JP2018169229A - Measuring mechanism - Google Patents

Measuring mechanism Download PDF

Info

Publication number
JP2018169229A
JP2018169229A JP2017065475A JP2017065475A JP2018169229A JP 2018169229 A JP2018169229 A JP 2018169229A JP 2017065475 A JP2017065475 A JP 2017065475A JP 2017065475 A JP2017065475 A JP 2017065475A JP 2018169229 A JP2018169229 A JP 2018169229A
Authority
JP
Japan
Prior art keywords
solution
container
measuring
pipe
intermediate container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017065475A
Other languages
Japanese (ja)
Other versions
JP6863794B2 (en
Inventor
千草 井中
Chigusa Inaka
千草 井中
主 丹羽
Tsukasa Niwa
主 丹羽
和徳 中北
Kazunori Nakakita
和徳 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2017065475A priority Critical patent/JP6863794B2/en
Priority to PCT/JP2018/010612 priority patent/WO2018180642A1/en
Priority to CN201880021509.0A priority patent/CN110709161A/en
Priority to US16/498,012 priority patent/US11504686B2/en
Publication of JP2018169229A publication Critical patent/JP2018169229A/en
Application granted granted Critical
Publication of JP6863794B2 publication Critical patent/JP6863794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

To provide a measuring mechanism which can accurately measure the amount of a solution to increase the efficiency of improving the usage of the solution.SOLUTION: A measuring mechanism 15 selectively acquires several different types of solutions and measures their amounts. The measuring mechanism 15 includes: a holding unit 27 holding the downstream side end part 6a of a deriving tube 6 through which the solutions passe; a measuring container 7 for receiving solutions that flow out of the downstream side end part 6a of the deriving tube 6; and a weight sensor 26 for measuring the weight in the measuring container 7. The holding unit 27 and the measuring container 9 are provided not to contact with each other.SELECTED DRAWING: Figure 2

Description

本発明は、タンパク質、ペプチド、核酸等を化学合成するための合成装置等に用いられる計量機構に関する。   The present invention relates to a measuring mechanism used in a synthesizer for chemically synthesizing proteins, peptides, nucleic acids and the like.

タンパク質、ペプチド、核酸等を化学合成する方法として、反応容器に複数種類の溶液(試薬)を順に供給し、この反応容器内において反応を進める方法がある。例えば、核酸を合成する場合、反応容器内にビーズを多数設け、この反応容器に溶液を順次供給しながら、脱トリチル化、カップリング、酸化、及びキャッピングの処理を繰り返し行い、ビーズから塩基を次々と結合させる。   As a method for chemically synthesizing proteins, peptides, nucleic acids and the like, there is a method in which a plurality of types of solutions (reagents) are sequentially supplied to a reaction vessel and the reaction is advanced in the reaction vessel. For example, when synthesizing nucleic acids, a number of beads are provided in a reaction vessel, and while the solution is sequentially supplied to the reaction vessel, the detritylation, coupling, oxidation, and capping processes are repeated, and the bases are successively added from the beads. Combined with.

用いられる溶液は数十種類(例えば20種類)とされることもあり、これら溶液を選択的に反応容器へ送り、溶液に含まれる分子材料により合成物(核酸)が生成される。このような化学合成を行うための装置として例えば特許文献1に記載の合成装置が知られている。   The solution used may be several tens of types (for example, 20 types), and these solutions are selectively sent to the reaction vessel, and a synthetic product (nucleic acid) is generated from the molecular material contained in the solution. As an apparatus for performing such chemical synthesis, for example, a synthesis apparatus described in Patent Document 1 is known.

特表2002−518526号公報JP-T-2002-518526

図4は、従来の合成装置を簡略化して示す説明図である。この合成装置は、複数種類の溶液99a,99b,99cをそれぞれ別々に収容する収容容器90a,90b,90cと、溶液99a,99b,99cを混合させる反応容器94と、この反応容器94を収容するチャンバー95とを備えており、それぞれの収容容器90a,90b,90cと、チャンバー95とが配管91a,91b,91cにより接続されている。図4の例では、配管91a,91b,91cが、それぞれ第一の位置P1、第二の位置P2、第三の位置P3に対応して設けられている。一方、反応容器94は、チャンバー95内を図外のアクチュエータによって移動できるように構成されており、第一の位置P1、第二の位置P2、第三の位置P3に移動し、停止できるようになっている。このため、反応容器94は、合成物(核酸)の生成に必要となる混合すべき溶液99a,99b,99cの位置(第一の位置P1、第二の位置P2、第三の位置P3)に選択的に移動し、各位置で、配管91a,91b,91cの下流側端部から供給される溶液99a,99b,99cを順次受け取るように構成されている。   FIG. 4 is an explanatory view showing a conventional synthesizing apparatus in a simplified manner. This synthesizer accommodates a container 90a, 90b, 90c that separately stores a plurality of types of solutions 99a, 99b, 99c, a reaction container 94 that mixes the solutions 99a, 99b, 99c, and the reaction container 94. A chamber 95 is provided, and the respective containers 90a, 90b, 90c are connected to the chamber 95 by pipes 91a, 91b, 91c. In the example of FIG. 4, pipes 91a, 91b, and 91c are provided corresponding to the first position P1, the second position P2, and the third position P3, respectively. On the other hand, the reaction vessel 94 is configured to be able to move in the chamber 95 by an actuator (not shown), and can be moved to the first position P1, the second position P2, and the third position P3 and stopped. It has become. For this reason, the reaction container 94 is placed at the positions (first position P1, second position P2, and third position P3) of the solutions 99a, 99b, and 99c that are necessary for the production of the synthesized product (nucleic acid). It selectively moves and is configured to sequentially receive the solutions 99a, 99b, and 99c supplied from the downstream ends of the pipes 91a, 91b, and 91c at each position.

そして、反応容器94への溶液99a,99b,99cの供給は、収容容器90a,90b,90c内の溶液99a,99b,99cを加圧することにより行われ、収容容器90a,90b,90c内に不活性ガス等を供給することにより送液されるようになっている。ところが、圧送により溶液99a,99b,99cを供給すると、圧力と時間の設定だけで送液されるため、圧力変動等の影響により送液量にバラツキが生じやすい。そのため、反応容器94への供給量に過不足が生じることにより、予定された薬液の合成が行えない結果になる虞がある。そこで、安全を見て、複数種類の溶液99a,99b,99cそれぞれに関して、理論上必要とされる量よりも数倍を超える量を反応容器94に供給している。このように従来では、過剰の溶液を用いており、特に合成物を量産化する場合、コスト高となってしまう。   Then, the solutions 99a, 99b, and 99c are supplied to the reaction container 94 by pressurizing the solutions 99a, 99b, and 99c in the storage containers 90a, 90b, and 90c, and are not supplied into the storage containers 90a, 90b, and 90c. The liquid is fed by supplying an active gas or the like. However, when the solutions 99a, 99b, and 99c are supplied by pressure feeding, since the liquid is fed only by setting the pressure and time, the amount of liquid feeding tends to vary due to the influence of pressure fluctuation or the like. For this reason, an excess or deficiency in the amount supplied to the reaction vessel 94 may result in the failure to synthesize the planned chemical solution. Therefore, for safety, an amount that is several times larger than the theoretically required amount is supplied to the reaction vessel 94 for each of the plurality of types of solutions 99a, 99b, and 99c. As described above, conventionally, an excessive solution is used, and particularly when a synthetic product is mass-produced, the cost becomes high.

そこで、本発明は、溶液の利用効率を改善するために、溶液の計量を正確に行う計量機構を提供することを目的とする。   Accordingly, an object of the present invention is to provide a measuring mechanism that accurately measures a solution in order to improve the utilization efficiency of the solution.

本発明は、複数種類の溶液を選択的に取得して計量する計量機構であって、前記溶液が通る配管の下流側端部側を保持する保持部と、前記配管の下流側端部から流出した溶液を受ける計量容器と、前記計量容器における重量を測定する重量センサと、を備え、前記保持部と前記計量容器とは非接触の状態で設けられている。
本発明によれば、溶液の量を管理することが可能となる。そして、溶液が通る配管が計量容器と接触していると、例えば配管に張力が作用している場合、重量センサによる計量結果に悪影響を及ぼすが、前記構成によれば、配管の影響を重量センサに及ぼすことがなく、精度の高い計量が可能となる。
The present invention is a weighing mechanism that selectively obtains and measures a plurality of types of solutions, and includes a holding unit that holds a downstream end side of a pipe through which the solution passes, and an outflow from the downstream end of the pipe A measuring container for receiving the solution and a weight sensor for measuring the weight of the measuring container, and the holding unit and the measuring container are provided in a non-contact state.
According to the present invention, the amount of solution can be managed. When the pipe through which the solution passes is in contact with the weighing container, for example, when tension is applied to the pipe, the weighing result by the weight sensor is adversely affected. Highly accurate weighing is possible.

また、前記保持部は、複数種類の前記溶液それぞれが通る複数の配管を集約して保持し、前記計量容器は、複数の前記配管から流出した溶液を受けるのが好ましい。この場合、必要となる溶液は複数種類存在しているが、計量のために用いられる計量容器及びセンサを共通化することができる。   Moreover, it is preferable that the said holding | maintenance part collects and hold | maintains several piping through which each of the said multiple types of said solution passes, and the said measurement container receives the solution which flowed out from the said several piping. In this case, there are a plurality of types of required solutions, but the measuring container and sensor used for weighing can be shared.

また、前記計量機構は、更に、前記計量容器を収容すると共にガスが充填される密閉容器を備えているのが好ましい。この構成によれば、使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とさずに済む。   Moreover, it is preferable that the said measurement mechanism is further equipped with the airtight container which accommodates the said measurement container and is filled with gas. According to this configuration, even if a plurality of types of solutions used include a solution that changes in quality or deteriorates when it comes into contact with the atmosphere (outside air), the quality does not deteriorate.

また、前記計量機構は、前記計量容器と接続されており計量した溶液を別領域に送り出すための出口側配管を備えており、前記出口側配管は、一端部が前記計量容器に接続されかつ他端部が別部材に支持され当該一端部と当該他端部との間の距離よりも長く形成され全体として変形可能である余長部により構成されているのが好ましい。前記出口側配管に外力として例えば張力が作用している場合、重量センサによる計量結果に悪影響を及ぼすが、前記構成によれば、余長部が全体として弾性変形することにより前記外力を逃がすことができ、出口側配管の影響が重量センサに及び難くなり、精度の高い計量が可能となる。   The metering mechanism is connected to the metering container, and includes an outlet side pipe for sending out the weighed solution to another region. The outlet side pipe has one end connected to the metering container and the other. It is preferable that the end portion is supported by another member and is formed by an extra length portion that is formed longer than the distance between the one end portion and the other end portion and is deformable as a whole. When, for example, tension acts on the outlet side pipe as an external force, the measurement result by the weight sensor is adversely affected. However, according to the above configuration, the external force may be released due to elastic deformation of the surplus portion as a whole. In addition, the influence of the outlet side piping does not easily reach the weight sensor, and highly accurate weighing is possible.

また、前記密閉容器を備えている前記計量機構は、更に、前記密閉容器内のガスの圧力を調整する調整手段を備え、前記保持部と前記計量容器とが非接触とされていることで形成されている当該計量容器の開口を通じて、当該計量容器内の溶液に作用する前記ガスの圧力によって、当該計量容器内の溶液を外部へ圧送するのが好ましい。この構成によれば、密閉容器内のガスによって計量容器の溶液を圧送することができる。このため、送液のポンプが不要となる。   Further, the measuring mechanism including the sealed container further includes an adjusting unit that adjusts the pressure of the gas in the sealed container, and the holding unit and the measuring container are not in contact with each other. The solution in the measuring container is preferably pumped to the outside by the pressure of the gas acting on the solution in the measuring container through the opening of the measuring container. According to this configuration, the solution in the measuring container can be pumped by the gas in the sealed container. For this reason, the pump of liquid feeding becomes unnecessary.

本発明によれば、溶液の利用効率を改善するために、溶液の量を管理することが可能となり、また、精度の高い計量を行うことができる。   According to the present invention, it is possible to manage the amount of solution in order to improve the utilization efficiency of the solution, and it is possible to perform measurement with high accuracy.

本発明の計量機構を備えている合成装置の一例を示す構成図である。It is a block diagram which shows an example of the synthesizing | combining apparatus provided with the measurement mechanism of this invention. 計量機構の概略構成を示す図である。It is a figure which shows schematic structure of a measurement mechanism. 保持部を下から見た説明図である。It is explanatory drawing which looked at the holding | maintenance part from the bottom. 従来の合成装置を簡略化して示す説明図である。It is explanatory drawing which shows the conventional synthesis | combination apparatus simplified. ポンプを用いた合成装置の参考図である。It is a reference drawing of the synthetic | combination apparatus using a pump.

〔合成装置の全体構成について〕
図1は、本発明の計量機構を備えている合成装置の一例を示す構成図である。この合成装置は、タンパク質、ペプチド、核酸等を化学合成するための装置であり、反応容器9に複数種類の溶液(試薬)を順に供給し、この反応容器9内において化学合成を進める。核酸を合成する場合、反応容器9内にビーズを多数設け、この反応容器9に溶液を順次供給しながら、脱トリチル化、カップリング、酸化、及びキャッピングの処理を繰り返し行い、ビーズから例えば塩基のような分子材料を次々と結合させる。用いられる溶液は数十種類(例えば20種類)とされ、これら溶液を選択的に反応容器9へ送り、溶液に含まれる分子材料により合成物(核酸)が生成される。
[About the overall composition of the synthesizer]
FIG. 1 is a block diagram showing an example of a synthesizing apparatus provided with a weighing mechanism of the present invention. This synthesizer is a device for chemically synthesizing proteins, peptides, nucleic acids, and the like. A plurality of types of solutions (reagents) are sequentially supplied to the reaction vessel 9, and chemical synthesis proceeds in the reaction vessel 9. When synthesizing a nucleic acid, a number of beads are provided in the reaction container 9, and while the solution is sequentially supplied to the reaction container 9, detritylation, coupling, oxidation, and capping processes are repeatedly performed. Such molecular materials are bonded one after another. There are several tens of types (for example, 20 types) of solutions to be used, and these solutions are selectively sent to the reaction vessel 9, and a synthesized product (nucleic acid) is generated from the molecular material contained in the solution.

本実施形態では、用いられる溶液(試薬)は19種類である。なお、この数は化学合成する生成物に応じて変更される。溶液の種類と同数(19個)の収容容器(試薬瓶)2−1、2−2、・・・を設ける領域を合成装置3は備えており、収容容器2−1、2−2・・・それぞれに各溶液が溜められている。なお、図1では、二つの収容容器(2−1と2−2)のみを示しており、その他の収容容器(2−3〜2−19)については図示省略している。また、合成装置3は、洗浄液を溜める収容容器2−20も備えている。収容容器2−1〜2−20はそれぞれ(大きさ等は異なることがあるが)同様の構成である。以下において、収容容器に付する符号を単に「2」とする。各収容容器2は、密閉容器であるが、導入管5及び導出管6が繋がっている。   In this embodiment, 19 types of solutions (reagents) are used. This number is changed according to the product to be chemically synthesized. The synthesizing device 3 is provided with a region in which the same number (19) of containers (reagent bottles) 2-1, 2-2,.・ Each solution is stored in each. In FIG. 1, only two storage containers (2-1 and 2-2) are shown, and the other storage containers (2-3 to 2-19) are not shown. The synthesizer 3 also includes a storage container 2-20 that stores a cleaning liquid. Each of the storage containers 2-1 to 2-20 has the same configuration (although the size may be different). In the following, the reference numeral attached to the container is simply “2”. Each storage container 2 is a sealed container, but an introduction pipe 5 and a lead-out pipe 6 are connected.

合成装置3は、加圧ガスを溜めているタンク4、前記導入管5、前記導出管6、中間容器7、中間配管8、反応容器9、計量機構15、及び制御装置16を備えている。タンク4には大気よりも高圧のガスが充填されており、本実施形態では、不活性ガスとしてアルゴンガスが充填されている。不活性ガスの代わりに無菌化されたガス(エア)であってもよい。複数の収容容器2と同数(本実施形態では20本)の導入管5は、共通する上流側配管10から分岐した配管であり、この上流側配管10にはレギュレータ(電空レギュレータ)11及び開閉バルブ12が設けられている。上流側配管10は、タンク4と接続されており、加圧ガスが各収容容器2に供給され、レギュレータ11により各収容容器2の内圧が調整される。加圧ガスにより各収容容器2の内圧が高まり、収容容器2の溶液は導出管6から圧送される。つまり、各収容容器2と中間容器7との差圧で各収容容器2の溶液が導出管6を通じて中間容器7へ圧送される。以上より、本実施形態では、収容容器2の溶液を送る送液手段24は圧送方式のものであり、この送液手段24には、タンク4、上流側配管10、レギュレータ11、開閉バルブ12、及び導入管5が含まれる。   The synthesizer 3 includes a tank 4 that stores pressurized gas, the introduction pipe 5, the outlet pipe 6, an intermediate container 7, an intermediate pipe 8, a reaction container 9, a metering mechanism 15, and a control device 16. The tank 4 is filled with a gas having a pressure higher than that of the atmosphere. In this embodiment, the tank 4 is filled with argon gas as an inert gas. A sterilized gas (air) may be used instead of the inert gas. The same number (20 in this embodiment) of the introduction pipes 5 as the plurality of storage containers 2 are pipes branched from the common upstream pipe 10, and the upstream pipe 10 includes a regulator (electropneumatic regulator) 11 and an open / close state. A valve 12 is provided. The upstream side pipe 10 is connected to the tank 4, pressurized gas is supplied to each storage container 2, and the internal pressure of each storage container 2 is adjusted by the regulator 11. The internal pressure of each storage container 2 is increased by the pressurized gas, and the solution in the storage container 2 is pumped from the outlet pipe 6. That is, the solution in each container 2 is pumped to the intermediate container 7 through the outlet pipe 6 by the differential pressure between each container 2 and the intermediate container 7. As described above, in the present embodiment, the liquid feeding means 24 for sending the solution in the container 2 is of a pressure feeding type, and the liquid feeding means 24 includes the tank 4, the upstream pipe 10, the regulator 11, the opening / closing valve 12, And an introduction tube 5 is included.

溶液を収容している収容容器2と接続されている導出管6それぞれにはバルブ14が設けられている。本実施形態のバルブ14はピンチバルブである。導出管6は、少なくとも一部が弾性変形可能な配管(チューブ)によって構成されており、ピンチバルブ14は、この導出管6(前記一部)を潰すことにより、導出管6において収容容器2からの溶液の流れを停止させる機能を有すると共に、流れる溶液の流量を調整する機能を有する。開状態とするピンチバルブ14を選択することで、複数の収容容器2の溶液の中から所定の溶液を選択的に導出管6を通じて中間容器7へ送る(圧送する)ことができる。開状態とするピンチバルブ14の選択は制御装置16によって行われる。つまり、制御装置16が、その内部メモリに記憶されているプログラムに従って、開状態とするための信号を所定のピンチバルブ14に送信し、他のピンチバルブ14は閉状態を維持させる。なお、導出管6に設けられるバルブは、ピンチバルブ14以外であってもよい。   A valve 14 is provided in each outlet pipe 6 connected to the storage container 2 that stores the solution. The valve 14 of this embodiment is a pinch valve. The lead-out pipe 6 is constituted by a pipe (tube) that can be at least partially elastically deformed, and the pinch valve 14 is crushed from the container 2 in the lead-out pipe 6 by crushing the lead-out pipe 6 (said part). And a function of adjusting the flow rate of the flowing solution. By selecting the pinch valve 14 to be opened, a predetermined solution can be selectively sent from the solutions in the plurality of storage containers 2 to the intermediate container 7 through the outlet pipe 6 (pressure-feed). Selection of the pinch valve 14 to be opened is performed by the control device 16. That is, the control device 16 transmits a signal for opening to a predetermined pinch valve 14 according to a program stored in the internal memory, and the other pinch valves 14 are kept closed. The valve provided in the outlet pipe 6 may be other than the pinch valve 14.

中間容器7は、後にも説明するが、各溶液を計量するための容器となる。この中間容器7は、各溶液を溜めることができる有底筒状の容器であり(図2参照)、本実施形態では、中間容器7の入口領域(開口部7a)に複数の導出管6が集約して設けられている。このため、選択的に導出管6を通じて送られた溶液が中間容器7に導入され、この中間容器7に溜められる。中間容器7は収容容器2の数よりも少なくされており、本実施形態では、中間容器7が一つのみ設けられている。つまり、複数種類の溶液のために中間容器7は共用されている。   Although described later, the intermediate container 7 is a container for measuring each solution. The intermediate container 7 is a bottomed cylindrical container that can store each solution (see FIG. 2). In the present embodiment, a plurality of outlet pipes 6 are provided in the inlet region (opening 7a) of the intermediate container 7. Aggregated. For this reason, the solution selectively sent through the outlet pipe 6 is introduced into the intermediate container 7 and is stored in the intermediate container 7. The number of intermediate containers 7 is smaller than the number of storage containers 2, and in the present embodiment, only one intermediate container 7 is provided. That is, the intermediate container 7 is shared for a plurality of types of solutions.

計量機構15は、中間容器7に溜められる溶液を計量するものである。この計量機構15では、中間容器7を計量容器として機能させる。計量機構15による計量結果は、制御装置16(図1参照)に送信され、制御装置16は、計量結果に基づいてピンチバルブ14の開閉動作制御を行い、規定量の溶液を中間容器7において取得する。そして、この規定量の溶液を中間配管8を通じて反応容器9へ送る。中間配管8には、開閉バルブ21が設けられており、計量を行う際、開閉バルブ21は閉状態にある。   The measuring mechanism 15 measures the solution stored in the intermediate container 7. In this measuring mechanism 15, the intermediate container 7 is made to function as a measuring container. The measurement result by the measurement mechanism 15 is transmitted to the control device 16 (see FIG. 1), and the control device 16 controls the opening / closing operation of the pinch valve 14 based on the measurement result, and acquires a prescribed amount of solution in the intermediate container 7. To do. Then, this prescribed amount of solution is sent to the reaction vessel 9 through the intermediate pipe 8. The intermediate pipe 8 is provided with an opening / closing valve 21. When performing the measurement, the opening / closing valve 21 is in a closed state.

中間容器7から反応容器9への溶液の供給方式は圧送であり、タンク4の加圧ガスを用いる。この圧送の際、開閉バルブ21は開状態となる。この圧送のために、計量機構15は、中間容器7を収容する密閉容器29を備えている。密閉容器29とタンク4との間には加圧ガス用の配管17が設けられている。この配管17には、第二のレギュレータ(電空レギュレータ)18が設けられている。後にも説明するが、中間容器7は、密閉容器29内で開口しており(開口部7a)、密閉容器29内の加圧ガスの圧力(内圧)が中間容器7に溜められている溶液に作用し、密閉容器29(中間容器7)と反応容器9との差圧で中間容器7の溶液が中間配管8を通じて反応容器9へ圧送される。   The solution is supplied from the intermediate vessel 7 to the reaction vessel 9 by pressure, and the pressurized gas in the tank 4 is used. At the time of this pressure feeding, the opening / closing valve 21 is opened. For this pressure feeding, the metering mechanism 15 includes a sealed container 29 that houses the intermediate container 7. A pressurized gas pipe 17 is provided between the sealed container 29 and the tank 4. The piping 17 is provided with a second regulator (electropneumatic regulator) 18. As will be described later, the intermediate container 7 is opened in the sealed container 29 (opening 7a), and the pressure of the pressurized gas (internal pressure) in the sealed container 29 is reduced to the solution stored in the intermediate container 7. The solution of the intermediate container 7 is pumped to the reaction container 9 through the intermediate pipe 8 by the differential pressure between the sealed container 29 (intermediate container 7) and the reaction container 9.

以上より、複数の収容容器2の内の少なくとも一つから溶液が選択的に中間容器7へ送られ、この中間容器7で計量が行われると、反応容器9へ送られる。このような反応容器9への溶液の供給が、溶液の種類を変更しながら繰り返し行われ、複数種類の溶液が反応容器9に順に供給され、この反応容器9内において化学合成が進められる。本実施形態では、反応容器9には、多数のビーズが設けられており、ビーズから塩基を次々と結合させ、核酸が合成される。   As described above, the solution is selectively sent from at least one of the plurality of storage containers 2 to the intermediate container 7, and when the measurement is performed in the intermediate container 7, the solution is sent to the reaction container 9. Such supply of the solution to the reaction vessel 9 is repeatedly performed while changing the type of the solution, and a plurality of types of solutions are sequentially supplied to the reaction vessel 9, and chemical synthesis proceeds in the reaction vessel 9. In the present embodiment, the reaction vessel 9 is provided with a large number of beads, and bases are successively bound from the beads to synthesize nucleic acids.

反応容器9では、中間配管(一次側流路)8から溶液が供給されると、この溶液を通過させ、排出側の配管19(二次側流路)を通じて排出する。   In the reaction vessel 9, when a solution is supplied from the intermediate pipe (primary side flow path) 8, this solution is allowed to pass through and discharged through the discharge side pipe 19 (secondary side flow path).

前記の各種バルブ(ピンチバルブ14、開閉バルブ12,21)の動作制御は、制御装置16によって行われる。また、レギュレータ11,18の動作制御も制御装置16によって行われる。   Operation control of the various valves (the pinch valve 14 and the on-off valves 12 and 21) is performed by the control device 16. The control device 16 also performs operation control of the regulators 11 and 18.

以上のように、この合成装置3は、複数種類の溶液を選択的に反応容器9に送って、この反応容器9において、各溶液に含まれる材料を用いて化学合成をする。本実施形態では、複数種類の溶液が収容されている複数の収容容器2それぞれから、複数の配管として複数の導出管6が延びて設けられており、タンク4、上流側配管10及び導入管5等を含む送液手段24によって、各収容容器2の溶液が導出管6を通じて中間容器7へ送られ、更に反応容器9へ送られる構成である。そして、各収容容器2から反応容器9までの間であって、複数の前記配管(導出管6)を含む全体流路25の途中に、計量機構15が設けられており、この計量機構15によって、反応容器9に送る溶液が中間容器7において計量される。反応容器9では、複数の収容容器2から選択的に送られた規定量の溶液が入れられ、各溶液に含まれる材料により合成物が生成される。なお、前記全体流路25には、収容容器2よりも下流側(反応容器9側)の流路が含まれ、導出管6の他に、中間配管8が含まれる。全体流路25に含まれる配管や各機器は、溶液の溶剤(溶媒)に耐える性質(耐溶剤性)を有している。   As described above, the synthesizer 3 selectively sends a plurality of types of solutions to the reaction vessel 9 and performs chemical synthesis using the materials contained in each solution in the reaction vessel 9. In the present embodiment, a plurality of outlet pipes 6 are provided as a plurality of pipes extending from a plurality of storage containers 2 in which a plurality of types of solutions are stored. The tank 4, the upstream pipe 10, and the introduction pipe 5 are provided. The solution in each container 2 is sent to the intermediate container 7 through the outlet pipe 6 and further sent to the reaction container 9 by the liquid feeding means 24 including the like. A measuring mechanism 15 is provided between each container 2 and the reaction container 9 and in the middle of the entire flow path 25 including the plurality of pipes (outlet pipes 6). The solution sent to the reaction vessel 9 is weighed in the intermediate vessel 7. In the reaction container 9, a prescribed amount of solution selectively sent from the plurality of storage containers 2 is placed, and a composite is generated from the materials contained in each solution. The overall flow path 25 includes a flow path on the downstream side (reaction container 9 side) of the storage container 2, and includes an intermediate pipe 8 in addition to the outlet pipe 6. The piping and each device included in the entire flow path 25 have a property (solvent resistance) that can withstand the solvent (solvent) of the solution.

〔計量機構15について〕
計量機構15は、計量容器として機能する前記中間容器7と、センサ26とを有している。中間容器(計量容器)7は、前記のとおり、全体流路25の途中に設けられており、複数の導出管6から選択的に流出した溶液を受ける。図2に示す計量機構15が有するセンサ26は、中間容器7における重量を測定する。具体的構成を説明すると、センサ26は重量センサであり、本実施形態ではひずみ式のロードセルにより構成されている。この計量機構15によれば、中間容器7に溜められる溶液の重量を測定することで、中間容器7において溶液を精度よく計測することができる。なお、本実施形態では、ひずみ式のロードセルを用いる例について説明するが、電磁式、圧電素子式、静電容量型、磁歪式、ジャイロ式などあらゆるロードセルを使用することができ、これらを用いて本発明の重量センサを構成してもよい。
[About weighing mechanism 15]
The weighing mechanism 15 includes the intermediate container 7 that functions as a weighing container, and a sensor 26. As described above, the intermediate container (measuring container) 7 is provided in the middle of the entire flow path 25 and receives the solution that selectively flows out from the plurality of outlet pipes 6. A sensor 26 included in the weighing mechanism 15 shown in FIG. 2 measures the weight in the intermediate container 7. A specific configuration will be described. The sensor 26 is a weight sensor, and in the present embodiment, is constituted by a strain type load cell. According to the measuring mechanism 15, the solution can be accurately measured in the intermediate container 7 by measuring the weight of the solution stored in the intermediate container 7. In this embodiment, an example using a strain type load cell will be described. However, any load cell such as an electromagnetic type, a piezoelectric element type, a capacitance type, a magnetostrictive type, and a gyro type can be used. You may comprise the weight sensor of this invention.

図2に示す計量機構15は、導出管6から流出した溶液を受ける中間容器7、及び、この中間容器7における重量を測定する重量センサ26の他に、保持部27を有している。保持部27は、中間容器7の開口部7aの近傍に設けられており、複数の導出管6を一箇所に集約して保持している。本実施形態では、収容容器2と同数である20本の導出管6が集約されて、保持部27によって保持されている。図2に示すように、密閉容器29の上壁29aに設けられているフランジ部36を、複数の導出管6が貫通しており、これら導出管6の下流側端部6a側を保持部27が集約して保持している。導出管6がフランジ部36を貫通しているが、これらの間は気密性が確保されている(つまり、シールされている)。なお、本実施形態では、導出管6と収容容器2とが同数の場合について説明するが、計量を必要としない溶液の収容容器2がある場合には、その収容容器2から延びる導出管6は、保持部27に保持されることなく、中間容器7よりも下流側に位置する中間配管8に接続させるように構成してもよい。   The metering mechanism 15 shown in FIG. 2 includes a holding unit 27 in addition to the intermediate container 7 that receives the solution flowing out from the outlet pipe 6 and the weight sensor 26 that measures the weight in the intermediate container 7. The holding part 27 is provided in the vicinity of the opening 7a of the intermediate container 7, and holds the plurality of outlet pipes 6 in one place. In the present embodiment, 20 lead-out pipes 6 that are the same number as the storage containers 2 are collected and held by the holding unit 27. As shown in FIG. 2, a plurality of outlet pipes 6 pass through a flange portion 36 provided on the upper wall 29 a of the sealed container 29, and the downstream end portion 6 a side of the outlet pipes 6 is held by the holding portion 27. Are held together. The lead-out pipe 6 passes through the flange portion 36, but the airtightness is ensured between them (that is, sealed). In the present embodiment, the case where there are the same number of outlet tubes 6 and storage containers 2 will be described. However, when there are storage containers 2 for solutions that do not require weighing, the outlet tubes 6 extending from the storage containers 2 Instead of being held by the holding portion 27, it may be configured to be connected to the intermediate pipe 8 located on the downstream side of the intermediate container 7.

中間容器7は、密閉容器29内において吊り下げられた状態で設けられている。このために、密閉容器29内に支持部材28が設けられており、この支持部材28が有する第一アーム部28aに中間容器7が支持されており、中間容器7及びこの中間容器7に溜められる溶液の重量は、第一アーム部28aが受ける構成となっている。第一アーム部28aの基部側に重量センサ(ロードセル)26が取り付けられており、重量センサ26はアーム部28aを介して中間容器7(溶液を含む)の重量を測定する。重量センサ26の信号は制御装置16(図1参照)に入力される。また、支持部材28が有する第二アーム部28bに保持部27(第一部材27a)が支持されている。第一アーム部28aと第二アーム部28bとは独立して設けられており、相互間で力の伝達は生じない。   The intermediate container 7 is provided in a state of being suspended in the sealed container 29. For this purpose, a support member 28 is provided in the sealed container 29, and the intermediate container 7 is supported by the first arm portion 28 a of the support member 28, and is stored in the intermediate container 7 and the intermediate container 7. The first arm portion 28a receives the weight of the solution. A weight sensor (load cell) 26 is attached to the base side of the first arm portion 28a, and the weight sensor 26 measures the weight of the intermediate container 7 (including the solution) via the arm portion 28a. The signal from the weight sensor 26 is input to the control device 16 (see FIG. 1). Further, the holding portion 27 (first member 27a) is supported by the second arm portion 28b of the support member 28. The first arm portion 28a and the second arm portion 28b are provided independently, and no force is transmitted between them.

保持部27は、複数の導出管6の下流側端部6aよりも上流側の部分6bを集約して保持している第一部材27aと、下流側端部6aを集約して保持している第二部材27bとを有しており、これらは互いに図示しない連結部で連結されている。第一部材27aは板状の部材であり、導出管6が貫通している。図3は、保持部27(第二部材27b)を下から見た説明図である。第二部材27bは板状の部材であり、導出管6の下流側端部6aが貫通している。第二部材27bでは、全ての下流側端部6aが第一部材27aが保持する間隔よりも狭い間隔で互いに離れて配置されている。つまり、第二部材27bは、スペーサとしての機能を有し、一つの下流側端部6aを他の下流側端部6aと非接触の状態とし、一つの導出管6の下流側端部6aから流出する溶液が、他の導出管6の下流側端部6aに接触しないようにしている(つまり、供給すべき一つの導出管6の下流側端部6aから流出する溶液と、他の導出管6の下流側端部6aに付着した溶液とが混ざらないようにしている)。   The holding portion 27 collects and holds the first member 27a that holds the upstream portion 6b of the plurality of outlet pipes 6 upstream of the downstream ends 6a and the downstream end 6a. It has the 2nd member 27b, and these are mutually connected by the connection part which is not shown in figure. The first member 27a is a plate-like member, and the outlet tube 6 passes therethrough. FIG. 3 is an explanatory view of the holding portion 27 (second member 27b) as viewed from below. The second member 27b is a plate-like member, and the downstream end 6a of the outlet pipe 6 passes therethrough. In the second member 27b, all the downstream end portions 6a are arranged apart from each other at an interval narrower than the interval held by the first member 27a. That is, the second member 27b has a function as a spacer, makes one downstream end 6a non-contact with the other downstream end 6a, and from the downstream end 6a of one outlet pipe 6. The solution flowing out is prevented from coming into contact with the downstream end 6a of the other outlet pipe 6 (that is, the solution flowing out from the downstream end 6a of one outlet pipe 6 to be supplied and the other outlet pipe 6). 6 so that it does not mix with the solution adhering to the downstream end portion 6a.

図2において、第一部材27aは、中間容器7の上方(外側)に位置しており、第二部材27bは、中間容器7の内側に位置しているが、これら第一部材27a及び第二部材27bを含む保持部27、並びにこの保持部27に保持されている複数の導出管6(下流側端部6a)は、中間容器7に非接触の状態にある。このため、中間容器7は、上部において開口した状態となっており、つまり、保持部27によって蓋がされておらず、中間容器7は、密閉容器29内で開口した状態にある。これにより、前記のとおり、密閉容器29内の加圧ガスの圧力(内圧)が中間容器7に溜められる溶液に作用することができ、計量後、密閉容器29と反応容器9との差圧で中間容器7の溶液が反応容器9へ圧送される。   In FIG. 2, the first member 27 a is positioned above (outside) the intermediate container 7, and the second member 27 b is positioned inside the intermediate container 7. The holding portion 27 including the member 27 b and the plurality of outlet pipes 6 (downstream end portions 6 a) held by the holding portion 27 are not in contact with the intermediate container 7. For this reason, the intermediate container 7 is in an open state in the upper portion, that is, the lid is not covered by the holding portion 27, and the intermediate container 7 is in an open state in the sealed container 29. As a result, as described above, the pressure (internal pressure) of the pressurized gas in the sealed container 29 can act on the solution stored in the intermediate container 7, and after measurement, the pressure difference between the sealed container 29 and the reaction container 9 can be obtained. The solution in the intermediate container 7 is pumped to the reaction container 9.

このように、本実施形態の計量機構15では、複数本の導出管6が中間容器7に集約されており、複数本の導出管6から選択的に溶液が供給されることから、複数種類の溶液を選択的に取得して計量することが可能となる。このため、溶液の量を管理することが可能となり、規定量の溶液を正確に反応容器9へ送ることができる。そして、前記のとおり、保持部27と中間容器7とは非接触の状態で設けられている。このため、導出管6には張力が作用する場合があるが、この張力による荷重が、重量センサ26の測定に影響を与えない。仮に、導出管6(及び保持部27)が中間容器7と接触していると、導出管6に張力が作用している場合、重量センサ26による計量結果に悪影響を及ぼす。しかし、本実施形態の構成によれば、導出管6の影響を重量センサ26に及ぼすことがなく、精度の高い計量が可能となり、規定量の溶液をより一層正確に反応容器9へ送ることができる。   As described above, in the measuring mechanism 15 of the present embodiment, a plurality of outlet pipes 6 are collected in the intermediate container 7, and a solution is selectively supplied from the plurality of outlet pipes 6, so that a plurality of types of outlet pipes 6 are provided. The solution can be selectively acquired and weighed. For this reason, it becomes possible to manage the amount of the solution, and a prescribed amount of the solution can be accurately sent to the reaction vessel 9. And as above-mentioned, the holding | maintenance part 27 and the intermediate container 7 are provided in the non-contact state. For this reason, tension may act on the outlet pipe 6, but the load due to this tension does not affect the measurement of the weight sensor 26. If the lead-out pipe 6 (and the holding part 27) is in contact with the intermediate container 7, when the tension is acting on the lead-out pipe 6, the measurement result by the weight sensor 26 is adversely affected. However, according to the configuration of the present embodiment, the influence of the outlet pipe 6 is not exerted on the weight sensor 26, and measurement with high accuracy is possible, and a prescribed amount of solution can be sent to the reaction vessel 9 more accurately. it can.

図2に示すように、計量機構15は、中間容器7と接続されている出口側配管30を有しており、出口側配管30は中間配管8と接続されている。出口側配管30は、中間容器7において計量した溶液を、中間配管8を通じて反応容器9(別領域)に送り出すための流路である。出口側配管30は、密閉容器29内に配置されており、出口側配管30の一端部30aが中間容器7の下端に接続されており、出口側配管30の他端部30bが密閉容器29の底壁29b(別部材)に支持されている。そして、出口側配管30は全体として螺旋形状である弾性チューブにより構成されている。出口側配管30に外力として張力が作用している場合、重量センサ26による計量結果に悪影響を及ぼすが、本実施形態の構成によれば、螺旋形状のチューブが全体として弾性変形することにより前記張力を逃がすことができる。この結果、出口側配管30の影響が重量センサ26に及び難くなり、より一層精度の高い計量が可能となる。なお、本実施形態の出口側配管30は、螺旋形状を有する場合について説明したが、計量容器7を保持する重量センサ26に影響を与えない程度に余長を有する形状であればよく、U字形状に曲げたもの等であってもよい。このように、出口側配管30は、一端部30aが中間容器7に接続されかつ他端部30bが密閉容器29に支持されており、これら一端部30aと他端部30bとの間の距離(直線距離)よりも長く形成され全体として変形可能である余長部により構成されていればよい。つまり、前記余長部を、螺旋形状のチューブや、U字形状に曲げられたチューブとすればよい。   As shown in FIG. 2, the measuring mechanism 15 has an outlet side pipe 30 connected to the intermediate container 7, and the outlet side pipe 30 is connected to the intermediate pipe 8. The outlet side pipe 30 is a flow path for sending the solution weighed in the intermediate container 7 to the reaction container 9 (another region) through the intermediate pipe 8. The outlet side pipe 30 is arranged in the sealed container 29, one end 30 a of the outlet side pipe 30 is connected to the lower end of the intermediate container 7, and the other end 30 b of the outlet side pipe 30 is connected to the sealed container 29. It is supported by the bottom wall 29b (separate member). And the exit side piping 30 is comprised with the elastic tube which is a spiral shape as a whole. When tension is acting as an external force on the outlet side pipe 30, the measurement result by the weight sensor 26 is adversely affected. However, according to the configuration of the present embodiment, the tension is caused by the elastic deformation of the spiral tube as a whole. Can escape. As a result, the influence of the outlet side pipe 30 is less likely to affect the weight sensor 26, and measurement with higher accuracy is possible. In addition, although the exit side piping 30 of this embodiment demonstrated the case where it had a spiral shape, it should just be a shape which has extra length to such an extent that it does not affect the weight sensor 26 holding the measuring container 7, and is U-shaped. It may be bent into a shape. Thus, the outlet side pipe 30 has one end 30a connected to the intermediate container 7 and the other end 30b supported by the sealed container 29, and the distance between the one end 30a and the other end 30b ( It is only necessary to be constituted by an extra length portion that is longer than a straight line distance) and is deformable as a whole. That is, the extra length may be a spiral tube or a tube bent into a U shape.

前記のとおり、密閉容器29は中間容器7を収容しており、中間容器7の上部は密閉容器29内において開口している。このため、密閉容器29内のガスが、中間容器7に導入された溶液に触れることとなる。そこで、密閉容器29には、前記溶液への影響が小さいガスが充填されている。このガスとしては、前記のとおり、不活性ガスや無菌化されたガス(エア)を採用することができる。本実施形態では、密閉容器29には不活性ガスとしてアルゴンガスが充填されており、このガスはタンク4から供給される。このため、合成装置3において使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とすことなく合成物の生成が可能となる。   As described above, the sealed container 29 accommodates the intermediate container 7, and the upper part of the intermediate container 7 is opened in the sealed container 29. For this reason, the gas in the sealed container 29 comes into contact with the solution introduced into the intermediate container 7. Therefore, the sealed container 29 is filled with a gas having a small influence on the solution. As this gas, as described above, an inert gas or a sterilized gas (air) can be employed. In this embodiment, the sealed container 29 is filled with argon gas as an inert gas, and this gas is supplied from the tank 4. For this reason, even if a plurality of types of solutions used in the synthesizer 3 include a solution that changes in quality or deteriorates when it comes into contact with the atmosphere (outside air), a synthetic product can be generated without degrading the quality. It becomes possible.

密閉容器29に充填されるガスは、更に、中間容器7において溜められた(計量された)溶液を反応容器9へ圧送するための媒体としても用いられる。密閉容器29とタンク4とを繋ぐ加圧ガス用の配管17(図1参照)に設けられているレギュレータ18は、密閉容器29へ供給するガス量を調整する。これにより、密閉容器29の内圧が調整され、中間容器7に溜められている溶液の圧力が制御される。これにより、密閉容器29(中間容器7)と反応容器9との間に圧力差を生じさせ、この圧力差によって中間容器7の溶液を反応容器9へ圧送する。   The gas filled in the sealed container 29 is also used as a medium for pumping the solution (measured) stored in the intermediate container 7 to the reaction container 9. The regulator 18 provided in the pressurized gas pipe 17 (see FIG. 1) connecting the sealed container 29 and the tank 4 adjusts the amount of gas supplied to the sealed container 29. As a result, the internal pressure of the sealed container 29 is adjusted, and the pressure of the solution stored in the intermediate container 7 is controlled. Thereby, a pressure difference is produced between the sealed container 29 (intermediate container 7) and the reaction container 9, and the solution in the intermediate container 7 is pumped to the reaction container 9 by this pressure difference.

以上のように、本実施形態の計量機構15は、中間容器7に溜められ計量された溶液を反応容器9へ送るための機能も備えている。つまり、密閉容器29内のガスの圧力を調整する調整手段としてレギュレータ18を備えている。そして、前記のとおり、複数の導出管6を集約して保持している保持部27と、中間容器7とが非接触とされていることで、密閉容器29内において、中間容器7には開口部7aが形成されている。この開口部7aを通じて、中間容器7内の溶液に作用する前記ガスの圧力によって、この中間容器7内の溶液を外部へ圧送することができる。   As described above, the measuring mechanism 15 of the present embodiment also has a function for sending the solution stored and measured in the intermediate container 7 to the reaction container 9. That is, the regulator 18 is provided as an adjusting means for adjusting the gas pressure in the sealed container 29. And as above-mentioned, the holding | maintenance part 27 which hold | maintains the several derivation | leading-out pipe | tube 6 collectively, and the intermediate container 7 are made non-contact, Therefore In the airtight container 29, the intermediate container 7 is opened. Part 7a is formed. Through the opening 7a, the solution in the intermediate container 7 can be pumped to the outside by the pressure of the gas acting on the solution in the intermediate container 7.

本実施形態では、複数の収容容器2から中間容器7への溶液の送り、及び、中間容器7から反応容器9への溶液の送りは、タンク4を含む送液手段24により行われることから、送液のためのポンプ(電動ポンプや油圧ポンプ)が不要となる。また、複数の収容容器から中間容器7への溶液の送りと、中間容器7から反応容器9への溶液の送りとを、共通するタンク4の加圧エアによって行うことで、合成装置3を簡素化することができる。   In the present embodiment, the feeding of the solution from the plurality of storage containers 2 to the intermediate container 7 and the feeding of the solution from the intermediate container 7 to the reaction container 9 are performed by the liquid feeding means 24 including the tank 4. Pumps for feeding liquids (electric pumps and hydraulic pumps) are unnecessary. In addition, the synthesizing apparatus 3 can be simplified by feeding the solution from the plurality of storage containers to the intermediate container 7 and feeding the solution from the intermediate container 7 to the reaction container 9 by the pressurized air of the common tank 4. Can be

〔計量の処理について〕
以上の構成を備えている合成装置3において、計量機構15が行う溶液の計量処理について説明する。
計量の精度を高めるために合成装置3は、溶液の送液速度を調整する調整手段32(図1参照)を備えている。調整手段32を各導出管6に設け、導出管6それぞれにおいて流れる溶液の送液速度(単位時間あたりの流量)を調整する構成としてもよいが、本実施形態では、上流側配管10に設けられているレギュレータ11を前記調整手段32として機能させている。この構成により、複数の導出管6それぞれに調整手段32を設ける必要がなくなり、合成装置3を簡素化することができる。
[Measurement processing]
A solution weighing process performed by the weighing mechanism 15 in the synthesizing apparatus 3 having the above configuration will be described.
In order to increase the accuracy of measurement, the synthesizer 3 includes an adjusting unit 32 (see FIG. 1) that adjusts the solution feeding speed. The adjusting means 32 may be provided in each outlet pipe 6 and the solution feeding speed (flow rate per unit time) flowing in each outlet pipe 6 may be adjusted. However, in the present embodiment, the upstream pipe 10 is provided. The regulator 11 is functioned as the adjusting means 32. With this configuration, it is not necessary to provide the adjusting means 32 for each of the plurality of outlet pipes 6, and the synthesizer 3 can be simplified.

本実施形態では、前記のとおり、各収容容器2から、計量が行われる中間容器7への溶液の送液は圧送方式による。収容容器2の内圧を高くすると中間容器7へ溶液を供給する際の送液速度は高くなり、内圧を低くすると中間容器7へ溶液を供給する際の送液速度は低くなる。つまり、レギュレータ11を調節することによって収容容器2の内圧を高くすることにより、中間容器7への送液速度を高くすることができる。逆に、レギュレータ11を調節することによって収容容器2の内圧を低くすることにより、中間容器7への送液速度を低下させることができる。   In the present embodiment, as described above, the solution is fed from each storage container 2 to the intermediate container 7 to be measured by a pressure feeding method. When the internal pressure of the storage container 2 is increased, the liquid feeding speed when supplying the solution to the intermediate container 7 is increased, and when the internal pressure is decreased, the liquid feeding speed when supplying the solution to the intermediate container 7 is decreased. That is, by adjusting the regulator 11 and increasing the internal pressure of the storage container 2, the liquid feeding speed to the intermediate container 7 can be increased. On the contrary, by adjusting the regulator 11, the liquid feeding speed to the intermediate container 7 can be reduced by lowering the internal pressure of the storage container 2.

そこで、本実施形態では、中間容器7において計量の処理を行うために中間容器7に溶液を圧送するが、計量を行う対象となる溶液の送液速度をレギュレータ11(調整手段32)によって調整する。これは、送液速度が高い場合、特に計量の目標量が少ないと、計量において誤差が生じやすいためである。例えば、目標量を越えて計量されてしまう可能性が高くなる。そこで、本実施形態では、レギュレータ11によって中間容器7への溶液の送液速度を、予め設定されている閾値よりも低下させる。これにより計量誤差を抑制している。   Therefore, in the present embodiment, the solution is pumped to the intermediate container 7 in order to perform the weighing process in the intermediate container 7, but the solution feeding speed of the solution to be measured is adjusted by the regulator 11 (adjusting means 32). . This is because, when the liquid feeding speed is high, an error is likely to occur in measurement, particularly when the target amount for measurement is small. For example, there is a high possibility that the measurement will exceed the target amount. Thus, in the present embodiment, the solution delivery speed of the solution to the intermediate container 7 is lowered by a regulator 11 below a preset threshold value. This suppresses weighing errors.

しかし、計量のために送液速度を終始低下させると時間を要して作業効率が低下する場合がある。また、計量のために送液速度を終始高くすると計量誤差が生じやすい。そこで、本実施形態では、中間容器7へ溶液を供給している途中で送液速度を変更している。すなわち、計量において規定量(目標量)に到達しない時間帯(前半)では、送液速度を比較的高くし(閾値よりも高くし)、送液の時間短縮を図る。そして、規定量(目標量)に到達する時間帯(後半)では、送液速度を比較的低く変更し(閾値よりも低く変更し)、計量誤差を抑制している。このように、レギュレータ11は、計量のための送液の終了時間帯では、それ以前の時間帯(終了時間帯よりも前の時間帯)よりも、送液速度を低下させる。なお、レギュレータ11の動作制御は、制御装置16からレギュレータ11に与えられる動作信号に基づいて行われる。この結果、計量のために中間容器7へ溶液を供給する際に、溶液の送液速度を二段階とする。これにより、始め送液速度を高めることにより作業効率を向上させることが可能となり、そして、計量の終了の際に送液速度を低下させることで計量誤差を抑制することが可能となる。   However, if the liquid feeding speed is lowered all the time for weighing, it may take time and work efficiency may be lowered. Further, if the liquid feeding speed is increased throughout the measurement, a measurement error tends to occur. Therefore, in the present embodiment, the liquid feeding speed is changed while the solution is being supplied to the intermediate container 7. That is, in the time zone (first half) where the prescribed amount (target amount) is not reached in the measurement, the liquid feeding speed is made relatively high (higher than the threshold) to shorten the liquid feeding time. In the time period (second half) when the specified amount (target amount) is reached, the liquid feeding speed is changed relatively low (changed lower than the threshold value) to suppress the measurement error. In this manner, the regulator 11 lowers the liquid feeding speed in the liquid feeding end time zone for measurement as compared with the previous time zone (the time zone before the end time zone). The operation control of the regulator 11 is performed based on an operation signal given from the control device 16 to the regulator 11. As a result, when the solution is supplied to the intermediate container 7 for weighing, the solution feeding speed is set to two stages. Accordingly, it is possible to improve the working efficiency by increasing the liquid feeding speed at the beginning, and it is possible to suppress the measurement error by reducing the liquid feeding speed at the end of the measurement.

送液速度を変更するタイミングは、制御装置16が有するタイマ機能により管理してもよいが、本実施形態では、前記のとおりセンサ26が刻々と重量を検知していることから、規定量未満の所定量(例えば規定量の70%)について溶液が中間容器7に供給されると、制御装置16がレギュレータ11へ信号を出力し、送液速度を低下させるように制御している。   The timing for changing the liquid feeding speed may be managed by the timer function of the control device 16, but in this embodiment, since the sensor 26 detects the weight every moment as described above, it is less than the specified amount. When a solution is supplied to the intermediate container 7 for a predetermined amount (for example, 70% of the specified amount), the control device 16 outputs a signal to the regulator 11 to control the liquid feeding speed to be lowered.

また、計量誤差を小さくするために、更に、本実施形態の合成装置3は次の構成を備えている。導出管6それぞれに設けられているバルブ(ピンチバルブ14)は、計量のための中間容器7への送液を停止させるバルブとして機能する。このピンチバルブ14の開閉の動作は、制御装置16からの指令信号に基づく。そこで、制御装置16は、中間容器7に溜まっていく溶液が規定量(目標量)に達する前に、ピンチバルブ14に対して閉動作の指令信号を出力する。なお、このように閉動作を早めに開始させる処理を行うために、ピンチバルブ14の閉動作に要する時間が測定されており、この時間についての情報に基づいて、制御装置16は、溶液が規定量(目標量)に達する前にピンチバルブ14に閉動作を開始させる。または、別の手段として、閉動作を早めに開始させる処理を行うために、ピンチバルブ14の閉動作中に送液される溶液の流量の情報が予め取得されており、この流量の情報に基づいて、制御装置16は、溶液が規定量(目標量)に達する前にピンチバルブ14に閉動作を開始させる。更に、別の手段として、ピンチバルブ14の閉動作に要する時間が測定されており、かつ、閉動作中に送液される溶液の流量の情報が予め取得されており、この時間についての情報と、閉動作中の前記流量の情報とに基づいて、制御装置16は、溶液が規定量(目標量)に達する前にピンチバルブ14に閉動作を開始させてもよい。前記各形態の構成によれば、ピンチバルブ14の閉動作の間に流れる溶液を見込んで、ピンチバルブ14を予め早いタイミングで閉動作を開始させることにより、規定量(目標量)を精度良く得ることが可能となる。   Further, in order to reduce the measurement error, the synthesizing device 3 of the present embodiment further includes the following configuration. A valve (pinch valve 14) provided in each outlet pipe 6 functions as a valve for stopping liquid feeding to the intermediate container 7 for measurement. The opening / closing operation of the pinch valve 14 is based on a command signal from the control device 16. Therefore, the control device 16 outputs a closing operation command signal to the pinch valve 14 before the solution accumulated in the intermediate container 7 reaches a specified amount (target amount). In order to perform the process of starting the closing operation early in this way, the time required for the closing operation of the pinch valve 14 is measured, and based on the information about this time, the control device 16 determines the solution. Before reaching the amount (target amount), the pinch valve 14 is started to close. Alternatively, as another means, in order to perform processing for starting the closing operation early, information on the flow rate of the solution fed during the closing operation of the pinch valve 14 is acquired in advance, and based on this flow rate information Then, the control device 16 causes the pinch valve 14 to start the closing operation before the solution reaches the specified amount (target amount). Furthermore, as another means, the time required for the closing operation of the pinch valve 14 is measured, and information on the flow rate of the solution to be sent during the closing operation is acquired in advance. Based on the information on the flow rate during the closing operation, the control device 16 may cause the pinch valve 14 to start the closing operation before the solution reaches a specified amount (target amount). According to the configuration of each of the embodiments, the prescribed amount (target amount) is obtained with high accuracy by allowing the solution flowing during the closing operation of the pinch valve 14 and starting the closing operation of the pinch valve 14 at an early timing in advance. It becomes possible.

計量のために中間容器7に溶液が供給されている間、センサ26は刻々と測定を行い、制御装置16は、計量のためのセンサ26の信号を刻々と取得し、この信号に基づいてピンチバルブ14に閉動作開始の信号を出力する。これにより、中間容器7に供給された溶液が、規定量(目標量)前に到達すると、前記のとおりピンチバルブ14に閉動作を開始させることができる。この構成により、リアルタイムに溶液の計量が可能になる。すなわち、この構成では、目標とする規定量を監視しつつ計量することができるため、圧送方式やポンプ方式で計量する場合に比べて、機械的な計量誤差等を回避して結果として規定量の溶液を精度良く得ることが可能となる。   While the solution is being supplied to the intermediate container 7 for weighing, the sensor 26 performs measurement every moment, and the control device 16 acquires the signal of the sensor 26 for weighing every moment, and the pinch is based on this signal. A signal for starting the closing operation is output to the valve 14. As a result, when the solution supplied to the intermediate container 7 reaches a predetermined amount (target amount), the pinch valve 14 can start the closing operation as described above. With this configuration, the solution can be measured in real time. That is, in this configuration, since the target specified amount can be measured while being monitored, mechanical error and the like are avoided and the specified amount is reduced as compared with the case of measuring by the pumping method or the pump method. It becomes possible to obtain a solution with high accuracy.

また、センサ26の検知によりピンチバルブ14が閉動作し、中間容器7への溶液の供給が停止されると、中間容器7に溜められている溶液が規定量とおりに正確であるか否かの判定を、制御装置16は行うことができる。正確(規定誤差の範囲内)であると判定した場合、中間容器7の溶液は反応容器9へ送られる。正確で無いと判定されると、不合格処理が行われる。不合格処理としては、例えば、中間容器7の溶液は排液として処理される。   In addition, when the pinch valve 14 is closed by the detection of the sensor 26 and the supply of the solution to the intermediate container 7 is stopped, whether or not the solution stored in the intermediate container 7 is accurate according to the specified amount. The control device 16 can make the determination. When it is determined to be accurate (within a specified error range), the solution in the intermediate container 7 is sent to the reaction container 9. If it is determined that it is not accurate, a rejection process is performed. As the rejection processing, for example, the solution in the intermediate container 7 is processed as drainage.

〔合成装置3について〕
以上のように、本実施形態の合成装置3は、複数の収容容器2から複数種類の溶液を選択的に送って化学合成をするための装置であり、選択的に送られた溶液が入れられこの溶液に含まれる材料により合成物が生成される反応容器9と、収容容器2から反応容器9までの間に設けられ反応容器9に送る溶液を計量する計量機構15とを備えている。この合成装置3によれば、計量機構15により必要量の溶液を計量して反応容器9に送ることができ、溶液の利用効率を従来よりも改善することが可能となる。
[About Synthesizer 3]
As described above, the synthesizing apparatus 3 of the present embodiment is an apparatus for selectively synthesizing a plurality of types of solutions from a plurality of storage containers 2, and the selectively sent solutions are placed therein. A reaction vessel 9 in which a composite is generated by the material contained in the solution, and a measuring mechanism 15 provided between the container 2 and the reaction vessel 9 for measuring the solution to be sent to the reaction vessel 9 are provided. According to the synthesizer 3, a required amount of solution can be weighed and sent to the reaction vessel 9 by the measuring mechanism 15, and the use efficiency of the solution can be improved as compared with the conventional case.

前記実施形態(図2参照)では、計量機構15は、中間容器7における重量を測定するセンサ26を有している。ここで、溶液を送るためにポンプ93を用いる装置(図5参照)が考えられる。この図5に示すポンプ93を用いる装置では、ポンプ93による単位時間あたりの送液量(定格送液量)と、ポンプ93の動作時間とに基づいて、総送液量を演算によって求めることが考えられる。しかし、流路での損失等によって演算による総送液量は不正確であることが予想される。つまり、ポンプ93を用いた場合、実際の送液量と演算による値とが乖離することが多く、そのために、ポンプを用いた装置であっても、複数種類の溶液それぞれに関して、理論上必要とされる量よりも多くの量を供給し、過剰の溶液を用いていることから、特に合成物を量産化する場合、コスト高となる。そこで、本実施形態では、溶液を中間容器7に一旦溜めて計量することにより、対象となる溶液を送液条件で計量するのではなく、送液された結果としての溶液を直接計量しているため高精度に計量でき、計量した溶液を反応容器9に送ることから、溶液の無駄使いを抑えることが可能となり、コスト削減が可能となる。このように、本実施形態のような計量機構15を備えている点は、ポンプ93の駆動に基づく流量管理と、技術的に全く異なる。   In the embodiment (see FIG. 2), the measuring mechanism 15 has the sensor 26 that measures the weight of the intermediate container 7. Here, an apparatus (see FIG. 5) that uses a pump 93 to send the solution is conceivable. In the apparatus using the pump 93 shown in FIG. 5, the total liquid supply amount can be obtained by calculation based on the liquid supply amount per unit time (rated liquid supply amount) by the pump 93 and the operation time of the pump 93. Conceivable. However, it is expected that the total liquid delivery amount by calculation is inaccurate due to loss in the flow path and the like. That is, when the pump 93 is used, the actual liquid delivery amount and the calculated value often deviate from each other. Therefore, even in an apparatus using a pump, it is theoretically necessary for each of a plurality of types of solutions. Since an amount larger than the amount to be used is used and an excess solution is used, the cost increases particularly when the synthetic product is mass-produced. Therefore, in the present embodiment, the solution is temporarily stored in the intermediate container 7 and weighed, so that the target solution is not weighed under the liquid feeding conditions, but the resulting solution is directly weighed. Therefore, since it can measure with high precision and the measured solution is sent to the reaction container 9, it becomes possible to suppress the wasteful use of a solution and to reduce cost. Thus, the point that the metering mechanism 15 as in this embodiment is provided is technically completely different from the flow rate management based on the driving of the pump 93.

また、図5の例では、溶液の送液をプランジャポンプ93により行っており、このプランジャポンプ93の単位時間あたりの送液量(定格送液量)等の制御によって、仮に精度よく溶液の計量ができたとしても、プランジャポンプ93内で溶液が結晶化することによりプランジャポンプ93に負荷がかかるおそれがあり、このため、シール破損など、駆動系に損傷を与える結果となり、装置全体の耐久性が落ちやすいという問題がある。これに対して、本実施形態の合成装置3では、送液のためにポンプを用いていないため、装置全体の耐久性を高めることができる。   Further, in the example of FIG. 5, the solution is fed by the plunger pump 93, and the solution is measured with high accuracy by controlling the amount of liquid fed per unit time (rated liquid feed amount) of the plunger pump 93. Even if it is possible, a load may be applied to the plunger pump 93 due to crystallization of the solution in the plunger pump 93. As a result, damage to the drive system such as seal breakage may result, and the durability of the entire apparatus will be affected. There is a problem that is easy to fall. On the other hand, in the synthesis apparatus 3 of this embodiment, since the pump is not used for liquid feeding, durability of the whole apparatus can be improved.

また、計量機構15は、複数種類の溶液を選択的に取得して計量することができ、このために、計量機構15は、複数種類の溶液それぞれが通る複数の導出管6を集約して保持する保持部27と、これら導出管6から流出した溶液を受ける中間容器(計量容器)7と、この中間容器7における重量を測定する重量センサ26とを備えている。そして、前記のとおり、保持部27と中間容器7とは非接触の状態で設けられている。このため、計量の精度を高くすることが可能となる。これは、前記のとおり、溶液が通る導出管6が、仮に中間容器7と接触していると、例えば導出管6に張力が作用している場合、重量センサ26による計量結果に悪影響を及ぼすが、本実施形態の構成によれば、導出管6の影響を重量センサ26に及ぼすことがないためである。   Further, the measuring mechanism 15 can selectively acquire and measure a plurality of types of solutions, and for this purpose, the measuring mechanism 15 collects and holds a plurality of outlet pipes 6 through which each of the plurality of types of solutions passes. And a holding container 27, an intermediate container (measuring container) 7 that receives the solution flowing out from the outlet pipe 6, and a weight sensor 26 that measures the weight of the intermediate container 7. And as above-mentioned, the holding | maintenance part 27 and the intermediate container 7 are provided in the non-contact state. For this reason, it becomes possible to raise the precision of measurement. As described above, if the outlet pipe 6 through which the solution passes is in contact with the intermediate container 7, for example, if tension is acting on the outlet pipe 6, the measurement result by the weight sensor 26 may be adversely affected. This is because, according to the configuration of the present embodiment, the influence of the outlet pipe 6 is not exerted on the weight sensor 26.

また、中間容器7の下流側に接続されている出口側配管30は、前記のとおり、螺旋形状の弾性チューブにより構成されていることから、出口側配管30に外力として張力が作用している場合であっても、このチューブが全体として弾性変形することにより前記外力を逃がすことができる。この結果、重量センサ26による計量結果に前記外力の影響が及び難く、精度の高い計量が可能となる。   Further, as described above, the outlet side pipe 30 connected to the downstream side of the intermediate container 7 is constituted by a spiral elastic tube, and therefore, when the tension acts on the outlet side pipe 30 as an external force. Even so, the external force can be released by elastically deforming the tube as a whole. As a result, the measurement result obtained by the weight sensor 26 is hardly affected by the external force, and high-precision measurement is possible.

また、本実施形態では、中間容器7には、複数の導出管6が集約して設けられており、これら導出管6それぞれから溶液が導入される構成となっている。このため、必要となる溶液は複数種類存在しているが、計量のために用いられる計量機構15(中間容器7及びセンサ26)は1セットで済む。つまり、中間容器7を共用することで、導出管6(溶液)毎に計量機構15が不要であり、合成装置3の構成を簡素化することができる。また、中間容器7へ供給する溶液を二種類以上とすることで、中間容器7において複数種類の溶液を混合して計量することもできる。この場合、反応容器9に各溶液を導入するよりも前の段階で、溶液の混合が行われることから、混合時間の短縮化が可能となる。   In the present embodiment, the intermediate container 7 is provided with a plurality of outlet pipes 6 in a collective manner, and a solution is introduced from each of the outlet pipes 6. For this reason, there are a plurality of types of required solutions, but only one set of the weighing mechanism 15 (the intermediate container 7 and the sensor 26) used for weighing is required. That is, by sharing the intermediate container 7, the measuring mechanism 15 is unnecessary for each outlet pipe 6 (solution), and the configuration of the synthesizing apparatus 3 can be simplified. In addition, by providing two or more types of solutions to be supplied to the intermediate container 7, a plurality of types of solutions can be mixed and measured in the intermediate container 7. In this case, since the solutions are mixed before the introduction of each solution into the reaction vessel 9, the mixing time can be shortened.

図1に示す合成装置3では、溶液を送る手段が圧送方式であり、タンク4に充填されているガスを用いて、上流側の容器と下流側の容器との圧力差により送液が行われる構成である。このため、全体流路25におけるコンタミネーション、異物の詰まりによる故障、ディスポーザブルの点で、送液手段にポンプ(電動ポンプや油圧ポンプ)が含まれる場合よりも有利である。つまり、ポンプが用いられる場合、ポンプの可動部が流路中に露出することから、この可動部が有する摺動部材等の剥離や摩耗粉の発生により、コンタミネーション及び異物の詰まりの点で不利である。また、溶液に含まれている溶剤が硬化(結晶化)すると、ポンプの故障の原因となる。更に、合成装置3では、定期的にまたは所定のタイミングで(所定の頻度で)溶液が接する配管や機器等の接液部を交換する必要がある。前記のとおり、本実施形態では、各収容容器2から中間容器7への溶液の供給の開始及び停止は、ピンチバルブ14によって行われるが、このピンチバルブ14は、駆動部が溶液と接することがないため、交換対象とはならない。つまり、ピンチバルブ14によって挟まれる軟性のチューブのみを交換すればよいことから、ディスポーザブルの点で有利である。   In the synthesizer 3 shown in FIG. 1, the solution feeding means is a pressure feeding system, and liquid feeding is performed by using a gas filled in the tank 4 due to a pressure difference between the upstream container and the downstream container. It is a configuration. For this reason, it is more advantageous than the case where the pump (electric pump or hydraulic pump) is included in the liquid feeding means in terms of contamination in the entire flow path 25, failure due to clogging of foreign matter, and disposable. In other words, when a pump is used, the movable part of the pump is exposed in the flow path, which is disadvantageous in terms of contamination and clogging of foreign matter due to peeling of sliding members, etc., and generation of wear powder. It is. Moreover, if the solvent contained in the solution is cured (crystallized), it may cause a failure of the pump. Furthermore, in the synthesizer 3, it is necessary to replace the wetted parts such as pipes and equipment with which the solution comes into contact regularly or at a predetermined timing (at a predetermined frequency). As described above, in the present embodiment, the start and stop of the supply of the solution from each storage container 2 to the intermediate container 7 is performed by the pinch valve 14, and the pinch valve 14 may be configured such that the drive unit contacts the solution. Because there is no, it is not eligible for replacement. In other words, since only the soft tube sandwiched by the pinch valve 14 needs to be replaced, it is advantageous in terms of disposable.

以上のとおり開示した実施形態はすべての点で例示であって制限的なものではない。つまり、本発明の計量機構、及びこの計量機構を備えている合成装置は、図示する形態に限らず本発明の範囲内において他の形態のものであってもよい。例えば、計量機構15が備えているセンサ26をひずみ式のロードセルによる重量センサとして説明したが、他の構成による重量センサとしてもよい。また、このセンサ26を取り付けるための構成を、図示した形態以外とすることもできる。中間容器7への溶液の送液速度を調整する速度調整手段32を、上流側配管10に設けられているレギュレータ11により構成する場合について説明したが、この構成以外であってもよい。前記実施形態では、溶液を送る手段を全て圧送としたが、一部又は全部において、その他の動力によるものであってもよい。前記実施形態では、各収容容器2から中間容器7への溶液の供給の停止を行うバルブとして、ピンチバルブ14を採用する場合について説明したが、他の形式のバルブであってもよい。   The embodiments disclosed above are illustrative in all respects and not restrictive. That is, the metering mechanism of the present invention and the synthesizing apparatus including the metering mechanism are not limited to the illustrated form, and may be of other forms within the scope of the present invention. For example, the sensor 26 provided in the weighing mechanism 15 has been described as a weight sensor using a strain type load cell, but may be a weight sensor having another configuration. Further, the configuration for attaching the sensor 26 may be other than the illustrated form. Although the case where the speed adjusting means 32 for adjusting the liquid feeding speed of the solution to the intermediate container 7 is configured by the regulator 11 provided in the upstream side pipe 10 is described, other configurations may be used. In the above embodiment, all the means for sending the solution are pumped, but some or all of them may be driven by other power. In the above-described embodiment, the case where the pinch valve 14 is employed as the valve for stopping the supply of the solution from each container 2 to the intermediate container 7 has been described, but another type of valve may be used.

6:導出管(配管) 7:中間容器(計量容器) 15:計量機構
18:レギュレータ(調整手段) 26:(重量)センサ
27:保持部 29:密閉容器 30:出口側配管
30a:一端部 30b:他端部
6: Outlet pipe (pipe) 7: Intermediate container (metering container) 15: Measuring mechanism 18: Regulator (adjusting means) 26: (Weight) sensor 27: Holding part 29: Sealed container 30: Outlet side pipe 30a: One end part 30b : Other end

Claims (5)

複数種類の溶液を選択的に取得して計量する計量機構であって、
前記溶液が通る配管の下流側端部側を保持する保持部と、前記配管の下流側端部から流出した溶液を受ける計量容器と、前記計量容器における重量を測定する重量センサと、を備え、
前記保持部と前記計量容器とは非接触の状態で設けられている、計量機構。
A weighing mechanism that selectively obtains and measures multiple types of solutions,
A holding unit for holding the downstream end side of the pipe through which the solution passes, a measuring container for receiving the solution flowing out from the downstream end of the pipe, and a weight sensor for measuring the weight in the measuring container,
A measuring mechanism, wherein the holding unit and the measuring container are provided in a non-contact state.
前記保持部は、複数種類の前記溶液それぞれが通る複数の配管を集約して保持し、前記計量容器は、複数の前記配管から流出した溶液を受ける、請求項1に記載の計量機構。   The measuring mechanism according to claim 1, wherein the holding unit collects and holds a plurality of pipes through which each of the plurality of types of solutions passes, and the measuring container receives the solution flowing out from the plurality of pipes. 前記計量容器を収容すると共にガスが充填される密閉容器を備えている、請求項1又は2に記載の計量機構。   The measuring mechanism according to claim 1, further comprising a sealed container that contains the measuring container and is filled with a gas. 前記計量容器と接続されており計量した溶液を別領域に送り出すための出口側配管を備えており、前記出口側配管は、一端部が前記計量容器に接続されかつ他端部が別部材に支持され当該一端部と当該他端部との間の距離よりも長く形成され全体として変形可能である余長部により構成されている、請求項1〜3のいずれか一項に記載の計量機構。   The outlet side pipe connected to the measuring container and for sending out the weighed solution to another region is provided, and the outlet side pipe has one end connected to the measuring container and the other end supported by another member. The measuring mechanism according to any one of claims 1 to 3, further comprising an extra length portion that is formed longer than a distance between the one end portion and the other end portion and is deformable as a whole. 前記密閉容器内のガスの圧力を調整する調整手段を備え、
前記保持部と前記計量容器とが非接触とされていることで形成されている当該計量容器の開口を通じて、当該計量容器内の溶液に作用する前記ガスの圧力によって、当該計量容器内の溶液を外部へ圧送する、請求項3に記載の計量機構。
Adjusting means for adjusting the pressure of the gas in the sealed container;
Through the opening of the measuring container that is formed by the holding unit and the measuring container being in non-contact, the solution in the measuring container is caused to flow by the pressure of the gas acting on the solution in the measuring container. The metering mechanism according to claim 3, wherein the metering mechanism is pumped to the outside.
JP2017065475A 2017-03-29 2017-03-29 Weighing mechanism Active JP6863794B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017065475A JP6863794B2 (en) 2017-03-29 2017-03-29 Weighing mechanism
PCT/JP2018/010612 WO2018180642A1 (en) 2017-03-29 2018-03-16 Synthesis device and weighing mechanism
CN201880021509.0A CN110709161A (en) 2017-03-29 2018-03-16 Synthesizer and metering mechanism
US16/498,012 US11504686B2 (en) 2017-03-29 2018-03-16 Synthesis device and measuring mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065475A JP6863794B2 (en) 2017-03-29 2017-03-29 Weighing mechanism

Publications (2)

Publication Number Publication Date
JP2018169229A true JP2018169229A (en) 2018-11-01
JP6863794B2 JP6863794B2 (en) 2021-04-21

Family

ID=64017855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065475A Active JP6863794B2 (en) 2017-03-29 2017-03-29 Weighing mechanism

Country Status (1)

Country Link
JP (1) JP6863794B2 (en)

Also Published As

Publication number Publication date
JP6863794B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2018180642A1 (en) Synthesis device and weighing mechanism
US6098843A (en) Chemical delivery systems and methods of delivery
US6269975B2 (en) Chemical delivery systems and methods of delivery
JP7429699B2 (en) Calibration method for liquid flow meters
CN102213510B (en) Weighing type fully-automatic charger of refrigerant
US20160193615A1 (en) Apparatus and method for dispensing or aspirating fluid
JP2006264755A (en) Flow meter type liquid filling apparatus
JP2019034290A (en) Synthesis device
JP6901303B2 (en) Synthesizer
CN101251547A (en) Automatic analyzer
JP2018167158A (en) Synthesizing apparatus
JP2018169229A (en) Measuring mechanism
US5335552A (en) Device for accurately measuring mass flow of gases
Meera et al. Automated precise liquid transferring system
TWM465965U (en) Treatment equipment having quantitative loading device
JP7100473B2 (en) Synthesizer
JPH02500966A (en) Dosing device for dosing at least two flowable reaction components into the mixing chamber
JP2011051624A (en) Method and device for filling with fixed quantity of liquid
WO2020134120A1 (en) Continuous feeding method with twin feeding tanks
CN210375291U (en) Liquid level metering fluid conveying and metering system
CN218872145U (en) Automatic adding device for liquid materials
RU2348014C1 (en) Volumetric proportioner of liquids with weight control
CN215428918U (en) Liquid accurate feeding reaction device
JP2008292186A (en) Precise measuring system in batch plant
CN211544976U (en) Accurate automatic configuration production system of raw materials of preparation active carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250