WO2020188996A1 - Battery assembly - Google Patents

Battery assembly Download PDF

Info

Publication number
WO2020188996A1
WO2020188996A1 PCT/JP2020/002076 JP2020002076W WO2020188996A1 WO 2020188996 A1 WO2020188996 A1 WO 2020188996A1 JP 2020002076 W JP2020002076 W JP 2020002076W WO 2020188996 A1 WO2020188996 A1 WO 2020188996A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
battery module
exhaust ports
positions
space
Prior art date
Application number
PCT/JP2020/002076
Other languages
French (fr)
Japanese (ja)
Inventor
遠矢 正一
一男 石本
泰輝 向
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020188996A1 publication Critical patent/WO2020188996A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an assembled battery, and particularly to an assembled battery including a plurality of storage battery modules for accommodating a plurality of storage battery cells.
  • a plurality of battery modules are stacked in the vertical direction.
  • a communication portion is arranged toward the upper part while being separated from the side surface of the lower battery module (see, for example, Patent Document 1).
  • multiple battery modules may be arranged horizontally.
  • an abnormality occurs in the battery in the case of one battery module and gas is released from the battery, it is required to reduce the influence of the heat of the gas on the batteries of the adjacent battery modules. Be done.
  • the present disclosure has been made in view of such a situation, and an object thereof is to provide a technique for reducing the influence of the gas discharged from one battery module on another battery module.
  • the assembled battery of a certain aspect of the present disclosure includes a first storage battery module having a first surface and a second surface facing each other, and a third surface and a fourth surface facing each other. It includes a second storage battery module having a surface.
  • the positions of the plurality of first exhaust ports arranged on the first plane and the positions of the plurality of second exhaust ports arranged on the second plane are Differently, on the projection plane parallel to the third plane and the fourth plane, the positions of the plurality of third exhaust ports arranged on the third plane and the positions of the plurality of fourth exhaust ports arranged on the fourth plane.
  • the positions of the plurality of first exhaust ports and the positions of the plurality of third exhaust ports are common, and the second surface and the fourth surface are used.
  • the positions of the plurality of second exhaust ports and the positions of the plurality of fourth exhaust ports are common, and the second surface and the third surface are opposed to each other so that the first storage battery module and the second storage battery are opposed to each other.
  • the modules are lined up.
  • This assembled battery includes a first storage battery module having a first surface and a second surface facing each other, and a second storage battery module having a third surface and a fourth surface facing each other.
  • the positions of the plurality of first exhaust ports arranged on the first plane and the positions of the plurality of second exhaust ports arranged on the second plane are Differently, on the projection plane parallel to the third plane and the fourth plane, the positions of the plurality of third exhaust ports arranged on the third plane and the positions of the plurality of fourth exhaust ports arranged on the fourth plane.
  • the first surface and the third surface correspond to each other, the positions of the plurality of first exhaust ports and the positions of the plurality of third exhaust ports are common, and the second surface and the fourth surface are used.
  • the positions of the plurality of second exhaust ports and the positions of the plurality of fourth exhaust ports are common, the second surface and the fourth surface are opposed to each other, and the second surface and the fourth surface are associated with each other.
  • the first storage battery module and the second storage battery module are arranged side by side on a projection plane parallel to the above, with the orientation of the first storage battery module and the orientation of the second storage battery module changed.
  • the influence of the gas discharged from one battery module on another battery module can be reduced.
  • FIG. 6 are diagrams showing an outline of gas emission in the storage battery module of FIG. 1.
  • 7 are diagrams showing an outline of the structure of the storage battery module according to the first embodiment.
  • 8 are views showing the structure of the assembled battery according to the first embodiment.
  • each storage battery cell has a structure in which the positive electrode and the negative electrode face each other, and for example, the positive electrodes are arranged so as to face the same direction.
  • gas is generated in the storage battery cell when an internal short circuit or the like occurs. Further, the pressure inside the storage battery cell increases due to the generation of gas, but the gas is discharged from the positive electrode side to the outside of the storage battery cell by the safety mechanism.
  • Such a gas has a high temperature and a high pressure, and when combustion by the gas occurs, other storage battery cells in the storage battery module also undergo thermal runaway (burning). This kind of burning may burn the entire storage battery module or the entire product.
  • a space is provided between the structure of the storage battery and the surface of the plurality of storage battery cells on the positive electrode side, and the space is connected to the exhaust port. The high-temperature gas from the storage battery cell is discharged into the space, and is discharged from the exhaust port to the outside of the storage battery module.
  • one exhaust port is connected to one space. Therefore, when one space is formed in the structure, one exhaust port is provided in the structure.
  • a plurality of exhaust ports are provided in the structure.
  • the relationship is incomplete combustion temperature ⁇ complete combustion temperature, and if a large amount of air (oxygen) is sent in like a "bellows" without melting the metal, the combustion temperature becomes even higher.
  • the core of the candle is known to have an incomplete combustion of about 600 ° C, and the tip of the flame has a temperature of over 1000 ° C.
  • the assembled battery is formed by arranging such storage battery modules in the horizontal direction and electrically connecting them.
  • the gas discharged from the exhaust port of one storage battery module flows into the inside of the other storage battery module from the exhaust port of another storage battery module installed in the vicinity, the internal storage battery cell is hit, and the other There is a risk of thermal runaway of the storage battery module. Therefore, it is required to prevent the gas discharged from one storage battery module from directly flowing into another adjacent storage battery module.
  • the exhaust ports of the two adjacent storage battery modules are provided at positions where they are staggered vertically and horizontally. With such a structure, it becomes difficult for the gas discharged from one storage battery module to directly flow into another adjacent storage battery module.
  • FIG. 1 is a perspective view showing the structure of storage battery module 1000.
  • a Cartesian coordinate system including the x-axis, y-axis, and z-axis is defined.
  • the x-axis and y-axis are orthogonal to each other in the bottom surface of the storage battery module 1000.
  • the z-axis is perpendicular to the x-axis and the y-axis and extends in the height (vertical) direction of the storage battery module 1000.
  • the positive directions of the x-axis, the y-axis, and the z-axis are defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • the positive side of the x-axis is the "front side” or “front side”
  • the negative side of the x-axis is the “rear side” or “back side”
  • the positive side of the z-axis is the "upper side” or "top side”.
  • the negative side of the z-axis may be referred to as the "lower side” or the "bottom side”.
  • the positive side in the y-axis direction may be referred to as "right side”
  • the negative side in the y-axis direction may be referred to as "left side”.
  • the structure 100 includes a front housing 110, a rear housing 130, and a right lid 352.
  • the front housing 110 includes a front 112, a front lower surface 114, a front upper surface 116, a first front exhaust port 118a collectively referred to as a front exhaust port 118, a fourth front exhaust port 118d, and a left side surface 150.
  • the rear housing 130 includes a rear surface 132, a rear side lower surface 134, a rear side upper surface 136, and a right side surface 152.
  • Each component of the front housing 110 and the rear housing 130 is connected by screws, welding, an adhesive, or the like, but a known technique may be used, and thus description thereof will be omitted here.
  • the front surface 112 of the front housing 110 has a rectangular plate shape extending on the yz plane.
  • the front lower surface 114 extends from the lower end of the front surface 112 toward the rear side
  • the front upper surface 116 extends from the upper end of the front surface 112 toward the rear side
  • the left side surface 150 extends from the left side end of the front surface 112 toward the rear side. Extend.
  • the front lower surface 114, the front upper surface 116, and the left side 150 all have a plate shape.
  • the plate shape may be rectangular.
  • the rear surface 132 of the rear housing 130 has a rectangular plate shape extending on the yz plane.
  • the rear lower surface 134 extends from the lower end of the rear surface 132 toward the front side
  • the rear upper surface 136 extends from the upper end of the rear surface 132 toward the front side
  • the right side surface 152 extends from the right end of the rear surface 132 toward the front side. ..
  • the rear lower surface 134, the rear upper surface 136, and the right side 152 all have a plate shape.
  • the plate shape may be rectangular.
  • the front lower surface 114 and the rear lower surface 134 form one lower surface. Further, by connecting the rear end of the front upper surface 116 and the front end of the rear upper surface 136, the front upper surface 116 and the rear upper surface 136 form one upper surface. The lower surface and the upper surface intersect the front surface 112 and the rear surface 132.
  • the structure 100 has a box shape. At that time, the right side of the structure 100 is blocked by the right side surface 152 and the right side lid 352, and the left side of the structure 100 is blocked by the left side surface 150 and the left side lid (not shown).
  • the front surface 112 may be referred to as a first surface
  • the rear surface 132 may be referred to as a second surface
  • the lower surface may be referred to as a third surface
  • the upper surface may be referred to as a fourth surface.
  • the front housing 110 and the rear housing 130 are made of a material having high thermal conductivity, for example, metal or carbon. Therefore, the front surface 112, the front lower surface 114, the front upper surface 116, the rear surface 132, the rear lower surface 134, and the rear upper surface 136 are, for example, metal plates.
  • FIG. 2 is an exploded perspective view showing the structure of the storage battery module 1000.
  • FIG. 3 is another exploded perspective view showing the structure of the storage battery module 1000, and shows a structure in which FIG. 2 is further disassembled.
  • FIG. 4 is a cross-sectional view showing the structure of the storage battery module 1000, and is a cross-sectional view taken along the line AA'in FIG.
  • FIG. 5 is another cross-sectional view showing the structure of the storage battery module 1000, and is a cross-sectional view taken along the line BB'of FIG.
  • the combination of the front case 240 and the rear case 250 is stored between the front housing 110 and the rear housing 130.
  • the combination of the front case 240 and the rear case 250 has a hollow box shape and is formed of an insulating material such as resin.
  • the rear end of the front case 240 and the front end of the rear case 250 are connected, the front case 240 faces the front housing 110, and the rear case 250 faces the rear housing 130. ..
  • the first storage battery assembly 200a to the seventh storage battery assembly 200g and the battery holder 230, which are collectively called the storage battery assembly 200 are housed.
  • the first storage battery assembly 200a, the second storage battery assembly 200b, ..., The sixth storage battery assembly 200f, and the seventh storage battery assembly 200g are arranged in this order. Therefore, it can be said that the lower surface and the upper surface face each other with the storage battery assembly 200 in between.
  • a plurality of storage battery cells 210 are arranged in each storage battery assembly 200.
  • the storage battery cell 210 is, for example, a cylindrical lithium ion secondary battery.
  • a positive electrode 212 and a negative electrode 214 facing opposite to each other are arranged at both ends of the cylindrical shape of the storage battery cell 210.
  • a known technique may be used for the storage battery cell 210, and a safety mechanism for releasing high-temperature and high-pressure gas to the outside is provided when the internal pressure rises due to the occurrence of an internal short circuit or the like. Generally, the high temperature and high pressure gas is discharged from the positive electrode 212 side.
  • the plurality of storage battery cells 210 included in each of the first storage battery assembly 200a, the third storage battery assembly 200c, the fifth storage battery assembly 200e, and the seventh storage battery assembly 200g have the positive electrode 212 facing forward.
  • the negative electrode 214 is directed to the rear side.
  • the positive electrode 212 faces the rear side and the negative electrode 214 faces the front side. That is, the direction of the positive electrode 212 is the same in one storage battery assembly 200, but the direction of the positive electrode 212 is opposite between the two adjacent storage battery assemblies 200.
  • the first electrode is used.
  • the electrode is the positive electrode 212
  • the second electrode is the negative electrode 214.
  • the first electrode is the negative electrode 214 and the second electrode is the positive electrode 212.
  • the battery holder 230 is provided with a through hole into which each of the plurality of storage battery cells 210 can be inserted, thereby fixing the respective positions of the plurality of storage battery cells 210.
  • the battery holder 230 is made of an insulating material such as resin.
  • a front case 240 is attached to the front side of the plurality of storage battery cells 210 fixed by the battery holder 230, and a rear case 250 is attached to the rear side of the plurality of storage battery cells 210 fixed by the battery holder 230.
  • the front case 240 has a plate-shaped front case plate portion 244 that extends in the yz plane, and the front case plate portion 244 is provided with a through hole at a position facing the positive electrode 212 of each storage battery cell 210. Further, on the front surface of the front case plate portion 244, a first front partition wall 242a is provided at a position at the boundary between the second storage battery assembly 200b and the third storage battery assembly 200c. A second front partition wall 242b is provided at the boundary between the fourth storage battery assembly 200d and the fifth storage battery assembly 200e, and the boundary position between the sixth storage battery assembly 200f and the seventh storage battery assembly 200g. Is provided with a third front partition 242c. The first front partition wall 242a to the third front partition wall 242c are collectively referred to as the front partition wall 242, and the front partition wall 242 projects toward the front side and extends in the vertical direction.
  • the front surface of the front case plate portion 244 is divided into the first front recess 246a to the fourth front recess 246d by the first front partition 242a to the third front partition 242c.
  • the second front side recess 246b is arranged at a portion sandwiched between the first front side partition wall 242a and the second front side partition wall 242b, that is, at a position facing the third storage battery assembly 200c and the fourth storage battery assembly 200d.
  • the first front recess 246a and the third front recess 246c are the same as the second front recess 246b.
  • front recesses 246 are collectively referred to as front recesses 246.
  • the first front lead plate 300a is fitted into the first front recess 246a, and the second front lead plate 300b is fitted into the second front recess 246b. Further, the third front lead plate 300c is fitted into the third front recess 246c, and the fourth front lead plate 300d is fitted into the fourth front recess 246d.
  • the first front lead plate 300a to the fourth front lead plate 300d are collectively referred to as the front lead plate 300, and the front lead plate 300 has a plate shape.
  • the first front lead plate 300a is connected to the positive electrode 212 of the plurality of storage battery cells 210 of the first storage battery assembly 200a and the negative electrode 214 of the plurality of storage battery cells 210 of the second storage battery assembly 200b.
  • the first front lead plate 300a is provided with a wiring pattern for electrically connecting one positive electrode 212 and one negative electrode 214, one storage battery cell 210 of the first storage battery assembly 200a and the second storage battery cell 210 and the second One storage battery cell 210 of the storage battery assembly 200b is connected in series.
  • a through hole is provided in a portion of the first front lead plate 300a connected to the positive electrode 212.
  • the second front lead plate 300b and the third front lead plate 300c are the same as the first front lead plate 300a.
  • the fourth front lead plate 300d is connected only to the positive electrode 212 of the plurality of storage battery cells 210 of the seventh storage battery assembly 200 g. Therefore, the fourth front lead plate 300d is smaller than the first front lead plate 300a to the third front lead plate 300c.
  • the rear case 250 has a plate-shaped rear case plate portion 254 that extends in the yz plane, and the rear case plate portion 254 is provided with a through hole at a position facing the positive electrode 212 of each storage battery cell 210. Be done. Further, as shown in FIG. 5, on the rear surface of the rear case plate portion 254, the first rear partition wall 252a is located at the boundary between the first storage battery assembly 200a and the second storage battery assembly 200b. Is provided. A second rear partition wall 252b is provided at the boundary between the third storage battery assembly 200c and the fourth storage battery assembly 200d, and the boundary between the fifth storage battery assembly 200e and the sixth storage battery assembly 200f. A third rear partition 252c is provided at the position. The first rear partition wall 252a to the third rear partition wall 252c are collectively referred to as the rear partition wall 252, and the rear partition wall 252 projects toward the rear side and extends in the vertical direction.
  • the rear surface of the rear case plate portion 254 is divided into the first posterior recess 256a to the fourth posterior recess 256d by the first posterior partition wall 252a to the third posterior partition wall 252c.
  • the second rear side recess 256b is arranged at a portion sandwiched between the first rear side partition wall 252a and the second rear side partition wall 252b, that is, at a position facing the second storage battery assembly 200b and the third storage battery assembly 200c. Will be done.
  • the third posterior recess 256c and the fourth posterior recess 256d are the same as the second posterior recess 256b.
  • first rear recess 256a is arranged at a position facing only the first storage battery assembly 200a, it is narrower than the second posterior recess 256b to the fourth posterior recess 256d.
  • Such first rear recesses 256a to fourth posterior recesses 256d are collectively referred to as rear recesses 256.
  • the first rear lead plate 302a is fitted into the first rear recess 256a, and the second rear lead plate 302b is fitted into the second rear recess 256b. Further, the third rear lead plate 302c is fitted into the third rear recess 256c, and the fourth rear lead plate 302d is fitted into the fourth rear recess 256d.
  • the first rear lead plate 302a to the fourth rear lead plate 302d are collectively referred to as the rear lead plate 302, and the rear lead plate 302 has a plate shape.
  • the second rear lead plate 302b is connected to the positive electrode 212 of the plurality of storage battery cells 210 of the second storage battery assembly 200b and the negative electrode 214 of the plurality of storage battery cells 210 of the third storage battery assembly 200c.
  • the second rear lead plate 302b is provided with a wiring pattern for electrically connecting one positive electrode 212 and one negative electrode 214, one storage battery cell 210 of the second storage battery assembly 200b and the first storage battery cell 210
  • One storage battery cell 210 of the three storage battery assembly 200c is connected in series.
  • a through hole is provided in a portion of the second rear lead plate 302b connected to the positive electrode 212.
  • the third rear lead plate 302c and the fourth rear lead plate 302d are the same as the second rear lead plate 302b.
  • the first rear lead plate 302a is connected only to the negative electrodes 214 of the plurality of storage battery cells 210 of the first storage battery assembly 200a.
  • the first rear lead plate 302a is smaller than the second rear lead plate 302b to the fourth rear lead plate 302d.
  • a front lead plate 300 and a rear lead plate 302 one storage battery cell 210 included in each of the first storage battery assembly 200a to the seventh storage battery assembly 200g is connected in series.
  • the control board tray 330 is attached to the upper side of the front side case 240 and the rear side case 250 that are combined while accommodating the storage battery assembly 200.
  • the control board tray 330 is a plate-shaped tray extending in the left-right direction.
  • the control board 332 is arranged on the control board tray 330.
  • the control board 332 is equipped with an IC (Integrated Circuit) or the like, and controls the operation of the storage battery module 1000.
  • the control board 332 has a plate shape extending in the left-right direction like the control board tray 330, but is smaller than the control board tray 330.
  • the control board lid 334 is attached so as to cover the upper side of the control board tray 330 on which the control board 332 is arranged.
  • the control board lid 334 is a lid for protecting the control board 332, and has a shape that matches the control board tray 330.
  • the left side lid 350 is attached to the left side of the front side case 240 and the rear side case 250 combined while accommodating the storage battery assembly 200, and the right side lid 352 is attached to the right side.
  • the left side lid 350 and the right side lid 352 have a plate shape extending in the vertical direction, and protect the combination of the front side case 240 and the rear side case 250 from the side surface.
  • the control board tray 330, the control board lid 334, the left side lid 350, and the right side lid 352 are made of an insulating material such as resin.
  • the combination of the front side case 240 and the rear side case 250 to which the control board lid 334, the left side lid 350, and the right side lid 352 are attached from the control board tray 330 is the front side housing 110 as described above. It is arranged between the rear housing 130 and the rear housing 130. As a result, as shown in FIG. 4, a front space 400 (third front space 400c) surrounded by the front surface 112, the front lower surface 114, the front upper surface 116, and the front lead plate 300 (third front lead plate 300c) is formed.
  • the third front lead plate 300c corresponds to a plurality of first electrode-side surfaces in the fifth storage battery assembly 200e and the sixth storage battery assembly 200f.
  • the portion of the front surface 112 located on the lower surface side of the storage battery cell 210 at the lower surface side end of the fifth storage battery assembly 200e and the sixth storage battery assembly 200f, or the front lower surface 114 has a third.
  • a front exhaust port 118c is provided.
  • the third front exhaust port 118c is a through hole formed in the front 112 portion or the front lower surface 114, which can be said to be an opening.
  • a rear space 410 (third rear space 410c) is formed surrounded by the rear surface 132, the rear lower surface 134, the rear upper surface 136, and the rear lead plate 302 (third rear lead plate 302c).
  • the third rear lead plate 302c corresponds to a plurality of second electrode-side surfaces in the fourth storage battery assembly 200d and the fifth storage battery assembly 200e.
  • the portion of the rear surface 132 located on the lower surface side of the storage battery cell 210 at the lower end side end of the fourth storage battery assembly 200d and the fifth storage battery assembly 200e, or the rear lower surface 134 has a third. 2
  • the rear exhaust port 138b (FIG. 2) is provided.
  • the second rear exhaust port 138b is a through hole formed in a portion of the rear surface 132 or a rear lower surface 134.
  • the front space 400 and the rear space 410 will be described in more detail with reference to FIG. 5.
  • the first front space 400a to the fourth front space 400d are provided by the first front partition wall 242a to the third front partition wall 242c. It is divided into. Therefore, it can be said that the front partition wall 242 partitions the adjacent front space 400.
  • the first front space 400a to the fourth front space 400d are arranged side by side in the left-right direction.
  • the first front space 400a to the third front space 400c are arranged so as to face the two storage battery assemblies 200, while the fourth front space 400d is arranged so as to correspond to only one storage battery assembly 200.
  • the volume of the fourth front space 400d is smaller than the respective volumes of the first front space 400a to the third front space 400c. Further, one front exhaust port 118 is provided in the lower portion of each front space 400. Therefore, one front space 400 has one front exhaust port 118.
  • the posterior space 410 is divided into the first posterior space 410a and the fourth posterior space 410d by the first posterior partition wall 252a to the third posterior partition wall 252c. Therefore, it can be said that the posterior partition wall 252 partitions the adjacent posterior space 410.
  • the first rear space 410a to the fourth rear space 410d are arranged side by side in the left-right direction.
  • the second rear space 410b to the fourth rear space 410d are arranged so as to face the two storage battery assemblies 200, but the first rear space 410a is arranged so as to correspond to only one storage battery assembly 200. Therefore, the volume of the first rear space 410a is smaller than the respective volumes of the second rear space 410b to the fourth rear space 410d.
  • one rear exhaust port 138 is provided in each lower portion of the second rear space 410b to the fourth rear space 410d.
  • FIG. 6A is a cross-sectional view simply showing the structure of the storage battery module 1000, and is a cross-sectional view in the same direction as that of FIG.
  • the first storage battery cells 210a to the eighth storage battery cells 210h are arranged from the lower side to the upper side.
  • the front space 400 is arranged on the front side of these storage battery cells 210, and the front exhaust port 118 is provided on the front lower surface 114 in contact with the front space 400.
  • the third storage battery cell 210c discharges high-temperature and high-pressure gas 500 from the positive electrode 212 side to the front space 400 via the front case 240 and the front lead plate 300.
  • the gas 500 released into the front space 400 comes into contact with the front surface 112. Since the front surface 112 is a metal plate, it absorbs heat from the contacted gas 500 and releases heat to the outside of the storage battery module 1000. In this way, the gas 500 is deprived of heat and cooled by contact with the front surface 112. Further, since the cooled gas 500 is diffused in the front space 400, the pressure of the gas 500 decreases. Further, the gas 500 whose temperature and pressure have decreased is discharged to the outside of the storage battery module 1000 from the front exhaust port 118 provided below the front space 400.
  • the volume of the fourth front space 400d is smaller than the respective volumes of the first front space 400a to the third front space 400c. Therefore, the pressure in the fourth front space 400d tends to be higher than the other pressures due to the gas 500 discharged from the storage battery cell 210. As a result, the third front partition wall 242c forming the fourth front space 400d is more likely to be damaged than the other front partition walls 242.
  • the size of the fourth front exhaust port 118d provided in the fourth front space 400d is made larger than that of the other front exhaust ports 118.
  • the increase in pressure in the fourth front space 400d is suppressed. That is, as the size of the front space 400 becomes smaller, the area of the front exhaust port 118 becomes larger.
  • the front exhaust port 118 is provided on the front upper surface 116, air may flow in from the lower part of the front space 400 which is not completely sealed. Since the inflowing air is discharged from the front exhaust port 118, an air flow from the lower side to the upper side is generated in the front space 400. Since air is supplied to the spark by such an air flow, high-temperature combustion is likely to occur. In the rear space 410, the gas 500 is cooled, diffused, and released in the same manner as in the front space 400.
  • FIG. 6B is a cross-sectional view simply showing the structure of the storage battery module 2000 to be compared with the storage battery module 1000 of FIG. 6A, and is a cross-sectional view in the same direction as that of FIG. 6A.
  • Front 2112 to front upper surface 2116, rear surface 2132 to rear upper surface 2136, storage battery assembly 2200 to negative electrode 2214, front case 2240, rear case 2250, front lead plate 2300, rear lead plate 2302, front space 2400, rear space 2410 6 (a) shows the front surface 112 to the front surface surface 116, the rear surface 132 to the rear surface surface 136, the storage battery assembly 200 to the negative electrode 214, the front side case 240, the rear side case 250, the front side lead plate 300, and the rear side lead plate 302. , The front space 400 and the rear space 410.
  • the front exhaust port 2118 is provided in a portion of the front surface 2112 in contact with the front space 400, which faces the positive electrode 2212 of the first storage battery cell 2210a.
  • the first storage battery cell 2210a discharges high-temperature and high-pressure gas 2500 from the positive electrode 2212 side to the front space 2400 via the front case 2240 and the front lead plate 2300.
  • the gas 2500 released into the front space 2400 is discharged to the outside of the storage battery module 2000 from the front exhaust port 2118. That is, the gas 2500 is not cooled by contact with the front surface 2112. At that time, if sparks are generated, air is supplied to the sparks, so that high-temperature combustion is likely to occur.
  • FIGS. 7A to 7C show the outline of the structure of the storage battery module 1000.
  • 7 (a) shows an outline from the front side of the storage battery module 1000
  • FIG. 7 (b) shows an outline from the right side of the storage battery module 1000
  • FIG. 7 (c) shows an outline from the rear side of the storage battery module 1000.
  • the outline of is shown.
  • the first storage battery assembly 200a to the seventh storage battery assembly 200g are arranged in the left-right direction. In the first storage battery assembly 200a, the positive electrode 212 faces the front side and the negative electrode 214 faces the rear side.
  • the negative electrode 214 faces the front side and the positive electrode 212 faces the rear side. Further, a front exhaust port 118 or a rear exhaust port 138 is arranged below the positive electrode 212. Therefore, the front exhaust port 118 is arranged below the first storage battery assembly 200a, the third storage battery assembly 200c, the fifth storage battery assembly 200e, and the seventh storage battery assembly 200g. A rear exhaust port 138 is arranged below the second storage battery assembly 200b, the fourth storage battery assembly 200d, and the sixth storage battery assembly 200f. Further, a positive electrode terminal is provided at the right end of the storage battery module 1000, and a negative electrode terminal is provided at the left end of the storage battery module 1000.
  • FIGS. 8A-(c) show the structure of the assembled battery 3000.
  • FIG. 8A is a perspective view showing the structure of the assembled battery 3000.
  • FIG. 8B is a top view of the assembled battery 3000, but mainly shows the structure of the lower portion of the assembled battery 3000.
  • the assembled battery 3000 includes a first storage battery module 1000a and a second storage battery module 1000b.
  • the first storage battery module 1000a and the second storage battery module 1000b have the same structure as the above-mentioned storage battery module 1000.
  • the first storage battery module 1000a has a first surface 1110 and a second surface 1120 facing each other, and also has an upper surface 1150 and a lower surface 1160 sandwiched between the first surface 1110 and the second surface 1120.
  • the first surface 1110 corresponds to the front surface 112 of FIG. 1
  • the second surface 1120 corresponds to the rear surface 132 of FIG. 1
  • the upper surface 1150 corresponds to the combination of the front upper surface 116 and the rear upper surface 136 of FIG.
  • Reference numeral 1160 corresponds to the combination of the front lower surface 114 and the rear lower surface 134 in FIG.
  • a plurality of first exhaust ports 1210 are arranged on the lower portion of the first surface 1110, and a plurality of second exhaust ports 1220 are arranged on the lower portion of the second surface 1120.
  • the plurality of first exhaust ports 1210 correspond to the plurality of front exhaust ports 118 of FIG. 2
  • the plurality of second exhaust ports 1220 correspond to the plurality of rear exhaust ports 138 of FIG.
  • the positions of the plurality of first exhaust ports 1210 and the positions of the plurality of second exhaust ports 1220 are different.
  • the second storage battery module 1000b has a third surface 1130 and a fourth surface 1140 facing each other, and also has an upper surface 1170 and a lower surface 1180 sandwiched between the third surface 1130 and the fourth surface 1140.
  • the third surface 1130 corresponds to the front surface 112 of FIG. 1
  • the fourth surface 1140 corresponds to the rear surface 132 of FIG. 1
  • the upper surface 1170 corresponds to the combination of the front upper surface 116 and the rear upper surface 136 of FIG.
  • Reference numeral 1180 corresponds to the combination of the front lower surface 114 and the rear lower surface 134 in FIG.
  • a plurality of third exhaust ports 1230 are arranged on the lower portion of the third surface 1130, and a plurality of fourth exhaust ports 1240 are arranged on the lower portion of the fourth surface 1140.
  • the plurality of third exhaust ports 1230 correspond to the plurality of front exhaust ports 118 of FIG. 2
  • the plurality of fourth exhaust ports 1240 correspond to the plurality of rear exhaust ports 138 of FIG.
  • the positions of the plurality of third exhaust ports 1230 and the positions of the plurality of fourth exhaust ports 1240 are different.
  • the positions of the plurality of first exhaust ports 1210 and the positions of the plurality of third exhaust ports 1230 are common.
  • the second surface 1120 and the fourth surface 1140 are made to correspond to each other, the positions of the plurality of second exhaust ports 1220 and the positions of the plurality of fourth exhaust ports 1240 are common.
  • the first storage battery module 1000a and the second storage battery module 1000b are arranged so that the second surface 1120 and the third surface 1130 face each other. By arranging in this way, the positive electrode terminal 1050 of the first storage battery module 1000a and the positive electrode terminal 1060 of the second storage battery module 1000b face in the same direction.
  • the negative electrode terminal 1052 of the first storage battery module 1000a and the negative electrode terminal 1062 of the second storage battery module 1000b also face in the same direction.
  • the first storage battery module 1000a and the second storage battery module 1000b are connected in parallel. Be connected.
  • the second exhaust port 1220 on the second surface 1120 and the third exhaust port 1230 on the third surface 1130 are arranged so as not to face each other.
  • FIG. 8 (c) is an enlarged view of a part of the second surface 1120 and the third surface 1130 in FIG. 8 (b).
  • thermal runaway occurs in the storage battery cell 210 inside the second storage battery module 1000b, and gas is discharged from the third exhaust port 1230.
  • the gas ejected from the third exhaust port 1230 is generally hot, but the gas corresponds to the second surface 1120.
  • the gas is cooled and diffused. Diffusion causes the gas to move along the second surface 1120, but the movement further cools it. Therefore, even if the gas flows into the first storage battery module 1000a from the second exhaust port 1220, the risk of burning is reduced.
  • FIGS. 9 (a)-(d) show another structure of the assembled battery 3000.
  • FIG. 9A is a perspective view showing the structure of the assembled battery 3000.
  • FIG. 9B is a top view of the assembled battery 3000, but mainly shows the structure of the lower portion of the assembled battery 3000.
  • the structures of the first storage battery module 1000a and the second storage battery module 1000b included in the assembled battery 3000 are the same as those in FIGS. 8 (a)-(c), but their arrangements are as shown in FIGS. 8 (a)-(c). Is different.
  • the first storage battery module 1000a is arranged in the same manner as in FIG.
  • the fourth surface 1140 faces the second surface 1120, the lower surface 1180 faces upward, and the upper surface faces.
  • the 1170 is placed facing down.
  • the second storage battery module 1000b is inverted in the xy plane and upside down with respect to the arrangement shown in FIG. 8A.
  • the first storage battery module 1000a and the second storage battery module 1000b are arranged in different directions on the projection plane parallel to the second plane 1120 and the fourth plane 1140.
  • the positive electrode terminal 1050 of the first storage battery module 1000a and the negative electrode terminal 1062 of the second storage battery module 1000b face in the same direction.
  • the negative electrode terminal 1052 of the first storage battery module 1000a and the positive electrode terminal 1060 of the second storage battery module 1000b also face in the same direction.
  • the first storage battery module 1000a and the second storage battery module 1000b are connected in series.
  • the first exhaust port 1210 and the second exhaust port 1220 are arranged in the lower portion of the first storage battery module 1000a, while the third exhaust port 1230 and the fourth exhaust port 1240 are located in the upper portion of the second storage battery module 1000b. Be placed. Therefore, the second exhaust port 1220 and the fourth exhaust port 1240 do not face each other, and the gas discharged from the fourth exhaust port 1240 does not directly flow into the second exhaust port 1220. Further, since the distance between the second exhaust port 1220 and the fourth exhaust port 1240 is longer than the distance between the second exhaust port 1220 and the third exhaust port 1230 in FIGS. 8A-(c), the gas is released. Further cooled.
  • the assembled battery 4000 includes the first storage battery module 1000a and the second storage battery module 1000b, which are the same as those in FIGS. 9 (a)-(b), but their arrangement is different from that of FIGS. 9 (a)-(b).
  • the second storage battery module 1000b is arranged so that the fourth surface 1140 faces the second surface 1120, the upper surface 1170 faces upward, and the lower surface 1180 faces downward.
  • the second storage battery module 1000b is inverted in the xy plane with respect to the arrangement shown in FIG. 8A, but is not inverted upside down.
  • the second exhaust port 1220 and the fourth exhaust port 1240 face each other, so that the gas discharged from the fourth exhaust port 1240 directly flows into the second exhaust port 1220. Therefore, such an arrangement is not preferable.
  • the second surface 1120 and the third surface 1130 are opposed to each other, so that the gas is discharged from the second storage battery module 1000b.
  • the influence of the generated gas on the first storage battery module 1000a can be reduced.
  • the orientation of the first storage battery module 1000a and the orientation of the second storage battery module 1000b are changed, so that from the second storage battery module 1000b
  • the influence of the discharged gas on the first storage battery module 1000a can be reduced.
  • the first exhaust port 1210 to the fourth exhaust port 1240 are arranged in the lower portion of each surface, the structure can be simplified.
  • the gas 500 discharged from the storage battery cell 210 can be discharged to the outside from the exhaust port. Further, since the gas 500 in one space is discharged to the outside from one exhaust port, the gas 500 can be sufficiently released. Moreover, since the gas 500 is sufficiently released, the occurrence of high-temperature combustion can be suppressed. Further, since the gas 500 in one space is discharged to the outside from one exhaust port, the inflow of air into the space can be suppressed. Moreover, since the inflow of air into the space is suppressed, the occurrence of high-temperature combustion can be suppressed.
  • a plurality of storage battery cells 210 facing the same direction can be classified into a plurality of aggregates.
  • the space is divided into a first space and a second space, a small first space and a second space can be formed when the space is large.
  • one exhaust port is provided for each of the small first space and the second space, the gas 500 can be sufficiently discharged.
  • one exhaust port is provided for each of the small first space and the second space, the inflow of air into the first space and the second space can be suppressed.
  • the front surface 112 is a metal plate, the gas 500 can be cooled.
  • a plurality of aggregates can be formed according to the directions of the plurality of storage battery cells 210. Further, since the space is divided into the first space and the second space, the first space and the second space can be formed on opposite sides of the storage battery assembly 200. Further, since one exhaust port is provided for each of the first space and the second space, the gas 500 can be sufficiently discharged. Further, since one exhaust port is provided for each of the first space and the second space, the inflow of air into the first space and the second space can be suppressed. Further, since the front surface 112 and the rear surface 132 are metal plates, the gas 500 can be cooled.
  • the outline of one aspect of the present disclosure is as follows.
  • the assembled battery (3000) of a certain aspect of the present disclosure includes a first storage battery module (1000a) having a first surface (1110) and a second surface (1120) facing each other, and a third facing each other. It comprises a second storage battery module (1000b) having a surface (1130) and a fourth surface (1140).
  • a first storage battery module (1000a) having a first surface (1110) and a second surface (1120) facing each other, and a third facing each other. It comprises a second storage battery module (1000b) having a surface (1130) and a fourth surface (1140).
  • the positions of the plurality of third exhaust ports (1230) to be formed are different from the positions of the plurality of fourth exhaust ports (1240) arranged on the fourth surface (1140), and the first surface (1110) and the third surface are different.
  • the (1130) is associated, the positions of the plurality of first exhaust ports (1210) and the positions of the plurality of third exhaust ports (1230) are common, and the second surface (1120) and the fourth surface (1120)
  • the 1140 is associated with the position of the plurality of second exhaust ports (1220) and the positions of the plurality of fourth exhaust ports (1240), the positions of the second surface (1120) and the third surface (1120) are common.
  • the first storage battery module (1000a) and the second storage battery module (1000b) are arranged side by side with the 1130) facing each other.
  • the assembled battery (3000) includes a first storage battery module (1000a) having a first surface (1110) and a second surface (1120) facing each other, and a third surface (1130) facing each other. It includes a second storage battery module (1000b) having a fourth surface (1140).
  • a first storage battery module (1000a) having a first surface (1110) and a second surface (1120) facing each other, and a third surface (1130) facing each other.
  • the positions of the plurality of third exhaust ports (1230) to be formed are different from the positions of the plurality of fourth exhaust ports (1240) arranged on the fourth surface (1140), and the first surface (1110) and the third surface are different.
  • (1130) is associated with each other, the positions of the plurality of first exhaust ports (1210) and the positions of the plurality of third exhaust ports (1230) are common, and the second surface (1120) and the fourth surface (1120) are associated with each other.
  • the 1140 is associated with the position of the plurality of second exhaust ports (1220) and the positions of the plurality of fourth exhaust ports (1240), the positions of the second surface (1120) and the fourth surface (1120) are common.
  • the first storage battery module (1000a) and the second storage battery module (1000b) are arranged side by side.
  • the plurality of first exhaust ports (1210) are arranged in the lower portion of the first surface (1110), and the plurality of second exhaust ports (1220) are arranged in the lower portion of the second surface (1120).
  • the third exhaust port (1230) is arranged in the lower portion of the third surface (1130), and the plurality of fourth exhaust ports (1240) are arranged in the lower portion of the fourth surface (1140).
  • Example 2 relates to an assembled battery including a plurality of storage battery modules in which a plurality of storage battery cells are housed, as in the first embodiment.
  • the exhaust port of each storage battery module is arranged only in the lower portion, but in the second embodiment, the exhaust port of each storage battery module is arranged in the upper portion and the lower portion.
  • FIGS. 7 (a)-(c) show an outline of the structure of the storage battery module 1500.
  • 10 (a)-(c) are shown as shown in FIGS. 7 (a)-(c).
  • FIG. 10A shows an outline from the front side of the storage battery module 1500
  • FIG. 10B shows an outline from the right side of the storage battery module 1500
  • FIG. 10C shows an outline from the rear side of the storage battery module 1500. The outline of is shown.
  • the storage battery module 1500 has different orientations of the positive electrode 212 and the negative electrode 214 in the upper stage and the lower stage.
  • an upper exhaust port 1510 or an upper exhaust port 1520 is arranged above the positive electrode 212 in the upper stage, and a lower exhaust port 1512 or a lower exhaust port 1522 is arranged below the positive electrode 212 in the lower stage.
  • a positive electrode terminal is provided at the right end of the storage battery module 1500, and a negative electrode terminal is provided at the left end of the storage battery module 1500.
  • FIGS. 11 (a)-(c) show the structure of the assembled battery 3000.
  • FIG. 11A is a perspective view showing the structure of the assembled battery 3000.
  • 11 (b)-(c) are top views of the assembled battery 3000, FIG. 11 (b) mainly shows the structure of the upper portion of the assembled battery 3000, and FIG. 11 (c) shows the assembled battery 3000.
  • the lower structure is shown in the center.
  • the assembled battery 3000 includes a first storage battery module 1500a and a second storage battery module 1500b.
  • the first storage battery module 1500a and the second storage battery module 1500b have the same structure as the above-mentioned storage battery module 1500.
  • the first storage battery module 1500a has a first surface 1610 and a second surface 1620 facing each other, and has an upper surface 1650 and a lower surface 1660 sandwiched between the first surface 1610 and the second surface 1620.
  • a plurality of first upper exhaust ports 1710 are arranged on the upper portion of the first surface 1610, and a plurality of first lower exhaust ports 1712 are arranged on the lower portion of the first surface 1610.
  • a plurality of second upper exhaust ports 1720 are arranged on the upper portion of the second surface 1620, and a plurality of second lower exhaust ports 1722 are arranged on the lower portion of the second surface 1620.
  • the plurality of first upper exhaust ports 1710 correspond to the plurality of upper exhaust ports 1510 in FIG.
  • the plurality of first lower exhaust ports 1712 correspond to the plurality of lower exhaust ports 1512 in FIG. 10 (a).
  • the plurality of second upper exhaust ports 1720 correspond to the plurality of upper exhaust ports 1520 of FIG. 10 (c)
  • the plurality of second lower exhaust ports 1722 correspond to the plurality of lower exhaust ports 1522 of FIG. 10 (c).
  • the positions of the plurality of first upper exhaust ports 1710 and the positions of the plurality of second upper exhaust ports 1720 are different.
  • the positions of the plurality of first lower exhaust ports 1712 and the positions of the plurality of second lower exhaust ports 1722 are also different.
  • the second storage battery module 1500b has a third surface 1630 and a fourth surface 1640 facing each other, and has an upper surface 1670 and a lower surface 1680 sandwiched between the third surface 1630 and the fourth surface 1640.
  • a plurality of third upper exhaust ports 1730 are arranged on the upper portion of the third surface 1630, and a plurality of third lower exhaust ports 1732 are arranged on the lower portion of the third surface 1630.
  • a plurality of fourth upper exhaust ports 1740 are arranged on the upper portion of the fourth surface 1640, and a plurality of fourth lower exhaust ports 1742 are arranged on the lower portion of the fourth surface 1640.
  • the plurality of third upper exhaust ports 1730 correspond to the plurality of upper exhaust ports 1510 in FIG.
  • the plurality of fourth upper exhaust ports 1740 correspond to the plurality of upper exhaust ports 1520 of FIG. 10 (c)
  • the plurality of fourth lower exhaust ports 1742 correspond to the plurality of lower exhaust ports 1522 of FIG. 10 (c).
  • the positions of the plurality of third upper exhaust ports 1730 and the positions of the plurality of fourth upper exhaust ports 1740. is different.
  • the positions of the plurality of third lower exhaust ports 1732 and the positions of the plurality of fourth lower exhaust ports 1742 are also different.
  • the positions of the plurality of first upper exhaust ports 1710 and the positions of the plurality of third upper exhaust ports 1730 are common. Further, the positions of the plurality of first lower exhaust ports 1712 and the positions of the plurality of third lower exhaust ports 1732 are also common.
  • the positions of the plurality of second upper exhaust ports 1720 and the positions of the plurality of fourth upper exhaust ports 1740 are common.
  • the positions of the plurality of second lower exhaust ports 1722 and the positions of the plurality of fourth lower exhaust ports 1742 are also common.
  • the first storage battery module 1500a and the second storage battery module 1500b are arranged so that the second surface 1620 and the third surface 1630 face each other.
  • the positive electrode terminal 1550 of the first storage battery module 1500a and the positive electrode terminal 1560 of the second storage battery module 1500b face in the same direction.
  • the negative electrode terminal 1552 of the first storage battery module 1500a and the negative electrode terminal 1562 of the second storage battery module 1500b also face in the same direction.
  • the first storage battery module 1500a and the second storage battery module 1500b are connected in parallel. Be connected.
  • second upper exhaust port 1720 on the second surface 1620 and the third upper exhaust port 1730 on the third surface 1630 are arranged so as not to face each other.
  • the second lower exhaust port 1722 on the second surface 1620 and the third lower exhaust port 1732 on the third surface 1630 are also arranged so as not to face each other.
  • FIGS. 12 (a)-(f) show another structure of the assembled battery 3000.
  • FIG. 12A is a perspective view showing the structure of the assembled battery 3000.
  • 12 (b)-(c) are top views of the assembled battery 3000,
  • FIG. 12 (b) mainly shows the structure of the upper portion of the assembled battery 3000, and
  • FIG. 12 (c) shows the assembled battery 3000.
  • the lower structure is shown in the center.
  • the structures of the first storage battery module 1500a and the second storage battery module 1500b included in the assembled battery 3000 are the same as those in FIGS. 10 (a)-(c), but their arrangements are as shown in FIGS. 11 (a)-(c). Is different.
  • the first storage battery module 1500a is arranged in the same manner as in FIG.
  • the fourth surface 1640 faces the second surface 1620, the lower surface 1680 faces upward, and the upper surface faces.
  • the 1670 is placed facing down.
  • the second storage battery module 1500b is inverted and upside down in the xy plane with respect to the arrangement shown in FIG. 11A.
  • the first storage battery module 1500a and the second storage battery module 1500b are arranged in different directions on the projection plane parallel to the second plane 1620 and the fourth plane 1640.
  • the positive electrode terminal 1550 of the first storage battery module 1500a and the negative electrode terminal 1562 of the second storage battery module 1500b face in the same direction.
  • the negative electrode terminal 1552 of the first storage battery module 1500a and the positive electrode terminal 1560 of the second storage battery module 1500b also face in the same direction.
  • the first storage battery module 1500a and the second storage battery module 1500b are connected in series.
  • the first upper exhaust port 1710 and the second upper exhaust port 1720 are arranged in the upper portion of the first storage battery module 1500a, and the fourth lower exhaust port 1742 and the third lower exhaust port 1732 are located in the second storage battery module 1500b. It is placed in the upper part. Therefore, the second upper exhaust port 1720 and the fourth lower exhaust port 1742 do not face each other, and the gas discharged from the fourth lower exhaust port 1742 does not directly flow into the second upper exhaust port 1720.
  • the first lower exhaust port 1712 and the second lower exhaust port 1722 are arranged in the lower portion of the first storage battery module 1500a, and the third upper exhaust port 1730 and the fourth upper exhaust port 1740 are the second storage battery. It is located in the lower portion of the module 1500b. Therefore, the second lower exhaust port 1722 and the fourth upper exhaust port 1740 do not face each other, and the gas discharged from the fourth upper exhaust port 1740 does not directly flow into the second lower exhaust port 1722.
  • the assembled battery 4000 includes the first storage battery module 1500a and the second storage battery module 1500b, which are the same as those in FIGS. 9 (a)-(b), but their arrangements are different from those in FIGS. 12 (a)-(b).
  • the second storage battery module 1500b is arranged so that the fourth surface 1640 faces the second surface 1620, the upper surface 1670 faces upward, and the lower surface 1680 faces downward. As described above, the second storage battery module 1500b is inverted in the xy plane with respect to the arrangement shown in FIG. 11A, but is not inverted upside down.
  • the second upper exhaust port 1720 and the fourth upper exhaust port 1740 face each other, so that the gas discharged from the fourth upper exhaust port 1740 directly flows into the second upper exhaust port 1720. .. Further, since the second lower exhaust port 1722 and the fourth lower exhaust port 1742 face each other, the gas discharged from the fourth lower exhaust port 1742 directly flows into the second lower exhaust port 1722. Therefore, such an arrangement is not preferable.
  • the second exhaust port (1720, 1722) when the position of the second exhaust port (1720, 1722) is different from the position of the third exhaust port (1730, 1732), the second surface 1620 and the third surface 1630 are opposed to each other. Therefore, the influence of the gas discharged from the second storage battery module 1500b on the first storage battery module 1500a can be reduced. Further, even if the positions of the second exhaust port (1720, 1722) and the position of the fourth exhaust port (1740, 1742) are the same, the orientation of the first storage battery module 1500a and the orientation of the second storage battery module 1500b are changed. Therefore, the influence of the gas discharged from the second storage battery module 1500b on the first storage battery module 1500a can be reduced. Further, since the first exhaust ports (1710, 1712) to the fourth exhaust ports (1740, 1742) are arranged on the upper portion and the lower portion of each surface, gas can be efficiently discharged.
  • the outline of one aspect of the present disclosure is as follows.
  • the outline of one aspect of the present disclosure is as follows.
  • the assembled battery (3000) of a certain aspect of the present disclosure includes a first storage battery module (1500a) having a first surface (1610) and a second surface (1620) facing each other, and a third facing each other. It includes a second storage battery module (1500b) having a surface (1630) and a fourth surface (1640).
  • first storage battery module (1500a) having a first surface (1610) and a second surface (1620) facing each other, and a third facing each other.
  • It includes a second storage battery module (1500b) having a surface (1630) and a fourth surface (1640).
  • the third surface (1640) is on the projection surface parallel to the third surface (1630) and the fourth surface (1640).
  • the positions of the plurality of third exhaust ports (1730, 1732) arranged on the fourth surface (1640) are different from the positions of the plurality of fourth exhaust ports (1740, 1742) arranged on the fourth surface (1640).
  • the assembled battery (3000) includes a first storage battery module (1500a) having a first surface (1610) and a second surface (1620) facing each other, and a third surface (1630) facing each other. It includes a second storage battery module (1500b) having a fourth surface (1640).
  • the third plane (1620, 1722) is different from the positions of the plurality of second exhaust ports (1720, 1722) arranged in (1620).
  • the positions of the plurality of third exhaust ports (1730, 1732) arranged in 1630) are different from the positions of the plurality of fourth exhaust ports (1740, 1742) arranged in the fourth surface (1640).
  • the positions of the plurality of first exhaust ports (1710, 1712) and the positions of the plurality of third exhaust ports (1730, 1732) are common.
  • the positions of the plurality of second exhaust ports (1720, 1722) and the positions of the plurality of fourth exhaust ports (1740, 1742) when the second surface (1620) and the fourth surface (1640) are associated with each other.
  • the first storage battery module is on a projection plane in which the second plane (1620) and the fourth plane (1640) are opposed to each other and parallel to the second plane (1620) and the fourth plane (1640).
  • the first storage battery module (1500a) and the second storage battery module (1500b) are arranged side by side by changing the orientation of the (1500a) and the orientation of the second storage battery module (1500b).
  • the plurality of first exhaust ports (1710, 1712) are arranged on the upper portion and the lower portion of the first surface (1610), and the plurality of second exhaust ports (1720, 1722) are the upper portion of the second surface (1620).
  • the plurality of third exhaust ports (1730, 1732) are arranged in the upper portion and the lower portion of the third surface (1630), and the plurality of fourth exhaust ports (1740, 1742) are arranged in the lower portion. It is arranged on the upper and lower portions of the four surfaces (1640).
  • the number of the storage battery modules 1000 or the storage battery modules 1500 included in the assembled battery 3000 is said to be "2". However, the number is not limited to this, and for example, the number of the storage battery modules 1000 or the storage battery modules 1500 included in the assembled battery 3000 may be "3" or more. At that time, the storage battery modules 1000 or the storage battery modules 1500 may be arranged according to the regularity of arrangement in Examples 1 and 2. According to this modification, the degree of freedom of configuration can be improved.
  • the front space 400 and the rear space 410 are formed.
  • the present invention is not limited to this, and for example, only one of the front space 400 and the rear space 410 may be formed. According to this modification, when all the storage battery cells 210 are arranged so as to face the same direction, a space suitable for the arrangement can be formed.
  • a plurality of front spaces 400 are arranged.
  • the number of front spaces 400 is not limited to this, and may be one. According to this modification, the structure can be simplified when the size of the front space 400 is small. The same applies to the rear space 410.
  • the front partition wall 242 and the rear partition wall 252 are formed of resin or the like.
  • the present invention is not limited to this, and for example, the front partition wall 242 and the rear partition wall 252 formed of resin or the like may be reinforced by a metal plate or the like from the front space 400 or the rear space 410 side. According to this modification, even if the pressure of the generated gas 500 becomes high, the front partition wall 242 and the rear partition wall 252 can be less likely to be damaged.
  • the influence of the gas discharged from one battery module on another battery module can be reduced.
  • 1000 storage battery module 1110 1st surface, 1120 2nd surface, 1130 3rd surface, 1140 4th surface, 1150 upper surface, 1160 lower surface, 1170 upper surface, 1180 lower surface, 1210 1st exhaust port, 1220 2nd exhaust port, 1230th 3 exhaust ports, 1240 4th exhaust port, 3000 rechargeable batteries.

Abstract

The positions of a plurality of first venting ports 1210 and the positions of a plurality of second venting ports 1220 differ, and the positions of a plurality of third venting ports 1230 and the positions of a plurality of fourth venting ports 1240 differ. The positions of the plurality of first venting ports 1210 and the positions of the plurality of third venting ports 1230 are common, and the positions of the plurality of second venting ports 1220 and the positions of the plurality of fourth venting ports 1240 are common. A first storage battery module 1000a and a second storage battery module 1000b are arranged with a second surface 1120 and a third surface 1130 facing one another.

Description

組電池Batteries
 本開示は、組電池に関し、特に複数の蓄電池セルを収納する蓄電池モジュールを複数含む組電池に関する。 The present disclosure relates to an assembled battery, and particularly to an assembled battery including a plurality of storage battery modules for accommodating a plurality of storage battery cells.
 電池モジュールを複数組み合わせた組電池の一例では、複数の電池モジュールが上下方向に積層されている。下部側に配置された電池モジュールにおけるケース内の電池に異常が発生して電池からガスが放出された場合、ガスの熱によって、上部側に位置する電池モジュールの電池が影響を受ける。そのため、下部側の電池モジュールの側面から離れながら上部に向かう連通部が配置される(例えば、特許文献1参照)。 In an example of an assembled battery in which a plurality of battery modules are combined, a plurality of battery modules are stacked in the vertical direction. When an abnormality occurs in the battery in the case of the battery module arranged on the lower side and gas is released from the battery, the heat of the gas affects the battery of the battery module located on the upper side. Therefore, a communication portion is arranged toward the upper part while being separated from the side surface of the lower battery module (see, for example, Patent Document 1).
国際公開第15/053119号International Publication No. 15/053119
 組電池では、複数の電池モジュールが横方向に並べられることがある。このような構造において、1つの電池モジュールにおけるケース内の電池に異常が発生して電池からガスが放出された場合、ガスの熱によって、隣接した電池モジュールの電池に与える影響を低減することが求められる。 In an assembled battery, multiple battery modules may be arranged horizontally. In such a structure, when an abnormality occurs in the battery in the case of one battery module and gas is released from the battery, it is required to reduce the influence of the heat of the gas on the batteries of the adjacent battery modules. Be done.
 本開示はこうした状況に鑑みなされたものであり、その目的は、1つの電池モジュールから排出されたガスによって他の電池モジュールが受ける影響を低減する技術を提供することにある。 The present disclosure has been made in view of such a situation, and an object thereof is to provide a technique for reducing the influence of the gas discharged from one battery module on another battery module.
 上記課題を解決するために、本開示のある態様の組電池は、互いに反対を向いた第1面と第2面とを有する第1蓄電池モジュールと、互いに反対を向いた第3面と第4面とを有する第2蓄電池モジュールとを備える。第1面と第2面とに平行な投影面上において、第1面に配置される複数の第1排気口の位置と、第2面に配置される複数の第2排気口の位置とが異なり、第3面と第4面とに平行な投影面上において、第3面に配置される複数の第3排気口の位置と、第4面に配置される複数の第4排気口の位置とが異なり、第1面と第3面とを対応させる場合に、複数の第1排気口の位置と複数の第3排気口の位置とが共通であり、第2面と第4面とを対応させる場合に、複数の第2排気口の位置と、複数の第4排気口の位置とが共通であり、第2面と第3面とを対向させて、第1蓄電池モジュールと第2蓄電池モジュールとが並べられる。 In order to solve the above problems, the assembled battery of a certain aspect of the present disclosure includes a first storage battery module having a first surface and a second surface facing each other, and a third surface and a fourth surface facing each other. It includes a second storage battery module having a surface. On the projection plane parallel to the first plane and the second plane, the positions of the plurality of first exhaust ports arranged on the first plane and the positions of the plurality of second exhaust ports arranged on the second plane are Differently, on the projection plane parallel to the third plane and the fourth plane, the positions of the plurality of third exhaust ports arranged on the third plane and the positions of the plurality of fourth exhaust ports arranged on the fourth plane. However, when the first surface and the third surface correspond to each other, the positions of the plurality of first exhaust ports and the positions of the plurality of third exhaust ports are common, and the second surface and the fourth surface are used. When corresponding to each other, the positions of the plurality of second exhaust ports and the positions of the plurality of fourth exhaust ports are common, and the second surface and the third surface are opposed to each other so that the first storage battery module and the second storage battery are opposed to each other. The modules are lined up.
 本開示の別の態様もまた、組電池である。この組電池は、互いに反対を向いた第1面と第2面とを有する第1蓄電池モジュールと、互いに反対を向いた第3面と第4面とを有する第2蓄電池モジュールとを備える。第1面と第2面とに平行な投影面上において、第1面に配置される複数の第1排気口の位置と、第2面に配置される複数の第2排気口の位置とが異なり、第3面と第4面とに平行な投影面上において、第3面に配置される複数の第3排気口の位置と、第4面に配置される複数の第4排気口の位置とが異なり、第1面と第3面とを対応させる場合に、複数の第1排気口の位置と複数の第3排気口の位置とが共通であり、第2面と第4面とを対応させる場合に、複数の第2排気口の位置と、複数の第4排気口の位置とが共通であり、第2面と第4面とを対向させ、かつ第2面と第4面とに平行な投影面上において、第1蓄電池モジュールの向きと第2蓄電池モジュールの向きとを変えて、第1蓄電池モジュールと第2蓄電池モジュールとが並べられる。 Another aspect of the present disclosure is also an assembled battery. This assembled battery includes a first storage battery module having a first surface and a second surface facing each other, and a second storage battery module having a third surface and a fourth surface facing each other. On the projection plane parallel to the first plane and the second plane, the positions of the plurality of first exhaust ports arranged on the first plane and the positions of the plurality of second exhaust ports arranged on the second plane are Differently, on the projection plane parallel to the third plane and the fourth plane, the positions of the plurality of third exhaust ports arranged on the third plane and the positions of the plurality of fourth exhaust ports arranged on the fourth plane. However, when the first surface and the third surface correspond to each other, the positions of the plurality of first exhaust ports and the positions of the plurality of third exhaust ports are common, and the second surface and the fourth surface are used. When corresponding to each other, the positions of the plurality of second exhaust ports and the positions of the plurality of fourth exhaust ports are common, the second surface and the fourth surface are opposed to each other, and the second surface and the fourth surface are associated with each other. The first storage battery module and the second storage battery module are arranged side by side on a projection plane parallel to the above, with the orientation of the first storage battery module and the orientation of the second storage battery module changed.
 本開示によれば、1つの電池モジュールから排出されたガスによって他の電池モジュールが受ける影響を低減できる。 According to the present disclosure, the influence of the gas discharged from one battery module on another battery module can be reduced.
実施例1に係る蓄電池モジュールの構造を示す斜視図である。It is a perspective view which shows the structure of the storage battery module which concerns on Example 1. FIG. 図1の蓄電池モジュールの構造を示す分解斜視図である。It is an exploded perspective view which shows the structure of the storage battery module of FIG. 図1の蓄電池モジュールの構造を示す別の分解斜視図である。It is another exploded perspective view which shows the structure of the storage battery module of FIG. 図1の蓄電池モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the storage battery module of FIG. 図1の蓄電池モジュールの構造を示す別の断面図である。It is another cross-sectional view which shows the structure of the storage battery module of FIG. 図6(a)-(b)は、図1の蓄電池モジュールにおけるガスの排出の概要を示す図である。6 (a)-(b) are diagrams showing an outline of gas emission in the storage battery module of FIG. 1. 図7(a)-(c)は、実施例1に係る蓄電池モジュールの構造の概要を示す図である。7 (a)-(c) are diagrams showing an outline of the structure of the storage battery module according to the first embodiment. 図8(a)-(c)は、実施例1に係る組電池の構造を示す図である。8 (a)-(c) are views showing the structure of the assembled battery according to the first embodiment. 図9(a)-(d)は、実施例1に係る組電池の別の構造を示す図である。9 (a)-(d) are views showing another structure of the assembled battery according to the first embodiment. 図10(a)-(c)は、実施例2に係る蓄電池モジュールの構造の概要を示す図である。10 (a)-(c) are diagrams showing an outline of the structure of the storage battery module according to the second embodiment. 図11(a)-(c)は、実施例2に係る組電池の構造を示す図である。11 (a)-(c) are views showing the structure of the assembled battery according to the second embodiment. 図12(a)-(f)は、実施例2に係る組電池の別の構造を示す図である。12 (a)-(f) are views showing another structure of the assembled battery according to the second embodiment.
(実施例1)
 本開示の実施例を具体的に説明する前に、実施例の概要を説明する。本実施例は、複数の蓄電池セルが収納される蓄電池モジュールが複数含まれる組電池に関する。蓄電池モジュールにおいて、各蓄電池セルは、正極と負極とが互いに反対を向いた構造を有し、例えば、正極が同一方向を向くように並べられる。蓄電池セルがリチウムイオン二次電池である場合、内部短絡等が発生すると蓄電池セル内にガスが発生する。また、ガスの発生により、蓄電池セル内の圧力が増加するが、安全機構によりガスが正極側から蓄電池セル外に放出される。このようなガスは高温高圧であり、ガスによる燃焼が生じると、蓄電池モジュール内の他の蓄電池セルも熱暴走(類焼)する。この類焼により、蓄電池モジュール全体、または製品全体が燃えてしまうおそれがある。ガスによる類焼を抑制するために、蓄電池の構造体と複数の蓄電池セルの正極側の面との間には空間が設けられ、空間は排気口に接続される。蓄電池セルからの高温ガスは空間に放出され、排気口から蓄電池モジュール外に放出される。
(Example 1)
An outline of the embodiment will be described before the embodiment of the present disclosure is specifically described. The present embodiment relates to an assembled battery including a plurality of storage battery modules in which a plurality of storage battery cells are housed. In the storage battery module, each storage battery cell has a structure in which the positive electrode and the negative electrode face each other, and for example, the positive electrodes are arranged so as to face the same direction. When the storage battery cell is a lithium ion secondary battery, gas is generated in the storage battery cell when an internal short circuit or the like occurs. Further, the pressure inside the storage battery cell increases due to the generation of gas, but the gas is discharged from the positive electrode side to the outside of the storage battery cell by the safety mechanism. Such a gas has a high temperature and a high pressure, and when combustion by the gas occurs, other storage battery cells in the storage battery module also undergo thermal runaway (burning). This kind of burning may burn the entire storage battery module or the entire product. In order to suppress burning due to gas, a space is provided between the structure of the storage battery and the surface of the plurality of storage battery cells on the positive electrode side, and the space is connected to the exhaust port. The high-temperature gas from the storage battery cell is discharged into the space, and is discharged from the exhaust port to the outside of the storage battery module.
 このような状況下において、空間が複数に分割された構造を有する場合、ガスは1つの排気口から排出されにくくなる。そのため、ガスによる類焼が生じやすくなる。一方、1つの空間に複数の排気口が接続される場合、ガスは排出されやすくなる。しかしながら、1つの空間に複数の排気口が接続されると、蓄電池モジュール外から空間に空気が流入しやすくなり、ガスによる高温燃焼が生じやすくなる。そのため、ガスによる高温燃焼を抑制するような構造体内の空間と排気口との関係が求められる。本実施例に係る蓄電池モジュールは、1つの空間に1つの排気口を接続する。そのため、構造体内に1つの空間が形成される場合、構造体に1つの排気口が設けられる。また、構造体内に複数の空間が形成される場合、構造体に複数の排気口が設けられる。ここで、一般的に不完全燃焼温度<完全燃焼温度の関係であり、金属を溶かず「ふいご」の様に空気(酸素)を多く送り込むと燃焼温度はさらに高温になる。ろうそくの芯の部分は不完全燃焼で約600℃、炎の先端は約1000℃を超える温度として知られている。 Under such circumstances, if the space has a structure divided into a plurality of parts, it becomes difficult for the gas to be discharged from one exhaust port. Therefore, burning with gas is likely to occur. On the other hand, when a plurality of exhaust ports are connected to one space, gas is easily discharged. However, when a plurality of exhaust ports are connected to one space, air easily flows into the space from outside the storage battery module, and high-temperature combustion due to gas is likely to occur. Therefore, the relationship between the space inside the structure and the exhaust port that suppresses high-temperature combustion by gas is required. In the storage battery module according to this embodiment, one exhaust port is connected to one space. Therefore, when one space is formed in the structure, one exhaust port is provided in the structure. Further, when a plurality of spaces are formed in the structure, a plurality of exhaust ports are provided in the structure. Here, in general, the relationship is incomplete combustion temperature <complete combustion temperature, and if a large amount of air (oxygen) is sent in like a "bellows" without melting the metal, the combustion temperature becomes even higher. The core of the candle is known to have an incomplete combustion of about 600 ° C, and the tip of the flame has a temperature of over 1000 ° C.
 このような蓄電池モジュールが横方向に並べられ、かつ電気的に接続されることによって組電池が形成される。1つの蓄電池モジュールの排気口から排出されたガスが、近傍に設置された別の蓄電池モジュールの排気口から当該別の蓄電池モジュールの内部に流入すると、内部の蓄電池セルがあぶられることによって、当該別の蓄電池モジュールが熱暴走するおそれがある。そのため、1つの蓄電池モジュールから排出されるガスが、隣接の別の蓄電池モジュールに直接流入することを抑制することが求められる。本実施例に係る組電池では、隣接した2つの蓄電池モジュールのそれぞれの排気口が、上下左右で互い違いになる位置に設けられる。このような構造によって、1つの蓄電池モジュールから排出されるガスが、隣接の別の蓄電池モジュールに直接流入しにくくなる。また、ガスが、隣接の別の蓄電池モジュールに流入する場合であっても、一定距離の移動によってガスが冷やされているので、類焼発生の危険性が低減される。以下の説明において、「平行」、「垂直」は、完全な平行、垂直だけではなく、誤差の範囲で平行、垂直からずれている場合も含む。また、「略」は、おおよその範囲で同一であるという意味である。 The assembled battery is formed by arranging such storage battery modules in the horizontal direction and electrically connecting them. When the gas discharged from the exhaust port of one storage battery module flows into the inside of the other storage battery module from the exhaust port of another storage battery module installed in the vicinity, the internal storage battery cell is hit, and the other There is a risk of thermal runaway of the storage battery module. Therefore, it is required to prevent the gas discharged from one storage battery module from directly flowing into another adjacent storage battery module. In the assembled battery according to the present embodiment, the exhaust ports of the two adjacent storage battery modules are provided at positions where they are staggered vertically and horizontally. With such a structure, it becomes difficult for the gas discharged from one storage battery module to directly flow into another adjacent storage battery module. Further, even when the gas flows into another adjacent storage battery module, the gas is cooled by moving a certain distance, so that the risk of burning is reduced. In the following description, "parallel" and "vertical" include not only perfectly parallel and vertical, but also cases where they are deviated from parallel and vertical within an error range. In addition, "abbreviation" means that they are the same in an approximate range.
 ここでは、(1)組電池3000に含まれる蓄電池モジュール1000の構造を説明してから、(2)組電池3000の構造を説明する。
 (1)組電池3000に含まれる蓄電池モジュール1000の構造
 図1は、蓄電池モジュール1000の構造を示す斜視図である。図1に示すように、x軸、y軸、z軸を含む直交座標系が規定される。x軸、y軸は、蓄電池モジュール1000の底面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、蓄電池モジュール1000の高さ(垂直)方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。また、x軸の正方向側を「前側」あるいは「正面側」、x軸の負方向側を「後側」あるいは「背面側」、z軸の正方向側を「上側」あるいは「天面側」、z軸の負方向側を「下側」あるいは「底面側」ということもある。さらに、y軸方向の正方向側を「右側」、y軸の負方向側を「左側」ということもある。
Here, (1) the structure of the storage battery module 1000 included in the assembled battery 3000 will be described, and then (2) the structure of the assembled battery 3000 will be described.
(1) Structure of Storage Battery Module 1000 Included in Assembly Battery 3000 FIG. 1 is a perspective view showing the structure of storage battery module 1000. As shown in FIG. 1, a Cartesian coordinate system including the x-axis, y-axis, and z-axis is defined. The x-axis and y-axis are orthogonal to each other in the bottom surface of the storage battery module 1000. The z-axis is perpendicular to the x-axis and the y-axis and extends in the height (vertical) direction of the storage battery module 1000. Further, the positive directions of the x-axis, the y-axis, and the z-axis are defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow. The positive side of the x-axis is the "front side" or "front side", the negative side of the x-axis is the "rear side" or "back side", and the positive side of the z-axis is the "upper side" or "top side". , The negative side of the z-axis may be referred to as the "lower side" or the "bottom side". Further, the positive side in the y-axis direction may be referred to as "right side", and the negative side in the y-axis direction may be referred to as "left side".
 構造体100は、前側筐体110、後側筐体130、右側蓋352を含む。前側筐体110は、前面112、前側下面114、前側上面116、前側排気口118と総称される第1前側排気口118aから第4前側排気口118d、左側面150を含む。後側筐体130は、後面132、後側下面134、後側上面136、右側面152を含む。前側筐体110、後側筐体130の各構成要素は、ネジ、溶接、接着材等で接続されているが、公知の技術が使用されればよいので、ここでは説明を省略する。 The structure 100 includes a front housing 110, a rear housing 130, and a right lid 352. The front housing 110 includes a front 112, a front lower surface 114, a front upper surface 116, a first front exhaust port 118a collectively referred to as a front exhaust port 118, a fourth front exhaust port 118d, and a left side surface 150. The rear housing 130 includes a rear surface 132, a rear side lower surface 134, a rear side upper surface 136, and a right side surface 152. Each component of the front housing 110 and the rear housing 130 is connected by screws, welding, an adhesive, or the like, but a known technique may be used, and thus description thereof will be omitted here.
 前側筐体110の前面112は、y-z平面上に広がる矩形の板形状を有する。前面112の下側端から後側に向かって前側下面114が延び、前面112の上側端から後側に向かって前側上面116が延び、前面112の左側端から後側に向かって左側面150が延びる。前側下面114と前側上面116と左側面150は、いずれも板形状を有する。板形状は矩形状であってもよい。また、後側筐体130の後面132は、y-z平面上に広がる矩形の板形状を有する。後面132の下側端から前側に向かって後側下面134が延び、後面132の上側端から前側に向かって後側上面136が延び、後面132の右側端から前側に向かって右側面152が延びる。後側下面134と後側上面136と右側面152は、いずれも板形状を有する。板形状は矩形状であってもよい。 The front surface 112 of the front housing 110 has a rectangular plate shape extending on the yz plane. The front lower surface 114 extends from the lower end of the front surface 112 toward the rear side, the front upper surface 116 extends from the upper end of the front surface 112 toward the rear side, and the left side surface 150 extends from the left side end of the front surface 112 toward the rear side. Extend. The front lower surface 114, the front upper surface 116, and the left side 150 all have a plate shape. The plate shape may be rectangular. Further, the rear surface 132 of the rear housing 130 has a rectangular plate shape extending on the yz plane. The rear lower surface 134 extends from the lower end of the rear surface 132 toward the front side, the rear upper surface 136 extends from the upper end of the rear surface 132 toward the front side, and the right side surface 152 extends from the right end of the rear surface 132 toward the front side. .. The rear lower surface 134, the rear upper surface 136, and the right side 152 all have a plate shape. The plate shape may be rectangular.
 前側下面114の後側端と、後側下面134の前側端とが接続されることによって、前側下面114と後側下面134は、1つの下面を形成する。また、前側上面116の後側端と、後側上面136の前側端とが接続されることによって、前側上面116と後側上面136は、1つの上面を形成する。下面と上面は、前面112と後面132とに交差する。このように前側筐体110と後側筐体130とが接続されることによって、構造体100は箱形状を有する。その際、構造体100の右側は、右側面152、右側蓋352でふさがれ、構造体100の左側は、左側面150、左側蓋(図示せず)でふさがれる。以下では、前面112を第1面と呼び、後面132を第2面と呼び、下面を第3面と呼び、上面を第4面と呼んでもよい。ここで、前側筐体110と後側筐体130は、熱伝導性の高い材料、例えば、金属、カーボンにより形成される。そのため、前面112、前側下面114、前側上面116、後面132、後側下面134、後側上面136は、例えば、金属板である。 By connecting the rear end of the front lower surface 114 and the front end of the rear lower surface 134, the front lower surface 114 and the rear lower surface 134 form one lower surface. Further, by connecting the rear end of the front upper surface 116 and the front end of the rear upper surface 136, the front upper surface 116 and the rear upper surface 136 form one upper surface. The lower surface and the upper surface intersect the front surface 112 and the rear surface 132. By connecting the front housing 110 and the rear housing 130 in this way, the structure 100 has a box shape. At that time, the right side of the structure 100 is blocked by the right side surface 152 and the right side lid 352, and the left side of the structure 100 is blocked by the left side surface 150 and the left side lid (not shown). Hereinafter, the front surface 112 may be referred to as a first surface, the rear surface 132 may be referred to as a second surface, the lower surface may be referred to as a third surface, and the upper surface may be referred to as a fourth surface. Here, the front housing 110 and the rear housing 130 are made of a material having high thermal conductivity, for example, metal or carbon. Therefore, the front surface 112, the front lower surface 114, the front upper surface 116, the rear surface 132, the rear lower surface 134, and the rear upper surface 136 are, for example, metal plates.
 以下では、図2から図5を使用しながら、このような蓄電池モジュール1000の構造をさらに説明する。図2は、蓄電池モジュール1000の構造を示す分解斜視図である。図3は、蓄電池モジュール1000の構造を示す別の分解斜視図であり、図2をさらに分解した構造を示す。図4は、蓄電池モジュール1000の構造を示す断面図であり、図1のA-A’線の断面図である。図5は、蓄電池モジュール1000の構造を示す別の断面図であり、図1のB-B’線の断面図である。 In the following, the structure of such a storage battery module 1000 will be further described with reference to FIGS. 2 to 5. FIG. 2 is an exploded perspective view showing the structure of the storage battery module 1000. FIG. 3 is another exploded perspective view showing the structure of the storage battery module 1000, and shows a structure in which FIG. 2 is further disassembled. FIG. 4 is a cross-sectional view showing the structure of the storage battery module 1000, and is a cross-sectional view taken along the line AA'in FIG. FIG. 5 is another cross-sectional view showing the structure of the storage battery module 1000, and is a cross-sectional view taken along the line BB'of FIG.
 前側筐体110と後側筐体130との間には、前側ケース240と後側ケース250との組合せが収納される。前側ケース240と後側ケース250との組合せは中空の箱形状を有しており、絶縁性を有する材料、例えば樹脂により形成される。この組合せでは、前側ケース240の後側端と後側ケース250の前側端が接続されており、前側ケース240は前側筐体110に対向し、後側ケース250は後側筐体130に対向する。前側ケース240と後側ケース250との組合せの内部には、蓄電池集合体200と総称される第1蓄電池集合体200aから第7蓄電池集合体200g、電池ホルダ230が収納される。特に、左側から右側に向かって、第1蓄電池集合体200a、第2蓄電池集合体200b、・・・、第6蓄電池集合体200f、第7蓄電池集合体200gが順に並べられる。そのため、下面と上面は、蓄電池集合体200を挟んで互いに対向するといえる。各蓄電池集合体200には、複数の蓄電池セル210が配置される。 The combination of the front case 240 and the rear case 250 is stored between the front housing 110 and the rear housing 130. The combination of the front case 240 and the rear case 250 has a hollow box shape and is formed of an insulating material such as resin. In this combination, the rear end of the front case 240 and the front end of the rear case 250 are connected, the front case 240 faces the front housing 110, and the rear case 250 faces the rear housing 130. .. Inside the combination of the front side case 240 and the rear side case 250, the first storage battery assembly 200a to the seventh storage battery assembly 200g and the battery holder 230, which are collectively called the storage battery assembly 200, are housed. In particular, from the left side to the right side, the first storage battery assembly 200a, the second storage battery assembly 200b, ..., The sixth storage battery assembly 200f, and the seventh storage battery assembly 200g are arranged in this order. Therefore, it can be said that the lower surface and the upper surface face each other with the storage battery assembly 200 in between. A plurality of storage battery cells 210 are arranged in each storage battery assembly 200.
 蓄電池セル210は、例えば、円柱形のリチウムイオン二次電池である。蓄電池セル210における円柱形の両端には、互いに反対を向いた正極212と負極214とが配置される。蓄電池セル210には公知の技術が使用されればよく、内部短絡等の発生により内部の圧力が上昇した場合、高温高圧ガスを外部に放出する安全機構が備えられる。一般的に、高温高圧ガスは正極212側から放出される。 The storage battery cell 210 is, for example, a cylindrical lithium ion secondary battery. A positive electrode 212 and a negative electrode 214 facing opposite to each other are arranged at both ends of the cylindrical shape of the storage battery cell 210. A known technique may be used for the storage battery cell 210, and a safety mechanism for releasing high-temperature and high-pressure gas to the outside is provided when the internal pressure rises due to the occurrence of an internal short circuit or the like. Generally, the high temperature and high pressure gas is discharged from the positive electrode 212 side.
 ここで、第1蓄電池集合体200a、第3蓄電池集合体200c、第5蓄電池集合体200e、第7蓄電池集合体200gのそれぞれに含まれた複数の蓄電池セル210は、正極212を前側に向け、負極214を後側に向ける。また、第2蓄電池集合体200b、第4蓄電池集合体200d、第6蓄電池集合体200fのそれぞれに含まれた複数の蓄電池セル210は、正極212を後側に向け、負極214を前側に向ける。つまり、1つの蓄電池集合体200内では正極212の方向が同一であるが、隣接した2つの蓄電池集合体200の間では正極212の方向が逆になる。前面112に対向する前側の電極を「第1の電極」と呼び、後面132に対向する後側の電極を「第2の電極」と呼ぶ場合、第1蓄電池集合体200a等では、第1の電極が正極212であり、第2の電極が負極214である。また、第2蓄電池集合体200b等では、第1の電極が負極214であり、第2の電極が正極212である。 Here, the plurality of storage battery cells 210 included in each of the first storage battery assembly 200a, the third storage battery assembly 200c, the fifth storage battery assembly 200e, and the seventh storage battery assembly 200g have the positive electrode 212 facing forward. The negative electrode 214 is directed to the rear side. Further, in the plurality of storage battery cells 210 included in each of the second storage battery assembly 200b, the fourth storage battery assembly 200d, and the sixth storage battery assembly 200f, the positive electrode 212 faces the rear side and the negative electrode 214 faces the front side. That is, the direction of the positive electrode 212 is the same in one storage battery assembly 200, but the direction of the positive electrode 212 is opposite between the two adjacent storage battery assemblies 200. When the front electrode facing the front surface 112 is called the "first electrode" and the rear electrode facing the rear surface 132 is called the "second electrode", in the first storage battery assembly 200a or the like, the first electrode is used. The electrode is the positive electrode 212, and the second electrode is the negative electrode 214. Further, in the second storage battery assembly 200b or the like, the first electrode is the negative electrode 214 and the second electrode is the positive electrode 212.
 電池ホルダ230は、複数の蓄電池セル210のそれぞれを挿入可能な貫通孔を備えることによって、複数の蓄電池セル210のそれぞれの位置を固定する。電池ホルダ230は、絶縁性を有する材料、例えば樹脂により形成される。電池ホルダ230によって固定された複数の蓄電池セル210の前側には前側ケース240が取り付けられ、電池ホルダ230によって固定された複数の蓄電池セル210の後側には後側ケース250が取り付けられる。 The battery holder 230 is provided with a through hole into which each of the plurality of storage battery cells 210 can be inserted, thereby fixing the respective positions of the plurality of storage battery cells 210. The battery holder 230 is made of an insulating material such as resin. A front case 240 is attached to the front side of the plurality of storage battery cells 210 fixed by the battery holder 230, and a rear case 250 is attached to the rear side of the plurality of storage battery cells 210 fixed by the battery holder 230.
 前側ケース240は、y-z平面に広がる板形状の前側ケース板部244を有し、前側ケース板部244には、各蓄電池セル210の正極212に対向した位置に貫通孔が設けられる。また、前側ケース板部244の前側の面において、第2蓄電池集合体200bと第3蓄電池集合体200cとの境界の位置には、第1前側隔壁242aが設けられる。また、第4蓄電池集合体200dと第5蓄電池集合体200eとの境界の位置には、第2前側隔壁242bが設けられ、第6蓄電池集合体200fと第7蓄電池集合体200gとの境界の位置には、第3前側隔壁242cが設けられる。第1前側隔壁242aから第3前側隔壁242cは前側隔壁242と総称され、前側隔壁242は、前側に向かって突出するとともに上下方向に延びる。 The front case 240 has a plate-shaped front case plate portion 244 that extends in the yz plane, and the front case plate portion 244 is provided with a through hole at a position facing the positive electrode 212 of each storage battery cell 210. Further, on the front surface of the front case plate portion 244, a first front partition wall 242a is provided at a position at the boundary between the second storage battery assembly 200b and the third storage battery assembly 200c. A second front partition wall 242b is provided at the boundary between the fourth storage battery assembly 200d and the fifth storage battery assembly 200e, and the boundary position between the sixth storage battery assembly 200f and the seventh storage battery assembly 200g. Is provided with a third front partition 242c. The first front partition wall 242a to the third front partition wall 242c are collectively referred to as the front partition wall 242, and the front partition wall 242 projects toward the front side and extends in the vertical direction.
 第1前側隔壁242aから第3前側隔壁242cによって、前側ケース板部244の前側の面は、第1前側凹部246aから第4前側凹部246dに区分される。例えば、第2前側凹部246bは、第1前側隔壁242aと第2前側隔壁242bとに挟まれた部分、つまり第3蓄電池集合体200cと第4蓄電池集合体200dに対向した位置に配置される。第1前側凹部246a、第3前側凹部246cも第2前側凹部246bと同様である。一方、第4前側凹部246dは、第7蓄電池集合体200gだけに対向した位置に配置されるので、第1前側凹部246aから第3前側凹部246cよりも狭い。このような第1前側凹部246aから第4前側凹部246dは前側凹部246と総称される。 The front surface of the front case plate portion 244 is divided into the first front recess 246a to the fourth front recess 246d by the first front partition 242a to the third front partition 242c. For example, the second front side recess 246b is arranged at a portion sandwiched between the first front side partition wall 242a and the second front side partition wall 242b, that is, at a position facing the third storage battery assembly 200c and the fourth storage battery assembly 200d. The first front recess 246a and the third front recess 246c are the same as the second front recess 246b. On the other hand, since the fourth front recess 246d is arranged at a position facing only the seventh storage battery assembly 200g, it is narrower than the first front recess 246a to the third front recess 246c. Such first front recesses 246a to fourth front recesses 246d are collectively referred to as front recesses 246.
 図2、図3に示されるように、第1前側凹部246aには第1前側リード板300aが嵌め込まれ、第2前側凹部246bには第2前側リード板300bが嵌め込まれる。また、第3前側凹部246cには第3前側リード板300cが嵌め込まれ、第4前側凹部246dには第4前側リード板300dが嵌め込まれる。第1前側リード板300aから第4前側リード板300dは前側リード板300と総称され、前側リード板300は板形状を有する。第1前側リード板300aは、第1蓄電池集合体200aの複数の蓄電池セル210の正極212と、第2蓄電池集合体200bの複数の蓄電池セル210の負極214とに接続される。第1前側リード板300aには、1つの正極212と1つの負極214とを電気的に接続する配線パターンが設けられているので、第1蓄電池集合体200aの1つの蓄電池セル210と、第2蓄電池集合体200bの1つの蓄電池セル210は、直列に接続される。ここで、第1前側リード板300aにおいて正極212と接続される部分には貫通孔が設けられる。第2前側リード板300b、第3前側リード板300cも第1前側リード板300aと同様である。一方、第4前側リード板300dは、第7蓄電池集合体200gの複数の蓄電池セル210の正極212だけに接続される。そのため、第4前側リード板300dは、第1前側リード板300aから第3前側リード板300cよりも小さい。 As shown in FIGS. 2 and 3, the first front lead plate 300a is fitted into the first front recess 246a, and the second front lead plate 300b is fitted into the second front recess 246b. Further, the third front lead plate 300c is fitted into the third front recess 246c, and the fourth front lead plate 300d is fitted into the fourth front recess 246d. The first front lead plate 300a to the fourth front lead plate 300d are collectively referred to as the front lead plate 300, and the front lead plate 300 has a plate shape. The first front lead plate 300a is connected to the positive electrode 212 of the plurality of storage battery cells 210 of the first storage battery assembly 200a and the negative electrode 214 of the plurality of storage battery cells 210 of the second storage battery assembly 200b. Since the first front lead plate 300a is provided with a wiring pattern for electrically connecting one positive electrode 212 and one negative electrode 214, one storage battery cell 210 of the first storage battery assembly 200a and the second storage battery cell 210 and the second One storage battery cell 210 of the storage battery assembly 200b is connected in series. Here, a through hole is provided in a portion of the first front lead plate 300a connected to the positive electrode 212. The second front lead plate 300b and the third front lead plate 300c are the same as the first front lead plate 300a. On the other hand, the fourth front lead plate 300d is connected only to the positive electrode 212 of the plurality of storage battery cells 210 of the seventh storage battery assembly 200 g. Therefore, the fourth front lead plate 300d is smaller than the first front lead plate 300a to the third front lead plate 300c.
 後側ケース250は、y-z平面に広がる板形状の後側ケース板部254を有し、後側ケース板部254には、各蓄電池セル210の正極212に対向した位置に貫通孔が設けられる。また、図5に示されるように、後側ケース板部254の後側の面において、第1蓄電池集合体200aと第2蓄電池集合体200bとの境界の位置には、第1後側隔壁252aが設けられる。また、第3蓄電池集合体200cと第4蓄電池集合体200dとの境界の位置には、第2後側隔壁252bが設けられ、第5蓄電池集合体200eと第6蓄電池集合体200fとの境界の位置には、第3後側隔壁252cが設けられる。第1後側隔壁252aから第3後側隔壁252cは後側隔壁252と総称され、後側隔壁252は、後側に向かって突出するとともに上下方向に延びる。 The rear case 250 has a plate-shaped rear case plate portion 254 that extends in the yz plane, and the rear case plate portion 254 is provided with a through hole at a position facing the positive electrode 212 of each storage battery cell 210. Be done. Further, as shown in FIG. 5, on the rear surface of the rear case plate portion 254, the first rear partition wall 252a is located at the boundary between the first storage battery assembly 200a and the second storage battery assembly 200b. Is provided. A second rear partition wall 252b is provided at the boundary between the third storage battery assembly 200c and the fourth storage battery assembly 200d, and the boundary between the fifth storage battery assembly 200e and the sixth storage battery assembly 200f. A third rear partition 252c is provided at the position. The first rear partition wall 252a to the third rear partition wall 252c are collectively referred to as the rear partition wall 252, and the rear partition wall 252 projects toward the rear side and extends in the vertical direction.
 第1後側隔壁252aから第3後側隔壁252cによって、後側ケース板部254の後側の面は、第1後側凹部256aから第4後側凹部256dに区分される。例えば、第2後側凹部256bは、第1後側隔壁252aと第2後側隔壁252bとに挟まれた部分、つまり第2蓄電池集合体200bと第3蓄電池集合体200cに対向した位置に配置される。第3後側凹部256c、第4後側凹部256dも第2後側凹部256bと同様である。一方、第1後側凹部256aは、第1蓄電池集合体200aだけに対向した位置に配置されるので、第2後側凹部256bから第4後側凹部256dよりも狭い。このような第1後側凹部256aから第4後側凹部256dは後側凹部256と総称される。 The rear surface of the rear case plate portion 254 is divided into the first posterior recess 256a to the fourth posterior recess 256d by the first posterior partition wall 252a to the third posterior partition wall 252c. For example, the second rear side recess 256b is arranged at a portion sandwiched between the first rear side partition wall 252a and the second rear side partition wall 252b, that is, at a position facing the second storage battery assembly 200b and the third storage battery assembly 200c. Will be done. The third posterior recess 256c and the fourth posterior recess 256d are the same as the second posterior recess 256b. On the other hand, since the first rear recess 256a is arranged at a position facing only the first storage battery assembly 200a, it is narrower than the second posterior recess 256b to the fourth posterior recess 256d. Such first rear recesses 256a to fourth posterior recesses 256d are collectively referred to as rear recesses 256.
 第1後側凹部256aには第1後側リード板302aが嵌め込まれ、第2後側凹部256bには第2後側リード板302bが嵌め込まれる。また、第3後側凹部256cには第3後側リード板302cが嵌め込まれ、第4後側凹部256dには第4後側リード板302dが嵌め込まれる。第1後側リード板302aから第4後側リード板302dは後側リード板302と総称され、後側リード板302は板形状を有する。第2後側リード板302bは、第2蓄電池集合体200bの複数の蓄電池セル210の正極212と、第3蓄電池集合体200cの複数の蓄電池セル210の負極214とに接続される。第2後側リード板302bには、1つの正極212と1つの負極214とを電気的に接続する配線パターンが設けられているので、第2蓄電池集合体200bの1つの蓄電池セル210と、第3蓄電池集合体200cの1つの蓄電池セル210は、直列に接続される。ここで、第2後側リード板302bにおいて正極212と接続される部分には貫通孔が設けられる。第3後側リード板302c、第4後側リード板302dも第2後側リード板302bと同様である。一方、第1後側リード板302aは、第1蓄電池集合体200aの複数の蓄電池セル210の負極214だけに接続される。そのため、第1後側リード板302aは、第2後側リード板302bから第4後側リード板302dよりも小さい。このような前側リード板300と後側リード板302によって、第1蓄電池集合体200aから第7蓄電池集合体200gのそれぞれに含まれる1つの蓄電池セル210は、直列に接続される。 The first rear lead plate 302a is fitted into the first rear recess 256a, and the second rear lead plate 302b is fitted into the second rear recess 256b. Further, the third rear lead plate 302c is fitted into the third rear recess 256c, and the fourth rear lead plate 302d is fitted into the fourth rear recess 256d. The first rear lead plate 302a to the fourth rear lead plate 302d are collectively referred to as the rear lead plate 302, and the rear lead plate 302 has a plate shape. The second rear lead plate 302b is connected to the positive electrode 212 of the plurality of storage battery cells 210 of the second storage battery assembly 200b and the negative electrode 214 of the plurality of storage battery cells 210 of the third storage battery assembly 200c. Since the second rear lead plate 302b is provided with a wiring pattern for electrically connecting one positive electrode 212 and one negative electrode 214, one storage battery cell 210 of the second storage battery assembly 200b and the first storage battery cell 210 One storage battery cell 210 of the three storage battery assembly 200c is connected in series. Here, a through hole is provided in a portion of the second rear lead plate 302b connected to the positive electrode 212. The third rear lead plate 302c and the fourth rear lead plate 302d are the same as the second rear lead plate 302b. On the other hand, the first rear lead plate 302a is connected only to the negative electrodes 214 of the plurality of storage battery cells 210 of the first storage battery assembly 200a. Therefore, the first rear lead plate 302a is smaller than the second rear lead plate 302b to the fourth rear lead plate 302d. By such a front lead plate 300 and a rear lead plate 302, one storage battery cell 210 included in each of the first storage battery assembly 200a to the seventh storage battery assembly 200g is connected in series.
 図2、3に示されるように、蓄電池集合体200を収納しながら組み合わされた前側ケース240と後側ケース250の上側には、制御基板トレイ330が取り付けられる。制御基板トレイ330は、左右方向に延びる板形状のトレイである。制御基板トレイ330の上には、制御基板332が配置される。制御基板332は、IC(Integrated Circuit)等を搭載しており、蓄電池モジュール1000の動作を制御する。制御基板332は、制御基板トレイ330と同様に左右方向に延びる板形状を有するが、制御基板トレイ330よりも小さい。制御基板332が配置された制御基板トレイ330の上側を覆うように、制御基板蓋334が取り付けられる。制御基板蓋334は、制御基板332を保護するための蓋であり、制御基板トレイ330に合わせた形状を有する。 As shown in FIGS. 2 and 3, the control board tray 330 is attached to the upper side of the front side case 240 and the rear side case 250 that are combined while accommodating the storage battery assembly 200. The control board tray 330 is a plate-shaped tray extending in the left-right direction. The control board 332 is arranged on the control board tray 330. The control board 332 is equipped with an IC (Integrated Circuit) or the like, and controls the operation of the storage battery module 1000. The control board 332 has a plate shape extending in the left-right direction like the control board tray 330, but is smaller than the control board tray 330. The control board lid 334 is attached so as to cover the upper side of the control board tray 330 on which the control board 332 is arranged. The control board lid 334 is a lid for protecting the control board 332, and has a shape that matches the control board tray 330.
 図5に示されるように、蓄電池集合体200を収納しながら組み合わされた前側ケース240と後側ケース250の左側には左側蓋350が取り付けられ、右側には右側蓋352が取り付けられる。左側蓋350と右側蓋352は、上下方向に延びる板形状を有し、前側ケース240と後側ケース250の組合せを側面から保護する。制御基板トレイ330、制御基板蓋334、左側蓋350、右側蓋352は、絶縁性を有する材料、例えば樹脂により形成される。 As shown in FIG. 5, the left side lid 350 is attached to the left side of the front side case 240 and the rear side case 250 combined while accommodating the storage battery assembly 200, and the right side lid 352 is attached to the right side. The left side lid 350 and the right side lid 352 have a plate shape extending in the vertical direction, and protect the combination of the front side case 240 and the rear side case 250 from the side surface. The control board tray 330, the control board lid 334, the left side lid 350, and the right side lid 352 are made of an insulating material such as resin.
 図2に示されるように、制御基板トレイ330から制御基板蓋334、左側蓋350、右側蓋352が取り付けられた前側ケース240と後側ケース250との組合せは、前述のごとく、前側筐体110と後側筐体130との間に配置される。これにより、図4に示されるように、前面112と前側下面114と前側上面116と前側リード板300(第3前側リード板300c)に囲まれる前空間400(第3前空間400c)が形成される。ここで、第3前側リード板300cは、第5蓄電池集合体200eと第6蓄電池集合体200fにおける複数の第1の電極側の面に相当する。第3前空間400cのうち、第5蓄電池集合体200eと第6蓄電池集合体200fにおける下面側端の蓄電池セル210よりも下面側に位置する前面112の部分、あるいは前側下面114には、第3前側排気口118cが設けられる。第3前側排気口118cは、前面112の部分あるいは前側下面114に形成された貫通孔であり、これは開口であるともいえる。 As shown in FIG. 2, the combination of the front side case 240 and the rear side case 250 to which the control board lid 334, the left side lid 350, and the right side lid 352 are attached from the control board tray 330 is the front side housing 110 as described above. It is arranged between the rear housing 130 and the rear housing 130. As a result, as shown in FIG. 4, a front space 400 (third front space 400c) surrounded by the front surface 112, the front lower surface 114, the front upper surface 116, and the front lead plate 300 (third front lead plate 300c) is formed. To. Here, the third front lead plate 300c corresponds to a plurality of first electrode-side surfaces in the fifth storage battery assembly 200e and the sixth storage battery assembly 200f. Of the third front space 400c, the portion of the front surface 112 located on the lower surface side of the storage battery cell 210 at the lower surface side end of the fifth storage battery assembly 200e and the sixth storage battery assembly 200f, or the front lower surface 114 has a third. A front exhaust port 118c is provided. The third front exhaust port 118c is a through hole formed in the front 112 portion or the front lower surface 114, which can be said to be an opening.
 また、後面132と後側下面134と後側上面136と後側リード板302(第3後側リード板302c)に囲まれる後空間410(第3後空間410c)が形成される。ここで、第3後側リード板302cは、第4蓄電池集合体200dと第5蓄電池集合体200eにおける複数の第2の電極側の面に相当する。第3後空間410cのうち、第4蓄電池集合体200dと第5蓄電池集合体200eにおける下面側端の蓄電池セル210よりも下面側に位置する後面132の部分、あるいは後側下面134には、第2後側排気口138b(図2)が設けられる。第2後側排気口138bは、後面132の部分あるいは後側下面134に形成された貫通孔である。 Further, a rear space 410 (third rear space 410c) is formed surrounded by the rear surface 132, the rear lower surface 134, the rear upper surface 136, and the rear lead plate 302 (third rear lead plate 302c). Here, the third rear lead plate 302c corresponds to a plurality of second electrode-side surfaces in the fourth storage battery assembly 200d and the fifth storage battery assembly 200e. Of the third rear space 410c, the portion of the rear surface 132 located on the lower surface side of the storage battery cell 210 at the lower end side end of the fourth storage battery assembly 200d and the fifth storage battery assembly 200e, or the rear lower surface 134 has a third. 2 The rear exhaust port 138b (FIG. 2) is provided. The second rear exhaust port 138b is a through hole formed in a portion of the rear surface 132 or a rear lower surface 134.
 前空間400と後空間410について、図5を使用してさらに詳細に説明すると、前空間400は、第1前側隔壁242aから第3前側隔壁242cによって、第1前空間400aから第4前空間400dに分割される。そのため、前側隔壁242は、隣接した前空間400を仕切るともいえる。第1前空間400aから第4前空間400dは左右方向に並んで配置される。特に、第1前空間400aから第3前空間400cは2つの蓄電池集合体200に対向して配置されるが、第4前空間400dは1つの蓄電池集合体200だけに対応して配置される。そのため、第4前空間400dの容積は、第1前空間400aから第3前空間400cのそれぞれの容積よりも小さい。また、各前空間400の下側の部分には1つの前側排気口118が設けられる。そのため、1つの前空間400は1つの前側排気口118を有する。 The front space 400 and the rear space 410 will be described in more detail with reference to FIG. 5. In the front space 400, the first front space 400a to the fourth front space 400d are provided by the first front partition wall 242a to the third front partition wall 242c. It is divided into. Therefore, it can be said that the front partition wall 242 partitions the adjacent front space 400. The first front space 400a to the fourth front space 400d are arranged side by side in the left-right direction. In particular, the first front space 400a to the third front space 400c are arranged so as to face the two storage battery assemblies 200, while the fourth front space 400d is arranged so as to correspond to only one storage battery assembly 200. Therefore, the volume of the fourth front space 400d is smaller than the respective volumes of the first front space 400a to the third front space 400c. Further, one front exhaust port 118 is provided in the lower portion of each front space 400. Therefore, one front space 400 has one front exhaust port 118.
 また、後空間410は、第1後側隔壁252aから第3後側隔壁252cによって、第1後空間410aから第4後空間410dに分割される。そのため、後側隔壁252は、隣接した後空間410を仕切るともいえる。第1後空間410aから第4後空間410dは左右方向に並んで配置される。特に、第2後空間410bから第4後空間410dは2つの蓄電池集合体200に対向して配置されるが、第1後空間410aは1つの蓄電池集合体200だけに対応して配置される。そのため、第1後空間410aの容積は、第2後空間410bから第4後空間410dのそれぞれの容積よりも小さい。また、第2後空間410bから第4後空間410dのそれぞれの下側の部分には1つの後側排気口138が設けられる。 Further, the posterior space 410 is divided into the first posterior space 410a and the fourth posterior space 410d by the first posterior partition wall 252a to the third posterior partition wall 252c. Therefore, it can be said that the posterior partition wall 252 partitions the adjacent posterior space 410. The first rear space 410a to the fourth rear space 410d are arranged side by side in the left-right direction. In particular, the second rear space 410b to the fourth rear space 410d are arranged so as to face the two storage battery assemblies 200, but the first rear space 410a is arranged so as to correspond to only one storage battery assembly 200. Therefore, the volume of the first rear space 410a is smaller than the respective volumes of the second rear space 410b to the fourth rear space 410d. Further, one rear exhaust port 138 is provided in each lower portion of the second rear space 410b to the fourth rear space 410d.
 図6(a)-(b)は、蓄電池モジュール1000におけるガスの排出の概要を示す。図6(a)は、蓄電池モジュール1000の構造を簡略に示す断面図であり、かつ図4と同一方向の断面図である。ここでは、一例として、第1蓄電池セル210aから第8蓄電池セル210hが下側から上側に向かって並べられる。前述のごとく、これらの蓄電池セル210の前側に前空間400が配置され、前空間400に接する前側下面114に前側排気口118が設けられる。 6 (a)-(b) show an outline of gas emission in the storage battery module 1000. FIG. 6A is a cross-sectional view simply showing the structure of the storage battery module 1000, and is a cross-sectional view in the same direction as that of FIG. Here, as an example, the first storage battery cells 210a to the eighth storage battery cells 210h are arranged from the lower side to the upper side. As described above, the front space 400 is arranged on the front side of these storage battery cells 210, and the front exhaust port 118 is provided on the front lower surface 114 in contact with the front space 400.
 第3蓄電池セル210cにおいて内部短絡等により熱暴走が発生すると、第3蓄電池セル210cは高温高圧のガス500を正極212側から前側ケース240、前側リード板300経由で前空間400に放出する。前空間400に放出されたガス500は、前面112に接触する。前面112は、金属板であるので、接触したガス500から熱を吸収し、蓄電池モジュール1000の外部に熱を放出する。このようにガス500は、前面112との接触によって熱を奪われ冷やされる。また、冷やされたガス500は前空間400内で拡散されるので、ガス500の圧力は低下する。さらに、温度と圧力が低下したガス500は、前空間400の下側に設けられた前側排気口118から蓄電池モジュール1000の外部に放出される。 When thermal runaway occurs in the third storage battery cell 210c due to an internal short circuit or the like, the third storage battery cell 210c discharges high-temperature and high-pressure gas 500 from the positive electrode 212 side to the front space 400 via the front case 240 and the front lead plate 300. The gas 500 released into the front space 400 comes into contact with the front surface 112. Since the front surface 112 is a metal plate, it absorbs heat from the contacted gas 500 and releases heat to the outside of the storage battery module 1000. In this way, the gas 500 is deprived of heat and cooled by contact with the front surface 112. Further, since the cooled gas 500 is diffused in the front space 400, the pressure of the gas 500 decreases. Further, the gas 500 whose temperature and pressure have decreased is discharged to the outside of the storage battery module 1000 from the front exhaust port 118 provided below the front space 400.
 このようなガス500の流れによって、第3蓄電池セル210cからガス500が放出される際に火花が生じても、冷却・拡散・放出がなされるので、高温燃焼は生じにくくなる。ここで、第4前空間400dの容積は、第1前空間400aから第3前空間400cのそれぞれの容積よりも小さい。そのため、蓄電池セル210から放出されたガス500によって、第4前空間400dでの圧力は、それ以外の圧力よりも高くなりやすい。これにより、第4前空間400dを形成している第3前側隔壁242cは、他の前側隔壁242よりも破損されやすくなる。本実施例では、第3前側隔壁242cの破損を防止するために、第4前空間400dに設けられる第4前側排気口118dの大きさが、他の前側排気口118よりも大きくされる。これにより、第4前空間400dにおける圧力の増加が抑制される。つまり、前空間400の大きさが小さくなるほど、前側排気口118の面積が大きくされる。 Even if sparks occur when the gas 500 is released from the third storage battery cell 210c due to such a flow of the gas 500, cooling, diffusion, and release are performed, so that high-temperature combustion is less likely to occur. Here, the volume of the fourth front space 400d is smaller than the respective volumes of the first front space 400a to the third front space 400c. Therefore, the pressure in the fourth front space 400d tends to be higher than the other pressures due to the gas 500 discharged from the storage battery cell 210. As a result, the third front partition wall 242c forming the fourth front space 400d is more likely to be damaged than the other front partition walls 242. In this embodiment, in order to prevent damage to the third front partition wall 242c, the size of the fourth front exhaust port 118d provided in the fourth front space 400d is made larger than that of the other front exhaust ports 118. As a result, the increase in pressure in the fourth front space 400d is suppressed. That is, as the size of the front space 400 becomes smaller, the area of the front exhaust port 118 becomes larger.
 仮に、前側排気口118が、前側上面116に設けられている場合、完全密封でない前空間400の下部から空気が流入する可能性がある。流入した空気は前側排気口118から排出されるので、前空間400内に下側から上側に向かう空気の流れが生じる。このような空気の流れにより、火花に空気が供給されるので、高温燃焼が生じやすくなる。後空間410においても、前空間400と同様に、ガス500の冷却・拡散・放出がなされる。 If the front exhaust port 118 is provided on the front upper surface 116, air may flow in from the lower part of the front space 400 which is not completely sealed. Since the inflowing air is discharged from the front exhaust port 118, an air flow from the lower side to the upper side is generated in the front space 400. Since air is supplied to the spark by such an air flow, high-temperature combustion is likely to occur. In the rear space 410, the gas 500 is cooled, diffused, and released in the same manner as in the front space 400.
 図6(b)は、図6(a)の蓄電池モジュール1000の比較対象となる蓄電池モジュール2000の構造を簡略に示す断面図であり、かつ図6(a)と同一方向の断面図である。前面2112から前側上面2116、後面2132から後側上面2136、蓄電池集合体2200から負極2214、前側ケース2240、後側ケース2250、前側リード板2300、後側リード板2302、前空間2400、後空間2410は、図6(a)の前面112から前側上面116、後面132から後側上面136、蓄電池集合体200から負極214、前側ケース240、後側ケース250、前側リード板300、後側リード板302、前空間400、後空間410と同一である。ここでは、前空間400に接する前面2112のうち、第1蓄電池セル2210aの正極2212に対向する部分に、前側排気口2118が設けられる。 FIG. 6B is a cross-sectional view simply showing the structure of the storage battery module 2000 to be compared with the storage battery module 1000 of FIG. 6A, and is a cross-sectional view in the same direction as that of FIG. 6A. Front 2112 to front upper surface 2116, rear surface 2132 to rear upper surface 2136, storage battery assembly 2200 to negative electrode 2214, front case 2240, rear case 2250, front lead plate 2300, rear lead plate 2302, front space 2400, rear space 2410 6 (a) shows the front surface 112 to the front surface surface 116, the rear surface 132 to the rear surface surface 136, the storage battery assembly 200 to the negative electrode 214, the front side case 240, the rear side case 250, the front side lead plate 300, and the rear side lead plate 302. , The front space 400 and the rear space 410. Here, the front exhaust port 2118 is provided in a portion of the front surface 2112 in contact with the front space 400, which faces the positive electrode 2212 of the first storage battery cell 2210a.
 第1蓄電池セル2210aにおいて内部短絡等により熱暴走が発生すると、第1蓄電池セル2210aは高温高圧のガス2500を正極2212側から前側ケース2240、前側リード板2300経由で前空間2400に放出する。前空間2400に放出されたガス2500は、前側排気口2118から蓄電池モジュール2000の外部に放出される。つまり、ガス2500には、前面2112との接触による冷却がなされない。その際、火花が生じていれば、火花に空気が供給されるので、高温燃焼が生じやすくなる。 When thermal runaway occurs in the first storage battery cell 2210a due to an internal short circuit or the like, the first storage battery cell 2210a discharges high-temperature and high-pressure gas 2500 from the positive electrode 2212 side to the front space 2400 via the front case 2240 and the front lead plate 2300. The gas 2500 released into the front space 2400 is discharged to the outside of the storage battery module 2000 from the front exhaust port 2118. That is, the gas 2500 is not cooled by contact with the front surface 2112. At that time, if sparks are generated, air is supplied to the sparks, so that high-temperature combustion is likely to occur.
 組電池3000の構造の説明を明瞭にするために、これまで説明した蓄電池モジュール1000の構造を図7(a)-(c)のようにまとめる。図7(a)-(c)は、蓄電池モジュール1000の構造の概要を示す。図7(a)は、蓄電池モジュール1000の前側からの概要を示し、図7(b)は、蓄電池モジュール1000の右側からの概要を示し、図7(c)は、蓄電池モジュール1000の後側からの概要を示す。第1蓄電池集合体200aから第7蓄電池集合体200gは左右方向に並べられる。第1蓄電池集合体200aでは、正極212が前側を向き、負極214が後側を向く。第2蓄電池集合体200bでは、負極214が前側を向き、正極212が後側を向く。また、正極212の下側には前側排気口118あるいは後側排気口138が配置される。そのため、第1蓄電池集合体200a、第3蓄電池集合体200c、第5蓄電池集合体200e、第7蓄電池集合体200gの下側には、前側排気口118が配置される。第2蓄電池集合体200b、第4蓄電池集合体200d、第6蓄電池集合体200fの下側には後側排気口138が配置される。さらに、蓄電池モジュール1000の右側の端には、正極端子が設けられ、蓄電池モジュール1000の左側の端には負極端子が設けられる。 In order to clarify the explanation of the structure of the assembled battery 3000, the structures of the storage battery modules 1000 described so far are summarized as shown in FIGS. 7A to 7C. 7 (a)-(c) show the outline of the structure of the storage battery module 1000. 7 (a) shows an outline from the front side of the storage battery module 1000, FIG. 7 (b) shows an outline from the right side of the storage battery module 1000, and FIG. 7 (c) shows an outline from the rear side of the storage battery module 1000. The outline of is shown. The first storage battery assembly 200a to the seventh storage battery assembly 200g are arranged in the left-right direction. In the first storage battery assembly 200a, the positive electrode 212 faces the front side and the negative electrode 214 faces the rear side. In the second storage battery assembly 200b, the negative electrode 214 faces the front side and the positive electrode 212 faces the rear side. Further, a front exhaust port 118 or a rear exhaust port 138 is arranged below the positive electrode 212. Therefore, the front exhaust port 118 is arranged below the first storage battery assembly 200a, the third storage battery assembly 200c, the fifth storage battery assembly 200e, and the seventh storage battery assembly 200g. A rear exhaust port 138 is arranged below the second storage battery assembly 200b, the fourth storage battery assembly 200d, and the sixth storage battery assembly 200f. Further, a positive electrode terminal is provided at the right end of the storage battery module 1000, and a negative electrode terminal is provided at the left end of the storage battery module 1000.
 (2)組電池3000の構造
 図8(a)-(c)は、組電池3000の構造を示す。図8(a)は、組電池3000の構造を示す斜視図である。図8(b)は、組電池3000の上面図であるが、組電池3000の下側部分の構造を中心に示す。組電池3000は、第1蓄電池モジュール1000a、第2蓄電池モジュール1000bを含む。第1蓄電池モジュール1000a、第2蓄電池モジュール1000bは、前述の蓄電池モジュール1000と同様の構造を有する。
(2) Structure of the assembled battery 3000 FIGS. 8A-(c) show the structure of the assembled battery 3000. FIG. 8A is a perspective view showing the structure of the assembled battery 3000. FIG. 8B is a top view of the assembled battery 3000, but mainly shows the structure of the lower portion of the assembled battery 3000. The assembled battery 3000 includes a first storage battery module 1000a and a second storage battery module 1000b. The first storage battery module 1000a and the second storage battery module 1000b have the same structure as the above-mentioned storage battery module 1000.
 第1蓄電池モジュール1000aは、互いに反対を向いた第1面1110と第2面1120とを有するとともに、第1面1110と第2面1120とに挟まれた上面1150と下面1160とを有する。第1面1110は図1の前面112に対応し、第2面1120は図1の後面132に対応し、上面1150は図1の前側上面116と後側上面136との組合せに対応し、下面1160は図1の前側下面114と後側下面134との組合せに対応する。また、第1面1110の下側部分には複数の第1排気口1210が配置され、第2面1120の下側部分には複数の第2排気口1220が配置される。複数の第1排気口1210は図2の複数の前側排気口118に対応し、複数の第2排気口1220は図2の複数の後側排気口138に対応する。ここで、第1面1110と第2面1120とに平行な投影面上、つまりy-z平面上において、複数の第1排気口1210の位置と、複数の第2排気口1220の位置とは異なる。 The first storage battery module 1000a has a first surface 1110 and a second surface 1120 facing each other, and also has an upper surface 1150 and a lower surface 1160 sandwiched between the first surface 1110 and the second surface 1120. The first surface 1110 corresponds to the front surface 112 of FIG. 1, the second surface 1120 corresponds to the rear surface 132 of FIG. 1, and the upper surface 1150 corresponds to the combination of the front upper surface 116 and the rear upper surface 136 of FIG. Reference numeral 1160 corresponds to the combination of the front lower surface 114 and the rear lower surface 134 in FIG. Further, a plurality of first exhaust ports 1210 are arranged on the lower portion of the first surface 1110, and a plurality of second exhaust ports 1220 are arranged on the lower portion of the second surface 1120. The plurality of first exhaust ports 1210 correspond to the plurality of front exhaust ports 118 of FIG. 2, and the plurality of second exhaust ports 1220 correspond to the plurality of rear exhaust ports 138 of FIG. Here, on the projection plane parallel to the first plane 1110 and the second plane 1120, that is, on the yz plane, the positions of the plurality of first exhaust ports 1210 and the positions of the plurality of second exhaust ports 1220 are different.
 第2蓄電池モジュール1000bは、互いに反対を向いた第3面1130と第4面1140とを有するとともに、第3面1130と第4面1140とに挟まれた上面1170と下面1180とを有する。第3面1130は図1の前面112に対応し、第4面1140は図1の後面132に対応し、上面1170は図1の前側上面116と後側上面136との組合せに対応し、下面1180は図1の前側下面114と後側下面134との組合せに対応する。また、第3面1130の下側部分には複数の第3排気口1230が配置され、第4面1140の下側部分には複数の第4排気口1240が配置される。複数の第3排気口1230は図2の複数の前側排気口118に対応し、複数の第4排気口1240は図2の複数の後側排気口138に対応する。ここで、第3面1130と第4面1140とに平行な投影面上、つまりy-z平面上において、複数の第3排気口1230の位置と、複数の第4排気口1240の位置とは異なる。 The second storage battery module 1000b has a third surface 1130 and a fourth surface 1140 facing each other, and also has an upper surface 1170 and a lower surface 1180 sandwiched between the third surface 1130 and the fourth surface 1140. The third surface 1130 corresponds to the front surface 112 of FIG. 1, the fourth surface 1140 corresponds to the rear surface 132 of FIG. 1, and the upper surface 1170 corresponds to the combination of the front upper surface 116 and the rear upper surface 136 of FIG. Reference numeral 1180 corresponds to the combination of the front lower surface 114 and the rear lower surface 134 in FIG. Further, a plurality of third exhaust ports 1230 are arranged on the lower portion of the third surface 1130, and a plurality of fourth exhaust ports 1240 are arranged on the lower portion of the fourth surface 1140. The plurality of third exhaust ports 1230 correspond to the plurality of front exhaust ports 118 of FIG. 2, and the plurality of fourth exhaust ports 1240 correspond to the plurality of rear exhaust ports 138 of FIG. Here, on the projection plane parallel to the third plane 1130 and the fourth plane 1140, that is, on the yz plane, the positions of the plurality of third exhaust ports 1230 and the positions of the plurality of fourth exhaust ports 1240 are different.
 第1面1110と第3面1130とを対応させる場合に、複数の第1排気口1210の位置と複数の第3排気口1230の位置とが共通である。また、第2面1120と第4面1140とを対応させる場合に、複数の第2排気口1220の位置と、複数の第4排気口1240の位置とが共通である。ここでは、第2面1120と第3面1130とを対向させて、第1蓄電池モジュール1000aと第2蓄電池モジュール1000bとが並べられる。このように並べられることによって、第1蓄電池モジュール1000aの正極端子1050と第2蓄電池モジュール1000bの正極端子1060とが同一方向を向く。また、第1蓄電池モジュール1000aの負極端子1052と第2蓄電池モジュール1000bの負極端子1062も同一方向を向く。ここで、正極端子1050と正極端子1060とを電気的に接続し、負極端子1052と負極端子1062とを電気的に接続することによって、第1蓄電池モジュール1000aと第2蓄電池モジュール1000bとは並列に接続される。また、第2面1120における第2排気口1220と、第3面1130における第3排気口1230は対向せずに配置される。 When the first surface 1110 and the third surface 1130 are associated with each other, the positions of the plurality of first exhaust ports 1210 and the positions of the plurality of third exhaust ports 1230 are common. Further, when the second surface 1120 and the fourth surface 1140 are made to correspond to each other, the positions of the plurality of second exhaust ports 1220 and the positions of the plurality of fourth exhaust ports 1240 are common. Here, the first storage battery module 1000a and the second storage battery module 1000b are arranged so that the second surface 1120 and the third surface 1130 face each other. By arranging in this way, the positive electrode terminal 1050 of the first storage battery module 1000a and the positive electrode terminal 1060 of the second storage battery module 1000b face in the same direction. Further, the negative electrode terminal 1052 of the first storage battery module 1000a and the negative electrode terminal 1062 of the second storage battery module 1000b also face in the same direction. Here, by electrically connecting the positive electrode terminal 1050 and the positive electrode terminal 1060 and electrically connecting the negative electrode terminal 1052 and the negative electrode terminal 1062, the first storage battery module 1000a and the second storage battery module 1000b are connected in parallel. Be connected. Further, the second exhaust port 1220 on the second surface 1120 and the third exhaust port 1230 on the third surface 1130 are arranged so as not to face each other.
 図8(c)は、図8(b)における第2面1120と第3面1130の一部を拡大した図である。ここでは、第2蓄電池モジュール1000bの内部の蓄電池セル210において熱暴走が発生し、第3排気口1230からガスが排出される場合を想定する。第3排気口1230から噴出されるガスは一般的に高温であるが、ガスは第2面1120にあたる。第2面1120にあたることによってガスが冷却されるとともに拡散される。拡散によってガスは第2面1120に沿って移動するが、移動によってさらに冷却される。そのため、ガスが第2排気口1220から第1蓄電池モジュール1000aに流入しても、類焼発生の危険性が低減される。 FIG. 8 (c) is an enlarged view of a part of the second surface 1120 and the third surface 1130 in FIG. 8 (b). Here, it is assumed that thermal runaway occurs in the storage battery cell 210 inside the second storage battery module 1000b, and gas is discharged from the third exhaust port 1230. The gas ejected from the third exhaust port 1230 is generally hot, but the gas corresponds to the second surface 1120. By hitting the second surface 1120, the gas is cooled and diffused. Diffusion causes the gas to move along the second surface 1120, but the movement further cools it. Therefore, even if the gas flows into the first storage battery module 1000a from the second exhaust port 1220, the risk of burning is reduced.
 図9(a)-(d)は、組電池3000の別の構造を示す。図9(a)は、組電池3000の構造を示す斜視図である。図9(b)は、組電池3000の上面図であるが、組電池3000の下側部分の構造を中心に示す。組電池3000に含まれる第1蓄電池モジュール1000aと第2蓄電池モジュール1000bの構造は、図8(a)-(c)と同一であるが、これらの配置が図8(a)-(c)とは異なる。第1蓄電池モジュール1000aは、図8(a)と同様に配置されるが、第2蓄電池モジュール1000bは、第4面1140を第2面1120に対向させ、かつ下面1180を上側に向け、かつ上面1170を下側に向けて配置される。このように第2蓄電池モジュール1000bは、図8(a)での配置に対して、x-y平面内で反転させられるとともに、上下反転させられる。その結果、第1蓄電池モジュール1000aと第2蓄電池モジュール1000bは、第2面1120と第4面1140とに平行な投影面上において、互いの向きを変えて並べられる。 FIGS. 9 (a)-(d) show another structure of the assembled battery 3000. FIG. 9A is a perspective view showing the structure of the assembled battery 3000. FIG. 9B is a top view of the assembled battery 3000, but mainly shows the structure of the lower portion of the assembled battery 3000. The structures of the first storage battery module 1000a and the second storage battery module 1000b included in the assembled battery 3000 are the same as those in FIGS. 8 (a)-(c), but their arrangements are as shown in FIGS. 8 (a)-(c). Is different. The first storage battery module 1000a is arranged in the same manner as in FIG. 8A, but in the second storage battery module 1000b, the fourth surface 1140 faces the second surface 1120, the lower surface 1180 faces upward, and the upper surface faces. The 1170 is placed facing down. In this way, the second storage battery module 1000b is inverted in the xy plane and upside down with respect to the arrangement shown in FIG. 8A. As a result, the first storage battery module 1000a and the second storage battery module 1000b are arranged in different directions on the projection plane parallel to the second plane 1120 and the fourth plane 1140.
 このように並べられることによって、第1蓄電池モジュール1000aの正極端子1050と第2蓄電池モジュール1000bの負極端子1062とが同一方向を向く。また、第1蓄電池モジュール1000aの負極端子1052と第2蓄電池モジュール1000bの正極端子1060も同一方向を向く。ここで、負極端子1052と正極端子1060とを電気的に接続することによって、第1蓄電池モジュール1000aと第2蓄電池モジュール1000bとは直列に接続される。 By arranging in this way, the positive electrode terminal 1050 of the first storage battery module 1000a and the negative electrode terminal 1062 of the second storage battery module 1000b face in the same direction. Further, the negative electrode terminal 1052 of the first storage battery module 1000a and the positive electrode terminal 1060 of the second storage battery module 1000b also face in the same direction. Here, by electrically connecting the negative electrode terminal 1052 and the positive electrode terminal 1060, the first storage battery module 1000a and the second storage battery module 1000b are connected in series.
 第1排気口1210と第2排気口1220は、第1蓄電池モジュール1000aの下側部分に配置されるが、第3排気口1230と第4排気口1240は、第2蓄電池モジュール1000bの上側部分に配置される。そのため、第2排気口1220と第4排気口1240とが対向しなくなり、第4排気口1240から排出されたガスが第2排気口1220に直接流入されなくなる。さらに、第2排気口1220と第4排気口1240との距離が、図8(a)-(c)における第2排気口1220と第3排気口1230との距離よりも長くなるので、ガスはさらに冷却される。 The first exhaust port 1210 and the second exhaust port 1220 are arranged in the lower portion of the first storage battery module 1000a, while the third exhaust port 1230 and the fourth exhaust port 1240 are located in the upper portion of the second storage battery module 1000b. Be placed. Therefore, the second exhaust port 1220 and the fourth exhaust port 1240 do not face each other, and the gas discharged from the fourth exhaust port 1240 does not directly flow into the second exhaust port 1220. Further, since the distance between the second exhaust port 1220 and the fourth exhaust port 1240 is longer than the distance between the second exhaust port 1220 and the third exhaust port 1230 in FIGS. 8A-(c), the gas is released. Further cooled.
 図9(c)-(d)は、図9(a)-(b)の比較対象となる組電池4000であり、図9(a)-(b)と同様に示される。組電池4000は、図9(a)-(b)と同一の第1蓄電池モジュール1000aと第2蓄電池モジュール1000bとを含むが、これらの配置が図9(a)-(b)と異なる。第2蓄電池モジュール1000bは、第4面1140を第2面1120に対向させ、かつ上面1170を上側に向け、かつ下面1180を下側に向けて配置される。このように第2蓄電池モジュール1000bは、図8(a)での配置に対して、x-y平面内で反転させられるが、上下反転させられない。このように並べられることによって、第2排気口1220と第4排気口1240とが対向するので、第4排気口1240から排出されたガスが第2排気口1220に直接流入される。そのため、このような配置は好ましくない。 9 (c)-(d) are the assembled batteries 4000 to be compared with FIGS. 9 (a)-(b), and are shown in the same manner as in FIGS. 9 (a)-(b). The assembled battery 4000 includes the first storage battery module 1000a and the second storage battery module 1000b, which are the same as those in FIGS. 9 (a)-(b), but their arrangement is different from that of FIGS. 9 (a)-(b). The second storage battery module 1000b is arranged so that the fourth surface 1140 faces the second surface 1120, the upper surface 1170 faces upward, and the lower surface 1180 faces downward. As described above, the second storage battery module 1000b is inverted in the xy plane with respect to the arrangement shown in FIG. 8A, but is not inverted upside down. By arranging in this way, the second exhaust port 1220 and the fourth exhaust port 1240 face each other, so that the gas discharged from the fourth exhaust port 1240 directly flows into the second exhaust port 1220. Therefore, such an arrangement is not preferable.
 本実施例によれば、第2排気口1220の位置と第3排気口1230の位置とが異なる場合に、第2面1120と第3面1130とを対向させるので、第2蓄電池モジュール1000bから排出されたガスによって第1蓄電池モジュール1000aが受ける影響を低減できる。また、第2排気口1220の位置と第4排気口1240の位置が共通であっても、第1蓄電池モジュール1000aの向きと第2蓄電池モジュール1000bの向きとを変えるので、第2蓄電池モジュール1000bから排出されたガスによって第1蓄電池モジュール1000aが受ける影響を低減できる。また、第1排気口1210から第4排気口1240は各面の下側部分に配置されるので、構造を簡易にできる。 According to this embodiment, when the position of the second exhaust port 1220 and the position of the third exhaust port 1230 are different, the second surface 1120 and the third surface 1130 are opposed to each other, so that the gas is discharged from the second storage battery module 1000b. The influence of the generated gas on the first storage battery module 1000a can be reduced. Further, even if the position of the second exhaust port 1220 and the position of the fourth exhaust port 1240 are common, the orientation of the first storage battery module 1000a and the orientation of the second storage battery module 1000b are changed, so that from the second storage battery module 1000b The influence of the discharged gas on the first storage battery module 1000a can be reduced. Further, since the first exhaust port 1210 to the fourth exhaust port 1240 are arranged in the lower portion of each surface, the structure can be simplified.
 また、構造体100の内部に形成された1つの空間は1つの排気口を有するので、蓄電池セル210から放出したガス500を排気口から外部に放出できる。また、1つの空間内のガス500が1つの排気口から外部に放出されるので、ガス500を十分に放出できる。また、ガス500が十分に放出されるので、高温燃焼の発生を抑制できる。また、1つの空間内のガス500が1つの排気口から外部に放出されるので、空間内への空気の流入を抑制できる。また、空間内への空気の流入が抑制されるので、高温燃焼の発生を抑制できる。 Further, since one space formed inside the structure 100 has one exhaust port, the gas 500 discharged from the storage battery cell 210 can be discharged to the outside from the exhaust port. Further, since the gas 500 in one space is discharged to the outside from one exhaust port, the gas 500 can be sufficiently released. Moreover, since the gas 500 is sufficiently released, the occurrence of high-temperature combustion can be suppressed. Further, since the gas 500 in one space is discharged to the outside from one exhaust port, the inflow of air into the space can be suppressed. Moreover, since the inflow of air into the space is suppressed, the occurrence of high-temperature combustion can be suppressed.
 また、異なった集合体において正極212の向きが共通であるので、同一方向を向いた複数の蓄電池セル210を複数の集合体に分類できる。また、空間を第1空間と第2空間とに分割するので、空間が大きい場合に小さな第1空間と第2空間を形成できる。また、小さな第1空間と第2空間のそれぞれに対して1つの排気口を設けるので、ガス500を十分に放出できる。また、小さな第1空間と第2空間のそれぞれに対して1つの排気口を設けるので、第1空間内と第2空間内への空気の流入を抑制できる。また、前面112は金属板であるので、ガス500を冷却できる。 Further, since the orientation of the positive electrode 212 is common in different aggregates, a plurality of storage battery cells 210 facing the same direction can be classified into a plurality of aggregates. Further, since the space is divided into a first space and a second space, a small first space and a second space can be formed when the space is large. Further, since one exhaust port is provided for each of the small first space and the second space, the gas 500 can be sufficiently discharged. Further, since one exhaust port is provided for each of the small first space and the second space, the inflow of air into the first space and the second space can be suppressed. Further, since the front surface 112 is a metal plate, the gas 500 can be cooled.
 また、異なった集合体において正極212の向きが逆であるので、複数の蓄電池セル210の方向に応じて複数の集合体を形成できる。また、空間を第1空間と第2空間とに分割するので、蓄電池集合体200を挟んで反対側に第1空間と第2空間を形成できる。また、第1空間と第2空間のそれぞれに対して1つの排気口を設けるので、ガス500を十分に放出できる。また、第1空間と第2空間のそれぞれに対して1つの排気口を設けるので、第1空間内と第2空間内への空気の流入を抑制できる。また、前面112と後面132は金属板であるので、ガス500を冷却できる。 Further, since the directions of the positive electrodes 212 are opposite in different aggregates, a plurality of aggregates can be formed according to the directions of the plurality of storage battery cells 210. Further, since the space is divided into the first space and the second space, the first space and the second space can be formed on opposite sides of the storage battery assembly 200. Further, since one exhaust port is provided for each of the first space and the second space, the gas 500 can be sufficiently discharged. Further, since one exhaust port is provided for each of the first space and the second space, the inflow of air into the first space and the second space can be suppressed. Further, since the front surface 112 and the rear surface 132 are metal plates, the gas 500 can be cooled.
 本開示の一態様の概要は、次の通りである。本開示のある態様の組電池(3000)は、互いに反対を向いた第1面(1110)と第2面(1120)とを有する第1蓄電池モジュール(1000a)と、互いに反対を向いた第3面(1130)と第4面(1140)とを有する第2蓄電池モジュール(1000b)とを備える。第1面(1110)と第2面(1120)とに平行な投影面上において、第1面(1110)に配置される複数の第1排気口(1210)の位置と、第2面(1120)に配置される複数の第2排気口(1220)の位置とが異なり、第3面(1130)と第4面(1140)とに平行な投影面上において、第3面(1130)に配置される複数の第3排気口(1230)の位置と、第4面(1140)に配置される複数の第4排気口(1240)の位置とが異なり、第1面(1110)と第3面(1130)とを対応させる場合に、複数の第1排気口(1210)の位置と複数の第3排気口(1230)の位置とが共通であり、第2面(1120)と第4面(1140)とを対応させる場合に、複数の第2排気口(1220)の位置と、複数の第4排気口(1240)の位置とが共通であり、第2面(1120)と第3面(1130)とを対向させて、第1蓄電池モジュール(1000a)と第2蓄電池モジュール(1000b)とが並べられる。 The outline of one aspect of the present disclosure is as follows. The assembled battery (3000) of a certain aspect of the present disclosure includes a first storage battery module (1000a) having a first surface (1110) and a second surface (1120) facing each other, and a third facing each other. It comprises a second storage battery module (1000b) having a surface (1130) and a fourth surface (1140). On the projection plane parallel to the first plane (1110) and the second plane (1120), the positions of the plurality of first exhaust ports (1210) arranged on the first plane (1110) and the second plane (1120). ) Is different from the positions of the plurality of second exhaust ports (1220), and is arranged on the third surface (1130) on the projection plane parallel to the third plane (1130) and the fourth plane (1140). The positions of the plurality of third exhaust ports (1230) to be formed are different from the positions of the plurality of fourth exhaust ports (1240) arranged on the fourth surface (1140), and the first surface (1110) and the third surface are different. When the (1130) is associated, the positions of the plurality of first exhaust ports (1210) and the positions of the plurality of third exhaust ports (1230) are common, and the second surface (1120) and the fourth surface (1120) When the 1140) is associated with the position of the plurality of second exhaust ports (1220) and the positions of the plurality of fourth exhaust ports (1240), the positions of the second surface (1120) and the third surface (1120) are common. The first storage battery module (1000a) and the second storage battery module (1000b) are arranged side by side with the 1130) facing each other.
 本開示の別の態様もまた、組電池(3000)である。この組電池(3000)は、互いに反対を向いた第1面(1110)と第2面(1120)とを有する第1蓄電池モジュール(1000a)と、互いに反対を向いた第3面(1130)と第4面(1140)とを有する第2蓄電池モジュール(1000b)とを備える。第1面(1110)と第2面(1120)とに平行な投影面上において、第1面(1110)に配置される複数の第1排気口(1210)の位置と、第2面(1120)に配置される複数の第2排気口(1220)の位置とが異なり、第3面(1130)と第4面(1140)とに平行な投影面上において、第3面(1130)に配置される複数の第3排気口(1230)の位置と、第4面(1140)に配置される複数の第4排気口(1240)の位置とが異なり、第1面(1110)と第3面(1130)とを対応させる場合に、複数の第1排気口(1210)の位置と複数の第3排気口(1230)の位置とが共通であり、第2面(1120)と第4面(1140)とを対応させる場合に、複数の第2排気口(1220)の位置と、複数の第4排気口(1240)の位置とが共通であり、第2面(1120)と第4面(1140)とを対向させ、かつ第2面(1120)と第4面(1140)とに平行な投影面上において、第1蓄電池モジュール(1000a)の向きと第2蓄電池モジュール(1000b)の向きとを変えて、第1蓄電池モジュール(1000a)と第2蓄電池モジュール(1000b)とが並べられる。 Another aspect of the present disclosure is also an assembled battery (3000). The assembled battery (3000) includes a first storage battery module (1000a) having a first surface (1110) and a second surface (1120) facing each other, and a third surface (1130) facing each other. It includes a second storage battery module (1000b) having a fourth surface (1140). On a projection plane parallel to the first plane (1110) and the second plane (1120), the positions of a plurality of first exhaust ports (1210) arranged on the first plane (1110) and the second plane (1120). ) Is different from the positions of the plurality of second exhaust ports (1220), and is arranged on the third surface (1130) on the projection plane parallel to the third plane (1130) and the fourth plane (1140). The positions of the plurality of third exhaust ports (1230) to be formed are different from the positions of the plurality of fourth exhaust ports (1240) arranged on the fourth surface (1140), and the first surface (1110) and the third surface are different. When (1130) is associated with each other, the positions of the plurality of first exhaust ports (1210) and the positions of the plurality of third exhaust ports (1230) are common, and the second surface (1120) and the fourth surface (1120) are associated with each other. When the 1140) is associated with the position of the plurality of second exhaust ports (1220) and the positions of the plurality of fourth exhaust ports (1240), the positions of the second surface (1120) and the fourth surface (1120) are common. The orientation of the first storage battery module (1000a) and the orientation of the second storage battery module (1000b) on the projection planes facing the 1140) and parallel to the second plane (1120) and the fourth plane (1140). The first storage battery module (1000a) and the second storage battery module (1000b) are arranged side by side.
 複数の第1排気口(1210)は第1面(1110)の下側部分に配置され、複数の第2排気口(1220)は第2面(1120)の下側部分に配置され、複数の第3排気口(1230)は第3面(1130)の下側部分に配置され、複数の第4排気口(1240)は第4面(1140)の下側部分に配置される。 The plurality of first exhaust ports (1210) are arranged in the lower portion of the first surface (1110), and the plurality of second exhaust ports (1220) are arranged in the lower portion of the second surface (1120). The third exhaust port (1230) is arranged in the lower portion of the third surface (1130), and the plurality of fourth exhaust ports (1240) are arranged in the lower portion of the fourth surface (1140).
(実施例2)
 次に、実施例2を説明する。実施例2は、実施例1と同様に、複数の蓄電池セルが収納される蓄電池モジュールが複数含まれる組電池に関する。実施例1において各蓄電池モジュールの排気口が下側部分にのみ配置されるが、実施例2では、各蓄電池モジュールの排気口が上側部分と下側部分に配置される。以下では、これまでとの差異を中心に説明する。
(Example 2)
Next, Example 2 will be described. The second embodiment relates to an assembled battery including a plurality of storage battery modules in which a plurality of storage battery cells are housed, as in the first embodiment. In the first embodiment, the exhaust port of each storage battery module is arranged only in the lower portion, but in the second embodiment, the exhaust port of each storage battery module is arranged in the upper portion and the lower portion. In the following, the differences from the past will be mainly explained.
 図10(a)-(c)は、蓄電池モジュール1500の構造の概要を示す。図10(a)-(c)は、図7(a)-(c)のように示される。図10(a)は、蓄電池モジュール1500の前側からの概要を示し、図10(b)は、蓄電池モジュール1500の右側からの概要を示し、図10(c)は、蓄電池モジュール1500の後側からの概要を示す。蓄電池モジュール1500は、蓄電池モジュール1000と異なり、上側の段と下側の段において正極212と負極214の向きが異なる。また、上段の正極212の上側には上側排気口1510あるいは上側排気口1520が配置され、下段の正極212の下側には下側排気口1512あるいは下側排気口1522が配置される。さらに、蓄電池モジュール1500の右側の端には、正極端子が設けられ、蓄電池モジュール1500の左側の端には負極端子が設けられる。 10 (a)-(c) show an outline of the structure of the storage battery module 1500. 10 (a)-(c) are shown as shown in FIGS. 7 (a)-(c). FIG. 10A shows an outline from the front side of the storage battery module 1500, FIG. 10B shows an outline from the right side of the storage battery module 1500, and FIG. 10C shows an outline from the rear side of the storage battery module 1500. The outline of is shown. Unlike the storage battery module 1000, the storage battery module 1500 has different orientations of the positive electrode 212 and the negative electrode 214 in the upper stage and the lower stage. Further, an upper exhaust port 1510 or an upper exhaust port 1520 is arranged above the positive electrode 212 in the upper stage, and a lower exhaust port 1512 or a lower exhaust port 1522 is arranged below the positive electrode 212 in the lower stage. Further, a positive electrode terminal is provided at the right end of the storage battery module 1500, and a negative electrode terminal is provided at the left end of the storage battery module 1500.
 図11(a)-(c)は、組電池3000の構造を示す。図11(a)は、組電池3000の構造を示す斜視図である。図11(b)-(c)は、組電池3000の上面図であるが、図11(b)は組電池3000の上側部分の構造を中心に示し、図11(c)は組電池3000の下側の構造を中心に示す。組電池3000は、第1蓄電池モジュール1500a、第2蓄電池モジュール1500bを含む。第1蓄電池モジュール1500a、第2蓄電池モジュール1500bは、前述の蓄電池モジュール1500と同様の構造を有する。 FIGS. 11 (a)-(c) show the structure of the assembled battery 3000. FIG. 11A is a perspective view showing the structure of the assembled battery 3000. 11 (b)-(c) are top views of the assembled battery 3000, FIG. 11 (b) mainly shows the structure of the upper portion of the assembled battery 3000, and FIG. 11 (c) shows the assembled battery 3000. The lower structure is shown in the center. The assembled battery 3000 includes a first storage battery module 1500a and a second storage battery module 1500b. The first storage battery module 1500a and the second storage battery module 1500b have the same structure as the above-mentioned storage battery module 1500.
 第1蓄電池モジュール1500aは、互いに反対を向いた第1面1610と第2面1620とを有するとともに、第1面1610と第2面1620とに挟まれた上面1650と下面1660とを有する。第1面1610の上側部分には複数の第1上側排気口1710が配置され、第1面1610の下側部分には複数の第1下側排気口1712が配置される。第2面1620の上側部分には複数の第2上側排気口1720が配置され、第2面1620の下側部分には複数の第2下側排気口1722が配置される。複数の第1上側排気口1710は、図10(a)の複数の上側排気口1510に対応し、複数の第1下側排気口1712は、図10(a)の複数の下側排気口1512に対応する。複数の第2上側排気口1720は、図10(c)の複数の上側排気口1520に対応し、複数の第2下側排気口1722は、図10(c)の複数の下側排気口1522に対応する。ここで、第1面1610と第2面1620とに平行な投影面上、つまりy-z平面上において、複数の第1上側排気口1710の位置と、複数の第2上側排気口1720の位置とは異なる。また、複数の第1下側排気口1712の位置と、複数の第2下側排気口1722の位置も異なる。 The first storage battery module 1500a has a first surface 1610 and a second surface 1620 facing each other, and has an upper surface 1650 and a lower surface 1660 sandwiched between the first surface 1610 and the second surface 1620. A plurality of first upper exhaust ports 1710 are arranged on the upper portion of the first surface 1610, and a plurality of first lower exhaust ports 1712 are arranged on the lower portion of the first surface 1610. A plurality of second upper exhaust ports 1720 are arranged on the upper portion of the second surface 1620, and a plurality of second lower exhaust ports 1722 are arranged on the lower portion of the second surface 1620. The plurality of first upper exhaust ports 1710 correspond to the plurality of upper exhaust ports 1510 in FIG. 10 (a), and the plurality of first lower exhaust ports 1712 correspond to the plurality of lower exhaust ports 1512 in FIG. 10 (a). Corresponds to. The plurality of second upper exhaust ports 1720 correspond to the plurality of upper exhaust ports 1520 of FIG. 10 (c), and the plurality of second lower exhaust ports 1722 correspond to the plurality of lower exhaust ports 1522 of FIG. 10 (c). Corresponds to. Here, on the projection plane parallel to the first surface 1610 and the second surface 1620, that is, on the yz plane, the positions of the plurality of first upper exhaust ports 1710 and the positions of the plurality of second upper exhaust ports 1720. Is different. Further, the positions of the plurality of first lower exhaust ports 1712 and the positions of the plurality of second lower exhaust ports 1722 are also different.
 第2蓄電池モジュール1500bは、互いに反対を向いた第3面1630と第4面1640とを有するとともに、第3面1630と第4面1640とに挟まれた上面1670と下面1680とを有する。第3面1630の上側部分には複数の第3上側排気口1730が配置され、第3面1630の下側部分には複数の第3下側排気口1732が配置される。第4面1640の上側部分には複数の第4上側排気口1740が配置され、第4面1640の下側部分には複数の第4下側排気口1742が配置される。複数の第3上側排気口1730は、図10(a)の複数の上側排気口1510に対応し、複数の第3下側排気口1732は、図10(a)の複数の下側排気口1512に対応する。複数の第4上側排気口1740は、図10(c)の複数の上側排気口1520に対応し、複数の第4下側排気口1742は、図10(c)の複数の下側排気口1522に対応する。ここで、第3面1630と第4面1640とに平行な投影面上、つまりy-z平面上において、複数の第3上側排気口1730の位置と、複数の第4上側排気口1740の位置とは異なる。また、複数の第3下側排気口1732の位置と、複数の第4下側排気口1742の位置も異なる。 The second storage battery module 1500b has a third surface 1630 and a fourth surface 1640 facing each other, and has an upper surface 1670 and a lower surface 1680 sandwiched between the third surface 1630 and the fourth surface 1640. A plurality of third upper exhaust ports 1730 are arranged on the upper portion of the third surface 1630, and a plurality of third lower exhaust ports 1732 are arranged on the lower portion of the third surface 1630. A plurality of fourth upper exhaust ports 1740 are arranged on the upper portion of the fourth surface 1640, and a plurality of fourth lower exhaust ports 1742 are arranged on the lower portion of the fourth surface 1640. The plurality of third upper exhaust ports 1730 correspond to the plurality of upper exhaust ports 1510 in FIG. 10 (a), and the plurality of third lower exhaust ports 1732 correspond to the plurality of lower exhaust ports 1512 in FIG. 10 (a). Corresponds to. The plurality of fourth upper exhaust ports 1740 correspond to the plurality of upper exhaust ports 1520 of FIG. 10 (c), and the plurality of fourth lower exhaust ports 1742 correspond to the plurality of lower exhaust ports 1522 of FIG. 10 (c). Corresponds to. Here, on the projection plane parallel to the third surface 1630 and the fourth surface 1640, that is, on the yz plane, the positions of the plurality of third upper exhaust ports 1730 and the positions of the plurality of fourth upper exhaust ports 1740. Is different. Further, the positions of the plurality of third lower exhaust ports 1732 and the positions of the plurality of fourth lower exhaust ports 1742 are also different.
 第1面1610と第3面1630とを対応させる場合に、複数の第1上側排気口1710の位置と複数の第3上側排気口1730の位置とが共通である。また、複数の第1下側排気口1712の位置と複数の第3下側排気口1732の位置も共通である。第2面1620と第4面1640とを対応させる場合に、複数の第2上側排気口1720の位置と複数の第4上側排気口1740の位置とが共通である。複数の第2下側排気口1722の位置と、複数の第4下側排気口1742の位置も共通である。ここでは、第2面1620と第3面1630とを対向させて、第1蓄電池モジュール1500aと第2蓄電池モジュール1500bとが並べられる。このように並べられることによって、第1蓄電池モジュール1500aの正極端子1550と第2蓄電池モジュール1500bの正極端子1560とが同一方向を向く。また、第1蓄電池モジュール1500aの負極端子1552と第2蓄電池モジュール1500bの負極端子1562も同一方向を向く。ここで、正極端子1550と正極端子1560とを電気的に接続し、負極端子1552と負極端子1562とを電気的に接続することによって、第1蓄電池モジュール1500aと第2蓄電池モジュール1500bとは並列に接続される。また、第2面1620における第2上側排気口1720と、第3面1630における第3上側排気口1730は対向せずに配置される。第2面1620における第2下側排気口1722と、第3面1630における第3下側排気口1732も対向せずに配置される。 When the first surface 1610 and the third surface 1630 are associated with each other, the positions of the plurality of first upper exhaust ports 1710 and the positions of the plurality of third upper exhaust ports 1730 are common. Further, the positions of the plurality of first lower exhaust ports 1712 and the positions of the plurality of third lower exhaust ports 1732 are also common. When the second surface 1620 and the fourth surface 1640 are associated with each other, the positions of the plurality of second upper exhaust ports 1720 and the positions of the plurality of fourth upper exhaust ports 1740 are common. The positions of the plurality of second lower exhaust ports 1722 and the positions of the plurality of fourth lower exhaust ports 1742 are also common. Here, the first storage battery module 1500a and the second storage battery module 1500b are arranged so that the second surface 1620 and the third surface 1630 face each other. By arranging in this way, the positive electrode terminal 1550 of the first storage battery module 1500a and the positive electrode terminal 1560 of the second storage battery module 1500b face in the same direction. Further, the negative electrode terminal 1552 of the first storage battery module 1500a and the negative electrode terminal 1562 of the second storage battery module 1500b also face in the same direction. Here, by electrically connecting the positive electrode terminal 1550 and the positive electrode terminal 1560 and electrically connecting the negative electrode terminal 1552 and the negative electrode terminal 1562, the first storage battery module 1500a and the second storage battery module 1500b are connected in parallel. Be connected. Further, the second upper exhaust port 1720 on the second surface 1620 and the third upper exhaust port 1730 on the third surface 1630 are arranged so as not to face each other. The second lower exhaust port 1722 on the second surface 1620 and the third lower exhaust port 1732 on the third surface 1630 are also arranged so as not to face each other.
 図12(a)-(f)は、組電池3000の別の構造を示す。図12(a)は、組電池3000の構造を示す斜視図である。図12(b)-(c)は、組電池3000の上面図であるが、図12(b)は組電池3000の上側部分の構造を中心に示し、図12(c)は組電池3000の下側の構造を中心に示す。組電池3000に含まれる第1蓄電池モジュール1500aと第2蓄電池モジュール1500bの構造は、図10(a)-(c)と同一であるが、これらの配置が図11(a)-(c)とは異なる。第1蓄電池モジュール1500aは、図11(a)と同様に配置されるが、第2蓄電池モジュール1500bは、第4面1640を第2面1620に対向させ、かつ下面1680を上側に向け、かつ上面1670を下側に向けて配置される。このように第2蓄電池モジュール1500bは、図11(a)での配置に対して、x-y平面内で反転させられるとともに、上下反転させられる。その結果、第1蓄電池モジュール1500aと第2蓄電池モジュール1500bは、第2面1620と第4面1640とに平行な投影面上において、互いの向きを変えて並べられる。 FIGS. 12 (a)-(f) show another structure of the assembled battery 3000. FIG. 12A is a perspective view showing the structure of the assembled battery 3000. 12 (b)-(c) are top views of the assembled battery 3000, FIG. 12 (b) mainly shows the structure of the upper portion of the assembled battery 3000, and FIG. 12 (c) shows the assembled battery 3000. The lower structure is shown in the center. The structures of the first storage battery module 1500a and the second storage battery module 1500b included in the assembled battery 3000 are the same as those in FIGS. 10 (a)-(c), but their arrangements are as shown in FIGS. 11 (a)-(c). Is different. The first storage battery module 1500a is arranged in the same manner as in FIG. 11A, but in the second storage battery module 1500b, the fourth surface 1640 faces the second surface 1620, the lower surface 1680 faces upward, and the upper surface faces. The 1670 is placed facing down. As described above, the second storage battery module 1500b is inverted and upside down in the xy plane with respect to the arrangement shown in FIG. 11A. As a result, the first storage battery module 1500a and the second storage battery module 1500b are arranged in different directions on the projection plane parallel to the second plane 1620 and the fourth plane 1640.
 このように並べられることによって、第1蓄電池モジュール1500aの正極端子1550と第2蓄電池モジュール1500bの負極端子1562とが同一方向を向く。また、第1蓄電池モジュール1500aの負極端子1552と第2蓄電池モジュール1500bの正極端子1560も同一方向を向く。ここで、負極端子1552と正極端子1560とを電気的に接続することによって、第1蓄電池モジュール1500aと第2蓄電池モジュール1500bとは直列に接続される。 By arranging in this way, the positive electrode terminal 1550 of the first storage battery module 1500a and the negative electrode terminal 1562 of the second storage battery module 1500b face in the same direction. Further, the negative electrode terminal 1552 of the first storage battery module 1500a and the positive electrode terminal 1560 of the second storage battery module 1500b also face in the same direction. Here, by electrically connecting the negative electrode terminal 1552 and the positive electrode terminal 1560, the first storage battery module 1500a and the second storage battery module 1500b are connected in series.
 第1上側排気口1710と第2上側排気口1720が第1蓄電池モジュール1500aの上側部分に配置されるとともに、第4下側排気口1742と第3下側排気口1732が第2蓄電池モジュール1500bの上側部分に配置される。そのため、第2上側排気口1720と第4下側排気口1742とが対向しなくなり、第4下側排気口1742から排出されたガスが第2上側排気口1720に直接流入されなくなる。 The first upper exhaust port 1710 and the second upper exhaust port 1720 are arranged in the upper portion of the first storage battery module 1500a, and the fourth lower exhaust port 1742 and the third lower exhaust port 1732 are located in the second storage battery module 1500b. It is placed in the upper part. Therefore, the second upper exhaust port 1720 and the fourth lower exhaust port 1742 do not face each other, and the gas discharged from the fourth lower exhaust port 1742 does not directly flow into the second upper exhaust port 1720.
 第1下側排気口1712と第2下側排気口1722は、第1蓄電池モジュール1500aの下側部分に配置されるとともに、第3上側排気口1730と第4上側排気口1740は、第2蓄電池モジュール1500bの下側部分に配置される。そのため、第2下側排気口1722と第4上側排気口1740とが対向しなくなり、第4上側排気口1740から排出されたガスが第2下側排気口1722に直接流入されなくなる。 The first lower exhaust port 1712 and the second lower exhaust port 1722 are arranged in the lower portion of the first storage battery module 1500a, and the third upper exhaust port 1730 and the fourth upper exhaust port 1740 are the second storage battery. It is located in the lower portion of the module 1500b. Therefore, the second lower exhaust port 1722 and the fourth upper exhaust port 1740 do not face each other, and the gas discharged from the fourth upper exhaust port 1740 does not directly flow into the second lower exhaust port 1722.
 図12(c)-(d)は、図12(a)-(b)の比較対象となる組電池4000であり、図12(a)-(b)と同様に示される。組電池4000は、図9(a)-(b)と同一の第1蓄電池モジュール1500aと第2蓄電池モジュール1500bとを含むが、これらの配置が図12(a)-(b)と異なる。第2蓄電池モジュール1500bは、第4面1640を第2面1620に対向させ、かつ上面1670を上側に向け、かつ下面1680を下側に向けて配置される。このように第2蓄電池モジュール1500bは、図11(a)での配置に対して、x-y平面内で反転させられるが、上下反転させられない。このように並べられることによって、第2上側排気口1720と第4上側排気口1740とが対向するので、第4上側排気口1740から排出されたガスが第2上側排気口1720に直接流入される。また、第2下側排気口1722と第4下側排気口1742とが対向するので、第4下側排気口1742から排出されたガスが第2下側排気口1722に直接流入される。そのため、このような配置は好ましくない。 12 (c)-(d) are the assembled batteries 4000 to be compared with FIGS. 12 (a)-(b), and are shown in the same manner as in FIGS. 12 (a)-(b). The assembled battery 4000 includes the first storage battery module 1500a and the second storage battery module 1500b, which are the same as those in FIGS. 9 (a)-(b), but their arrangements are different from those in FIGS. 12 (a)-(b). The second storage battery module 1500b is arranged so that the fourth surface 1640 faces the second surface 1620, the upper surface 1670 faces upward, and the lower surface 1680 faces downward. As described above, the second storage battery module 1500b is inverted in the xy plane with respect to the arrangement shown in FIG. 11A, but is not inverted upside down. By arranging in this way, the second upper exhaust port 1720 and the fourth upper exhaust port 1740 face each other, so that the gas discharged from the fourth upper exhaust port 1740 directly flows into the second upper exhaust port 1720. .. Further, since the second lower exhaust port 1722 and the fourth lower exhaust port 1742 face each other, the gas discharged from the fourth lower exhaust port 1742 directly flows into the second lower exhaust port 1722. Therefore, such an arrangement is not preferable.
 本実施例によれば、第2排気口(1720、1722)の位置とが第3排気口(1730、1732)の位置とが異なる場合に、第2面1620と第3面1630とを対向させるので、第2蓄電池モジュール1500bから排出されたガスによって第1蓄電池モジュール1500aが受ける影響を低減できる。また、第2排気口(1720、1722)の位置と第4排気口(1740、1742)の位置が共通であっても、第1蓄電池モジュール1500aの向きと第2蓄電池モジュール1500bの向きとを変えるので、第2蓄電池モジュール1500bから排出されたガスによって第1蓄電池モジュール1500aが受ける影響を低減できる。また、第1排気口(1710、1712)から第4排気口(1740、1742)は各面の上側部分と下側部分に配置されるので、ガスを効率的に排出できる。 According to this embodiment, when the position of the second exhaust port (1720, 1722) is different from the position of the third exhaust port (1730, 1732), the second surface 1620 and the third surface 1630 are opposed to each other. Therefore, the influence of the gas discharged from the second storage battery module 1500b on the first storage battery module 1500a can be reduced. Further, even if the positions of the second exhaust port (1720, 1722) and the position of the fourth exhaust port (1740, 1742) are the same, the orientation of the first storage battery module 1500a and the orientation of the second storage battery module 1500b are changed. Therefore, the influence of the gas discharged from the second storage battery module 1500b on the first storage battery module 1500a can be reduced. Further, since the first exhaust ports (1710, 1712) to the fourth exhaust ports (1740, 1742) are arranged on the upper portion and the lower portion of each surface, gas can be efficiently discharged.
 本開示の一態様の概要は、次の通りである。本開示の一態様の概要は、次の通りである。本開示のある態様の組電池(3000)は、互いに反対を向いた第1面(1610)と第2面(1620)とを有する第1蓄電池モジュール(1500a)と、互いに反対を向いた第3面(1630)と第4面(1640)とを有する第2蓄電池モジュール(1500b)とを備える。第1面(1610)と第2面(1620)とに平行な投影面上において、第1面(1610)に配置される複数の第1排気口(1710、1712)の位置と、第2面(1620)に配置される複数の第2排気口(1720、1722)の位置とが異なり、第3面(1630)と第4面(1640)とに平行な投影面上において、第3面(1630)に配置される複数の第3排気口(1730、1732)の位置と、第4面(1640)に配置される複数の第4排気口(1740、1742)の位置とが異なり、第1面(1610)と第3面(1630)とを対応させる場合に、複数の第1排気口(1710、1712)の位置と複数の第3排気口(1730、1732)の位置とが共通であり、第2面(1620)と第4面(1640)とを対応させる場合に、複数の第2排気口(1720、1722)の位置と、複数の第4排気口(1740、1742)の位置とが共通であり、第2面(1620)と第3面(1630)とを対向させて、第1蓄電池モジュール(1500a)と第2蓄電池モジュール(1500b)とが並べられる。 The outline of one aspect of the present disclosure is as follows. The outline of one aspect of the present disclosure is as follows. The assembled battery (3000) of a certain aspect of the present disclosure includes a first storage battery module (1500a) having a first surface (1610) and a second surface (1620) facing each other, and a third facing each other. It includes a second storage battery module (1500b) having a surface (1630) and a fourth surface (1640). On the projection plane parallel to the first plane (1610) and the second plane (1620), the positions of the plurality of first exhaust ports (1710, 1712) arranged on the first plane (1610) and the second plane. Unlike the positions of the plurality of second exhaust ports (1720, 1722) arranged at (1620), the third surface (1640) is on the projection surface parallel to the third surface (1630) and the fourth surface (1640). The positions of the plurality of third exhaust ports (1730, 1732) arranged on the fourth surface (1640) are different from the positions of the plurality of fourth exhaust ports (1740, 1742) arranged on the fourth surface (1640). When the surface (1610) and the third surface (1630) are associated with each other, the positions of the plurality of first exhaust ports (1710, 1712) and the positions of the plurality of third exhaust ports (1730, 1732) are common. , The positions of the plurality of second exhaust ports (1720, 1722) and the positions of the plurality of fourth exhaust ports (1740, 1742) when the second surface (1620) and the fourth surface (1640) are associated with each other. Is common, and the first storage battery module (1500a) and the second storage battery module (1500b) are arranged so that the second surface (1620) and the third surface (1630) face each other.
 本開示の別の態様もまた、組電池(3000)である。この組電池(3000)は、互いに反対を向いた第1面(1610)と第2面(1620)とを有する第1蓄電池モジュール(1500a)と、互いに反対を向いた第3面(1630)と第4面(1640)とを有する第2蓄電池モジュール(1500b)とを備える。第1面(1610)と第2面(1620)とに平行な投影面上において、第1面(1610)に配置される複数の第1排気口(1710、1712)の位置と、第2面(1620)に配置される複数の第2排気口(1720、1722)の位置とが異なり、第3面(1630)と第4面(1640)とに平行な投影面上において、第3面(1630)に配置される複数の第3排気口(1730、1732)の位置と、第4面(1640)に配置される複数の第4排気口(1740、1742)の位置とが異なり、第1面(1610)と第3面(1630)とを対応させる場合に、複数の第1排気口(1710、1712)の位置と複数の第3排気口(1730、1732)の位置とが共通であり、第2面(1620)と第4面(1640)とを対応させる場合に、複数の第2排気口(1720、1722)の位置と、複数の第4排気口(1740、1742)の位置とが共通であり、第2面(1620)と第4面(1640)とを対向させ、かつ第2面(1620)と第4面(1640)とに平行な投影面上において、第1蓄電池モジュール(1500a)の向きと第2蓄電池モジュール(1500b)の向きとを変えて、第1蓄電池モジュール(1500a)と第2蓄電池モジュール(1500b)とが並べられる。 Another aspect of the present disclosure is also an assembled battery (3000). The assembled battery (3000) includes a first storage battery module (1500a) having a first surface (1610) and a second surface (1620) facing each other, and a third surface (1630) facing each other. It includes a second storage battery module (1500b) having a fourth surface (1640). The positions of the plurality of first exhaust ports (1710, 1712) arranged on the first surface (1610) and the second surface on the projection plane parallel to the first plane (1610) and the second plane (1620). On a projection plane parallel to the third plane (1630) and the fourth plane (1640), the third plane (1620, 1722) is different from the positions of the plurality of second exhaust ports (1720, 1722) arranged in (1620). The positions of the plurality of third exhaust ports (1730, 1732) arranged in 1630) are different from the positions of the plurality of fourth exhaust ports (1740, 1742) arranged in the fourth surface (1640). When the surface (1610) and the third surface (1630) are associated with each other, the positions of the plurality of first exhaust ports (1710, 1712) and the positions of the plurality of third exhaust ports (1730, 1732) are common. , The positions of the plurality of second exhaust ports (1720, 1722) and the positions of the plurality of fourth exhaust ports (1740, 1742) when the second surface (1620) and the fourth surface (1640) are associated with each other. The first storage battery module is on a projection plane in which the second plane (1620) and the fourth plane (1640) are opposed to each other and parallel to the second plane (1620) and the fourth plane (1640). The first storage battery module (1500a) and the second storage battery module (1500b) are arranged side by side by changing the orientation of the (1500a) and the orientation of the second storage battery module (1500b).
 複数の第1排気口(1710、1712)は第1面(1610)の上側部分と下側部分に配置され、複数の第2排気口(1720、1722)は第2面(1620)の上側部分と下側部分に配置され、複数の第3排気口(1730、1732)は第3面(1630)の上側部分と下側部分に配置され、複数の第4排気口(1740、1742)は第4面(1640)の上側部分と下側部分に配置される。 The plurality of first exhaust ports (1710, 1712) are arranged on the upper portion and the lower portion of the first surface (1610), and the plurality of second exhaust ports (1720, 1722) are the upper portion of the second surface (1620). The plurality of third exhaust ports (1730, 1732) are arranged in the upper portion and the lower portion of the third surface (1630), and the plurality of fourth exhaust ports (1740, 1742) are arranged in the lower portion. It is arranged on the upper and lower portions of the four surfaces (1640).
 以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the examples. This embodiment is an example, and it will be understood by those skilled in the art that various modifications are possible for each of these components or combinations of each processing process, and that such modifications are also within the scope of the present disclosure. ..
 実施例1および2において、組電池3000に含まれる蓄電池モジュール1000あるいは蓄電池モジュール1500の数は「2」であるとされる。しかしながらこれに限らず例えば、組電池3000に含まれる蓄電池モジュール1000あるいは蓄電池モジュール1500の数は「3」以上であってもよい。その際、実施例1および2における配置の規則性にしたがって、蓄電池モジュール1000あるいは蓄電池モジュール1500が並べられればよい。本変形例によれば、構成の自由度を向上できる。 In Examples 1 and 2, the number of the storage battery modules 1000 or the storage battery modules 1500 included in the assembled battery 3000 is said to be "2". However, the number is not limited to this, and for example, the number of the storage battery modules 1000 or the storage battery modules 1500 included in the assembled battery 3000 may be "3" or more. At that time, the storage battery modules 1000 or the storage battery modules 1500 may be arranged according to the regularity of arrangement in Examples 1 and 2. According to this modification, the degree of freedom of configuration can be improved.
 実施例1および2において、前空間400と後空間410とが形成される。しかしながらこれに限らず例えば、前空間400と後空間410の一方だけが形成されてもよい。本変形例によれば、すべての蓄電池セル210が同一方向を向いて配置されている場合に、配置に適した空間を形成できる。 In Examples 1 and 2, the front space 400 and the rear space 410 are formed. However, the present invention is not limited to this, and for example, only one of the front space 400 and the rear space 410 may be formed. According to this modification, when all the storage battery cells 210 are arranged so as to face the same direction, a space suitable for the arrangement can be formed.
 実施例1および2において、複数の前空間400が並べられる。しかしながらこれに限らず例えば、前空間400の数は1つでもよい。本変形例によれば、前空間400のサイズが小さい場合に構造を簡易にできる。また、後空間410についても同様である。 In Examples 1 and 2, a plurality of front spaces 400 are arranged. However, the number of front spaces 400 is not limited to this, and may be one. According to this modification, the structure can be simplified when the size of the front space 400 is small. The same applies to the rear space 410.
 実施例1および2において、前側隔壁242、後側隔壁252は、樹脂等により形成されている。しかしながらこれに限らず例えば、樹脂等により形成された前側隔壁242、後側隔壁252は、前空間400あるいは後空間410側から金属板等によって補強されてもよい。本変形例によれば、発生したガス500の圧力が高くなっても、前側隔壁242、後側隔壁252を破損しにくくできる。 In Examples 1 and 2, the front partition wall 242 and the rear partition wall 252 are formed of resin or the like. However, the present invention is not limited to this, and for example, the front partition wall 242 and the rear partition wall 252 formed of resin or the like may be reinforced by a metal plate or the like from the front space 400 or the rear space 410 side. According to this modification, even if the pressure of the generated gas 500 becomes high, the front partition wall 242 and the rear partition wall 252 can be less likely to be damaged.
 本開示によれば、1つの電池モジュールから排出されたガスによって他の電池モジュールが受ける影響を低減できる。 According to the present disclosure, the influence of the gas discharged from one battery module on another battery module can be reduced.
 1000 蓄電池モジュール、 1110 第1面、 1120 第2面、 1130 第3面、 1140 第4面、 1150 上面、 1160 下面、 1170 上面、 1180 下面、 1210 第1排気口、 1220 第2排気口、 1230 第3排気口、 1240 第4排気口、 3000 組電池。 1000 storage battery module, 1110 1st surface, 1120 2nd surface, 1130 3rd surface, 1140 4th surface, 1150 upper surface, 1160 lower surface, 1170 upper surface, 1180 lower surface, 1210 1st exhaust port, 1220 2nd exhaust port, 1230th 3 exhaust ports, 1240 4th exhaust port, 3000 rechargeable batteries.

Claims (4)

  1.  互いに反対を向いた第1面と第2面とを有する第1蓄電池モジュールと、
     互いに反対を向いた第3面と第4面とを有する第2蓄電池モジュールとを備え、
     前記第1面と前記第2面とに平行な投影面上において、前記第1面に配置される複数の第1排気口の位置と、前記第2面に配置される複数の第2排気口の位置とが異なり、
     前記第3面と前記第4面とに平行な投影面上において、前記第3面に配置される複数の第3排気口の位置と、前記第4面に配置される複数の第4排気口の位置とが異なり、
     前記第1面と前記第3面とを対応させる場合に、前記複数の第1排気口の位置と前記複数の第3排気口の位置とが共通であり、
     前記第2面と前記第4面とを対応させる場合に、前記複数の第2排気口の位置と、前記複数の第4排気口の位置とが共通であり、
     前記第2面と前記第3面とを対向させて、前記第1蓄電池モジュールと前記第2蓄電池モジュールとが並べられる、
     組電池。
    A first storage battery module having a first surface and a second surface facing each other,
    A second storage battery module having a third surface and a fourth surface facing each other is provided.
    On the projection plane parallel to the first surface and the second surface, the positions of the plurality of first exhaust ports arranged on the first surface and the plurality of second exhaust ports arranged on the second surface. Unlike the position of
    On the projection surface parallel to the third surface and the fourth surface, the positions of the plurality of third exhaust ports arranged on the third surface and the plurality of fourth exhaust ports arranged on the fourth surface. Unlike the position of
    When the first surface and the third surface are associated with each other, the positions of the plurality of first exhaust ports and the positions of the plurality of third exhaust ports are common.
    When the second surface and the fourth surface correspond to each other, the positions of the plurality of second exhaust ports and the positions of the plurality of fourth exhaust ports are common.
    The first storage battery module and the second storage battery module are arranged side by side with the second surface and the third surface facing each other.
    Batteries assembled.
  2.  互いに反対を向いた第1面と第2面とを有する第1蓄電池モジュールと、
     互いに反対を向いた第3面と第4面とを有する第2蓄電池モジュールとを備え、
     前記第1面と前記第2面とに平行な投影面上において、前記第1面に配置される複数の第1排気口の位置と、前記第2面に配置される複数の第2排気口の位置とが異なり、
     前記第3面と前記第4面とに平行な投影面上において、前記第3面に配置される複数の第3排気口の位置と、前記第4面に配置される複数の第4排気口の位置とが異なり、
     前記第1面と前記第3面とを対応させる場合に、前記複数の第1排気口の位置と前記複数の第3排気口の位置とが共通であり、
     前記第2面と前記第4面とを対応させる場合に、前記複数の第2排気口の位置と、前記複数の第4排気口の位置とが共通であり、
     前記第2面と前記第4面とを対向させ、かつ前記第2面と前記第4面とに平行な投影面上において、前記第1蓄電池モジュールの向きと前記第2蓄電池モジュールの向きとを変えて、前記第1蓄電池モジュールと前記第2蓄電池モジュールとが並べられる、
     組電池。
    A first storage battery module having a first surface and a second surface facing each other,
    A second storage battery module having a third surface and a fourth surface facing each other is provided.
    On the projection plane parallel to the first surface and the second surface, the positions of the plurality of first exhaust ports arranged on the first surface and the plurality of second exhaust ports arranged on the second surface. Unlike the position of
    On the projection surface parallel to the third surface and the fourth surface, the positions of the plurality of third exhaust ports arranged on the third surface and the plurality of fourth exhaust ports arranged on the fourth surface. Unlike the position of
    When the first surface and the third surface are associated with each other, the positions of the plurality of first exhaust ports and the positions of the plurality of third exhaust ports are common.
    When the second surface and the fourth surface correspond to each other, the positions of the plurality of second exhaust ports and the positions of the plurality of fourth exhaust ports are common.
    The orientation of the first storage battery module and the orientation of the second storage battery module are oriented on a projection surface in which the second surface and the fourth surface face each other and are parallel to the second surface and the fourth surface. Alternatively, the first storage battery module and the second storage battery module are arranged side by side.
    Batteries assembled.
  3.  前記複数の第1排気口は前記第1面の下側部分に配置され、
     前記複数の第2排気口は前記第2面の下側部分に配置され、
     前記複数の第3排気口は前記第3面の下側部分に配置され、
     前記複数の第4排気口は前記第4面の下側部分に配置される、
     請求項1または2に記載の組電池。
    The plurality of first exhaust ports are arranged in the lower portion of the first surface.
    The plurality of second exhaust ports are arranged in the lower portion of the second surface.
    The plurality of third exhaust ports are arranged in the lower portion of the third surface.
    The plurality of fourth exhaust ports are arranged in the lower portion of the fourth surface.
    The assembled battery according to claim 1 or 2.
  4.  前記複数の第1排気口は前記第1面の上側部分と下側部分に配置され、
     前記複数の第2排気口は前記第2面の上側部分と下側部分に配置され、
     前記複数の第3排気口は前記第3面の上側部分と下側部分に配置され、
     前記複数の第4排気口は前記第4面の上側部分と下側部分に配置される、
     請求項1または2に記載の組電池。
    The plurality of first exhaust ports are arranged on the upper portion and the lower portion of the first surface.
    The plurality of second exhaust ports are arranged on the upper portion and the lower portion of the second surface.
    The plurality of third exhaust ports are arranged on the upper portion and the lower portion of the third surface.
    The plurality of fourth exhaust ports are arranged on the upper portion and the lower portion of the fourth surface.
    The assembled battery according to claim 1 or 2.
PCT/JP2020/002076 2019-03-18 2020-01-22 Battery assembly WO2020188996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-050016 2019-03-18
JP2019050016A JP7300608B2 (en) 2019-03-18 2019-03-18 assembled battery

Publications (1)

Publication Number Publication Date
WO2020188996A1 true WO2020188996A1 (en) 2020-09-24

Family

ID=72520699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002076 WO2020188996A1 (en) 2019-03-18 2020-01-22 Battery assembly

Country Status (2)

Country Link
JP (1) JP7300608B2 (en)
WO (1) WO2020188996A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038589A (en) * 2010-08-06 2012-02-23 Toyota Industries Corp Battery pack
US20150303422A1 (en) * 2014-04-17 2015-10-22 Robert Bosch Gmbh Battery unit comprising an accommodating device and a plurality of electrochemical cells and battery module comprising a plurality of such battery units

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038589A (en) * 2010-08-06 2012-02-23 Toyota Industries Corp Battery pack
US20150303422A1 (en) * 2014-04-17 2015-10-22 Robert Bosch Gmbh Battery unit comprising an accommodating device and a plurality of electrochemical cells and battery module comprising a plurality of such battery units

Also Published As

Publication number Publication date
JP2020155226A (en) 2020-09-24
JP7300608B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP7233020B2 (en) storage battery module
JP5466906B2 (en) Battery module
US20210218087A1 (en) Battery module including cooling member, and battery pack and energy storage system including the same
JPWO2017130259A1 (en) Battery pack
KR101689218B1 (en) Battery module
KR101776898B1 (en) Battery Module
EP4181301A1 (en) Battery pack having gas venting path
CN113785434A (en) Battery module and battery pack including the same
JP7270135B2 (en) storage battery module
WO2020188996A1 (en) Battery assembly
JP7442075B2 (en) storage battery module
WO2020121802A1 (en) Storage battery module
KR20220010876A (en) Battery module
US20230327278A1 (en) Battery pack with improved gas venting path
JP2023539231A (en) Battery modules, battery packs containing them, and automobiles
JP2023538320A (en) Battery module and battery pack containing it
WO2021049315A1 (en) Battery pack
JP2023540109A (en) Battery module and battery pack containing it
KR20230008110A (en) Battery, electric device, battery manufacturing method and device
WO2022172742A1 (en) Storage battery module
US20230069871A1 (en) Battery pack
US20230282948A1 (en) Bus-Bar Connection Structure
JP7482996B2 (en) Battery pack and device including same
JP7483028B2 (en) Battery pack and device including same
US20230102399A1 (en) Battery Module and Battery Pack Having the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773269

Country of ref document: EP

Kind code of ref document: A1