例について説明する図である。It is a figure explaining the IC (integrated circuit) configuration example. IC(集積回路)構成例について説明する図である。It is a figure explaining the IC (integrated circuit) configuration example. IC(集積回路)構成例について説明する図である。It is a figure explaining the IC (integrated circuit) configuration example.
 以下、図面を参照しながら本開示の情報処理装置、情報処理システム、および方法、並びにプログラムの詳細について説明する。なお、説明は以下の項目に従って行なう。
 1.本開示の撮像装置の構成例について
 2.撮像装置の実行する処理のシーケンスについて
 3.様々な事象発生時の個別的具体例について
 4.省電力モードの設定処理例について
 5.その他の実施例について
 6.IC(集積回路)構成例について
 7.本開示の構成と処理による効果について
 8.本開示の構成のまとめ
Hereinafter, the details of the information processing apparatus, information processing system, method, and program of the present disclosure will be described with reference to the drawings. The explanation will be given according to the following items.
1. 1. Regarding the configuration example of the imaging device of the present disclosure 2. About the sequence of processing executed by the imaging device 3. About individual concrete examples when various events occur 4. About the setting processing example of the power saving mode 5. About other examples 6. About IC (Integrated Circuit) Configuration Example 7. 8. Effect of the structure and processing of the present disclosure. Summary of the structure of this disclosure
  [1.本開示の撮像装置の構成例について]
 まず、図1を参照して本開示の撮像装置の構成例について説明する。
 なお、本開示の構成や処理は撮像装置に限らず、電力で駆動する様々な情報処理装置において利用可能である。以下では本開示の構成や処理が適用可能な情報処理装置の一例として撮像装置を例として説明する。
[1. About the configuration example of the image pickup apparatus of this disclosure]
First, a configuration example of the imaging device of the present disclosure will be described with reference to FIG.
The configuration and processing of the present disclosure can be used not only in the imaging device but also in various information processing devices driven by electric power. In the following, an imaging device will be described as an example of an information processing device to which the configuration and processing of the present disclosure can be applied.
 図1に示す撮像装置100は、図1左下に示す電池101を電源として利用している。電池101からの電力がDC/DCコンバータ部110を介してデータ処理部120に供給され、データ処理部120において様々な処理が実行される。
 このように、図1に示す撮像装置100は、電池101とDC/DCコンバータ部110等によって構成される電力供給部と、データ処理部120を有する。
The image pickup apparatus 100 shown in FIG. 1 uses the battery 101 shown in the lower left of FIG. 1 as a power source. The electric power from the battery 101 is supplied to the data processing unit 120 via the DC / DC converter unit 110, and various processes are executed in the data processing unit 120.
As described above, the image pickup apparatus 100 shown in FIG. 1 has a power supply unit including a battery 101, a DC / DC converter unit 110, and the like, and a data processing unit 120.
 電池101には電流検出抵抗102が直列接続されている。この電流検出抵抗102を流れる電流が電池残量管理部103において計測され、電池残量が算出される。
 この電池残量管理部103において計測された電池残量情報は、データ処理部120の電池残量検知部146を介して、機器状態遷移制御部142に入力される。なお、この処理はリアルタイムで継続的に実行される。
A current detection resistor 102 is connected in series to the battery 101. The current flowing through the current detection resistor 102 is measured by the battery remaining amount management unit 103, and the battery remaining amount is calculated.
The battery level information measured by the battery level management unit 103 is input to the device state transition control unit 142 via the battery level detection unit 146 of the data processing unit 120. This process is continuously executed in real time.
 電池101の電力は、DC/DCコンバータ部110を介してデータ処理部120の各機能ブロック121~123に供給される。
 DC/DCコンバータ部110は電池101の出力電圧をデータ処理部120の各機能ブロック121~123に対する供給電圧VDD1~VDD3に変換するDC/DC(Direct Current/Direct Current)コンバータである。
The electric power of the battery 101 is supplied to the functional blocks 121 to 123 of the data processing unit 120 via the DC / DC converter unit 110.
The DC / DC converter unit 110 is a DC / DC (Direct Current / Direct Current) converter that converts the output voltage of the battery 101 into supply voltages VDD1 to VDD3 for the functional blocks 121 to 123 of the data processing unit 120.
 DC/DCコンバータ部110内には、各機能ブロック121~123対応の個別のDC/DCコンバータ111,113,115が設けられており、各機能ブロックに対する供給電圧VDD1~VDD3に変換する処理を行っている。
 また、各DC/DCコンバータ111,113,115の各々には、個別の電流検出部112,114,116が設けられており、各DC/DCコンバータ111,113,115を介して各機能ブロック121~123に対する供給電流量を検出している。
Individual DC / DC converters 111, 113, 115 corresponding to each functional block 121 to 123 are provided in the DC / DC converter unit 110, and a process of converting the supply voltage to the supply voltage VDD1 to VDD3 for each functional block is performed. ing.
Further, each of the DC / DC converters 111, 113, 115 is provided with individual current detection units 112, 114, 116, and each functional block 121 is provided via the DC / DC converters 111, 113, 115. The amount of supply current for ~ 123 is detected.
 電流検出部112,114,116の検出した各機能ブロック121~123対応の供給電流量は、マルチプレクサ117を介してデータ処理部120の電力計算部145に入力される。電力計算部145は、各機能ブロック121~123各々の消費電力量を算出し、算出値を機能状態遷移制御部142に入力する。なお、この処理はリアルタイムで継続的に実行される。 The amount of supply current corresponding to each functional block 121 to 123 detected by the current detection units 112, 114, 116 is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117. The power calculation unit 145 calculates the power consumption of each of the functional blocks 121 to 123, and inputs the calculated value to the functional state transition control unit 142. This process is continuously executed in real time.
 DC/DCコンバータ部110内の機能ブロック対応の個別のDC/DCコンバータ111,113,115は、入力電圧Vinに基づく変換電圧を生成し、インダクタL、コンデンサCからなる平滑回路を介してデータ処理部120の各機能ブロック121~123に供給する。
 インダクタL、コンデンサCからなる平滑回路は、DC/DCコンバータ111,113,115からの出力電圧を平滑化してデータ処理部120の各機能ブロック121~123に供給する。
The individual DC / DC converters 111, 113, 115 corresponding to the functional blocks in the DC / DC converter unit 110 generate a conversion voltage based on the input voltage Vin, and process the data via a smoothing circuit including an inductor L and a capacitor C. It is supplied to each functional block 121 to 123 of the unit 120.
The smoothing circuit composed of the inductor L and the capacitor C smoothes the output voltages from the DC / DC converters 111, 113, 115 and supplies them to the functional blocks 121 to 123 of the data processing unit 120.
 データ処理部120の機能ブロック121~123は、撮像装置100において実行する様々な機能を個別に実行する処理回路である。撮像装置100は、例えば、画像の撮影処理、撮影画像の信号処理、信号処理後の画像の記憶部への記録処理、記憶部に格納された画像の読み出しと表示部に対する表示処理、AF、AE処理等、様々な処理を行う。機能ブロック121~123は、例えばこれらの処理のいずれかを実行するブロックである。 The functional blocks 121 to 123 of the data processing unit 120 are processing circuits that individually execute various functions executed by the image pickup apparatus 100. The image pickup apparatus 100 includes, for example, image capturing processing, signal processing of captured images, recording processing of images after signal processing in a storage unit, reading of images stored in the storage unit and display processing for the display unit, AF, AE. Performs various processes such as processing. The functional blocks 121 to 123 are blocks that execute any of these processes, for example.
 なお、図1では機能ブロックを3つのみ示しているが、このブロック数は一例であり、例えば2つのみの機能ブロックを持つ構成や、10以上の機能ブロックを持つ構成等、様々な構成が可能である。 Although only three functional blocks are shown in FIG. 1, the number of blocks is an example, and various configurations such as a configuration having only two functional blocks and a configuration having 10 or more functional blocks are available. It is possible.
 図1に示すように、機能ブロック121~123の各々には、温度検出部131~133が備えられている。
 これらは、各機能ブロック121~123の温度を検出する。各機能ブロック121~123は、動作状態において、ブロック内の電気回路に電流が流れるため発熱し、温度が変化する。
 温度検出部131~133は、この温度変化を機能ブロック単位で観測する。
As shown in FIG. 1, each of the functional blocks 121 to 123 is provided with temperature detection units 131 to 133.
These detect the temperature of each functional block 121-123. In the operating state, each of the functional blocks 121 to 123 generates heat because a current flows through the electric circuit in the block, and the temperature changes.
The temperature detection units 131 to 133 observe this temperature change in units of functional blocks.
 温度検出部131~133の検出した機能ブロック単位の温度情報は、データ処理部120の温度検知部141を介して機器状態遷移制御部142に入力される。
 なお、温度検知部141には、機能ブロック対応の温度検出部以外の温度検出部170からも観測温度情報が入力される。温度検出部170は、例えば、撮像装置の筐体に備えられた温度センサ等であり、撮像装置全体、あるいは一部の温度を計測して、計測温度情報を温度検知部141に入力する。
The temperature information for each functional block detected by the temperature detection units 131 to 133 is input to the device state transition control unit 142 via the temperature detection unit 141 of the data processing unit 120.
Observation temperature information is also input to the temperature detection unit 141 from the temperature detection unit 170 other than the temperature detection unit corresponding to the functional block. The temperature detection unit 170 is, for example, a temperature sensor or the like provided in the housing of the image pickup device, measures the temperature of the entire image pickup device or a part of the image pickup device, and inputs the measured temperature information to the temperature detection unit 141.
 温度検知部141は、温度検出部131~133の検出した機能ブロック単位の温度情報と、温度検出部170の検出した温度情報を機器状態遷移制御部142に入力する。
 なお、この処理もリアルタイム処理として継続的に実行される。
The temperature detection unit 141 inputs the temperature information of each functional block detected by the temperature detection units 131 to 133 and the temperature information detected by the temperature detection unit 170 to the device state transition control unit 142.
This process is also continuously executed as a real-time process.
 データ処理部120の機器状態遷移制御部142は、リアルタイムで入力される各情報、すなわち、
 (a)温度検知部141から入力する機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 これらの入力情報に基づいて、機器状態を遷移させる制御を行う。
The device state transition control unit 142 of the data processing unit 120 receives each information input in real time, that is,
(A) Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
Based on these input information, control is performed to transition the device state.
 機器状態遷移制御部142の実行する機器状態遷移処理は、例えば、撮像装置において実行される様々な機能の有効化、無効化、動作態様の変更等の制御(モード変更)である。具体的には、例えば以下のような制御を行う。
 (1)タッチパネルの機能有効化、または無効化処理
 (2)各種センサの有効化、または無効化処理、
 (3)通信機能の実行、停止処理、
 (4)動作速度(処理速度)の変更処理、
 (5)表示部の表示実行、停止処理、
 (6)表示部の表示画像品質制御、
 (7)高負荷動作モードの実行、停止
The device state transition process executed by the device state transition control unit 142 is, for example, control (mode change) such as activation / disabling of various functions executed in the image pickup apparatus, change of operation mode, and the like. Specifically, for example, the following control is performed.
(1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors,
(3) Execution and stop processing of communication functions,
(4) Operation speed (processing speed) change processing,
(5) Display execution, stop processing,
(6) Display image quality control of the display unit,
(7) Execution and stop of high load operation mode
 これらの機器状態遷移制御は、機器状態遷移制御部142による各機能ブロック121~123の制御によって行われる。例えば機器状態遷移制御部142から各機能ブロック121~123に対する状態遷移指示情報(制御コマンド)の出力を伴う処理として実行される。 These device state transition controls are performed by the control of each functional block 121 to 123 by the device state transition control unit 142. For example, it is executed as a process accompanied by output of state transition instruction information (control command) from the device state transition control unit 142 to each function block 121 to 123.
 なお、撮影可能枚数・残使用時間計算部143は、機器状態遷移制御部142が取得した電池残量や各機能ブロックにおける電力消費量等の情報を利用して、撮像装置100において実行可能な撮影可能枚数や残使用時間を計算する。この計算結果は、機器状態遷移制御部142に入力される。 The number of possible shots / remaining usage time calculation unit 143 uses information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block to perform shooting that can be performed by the image pickup apparatus 100. Calculate the possible number of sheets and the remaining usage time. This calculation result is input to the device state transition control unit 142.
 さらに、機器状態遷移制御部142は、上記(a)~(d)の各入力情報に基づいてDC/DCコンバータ部110に対する動作指示情報を出力する。これにより、DC/DCコンバータ部110内の各機能ブロック対応のDC/DCコンバータ111,113,115の動作制御を行う。例えば各機能ブロック対応のDC/DCコンバータ111,113,115の動作実行、停止制御や出力レベル(電圧)変更制御等を行う。 Further, the device state transition control unit 142 outputs operation instruction information to the DC / DC converter unit 110 based on the input information of the above (a) to (d). As a result, the operation of the DC / DC converters 111, 113, 115 corresponding to each functional block in the DC / DC converter unit 110 is controlled. For example, the operation of the DC / DC converters 111, 113, 115 corresponding to each functional block is executed, stop control, output level (voltage) change control, and the like are performed.
 情報記憶部144は、機器状態遷移制御部142が入力する各情報、すなわち、
 (a)温度検知部141から入力する機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 これらの入力情報を記録する。
The information storage unit 144 receives each information input by the device state transition control unit 142, that is,
(A) Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining usage time Information on the number of shots / remaining usage time calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
Record these input information.
 なお、これらの各情報は、時系列情報として情報記憶部144に記録される。この記録情報は、さらに、例えば撮像装置の使用ユーザのーザ識別子に対応付けて記録する構成としてもよい。すなわち、ユーザ対応の使用態様を記録する構成としてもよい。
 撮像装置100の利用時にユーザ情報(ユーザID)を入力させることで、各ユーザ対応の使用履歴、使用態様情報を記録することができる。
Each of these pieces of information is recorded in the information storage unit 144 as time-series information. This recorded information may be further recorded in association with, for example, the user's user identifier of the imaging device. That is, it may be configured to record the usage mode corresponding to the user.
By inputting user information (user ID) when using the image pickup apparatus 100, it is possible to record usage history and usage mode information corresponding to each user.
 このようにユーザ対応の使用態様を情報記憶部144に記録することで、データ処理部120の機器状態遷移制御部142は、情報記憶部144に記録されたユーザ対応の使用態様情報に基づいて、ユーザ固有の制御を行うことが可能となる。 By recording the user-corresponding usage mode in the information storage unit 144 in this way, the device state transition control unit 142 of the data processing unit 120 is based on the user-corresponding usage mode information recorded in the information storage unit 144. It is possible to perform user-specific control.
 例えば表示部をほとんど利用しないユーザの場合は表示部の電力消費を低減させるモードに設定するといった処理が可能となる。撮影時間の長いユーザや撮影枚数の多いユーザには、早めに残りの撮影可能枚数の表示を行うといった処理が可能となる。 For example, in the case of a user who rarely uses the display unit, it is possible to set a mode that reduces the power consumption of the display unit. For users who have a long shooting time or who have a large number of shots, it is possible to display the remaining number of shots as soon as possible.
 なお、情報記憶部144は、さらに、機器状態遷移制御部142による制御結果としての現在の設定状態に関する情報、すなわち、
 (1)タッチパネルの機能有効化、または無効化処理
 (2)各種センサの有効化、または無効化処理、
 (3)通信機能の実行、停止処理、
 (4)動作速度(処理速度)の変更処理、
 (5)表示部の表示実行、停止処理、
 (6)表示部の表示画像品質制御、
 (7)高負荷動作モードの実行、停止
 これらの現在の設定状態も記録される。
The information storage unit 144 further includes information on the current setting state as a control result by the device state transition control unit 142, that is,
(1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors,
(3) Execution and stop processing of communication functions,
(4) Operation speed (processing speed) change processing,
(5) Display execution, stop processing,
(6) Display image quality control of the display unit,
(7) Execution and stop of high load operation mode These current setting states are also recorded.
 なお、図1には示していないが、撮像装置100は、撮像部や、ユーザ操作可能な操作部、入力部、さらに撮影画像や、現在の状態等を表示する表示部、さらに全体の処理を制御する制御部、処理プログラム等を格納した記憶部等を有する。 Although not shown in FIG. 1, the image pickup apparatus 100 performs an image pickup unit, a user-operable operation unit, an input unit, a display unit for displaying a captured image, a current state, and the like, and further overall processing. It has a control unit for controlling, a storage unit for storing a processing program, and the like.
 図2は、機器状態遷移制御部142による制御処理の一例を説明する図である。
 図2に示すように、機器状態遷移制御部142には、以下の情報が入力される。
 (a)温度検知部141から機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 機器状態遷移制御部142は、これらの情報を入力し、これらの情報に基づいて、機能ブロック121~123に状態遷移指示情報を出力して、各機能ブロック121~123の処理状態を変更する。
FIG. 2 is a diagram illustrating an example of control processing by the device state transition control unit 142.
As shown in FIG. 2, the following information is input to the device state transition control unit 142.
(A) Temperature information for each functional block from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
The device state transition control unit 142 inputs these information, outputs state transition instruction information to the functional blocks 121 to 123 based on the information, and changes the processing state of each functional block 121 to 123.
 図2には、電力計算部145に対する入力信号の詳細を示している。
 DC/DCコンバータ部110内の各機能ブロック対応の電流検出部112,114,116が検出した電流値(アナログ信号)は、A/Dコンバータでデジタル値に変換され、さらに、マルチプレクサ117において、各電流検出部が検出した電流値のシーケンシャルデータが生成されて電力計算部145に入力される。
FIG. 2 shows the details of the input signal for the power calculation unit 145.
The current values (analog signals) detected by the current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 are converted into digital values by the A / D converter, and further, each of them is performed by the multiplexer 117. Sequential data of the current value detected by the current detection unit is generated and input to the power calculation unit 145.
 電力計算部145に入力されるデータは、各機能ブロックに供給される電流値の列データである。例えば、
 機能ブロック1,121に出力される電流値=3.0A
 機能ブロック2,122に出力される電流値=0.5A
 機能ブロック3,123に出力される電流値=2.3A
 このような電流値である場合、
 [3.0],[0.5],[2.3]
 このような機能ブロック単位の一連の電流値を示すデータ列(シーケンシャルデータ)が、マルチプレクサ117によって生成され、このシーケンシャルデータが電力計算部145に入力される。
The data input to the power calculation unit 145 is column data of the current value supplied to each functional block. For example
Current value output to functional blocks 1 and 121 = 3.0A
Current value output to functional blocks 2, 122 = 0.5A
Current value output to functional blocks 3,123 = 2.3A
If it is such a current value,
[3.0], [0.5], [2.3]
A data string (sequential data) indicating a series of current values in units of such functional blocks is generated by the multiplexer 117, and the sequential data is input to the power calculation unit 145.
 電力計算部145は、マルチプレクサ117から入力する機能ブロック単位の電流値列に従って、各機能ブロックに供給されている電流量情報を取得し、この機能ブロック単位の電流量と、予め規定されている各機能ブロックの入力電圧値(VDD1~3)を利用して、各機能ブロックのリアルタイムの電力消費量(電力)を算出する。
 電力計算部145が算出した各機能ブロック単位の電力情報は機器状態遷移制御部142に入力される。
The power calculation unit 145 acquires the current amount information supplied to each functional block according to the current value sequence of the functional block unit input from the multiplexer 117, and the current amount of the functional block unit and each of the predetermined values. The real-time power consumption (power) of each functional block is calculated by using the input voltage values (VDD1 to 3) of the functional blocks.
The power information for each functional block calculated by the power calculation unit 145 is input to the device state transition control unit 142.
 機器状態遷移制御部142は、この各機能ブロック単位の電力情報の他、温度検知部141、撮影可能枚数・残使用時間計算部143、電池残量検知部146の各構成部から入力する情報に基づいて、撮像装置の最適状態を決定し、その最適状態への状態遷移を行う。この遷移処理のために、機器状態遷移制御部142は各機能ブロック121~123に状態遷移指示信号を出力する。 In addition to the power information for each functional block, the device state transition control unit 142 receives information input from each component of the temperature detection unit 141, the number of possible shots / remaining usage time calculation unit 143, and the battery level detection unit 146. Based on this, the optimum state of the imaging device is determined, and the state transition to the optimum state is performed. For this transition process, the device state transition control unit 142 outputs a state transition instruction signal to each function block 121 to 123.
 各機能ブロック121~123は、機器状態遷移制御部142から入力する状態遷移指示信号に従って、各機能ブロックで実行する処理の処理態様を変更する。具体的には、例えば、以下の処理態様の変更を行う。
 (1)タッチパネルの機能有効化、または無効化処理
 (2)各種センサの有効化、または無効化処理、
 (3)通信機能の実行、停止処理、
 (4)動作速度(処理速度)の変更処理、
 (5)表示部の表示実行、停止処理、
 (6)表示部の表示画像品質制御、
 (7)高負荷動作モードの実行、停止
Each functional block 121 to 123 changes the processing mode of the processing executed in each functional block according to the state transition instruction signal input from the device state transition control unit 142. Specifically, for example, the following processing modes are changed.
(1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors,
(3) Execution and stop processing of communication functions,
(4) Operation speed (processing speed) change processing,
(5) Display execution, stop processing,
(6) Display image quality control of the display unit,
(7) Execution and stop of high load operation mode
  [2.撮像装置の実行する処理のシーケンスについて]
 次に、本開示の撮像装置100の実行する処理のシーケンスについて説明する。
 図3に示すフローチャートは、本開示の撮像装置100の実行する処理のシーケンスについて説明するフローチャートである。
[2. About the sequence of processing executed by the imaging device]
Next, a sequence of processes executed by the imaging apparatus 100 of the present disclosure will be described.
The flowchart shown in FIG. 3 is a flowchart illustrating a sequence of processes executed by the imaging apparatus 100 of the present disclosure.
 なお、この図3に示すフローチャートに従った処理は、例えば撮像装置100の記憶部に格納されたプログラムに従って実行可能である。例えばプログラム実行機能を有するCPU等を有する制御部の制御の下で実行される。
 以下、図3に示すフローチャートの各ステップの処理について、順次、説明する。
The process according to the flowchart shown in FIG. 3 can be executed according to, for example, a program stored in the storage unit of the image pickup apparatus 100. For example, it is executed under the control of a control unit having a CPU or the like having a program execution function.
Hereinafter, the processing of each step of the flowchart shown in FIG. 3 will be sequentially described.
  (ステップS101)
 まず、ステップS101において、機能ブロック単位の電流値を検出する。
 この処理は、図1に示すDC/DCコンバータ部110内の各機能ブロック121~123対応の個別のDC/DCコンバータ111,113,115に設定されている機能ブロック対応の電流検出部112,114,116において実行される。
(Step S101)
First, in step S101, the current value in units of functional blocks is detected.
This process is performed by the current detection units 112, 114 corresponding to the functional blocks set in the individual DC / DC converters 111, 113, 115 corresponding to the functional blocks 121 to 123 in the DC / DC converter unit 110 shown in FIG. , 116.
 電流検出部112,114,116は、各機能ブロック121~123に対する供給電流量を検出する。この検出電流量は、マルチプレクサ117を介してデータ処理部120の電力計算部145に入力される。
 前述したように、例えば機能ブロック121~123対応の以下のような電流値である。
 [3.0A],[0.5A],[2.3A]
The current detection units 112, 114, 116 detect the amount of current supplied to each of the functional blocks 121 to 123. This detected current amount is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117.
As described above, for example, the following current values correspond to the functional blocks 121 to 123.
[3.0A], [0.5A], [2.3A]
  (ステップS102)
 次に、ステップS102において、機能ブロック単位の電力値を算出する。
 この処理は、図1に示すデータ処理部120の電力計算部145が実行する。
(Step S102)
Next, in step S102, the power value for each functional block is calculated.
This process is executed by the power calculation unit 145 of the data processing unit 120 shown in FIG.
 電力計算部145は、マルチプレクサ117から入力する機能ブロック単位の電流値列に従って、各機能ブロックに供給されている電流量情報を取得し、この機能ブロック単位の電流量と、予め規定されている各機能ブロックの入力電圧値(VDD1~3)を利用して、各機能ブロックのリアルタイムの電力消費量(電力)を算出する。
 電力計算部145が算出した各機能ブロック単位の電力情報は機器状態遷移制御部142に入力される。
The power calculation unit 145 acquires the current amount information supplied to each functional block according to the current value sequence of the functional block unit input from the multiplexer 117, and the current amount of the functional block unit and each of the predetermined values. The real-time power consumption (power) of each functional block is calculated by using the input voltage values (VDD1 to 3) of the functional blocks.
The power information for each functional block calculated by the power calculation unit 145 is input to the device state transition control unit 142.
  (ステップS103)
 次に、ステップS103において、機器(本例では撮像装置)の動作状態を把握する。
 この処理は、図1に示すデータ処理部120の機器状態遷移制御部142が実行する。
(Step S103)
Next, in step S103, the operating state of the device (imaging device in this example) is grasped.
This process is executed by the device state transition control unit 142 of the data processing unit 120 shown in FIG.
 先に図1を参照して説明したように機器状態遷移制御部142には、以下の各情報が入力される。
 (a)温度検知部141から機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 機器状態遷移制御部142は、これらの情報を入力し、これらの情報に基づいて、機器(本例では撮像装置)の動作状態を把握する。
As described above with reference to FIG. 1, the following information is input to the device state transition control unit 142.
(A) Temperature information for each functional block from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
The device state transition control unit 142 inputs these information, and based on the information, grasps the operating state of the device (imaging device in this example).
 なお、機器状態遷移制御部142は、さらにデータ処理部120の情報記憶部144に格納された情報を参照して、現在の機器の設定情報、すなわち、
 (1)タッチパネルの機能有効化、または無効化処理
 (2)各種センサの有効化、または無効化処理、
 (3)通信機能の実行、停止処理、
 (4)動作速度(処理速度)の変更処理、
 (5)表示部の表示実行、停止処理、
 (6)表示部の表示画像品質制御、
 (7)高負荷動作モードの実行、停止
 これらの現在の設定状態も取得して、現在の機器状態を把握する。
The device state transition control unit 142 further refers to the information stored in the information storage unit 144 of the data processing unit 120, and refers to the current device setting information, that is,
(1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors,
(3) Execution and stop processing of communication functions,
(4) Operation speed (processing speed) change processing,
(5) Display execution, stop processing,
(6) Display image quality control of the display unit,
(7) Execution and stop of high-load operation mode These current setting states are also acquired to grasp the current device state.
  (ステップS104)
 ステップS104の処理は、電力値、電流値等を情報記憶部144に格納する処理である。
(Step S104)
The process of step S104 is a process of storing the power value, the current value, and the like in the information storage unit 144.
 この処理は、図1に示すデータ処理部120の機器状態遷移制御部142が実行する。機器状態遷移制御部142は、以下の各入力情報を情報記憶部144に格納する。
 (a)温度検知部141から機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 なお、これらの情報は、逐次、更新され、最新情報が、随時リアルタイムで、時間情報に対応付けられて情報記憶部144に格納される。
This process is executed by the device state transition control unit 142 of the data processing unit 120 shown in FIG. The device state transition control unit 142 stores the following input information in the information storage unit 144.
(A) Temperature information for each functional block from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
These pieces of information are sequentially updated, and the latest information is stored in the information storage unit 144 in real time at any time in association with the time information.
  (ステップS111~S112)
 以下のステップS111~S112の処理と、ステップS121~S124の処理と、ステップS131~S133の処理、およびステップS141~S143の各処理は並列に実行される。
(Steps S111 to S112)
The following processes of steps S111 to S112, processes of steps S121 to S124, processes of steps S131 to S133, and processes of steps S141 to S143 are executed in parallel.
 まず、ステップS111~112の処理について説明する。
 ステップS111では、ユーザからの電力削減指示の有無を判定する。
 ユーザは、図1には図示していない入力部を介して、各種の指示情報を入力することができる。この指示情報は、データ処理部120の機器状態遷移制御部142に入力される。
First, the processing of steps S111 to 112 will be described.
In step S111, it is determined whether or not there is a power reduction instruction from the user.
The user can input various instruction information via an input unit (not shown in FIG. 1). This instruction information is input to the device state transition control unit 142 of the data processing unit 120.
 機器状態遷移制御部142は、ユーザからの電力削減指示の入力を検知した場合、ステップS112に進む。
 ステップS112では、機器状態遷移制御部142は、ユーザ指示に従った電力削減処理を実行する。
When the device state transition control unit 142 detects the input of the power reduction instruction from the user, the device state transition control unit 142 proceeds to step S112.
In step S112, the device state transition control unit 142 executes the power reduction process according to the user instruction.
 ユーザ指示に従った電力削減処理は、例えば、
 (1)タッチパネルの機能有効化、または無効化処理
 (2)各種センサの有効化、または無効化処理、
 (3)通信機能の実行、停止処理、
 (4)動作速度(処理速度)の変更処理、
 (5)表示部の表示実行、停止処理、
 (6)表示部の表示画像品質制御、
 (7)高負荷動作モードの実行、停止
 これらの設定中のユーザ設定可能な処理となる。具体的な処理例については、後段で説明する。
The power reduction process according to the user instruction is, for example,
(1) Touch panel function activation or invalidation processing (2) Activation or invalidation processing of various sensors,
(3) Execution and stop processing of communication functions,
(4) Operation speed (processing speed) change processing,
(5) Display execution, stop processing,
(6) Display image quality control of the display unit,
(7) Execution and stop of high-load operation mode This is a user-configurable process during these settings. A specific processing example will be described later.
 ステップS111において、機器状態遷移制御部142が、ユーザからの電力削減指示の入力を検知しなかった場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。 If the device state transition control unit 142 does not detect the input of the power reduction instruction from the user in step S111, the process returns to step S101 and the processes of step S101 and subsequent steps are repeated.
  (ステップS121~S124)
 次に、ステップS121~S124の処理について説明する。
 ステップS121は、電池残量情報取得処理である。
 この処理は、データ処理部120の電池残量検知部146が実行する。
(Steps S121 to S124)
Next, the processing of steps S121 to S124 will be described.
Step S121 is a battery remaining amount information acquisition process.
This process is executed by the battery level detection unit 146 of the data processing unit 120.
 先に図1を参照して説明したように、電池101は直列接続された電流検出抵抗102を有し、この電流検出抵抗102を流れる電流が電池残量管理部103において計測され、電池残量が算出される。電池残量管理部103において計測された電池残量情報は、データ処理部120の電池残量検知部146に入力される。
 電池残量検知部146が取得した電池残量情報は、機器状態遷移制御部142に入力される。なお、この処理はリアルタイムで継続的に実行される。
As described above with reference to FIG. 1, the battery 101 has a current detection resistor 102 connected in series, and the current flowing through the current detection resistor 102 is measured by the battery remaining amount management unit 103 to measure the remaining battery level. Is calculated. The battery level information measured by the battery level management unit 103 is input to the battery level detection unit 146 of the data processing unit 120.
The battery level information acquired by the battery level detection unit 146 is input to the device state transition control unit 142. This process is continuously executed in real time.
 次に、ステップS122において、電池残量が予め規定した規定値より小さいか否かを判定する。
 この処理は、データ処理部120の機器状態遷移制御部142が実行する。
 機器状態遷移制御部142は、電池残量検知部146から電池101の残量情報を入力して、入力した電池残量の値が予め規定した規定値より小さいか否かを判定する。
Next, in step S122, it is determined whether or not the remaining battery level is smaller than the predetermined value.
This process is executed by the device state transition control unit 142 of the data processing unit 120.
The device state transition control unit 142 inputs the remaining amount information of the battery 101 from the battery remaining amount detecting unit 146, and determines whether or not the input remaining battery value is smaller than the predetermined value.
 電池残量が規定値より小さくない場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
 一方、電池残量が規定値より小さい場合は、ステップS112に進む。
 ステップS112では、機器状態遷移制御部142は電力削減処理を実行する。この場合の電力削減処理は、ユーザ指示に従った処理ではなく、動作モードを最適化する処理として実行される。
 具体的な処理例については、後段で説明する。
If the remaining battery level is not smaller than the specified value, the process returns to step S101 and the process of step S101 or less is repeated.
On the other hand, if the remaining battery level is smaller than the specified value, the process proceeds to step S112.
In step S112, the device state transition control unit 142 executes the power reduction process. The power reduction process in this case is executed not as a process according to the user instruction but as a process for optimizing the operation mode.
A specific processing example will be described later.
 ステップS122~S112の処理に並列して、ステップS123~S124の処理も実行される。
 ステップS123では、残撮影可能枚数、残使用時間を算出する。
 この処理は撮影可能枚数・残使用時間計算部143が実行する。
The processes of steps S123 to S124 are also executed in parallel with the processes of steps S122 to S112.
In step S123, the number of remaining shots and the remaining usage time are calculated.
This process is executed by the recordable number / remaining usage time calculation unit 143.
 前述したように、撮影可能枚数・残使用時間計算部143は、機器状態遷移制御部142が取得した電池残量や各機能ブロックにおける電力消費量等の情報を利用して、撮像装置100において実行可能な撮影可能枚数や残使用時間を計算する。この計算結果は、機器状態遷移制御部142に入力される。 As described above, the recordable number / remaining usage time calculation unit 143 is executed by the image pickup apparatus 100 by using the information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block. Calculate the number of possible shots and the remaining usage time. This calculation result is input to the device state transition control unit 142.
 機器状態遷移制御部142は、その後、ステップS124において、撮影可能枚数・残使用時間計算部143が算出した撮影可能枚数・残使用時間を表示部に表示する。
 例えば、図4に示すような表示データが撮像装置100の表示部に表示される。
After that, in step S124, the device state transition control unit 142 displays the number of recordable sheets / remaining use time calculated by the recordable number / remaining use time calculation unit 143 on the display unit.
For example, the display data as shown in FIG. 4 is displayed on the display unit of the image pickup apparatus 100.
 なお、撮影可能枚数や残使用時間については、常時、表示部に表示させる設定も可能である。
 例えば図5(a)に示すような、設定画面でユーザがOKを入力すると、(b)に示すように撮影可能枚数や、残使用時間を常時、表示部に表示させる設定とすることができる。
It is also possible to set the number of possible shots and the remaining usage time to be always displayed on the display unit.
For example, when the user inputs OK on the setting screen as shown in FIG. 5A, the number of shots that can be taken and the remaining usage time can be set to be always displayed on the display unit as shown in FIG. 5B. ..
  (ステップS131~S133)
 次に、ステップS131~S133の処理について説明する。
 ステップS131では、温度情報を取得し、機内温度上昇の予測処理を実行する。
 この処理は、温度検知部141と、機器状態遷移制御部142において実行される。
(Steps S131 to S133)
Next, the processing of steps S131 to S133 will be described.
In step S131, the temperature information is acquired and the process of predicting the temperature rise in the machine is executed.
This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
 先に図1を参照して説明したように、温度検知部141は、各機能ブロック121~123に装着された温度検出部131~133の検出した機能ブロック単位の温度情報と、温度検出部170の検出した温度情報を入力し、この入力温度情報を機器状態遷移制御部142に転送する。 As described above with reference to FIG. 1, the temperature detection unit 141 includes the temperature information of each functional block detected by the temperature detection units 131 to 133 mounted on the functional blocks 121 to 123, and the temperature detection unit 170. The detected temperature information is input, and this input temperature information is transferred to the device state transition control unit 142.
 機器状態遷移制御部142は、これらの入力温度情報に基づいて、予め規定されたアルゴリズムに従った温度上昇予測を実行する。
 この温度上昇予測は、各機能ブロック単位、および機器全体単位で実行する。
The device state transition control unit 142 executes temperature rise prediction according to a predetermined algorithm based on these input temperature information.
This temperature rise prediction is performed for each functional block and for the entire device.
 次に機器状態遷移制御部142は、ステップS132において、ステップS131で算出情報に基づいて、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いか否かを判定する。
 規定時間より短くないと判定した場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
Next, in step S132, the device state transition control unit 142 determines whether or not the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time based on the calculation information in step S131. ..
If it is determined that the time is not shorter than the specified time, the process returns to step S101 and the process of step S101 or less is repeated.
 一方、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いと判定した場合は、ステップS133に進み、ステップS133の処理を実行する。 On the other hand, if it is determined that the predicted time until the predetermined temperature (allowable temperature upper limit) is reached is shorter than the predetermined time, the process proceeds to step S133 and the process of step S133 is executed.
 予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いと判定した場合は、機器状態遷移制御部142は、ステップS133において、表示部に機器状態情報、具体的には温度上昇警告を表示する。
 具体的には、例えば図6に示すような警告表示を行う。
When it is determined that the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time, the device state transition control unit 142 displays the device state information, specifically, the device state information on the display unit in step S133. Display a temperature rise warning.
Specifically, for example, a warning is displayed as shown in FIG.
 なお、ステップS132において、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いと判定した場合は、ステップS112の処理、すなわち電力削減処理も併せて実行する。 If it is determined in step S132 that the predicted time to reach the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time, the process of step S112, that is, the power reduction process is also executed.
  (ステップS141~S143)
 次に、ステップS141~S143の処理について説明する。
 ステップS141では、機能ブロック単位で異常電流の発生有無を判定する処理を実行する。
(Steps S141 to S143)
Next, the processes of steps S141 to S143 will be described.
In step S141, a process of determining whether or not an abnormal current is generated is executed for each functional block.
 この処理は、図1に示すデータ処理部120の電力計算部145が算出した各機能ブロック単位の電力量を入力した機器状態遷移制御部142が実行する。 This process is executed by the device state transition control unit 142 that inputs the electric energy of each functional block unit calculated by the power calculation unit 145 of the data processing unit 120 shown in FIG.
 前述したように、電流検出部112,114,116の検出した各機能ブロック121~123に対する供給電流量は、マルチプレクサ117を介してデータ処理部120の電力計算部145に入力され、電力計算部145において各機能ブロック121~123各々の消費電力量が算出され、算出値が機能状態遷移制御部142に入力される。 As described above, the amount of current supplied to each of the functional blocks 121 to 123 detected by the current detection units 112, 114, 116 is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117, and the power calculation unit 145. The power consumption of each of the functional blocks 121 to 123 is calculated, and the calculated value is input to the functional state transition control unit 142.
 機能状態遷移制御部142は、各機能ブロック単位の電力量を予め規定された各機能ブロック単位の許容電力、電流値と比較し、許容電流値を超える異常電流の発生がないかを判定する。この判定処理は各機能ブロック単位で実行する。 The functional state transition control unit 142 compares the electric energy of each functional block unit with the allowable power and current value of each functional block unit defined in advance, and determines whether or not an abnormal current exceeding the allowable current value is generated. This determination process is executed for each functional block.
 ステップS142において、異常電流が検出された機能ブロックが無いと判定した場合はステップS141の異常電流検出処理を継続して実行する。
 一方、ステップS142において、異常電流が検出された機能ブロックが1つでも検出された場合は、ステップS143に進む。
If it is determined in step S142 that there is no functional block in which the abnormal current is detected, the abnormal current detection process of step S141 is continuously executed.
On the other hand, if at least one functional block in which the abnormal current is detected is detected in step S142, the process proceeds to step S143.
 異常電流が検出された機能ブロックが1つでも検出された場合、機能状態遷移制御部142は、ステップS143において、表示部に機器異常検出メッセージを表示する。
 例えば、図7(a)に示すように、異常発生部分を示す画像に併せたメッセージ出力を実行し、ユーザによって確認されたこと検出するためのOKボタンを表示する。
 ユーザがOKボタンを操作すると、画面を図7(b)に示す表示に切り替え、ユーザにサービスセンターへの連絡を行わせるためのメッセージを表示する。
When even one functional block in which the abnormal current is detected is detected, the functional state transition control unit 142 displays a device abnormality detection message on the display unit in step S143.
For example, as shown in FIG. 7A, a message output combined with an image showing an abnormality occurrence portion is executed, and an OK button for detecting that the abnormality has been confirmed by the user is displayed.
When the user operates the OK button, the screen is switched to the display shown in FIG. 7B, and a message for causing the user to contact the service center is displayed.
 なお、このメッセージ表示処理に併せて、機能状態遷移制御部142は、異常電流の発生している機能ブロックへの電力供給を停止させる処理を実行する。具体的には、DC/DCコンバータ部110に対して、DC/DCコンバータ動作指示情報を出力して、異常電流の発生している機能ブロックへの電力供給を停止させる。 In addition to this message display process, the functional state transition control unit 142 executes a process of stopping the power supply to the functional block in which the abnormal current is generated. Specifically, the DC / DC converter operation instruction information is output to the DC / DC converter unit 110 to stop the power supply to the functional block in which the abnormal current is generated.
 以上、本開示の撮像装置100が実行する処理の全体シーケンスについて説明した。
 以下、個別の様々な事象発生時の具体的処理例について、図8以下のフローチャートを参照して説明する。
The entire sequence of processing executed by the imaging apparatus 100 of the present disclosure has been described above.
Hereinafter, specific processing examples when various individual events occur will be described with reference to the flowcharts shown in FIG. 8 and below.
  [3.様々な事象発生時の個別的具体例について]
 以下においては、様々な事象発生時の個別的具体例について説明する。
 以下の各処理例について説明する。
 (1)ユーザ指示に基づいて電力削減処理を実行する処理例
 (2)電池残量検知部146の電池残量検知結果に基づいて電力削減処理を実行する処理例
 (3)残撮影可能枚数・残使用時間計算部143の算出結果を表示部に表示する処理例
 (4)温度検知部141の温度検知結果に基づいて電力削減処理を実行する処理例
 (5)温度検知部141の温度検知結果に基づいて表示部に警告表示を実行する処理例
 (6)温度検知部141の温度検知結果と、電池残量検知部146の電池残量検知結果に基づいて電力削減処理を実行する処理例
 (7)温度検知部141の温度検知結果と、電池残量検知部146の電池残量検知結果とに基づいて、残撮影可能枚数・残使用時間計算部143の算出結果を表示部に表示する処理例
 (8)電力計算部145の機能ブロック単位の電力検出結果に基づいて警告表示を表示部に表示する処理例
 (9)各種検出結果を情報記憶部144に記録する処理例
[3. About individual concrete examples when various events occur]
In the following, individual specific examples when various events occur will be described.
Each of the following processing examples will be described.
(1) Example of processing to execute power reduction processing based on user instructions (2) Example of processing to execute power reduction processing based on the battery level detection result of battery level detection unit 146 (3) Number of remaining shots Processing example of displaying the calculation result of the remaining usage time calculation unit 143 on the display unit (4) Processing example of executing power reduction processing based on the temperature detection result of the temperature detection unit 141 (5) Temperature detection result of the temperature detection unit 141 Example of processing to execute a warning display on the display unit based on (6) Example of processing to execute power reduction processing based on the temperature detection result of the temperature detection unit 141 and the battery level detection result of the battery level detection unit 146 ( 7) Processing to display the calculation result of the remaining number of possible shots / remaining usage time calculation unit 143 on the display unit based on the temperature detection result of the temperature detection unit 141 and the battery remaining amount detection result of the battery remaining amount detection unit 146. Example (8) Processing example of displaying a warning display on the display unit based on the power detection result of each functional block of the power calculation unit 145 (9) Processing example of recording various detection results in the information storage unit 144
 (1)ユーザ指示に基づいて電力削減処理を実行する処理例
 まず、ユーザ指示に基づいて電力削減処理を実行する処理例について説明する。
 この処理例は、図8に太線で示すルートに従って実行される。
(1) Example of processing for executing power reduction processing based on user instructions First, a processing example for executing power reduction processing based on user instructions will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 すなわち、まず、ステップS101において、機能ブロック単位の電流値を検出する。この処理は、図1に示すDC/DCコンバータ部110内の各機能ブロック121~123対応の個別のDC/DCコンバータ111,113,115に設定されている機能ブロック対応の電流検出部112,114,116において実行される。 That is, first, in step S101, the current value in units of functional blocks is detected. This process is performed by the current detection units 112, 114 corresponding to the functional blocks set in the individual DC / DC converters 111, 113, 115 corresponding to the functional blocks 121 to 123 in the DC / DC converter unit 110 shown in FIG. , 116.
 次に、ステップS102において、機能ブロック単位の電力値を算出する。
 この処理は、図1に示すデータ処理部120の電力計算部145が実行する。
Next, in step S102, the power value for each functional block is calculated.
This process is executed by the power calculation unit 145 of the data processing unit 120 shown in FIG.
 次に、ステップS103において、機器状態遷移制御部142が機器動作状態を把握する。具体的には、
 (a)温度検知部141から機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 機器状態遷移制御部142は、これらの情報と、さらに情報記憶部144に格納された情報に基づいて、機器(本例では撮像装置)の動作状態を把握する。
Next, in step S103, the device state transition control unit 142 grasps the device operating state. In particular,
(A) Temperature information for each functional block from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
The device state transition control unit 142 grasps the operating state of the device (imaging device in this example) based on these information and the information stored in the information storage unit 144.
 その後、ステップS111において、機器状態遷移制御部142がユーザからの電力削減指示の入力を検知したか否かを判定し、検出した場合は、ユーザ指示に従った電力削減処理を実行する。
 一方、ステップS111において、機器状態遷移制御部142がユーザからの電力削減指示の入力を検知していない場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
After that, in step S111, it is determined whether or not the device state transition control unit 142 has detected the input of the power reduction instruction from the user, and if so, the power reduction process according to the user instruction is executed.
On the other hand, if the device state transition control unit 142 does not detect the input of the power reduction instruction from the user in step S111, the process returns to step S101 and the processes of step S101 and subsequent steps are repeated.
 (2)電池残量検知部146の電池残量検知結果に基づいて電力削減処理を実行する処理例
 次に、電池残量検知部146の電池残量検知結果に基づいて電力削減処理を実行する処理例について説明する。
 この処理例は、図9に太線で示すルートに従って実行される。
(2) Example of processing for executing power reduction processing based on the battery level detection result of the battery level detection unit 146 Next, power reduction processing is executed based on the battery level detection result of the battery level detection unit 146. A processing example will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS121において、電池残量検知部146が電池残量情報を取得し、機器状態遷移制御部142が、ステップS122において、電池残量が予め規定した規定値より小さいか否かを判定する。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the battery level detection unit 146 acquires the battery level information in step S121, and the device state transition control unit 142 obtains the battery level information in step S122. It is determined whether or not the remaining battery level is smaller than the predetermined value.
 電池残量が規定値より小さくない場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
 一方、電池残量が規定値より小さい場合は、ステップS112に進む。
 ステップS112では、機器状態遷移制御部142は電力削減処理を実行する。この場合の電力削減処理は、ユーザ指示に従った処理ではなく、動作モードを最適化する処理として実行される。
If the remaining battery level is not smaller than the specified value, the process returns to step S101 and the process of step S101 or less is repeated.
On the other hand, if the remaining battery level is smaller than the specified value, the process proceeds to step S112.
In step S112, the device state transition control unit 142 executes the power reduction process. The power reduction process in this case is executed not as a process according to the user instruction but as a process for optimizing the operation mode.
 (3)残撮影可能枚数・残使用時間計算部143の算出結果を表示部に表示する処理例
 次に、残撮影可能枚数・残使用時間計算部143の算出結果を表示部に表示する処理例について説明する。
 この処理例は、図10に太線で示すルートに従って実行される。
(3) Processing example of displaying the calculation result of the remaining shooting possible number / remaining usage time calculation unit 143 on the display unit Next, a processing example of displaying the calculation result of the remaining shooting possible number / remaining usage time calculation unit 143 on the display unit. Will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS121において、電池残量検知部146が電池残量情報を取得し、その後、ステップS123において、撮影可能枚数・残使用時間計算部143が残撮影可能枚数、残使用時間を算出する。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the battery remaining amount detection unit 146 acquires the battery remaining amount information in step S121, and then in step S123, the number of possible shots / remaining use The time calculation unit 143 calculates the number of remaining shots and the remaining usage time.
 前述したように、撮影可能枚数・残使用時間計算部143は、機器状態遷移制御部142が取得した電池残量や各機能ブロックにおける電力消費量等の情報を利用して、撮像装置100において実行可能な撮影可能枚数や残使用時間を計算する。この計算結果は、機器状態遷移制御部142に入力される。 As described above, the recordable number / remaining usage time calculation unit 143 is executed by the image pickup apparatus 100 by using the information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block. Calculate the number of possible shots and the remaining usage time. This calculation result is input to the device state transition control unit 142.
 機器状態遷移制御部142は、その後、ステップS124において、撮影可能枚数・残使用時間計算部143が算出した撮影可能枚数・残使用時間を表示部に表示する。
 例えば、図4に示すような表示データが撮像装置100の表示部に表示される。
 その後、ステップS101に戻り、ステップS101以下の処理を繰り返す。
After that, in step S124, the device state transition control unit 142 displays the number of recordable sheets / remaining use time calculated by the recordable number / remaining use time calculation unit 143 on the display unit.
For example, the display data as shown in FIG. 4 is displayed on the display unit of the image pickup apparatus 100.
After that, the process returns to step S101 and the processes of step S101 and subsequent steps are repeated.
 (4)温度検知部141の温度検知結果に基づいて電力削減処理を実行する処理例
 次に、温度検知部141の温度検知結果に基づいて電力削減処理を実行する処理例について説明する。
 この処理例は、図11に太線で示すルートに従って実行される。
(4) Example of processing for executing power reduction processing based on the temperature detection result of temperature detection unit 141 Next, a processing example for executing power reduction processing based on the temperature detection result of temperature detection unit 141 will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS131において、温度情報を取得し、機内温度上昇の予測処理を実行する。
 この処理は、温度検知部141と、機器状態遷移制御部142において実行される。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed.
This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
 先に図1を参照して説明したように、温度検知部141は、各機能ブロック121~123に装着された温度検出部131~133の検出した機能ブロック単位の温度情報と、温度検出部170の検出した温度情報を入力し、この入力温度情報を機器状態遷移制御部142に転送する。 As described above with reference to FIG. 1, the temperature detection unit 141 includes the temperature information of each functional block detected by the temperature detection units 131 to 133 mounted on the functional blocks 121 to 123, and the temperature detection unit 170. The temperature information detected by is input, and this input temperature information is transferred to the device state transition control unit 142.
 機器状態遷移制御部142は、これらの入力温度情報に基づいて、予め規定されたアルゴリズムに従った温度上昇予測を実行する。
 この温度上昇予測は、各機能ブロック単位、および機器全体単位で実行する。
The device state transition control unit 142 executes temperature rise prediction according to a predetermined algorithm based on these input temperature information.
This temperature rise prediction is performed for each functional block and for the entire device.
 次に機器状態遷移制御部142は、ステップS132において、ステップS131で算出情報に基づいて、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いか否かを判定する。
 規定時間より短くないと判定した場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
Next, in step S132, the device state transition control unit 142 determines whether or not the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time based on the calculation information in step S131. ..
If it is determined that the time is not shorter than the specified time, the process returns to step S101 and the process of step S101 or less is repeated.
 一方、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いと判定した場合は、ステップS112に進み、ステップS112の処理、すなわち電力削減処理を実行する。 On the other hand, if it is determined that the predicted time until the predetermined temperature (allowable temperature upper limit) is reached is shorter than the predetermined time, the process proceeds to step S112, and the process of step S112, that is, the power reduction process is executed.
 (5)温度検知部141の温度検知結果に基づいて表示部に警告表示を実行する処理例
 次に、温度検知部141の温度検知結果に基づいて電力削減処理を実行する処理例について説明する。
 この処理例は、図12に太線で示すルートに従って実行される。
(5) Example of processing for executing a warning display on the display unit based on the temperature detection result of the temperature detection unit 141 Next, an example of processing for executing power reduction processing based on the temperature detection result of the temperature detection unit 141 will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS131において、温度情報を取得し、機内温度上昇の予測処理を実行する。
 この処理は、温度検知部141と、機器状態遷移制御部142において実行される。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed.
This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
 先に図1を参照して説明したように、温度検知部141は、各機能ブロック121~123に装着された温度検出部131~133の検出した機能ブロック単位の温度情報と、温度検出部170の検出した温度情報を入力し、この入力温度情報を機器状態遷移制御部142に転送する。 As described above with reference to FIG. 1, the temperature detection unit 141 includes the temperature information of each functional block detected by the temperature detection units 131 to 133 mounted on the functional blocks 121 to 123, and the temperature detection unit 170. The detected temperature information is input, and this input temperature information is transferred to the device state transition control unit 142.
 機器状態遷移制御部142は、これらの入力温度情報に基づいて、予め規定されたアルゴリズムに従った温度上昇予測を実行する。
 この温度上昇予測は、各機能ブロック単位、および機器全体単位で実行する。
The device state transition control unit 142 executes temperature rise prediction according to a predetermined algorithm based on these input temperature information.
This temperature rise prediction is performed for each functional block and for the entire device.
 次に機器状態遷移制御部142は、ステップS132において、ステップS131で算出情報に基づいて、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いか否かを判定する。
 規定時間より短くないと判定した場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
Next, in step S132, the device state transition control unit 142 determines whether or not the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time based on the calculation information in step S131. ..
If it is determined that the time is not shorter than the specified time, the process returns to step S101 and the process of step S101 or less is repeated.
 一方、予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いと判定した場合は、ステップS133に進み、ステップS133の処理を実行する。 On the other hand, if it is determined that the predicted time until the predetermined temperature (allowable temperature upper limit) is reached is shorter than the predetermined time, the process proceeds to step S133 and the process of step S133 is executed.
 予め規定した規定温度(許容温度上限)に達するまでの予測時間が既定時間より短いと判定した場合は、機器状態遷移制御部142は、ステップS133において、表示部に機器状態情報、具体的には温度上昇警告を表示する。
 具体的には、例えば図6に示すような警告表示を行う。
When it is determined that the predicted time until reaching the predetermined temperature (allowable temperature upper limit) is shorter than the predetermined time, the device state transition control unit 142 displays the device state information, specifically, the device state information on the display unit in step S133. Display a temperature rise warning.
Specifically, for example, a warning is displayed as shown in FIG.
 (6)温度検知部141の温度検知結果と、電池残量検知部146の電池残量検知結果に基づいて電力削減処理を実行する処理例
 次に、温度検知部141の温度検知結果と、電池残量検知部146の電池残量検知結果に基づいて電力削減処理を実行する処理例について説明する。
 この処理例は、図13に太線で示すルートに従って実行される。
(6) Example of processing for executing power reduction processing based on the temperature detection result of the temperature detection unit 141 and the battery remaining amount detection result of the battery remaining amount detection unit 146 Next, the temperature detection result of the temperature detection unit 141 and the battery An example of processing for executing the power reduction process based on the battery remaining amount detection result of the remaining battery level detection unit 146 will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS131において、温度情報を取得し、機内温度上昇の予測処理を実行する。
 この処理は、温度検知部141と、機器状態遷移制御部142において実行される。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed.
This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
 その後、ステップS121の処理を実行する。
 なお、前述したように、ステップS121の処理と、ステップS131の処理は並列に実行される処理である。本処理例では、便宜的にステップS131の後にステップS121の処理が実行されると仮定して説明する。図13にはステップS131からステップS121への接続線を点線で示している。
After that, the process of step S121 is executed.
As described above, the process of step S121 and the process of step S131 are processes executed in parallel. In this processing example, it is assumed that the processing of step S121 is executed after step S131 for convenience. In FIG. 13, the connection line from step S131 to step S121 is shown by a dotted line.
 ステップS121では、電池残量検知部146が電池残量情報を取得し、機器状態遷移制御部142が、ステップS122において、電池残量が予め規定した規定値より小さいか否かを判定する。 In step S121, the battery remaining amount detecting unit 146 acquires the battery remaining amount information, and the device state transition control unit 142 determines in step S122 whether or not the battery remaining amount is smaller than the predetermined value specified in advance.
 電池残量が規定値より小さくない場合は、ステップS101に戻り、ステップS101以下の処理を繰り返す。
 一方、電池残量が規定値より小さい場合は、ステップS112に進む。
 ステップS112では、機器状態遷移制御部142は電力削減処理を実行する。この場合の電力削減処理は、ユーザ指示に従った処理ではなく、動作モードを最適化する処理として実行される。
If the remaining battery level is not smaller than the specified value, the process returns to step S101 and the process of step S101 or less is repeated.
On the other hand, if the remaining battery level is smaller than the specified value, the process proceeds to step S112.
In step S112, the device state transition control unit 142 executes the power reduction process. The power reduction process in this case is executed not as a process according to the user instruction but as a process for optimizing the operation mode.
 (7)温度検知部141の温度検知結果と、電池残量検知部146の電池残量検知結果とに基づいて、残撮影可能枚数・残使用時間計算部143の算出結果を表示部に表示する処理例
 次に、温度検知部141の温度検知結果と、電池残量検知部146の電池残量検知結果とに基づいて、残撮影可能枚数・残使用時間計算部143の算出結果を表示部に表示する処理例について説明する。
 この処理例は、図14に太線で示すルートに従って実行される。
(7) Based on the temperature detection result of the temperature detection unit 141 and the battery remaining amount detection result of the battery remaining amount detection unit 146, the calculation result of the remaining shooting number / remaining usage time calculation unit 143 is displayed on the display unit. Processing example Next, based on the temperature detection result of the temperature detection unit 141 and the battery remaining amount detection result of the battery remaining amount detection unit 146, the calculation result of the remaining number of possible shots / remaining usage time calculation unit 143 is displayed on the display unit. An example of processing to be displayed will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS131において、温度情報を取得し、機内温度上昇の予測処理を実行する。
 この処理は、温度検知部141と、機器状態遷移制御部142において実行される。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the temperature information is acquired in step S131, and the prediction process of the temperature rise in the machine is executed.
This process is executed by the temperature detection unit 141 and the device state transition control unit 142.
 その後、ステップS121の処理を実行する。
 なお、前述したように、ステップS121の処理と、ステップS131の処理は並列に実行される処理である。本処理例では、便宜的にステップS131の後にステップS121の処理が実行されると仮定して説明する。図13にはステップS131からステップS121への接続線を点線で示している。
After that, the process of step S121 is executed.
As described above, the process of step S121 and the process of step S131 are processes executed in parallel. In this processing example, it is assumed that the processing of step S121 is executed after step S131 for convenience. In FIG. 13, the connection line from step S131 to step S121 is shown by a dotted line.
 ステップS121では、電池残量検知部146が電池残量情報を取得する。その後、ステップS123において、撮影可能枚数・残使用時間計算部143が残撮影可能枚数、残使用時間を算出する。 In step S121, the battery level detection unit 146 acquires the battery level information. After that, in step S123, the number of possible shots / remaining use time calculation unit 143 calculates the number of possible shots and the remaining use time.
 前述したように、撮影可能枚数・残使用時間計算部143は、機器状態遷移制御部142が取得した電池残量や各機能ブロックにおける電力消費量等の情報を利用して、撮像装置100において実行可能な撮影可能枚数や残使用時間を計算する。この計算結果は、機器状態遷移制御部142に入力される。 As described above, the recordable number / remaining usage time calculation unit 143 is executed by the image pickup apparatus 100 by using the information such as the remaining battery level acquired by the device state transition control unit 142 and the power consumption in each functional block. Calculate the number of possible shots and the remaining usage time. This calculation result is input to the device state transition control unit 142.
 機器状態遷移制御部142は、その後、ステップS124において、撮影可能枚数・残使用時間計算部143が算出した撮影可能枚数・残使用時間を表示部に表示する。
 例えば、図4に示すような表示データが撮像装置100の表示部に表示される。
 その後、ステップS101に戻り、ステップS101以下の処理を繰り返す。
After that, in step S124, the device state transition control unit 142 displays the number of recordable sheets / remaining use time calculated by the recordable number / remaining use time calculation unit 143 on the display unit.
For example, the display data as shown in FIG. 4 is displayed on the display unit of the image pickup apparatus 100.
After that, the process returns to step S101 and the processes of step S101 and subsequent steps are repeated.
 (8)電力計算部145の機能ブロック単位の電力検出結果に基づいて警告表示を表示部に表示する処理例
 次に、電力計算部145の機能ブロック単位の電力検出結果に基づいて警告表示を表示部に表示する処理例について説明する。
 この処理例は、図15に太線で示すルートに従って実行される。
(8) Processing example of displaying a warning display on the display unit based on the power detection result of the functional block unit of the power calculation unit 145 Next, a warning display is displayed based on the power detection result of the functional block unit of the power calculation unit 145. An example of processing to be displayed in the section will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS141において、機能ブロック単位で異常電流の発生有無を判定する。この処理は、図1に示すデータ処理部120の電力計算部145が算出した各機能ブロック単位の電力量を入力した機器状態遷移制御部142が実行する。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, in step S141, it is determined whether or not an abnormal current is generated in units of functional blocks. This process is executed by the device state transition control unit 142 that inputs the electric energy of each functional block unit calculated by the power calculation unit 145 of the data processing unit 120 shown in FIG.
 前述したように、電流検出部112,114,116の検出した各機能ブロック121~123に対する供給電流量は、マルチプレクサ117を介してデータ処理部120の電力計算部145に入力され、電力計算部145において各機能ブロック121~123各々の消費電力量が算出され、算出値が機能状態遷移制御部142に入力される。 As described above, the amount of current supplied to each of the functional blocks 121 to 123 detected by the current detection units 112, 114, 116 is input to the power calculation unit 145 of the data processing unit 120 via the multiplexer 117, and the power calculation unit 145. The power consumption of each of the functional blocks 121 to 123 is calculated, and the calculated value is input to the functional state transition control unit 142.
 機能状態遷移制御部142は、各機能ブロック単位の電力量を予め規定された各機能ブロック単位の許容電力、電流値と比較し、許容電流値を超える異常電流の発生がないかを判定する。この判定処理は各機能ブロック単位で実行する。 The functional state transition control unit 142 compares the electric energy of each functional block unit with the allowable power and current value of each functional block unit defined in advance, and determines whether or not an abnormal current exceeding the allowable current value is generated. This determination process is executed for each functional block.
 ステップS142において、異常電流が検出された機能ブロックが無いと判定した場合はステップS141の異常電流検出処理を継続して実行する。
 一方、ステップS142において、異常電流が検出された機能ブロックが1つでも検出された場合は、ステップS143に進む。
If it is determined in step S142 that there is no functional block in which the abnormal current is detected, the abnormal current detection process of step S141 is continuously executed.
On the other hand, if at least one functional block in which the abnormal current is detected is detected in step S142, the process proceeds to step S143.
 異常電流が検出された機能ブロックが1つでも検出された場合、機能状態遷移制御部142は、ステップS143において、表示部に機器異常検出メッセージを表示する。
 例えば、図7(a)に示すように、異常発生部分を示す画像に併せたメッセージ出力を実行し、ユーザによって確認されたこと検出するためのOKボタンを表示する。
 ユーザがOKボタンを操作すると、画面を図7(b)に示す表示に切り替え、ユーザにサービスセンターへの連絡を行わせるためのメッセージを表示する。
When even one functional block in which the abnormal current is detected is detected, the functional state transition control unit 142 displays a device abnormality detection message on the display unit in step S143.
For example, as shown in FIG. 7A, a message output combined with an image showing an abnormality occurrence portion is executed, and an OK button for detecting that the abnormality has been confirmed by the user is displayed.
When the user operates the OK button, the screen is switched to the display shown in FIG. 7B, and a message for causing the user to contact the service center is displayed.
 なお、このメッセージ表示処理に併せて、機能状態遷移制御部142は、異常電流の発生している機能ブロックへの電力供給を停止させる処理を実行する。具体的には、DC/DCコンバータ部110に対して、DC/DCコンバータ動作指示情報を出力して、異常電流の発生している機能ブロックへの電力供給を停止させる。 In addition to this message display process, the functional state transition control unit 142 executes a process of stopping the power supply to the functional block in which the abnormal current is generated. Specifically, the DC / DC converter operation instruction information is output to the DC / DC converter unit 110 to stop the power supply to the functional block in which the abnormal current is generated.
 (9)各種検出結果を情報記憶部144に記録する処理例
 次に、各種検出結果を情報記憶部144に記録する処理例について説明する。
 この処理例は、図16に太線で示すルートに従って実行される。
(9) Example of Processing for Recording Various Detection Results in Information Storage Unit 144 Next, an example of processing for recording various detection results in Information Storage Unit 144 will be described.
This processing example is executed according to the route shown by the thick line in FIG.
 ステップS101~S103の処理は、図8を参照して説明した処理と同じ処理であるので説明を省略する。
 ステップS103における機器状態遷移制御部142による機器動作状態把握が完了した後、ステップS104において、電力値、電流値等を情報記憶部144に格納する処理を実行する。
Since the processes of steps S101 to S103 are the same processes as those described with reference to FIG. 8, the description thereof will be omitted.
After the device operation state grasp by the device state transition control unit 142 in step S103 is completed, the process of storing the power value, the current value, and the like in the information storage unit 144 is executed in step S104.
 この処理は、図1に示すデータ処理部120の機器状態遷移制御部142が実行する。機器状態遷移制御部142は、以下の各入力情報を情報記憶部144に格納する。
 (a)温度検知部141から機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 なお、これらの情報は、逐次、更新され、最新情報が随時リアルタイムで、情報記憶部144に時間情報に対応付けられて記録される。
This process is executed by the device state transition control unit 142 of the data processing unit 120 shown in FIG. The device state transition control unit 142 stores the following input information in the information storage unit 144.
(A) Temperature information for each functional block from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
These pieces of information are sequentially updated, and the latest information is recorded in the information storage unit 144 in real time in association with the time information.
  [4.省電力モードの設定処理例について]
 次に、本開示の撮像装置100が実行する省電力モードの設定処理例について説明する。
[4. About power saving mode setting processing example]
Next, an example of setting processing of the power saving mode executed by the imaging device 100 of the present disclosure will be described.
 図17は、省電力モードの設定処理シーケンスを説明するフローチャートである。
 図3に示すフローチャートにおいて説明したステップS112における電力削減処理は、ステップS111のユーザ指示による処理の他、以下の場合にも実行される。
 ステップS122において電池残量が規定値未満と判定した場合、
 ステップS132において、規定温度に達するまでの時間が既定時間より短いと判定された場合、
 これらの各場合に電力削減処理が実行される。
FIG. 17 is a flowchart illustrating a power saving mode setting processing sequence.
The power reduction process in step S112 described in the flowchart shown in FIG. 3 is executed in the following cases in addition to the process according to the user instruction in step S111.
When it is determined in step S122 that the remaining battery level is less than the specified value,
When it is determined in step S132 that the time required to reach the specified temperature is shorter than the predetermined time,
Power reduction processing is performed in each of these cases.
 これらの各場合に、どのような電力削減処理を実行するかについては、予め、ユーザが決定しておくことができる。
 この事前設定処理は、図17に示すフローに従って実行される。
 図17に示すフローの各ステップの処理について説明する。
In each of these cases, the user can determine in advance what kind of power reduction processing should be executed.
This preset processing is executed according to the flow shown in FIG.
The processing of each step of the flow shown in FIG. 17 will be described.
  (ステップS201)
 まず、ユーザは、ステップS201において、省電力モード設定画面を表示部に表示させる。
(Step S201)
First, in step S201, the user causes the display unit to display the power saving mode setting screen.
  (ステップS202)
 ステップS201の処理に従い、表示部にはステップS202に示すような設定画面が表示される。
(Step S202)
According to the process of step S201, the setting screen as shown in step S202 is displayed on the display unit.
 すなわち、省電力モード選択画面であり、ユーザは以下のいずれかを選択することができる。
 (1)推奨モード
 (2)ユーザ選択モード
 (3)動作モードに最適化
 (4)使用しない
That is, it is a power saving mode selection screen, and the user can select any of the following.
(1) Recommended mode (2) User selection mode (3) Optimized for operation mode (4) Not used
 ユーザが、(1)推奨モードを選択した場合はステップS211に進む。(2)ユーザ選択モードを選択した場合はステップS212に進む。(3)動作モードに最適化を選択した場合はステップS213に進む。(4)使用しないを選択した場合はステップS201に戻る。 If the user selects (1) the recommended mode, the process proceeds to step S211. (2) When the user selection mode is selected, the process proceeds to step S212. (3) If optimization is selected for the operation mode, the process proceeds to step S213. (4) When not used is selected, the process returns to step S201.
  (ステップS211)
 ステップS211に示す表示データは、ユーザがステップS202において推奨モードを選択した場合の表示例である。
(Step S211)
The display data shown in step S211 is a display example when the user selects the recommended mode in step S202.
 この場合、表示部には、推奨モードにおいて実行される電力削減処理項目が表示される。
 図に示す例では、
 (a)高負荷動作モード禁止
 (b)タッチパネル、近接センサ停止
 (c)通信停止(フライトモード)
 (d)動作速度抑制
 (e)表示画像品質抑制
 これらの電力削減処理項目が表示され、予めチェックされており、これらの全てが実行される設定であることが示されている。
 なお、この選択設定はユーザによって変更することはできない。
In this case, the display unit displays the power reduction processing items executed in the recommended mode.
In the example shown in the figure
(A) High load operation mode prohibited (b) Touch panel, proximity sensor stopped (c) Communication stopped (flight mode)
(D) Operation speed suppression (e) Display image quality suppression These power reduction processing items are displayed and checked in advance, indicating that all of these are settings to be executed.
Note that this selection setting cannot be changed by the user.
 この画面の決定ボタンを押すことで、推奨モードにおいて実行される処理が決定される(ステップS221~S222)。 By pressing the enter button on this screen, the process to be executed in the recommended mode is determined (steps S221 to S222).
  (ステップS212)
 ステップS212に示す表示データは、ユーザがステップS202においてユーザ選択モードを選択した場合の表示例である。
(Step S212)
The display data shown in step S212 is a display example when the user selects the user selection mode in step S202.
 この場合、表示部には、ユーザ選択モードにおいて実行可能な電力削減処理項目が表示される。
 図に示す例では、
 (a)高負荷動作モード禁止
 (b)タッチパネル、近接センサ停止
 (c)通信停止(フライトモード)
 (d)動作速度抑制
 (e)表示画像品質抑制
 これらの電力削減処理項目が表示され、ユーザは、チェックの入力が可能であり、ユーザ設定の省電力モードで実行する処理を選択することができる。
In this case, the power reduction processing items that can be executed in the user selection mode are displayed on the display unit.
In the example shown in the figure
(A) High load operation mode prohibited (b) Touch panel, proximity sensor stopped (c) Communication stopped (flight mode)
(D) Operation speed suppression (e) Display image quality suppression These power reduction processing items are displayed, the user can input a check, and can select the processing to be executed in the power saving mode set by the user. ..
 ユーザは、所定の項目をチェックし、この画面の決定ボタンを押すことで、ユーザ選択モードにおいて実行される処理が決定される(ステップS221~S222)。 The user checks a predetermined item and presses the enter button on this screen to determine the process to be executed in the user selection mode (steps S221 to S222).
  (ステップS213)
 ステップS213に示す表示データは、ユーザがステップS202において動作モードに最適化を選択した場合の表示例である。
(Step S213)
The display data shown in step S213 is a display example when the user selects optimization for the operation mode in step S202.
 この場合、表示部には、動作モードに最適化される設定で実行される電力削減処理項目が表示される。
 図に示す例では、
 (a)高負荷動作モード禁止
 (b)タッチパネル、近接センサ停止
 (c)通信停止(フライトモード)
 (d)動作速度抑制
 (e)表示画像品質抑制
 これらの電力削減処理項目が表示され、予めチェックされた項目が存在し、チェックされた項目のみが実行される設定であることが示されている。
 なお、この選択設定はユーザによって変更することはできない。
In this case, the display unit displays the power reduction processing items executed with the settings optimized for the operation mode.
In the example shown in the figure
(A) High load operation mode prohibited (b) Touch panel, proximity sensor stopped (c) Communication stopped (flight mode)
(D) Operation speed suppression (e) Display image quality suppression These power reduction processing items are displayed, and it is shown that there are pre-checked items and only the checked items are executed. ..
Note that this selection setting cannot be changed by the user.
 この画面の決定ボタンを押すことで、動作モードに最適化される設定で実行される処理が決定される(ステップS221~S222)。 By pressing the enter button on this screen, the process to be executed with the settings optimized for the operation mode is determined (steps S221 to S222).
  [5.その他の実施例について]
 次に、その他の実施例について説明する。
 上述したように、本開示の撮像装置100は、機器状態遷移制御部142を有し、機器状態遷移制御部142が、リアルタイムで入力される各情報、すなわち、
 (a)温度検知部141から入力する機能ブロック単位の温度情報と、温度検出部170の検出した温度情報、
 (b)撮影可能枚数・残使用時間計算部143が計算した撮影可能枚数・残使用時間情報、
 (c)電力計算部145から入力するた各機能ブロック単位の電力量、
 (d)電池残量検知部146から入力する電池101の残量、
 これらの入力情報に基づいて、機器状態を遷移させる制御を行う。
 さらにこれらの情報は、情報記憶部144に記録される。
[5. About other examples]
Next, other examples will be described.
As described above, the imaging device 100 of the present disclosure includes the device state transition control unit 142, and each information input by the device state transition control unit 142 in real time, that is,
(A) Temperature information for each functional block input from the temperature detection unit 141 and temperature information detected by the temperature detection unit 170,
(B) Number of shots / remaining use time information, calculated by the calculation unit 143,
(C) The amount of power for each functional block input from the power calculation unit 145,
(D) The remaining amount of the battery 101 input from the battery remaining amount detection unit 146,
Based on these input information, control is performed to transition the device state.
Further, these pieces of information are recorded in the information storage unit 144.
 さらに、撮像装置100は、通信部を介して、サーバと通信を実行し、上記の取得情報(a)~(d)をサーバに送信してサーバ内の記憶部に格納する構成としてもよい。
 例えば、撮像装置100は、ユーザ対応の時系列の機器状態情報をサーバに送信してサーバ内の記憶部に格納する。
Further, the image pickup apparatus 100 may be configured to execute communication with the server via the communication unit, transmit the acquired information (a) to (d) to the server, and store the acquired information (a) to (d) in the storage unit in the server.
For example, the imaging device 100 transmits time-series device status information corresponding to the user to the server and stores it in a storage unit in the server.
 この処理により、サーバは、多くのユーザの使用態様情報を蓄積することができる。
 サーバはこの蓄積情報に基づいて、多くのユーザの使い方に合わせた新たな機器動作遷移方法を生成し、次に開発される機種の動作として、今までよりもユーザの使い方に即した動作遷移方法を生成することが可能になる。また、同じ機種でも、ファームウェアアップデートを行った場合に、最適な動作遷移方法を機器に組み込むことが可能になる。
By this process, the server can accumulate usage mode information of many users.
Based on this accumulated information, the server generates a new device operation transition method that suits the usage of many users, and as the operation of the next model to be developed, the operation transition method that is more suitable for the user's usage than before. Can be generated. In addition, even with the same model, when the firmware is updated, the optimum operation transition method can be incorporated into the device.
 なお、撮像装置100が上記の取得情報(a)~(d)を格納する記憶手段は、例えば、SDカードのような内蔵型の情報記録装置、ハードディスクドライブやソリッドステートドライブのような外部の情報記録装置等、様々な装置が利用できる。
 これらの記憶手段に記録された情報を、インターネットのようなネットワークを介してサーバに送信する。なお、この送信はユーザの許諾に応じて実行する構成とするのが好ましい。
The storage means in which the imaging device 100 stores the acquired information (a) to (d) is, for example, a built-in information recording device such as an SD card, or external information such as a hard disk drive or a solid state drive. Various devices such as a recording device can be used.
The information recorded in these storage means is transmitted to the server via a network such as the Internet. It is preferable that this transmission is executed according to the permission of the user.
 また、本開示の装置では、機器状態遷移制御部142が、電力計算部145から入力するた各機能ブロック単位の電力量に基づいて、各機能ブロックで異常電流が発生しているか否かを判定することができる。
 さらに、機器状態遷移制御部142は、取得した各機能ブロック単位の負荷電流情報に基づいて、予め情報記憶部144に保存された異常電流と判定する異常電流判定値(上限値)を補正するといった処理も可能である。
Further, in the apparatus of the present disclosure, the device state transition control unit 142 determines whether or not an abnormal current is generated in each functional block based on the electric energy of each functional block input from the power calculation unit 145. can do.
Further, the device state transition control unit 142 corrects an abnormal current determination value (upper limit value) for determining an abnormal current stored in advance in the information storage unit 144 based on the acquired load current information for each functional block. Processing is also possible.
 異常電流判定値の補正処理を行うことで、個別の機器に最適化された異常電流判定値を生成することが可能になる。
 なお、異常電流判定値の補正は、電源系統毎に補正許容系統と補正非許容系統を設けてもよい。
By performing the correction processing of the abnormal current determination value, it becomes possible to generate the abnormal current determination value optimized for each device.
For the correction of the abnormal current determination value, a correction allowable system and a correction non-allowable system may be provided for each power supply system.
 また、異常電流判定値(上限値)は、大きくなる方向には補正しないといった制限を設けてもよい。
 例えば、比較的大きな電力が供給可能な電源系統では、異常電流判定値を大きくする補正を行った場合に、実際に機器に異常が発生した場合の電力損失が、当初の検出値の場合よりも大きくなるため、安全性に懸念が発生する。このような懸念を排除するために、異常電流判定値の補正を行わない電源系統(機能ブロック)を設けてもよい。
Further, the abnormal current determination value (upper limit value) may be limited so as not to be corrected in the increasing direction.
For example, in a power supply system that can supply a relatively large amount of power, the power loss when an abnormality actually occurs in the device when a correction is made to increase the abnormal current judgment value is greater than in the case of the initially detected value. As it grows larger, there are concerns about safety. In order to eliminate such concerns, a power supply system (functional block) that does not correct the abnormal current determination value may be provided.
 さらに、前述したように消費電力情報や負荷電流情報をサーバに集積することで、多くのユーザの使い方に合わせた新たな機器動作遷移手法を構築することが可能となる。これにより、例えば次に開発される機器の動作として、今までよりも機器の動作に適した新たな異常電流判定値を設定することが可能になる。また、同じ機種でも、ファームウェアアップデートを行った場合に、最適な異常電流判定値を機器に組み込むことが可能になる。 Furthermore, by accumulating power consumption information and load current information on the server as described above, it is possible to construct a new device operation transition method that suits the usage of many users. As a result, for example, as the operation of the device to be developed next, it becomes possible to set a new abnormal current determination value that is more suitable for the operation of the device than before. In addition, even with the same model, when the firmware is updated, the optimum abnormal current determination value can be incorporated into the device.
 また、情報記憶部144に、DC/DCコンバータ部110内の各機能ブロック対応の電流検出部112,114,116の検出ばらつき特性を保持し、この電流検出ばらつき特性を考慮して、検出電流値の補正を行って補正後の値に基づいて各各機能ブロック対応の電流や電力を高精度に算出する構成としてもよい。 Further, the information storage unit 144 holds the detection variation characteristics of the current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110, and the detected current value is taken into consideration in consideration of the current detection variation characteristics. The current and power corresponding to each functional block may be calculated with high accuracy based on the corrected value.
 次に、情報記憶部144に対する記録データの例について説明する。、
 情報記憶部144に対する記録データは例えば以下のようなデータとする。
 (1)ユーザ情報:登録ユーザ(複数のユーザを登録可能)、非登録ユーザ
 (2)日付、時刻情報:機器内に保存されているタイムゾーン、日付、時刻
 (3)電力状態情報:正常動作時、異常動作発生時の各機能ブロック単位の電力情報、
 (4)動作モード情報:
 (4a)静止画撮影モード:撮影モード(画質設定:高/中/低等)、ライブビュー動作時、画像キャプチャー時、画像データ保存時の各状態
 (4b)動画撮影モード:録画モード(FHD、4k動画等)、EE画表示動作時、動画記録時の各状態
Next, an example of recorded data for the information storage unit 144 will be described. ,
The recorded data for the information storage unit 144 is, for example, the following data.
(1) User information: Registered user (multiple users can be registered), non-registered user (2) Date, time information: Time zone, date, time saved in the device (3) Power status information: Normal operation Power information for each functional block when an abnormal operation occurs
(4) Operation mode information:
(4a) Still image shooting mode: Shooting mode (image quality setting: high / medium / low, etc.), live view operation, image capture, image data storage (4b) Movie shooting mode: recording mode (FHD, 4k video, etc.), EE image display operation, video recording
 (5)電源系統別負荷電流値:
 (5a)平均値:動作モード別平均値
 (5b)瞬時値:動作モード別の動作1周期分での瞬時電流値配列、及びピーク値
 (6)機器全体消費電力値:
 (6a)平均値:動作モード別平均値
 (6b)瞬時値:動作モード別、動作1周期分での瞬時電力値配列、及びピーク値
 (7)電源系統別消費電力値:
 (7a)平均値:動作モード別平均値
 (7b)瞬時値:動作モード別、動作1周期分での瞬時電力値配列、及びピーク値
 (8)各測定点毎の機内温度値:動作モード別、負荷電流情報及び消費電力情報を保存するタイミングでの温度値。
 (9)電池残量値:負荷電流情報及び消費電力情報を保存するタイミングでの電池残量値。
(5) Load current value for each power system:
(5a) Average value: Average value for each operation mode (5b) Instantaneous value: Instantaneous current value array and peak value for one operation cycle for each operation mode (6) Overall device power consumption value:
(6a) Average value: Average value for each operation mode (6b) Instantaneous value: Instantaneous power value array for one operation cycle and peak value for each operation mode (7) Power consumption value for each power supply system:
(7a) Average value: Average value for each operation mode (7b) Instantaneous value: For each operation mode, instantaneous power value array for one operation cycle, and peak value (8) In-flight temperature value for each measurement point: For each operation mode , Temperature value at the timing of saving load current information and power consumption information.
(9) Battery level: Battery level at the timing of saving load current information and power consumption information.
 これらの情報の全て、または複数項目の組み合わせを情報記憶部144に保存し、保存データを解析することで、最適な機器動作遷移方法や、最適な異常電流値設定値等を解析し実行することが可能になる。 All or a combination of multiple items of this information is stored in the information storage unit 144, and by analyzing the stored data, the optimum device operation transition method, the optimum abnormal current value set value, etc. are analyzed and executed. Becomes possible.
 なお、本開示の撮像装置100のDC/DCコンバータ部110は、DC/DCコンバータに既に内蔵されている機能を使用して、DC/DCコンバータ内の負荷電流を測定する構成としてもよい。
 昨今のDC/DCコンバータICでは、DC/DCコンバータの動作制御のために、IC内部を通る電流値を検出する回路を内蔵している。この回路を使用してIC内部を流れる電流を測定し、その値を平均化することで出力電流値と等価な電流値を求める構成としてもよい。
The DC / DC converter unit 110 of the imaging device 100 of the present disclosure may be configured to measure the load current in the DC / DC converter by using the function already built in the DC / DC converter.
Recent DC / DC converter ICs have a built-in circuit that detects the current value passing through the inside of the IC in order to control the operation of the DC / DC converter. This circuit may be used to measure the current flowing inside the IC and average the values to obtain a current value equivalent to the output current value.
  [6.IC(集積回路)構成例について]
 図1に示す本開示の撮像装置100は、各構成部を1つのIC(集積回路)として構成することができる。
 以下、複数のIC構成例について説明する。
[6. About IC (Integrated Circuit) Configuration Example]
In the imaging device 100 of the present disclosure shown in FIG. 1, each component can be configured as one IC (integrated circuit).
Hereinafter, a plurality of IC configuration examples will be described.
 図18に示す例は、DC/DCコンバータIC201と、電力計算処理IC202と、システムマイコンIC203の3つのICによって構成した例である。
 DC/DCコンバータIC201は、図1に示すDC/DCコンバータ部110内の各機能ブロック対応の電流検出部112,114,116を有するICである。
 電力計算処理IC202は、A/Dコンバータ、マルチプレクサ117、電力計算部145を有するICである。
 システムマイコンIC203は、機器状態遷移制御部142、温度検知部141、残撮影枚数、残使用時間計算部143、電池残量検知部146を有するICである。
The example shown in FIG. 18 is an example composed of three ICs: a DC / DC converter IC201, a power calculation processing IC202, and a system microcomputer IC203.
The DC / DC converter IC 201 is an IC having current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 shown in FIG.
The power calculation processing IC 202 is an IC having an A / D converter, a multiplexer 117, and a power calculation unit 145.
The system microcomputer IC 203 is an IC having a device state transition control unit 142, a temperature detection unit 141, a remaining number of shots, a remaining usage time calculation unit 143, and a battery remaining amount detection unit 146.
 このように3つの個別ICとすることで、DC/DCコンバータIC201を、アナログ電源用半導体プロセスを用いて製造することにより、アナログ特性向上を図ることができる。例えば機能ブロック毎に異なる温度特性を持つアナログ回路全体の温度特性をIC内でキャンセルするように設計することで、温度依存性の少ないDC/DCコンバータICを構成することができる。 By using the three individual ICs in this way, the analog characteristics can be improved by manufacturing the DC / DC converter IC201 using the semiconductor process for the analog power supply. For example, a DC / DC converter IC having less temperature dependence can be configured by designing the IC to cancel the temperature characteristics of the entire analog circuit having different temperature characteristics for each functional block.
 図19に示す例は、DC/DCコンバータIC201と、システムマイコンIC204の2つのICによって構成した例である。
 DC/DCコンバータIC201は、図1に示すDC/DCコンバータ部110内の各機能ブロック対応の電流検出部112,114,116を有するICである。
 システムマイコンIC204は、A/Dコンバータ、マルチプレクサ117、電力計算部145、機器状態遷移制御部142、温度検知部141、残撮影枚数、残使用時間計算部143、電池残量検知部146を有するICである。
The example shown in FIG. 19 is an example configured by two ICs, a DC / DC converter IC201 and a system microcomputer IC204.
The DC / DC converter IC 201 is an IC having current detection units 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 shown in FIG.
The system microcomputer IC204 is an IC having an A / D converter, a multiplexer 117, a power calculation unit 145, a device state transition control unit 142, a temperature detection unit 141, a remaining number of shots, a remaining usage time calculation unit 143, and a battery remaining amount detection unit 146. Is.
 この構成では、システムマイコンIC204が、複数系統の負荷電流値を同時並列で取得、演算することが可能となり、各機能ブロックの消費電力の高速判断が可能となり、動作速度の向上を図ることが可能となる。 In this configuration, the system microcomputer IC204 can acquire and calculate the load current values of a plurality of systems in parallel at the same time, and can judge the power consumption of each functional block at high speed, and can improve the operating speed. It becomes.
 図20に示す例は、DC/DCコンバータ集積型システムマイコンIC205の1つのICによって構成した例である。
 DC/DCコンバータ集積型システムマイコンIC205は、図1に示すDC/DCコンバータ部110内の各機能ブロック対応の電流検出部112,114,116の他、A/Dコンバータ、マルチプレクサ117、電力計算部145、機器状態遷移制御部142、温度検知部141、残撮影枚数、残使用時間計算部143、電池残量検知部146を有するICである。
The example shown in FIG. 20 is an example configured by one IC of the DC / DC converter integrated system microcomputer IC205.
The DC / DC converter integrated system microcomputer IC205 includes a current detection unit 112, 114, 116 corresponding to each functional block in the DC / DC converter unit 110 shown in FIG. 1, an A / D converter, a multiplexer 117, and a power calculation unit. It is an IC having 145, a device state transition control unit 142, a temperature detection unit 141, a remaining number of shots, a remaining usage time calculation unit 143, and a battery remaining amount detection unit 146.
 このように1つのICとすることで、複数系統の負荷電流値を同時並列で取得、演算することが可能となり、また基板上の配線パターン分の基板面積削減になるだけでなく、配線パターンや、負荷部品に依存する通信特性のばらつきもなくすことができる。 By using one IC in this way, it is possible to acquire and calculate the load current values of multiple systems in parallel at the same time, and not only the board area is reduced by the wiring pattern on the board, but also the wiring pattern and , It is possible to eliminate the variation in communication characteristics depending on the load component.
  [7.本開示の構成と処理による効果について]
 以上、説明した本開示の構成と処理による効果について説明する。
 本開示の構成によれば、多数の機能ブロック対応の電源系統を持つ撮像装置等の機器において、各系統(機能ブロック)に対して、電源の性能に影響なく、以下の効果を奏することができる。
 (1)リアルタイムに各機能ブロックの消費電力が取得できるため、機器の動作状態を元に、消費電力削減、性能向上、及び残撮影可能枚数や残使用時間の精度向上が図れる。
 (2)消費電力に起因する機器の温度上昇の予測により、温度上昇を抑制する機器動作に遷移させる制御が可能となる。また、電池残量のモニタリングにより、停止までの残使用時間や残撮影枚数を精度よくユーザに提示できるようになる。
 (3)機能ブロック毎に異常電流の有無を判断する構成であり、機器の故障発生の初期状態でもユーザに警告を通知する処理や、データの保存を完了させてから機器の動作を停止させることができる。
 (4)さらに、多数の個別の機器からの電力情報及び動作状態情報を収集することにより、将来的な携帯機器の性能向上に繋がる、機器の動作遷移方法の改善や、機器の保護機能の改善を行うことができる。
[7. Effect of the structure and processing of this disclosure]
The effects of the configuration and processing of the present disclosure described above will be described.
According to the configuration of the present disclosure, in a device such as an imaging device having a power supply system corresponding to a large number of functional blocks, the following effects can be obtained for each system (functional block) without affecting the performance of the power supply. ..
(1) Since the power consumption of each functional block can be acquired in real time, it is possible to reduce the power consumption, improve the performance, and improve the accuracy of the number of remaining shots and the remaining usage time based on the operating state of the device.
(2) By predicting the temperature rise of the device due to the power consumption, it is possible to control the transition to the device operation that suppresses the temperature rise. In addition, by monitoring the remaining battery level, it becomes possible to accurately present to the user the remaining usage time until the stop and the number of remaining shots.
(3) The configuration is such that the presence or absence of an abnormal current is determined for each functional block, and the process of notifying the user of a warning even in the initial state of device failure and the operation of the device are stopped after the data storage is completed. Can be done.
(4) Furthermore, by collecting power information and operation status information from a large number of individual devices, improvement of device operation transition methods and improvement of device protection functions will lead to future performance improvement of mobile devices. It can be performed.
  [8.本開示の構成のまとめ]
 以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
[8. Summary of the structure of this disclosure]
As described above, the examples of the present disclosure have been described in detail with reference to the specific examples. However, it is self-evident that those skilled in the art can modify or substitute the examples without departing from the gist of the present disclosure. That is, the present invention has been disclosed in the form of an example, and should not be construed in a limited manner. In order to judge the gist of this disclosure, the column of claims should be taken into consideration.
 なお、本明細書において開示した技術は、以下のような構成をとることができる。
 (1) 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる情報処理装置。
The technology disclosed in the present specification can have the following configuration.
(1) A power supply unit that supplies power to multiple functional blocks individually, and
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
An information processing device that transitions device states based on the power consumption of each of the plurality of functional blocks.
 (2) 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々に対して、個別の指示情報を出力して、各機能ブロックを個別に制御する(1)に記載の情報処理装置。
(2) The device state transition control unit is
The information processing apparatus according to (1), wherein individual instruction information is output for each of the plurality of functional blocks to control each functional block individually.
 (3) 前記情報処理装置は、
 前記複数の機能ブロック各々の温度を検出する温度検出部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の温度に基づく機器状態遷移制御を実行する(1)または(2)に記載の情報処理装置。
(3) The information processing device is
It has a temperature detection unit that detects the temperature of each of the plurality of functional blocks.
The device state transition control unit
The information processing apparatus according to (1) or (2), which executes device state transition control based on the temperature of each of the plurality of functional blocks.
 (4) 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の温度状態に応じて、表示部に温度上昇を示す警告表示を実行する(3)に記載の情報処理装置。
(4) The device state transition control unit is
The information processing apparatus according to (3), which executes a warning display indicating a temperature rise on the display unit according to the temperature state of each of the plurality of functional blocks.
 (5) 前記情報処理装置は、
 電力供給源である電池の残量を検出する電池残量検出部を有し、
 前記機器状態遷移制御部は、
 電池残量に基づく機器状態遷移制御を実行する(1)~(4)いずれかに記載の情報処理装置。
(5) The information processing device is
It has a battery level detector that detects the remaining battery level, which is the power supply source.
The device state transition control unit
The information processing device according to any one of (1) to (4), which executes device state transition control based on the remaining battery level.
 (6) 前記情報処理装置は、
 前記情報処理装置の残使用可能時間を計算する残使用時間計算部を有し、
 前記機器状態遷移制御部は、
 残使用可能時間に基づく機器状態遷移制御を実行する(1)~(5)いずれかに記載の情報処理装置。
(6) The information processing device is
It has a remaining usage time calculation unit that calculates the remaining usable time of the information processing device.
The device state transition control unit
The information processing apparatus according to any one of (1) to (5), which executes device state transition control based on the remaining usable time.
 (7) 前記情報処理装置は撮像装置であり、残撮影可能枚数を計算する残撮影可能枚数計算部を有し、
 前記機器状態遷移制御部は、
 残撮影可能枚数に基づく機器状態遷移制御を実行する(1)~(6)いずれかに記載の情報処理装置。
(7) The information processing device is an imaging device, and has a remaining shooting possible number calculation unit for calculating the remaining shooting possible number.
The device state transition control unit
The information processing apparatus according to any one of (1) to (6), which executes device state transition control based on the number of remaining shots.
 (8) 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の電流値が、予め規定した異常電流値に達したか否かを判定し、異常電流値に達した機能ブロックが検出された場合、表示部に機器異常を示す警告表示を実行する(1)~(7)いずれかに記載の情報処理装置。
(8) The device state transition control unit is
It is determined whether or not the current value of each of the plurality of functional blocks has reached a predetermined abnormal current value, and when a functional block having reached the abnormal current value is detected, a warning display indicating a device abnormality is displayed on the display unit. The information processing apparatus according to any one of (1) to (7).
 (9) 前記電力供給部は、
 前記複数の機能ブロックに対して個別に電力供給を行う複数のDC/DCコンバータを有し、
 前記機器状態遷移制御部は、
 前記複数のDC/DCコンバータの各々に対する制御信号を出力する(1)~(8)いずれかに記載の情報処理装置。
(9) The power supply unit is
It has a plurality of DC / DC converters that individually supply power to the plurality of functional blocks.
The device state transition control unit
The information processing apparatus according to any one of (1) to (8), which outputs a control signal for each of the plurality of DC / DC converters.
 (10) 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力情報を含む機器状態情報を情報記憶部に記録する(1)~(9)いずれかに記載の情報処理装置。
(10) The device state transition control unit is
The information processing device according to any one of (1) to (9), which records device state information including power consumption information of each of the plurality of functional blocks in an information storage unit.
 (11) 前記機器状態遷移制御部は、
 前記機器状態情報を時間対応の情報として前記情報記憶部に記録する(10)に記載の情報処理装置。
(11) The device state transition control unit is
The information processing apparatus according to (10), which records the device state information in the information storage unit as time-corresponding information.
 (12) 前記機器状態遷移制御部は、
 前記機器状態情報をユーザ対応の情報として前記情報記憶部に記録する(10)または(11)に記載の情報処理装置。
(12) The device state transition control unit is
The information processing device according to (10) or (11), which records the device state information in the information storage unit as user-corresponding information.
 (13) 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力情報を含む機器状態情報を外部サーバに送信して、サーバ内の記憶部に記録させる(1)~(12)いずれかに記載の情報処理装置。
(13) The device state transition control unit is
The information processing device according to any one of (1) to (12), wherein device status information including power consumption information of each of the plurality of functional blocks is transmitted to an external server and recorded in a storage unit in the server.
 (14) 前記情報処理装置は、
 前記電力供給部を構成するDC/DCコンバータを有するICと、
 前記機器状態遷移制御部を有するICと、
 前記複数の機能ブロック各々の消費電力を算出する電力算出回路を有するICを有する(1)~(13)いずれかに記載の情報処理装置。
(14) The information processing device is
An IC having a DC / DC converter constituting the power supply unit and
An IC having the device state transition control unit and
The information processing apparatus according to any one of (1) to (13), which has an IC having a power calculation circuit for calculating the power consumption of each of the plurality of functional blocks.
 (15) 前記情報処理装置は、
 前記電力供給部を構成するDC/DCコンバータと、前記機器状態遷移制御部と、前記複数の機能ブロック各々の消費電力を算出する電力算出回路を1つのICとした構成を有する(1)~(14)いずれかに記載の情報処理装置。
(15) The information processing device is
The DC / DC converter constituting the power supply unit, the device state transition control unit, and the power calculation circuit for calculating the power consumption of each of the plurality of functional blocks are configured as one IC (1) to (1). 14) The information processing apparatus according to any one.
 (16) 情報処理装置と、該情報処理装置と通信可能なサーバを有する情報処理システムであり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力を含む機器状態に基づいて機器状態を遷移させる制御を実行するとともに、時系列の機器状態情報を前記サーバに送信する処理を実行し、
 前記サーバは、
 前記情報処理装置から受信する時系列の機器状態情報をサーバ内の記憶部に格納する情報処理システム。
(16) An information processing system having an information processing device and a server capable of communicating with the information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
The server
An information processing system that stores time-series device status information received from the information processing device in a storage unit in the server.
 (17) 前記機器状態遷移制御部は、
 前記時系列の機器状態情報をユーザ対応の情報として前記サーバに送信し、
 前記サーバは、
 前記情報処理装置から受信するユーザ対応の時系列の機器状態情報をサーバ内の記憶部に格納する(16)に記載の情報処理システム。
(17) The device state transition control unit is
The time-series device status information is transmitted to the server as user-corresponding information,
The server
The information processing system according to (16), which stores user-corresponding time-series device status information received from the information processing device in a storage unit in the server.
 (18) 情報処理装置において実行する機器状態制御方法であり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部が、
 前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる機器状態制御方法。
(18) This is a device state control method executed in the information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
A device state control method for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
 (19) 情報処理装置と、該情報処理装置と通信可能なサーバを有する情報処理システムにおいて実行する機器状態遷移データ集積方法であり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記機器状態遷移制御部は、
 前記複数の機能ブロック各々の消費電力を含む機器状態に基づいて機器状態を遷移させる制御を実行するとともに、時系列の機器状態情報を前記サーバに送信する処理を実行し、
 前記サーバは、
 前記情報処理装置から受信する時系列の機器状態情報をサーバ内の記憶部に格納する機器状態遷移データ集積方法。
(19) A device state transition data accumulation method executed in an information processing system having an information processing device and a server capable of communicating with the information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The device state transition control unit
A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
The server
A device state transition data accumulation method for storing time-series device state information received from the information processing device in a storage unit in a server.
 (20) 情報処理装置において機器状態制御処理を実行させるプログラムであり、
 前記情報処理装置は、
 複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
 前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
 前記プログラムは、前記機器状態遷移制御部に、
 前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる機器状態制御処理を実行させるプログラム。
(20) A program that executes device state control processing in an information processing device.
The information processing device
A power supply unit that supplies power to multiple functional blocks individually,
It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
The program is applied to the device state transition control unit.
A program that executes device state control processing for transitioning device states based on the power consumption of each of the plurality of functional blocks.
 なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。 The various processes described in the specification are not only executed in chronological order according to the description, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes. Further, in the present specification, the system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。 In addition, the series of processes described in the specification can be executed by hardware, software, or a composite configuration of both. When executing processing by software, install the program that records the processing sequence in the memory in the computer built in the dedicated hardware and execute it, or execute the program on a general-purpose computer that can execute various processing. It can be installed and run. For example, the program can be pre-recorded on a recording medium. In addition to installing on a computer from a recording medium, it is possible to receive a program via a network such as LAN (Local Area Network) or the Internet and install it on a recording medium such as a built-in hard disk.
 以上、説明したように、本開示の一実施例の構成によれば、複数の機能ブロック各々の電力消費量や温度を検出して、検出情報に基づく機器状態制御を実行する構成が実現される。
 具体的には、例えば、複数の機能ブロックに対して個別に電力供給を行う電力供給部と、複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、機器状態遷移制御部は、複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる。機器状態遷移制御部は、複数の機能ブロック各々に対して、個別の指示情報を出力して、各機能ブロックを個別に制御する。また、機器状態遷移制御部は、機能ブロック各々の温度、電池残量、残使用可能時間等に基づいて機器状態遷移制御を実行し、さらに警告情報の表示も実行する。
 本構成により、複数の機能ブロック各々の電力消費量や温度を検出して、検出情報に基づく機器状態制御を実行する構成が実現される。
As described above, according to the configuration of one embodiment of the present disclosure, a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed. ..
Specifically, for example, it has a power supply unit that individually supplies power to a plurality of functional blocks, a plurality of functional blocks, and a data processing unit having a device state transition control unit, and is a device state transition control unit. Transitions the device state based on the power consumption of each of the plurality of functional blocks. The device state transition control unit outputs individual instruction information for each of the plurality of functional blocks, and controls each functional block individually. In addition, the device state transition control unit executes device state transition control based on the temperature of each functional block, the remaining battery level, the remaining usable time, and the like, and also displays warning information.
With this configuration, a configuration is realized in which the power consumption and temperature of each of the plurality of functional blocks are detected and the device state control based on the detection information is executed.
 100 撮像装置
 101 電池
 102 電流検出抵抗
 103 電池残量管理部
 110 DC/DCコンバータ部
 111,113,115 DC/DCコンバータ
 112,114,116 電流検出部
 120 データ処理部
 121~123 機能ブロック
 131~133 温度検出部
 141 温度検知部
 142 機器状態遷移制御部
 143 残撮影可能枚数、残使用時間計算部
 144 情報記憶部
 145 電力計算部
 146 電池残量検知部
 170 温度検出部
 201 DC/DCコンバータIC
 202 電力計算処理IC
 203 システムマイコンIC
 204 システムマイコンIC
 205 DC/DCコンバータ集積型システムマイコンIC
100 Imaging device 101 Battery 102 Current detection resistance 103 Battery level management unit 110 DC / DC converter unit 111, 113, 115 DC / DC converter 112, 114, 116 Current detection unit 120 Data processing unit 121 to 123 Functional block 131 to 133 Temperature detection unit 141 Temperature detection unit 142 Equipment state transition control unit 143 Number of remaining shots, remaining usage time calculation unit 144 Information storage unit 145 Power calculation unit 146 Battery level detection unit 170 Temperature detection unit 201 DC / DC converter IC
202 Power calculation processing IC
203 System microcomputer IC
204 System microcomputer IC
205 DC / DC converter integrated system microcomputer IC

Claims (20)

  1.  複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
     前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
     前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の消費電力に基づいて、機器状態を遷移させる情報処理装置。
    A power supply unit that supplies power to multiple functional blocks individually,
    It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
    The device state transition control unit
    An information processing device that transitions device states based on the power consumption of each of the plurality of functional blocks.
  2.  前記機器状態遷移制御部は、
     前記複数の機能ブロック各々に対して、個別の指示情報を出力して、各機能ブロックを個別に制御する請求項1に記載の情報処理装置。
    The device state transition control unit
    The information processing device according to claim 1, wherein individual instruction information is output for each of the plurality of functional blocks, and each functional block is individually controlled.
  3.  前記情報処理装置は、
     前記複数の機能ブロック各々の温度を検出する温度検出部を有し、
     前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の温度に基づく機器状態遷移制御を実行する請求項1に記載の情報処理装置。
    The information processing device
    It has a temperature detection unit that detects the temperature of each of the plurality of functional blocks.
    The device state transition control unit
    The information processing apparatus according to claim 1, which executes device state transition control based on the temperature of each of the plurality of functional blocks.
  4.  前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の温度状態に応じて、表示部に温度上昇を示す警告表示を実行する請求項3に記載の情報処理装置。
    The device state transition control unit
    The information processing apparatus according to claim 3, wherein a warning display indicating a temperature rise is displayed on the display unit according to the temperature state of each of the plurality of functional blocks.
  5.  前記情報処理装置は、
     電力供給源である電池の残量を検出する電池残量検出部を有し、
     前記機器状態遷移制御部は、
     電池残量に基づく機器状態遷移制御を実行する請求項1に記載の情報処理装置。
    The information processing device
    It has a battery level detector that detects the remaining battery level, which is the power supply source.
    The device state transition control unit
    The information processing device according to claim 1, which executes device state transition control based on the remaining battery level.
  6.  前記情報処理装置は、
     前記情報処理装置の残使用可能時間を計算する残使用時間計算部を有し、
     前記機器状態遷移制御部は、
     残使用可能時間に基づく機器状態遷移制御を実行する請求項1に記載の情報処理装置。
    The information processing device
    It has a remaining usage time calculation unit that calculates the remaining usable time of the information processing device.
    The device state transition control unit
    The information processing apparatus according to claim 1, which executes device state transition control based on the remaining usable time.
  7.  前記情報処理装置は撮像装置であり、残撮影可能枚数を計算する残撮影可能枚数計算部を有し、
     前記機器状態遷移制御部は、
     残撮影可能枚数に基づく機器状態遷移制御を実行する請求項1に記載の情報処理装置。
    The information processing device is an imaging device, and has a remaining shooting possible number calculation unit for calculating the remaining shooting possible number.
    The device state transition control unit
    The information processing device according to claim 1, which executes device state transition control based on the number of remaining shots that can be taken.
  8.  前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の電流値が、予め規定した異常電流値に達したか否かを判定し、異常電流値に達した機能ブロックが検出された場合、表示部に機器異常を示す警告表示を実行する請求項1に記載の情報処理装置。
    The device state transition control unit
    It is determined whether or not the current value of each of the plurality of functional blocks has reached a predetermined abnormal current value, and when a functional block having reached the abnormal current value is detected, a warning display indicating a device abnormality is displayed on the display unit. The information processing apparatus according to claim 1.
  9.  前記電力供給部は、
     前記複数の機能ブロックに対して個別に電力供給を行う複数のDC/DCコンバータを有し、
     前記機器状態遷移制御部は、
     前記複数のDC/DCコンバータの各々に対する制御信号を出力する請求項1に記載の情報処理装置。
    The power supply unit
    It has a plurality of DC / DC converters that individually supply power to the plurality of functional blocks.
    The device state transition control unit
    The information processing apparatus according to claim 1, wherein a control signal for each of the plurality of DC / DC converters is output.
  10.  前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の消費電力情報を含む機器状態情報を情報記憶部に記録する請求項1に記載の情報処理装置。
    The device state transition control unit
    The information processing device according to claim 1, wherein device state information including power consumption information of each of the plurality of functional blocks is recorded in an information storage unit.
  11.  前記機器状態遷移制御部は、
     前記機器状態情報を時間対応の情報として前記情報記憶部に記録する請求項10に記載の情報処理装置。
    The device state transition control unit
    The information processing device according to claim 10, wherein the device state information is recorded in the information storage unit as time-corresponding information.
  12.  前記機器状態遷移制御部は、
     前記機器状態情報をユーザ対応の情報として前記情報記憶部に記録する請求項10に記載の情報処理装置。
    The device state transition control unit
    The information processing device according to claim 10, wherein the device state information is recorded in the information storage unit as user-corresponding information.
  13.  前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の消費電力情報を含む機器状態情報を外部サーバに送信して、サーバ内の記憶部に記録させる請求項1に記載の情報処理装置。
    The device state transition control unit
    The information processing device according to claim 1, wherein device status information including power consumption information of each of the plurality of functional blocks is transmitted to an external server and recorded in a storage unit in the server.
  14.  前記情報処理装置は、
     前記電力供給部を構成するDC/DCコンバータを有するICと、
     前記機器状態遷移制御部を有するICと、
     前記複数の機能ブロック各々の消費電力を算出する電力算出回路を有するICを有する請求項1に記載の情報処理装置。
    The information processing device
    An IC having a DC / DC converter constituting the power supply unit and
    An IC having the device state transition control unit and
    The information processing device according to claim 1, further comprising an IC having a power calculation circuit for calculating the power consumption of each of the plurality of functional blocks.
  15.  前記情報処理装置は、
     前記電力供給部を構成するDC/DCコンバータと、前記機器状態遷移制御部と、前記複数の機能ブロック各々の消費電力を算出する電力算出回路を1つのICとした構成を有する請求項1に記載の情報処理装置。
    The information processing device
    The first aspect of claim 1, wherein the DC / DC converter constituting the power supply unit, the device state transition control unit, and the power calculation circuit for calculating the power consumption of each of the plurality of functional blocks are used as one IC. Information processing equipment.
  16.  情報処理装置と、該情報処理装置と通信可能なサーバを有する情報処理システムであり、
     前記情報処理装置は、
     複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
     前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
     前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の消費電力を含む機器状態に基づいて機器状態を遷移させる制御を実行するとともに、時系列の機器状態情報を前記サーバに送信する処理を実行し、
     前記サーバは、
     前記情報処理装置から受信する時系列の機器状態情報をサーバ内の記憶部に格納する情報処理システム。
    An information processing system having an information processing device and a server capable of communicating with the information processing device.
    The information processing device
    A power supply unit that supplies power to multiple functional blocks individually,
    It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
    The device state transition control unit
    A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
    The server
    An information processing system that stores time-series device status information received from the information processing device in a storage unit in the server.
  17.  前記機器状態遷移制御部は、
     前記時系列の機器状態情報をユーザ対応の情報として前記サーバに送信し、
     前記サーバは、
     前記情報処理装置から受信するユーザ対応の時系列の機器状態情報をサーバ内の記憶部に格納する請求項16に記載の情報処理システム。
    The device state transition control unit
    The time-series device status information is transmitted to the server as user-corresponding information,
    The server
    The information processing system according to claim 16, wherein the user-corresponding time-series device state information received from the information processing device is stored in a storage unit in the server.
  18.  情報処理装置において実行する機器状態制御方法であり、
     前記情報処理装置は、
     複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
     前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
     前記機器状態遷移制御部が、
     前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる機器状態制御方法。
    It is a device state control method executed in the information processing device.
    The information processing device
    A power supply unit that supplies power to multiple functional blocks individually,
    It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
    The device state transition control unit
    A device state control method for transitioning a device state based on the power consumption of each of the plurality of functional blocks.
  19.  情報処理装置と、該情報処理装置と通信可能なサーバを有する情報処理システムにおいて実行する機器状態遷移データ集積方法であり、
     前記情報処理装置は、
     複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
     前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
     前記機器状態遷移制御部は、
     前記複数の機能ブロック各々の消費電力を含む機器状態に基づいて機器状態を遷移させる制御を実行するとともに、時系列の機器状態情報を前記サーバに送信する処理を実行し、
     前記サーバは、
     前記情報処理装置から受信する時系列の機器状態情報をサーバ内の記憶部に格納する機器状態遷移データ集積方法。
    It is a device state transition data accumulation method executed in an information processing system having an information processing device and a server capable of communicating with the information processing device.
    The information processing device
    A power supply unit that supplies power to multiple functional blocks individually,
    It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
    The device state transition control unit
    A control for transitioning the device state based on the device state including the power consumption of each of the plurality of functional blocks is executed, and a process for transmitting time-series device state information to the server is executed.
    The server
    A device state transition data accumulation method for storing time-series device state information received from the information processing device in a storage unit in a server.
  20.  情報処理装置において機器状態制御処理を実行させるプログラムであり、
     前記情報処理装置は、
     複数の機能ブロックに対して個別に電力供給を行う電力供給部と、
     前記複数の機能ブロックと、機器状態遷移制御部を有するデータ処理部を有し、
     前記プログラムは、前記機器状態遷移制御部に、
     前記複数の機能ブロック各々の消費電力に基づいて機器状態を遷移させる機器状態制御処理を実行させるプログラム。
    A program that executes device status control processing in an information processing device.
    The information processing device
    A power supply unit that supplies power to multiple functional blocks individually,
    It has the plurality of functional blocks and a data processing unit having a device state transition control unit.
    The program is applied to the device state transition control unit.
    A program that executes device state control processing for transitioning device states based on the power consumption of each of the plurality of functional blocks.
PCT/JP2020/002537 2019-03-18 2020-01-24 Information processing device, information processing system, and method, and program WO2020189009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-049772 2019-03-18
JP2019049772 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189009A1 true WO2020189009A1 (en) 2020-09-24

Family

ID=72520664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002537 WO2020189009A1 (en) 2019-03-18 2020-01-24 Information processing device, information processing system, and method, and program

Country Status (1)

Country Link
WO (1) WO2020189009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089823A (en) * 2021-10-27 2022-02-25 新华三信息安全技术有限公司 Overheat power-off protection system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998533A (en) * 1995-10-03 1997-04-08 Hitachi Ltd Overcurrent burning preventive equipment for information processing equipment
JP2004119327A (en) * 2002-09-30 2004-04-15 Fuji Photo Film Co Ltd Electronic device, computer system, charging device, method for displaying remaining battery capacity, and method for managing battery
JP2004227555A (en) * 2003-01-24 2004-08-12 Mitac Technology Corp Power control, control method, and device of power supply
JP2006115293A (en) * 2004-10-15 2006-04-27 Konica Minolta Opto Inc Mobile information apparatus
JP2007074095A (en) * 2005-09-05 2007-03-22 Fujifilm Corp Portable equipment
JP2009093295A (en) * 2007-10-04 2009-04-30 Lenovo Singapore Pte Ltd Electronic equipment, method for controlling power of electronic equipment, and program for execution by computer
JP2013502181A (en) * 2009-08-14 2013-01-17 グーグル・インコーポレーテッド Provide users with feedback on power consumption within battery-powered electronic devices
JP2015056135A (en) * 2013-09-13 2015-03-23 Necプラットフォームズ株式会社 Power supply unit, electronic device, and method
JP2016024561A (en) * 2014-07-17 2016-02-08 ローム株式会社 Power management circuit, and electronic device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998533A (en) * 1995-10-03 1997-04-08 Hitachi Ltd Overcurrent burning preventive equipment for information processing equipment
JP2004119327A (en) * 2002-09-30 2004-04-15 Fuji Photo Film Co Ltd Electronic device, computer system, charging device, method for displaying remaining battery capacity, and method for managing battery
JP2004227555A (en) * 2003-01-24 2004-08-12 Mitac Technology Corp Power control, control method, and device of power supply
JP2006115293A (en) * 2004-10-15 2006-04-27 Konica Minolta Opto Inc Mobile information apparatus
JP2007074095A (en) * 2005-09-05 2007-03-22 Fujifilm Corp Portable equipment
JP2009093295A (en) * 2007-10-04 2009-04-30 Lenovo Singapore Pte Ltd Electronic equipment, method for controlling power of electronic equipment, and program for execution by computer
JP2013502181A (en) * 2009-08-14 2013-01-17 グーグル・インコーポレーテッド Provide users with feedback on power consumption within battery-powered electronic devices
JP2015056135A (en) * 2013-09-13 2015-03-23 Necプラットフォームズ株式会社 Power supply unit, electronic device, and method
JP2016024561A (en) * 2014-07-17 2016-02-08 ローム株式会社 Power management circuit, and electronic device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089823A (en) * 2021-10-27 2022-02-25 新华三信息安全技术有限公司 Overheat power-off protection system and method
CN114089823B (en) * 2021-10-27 2024-03-12 新华三信息安全技术有限公司 Overheat power-down protection system and method

Similar Documents

Publication Publication Date Title
US9720478B2 (en) Storage battery monitoring method, storage battery monitoring system, and storage battery system
US10564210B2 (en) Life determination device for dc capacitor connected to DC side of rectifier
KR101520359B1 (en) System and method for battery load management in a portable computing device
EP1772960B1 (en) Load monitor
US9231439B2 (en) System and method for estimating an efficiency of a power device
EP1376285B1 (en) Trouble detection method, trouble detection apparatus, and temperature controller
JP2007199052A (en) Lifetime prediction monitoring device, lifetime prediction monitoring method, and lifetime prediction monitoring program
WO2020189009A1 (en) Information processing device, information processing system, and method, and program
JP2014528232A (en) Battery charger capacitive filter monitoring method
JP2011521350A5 (en)
CN108759032B (en) Air conditioner operation control method
JP5867000B2 (en) Failure prediction system, failure prediction device, and program
WO2020028454A1 (en) Battery management system
CN106155797A (en) Terminal unit and the changing method of performance mode thereof
JP2016174532A (en) Power management system, power management method and program
KR101029056B1 (en) Black box apparatus for vehicle and method for monitoring vehicle state by the same
JP2014176206A (en) Uninterruptible power supply device, image formation device, and uninterruptible power supply system
US6992470B1 (en) Switching power supply system for automatically regulating circuit operating frequency and method thereof
TW201734682A (en) Controller apparatus and task execution management method for controller apparatus
JP5233500B2 (en) Power supply control circuit and power supply control method for portable electronic device
WO2016017587A1 (en) Apparatus control device
JP7101333B2 (en) Power system
JP7044085B2 (en) Monitoring system
US7205753B2 (en) Switching power supply system for automatically regulating circuit operating power and method thereof
KR101154064B1 (en) Device and method for monitoring power supplay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP