WO2020188976A1 - Weighing mechanism - Google Patents

Weighing mechanism Download PDF

Info

Publication number
WO2020188976A1
WO2020188976A1 PCT/JP2020/001105 JP2020001105W WO2020188976A1 WO 2020188976 A1 WO2020188976 A1 WO 2020188976A1 JP 2020001105 W JP2020001105 W JP 2020001105W WO 2020188976 A1 WO2020188976 A1 WO 2020188976A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
pipe
discharge pipe
container
measuring
Prior art date
Application number
PCT/JP2020/001105
Other languages
French (fr)
Japanese (ja)
Inventor
主 丹羽
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2020188976A1 publication Critical patent/WO2020188976A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes
    • G01G17/06Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes having means for controlling the supply or discharge

Definitions

  • the present invention relates to a measurement mechanism used in a synthesis device or the like for chemically synthesizing proteins, peptides, nucleic acids and the like.
  • a method for chemically synthesizing proteins, peptides, nucleic acids, etc. there is a method in which a plurality of types of solutions (reagents) are sequentially supplied to a reaction vessel and the reaction proceeds in the reaction vessel.
  • a plurality of types of solutions for example, in the case of synthesizing nucleic acid, a large number of beads are provided in a reaction vessel, and while supplying a solution to the reaction vessel in sequence, detritylation, coupling, oxidation, and capping are repeated, and bases are sequentially transferred from the beads. Combine with.
  • Patent Document 1 discloses a measuring mechanism used in the above-mentioned synthesizer.
  • FIG. 6 is an explanatory diagram of a conventional weighing mechanism.
  • the measuring mechanism 90 includes a closed container 91, a plurality of inlet pipes 92, a measuring container 94, a weight sensor 95, and a discharge pipe 96.
  • Each inlet tube 92 is connected to a storage container (reagent bottle) (not shown) in which a solution (reagent) is stored, and a solution sent from the storage container passes through the storage container (reagent bottle).
  • the measuring container 94 receives the solution flowing out from the downstream end 93 of each inlet pipe 92.
  • the weight sensor 95 measures the weight in the measuring container 94.
  • the weight sensor 95 is composed of, for example, a strain type load cell.
  • the weight of the measuring container 94 acts on the weight sensor 95 in addition to the solution stored in the measuring container 94. Since the weight (weight) of the measuring container 94 is known, the weight sensor 95 can measure the solution stored in the measuring container 94.
  • the discharge pipe 96 is connected to the lower end of the measuring container 94 and is a pipe for discharging the measured solution.
  • the inlet pipe 92 affects the weighing result by the weight sensor 95.
  • the inlet pipe 92 and the measuring container 94 are in a non-contact state. Therefore, the influence of the inlet pipe 92 does not affect the weight sensor 95, and highly accurate weighing is possible.
  • the discharge pipe 96 is connected to the measuring container 94, which affects the measurement result by the weight sensor 95. Therefore, in the measuring mechanism 90 shown in FIG. 6, the discharge pipe 96 is a thin elastic tube and has a spiral shape. Therefore, the discharge pipe 96 can be elastically deformed as a whole, whereby the tension can be released. As a result, the influence of the discharge pipe 96 is less likely to reach the weight sensor 95, and highly accurate weighing becomes possible.
  • the solution to be measured for example, several tens of liters
  • the capacity of the container 94 increases. If the discharge pipe 96 connected to the measuring container 94 is thin, it takes a lot of time to discharge the solution after weighing. Therefore, the diameter of the discharge pipe 96 may be increased, but in this case, the rigidity as a whole is increased, and even if the spiral shape is formed, the function of releasing the tension as described above is reduced. That is, the discharge pipe 96 affects the weighing result of the weight sensor 95.
  • an object of the present disclosure is to provide a measuring mechanism capable of realizing measurement of a solution with high accuracy even when the capacity of the measuring container is expanded.
  • the present disclosure is a measuring mechanism for selectively acquiring and measuring a plurality of types of solutions, which comprises a closed container, an inlet pipe that penetrates the upper wall of the closed container and allows the solution to pass through, and the inlet pipe.
  • a measuring container provided in the closed container in a non-contact state to receive the solution flowing out from the inlet pipe, a weight sensor for measuring the weight in the measuring container, and a weight sensor connected to the lower part of the measuring container in the measuring container.
  • the outlet pipe is provided with an outlet pipe with a valve for guiding the solution downward, and a discharge pipe provided at the lower part of the closed container to receive the solution flowing out from the outlet pipe and further discharge the solution to the downstream side.
  • the discharge pipe are arranged along a common vertical line in a non-contact state.
  • the solution can be weighed by the weight sensor by storing the solution in the measuring container with the valve of the outlet pipe closed. If each of the inlet pipe and the discharge pipe is in contact with the measuring container, for example, if tension is applied to each of the inlet pipe and the discharge pipe, the weighing result by the weight sensor is affected. However, since the inlet pipe and the measuring container are in a non-contact state, and the outlet pipe connected to the measuring container and the discharge pipe are in a non-contact state, the inlet pipe and the discharge pipe are weighed by the weight sensor. Does not affect. Therefore, even when the capacity of the measuring container is expanded, the measurement of the solution can be realized with high accuracy. When the solution in the measuring container that has been weighed flows out from the outlet pipe by, for example, free fall, the discharge pipe receives the solution. Then, the weighed solution is supplied further downstream through the discharge pipe.
  • the solution After weighing, by opening the valve of the outlet pipe, the solution flows out from the outlet pipe by, for example, free fall. Then, since the outlet pipe and the discharge pipe are arranged in a non-contact state, the solution discharged from the outlet pipe may scatter to the surroundings. Therefore, preferably, the lower end of the outlet pipe is in a state of being inserted into the discharge pipe. According to this configuration, the solution discharged from the outlet pipe can be suppressed from scattering to the surroundings, and the solution can be received by the discharge pipe.
  • the discharge pipe has a funnel portion at its upper part having a wide opening toward the top. According to this configuration, whether or not the lower end of the outlet pipe is inserted into the discharge pipe, the socket of the discharge pipe is enlarged, so that the discharge pipe can easily receive the measured solution. ..
  • the discharge pipe has a funnel portion having an opening widening upward and a straight pipe portion connected to the lower portion of the funnel portion, and the lower end of the outlet pipe is formed above the discharge pipe. , Is in a state of being inserted into the straight pipe portion. According to this configuration, the solution can be suppressed from being scattered from the outlet pipe to the surroundings, and the discharge pipe can receive the solution.
  • the discharge pipe has a second valve on the downstream side thereof.
  • the capacity at which the solution can be stored in the discharge pipe when the second valve is closed may be smaller than the capacity of the measuring container. In this case, if the second valve is opened when the measurement is completed and the solution flows out from the outlet pipe, the solution does not overflow from the discharge pipe. Further, according to the above configuration, the discharge pipe can be made smaller.
  • the discharge pipe has a second valve on the downstream side thereof, and the capacity at which the solution can be stored in the discharge pipe when the second valve is closed is larger than the capacity of the measuring container. It may be large. In this case, even if the flow rate per unit time when the solution is discharged from the discharge pipe is smaller than the flow rate per unit time when the solution flows out from the outlet pipe, the solution does not overflow from the discharge pipe.
  • FIG. 1 is a configuration diagram showing an example of a synthesizer including a weighing mechanism.
  • This synthesis device is a device for chemically synthesizing proteins, peptides, nucleic acids, etc., and a plurality of types of solutions (reagents) are sequentially supplied to the reaction vessel 9 to proceed with the chemical synthesis in the reaction vessel 9.
  • a large number of beads are provided in the reaction vessel 9, and while sequentially supplying the solution to the reaction vessel 9, detritylation, coupling, oxidation, and capping are repeatedly performed, and the beads, for example, bases, for example.
  • Such molecular materials are bonded one after another.
  • the synthesis device 3 includes an area for providing the same number (19) of storage containers (reagent bottles) 2-1 and 2-2, ... As the type of solution. Each solution is stored in each of the storage containers 2-1 and 2-2. Note that FIG. 1 shows only two storage containers (2-1 and 2-2), and the other storage containers are not shown.
  • the synthesizer 3 also includes a storage container 2-20 for storing the cleaning liquid. In the following, the reference code attached to the storage container is simply referred to as “2”.
  • Each storage container 2 is a closed container, but the introduction pipe 5 and the outlet pipe 6 are connected to each other.
  • the synthesizer 3 includes a tank 4 for storing pressurized gas, an upstream pipe 10, an introduction pipe 5, an outlet pipe 6, an intermediate pipe 8, a discharge side pipe 19, a reaction vessel 9, a measuring mechanism 15, and a control device 16. To be equipped.
  • the tank 4 is filled with a gas having a pressure higher than that of the atmosphere, and in the present disclosure, it is filled with argon gas as an inert gas. Aseptic gas (air) may be used instead of the inert gas.
  • the same number of introduction pipes 5 as the plurality of storage containers 2 (20 in the present disclosure) are pipes branched from the common upstream pipe 10, and the upstream pipe 10 has a regulator (electropneumatic regulator) 11 and a valve 12. It is provided.
  • the upstream pipe 10 is connected to the tank 4, pressurized gas is supplied to each storage container 2, and the internal pressure of each storage container 2 is adjusted by the regulator 11. The internal pressure of each storage container 2 is increased by the pressurized gas, and the solution of the storage container 2 is pressure-fed through the outlet pipe 6.
  • a pipe 17 for pressurized gas is provided between the tank 4 and the closed container 29 included in the measuring mechanism 15.
  • a second regulator (electropneumatic regulator) 18 is provided in the pipe 17. The gas in the tank 4 is supplied to the closed container 29.
  • a valve 14 is provided for each of the lead-out pipes 6.
  • the piping portion on the downstream side (measurement container 7 side) of each valve 14 is the inlet pipe 20 included in the measuring mechanism 15.
  • the measuring mechanism 15 selectively acquires and weighs a plurality of types of solutions by supplying (pumping) from the storage container 2.
  • the measuring mechanism 15 has a function of measuring the solution stored in the measuring container 7.
  • the measurement result by the measurement mechanism 15 is transmitted to the control device 16, the control device 16 controls the opening / closing operation of the valve 14 based on the measurement result, and a specified amount of solution is obtained in the measurement container 7.
  • a specified amount of solution is sent to the reaction vessel 9 through the intermediate pipe 8.
  • FIG. 2 is an explanatory diagram of the measuring mechanism 15.
  • the measuring mechanism 15 includes a closed container 29 to which the gas (pressurized gas) is supplied, a plurality of (20 in the present disclosure) inlet pipes 20, a measuring container 7, a weight sensor 26, and an outlet pipe 30. It is provided with a discharge pipe 35.
  • the measuring container 7, the outlet pipe 30, and the discharge pipe 35 may be made of resin, but are made of metal in the present disclosure.
  • a plurality of inlet pipes 20 are bundled and penetrate the upper wall 29a of the closed container 29.
  • the solution sent from the storage container 2 passes through the inlet pipe 20.
  • the measuring container 7 is a bottomed tubular container capable of receiving the solution flowing out from the downstream end portion 20a of the inlet pipe 20 and storing the solution.
  • a plurality of inlet pipes 20 are collectively provided in the inlet region (opening 7a) at the upper part of the measuring container 7.
  • An outlet pipe 30 with a valve 31 is connected to the lower portion 7b of the measuring container 7. With the valve 31 closed, the solution sent through the inlet pipe 20 is introduced into the measuring container 7 and stored in the measuring container 7.
  • the measuring container 7 is provided in the closed container 29 in a non-contact state (a state in which the edge is cut) with each inlet pipe 20.
  • the weight sensor 26 measures the weight in the measuring container 7.
  • the weight sensor 26 of the present disclosure is composed of a strain type load cell.
  • the weight sensor 26 is installed in the closed container 29, and the measuring container 7 is supported by the closed container 29 via the weight sensor 26.
  • the measuring container 7 is provided in a closed container 29 in a suspended state via a weight sensor 26. Therefore, the weight of the measuring container 7 and the solution stored in the measuring container 7 is received by the weight sensor 26.
  • the weight sensor 26 measures the weight of the solution stored in the measuring container 7.
  • the weight sensor 26 may be a sensor of another type, and is composed of, for example, an electromagnetic type, a piezoelectric element type, a capacitance type, a magnetostrictive type, a gyro type or the like load cell.
  • the outlet pipe 30 is a straight pipe having a valve 31 in the middle.
  • the outlet pipe 30 is connected to the lower portion 7b of the measuring container 7 and guides the solution in the measuring container 7 downward.
  • the outlet pipe 30 has a function as a nozzle for discharging the solution of the measuring container 7. With the valve 31 closed, the solution is stored in the measuring container 7. When the valve 31 is opened, the solution flows out from the outlet pipe 30. This outflow is due to free fall.
  • the valve 31 is opened and closed by air (fluid). That is, the valve body of the valve 31 is operated by the air.
  • the air is supplied through the air pipe 32 connected to the valve 31.
  • a part of the air pipe 32 penetrates the wall 29b of the closed container 29.
  • An air source (not shown) is provided outside the closed container 29, and air is supplied to the valve 31 from this air source through the air pipe 32.
  • the air pipe 32 is composed of a thin tube that is easily elastically deformed. As shown in FIG. 2, a part 32a of the air pipe 32 has a spiral shape and can be elastically deformed as a whole.
  • the discharge pipe 35 is provided at the lower part of the closed container 29.
  • the discharge pipe 35 of the present disclosure has a second valve 39 on the downstream side thereof.
  • the second valve 39 can also be driven by air (fluid) in the same manner as the valve (first valve) 31 of the outlet pipe 30.
  • the discharge pipe 35 receives the solution flowing out from the outlet pipe 30. With the second valve 39 open, the discharge pipe 35 allows the solution from the outlet pipe 30 to flow out to the reaction vessel 9 (see FIG. 1) through the intermediate pipe 8 on the downstream side thereof.
  • the outlet pipe 30 and the discharge pipe 35 are installed in a non-contact state (the edge is cut off).
  • the outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C. That is, the center lines of the outlet pipe 30 and the discharge pipe 35 are arranged along the common vertical line C.
  • the discharge pipe 35 has a funnel portion 36 having an opening widening upward and a straight pipe portion 37 connected to the lower portion 36b of the funnel portion 36 at the upper portion thereof.
  • the funnel portion 36 has a cylindrical portion 40 that is cylindrical, and a tapered portion 41 whose inner diameter decreases downward from the lower end of the cylindrical portion 40.
  • the straight pipe portion 37 is a straight pipe connected to the lower portion (36b) of the tapered portion 41.
  • the lower end 30b of the outlet pipe 30 may be inserted at a position above the straight pipe portion 37 and at the same height as the funnel portion 36, but in the form shown in FIG. 2, the outlet pipe 30
  • the lower end 30b is in a state of being inserted into the straight pipe portion 37. That is, the lower end 30b of the outlet pipe 30 is located below the lower portion 36b of the funnel portion 36 and is within the same height range as the straight pipe portion 37.
  • the outlet pipe 30 is in a non-contact state with both the funnel portion 36 and the straight pipe portion 37.
  • the solution When the solution is weighed in the measuring container 7 and the first valve 31 is opened, the solution flows to the discharge pipe 35 through the outlet pipe 30. At the same time that the first valve 31 is opened, the second valve 39 is also opened. As a result, the solution that has flowed to the discharge pipe 35 through the outlet pipe 30 is discharged to the reaction vessel 9 side through the discharge pipe 35 while being stored in the discharge pipe 35 (funnel portion 36).
  • the closed container 29 is filled with the gas (pressurized gas).
  • the reaction vessel 9 side has a lower pressure than the closed vessel 29 (at atmospheric pressure). Therefore, when the second valve 39 is opened, the gas flows to the reaction vessel 9 side through the discharge pipe 35 and the intermediate pipe 8 due to the differential pressure between the closed vessel 29 and the reaction vessel 9 side. Then, the solution in the discharge pipe 35 is forced to flow to the reaction vessel 9 side by being pushed by the gas. That is, the discharge of the solution from the discharge pipe 35 is promoted. Further, the diameter (inner diameter) of the straight pipe portion 37 is larger than that of the outlet pipe 30. Therefore, it can be expected that the flow rate per unit time when the solution is discharged from the discharge pipe 35 is larger than the flow rate per unit time when the solution flows out from the outlet pipe 30.
  • discharge side capacity the capacity at which the solution can be stored in the discharge pipe 35 when the second valve 39 is closed (hereinafter, this is referred to as “discharge side capacity”) may be smaller than the capacity of the measuring container 7. .. Even in this case, when the measurement is completed and the solution is discharged from the outlet pipe 30, the solution does not overflow from the discharge pipe 35.
  • the discharge side capacity is the capacity on the upstream side (outlet pipe 30 side) of the second valve 39 in the discharge pipe 35.
  • the discharge pipe 35 can be made compact.
  • the funnel portion 36 (at least a part thereof) is provided inside the closed container 29.
  • the discharge pipe 35 (funnel portion 36) is large, it is necessary to increase the volume of the closed container 29, and a large amount of the gas to be filled in the closed container 29 is also required.
  • the discharge pipe 35 (funnel portion 36) compact, the volume of the closed container 29 can also be reduced, and as a result, the gas to be filled can also be reduced.
  • the measuring mechanism 15 shown in FIG. 2 includes a measuring container 7, a weight sensor 26, an outlet pipe 30 with a valve 31, and a discharge pipe 35.
  • the measuring container 7 is provided in the closed container 29 in a non-contact state with the inlet pipe 20, and receives the solution flowing out from the downstream end portion 20a of the inlet pipe 20.
  • the weight sensor 26 measures the weight in the measuring container 7.
  • the outlet pipe 30 with the valve 31 is connected to the lower portion 7b of the measuring container 7 and guides the solution in the measuring container 7 downward.
  • the discharge pipe 35 is provided in the lower part of the closed container 29, receives the solution flowing out from the outlet pipe 30, and causes the solution to flow out further to the downstream side.
  • the outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C in a non-contact state.
  • the solution can be weighed by the weight sensor 26 by storing the solution in the measuring container 7 with the valve 31 closed.
  • the inlet pipe 20 and the discharge pipe 35 are in contact with the measuring container 7, for example, when tension is applied to each of the inlet pipe 20 and the discharge pipe 35, the weighing result by the weight sensor 26 is affected.
  • the inlet pipe 20 and the measuring container 7 are in a non-contact state, and the outlet pipe 30 connected to the measuring container 7 and the discharge pipe 35 are in a non-contact state. .. Therefore, the inlet pipe 20 and the discharge pipe 35 do not affect the measurement result by the weight sensor 26. Therefore, the measurement of the solution can be realized with high accuracy.
  • the discharge pipe 35 receives the solution. Then, the weighed solution is supplied to the reaction vessel 9 side through the discharge pipe 35.
  • the valve 31 is driven by air.
  • the air pipe 32 interposed between the valve 31 and the closed container 29 is made of a thin tube that is easily elastically deformed.
  • a part 32a of the air pipe 32 has a spiral shape and is elastically deformed as a whole. Therefore, the valve 31 is provided integrally with the outlet pipe 30, and the outlet pipe 30 is integrated with the measuring container 7, but the air pipe 32 does not affect the measurement result by the weight sensor 26.
  • the upper part of the measuring container 7 is open so that the inlet pipe 20 and the measuring container 7 are not in contact with each other. Further, the outlet pipe 30 and the discharge pipe 35 are separated from each other. Therefore, in the measuring mechanism 15 of the present disclosure, the inside of the closed container 29 is filled with an inert gas or a sterilized gas (air). Therefore, the measured solution and the measured solution do not come into contact with the atmosphere (outside air). Therefore, even if the plurality of types of solutions used include a solution that deteriorates or deteriorates when it comes into contact with the atmosphere (outside air), the quality does not deteriorate.
  • the solution After weighing, by opening the valve 31 of the outlet pipe 30, the solution flows out from the outlet pipe 30 by, for example, free fall. Then, since the outlet pipe 30 and the discharge pipe 35 are arranged in a non-contact state, the solution discharged from the outlet pipe 30 may scatter to the surroundings. Therefore, in the case of the measuring mechanism 15 shown in FIG. 2, the lower end 30b of the outlet pipe 30 is in a state of being inserted into the straight pipe portion 37 of the discharge pipe 35. Therefore, it is possible to prevent the solution from scattering from the outlet pipe 30 to the surroundings.
  • the cleaning liquid is poured to prevent the previous solution from remaining and mixing with the next solution. Need to be done.
  • the cleaning liquid is supplied from the storage container 2-20 (see FIG. 1). Therefore, the cleaning liquid is first supplied to the measuring container 7.
  • the valve 31 of the outlet pipe 30 is opened and the outlet pipe 30 is washed. Then, the cleaning liquid flows into the discharge pipe 35, and the discharge pipe 35 is cleaned.
  • the lower end 30b of the outlet pipe 30 is in a state of being inserted into the straight pipe portion 37. Therefore, the scattering range of the solution is narrow, and the range to be cleaned is also narrowed.
  • the longer the length inserted into the straight pipe portion 37 the smaller the area where the solution discharged from the outlet pipe 30 is scattered with respect to the discharge pipe 35 can be suppressed.
  • the lower end 30b of the outlet pipe 30 should also be cleaned with a cleaning liquid. Since the lower end 30b of the outlet pipe 30 is inserted into the straight pipe portion 37, the lower end 30b is inserted at a position above the straight pipe portion 37 and at the same height as the funnel portion 36. In comparison, less cleaning solution is required. As described above, the amount of the cleaning liquid used in the cleaning step can be reduced, and the contamination of the solution that may occur when the type of the solution is changed can be suppressed.
  • FIG. 3 is an explanatory diagram showing another form (second form) of the measuring mechanism 15. Comparing the measuring mechanism 15 of the second form and the measuring mechanism 15 (first form) shown in FIG. 2, the form of the discharge pipe 35 is different. Others are the same, and the same points will be omitted.
  • the discharge pipe 35 is composed of a straight pipe.
  • the outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C in a non-contact state.
  • the inner diameter at the upper part of the discharge pipe 35 is larger than the outer diameter at the lower part of the outlet pipe 30.
  • the lower end 30b of the outlet pipe 30 is in a state of being inserted into the discharge pipe 35.
  • the solution After weighing, by opening the valve 31 of the outlet pipe 30, the solution flows out from the outlet pipe 30 by free fall. Then, since the outlet pipe 30 and the discharge pipe 35 are arranged in a non-contact state, the solution discharged from the outlet pipe 30 may scatter to the surroundings. However, in the second form, the lower end 30b of the outlet pipe 30 is in a state of being inserted into the discharge pipe 35. Therefore, the solution discharged from the outlet pipe 30 can be suppressed from being scattered to the surroundings (closed container 29), and the discharge pipe 35 can receive the solution.
  • the capacity (discharge side capacity) at which the solution can be stored in the discharge pipe 35 when the second valve 39 is closed may be smaller than the capacity of the measuring container 7. Even in this case, if the second valve 39 is opened when the measurement is completed and the solution is discharged from the outlet pipe 30, the solution does not overflow from the discharge pipe 35. Since the discharge pipe 35 is composed of linear pipes and its volume is small, the volume of the closed container 29 can be reduced, and as a result, the gas to be filled in the closed container 29 can also be reduced.
  • FIG. 4 is an explanatory diagram showing another form (third form) of the measuring mechanism 15.
  • the lower portion including the lower end 30b of the outlet pipe 30 is in a state of being inserted into the discharge pipe 35.
  • the lower end 30b of the outlet pipe 30 is not inserted in the discharge pipe 35, but is located higher than the upper end (open end) 35a of the discharge pipe 35. is there.
  • the discharge pipe 35 has a funnel portion 36 having an upwardly wide opening at the upper portion thereof.
  • the discharge pipe 35 of the third form has the same configuration as the discharge pipe 35 of the first form.
  • the funnel portion 36 expands the receiving port which is the upper end 35a of the discharging pipe 35, the discharging pipe 35 can easily receive the measured solution. That is, even if the solution flowing out of the outlet pipe 30 tries to scatter, such a solution can be received by the funnel portion 36, and it is possible to prevent the solution from flowing out of the discharge pipe 35.
  • the discharge pipe 35 has the funnel portion 36 as in the first form (FIG. 2) and the third form (FIG. 4), the lower end 30b of the outlet pipe 30 is inserted into the funnel portion 36. Even if it is not inserted, the outlet pipe 30 is less likely to come into contact with the discharge pipe 35. Therefore, it is possible to suppress the problem that an error occurs in the measurement by the weight sensor 26. Further, when the discharge pipe 35 has the funnel portion 36, the capacity of the discharge pipe 35 is larger than that in the case where the discharge pipe 35 is composed of only a straight pipe as in the second form (FIG. 3). Therefore, even if the flow rate per unit time when the solution is discharged from the discharge pipe 35 is small and the solution is accumulated in the discharge pipe 35, it is possible to prevent the solution from overflowing from the discharge pipe 35. Become.
  • FIG. 5 is an explanatory diagram showing another form (fourth form) of the measuring mechanism 15.
  • the discharge pipe 35 is provided in the lower part of the closed container 29, receives the solution flowing out from the outlet pipe 30, and causes the solution to flow out further to the downstream side.
  • the outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C in a non-contact state. This point is the same as each of the above-mentioned forms.
  • the discharge pipe 35 is composed of a straight pipe, and the lower end 30b of the outlet pipe 30 is located above the upper end 35a of the discharge pipe 35. Also in the fourth embodiment, since the outlet pipe 30 connected to the measuring container 7 and the discharge pipe 35 are in a non-contact state, the discharge pipe 35 does not affect the measurement result by the weight sensor 26.
  • the outlet pipe 30 and the discharge pipe 35 are separated from each other, and even if the discharge pipe 35 does not have the funnel portion 36 as in the first embodiment, the measured solution is the outlet pipe.
  • the measured solution is the outlet pipe.
  • it flows out from 30 it can flow from the bottom of the closed container 29 to the reaction container 9 side through the discharge pipe 35.
  • the capacity Q2 (discharge side capacity Q2) capable of storing the solution in the discharge pipe 35 is the capacity of the measuring container 7. It is smaller than Q1 (Q2 ⁇ Q1).
  • the discharge side capacity Q2 may be larger than the capacity Q1 of the measuring container 7 (Q2> Q1).
  • the cleaning liquid is poured into the measuring container 7, the outlet pipe 30, and the discharge pipe 35 so that the previous solution does not remain and mix with the next solution. Need to be cleaned. According to the configuration of Q2> Q1 as described above, the cleaning liquid does not overflow from the discharge pipe 35.
  • the discharge pipe 35 is used as described below. It is possible to prevent the cleaning liquid from overflowing. That is, to explain with reference to FIG. 2, when the type of the solution to be measured is changed, it is necessary to flow the cleaning liquid through the measuring container 7, the outlet pipe 30 and the discharge pipe 35 to perform cleaning as described above. is there. Therefore, the cleaning liquid is first supplied to the measuring container 7, and the measuring container 7 is washed. At this time, the weight sensor 26 is used to measure the cleaning liquid, and the cleaning liquid is stored in the measuring container 7 so that the liquid level is higher than the solution supplied to the measuring container 7.
  • the measuring container 7 is washed.
  • the first valve 31 of the outlet pipe 30 is opened and the outlet pipe 30 is washed.
  • the cleaning liquid then flows to the discharge pipe 35, and the discharge pipe 35 is cleaned.
  • the discharge side capacity Q2 is larger than the capacity Q1 of the measuring container 7 (Q2> Q1)
  • the cleaning liquid does not overflow from the discharge pipe 35.
  • the weight sensor 26 is used and the cleaning liquid discharged from the measuring container 7 is targeted at a value based on the discharge side capacity Q2. Weighed.
  • the "value based on the discharge side capacity Q2" is a value smaller than the discharge side capacity Q2 and a value at which the liquid level is higher than the solution that may be accumulated in the discharge pipe 35.
  • the "value based on the discharge side capacity Q2" is 90% of the discharge side capacity Q2.
  • Measuring container 7b Lower part 15: Measuring mechanism 20: Inlet pipe 26: Weight sensor 29: Sealed container 29a: Upper wall 30: Outlet pipe 30b: Lower end 31: Valve 35: Discharge pipe 36: Funnel part 37: Straight pipe Part 39: Second valve C: Vertical straight line

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Provided is a weighing mechanism which can achieve highly accurate weighing of a solution even when the capacity of a weighing container is increased. Specifically, this weighing mechanism selectively obtains and weighs a plurality of types of solutions. The weighing mechanism is provided with: a sealed container; an inlet tube which passes through an upper wall of the sealed container and though which the solutions passes; a weighing container that is provided inside the sealed container while not being in contact with the inlet tube and receives the solutions flowing out from the inlet tube; a weighing sensor that measures the weight in the weighing container; a valve-attached outlet tube which is connected to a lower portion of the weighing container and is for guiding downward the solution inside the weighing container; and a discharge tube which is provided below the sealed container, receives the solution flowing out from the outlet tube, and causes the solution to flow out to a further downstream side. The outlet tube and the discharge tube are configured so as to be arranged along a common vertical line while not being in contact with each other.

Description

計量機構Weighing mechanism
 本発明は、タンパク質、ペプチド、核酸等を化学合成するための合成装置等に用いられる計量機構に関する。 The present invention relates to a measurement mechanism used in a synthesis device or the like for chemically synthesizing proteins, peptides, nucleic acids and the like.
 タンパク質、ペプチド、核酸等を化学合成する方法として、反応容器に複数種類の溶液(試薬)を順に供給し、この反応容器内において反応を進める方法がある。例えば、核酸を合成する場合、反応容器内にビーズを多数設け、この反応容器に溶液を順次供給しながら、脱トリチル化、カップリング、酸化、及びキャッピングの処理を繰り返し行い、ビーズから塩基を次々と結合させる。 As a method for chemically synthesizing proteins, peptides, nucleic acids, etc., there is a method in which a plurality of types of solutions (reagents) are sequentially supplied to a reaction vessel and the reaction proceeds in the reaction vessel. For example, in the case of synthesizing nucleic acid, a large number of beads are provided in a reaction vessel, and while supplying a solution to the reaction vessel in sequence, detritylation, coupling, oxidation, and capping are repeated, and bases are sequentially transferred from the beads. Combine with.
 用いられる溶液は数十種類(例えば20種類)とされることもあり、これら溶液を選択的に反応容器へ送り、溶液に含まれる分子材料により合成物(核酸)が生成される。このような化学合成を行うための装置として例えば特許文献1に記載の合成装置が知られている。特許文献2には、前記のような合成装置に用いられる計量機構が開示されている。 There may be dozens of types (for example, 20 types) of solutions used, and these solutions are selectively sent to the reaction vessel, and a compound (nucleic acid) is produced by the molecular material contained in the solution. As an apparatus for performing such chemical synthesis, for example, the synthesizer described in Patent Document 1 is known. Patent Document 2 discloses a measuring mechanism used in the above-mentioned synthesizer.
特表2002-518526号公報Special Table 2002-518526 Gazette 特開2018-169229号公報JP-A-2018-169229
 図6は、従来の計量機構の説明図である。計量機構90は、密閉容器91、複数本の入口管92、計量容器94、重量センサ95、及び排出管96を備える。各入口管92は、溶液(試薬)が保存されている図外の収容容器(試薬瓶)に繋がっていて、収容容器から送られた溶液が通過する。計量容器94は、各入口管92の下流側端部93から流出した溶液を受ける。重量センサ95は、計量容器94における重量を測定する。重量センサ95は、例えばひずみ式のロードセルにより構成されている。重量センサ95には、計量容器94に溜められる溶液の他に計量容器94の重さが作用する。計量容器94の重さ(重量)は既知であるため、重量センサ95によって計量容器94に溜められる溶液の計量が可能となる。排出管96は、計量容器94の下端と繋がっていて、計量した溶液を排出するための配管である。 FIG. 6 is an explanatory diagram of a conventional weighing mechanism. The measuring mechanism 90 includes a closed container 91, a plurality of inlet pipes 92, a measuring container 94, a weight sensor 95, and a discharge pipe 96. Each inlet tube 92 is connected to a storage container (reagent bottle) (not shown) in which a solution (reagent) is stored, and a solution sent from the storage container passes through the storage container (reagent bottle). The measuring container 94 receives the solution flowing out from the downstream end 93 of each inlet pipe 92. The weight sensor 95 measures the weight in the measuring container 94. The weight sensor 95 is composed of, for example, a strain type load cell. The weight of the measuring container 94 acts on the weight sensor 95 in addition to the solution stored in the measuring container 94. Since the weight (weight) of the measuring container 94 is known, the weight sensor 95 can measure the solution stored in the measuring container 94. The discharge pipe 96 is connected to the lower end of the measuring container 94 and is a pipe for discharging the measured solution.
 仮に、入口管92が計量容器94に接続され接触している場合、例えば入口管92に張力が作用していると、その入口管92が、重量センサ95による計量結果に影響を及ぼす。しかし、図6に示す計量機構90では、入口管92と計量容器94とは非接触の状態にある。このため、入口管92の影響が重量センサ95に及ばず、精度の高い計量が可能となる。また、排出管96に外力として張力が作用する場合、排出管96は、計量容器94と繋がっていることから、重量センサ95による計量結果に影響を及ぼす。そこで、図6に示す計量機構90では、排出管96が細い弾性チューブであって螺旋形状とされている。このため、排出管96が全体として弾性変形することができ、これにより前記張力を逃がすことができる。この結果、排出管96の影響が重量センサ95に及び難くなり、精度の高い計量が可能となる。 If the inlet pipe 92 is connected to and in contact with the measuring container 94, for example, if tension is applied to the inlet pipe 92, the inlet pipe 92 affects the weighing result by the weight sensor 95. However, in the measuring mechanism 90 shown in FIG. 6, the inlet pipe 92 and the measuring container 94 are in a non-contact state. Therefore, the influence of the inlet pipe 92 does not affect the weight sensor 95, and highly accurate weighing is possible. Further, when tension acts on the discharge pipe 96 as an external force, the discharge pipe 96 is connected to the measuring container 94, which affects the measurement result by the weight sensor 95. Therefore, in the measuring mechanism 90 shown in FIG. 6, the discharge pipe 96 is a thin elastic tube and has a spiral shape. Therefore, the discharge pipe 96 can be elastically deformed as a whole, whereby the tension can be released. As a result, the influence of the discharge pipe 96 is less likely to reach the weight sensor 95, and highly accurate weighing becomes possible.
 前記のような合成装置において、合成物の量産のためには、計量機構90において、一度に扱う溶液、つまり、計量する溶液を多くする必要があり(例えば、数十リットル)、この場合、計量容器94の容量が大きくなる。計量容器94に繋がる排出管96が細いと、計量後の溶液の排出に多くの時間を要する。そこで、排出管96の径を大きくすればよいが、この場合、全体としての剛性が高くなって、螺旋形状としても、前記のような張力を逃がす機能が低下する。つまり、排出管96が重量センサ95の計量結果に影響を与えてしまう。また、扱う溶液の種類によっては、その量が多くなると、配管を金属製にする必要がある。排出管96が金属製であると、螺旋形状であっても、前記のような張力を逃がす機能が得られない。 In the above-mentioned synthesizer, in order to mass-produce the synthetic product, it is necessary to increase the number of solutions handled at one time in the measuring mechanism 90, that is, the solution to be measured (for example, several tens of liters), and in this case, weighing. The capacity of the container 94 increases. If the discharge pipe 96 connected to the measuring container 94 is thin, it takes a lot of time to discharge the solution after weighing. Therefore, the diameter of the discharge pipe 96 may be increased, but in this case, the rigidity as a whole is increased, and even if the spiral shape is formed, the function of releasing the tension as described above is reduced. That is, the discharge pipe 96 affects the weighing result of the weight sensor 95. Further, depending on the type of solution to be handled, if the amount is large, it is necessary to make the pipe metal. If the discharge pipe 96 is made of metal, even if it has a spiral shape, the above-mentioned function of releasing tension cannot be obtained.
 以上のように、計量する溶液が多くなる場合、計量容器の容量が拡大されるが、この場合、従来の構成では対応できず、計量の精度を維持することが困難となる。 As described above, when the amount of solution to be measured increases, the capacity of the measuring container is expanded, but in this case, the conventional configuration cannot cope with it, and it becomes difficult to maintain the accuracy of measurement.
 そこで、本開示は、計量容器の容量が拡大される場合であっても、溶液の計量を高い精度で実現できる計量機構を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a measuring mechanism capable of realizing measurement of a solution with high accuracy even when the capacity of the measuring container is expanded.
 本開示は、複数種類の溶液を選択的に取得して計量する計量機構であって、密閉容器と、前記密閉容器の上部の壁を貫通すると共に前記溶液が通る入口管と、前記入口管と非接触の状態で前記密閉容器内に設けられ当該入口管から流出した溶液を受ける計量容器と、前記計量容器における重量を測定する重量センサと、前記計量容器の下部に接続され当該計量容器内の溶液を下に導くためのバルブ付き出口管と、前記密閉容器の下部に設けられ前記出口管から流出した溶液を受けると共に当該溶液を更に下流側へ流出させる排出管と、を備え、前記出口管と前記排出管とは、非接触の状態で、共通する鉛直線に沿って配置されている。 The present disclosure is a measuring mechanism for selectively acquiring and measuring a plurality of types of solutions, which comprises a closed container, an inlet pipe that penetrates the upper wall of the closed container and allows the solution to pass through, and the inlet pipe. A measuring container provided in the closed container in a non-contact state to receive the solution flowing out from the inlet pipe, a weight sensor for measuring the weight in the measuring container, and a weight sensor connected to the lower part of the measuring container in the measuring container. The outlet pipe is provided with an outlet pipe with a valve for guiding the solution downward, and a discharge pipe provided at the lower part of the closed container to receive the solution flowing out from the outlet pipe and further discharge the solution to the downstream side. And the discharge pipe are arranged along a common vertical line in a non-contact state.
 前記計量機構によれば、出口管のバルブを閉じた状態で溶液を計量容器に溜めることで、重量センサにより、その溶液の計量が可能となる。入口管及び排出管それぞれが計量容器に接触していると、例えば入口管及び排出管それぞれに張力が作用している場合、重量センサによる計量結果に影響を及ぼす。しかし、入口管と計量容器とは非接触の状態にあり、計量容器に接続されている出口管と、排出管とは非接触の状態であるため、入口管及び排出管が重量センサによる計量結果に影響を及ぼさない。よって、計量容器の容量が拡大される場合であっても、溶液の計量を高い精度で実現できる。計量を終えた計量容器の溶液が出口管から例えば自由落下によって流れ出ると、その溶液を排出管が受ける。そして、計量された溶液は排出管を通じて更に下流側へ供給される。 According to the measuring mechanism, the solution can be weighed by the weight sensor by storing the solution in the measuring container with the valve of the outlet pipe closed. If each of the inlet pipe and the discharge pipe is in contact with the measuring container, for example, if tension is applied to each of the inlet pipe and the discharge pipe, the weighing result by the weight sensor is affected. However, since the inlet pipe and the measuring container are in a non-contact state, and the outlet pipe connected to the measuring container and the discharge pipe are in a non-contact state, the inlet pipe and the discharge pipe are weighed by the weight sensor. Does not affect. Therefore, even when the capacity of the measuring container is expanded, the measurement of the solution can be realized with high accuracy. When the solution in the measuring container that has been weighed flows out from the outlet pipe by, for example, free fall, the discharge pipe receives the solution. Then, the weighed solution is supplied further downstream through the discharge pipe.
 計量後、出口管のバルブを開くことで、出口管から溶液が例えば自由落下によって流れ出る。すると、出口管と排出管とは非接触の状態で配置されていることから、出口管から出た溶液が周囲に飛散する可能性がある。そこで、好ましくは、前記出口管の下端が、前記排出管に挿入された状態にある。この構成によれば、出口管から出た溶液が周囲に飛散するのを抑え、その溶液を排出管が受けることができる。 After weighing, by opening the valve of the outlet pipe, the solution flows out from the outlet pipe by, for example, free fall. Then, since the outlet pipe and the discharge pipe are arranged in a non-contact state, the solution discharged from the outlet pipe may scatter to the surroundings. Therefore, preferably, the lower end of the outlet pipe is in a state of being inserted into the discharge pipe. According to this configuration, the solution discharged from the outlet pipe can be suppressed from scattering to the surroundings, and the solution can be received by the discharge pipe.
 また、好ましくは、前記排出管は、その上部に、上に向かって開口が広くなっている漏斗部を有する。この構成によれば、出口管の下端が排出管に挿入された状態であっても、そうでなくても、排出管の受け口が拡大されるため、計量された溶液を排出管は受けやすくなる。 Also, preferably, the discharge pipe has a funnel portion at its upper part having a wide opening toward the top. According to this configuration, whether or not the lower end of the outlet pipe is inserted into the discharge pipe, the socket of the discharge pipe is enlarged, so that the discharge pipe can easily receive the measured solution. ..
 計量後、出口管のバルブを開くことで、出口管から溶液が例えば自由落下によって流れ出る。すると、出口管と排出管とは非接触の状態で配置されていることから、出口管から出た溶液が周囲に飛散する可能性がある。そこで、好ましくは、前記排出管は、その上部に、上に向かって開口が広くなっている漏斗部と、前記漏斗部の下部に繋がる直線管部と、を有し、前記出口管の下端が、前記直線管部に挿入された状態にある。この構成によれば、出口管から溶液が周囲に飛散するのを抑え、その溶液を排出管が受けることができる。 After weighing, by opening the valve of the outlet pipe, the solution flows out from the outlet pipe by, for example, free fall. Then, since the outlet pipe and the discharge pipe are arranged in a non-contact state, the solution discharged from the outlet pipe may scatter to the surroundings. Therefore, preferably, the discharge pipe has a funnel portion having an opening widening upward and a straight pipe portion connected to the lower portion of the funnel portion, and the lower end of the outlet pipe is formed above the discharge pipe. , Is in a state of being inserted into the straight pipe portion. According to this configuration, the solution can be suppressed from being scattered from the outlet pipe to the surroundings, and the discharge pipe can receive the solution.
 また、排出管から溶液が排出される単位時間あたりの流量が、出口管から溶液が流れ出る単位時間あたりの流量よりも多い場合、前記排出管は、その下流側部に第二のバルブを有し、前記第二のバルブが閉の場合に溶液を前記排出管に溜めることのできる容量は、前記計量容器の容量よりも小さくてもよい。この場合、計量が終わり出口管から溶液を流出させる際、第二のバルブを開けておけば、その溶液が排出管から溢れない。また、前記構成によれば、排出管を小さくすることができる。 Further, when the flow rate per unit time when the solution is discharged from the discharge pipe is larger than the flow rate per unit time when the solution flows out from the outlet pipe, the discharge pipe has a second valve on the downstream side thereof. The capacity at which the solution can be stored in the discharge pipe when the second valve is closed may be smaller than the capacity of the measuring container. In this case, if the second valve is opened when the measurement is completed and the solution flows out from the outlet pipe, the solution does not overflow from the discharge pipe. Further, according to the above configuration, the discharge pipe can be made smaller.
 または、前記排出管は、その下流側部に第二のバルブを有し、前記第二のバルブが閉の場合に溶液を前記排出管に溜めることのできる容量は、前記計量容器の容量よりも大きくてもよい。この場合、排出管から溶液が排出される単位時間あたりの流量が、出口管から溶液が流れ出る単位時間あたりの流量よりも少なくても、その溶液が排出管から溢れない。 Alternatively, the discharge pipe has a second valve on the downstream side thereof, and the capacity at which the solution can be stored in the discharge pipe when the second valve is closed is larger than the capacity of the measuring container. It may be large. In this case, even if the flow rate per unit time when the solution is discharged from the discharge pipe is smaller than the flow rate per unit time when the solution flows out from the outlet pipe, the solution does not overflow from the discharge pipe.
 本発明によれば、計量容器の容量が拡大される場合であっても、溶液の計量を高い精度で実現できる。 According to the present invention, it is possible to measure the solution with high accuracy even when the capacity of the measuring container is expanded.
計量機構を備える合成装置の一例を示す構成図である。It is a block diagram which shows an example of the synthesis apparatus provided with a measuring mechanism. 計量機構の説明図である。It is explanatory drawing of the measuring mechanism. 計量機構の他の形態(第二の形態)を示す説明図である。It is explanatory drawing which shows the other form (second form) of a measuring mechanism. 計量機構の他の形態(第三の形態)を示す説明図である。It is explanatory drawing which shows the other form (third form) of the measuring mechanism. 計量機構の他の形態(第四の形態)を示す説明図である。It is explanatory drawing which shows the other form (fourth form) of a measuring mechanism. 従来の計量機構の説明図である。It is explanatory drawing of the conventional measuring mechanism.
〔合成装置の全体構成について〕
 図1は、計量機構を備える合成装置の一例を示す構成図である。この合成装置は、タンパク質、ペプチド、核酸等を化学合成するための装置であり、反応容器9に複数種類の溶液(試薬)を順に供給し、この反応容器9内において化学合成を進める。核酸を合成する場合、反応容器9内にビーズを多数設け、この反応容器9に溶液を順次供給しながら、脱トリチル化、カップリング、酸化、及びキャッピングの処理を繰り返し行い、ビーズから例えば塩基のような分子材料を次々と結合させる。用いられる溶液は数十種類(例えば20種類)とされ、これら溶液を選択的に反応容器9へ送り、溶液に含まれる分子材料により合成物(核酸)が生成される。
[Overall configuration of synthesizer]
FIG. 1 is a configuration diagram showing an example of a synthesizer including a weighing mechanism. This synthesis device is a device for chemically synthesizing proteins, peptides, nucleic acids, etc., and a plurality of types of solutions (reagents) are sequentially supplied to the reaction vessel 9 to proceed with the chemical synthesis in the reaction vessel 9. When synthesizing nucleic acid, a large number of beads are provided in the reaction vessel 9, and while sequentially supplying the solution to the reaction vessel 9, detritylation, coupling, oxidation, and capping are repeatedly performed, and the beads, for example, bases, for example. Such molecular materials are bonded one after another. There are dozens of types (for example, 20 types) of solutions used, and these solutions are selectively sent to the reaction vessel 9, and a compound (nucleic acid) is produced by the molecular material contained in the solution.
 本開示では、用いられる溶液(試薬)は19種類である。なお、この数は化学合成する生成物に応じて変更される。溶液の種類と同数(19個)の収容容器(試薬瓶)2-1、2-2、・・・を設ける領域を合成装置3は備える。収容容器2-1、2-2・・・それぞれに各溶液が溜められている。なお、図1では、二つの収容容器(2-1と2-2)のみを示しており、その他の収容容器については図示省略している。また、合成装置3は、洗浄液を溜める収容容器2-20も備える。以下において、収容容器に付する参照符号を単に「2」とする。各収容容器2は、密閉容器であるが、導入管5及び導出管6が繋がっている。 In this disclosure, 19 types of solutions (reagents) are used. It should be noted that this number is changed according to the product to be chemically synthesized. The synthesis device 3 includes an area for providing the same number (19) of storage containers (reagent bottles) 2-1 and 2-2, ... As the type of solution. Each solution is stored in each of the storage containers 2-1 and 2-2. Note that FIG. 1 shows only two storage containers (2-1 and 2-2), and the other storage containers are not shown. The synthesizer 3 also includes a storage container 2-20 for storing the cleaning liquid. In the following, the reference code attached to the storage container is simply referred to as “2”. Each storage container 2 is a closed container, but the introduction pipe 5 and the outlet pipe 6 are connected to each other.
 合成装置3は、加圧ガスを溜めているタンク4、上流側配管10、導入管5、導出管6、中間配管8、排出側の配管19、反応容器9、計量機構15、及び制御装置16を備える。タンク4には大気よりも高圧のガスが充填されており、本開示では、不活性としてアルゴンガスが充填されている。不活性ガスの代わりに無菌化されたガス(エア)であってもよい。複数の収容容器2と同数(本開示では20本)の導入管5は、共通する上流側配管10から分岐した配管であり、この上流側配管10にレギュレータ(電空レギュレータ)11及びバルブ12が設けられている。上流側配管10は、タンク4と接続されており、加圧ガスが各収容容器2に供給され、レギュレータ11により各収容容器2の内圧が調整される。加圧ガスにより各収容容器2の内圧が高まり、収容容器2の溶液は導出管6を通じて圧送される。タンク4と計量機構15が有する密閉容器29との間には、加圧ガス用の配管17が設けられている。この配管17には、第二のレギュレータ(電空レギュレータ)18が設けられている。タンク4のガスが、密閉容器29に供給される。 The synthesizer 3 includes a tank 4 for storing pressurized gas, an upstream pipe 10, an introduction pipe 5, an outlet pipe 6, an intermediate pipe 8, a discharge side pipe 19, a reaction vessel 9, a measuring mechanism 15, and a control device 16. To be equipped. The tank 4 is filled with a gas having a pressure higher than that of the atmosphere, and in the present disclosure, it is filled with argon gas as an inert gas. Aseptic gas (air) may be used instead of the inert gas. The same number of introduction pipes 5 as the plurality of storage containers 2 (20 in the present disclosure) are pipes branched from the common upstream pipe 10, and the upstream pipe 10 has a regulator (electropneumatic regulator) 11 and a valve 12. It is provided. The upstream pipe 10 is connected to the tank 4, pressurized gas is supplied to each storage container 2, and the internal pressure of each storage container 2 is adjusted by the regulator 11. The internal pressure of each storage container 2 is increased by the pressurized gas, and the solution of the storage container 2 is pressure-fed through the outlet pipe 6. A pipe 17 for pressurized gas is provided between the tank 4 and the closed container 29 included in the measuring mechanism 15. A second regulator (electropneumatic regulator) 18 is provided in the pipe 17. The gas in the tank 4 is supplied to the closed container 29.
 導出管6それぞれにはバルブ14が設けられている。各バルブ14の下流側(計量容器7側)の配管部分が、計量機構15が有する入口管20となる。開状態とするバルブ14が選択されることで、複数の収容容器2の溶液の中から所定の溶液を選択的に導出管6及び入口管20を通じて計量容器7へ送る(圧送する)ことができる。開状態とするバルブ14の選択は制御装置16によって行われる。 A valve 14 is provided for each of the lead-out pipes 6. The piping portion on the downstream side (measurement container 7 side) of each valve 14 is the inlet pipe 20 included in the measuring mechanism 15. By selecting the valve 14 to be in the open state, a predetermined solution can be selectively sent (pressure-fed) to the measuring container 7 through the outlet pipe 6 and the inlet pipe 20 from the solutions of the plurality of storage containers 2. .. The control device 16 selects the valve 14 to be in the open state.
 計量機構15は、収容容器2からの供給(圧送)により複数種類の溶液を選択的に取得して計量する。計量機構15は、計量容器7に溜められる溶液を計量する機能を有する。計量機構15による計量結果は、制御装置16に送信され、制御装置16は、計量結果に基づいてバルブ14の開閉動作制御を行い、規定量の溶液が計量容器7において取得される。規定量の溶液が中間配管8を通じて反応容器9へ送られる。 The measuring mechanism 15 selectively acquires and weighs a plurality of types of solutions by supplying (pumping) from the storage container 2. The measuring mechanism 15 has a function of measuring the solution stored in the measuring container 7. The measurement result by the measurement mechanism 15 is transmitted to the control device 16, the control device 16 controls the opening / closing operation of the valve 14 based on the measurement result, and a specified amount of solution is obtained in the measurement container 7. A specified amount of solution is sent to the reaction vessel 9 through the intermediate pipe 8.
 以上より、複数の収容容器2の内の少なくとも一つから溶液が選択的に計量容器7へ送られ、この計量容器7で計量が行われると、反応容器9へ送られる。反応容器9への溶液の供給が、溶液の種類を変更しながら繰り返し行われ、複数種類の溶液が反応容器9に順に供給され、反応容器9内において化学合成が進められる。反応容器9を溶液が通過すると、その溶液は排出側の配管19を通じて排出される。
〔計量機構15について〕
 図2は、計量機構15の説明図である。計量機構15は、前記ガス(加圧ガス)が供給される密閉容器29と、複数(本開示では20本)の入口管20と、計量容器7と、重量センサ26と、出口管30と、排出管35とを備える。計量容器7、出口管30、及び排出管35は、樹脂製であってもよいが、本開示では金属製である。
From the above, the solution is selectively sent to the measuring container 7 from at least one of the plurality of storage containers 2, and when the measurement is performed in the measuring container 7, it is sent to the reaction container 9. The supply of the solution to the reaction vessel 9 is repeated while changing the type of the solution, a plurality of types of solutions are sequentially supplied to the reaction vessel 9, and the chemical synthesis proceeds in the reaction vessel 9. When the solution passes through the reaction vessel 9, the solution is discharged through the discharge side pipe 19.
[About measuring mechanism 15]
FIG. 2 is an explanatory diagram of the measuring mechanism 15. The measuring mechanism 15 includes a closed container 29 to which the gas (pressurized gas) is supplied, a plurality of (20 in the present disclosure) inlet pipes 20, a measuring container 7, a weight sensor 26, and an outlet pipe 30. It is provided with a discharge pipe 35. The measuring container 7, the outlet pipe 30, and the discharge pipe 35 may be made of resin, but are made of metal in the present disclosure.
 入口管20は、複数本が束となって、密閉容器29の上部の壁29aを貫通している。入口管20には、収容容器2から送られた溶液が通る。計量容器7は、入口管20の下流側端部20aから流出した溶液を受け、その溶液を溜めることができる有底筒状の容器である。計量容器7の上部にある入口領域(開口部7a)に複数の入口管20が集約して設けられている。計量容器7の下部7bには、バルブ31付きの出口管30が接続されている。バルブ31が閉の状態で、入口管20を通じて送られた溶液が計量容器7に導入され、計量容器7に溜められる。計量容器7は、各入口管20と非接触の状態(縁が切れた状態)で密閉容器29内に設けられている。 A plurality of inlet pipes 20 are bundled and penetrate the upper wall 29a of the closed container 29. The solution sent from the storage container 2 passes through the inlet pipe 20. The measuring container 7 is a bottomed tubular container capable of receiving the solution flowing out from the downstream end portion 20a of the inlet pipe 20 and storing the solution. A plurality of inlet pipes 20 are collectively provided in the inlet region (opening 7a) at the upper part of the measuring container 7. An outlet pipe 30 with a valve 31 is connected to the lower portion 7b of the measuring container 7. With the valve 31 closed, the solution sent through the inlet pipe 20 is introduced into the measuring container 7 and stored in the measuring container 7. The measuring container 7 is provided in the closed container 29 in a non-contact state (a state in which the edge is cut) with each inlet pipe 20.
 重量センサ26は、計量容器7における重量を測定する。本開示の重量センサ26はひずみ式のロードセルにより構成されている。重量センサ26は、密閉容器29内に設置されていて、計量容器7は重量センサ26を介して密閉容器29に支持されている。計量容器7は、密閉容器29内において、重量センサ26を介して吊り下げられた状態で設けられている。このため、計量容器7及びこの計量容器7に溜められる溶液の重量は、重量センサ26がすべて受ける構成となる。重量センサ26によって、計量容器7に溜められる溶液の重量が測定される。重量センサ26は、他の形式によるセンサであってもよく、例えば、電磁式、圧電素子式、静電容量型、磁歪式、ジャイロ式等のロードセルにより構成される。 The weight sensor 26 measures the weight in the measuring container 7. The weight sensor 26 of the present disclosure is composed of a strain type load cell. The weight sensor 26 is installed in the closed container 29, and the measuring container 7 is supported by the closed container 29 via the weight sensor 26. The measuring container 7 is provided in a closed container 29 in a suspended state via a weight sensor 26. Therefore, the weight of the measuring container 7 and the solution stored in the measuring container 7 is received by the weight sensor 26. The weight sensor 26 measures the weight of the solution stored in the measuring container 7. The weight sensor 26 may be a sensor of another type, and is composed of, for example, an electromagnetic type, a piezoelectric element type, a capacitance type, a magnetostrictive type, a gyro type or the like load cell.
 出口管30は、バルブ31を途中に有する直線状の管路である。出口管30は、計量容器7の下部7bに接続されていて、計量容器7内の溶液を下に導く。出口管30は、計量容器7の溶液を排出するノズルとしての機能を有する。バルブ31が閉の状態で、計量容器7に溶液が溜められる。バルブ31が開になると、その溶液が、出口管30から外部へ流出する。この流出は自由落下による。 The outlet pipe 30 is a straight pipe having a valve 31 in the middle. The outlet pipe 30 is connected to the lower portion 7b of the measuring container 7 and guides the solution in the measuring container 7 downward. The outlet pipe 30 has a function as a nozzle for discharging the solution of the measuring container 7. With the valve 31 closed, the solution is stored in the measuring container 7. When the valve 31 is opened, the solution flows out from the outlet pipe 30. This outflow is due to free fall.
 バルブ31の開閉はエア(流体)によって行われる。つまり、エアによってバルブ31が有する弁体が動作する。エアの供給は、バルブ31に繋がるエア配管32を通じて行われる。エア配管32の一部は、密閉容器29の壁29bを貫通している。密閉容器29の外部に、図示しないがエア源が設けられている、このエア源からエアがエア配管32を通じてバルブ31に供給される。エア配管32は細い弾性変形が容易であるチューブにより構成されている。エア配管32の一部32aは、図2に示すように、螺旋形状を有し、全体として弾性変形することができる。 The valve 31 is opened and closed by air (fluid). That is, the valve body of the valve 31 is operated by the air. The air is supplied through the air pipe 32 connected to the valve 31. A part of the air pipe 32 penetrates the wall 29b of the closed container 29. An air source (not shown) is provided outside the closed container 29, and air is supplied to the valve 31 from this air source through the air pipe 32. The air pipe 32 is composed of a thin tube that is easily elastically deformed. As shown in FIG. 2, a part 32a of the air pipe 32 has a spiral shape and can be elastically deformed as a whole.
 排出管35は、密閉容器29の下部に設けられている。本開示の排出管35は、その下流側部に第二のバルブ39を有する。第二のバルブ39も、出口管30のバルブ(第一のバルブ)31と同様に、エア(流体)によって駆動する構成とすることができる。排出管35は、出口管30から流出した溶液を受ける。第二のバルブ39が開の状態で、排出管35は、出口管30からの溶液を、その下流側の中間配管8を通じて反応容器9(図1参照)へ流出させる。 The discharge pipe 35 is provided at the lower part of the closed container 29. The discharge pipe 35 of the present disclosure has a second valve 39 on the downstream side thereof. The second valve 39 can also be driven by air (fluid) in the same manner as the valve (first valve) 31 of the outlet pipe 30. The discharge pipe 35 receives the solution flowing out from the outlet pipe 30. With the second valve 39 open, the discharge pipe 35 allows the solution from the outlet pipe 30 to flow out to the reaction vessel 9 (see FIG. 1) through the intermediate pipe 8 on the downstream side thereof.
 出口管30と排出管35とは、非接触の状態(縁が切れた状態)で設置されている。出口管30と排出管35とは、共通する鉛直線Cに沿って配置されている。つまり、出口管30及び排出管35それぞれの中心線が、共通する鉛直線Cに沿って配置されている。図2に示す計量機構15では、排出管35は、その上部に、上に向かって開口が広くなっている漏斗部36と、漏斗部36の下部36bに繋がる直線管部37とを有する。漏斗部36は、円筒状である円筒部40と、円筒部40の下端から下に向かって内径が小さくなるテーパ部41とを有する。直線管部37は、テーパ部41の下部(36b)と繋がる直線状の管である。 The outlet pipe 30 and the discharge pipe 35 are installed in a non-contact state (the edge is cut off). The outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C. That is, the center lines of the outlet pipe 30 and the discharge pipe 35 are arranged along the common vertical line C. In the measuring mechanism 15 shown in FIG. 2, the discharge pipe 35 has a funnel portion 36 having an opening widening upward and a straight pipe portion 37 connected to the lower portion 36b of the funnel portion 36 at the upper portion thereof. The funnel portion 36 has a cylindrical portion 40 that is cylindrical, and a tapered portion 41 whose inner diameter decreases downward from the lower end of the cylindrical portion 40. The straight pipe portion 37 is a straight pipe connected to the lower portion (36b) of the tapered portion 41.
 出口管30の下端30bは、直線管部37よりも上方の位置であって漏斗部36と同じ高さの位置にまで挿入されていてもよいが、図2に示す形態では、出口管30の下端30bが、直線管部37に挿入された状態にある。つまり、出口管30の下端30bは、漏斗部36の下部36bよりも下に位置していて、直線管部37と同じ高さの範囲内にある。出口管30は、漏斗部36及び直線管部37の両者と非接触の状態にある。 The lower end 30b of the outlet pipe 30 may be inserted at a position above the straight pipe portion 37 and at the same height as the funnel portion 36, but in the form shown in FIG. 2, the outlet pipe 30 The lower end 30b is in a state of being inserted into the straight pipe portion 37. That is, the lower end 30b of the outlet pipe 30 is located below the lower portion 36b of the funnel portion 36 and is within the same height range as the straight pipe portion 37. The outlet pipe 30 is in a non-contact state with both the funnel portion 36 and the straight pipe portion 37.
 計量容器7において溶液の計量が行われ、第一のバルブ31を開くと、その溶液は出口管30を通じて排出管35へ流れる。第一のバルブ31を開くのに併せて、第二のバルブ39も開の状態となる。これにより、出口管30を通じて排出管35へ流れた溶液は、排出管35(漏斗部36)に溜められながら、排出管35を通じて、反応容器9側へ排出される。 When the solution is weighed in the measuring container 7 and the first valve 31 is opened, the solution flows to the discharge pipe 35 through the outlet pipe 30. At the same time that the first valve 31 is opened, the second valve 39 is also opened. As a result, the solution that has flowed to the discharge pipe 35 through the outlet pipe 30 is discharged to the reaction vessel 9 side through the discharge pipe 35 while being stored in the discharge pipe 35 (funnel portion 36).
 ここで、密閉容器29には前記ガス(加圧ガス)が充填されている。これに対して、反応容器9側は、密閉容器29よりも低圧である(大気圧にある)。このため、第二のバルブ39が開くと、密閉容器29と反応容器9側との差圧によって、前記ガスは、排出管35及び中間配管8を通じて反応容器9側へ流れる。すると、排出管35の溶液は、前記ガスにより押されるようにして、強制的に反応容器9側へ流れる。つまり、排出管35からの溶液の排出が促進される。また、出口管30よりも直線管部37は径(内径)が大きい。このため、排出管35から溶液が排出される単位時間あたりの流量が、出口管30から溶液が流れ出る単位時間あたりの流量よりも多くなることが期待できる。 Here, the closed container 29 is filled with the gas (pressurized gas). On the other hand, the reaction vessel 9 side has a lower pressure than the closed vessel 29 (at atmospheric pressure). Therefore, when the second valve 39 is opened, the gas flows to the reaction vessel 9 side through the discharge pipe 35 and the intermediate pipe 8 due to the differential pressure between the closed vessel 29 and the reaction vessel 9 side. Then, the solution in the discharge pipe 35 is forced to flow to the reaction vessel 9 side by being pushed by the gas. That is, the discharge of the solution from the discharge pipe 35 is promoted. Further, the diameter (inner diameter) of the straight pipe portion 37 is larger than that of the outlet pipe 30. Therefore, it can be expected that the flow rate per unit time when the solution is discharged from the discharge pipe 35 is larger than the flow rate per unit time when the solution flows out from the outlet pipe 30.
 そこで、第二のバルブ39が閉の場合に溶液を排出管35に溜めることのできる容量(以下、これを「排出側容量」と称する。)は、計量容器7の容量よりも小さくてもよい。この場合であっても、計量が終わり出口管30から溶液を流出させた際に、その溶液が排出管35から溢れない。なお、前記排出側容量は、排出管35における第二のバルブ39よりも上流側(出口管30側)の容量である。 Therefore, the capacity at which the solution can be stored in the discharge pipe 35 when the second valve 39 is closed (hereinafter, this is referred to as “discharge side capacity”) may be smaller than the capacity of the measuring container 7. .. Even in this case, when the measurement is completed and the solution is discharged from the outlet pipe 30, the solution does not overflow from the discharge pipe 35. The discharge side capacity is the capacity on the upstream side (outlet pipe 30 side) of the second valve 39 in the discharge pipe 35.
 更に、排出側容量を小さくすれば、排出管35、特に漏斗部36をコンパクトにすることができる。漏斗部36は(その少なくとも一部が)密閉容器29の内部に設けられている。排出管35(漏斗部36)が大きい場合、密閉容器29の容積を大きくする必要があり、密閉容器29に充填させる前記ガスも多く必要となる。しかし、排出管35(漏斗部36)をコンパクト化することで、密閉容器29の容積も小さくすることが可能となり、この結果、充填させる前記ガスも削減できる。 Further, if the discharge side capacity is reduced, the discharge pipe 35, particularly the funnel portion 36, can be made compact. The funnel portion 36 (at least a part thereof) is provided inside the closed container 29. When the discharge pipe 35 (funnel portion 36) is large, it is necessary to increase the volume of the closed container 29, and a large amount of the gas to be filled in the closed container 29 is also required. However, by making the discharge pipe 35 (funnel portion 36) compact, the volume of the closed container 29 can also be reduced, and as a result, the gas to be filled can also be reduced.
 以上のように、図2に示す計量機構15は、計量容器7、重量センサ26、バルブ31付き出口管30、及び、排出管35を備える。計量容器7は、入口管20と非接触の状態で密閉容器29内に設けられていて、入口管20の下流側端部20aから流出した溶液を受ける。重量センサ26は、計量容器7における重量を測定する。バルブ31付き出口管30は、計量容器7の下部7bに接続されていて、計量容器7内の溶液を下に導く。排出管35は、密閉容器29の下部に設けられていて、出口管30から流出した溶液を受けると共に、その溶液を更に下流側へ流出させる。そして、出口管30と排出管35とは、非接触の状態で、共通する鉛直線Cに沿って配置されている。 As described above, the measuring mechanism 15 shown in FIG. 2 includes a measuring container 7, a weight sensor 26, an outlet pipe 30 with a valve 31, and a discharge pipe 35. The measuring container 7 is provided in the closed container 29 in a non-contact state with the inlet pipe 20, and receives the solution flowing out from the downstream end portion 20a of the inlet pipe 20. The weight sensor 26 measures the weight in the measuring container 7. The outlet pipe 30 with the valve 31 is connected to the lower portion 7b of the measuring container 7 and guides the solution in the measuring container 7 downward. The discharge pipe 35 is provided in the lower part of the closed container 29, receives the solution flowing out from the outlet pipe 30, and causes the solution to flow out further to the downstream side. The outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C in a non-contact state.
 この計量機構15によれば、バルブ31を閉じた状態で溶液を計量容器7に溜めることで、重量センサ26により、その溶液の計量が可能となる。入口管20及び排出管35それぞれが計量容器7に接触していると、例えば入口管20及び排出管35それぞれに張力が作用している場合、重量センサ26による計量結果に影響を及ぼす。しかし、本開示の計量機構15では、入口管20と計量容器7とは非接触の状態にあり、計量容器7に接続されている出口管30と、排出管35とは非接触の状態である。このため、入口管20及び排出管35が重量センサ26による計量結果に影響を及ぼさない。よって、溶液の計量を高い精度で実現できる。計量を終えた計量容器7の溶液が出口管30から流れ出ると、その溶液を排出管35が受ける。そして、計量された溶液は排出管35を通じて反応容器9側へ供給される。 According to this measuring mechanism 15, the solution can be weighed by the weight sensor 26 by storing the solution in the measuring container 7 with the valve 31 closed. When each of the inlet pipe 20 and the discharge pipe 35 is in contact with the measuring container 7, for example, when tension is applied to each of the inlet pipe 20 and the discharge pipe 35, the weighing result by the weight sensor 26 is affected. However, in the measuring mechanism 15 of the present disclosure, the inlet pipe 20 and the measuring container 7 are in a non-contact state, and the outlet pipe 30 connected to the measuring container 7 and the discharge pipe 35 are in a non-contact state. .. Therefore, the inlet pipe 20 and the discharge pipe 35 do not affect the measurement result by the weight sensor 26. Therefore, the measurement of the solution can be realized with high accuracy. When the solution of the measuring container 7 that has been weighed flows out from the outlet pipe 30, the discharge pipe 35 receives the solution. Then, the weighed solution is supplied to the reaction vessel 9 side through the discharge pipe 35.
 前記のとおりバルブ31はエアによって駆動する。バルブ31と密閉容器29との間に介在するエア配管32は、細い弾性変形が容易であるチューブにより構成されている。エア配管32の一部32aは、螺旋形状を有し、全体として弾性変形する。このため、バルブ31は出口管30と一体となって設けられていて、出口管30は計量容器7と一体となっているが、エア配管32が重量センサ26による計量結果に影響を及ぼさない。 As mentioned above, the valve 31 is driven by air. The air pipe 32 interposed between the valve 31 and the closed container 29 is made of a thin tube that is easily elastically deformed. A part 32a of the air pipe 32 has a spiral shape and is elastically deformed as a whole. Therefore, the valve 31 is provided integrally with the outlet pipe 30, and the outlet pipe 30 is integrated with the measuring container 7, but the air pipe 32 does not affect the measurement result by the weight sensor 26.
 入口管20と計量容器7とを非接触とするために、計量容器7の上部が開口している。また、出口管30と排出管35とは離れている。そこで、本開示の計量機構15では、密閉容器29の内部に不活性ガス又は無菌化されたガス(エア)が充填される。このため、計量する溶液及び計量された溶液は大気(外気)と接触しない。よって、使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とさずに済む。 The upper part of the measuring container 7 is open so that the inlet pipe 20 and the measuring container 7 are not in contact with each other. Further, the outlet pipe 30 and the discharge pipe 35 are separated from each other. Therefore, in the measuring mechanism 15 of the present disclosure, the inside of the closed container 29 is filled with an inert gas or a sterilized gas (air). Therefore, the measured solution and the measured solution do not come into contact with the atmosphere (outside air). Therefore, even if the plurality of types of solutions used include a solution that deteriorates or deteriorates when it comes into contact with the atmosphere (outside air), the quality does not deteriorate.
 計量後、出口管30のバルブ31を開くことで、出口管30から溶液が例えば自由落下によって流れ出る。すると、出口管30と排出管35とは非接触の状態で配置されていることから、出口管30から出た溶液が周囲に飛散する可能性がある。そこで、図2に示す計量機構15の場合、出口管30の下端30bが、排出管35の直線管部37に挿入された状態にある。このため、出口管30から溶液が周囲に飛散するのを抑えることができる。 After weighing, by opening the valve 31 of the outlet pipe 30, the solution flows out from the outlet pipe 30 by, for example, free fall. Then, since the outlet pipe 30 and the discharge pipe 35 are arranged in a non-contact state, the solution discharged from the outlet pipe 30 may scatter to the surroundings. Therefore, in the case of the measuring mechanism 15 shown in FIG. 2, the lower end 30b of the outlet pipe 30 is in a state of being inserted into the straight pipe portion 37 of the discharge pipe 35. Therefore, it is possible to prevent the solution from scattering from the outlet pipe 30 to the surroundings.
 計量の対象とする溶液の種類が変更される際、計量容器7、出口管30及び排出管35において、先の溶液が残留して次の溶液と混ざらないようにするため、洗浄液を流して洗浄を行う必要がある。なお、洗浄液は、収容容器2-20(図1参照)から供給される。そこで、洗浄液が先ず計量容器7に供給される。計量容器7の洗浄が終わると、出口管30のバルブ31が開となり、出口管30が洗われる。そして、その洗浄液が排出管35に流れ、排出管35の洗浄が行われる。 When the type of solution to be weighed is changed, in the measuring container 7, the outlet pipe 30, and the discharge pipe 35, the cleaning liquid is poured to prevent the previous solution from remaining and mixing with the next solution. Need to be done. The cleaning liquid is supplied from the storage container 2-20 (see FIG. 1). Therefore, the cleaning liquid is first supplied to the measuring container 7. When the cleaning of the measuring container 7 is completed, the valve 31 of the outlet pipe 30 is opened and the outlet pipe 30 is washed. Then, the cleaning liquid flows into the discharge pipe 35, and the discharge pipe 35 is cleaned.
 図2に示す計量機構15の場合、出口管30の下端30bが直線管部37に挿入された状態にある。このため、溶液の飛散範囲が狭く、洗浄の対象となる範囲も狭くなる。出口管30において、直線管部37に挿し入れる長さが長くなるほど、出口管30から出た溶液が、排出管35に対して飛散する面積を抑えることができる。また、出口管30の下端30bも、洗浄液によって洗浄すべきである。出口管30の下端30bが直線管部37に挿入されているため、下端30bが直線管部37よりも上方の位置であって漏斗部36と同じ高さの位置にまで挿入されている場合と比較して、洗浄液が少なくて済む。以上のように、洗浄工程で使用する洗浄液量を少なくすることができ、溶液の種類の変更時に生じる可能性のあった溶液の汚染(コンタミ)を抑制できる。 In the case of the measuring mechanism 15 shown in FIG. 2, the lower end 30b of the outlet pipe 30 is in a state of being inserted into the straight pipe portion 37. Therefore, the scattering range of the solution is narrow, and the range to be cleaned is also narrowed. In the outlet pipe 30, the longer the length inserted into the straight pipe portion 37, the smaller the area where the solution discharged from the outlet pipe 30 is scattered with respect to the discharge pipe 35 can be suppressed. Further, the lower end 30b of the outlet pipe 30 should also be cleaned with a cleaning liquid. Since the lower end 30b of the outlet pipe 30 is inserted into the straight pipe portion 37, the lower end 30b is inserted at a position above the straight pipe portion 37 and at the same height as the funnel portion 36. In comparison, less cleaning solution is required. As described above, the amount of the cleaning liquid used in the cleaning step can be reduced, and the contamination of the solution that may occur when the type of the solution is changed can be suppressed.
 図3は、計量機構15の他の形態(第二の形態)を示す説明図である。第二の形態の計量機構15と、図2に示す計量機構15(第一の形態)とを比較すると、排出管35の形態が異なる。その他については同じであり、同じ点については説明を省略する。第二の形態では、排出管35は、直線状の配管によって構成されている。出口管30と排出管35とは、非接触の状態で、共通する鉛直線Cに沿って配置されている。排出管35の上部における内径は、出口管30の下部における外径よりも大きい。出口管30の下端30bが、排出管35に挿入された状態にある。 FIG. 3 is an explanatory diagram showing another form (second form) of the measuring mechanism 15. Comparing the measuring mechanism 15 of the second form and the measuring mechanism 15 (first form) shown in FIG. 2, the form of the discharge pipe 35 is different. Others are the same, and the same points will be omitted. In the second form, the discharge pipe 35 is composed of a straight pipe. The outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C in a non-contact state. The inner diameter at the upper part of the discharge pipe 35 is larger than the outer diameter at the lower part of the outlet pipe 30. The lower end 30b of the outlet pipe 30 is in a state of being inserted into the discharge pipe 35.
 計量後、出口管30のバルブ31を開くことで、出口管30から溶液が自由落下によって流れ出る。すると、出口管30と排出管35とは非接触の状態で配置されていることから、出口管30から出た溶液が周囲に飛散する可能性がある。しかし、第二の形態では、出口管30の下端30bが、排出管35に挿入された状態にある。このため、出口管30から出た溶液が周囲(密閉容器29)に飛散するのを抑えて、その溶液を排出管35が受けることができる。 After weighing, by opening the valve 31 of the outlet pipe 30, the solution flows out from the outlet pipe 30 by free fall. Then, since the outlet pipe 30 and the discharge pipe 35 are arranged in a non-contact state, the solution discharged from the outlet pipe 30 may scatter to the surroundings. However, in the second form, the lower end 30b of the outlet pipe 30 is in a state of being inserted into the discharge pipe 35. Therefore, the solution discharged from the outlet pipe 30 can be suppressed from being scattered to the surroundings (closed container 29), and the discharge pipe 35 can receive the solution.
 第二の形態においても、排出管35から溶液が排出される単位時間あたりの流量が、出口管30から溶液が流れ出る単位時間あたりの流量よりも多くなることが期待できる。そこで、第二のバルブ39が閉の場合に溶液を排出管35に溜めることのできる容量(排出側容量)は、計量容器7の容量よりも小さくてもよい。この場合であっても、計量が終わり出口管30から溶液を流出させた際に、第二のバルブ39を開けておけば、その溶液が排出管35から溢れない。排出管35が直線状の配管によって構成されていて、その容積が小さいことから、密閉容器29の容積を小さくすることができ、この結果、密閉容器29に充填させる前記ガスも削減できる。 Also in the second form, it can be expected that the flow rate per unit time when the solution is discharged from the discharge pipe 35 is larger than the flow rate per unit time when the solution flows out from the outlet pipe 30. Therefore, the capacity (discharge side capacity) at which the solution can be stored in the discharge pipe 35 when the second valve 39 is closed may be smaller than the capacity of the measuring container 7. Even in this case, if the second valve 39 is opened when the measurement is completed and the solution is discharged from the outlet pipe 30, the solution does not overflow from the discharge pipe 35. Since the discharge pipe 35 is composed of linear pipes and its volume is small, the volume of the closed container 29 can be reduced, and as a result, the gas to be filled in the closed container 29 can also be reduced.
 図4は、計量機構15の他の形態(第三の形態)を示す説明図である。前記第一の形態(図2)及び前記第二の形態(図3)それぞれでは、出口管30の下端30bを含む下部が、排出管35に挿入された状態にある。これに対して、図4に示す第三の形態では、出口管30の下端30bは、排出管35に挿入された状態ではなく、排出管35の上端(開口端)35aよりも、高い位置にある。この場合であっても、第三の形態では、排出管35は、その上部に、上に向かって開口が広くなっている漏斗部36を有する。第三の形態の排出管35は、第一の形態の排出管35と同じ構成である。漏斗部36により、排出管35の上端35aである受け口が拡大されるため、計量された溶液を排出管35は受けやすくなる。つまり、出口管30から流出した溶液が飛び散ろうとしても、そのような溶液を漏斗部36によって受けることができ、溶液が排出管35外に流出するのを防ぐことが可能となる。 FIG. 4 is an explanatory diagram showing another form (third form) of the measuring mechanism 15. In each of the first form (FIG. 2) and the second form (FIG. 3), the lower portion including the lower end 30b of the outlet pipe 30 is in a state of being inserted into the discharge pipe 35. On the other hand, in the third embodiment shown in FIG. 4, the lower end 30b of the outlet pipe 30 is not inserted in the discharge pipe 35, but is located higher than the upper end (open end) 35a of the discharge pipe 35. is there. Even in this case, in the third embodiment, the discharge pipe 35 has a funnel portion 36 having an upwardly wide opening at the upper portion thereof. The discharge pipe 35 of the third form has the same configuration as the discharge pipe 35 of the first form. Since the funnel portion 36 expands the receiving port which is the upper end 35a of the discharging pipe 35, the discharging pipe 35 can easily receive the measured solution. That is, even if the solution flowing out of the outlet pipe 30 tries to scatter, such a solution can be received by the funnel portion 36, and it is possible to prevent the solution from flowing out of the discharge pipe 35.
 なお、第一の形態(図2)及び第三の形態(図4)のように、排出管35が漏斗部36を有している場合、出口管30の下端30bが漏斗部36に挿入状であっても、挿入されていなくても、出口管30が排出管35に接触し難くなる。このため、重量センサ26による計量において、誤りが発生するという問題を抑えることが可能となる。また、排出管35が漏斗部36を有する場合、排出管35の容量が、第二の形態(図3)にように排出管35が直線による管のみから成る場合と比較して、大きくなる。このため、仮に、排出管35から溶液が排出される単位時間あたりの流量が少なく、排出管35において溶液が溜まる場合であっても、その溶液が排出管35から溢れるのを防ぐことが可能となる。 When the discharge pipe 35 has the funnel portion 36 as in the first form (FIG. 2) and the third form (FIG. 4), the lower end 30b of the outlet pipe 30 is inserted into the funnel portion 36. Even if it is not inserted, the outlet pipe 30 is less likely to come into contact with the discharge pipe 35. Therefore, it is possible to suppress the problem that an error occurs in the measurement by the weight sensor 26. Further, when the discharge pipe 35 has the funnel portion 36, the capacity of the discharge pipe 35 is larger than that in the case where the discharge pipe 35 is composed of only a straight pipe as in the second form (FIG. 3). Therefore, even if the flow rate per unit time when the solution is discharged from the discharge pipe 35 is small and the solution is accumulated in the discharge pipe 35, it is possible to prevent the solution from overflowing from the discharge pipe 35. Become.
 第三の形態(図4)の計量機構15と、第一の形態(図2)計量機構15とを比較すると、出口管30(下端30bの位置)が異なる。その他については同じであり、同じ点については説明を省略する。 Comparing the measuring mechanism 15 of the third form (FIG. 4) with the measuring mechanism 15 of the first form (FIG. 2), the outlet pipe 30 (position of the lower end 30b) is different. Others are the same, and the same points will be omitted.
 図5は、計量機構15の他の形態(第四の形態)を示す説明図である。排出管35は、密閉容器29の下部に設けられていて、出口管30から流出した溶液を受けると共にその溶液を更に下流側へ流出させる。そして、出口管30と排出管35とは、非接触の状態で、共通する鉛直線Cに沿って配置されている。この点は、前記各形態と同じである。第四の形態では、排出管35が、直線状の配管によって構成されていて、この排出管35の上端35aよりも上に、出口管30の下端30bが位置している。第四の形態においても、計量容器7に接続されている出口管30と、排出管35とは非接触の状態であるため、排出管35が重量センサ26による計量結果に影響を及ぼさない。 FIG. 5 is an explanatory diagram showing another form (fourth form) of the measuring mechanism 15. The discharge pipe 35 is provided in the lower part of the closed container 29, receives the solution flowing out from the outlet pipe 30, and causes the solution to flow out further to the downstream side. The outlet pipe 30 and the discharge pipe 35 are arranged along a common vertical line C in a non-contact state. This point is the same as each of the above-mentioned forms. In the fourth embodiment, the discharge pipe 35 is composed of a straight pipe, and the lower end 30b of the outlet pipe 30 is located above the upper end 35a of the discharge pipe 35. Also in the fourth embodiment, since the outlet pipe 30 connected to the measuring container 7 and the discharge pipe 35 are in a non-contact state, the discharge pipe 35 does not affect the measurement result by the weight sensor 26.
 第四の形態の計量機構15と、第一の形態(図2)に示す計量機構15とを比較すると、出口管30及び排出管35の形態が異なる。その他については同じであり、同じ点については説明を省略する。 Comparing the measuring mechanism 15 of the fourth form and the measuring mechanism 15 shown in the first form (FIG. 2), the forms of the outlet pipe 30 and the discharge pipe 35 are different. Others are the same, and the same points will be omitted.
 第四の形態のように、出口管30と排出管35とは離れていて、排出管35が第一の形態のように漏斗部36を有していなくても、計量された溶液が出口管30から流れ出ると、密閉容器29の底部から排出管35を通じて、反応容器9側へ流れることができる。
〔その他について〕
 以上のように、前記各形態の計量機構15によれば、計量容器7の容量が拡大される場合であっても、溶液の計量を高い精度で実現できる。
As in the fourth embodiment, the outlet pipe 30 and the discharge pipe 35 are separated from each other, and even if the discharge pipe 35 does not have the funnel portion 36 as in the first embodiment, the measured solution is the outlet pipe. When it flows out from 30, it can flow from the bottom of the closed container 29 to the reaction container 9 side through the discharge pipe 35.
[About others]
As described above, according to the measuring mechanism 15 of each form, the measurement of the solution can be realized with high accuracy even when the capacity of the measuring container 7 is expanded.
 前記各形態では、図2を代表して説明すると、第二のバルブ39が閉の場合に、溶液を排出管35に溜めることのできる容量Q2(排出側容量Q2)は、計量容器7の容量Q1よりも小さい(Q2<Q1)。しかし、これとは反対に、前記各形態において、図示しないが、排出側容量Q2は、計量容器7の容量Q1よりも大きくてもよい(Q2>Q1)。Q2>Q1の場合、排出管35から溶液が排出される単位時間あたりの流量が、出口管30から溶液が流れ出る単位時間あたりの流量よりも少なくても、その溶液が排出管35から溢れない。また、計量の対象とする溶液の種類が変更される際、先の溶液が残留して次の溶液と混ざらないようにするため、計量容器7、出口管30、及び排出管35に洗浄液を流して洗浄を行う必要がある。前記のようなQ2>Q1の構成によれば、洗浄液についても、排出管35から溢れない。 In each of the above embodiments, when the second valve 39 is closed, the capacity Q2 (discharge side capacity Q2) capable of storing the solution in the discharge pipe 35 is the capacity of the measuring container 7. It is smaller than Q1 (Q2 <Q1). However, on the contrary, in each of the above-described forms, although not shown, the discharge side capacity Q2 may be larger than the capacity Q1 of the measuring container 7 (Q2> Q1). When Q2> Q1, even if the flow rate per unit time when the solution is discharged from the discharge pipe 35 is smaller than the flow rate per unit time when the solution flows out from the outlet pipe 30, the solution does not overflow from the discharge pipe 35. Further, when the type of the solution to be weighed is changed, the cleaning liquid is poured into the measuring container 7, the outlet pipe 30, and the discharge pipe 35 so that the previous solution does not remain and mix with the next solution. Need to be cleaned. According to the configuration of Q2> Q1 as described above, the cleaning liquid does not overflow from the discharge pipe 35.
 なお、前記各形態の計量機構15のように、排出側容量Q2が、計量容器7の容量Q1よりも小さい(Q2<Q1)場合であっても、次に説明するように、排出管35から洗浄液が溢れるのを防ぐことができる。すなわち、図2を代表して説明すると、計量の対象とする溶液の種類が変更される際、前記のとおり、計量容器7、出口管30及び排出管35に洗浄液を流して洗浄を行う必要がある。そこで、洗浄液が先ず計量容器7に供給され、計量容器7の洗浄が行われる。この際、重量センサ26が用いられて洗浄液の計量が行われ、計量容器7に供給された溶液よりも液面が高くなるように洗浄液が計量容器7に溜められる。これにより計量容器7の洗浄が行われる。これが終わると、出口管30の第一のバルブ31が開となり、出口管30が洗われる。そして、その洗浄液が次に排出管35に流れ、排出管35の洗浄が行われる。前記のとおり、排出側容量Q2が計量容器7の容量Q1よりも大きい場合(Q2>Q1)、洗浄液が排出管35から溢れることはない。しかし、排出側容量Q2が計量容器7の容量Q1より小さくても(Q2<Q1)、重量センサ26が用いられて、計量容器7から流出させる洗浄液が、排出側容量Q2に基づく値を目標として計量される。前記「排出側容量Q2に基づく値」とは、排出側容量Q2よりも小さい値であり、排出管35に溜まることのある溶液よりも液面が高くなる値である。例えば、前記「排出側容量Q2に基づく値」は、排出側容量Q2の90%である。これにより、洗浄液が排出管35から溢れることはない。 Even when the discharge side capacity Q2 is smaller than the capacity Q1 of the measuring container 7 (Q2 <Q1) as in the measuring mechanism 15 of each of the above-described forms, the discharge pipe 35 is used as described below. It is possible to prevent the cleaning liquid from overflowing. That is, to explain with reference to FIG. 2, when the type of the solution to be measured is changed, it is necessary to flow the cleaning liquid through the measuring container 7, the outlet pipe 30 and the discharge pipe 35 to perform cleaning as described above. is there. Therefore, the cleaning liquid is first supplied to the measuring container 7, and the measuring container 7 is washed. At this time, the weight sensor 26 is used to measure the cleaning liquid, and the cleaning liquid is stored in the measuring container 7 so that the liquid level is higher than the solution supplied to the measuring container 7. As a result, the measuring container 7 is washed. When this is completed, the first valve 31 of the outlet pipe 30 is opened and the outlet pipe 30 is washed. Then, the cleaning liquid then flows to the discharge pipe 35, and the discharge pipe 35 is cleaned. As described above, when the discharge side capacity Q2 is larger than the capacity Q1 of the measuring container 7 (Q2> Q1), the cleaning liquid does not overflow from the discharge pipe 35. However, even if the discharge side capacity Q2 is smaller than the capacity Q1 of the measuring container 7 (Q2 <Q1), the weight sensor 26 is used and the cleaning liquid discharged from the measuring container 7 is targeted at a value based on the discharge side capacity Q2. Weighed. The "value based on the discharge side capacity Q2" is a value smaller than the discharge side capacity Q2 and a value at which the liquid level is higher than the solution that may be accumulated in the discharge pipe 35. For example, the "value based on the discharge side capacity Q2" is 90% of the discharge side capacity Q2. As a result, the cleaning liquid does not overflow from the discharge pipe 35.
 前記第一の形態(図2)及び前記第二の形態(図3)のように、出口管30の下端30bが、排出管35に挿入された状態にある場合、排出管35に溜めた洗浄液によって、出口管30の下端30bについても洗浄できる。更に、第一の形態(図2)のように、出口管30の下端30bが、直線管部37に挿入された状態にある場合、出口管30の下端30bについても洗浄するために必要となる洗浄液の量を減らすことが可能となる。 When the lower end 30b of the outlet pipe 30 is inserted into the discharge pipe 35 as in the first form (FIG. 2) and the second form (FIG. 3), the cleaning liquid stored in the discharge pipe 35 Therefore, the lower end 30b of the outlet pipe 30 can also be cleaned. Further, when the lower end 30b of the outlet pipe 30 is inserted into the straight pipe portion 37 as in the first embodiment (FIG. 2), it is necessary to clean the lower end 30b of the outlet pipe 30 as well. It is possible to reduce the amount of cleaning liquid.
 今回開示した各形態はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。 Each form disclosed this time is an example in all respects and is not restrictive. The scope of rights of the present invention is not limited to the above-described embodiment, and includes all modifications within a range equivalent to the configuration described in the claims.
 7:計量容器      7b:下部       15:計量機構
 20:入口管      26:重量センサ    29:密閉容器
 29a:上部の壁    30:出口管      30b:下端
 31:バルブ      35:排出管      36:漏斗部
 37:直線管部     39:第二のバルブ   C:鉛直線
7: Measuring container 7b: Lower part 15: Measuring mechanism 20: Inlet pipe 26: Weight sensor 29: Sealed container 29a: Upper wall 30: Outlet pipe 30b: Lower end 31: Valve 35: Discharge pipe 36: Funnel part 37: Straight pipe Part 39: Second valve C: Vertical straight line

Claims (6)

  1.  複数種類の溶液を選択的に取得して計量する計量機構であって、
     密閉容器と、
     前記密閉容器の上部の壁を貫通すると共に前記溶液が通る入口管と、
     前記入口管と非接触の状態で前記密閉容器内に設けられ当該入口管から流出した溶液を受ける計量容器と、
     前記計量容器における重量を測定する重量センサと、
     前記計量容器の下部に接続され当該計量容器内の溶液を下に導くためのバルブ付き出口管と、
     前記密閉容器の下部に設けられ前記出口管から流出した溶液を受けると共に当該溶液を更に下流側へ流出させる排出管と、
    を備え、
     前記出口管と前記排出管とは、非接触の状態で、共通する鉛直線に沿って配置されている、計量機構。
    A weighing mechanism that selectively acquires and weighs multiple types of solutions.
    With a closed container
    An inlet tube that penetrates the upper wall of the closed container and allows the solution to pass through,
    A measuring container provided in the closed container in a non-contact state with the inlet pipe and receiving the solution flowing out from the inlet pipe.
    A weight sensor that measures the weight in the measuring container and
    An outlet tube with a valve that is connected to the lower part of the measuring container and guides the solution in the measuring container downward.
    A discharge pipe provided at the bottom of the closed container to receive the solution flowing out from the outlet pipe and to let the solution flow further downstream.
    With
    A measuring mechanism in which the outlet pipe and the discharge pipe are arranged along a common vertical line in a non-contact state.
  2.  前記出口管の下端が、前記排出管に挿入された状態にある、請求項1に記載の計量機構。 The measuring mechanism according to claim 1, wherein the lower end of the outlet pipe is inserted into the discharge pipe.
  3.  前記排出管は、その上部に、上に向かって開口が広くなっている漏斗部を有する、請求項1又は2に記載の計量機構。 The measuring mechanism according to claim 1 or 2, wherein the discharge pipe has a funnel portion whose opening is widened upward.
  4.  前記排出管は、その上部に、上に向かって開口が広くなっている漏斗部と、前記漏斗部の下部に繋がる直線管部と、を有し、
     前記出口管の下端が、前記直線管部に挿入された状態にある、請求項1に記載の計量機構。
    The discharge pipe has a funnel portion having an opening widening upward and a straight pipe portion connected to the lower portion of the funnel portion at the upper portion thereof.
    The measuring mechanism according to claim 1, wherein the lower end of the outlet pipe is inserted into the straight pipe portion.
  5.  前記排出管は、その下流側部に第二のバルブを有し、
     前記第二のバルブが閉の場合に溶液を前記排出管に溜めることのできる容量は、前記計量容器の容量よりも小さい、請求項1~4のいずれか一項に記載の計量機構。
    The discharge pipe has a second valve on the downstream side thereof.
    The measuring mechanism according to any one of claims 1 to 4, wherein the capacity at which the solution can be stored in the discharge pipe when the second valve is closed is smaller than the capacity of the measuring container.
  6.  前記排出管は、その下流側部に第二のバルブを有し、
     前記第二のバルブが閉の場合に溶液を前記排出管に溜めることのできる容量は、前記計量容器の容量よりも大きい、請求項1~4のいずれか一項に記載の計量機構。
    The discharge pipe has a second valve on the downstream side thereof.
    The measuring mechanism according to any one of claims 1 to 4, wherein the capacity at which the solution can be stored in the discharge pipe when the second valve is closed is larger than the capacity of the measuring container.
PCT/JP2020/001105 2019-03-20 2020-01-15 Weighing mechanism WO2020188976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-052595 2019-03-20
JP2019052595A JP2020153819A (en) 2019-03-20 2019-03-20 Measurement mechanism

Publications (1)

Publication Number Publication Date
WO2020188976A1 true WO2020188976A1 (en) 2020-09-24

Family

ID=72520595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001105 WO2020188976A1 (en) 2019-03-20 2020-01-15 Weighing mechanism

Country Status (2)

Country Link
JP (1) JP2020153819A (en)
WO (1) WO2020188976A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064282Y2 (en) * 1986-04-03 1994-02-02 株式会社新潟鐵工所 Measuring device for asphalt
WO2018180642A1 (en) * 2017-03-29 2018-10-04 東レエンジニアリング株式会社 Synthesis device and weighing mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064282Y2 (en) * 1986-04-03 1994-02-02 株式会社新潟鐵工所 Measuring device for asphalt
WO2018180642A1 (en) * 2017-03-29 2018-10-04 東レエンジニアリング株式会社 Synthesis device and weighing mechanism

Also Published As

Publication number Publication date
JP2020153819A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US9802749B2 (en) Liner-based liquid storage and dispensing systems with empty detection capability
KR101936536B1 (en) Fluid processing systems and methods
US9522380B2 (en) Control apparatus for dispensing small precise amounts of liquid reagents
JPH08511322A (en) Method and apparatus for accurate volumetric dilution / mixing of chemicals
WO2018180642A1 (en) Synthesis device and weighing mechanism
WO2020188976A1 (en) Weighing mechanism
JP6223041B2 (en) Liquid metering device and water quality analyzer
US6170703B1 (en) Chemical Dispensing system and method
US9815052B2 (en) Fluid dispensing device including a valve assembly fluidically coupled to a first and second inlet, and to a first and second outlet
US20230024632A1 (en) Synthesis device and synthesis method
US5335552A (en) Device for accurately measuring mass flow of gases
KR101847212B1 (en) Measuring device of liquid sample
JP6901303B2 (en) Synthesizer
JP7100473B2 (en) Synthesizer
JP6901302B2 (en) Synthesizer
JP2022149609A (en) Measuring mechanism
JP2006258743A (en) Liquid dispenser
JP2023146099A (en) Apparatus for synthesizing medical liquid
AU2015202197B2 (en) Control apparatus for dispensing small precise amounts of liquid reagents
JP2018169229A (en) Measuring mechanism
US565538A (en) authrie
JP2023146136A (en) Chemical solution synthesis apparatus
JPS5822248B2 (en) liquid dispensing device
JP2023024941A (en) Method and device measuring minimum liquid amount
JP2003139752A (en) Device for supplying sample for pseudo-moving bed chromatography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772833

Country of ref document: EP

Kind code of ref document: A1