WO2020188925A1 - Automated analyzer - Google Patents

Automated analyzer Download PDF

Info

Publication number
WO2020188925A1
WO2020188925A1 PCT/JP2019/049513 JP2019049513W WO2020188925A1 WO 2020188925 A1 WO2020188925 A1 WO 2020188925A1 JP 2019049513 W JP2019049513 W JP 2019049513W WO 2020188925 A1 WO2020188925 A1 WO 2020188925A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
weight
automatic analyzer
sample
reagent
Prior art date
Application number
PCT/JP2019/049513
Other languages
French (fr)
Japanese (ja)
Inventor
英嗣 田上
洋一郎 鈴木
敬道 坂下
和広 野田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2020188925A1 publication Critical patent/WO2020188925A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer.
  • An automatic analyzer that measures the concentration by adding a reagent to the sample and causing a biochemical reaction to perform qualitative and quantitative analysis of the components to be measured contained in the biological sample such as blood and urine.
  • the automatic analyzer are described in Patent Documents 1 to 4.
  • Such an automatic analyzer is widely used in large hospitals, inspection centers, etc. because it can improve the reproducibility of measurement results and speed up measurement.
  • the samples and reagents required for biochemical reactions and antigen-antibody reactions can be automatically dispensed with high accuracy and speed, as compared with the conventional method. Since the concentration measurement is performed accurately by the reaction by mixing the sample and the reagent of the specified liquid volume, the accuracy and reproducibility of the dispensing amount in the dispensing device are important for ensuring the reliability of the analysis performance. Is. In particular, in a blood test for a blood sample for the purpose of blood transfusion, it is preferable to reduce the risk of infectious diseases due to blood transfusion as much as possible, and the reliability of analysis performance of infectious disease items is highly required.
  • the correctness of the analysis results is based on the premise that the liquid volume of the sample and the liquid volume of the analytical reagent at the time of analysis are mixed as expected, and improvement in the reliability of the analysis results is expected. This can be achieved by confirming that the process was carried out correctly. For example, if fibrin and the like are dispensed at the same time as the sample is dispensed, it may not be possible to dispense the specified amount of the sample.
  • the sample may be sucked into the probe pipe by making the pressure in the pipe connected to the thin probe pipe negative, and the sample may be transferred from the sample container into the probe to realize dispensing.
  • the analysis step includes a dispensing step of dispensing a predetermined amount of the sample and the reagent from separate containers to the reaction vessel.
  • the amount of sample or reagent is indirectly confirmed by confirming the correctness of the operation of the dispensing mechanism such as stop operation and channel condition monitoring.
  • the dispensing mechanism such as stop operation and channel condition monitoring.
  • the amount of liquid to be mixed ranges from a few microliters to a few tens of microliters.
  • the container has been miniaturized in order to accommodate such a liquid amount and realize a specified reaction.
  • the weight of the reaction vessel itself has become as small as the weight of the reaction solution, such as by reducing the volume of the vessel itself. Therefore, in order to accurately measure the weight of the reaction solution including such a container, it is necessary to realize highly accurate weight measurement.
  • the facilities that perform inspections include clinics, laboratories in hospitals, and large-scale inspection centers that specialize in inspections, and the number of processes required ranges from 50 to 500 tests per hour.
  • an automatic analyzer samples and reagents are required to be mixed within a specified time for accurate analysis, and sample dispensing and reagent dispensing are performed in a specified order within one cycle of the analysis cycle. It is generally carried out in. For example, when two types of reagents are used, it is necessary to carry out a total of three steps of the sample dispensing step, the first reagent dispensing step, and the second reagent dispensing step as one cycle, and the weight of each dispensing step is increased.
  • the measurement process When the measurement process is included, it is necessary to carry out a total of 6 processes as one cycle by simple calculation. In this case, in order to realize 50 tests to 500 tests per hour, the time allocated to one process is about 1.2 seconds to 12 seconds by simple calculation. In this way, there is a range of time that can be used for weight measurement depending on the processing capacity.
  • the conventional technique has a problem that there is no means for confirming the weight of the sample or reagent dispensed into the reaction vessel with high accuracy and at low cost.
  • an object of the present invention is to provide an automatic analyzer that can confirm the weight of a sample or a reagent dispensed into a reaction vessel with high accuracy and at low cost.
  • the automatic analyzer according to the present invention is A reaction vessel that can hold samples and reagents, A support portion that supports the entire weight of the reaction vessel and A weight measuring unit for measuring the total weight of the reaction vessel and the support unit is provided.
  • This specification includes the disclosure of Japanese Patent Application No. 2019-051200, which is the basis of the priority of the present application.
  • the weight of the sample or reagent dispensed into the reaction vessel can be confirmed with high accuracy and at low cost.
  • Example of configuration of automatic analyzer according to Example 1 Example of processing progress when executing multiple analysis operations in parallel
  • Example of configuration of support unit and weight measurement unit according to the first embodiment An example of the progress of a process including weight measurement when performing multiple analytical operations in parallel
  • Example of configuration of support unit and weight measurement unit according to the second embodiment Example of configuration of support unit and weight measurement unit according to Example 3
  • Example of configuration of support unit and weight measurement unit according to Example 4 Operation example when the reagent probe dispenses the first reagent
  • Example of configuration of support portion according to Example 5 Example of operation of the support portion according to the sixth embodiment
  • Example 1 First, a specific example of the process related to the automatic analysis, which is a premise of the embodiment of the present invention, will be described with reference to FIGS. 1 and 2, and then, with reference to FIGS. 3 and 4, the weight measuring unit according to the embodiment will be described. The configuration will be described.
  • FIG. 1 shows an example of the configuration of the automatic analyzer according to the first embodiment.
  • the automated analyzer comprises a reaction vessel (108) capable of accommodating specimens and reagents. Further, the automatic analyzer includes a first reaction vessel transport main body (105) and a second reaction vessel transport main body (124) as reaction vessel moving portions for moving the reaction vessel (108).
  • the reaction vessel (108) is movable with respect to an automated analyzer (more precisely, for example, the apparatus housing (110)).
  • the reaction vessel (108) placed in the reaction vessel erection portion (109) is moved from the reaction vessel erection portion (109) to the first reaction vessel erection position (119) by the first reaction vessel transport main body portion (105). Moved and installed.
  • the disposable sample chip (104) placed on the reaction vessel erection unit (109) is moved vertically by the reaction vessel transport unit lateral movement mechanism (106) of the first reaction vessel transport main body (105) and the reaction vessel transport unit (106). It is moved by the mechanism (107), moved to the sample chip mounting portion (111), and installed.
  • the sample probe (103) rotates, and the sample chip (104) is mounted on the probe tip at the sample chip mounting portion (111).
  • the sample container (102) is transported onto the sample setting unit (101) by the transport unit (100).
  • the sample contained in the sample container (102) is sucked by the sample probe (103).
  • the reaction vessel installation unit (118) rotates to move the reaction vessel (108) installed in the first reaction vessel erection position (119) to the sample dispensing position (120).
  • the sample probe (103) rotates after sucking the sample, and discharges a specified amount of the sample to the reaction vessel (108) at the sample dispensing position (120). After ejecting the sample, the sample probe (103) rotates further, and the used sample chip (104) is discarded by the sample chip discarding unit (112).
  • the reagent bottle (115) on the reagent disc (114) rotates and moves by the rotation of the reagent disc (114).
  • the reagent probe (113) sucks the first reagent from the reagent bottle (115).
  • the reaction vessel installation unit (118) rotates to move the reaction vessel (108) to the reagent dispensing position (122).
  • the reagent probe (113) rotates and discharges the specified amount of the first reagent at the reagent dispensing position (122).
  • the temperature of the reaction vessel setting unit (118) is controlled so as to be a constant temperature such as 37 ° C., and the first reagent contains an antibody that specifically binds only to a specific antigen in the sample, and the reaction vessel.
  • the sample and the first reagent cause an antigen-antibody reaction.
  • the first reagent is a component in which an antibody and a fluorescent substance are bound in advance. After a certain period of time has elapsed and the antigen-antibody reaction has sufficiently progressed, the reaction vessel setting unit (118) moves the reaction vessel (108) to the reagent dispensing position (122) again.
  • the reagent probe (113) sucks the second reagent from the reagent bottle (115).
  • the reagent bottle of the first reagent and the reagent bottle of the second reagent may be provided separately.
  • the reagent probe (113) dispenses the second reagent into the reaction vessel (108) at the reagent dispensing position (122).
  • the second reagent is a reagent containing an antibody that specifically binds only to the antigen, and is a component in which the antibody and magnetic particles are bound in advance. As time passes and the antigen-antibody reaction proceeds to a certain extent, a sufficient amount of the final reaction product bound to the magnetic particles and the fluorescent illuminant is produced in the antigen present in the sample.
  • reaction vessel installation unit (118) rotates to the second reaction vessel erection position (121).
  • the second reaction vessel transport main body (124) moves the reaction vessel (108) of the reaction vessel installation portion (118) to the reaction vessel cleaning position (126).
  • reaction solution is discarded while being supplemented in the vessel with a magnet installed outside the reaction vessel by utilizing the magnetism of the magnetic particles bound to the antibody in the reaction solution in the reaction vessel. ..
  • a magnet installed outside the reaction vessel by utilizing the magnetism of the magnetic particles bound to the antibody in the reaction solution in the reaction vessel.
  • the cleaning reagent probe (129) discharges the buffer solution at the reaction vessel cleaning position (126).
  • the second reaction vessel transport main body (124) moves the reaction vessel (108) to the second reaction vessel erection position (121) of the reaction vessel installation portion (118).
  • the second reaction vessel transport main body (124) can be moved by the second reaction vessel transport portion lateral movement mechanism (128).
  • the automatic analyzer may be provided with a reaction vessel cleaning tank (125) and a cleaning probe cleaning tank (117).
  • reaction vessel installation unit (118) rotates to move the reaction vessel (108) to the reaction vessel analysis suction position (123).
  • the reaction solution suction probe (132) sucks the reaction solution from the reaction vessel (108) at the reaction vessel analysis suction position (123).
  • the reaction solution suction probe (132) sends the reaction solution to the reaction solution analysis unit (130) and measures the amount of light emitted from the phosphor.
  • the series of operations as described above is controlled by the mechanism operation control unit (133).
  • the analysis operation control unit (134) acquires the amount of light emitted from the phosphor, performs analysis based on the amount of light emitted, and outputs the analysis result.
  • the principle that the information indicating the amount of the sample (specified liquid amount information) is proportional to the amount of light emitted from the phosphor and the number of antigens is used.
  • the above is an example of a unit of one analysis operation for measuring a sample.
  • the automatic analyzer can perform the analysis operation a plurality of times at a time. Further, in the automatic analyzer, the mechanism operation control unit (133) can control the operation in a pipeline so that a plurality of analysis operations can be performed simultaneously. With such a configuration, it is possible to analyze a plurality of samples without delay.
  • One analysis operation includes five steps of sample dispensing step, first reagent dispensing step, second reagent dispensing step, washing step, and analysis step, and requires a considerable amount of time. For example, assuming that one analysis operation takes 10 minutes, when a plurality of analysis operations are sequentially executed, 30 minutes are required to perform three analysis operations.
  • FIG. 2 shows an example of the progress of processing when a plurality of analysis operations are executed in parallel. Five steps are required for each sample. First, the process 1 of the sample 1 is executed at time 1. Next, at time 2, the process 2 of the sample 1 and the process 1 of the sample 2 are executed at the same time. Next, at time 3, the process 3 of the sample 1, the process 2 of the sample 2, and the process 1 of the sample 3 are executed at the same time. As shown in the thick frame of FIG. 2, at time 5, all the processes 1 to 5 are executed simultaneously for different samples. By processing Specimen 1 to Specimen 5 in this way, 5 processes can be executed in parallel for 5 Specimens, and a plurality of analytical operations can be executed in a time shorter than 30 minutes. be able to.
  • FIG. 1 shows that processing 1 is a sample dispensing step, treatment 2 is a first reagent dispensing step, treatment 3 is a second reagent dispensing step, treatment 4 is a washing step, and treatment 5 is an analysis step.
  • the reaction vessel installation unit (118) is shared in all processing steps.
  • a plurality of reaction vessels (108) are installed in the reaction vessel installation unit (118), and each reaction vessel (108) is rotated at each time by rotating the reaction vessel installation unit (118). Moved to the proper position.
  • These positions include a sample dispensing position (120), a reagent dispensing position (122), a second reaction vessel erection position (121), and a reaction vessel analysis suction position (123).
  • the time that can be allocated to each process is 12 seconds on average.
  • the automatic analyzer according to the first embodiment includes a first reaction vessel weight measurement mechanism (127) and a second reaction vessel weight measurement mechanism (131). These weighing mechanisms are fixed to an automatic analyzer (more precisely, for example, the device housing (110)).
  • FIG. 3 shows an example of the configuration of the support unit and the weight measurement unit according to the first embodiment. This example represents, for example, the configuration of the second reaction vessel weight measuring mechanism (131).
  • FIG. 3 shows a cross section of the reaction vessel (108) installed in the second reaction vessel weight measurement mechanism (131). It is assumed that the reaction vessel (108) contains the reaction solution (301).
  • the second reaction vessel weight measurement mechanism (131) includes an apparatus housing (110), a reaction vessel accommodating portion (300), a connection portion (302), a strain body (303), a strain sensor (304), and the like. It is provided with a strain fixing portion (305).
  • the strain sensor (304) is a weight measuring unit in this embodiment.
  • the reaction vessel accommodating portion (300) and the connecting portion (302) are fixed as a unit, and are configured as a support portion that supports the entire reaction vessel (108), that is, the entire weight. In the example of FIG. 3, it is supported by accommodating the reaction vessel (108).
  • the reaction vessel accommodating portion (300) is coupled to the strain body (303) via the connecting portion (302).
  • the strain body (303) is connected only to the connecting portion (302) and the strain body fixing portion (305).
  • the strained body (303) is a curved rectangular parallelepiped beam shape here, but the strained body (303) shape and configuration can be arbitrarily designed as long as it is distorted by the weight from the connection part. Is. For example, it may have a shape like a diaphragm.
  • a strain sensor (304) is attached to the strain body (303).
  • the strain sensor (304) can measure the amount of strain of the strain body (303).
  • the output of the strain sensor (304) is not particularly shown, it is configured to transmit a signal representing the amount of strain to the weight measurement control unit (135) of FIG. 1, for example.
  • the reaction vessel accommodating portion (300) is provided with a bottom portion and a peripheral wall portion, and can support the reaction vessel (108) in a state where the reaction vessel (108) does not come into contact with any other support structure or the like. Is. Therefore, the reaction vessel container (300) can support the total weight of the reaction vessel (108) and its contents, if any.
  • reaction vessel housing portion supports only the bottom portion of the reaction vessel and another independent structure supports the side surface of the reaction vessel (for example, the side surface is supported so as to lean against the wall). Since static friction occurs in the reaction vessel, the reaction vessel housing may not be able to support the entire weight of the reaction vessel.
  • the reaction vessel setting unit (118) rotates and the reaction vessel (108) is moved to the first reaction vessel erection position (119). Let me. Next, the first reaction vessel transport main body (105) moves the reaction vessel (108) from the first reaction vessel erection position (119) to the second reaction vessel weight measurement mechanism (131).
  • the reaction vessel (108) is supported by the reaction vessel housing (300) so that the reaction solution (301) does not spill.
  • the strain body (303) is distorted by receiving the weight transmitted from the connection portion (302), and the amount of the distortion (or the amount of change in the strain) is measured by the strain sensor (304).
  • the strain sensor (304) causes the strain (303) to generate strain according to the weight of only the reaction vessel accommodating portion (300) and the connecting portion (302). Measure the amount. Further, in a state where the reaction vessel (108) is supported by the reaction vessel accommodating portion (300), the strain sensor (304) has the reaction vessel accommodating portion (300), the connection portion (302), and the reaction vessel (108). ) And its contents (for example, reaction solution (301)), if present, the amount of strain generated in the strain body (303) is measured.
  • the position where the strain sensor (304) is attached to the strain body (303) is near the portion (root) where the strain body (303) is connected to the strain body fixing portion (305). In this way, the strain can be measured at the position where the strain is the largest.
  • the position of the strain sensor (304) is not limited to this, and the strain sensor (304) can be attached to the front surface, the back surface, or any other position as long as it is distorted according to the weight.
  • the strain body (303) is composed of a beam of a leaf spring made of stainless steel (Young's modulus (E) 193 GPa)
  • the force F [N] applied to the tip of the beam is generated on the surface of the tip opposite to the beam.
  • is expressed by the following equation.
  • the amount of the reaction solution corresponding to the amount of the sample is 4 ⁇ l
  • the amount of strain is 0.032 ⁇ ST as an example.
  • the change in resistance value is about 8 ⁇ .
  • the strain sensor (304) transmits a signal indicating the amount of change in the resistance value to the weight measurement control unit (135).
  • the strain sensor (304) may convert the amount of change in the resistance value into an electric signal and then transmit the signal.
  • the change in resistance value may be converted into a voltage as a DC signal by a bridge circuit, for example, or may be converted into an impedance change by connecting a frequency circuit.
  • the first reaction vessel weight measuring mechanism (127) and the second reaction vessel weight measuring mechanism (131) are the total weights of the reaction vessel (108), the reaction vessel accommodating portion (300), and the connecting portion (302). To measure. In this case, when the contents are contained in the reaction vessel (108), the weight of the contents is also included in the total weight.
  • the automatic analyzer may convert the amount of strain into weight.
  • the specific processing related to the conversion can be appropriately designed based on a known technique or the like related to the distortion sensor. Further, a method for calculating the weight of a specific component from the weight measured at each stage can also be appropriately designed based on a known technique.
  • the shape and material of the strain body (303) can be arbitrarily designed in consideration of the vibration establishment time and the noise condition of the detection circuit system. It may have a different shape or material. For example, if the same material is used and the strain amount is to be changed for the same weight change, the strain can be doubled by halving the width (b) of the leaf spring. Further, as long as the shapes are the same, metal materials or resin materials having different Young's moduluss may be used.
  • the position of the second reaction vessel weight measuring mechanism (131) is not limited to that shown in FIG.
  • the reaction vessel (108) may be arranged at any position as long as it can be moved from the reaction vessel installation portion (118).
  • the first reaction vessel weight measuring mechanism (127) is arranged within a range in which the second reaction vessel transport main body (124) can be moved, and the second reaction vessel transport main body (124) is the reaction vessel. (108) can be moved to the first reaction vessel weight measuring mechanism (127).
  • the weight measurement after dispensing the sample has been described here as an example, the weight measurement at other stages of the analysis operation is also possible.
  • the first reagent or the second reagent may be dispensed and then weighed.
  • the reaction vessel installation unit (118) rotates and the reaction vessel (108) rotates.
  • the weight can be measured by being moved to the mechanism (131).
  • the weight measurement of the reaction solution after the buffer is dispensed by the washing reagent probe (129) can be performed in the same manner as in the case of measuring the reaction solution after dispensing by the sample probe and the reagent probe. Further, the same weight measurement may be performed in a state (for example, an empty state) before the sample is dispensed into the reaction vessel (108).
  • the weight of the sample or reagent dispensed into the reaction vessel (108) can be confirmed with high accuracy and at low cost.
  • FIG. 4 shows an example of the progress of processing including weight measurement when a plurality of analysis operations are executed in parallel. Similar to FIG. 2, treatment 1 is a sample dispensing step, treatment 2 is a first reagent dispensing step, treatment 3 is a second reagent dispensing step, treatment 4 is a washing step, and treatment 5 is an analysis step. Further, in FIG. 4, the process G is a weight measurement step. The analytical operation for 10 samples is shown.
  • the total number of treatments required for one sample is 10 steps.
  • process 1 sample dispensing step
  • processing capacity 60 test / h processing capacity 60 test / h
  • weight measurement is performed after each step of all processes 1 to 5 is shown.
  • the weight measurement may be performed at least once in one cycle.
  • the weight measurement may be performed only after a specific dispensing step.
  • the weight may be measured during the time when the mechanical unit of the device is not operating.
  • the strain body fixing portion (305) is directly connected to the device housing (110) in FIG. 3, when noise is added to the strain sensor due to vibration from the device, a vibration damping material for damping is used. Or may be connected via an elastic body.
  • the signal acquisition timing from the distortion sensor (304) may be arbitrarily selected.
  • FIG. 5 shows an example of the configuration of the support unit and the weight measurement unit according to the second embodiment.
  • the support portion and the weight measuring portion are provided in the reaction vessel moving portion (for example, the first reaction vessel transport main body portion (105) and the second reaction vessel transport main body portion (124)). It may be fixed to the reaction vessel moving part.
  • the first reaction vessel transport main body (105) includes a strain sensor (304) as a weight measuring unit.
  • reaction vessel installation unit (118) moves the reaction vessel (108) from the sample dispensing position (120) to the first reaction vessel erection position (119).
  • the first reaction vessel transport main body (105) moves the reaction vessel (108) to the first reaction vessel erection position (119) of the reaction vessel installation portion (118).
  • the first reaction vessel transport main body (105) is provided with a grip portion, and when the reaction vessel (108) is moved, the reaction vessel (108) can be gripped and pulled up.
  • the grip portion is composed of, for example, a first grip portion (502) and a second grip portion (504), and when these two grip portions sandwich the reaction vessel (108) from both sides, the reaction vessel (108) is pulled up. It is configured so that it can be gripped.
  • the distance between the first grip portion (502) and the second grip portion (504) is relatively large at the time of release, and the reaction vessel (108) is not gripped.
  • the distance between the first grip portion (502) and the second grip portion (504) is relatively small during movement, and the reaction vessel (108) is gripped.
  • the gripping force is designed so that, for example, the weight of the reaction vessel (108) and its contents can be sufficiently held by friction.
  • a first spring (503) is used to enable such an operation. Both ends of the first spring (503) are fixed to the first grip portion (502) and the second grip portion (504), respectively, and urge the first spring (503) to approach each other.
  • the first reaction vessel transport main body (105) includes a housing (500), an opening / closing mechanism claw (505), and an opening / closing mechanism.
  • the opening / closing mechanism includes an opening / closing mechanism main body (507) and an opening / closing mechanism cylinder (506), and the opening / closing mechanism is configured to expand and contract as the opening / closing mechanism cylinder (506) moves.
  • the opening / closing mechanism is fixed to the housing (500).
  • both ends of the second spring (508) are fixed to the housing (500) and the opening / closing mechanism claw (505), respectively, and urge the second spring (508) to approach each other.
  • the opening / closing mechanism cylinder (506) is housed inside the opening / closing mechanism main body (507) at the time of release, and the opening / closing mechanism cylinder (506) is not in contact with the opening / closing mechanism claw (505). ..
  • the opening / closing mechanism claw (505) is attracted toward the housing (500) by the second spring (508). Therefore, the second grip portion (504) is pushed out in the direction opposite to that of the first grip portion (502), and the reaction vessel (reaction vessel (504) is placed between the first grip portion (502) and the second grip portion (504). It creates enough space for 108) to be inserted.
  • the opening / closing mechanism cylinder (506) is the opening / closing mechanism main body (507). It is pushed out more, whereby the opening / closing mechanism claw (505) overcomes the force of the second spring (508) and is pushed out in the direction opposite to the housing (500).
  • the first spring (503) contracts when the force stretched by the opening / closing mechanism claw (505) is released.
  • the first grip portion (502) and the second grip portion (504) sandwich and grip the reaction vessel (108) between them.
  • the first grip portion (502) is connected to the strain body (303) only via the connecting portion (501).
  • the connecting portion (501) may form a part of the grip portion.
  • the connecting portion (501), the first grip portion (502), the second grip portion (504), and the first spring (503) determine the total weight of the reaction vessel (108). It constitutes a support part to support.
  • the reaction vessel (108) is pulled up from the reaction vessel installation portion (118) by moving the first reaction vessel transport main body portion (105) in the vertical direction. At this time, strain corresponding to the weight of the reaction vessel (108) is generated in the strain body (303).
  • the strain body (303) is connected only to the strain body fixing portion (305), and a signal corresponding to the weight of the reaction vessel (108) is output by the strain sensor (304) provided on the strain body (303). ..
  • the weight of the sample or reagent dispensed into the reaction vessel (108) can be confirmed with high accuracy and at low cost as in Example 1.
  • FIG. 6 shows an example of the configuration of the support unit and the weight measurement unit according to the third embodiment.
  • the automatic analyzer according to the third embodiment includes a reaction vessel pulling portion that is separate from the reaction vessel moving portion (that is, the first reaction vessel transport main body portion (105) and the second reaction vessel transport main body portion (124)). So, it is different from Example 2.
  • the reaction vessel pull-up portion is provided to pull up the reaction vessel (108).
  • the raised reaction vessel (108) can be further moved by the reaction vessel moving section.
  • the support part and the weight measuring part are provided on the upper part of the reaction vessel.
  • the configuration of the support unit and the weight measurement unit is the same as in the second embodiment.
  • the opening / closing mechanism cylinder (609) of the opening / closing mechanism main body (610) is housed inside the opening / closing mechanism main body (610), and the opening / closing mechanism cylinder (609) is not in contact with the opening / closing mechanism claw (608).
  • the opening / closing mechanism claw (608) is attracted to the pulling mechanism housing (600) by the third spring (611), and the force causes the second grip portion (607) to move to the opposite side of the first grip portion (605). Extruded. This creates a sufficient space between the first grip portion (605) and the second grip portion (607) for the reaction vessel (108) to enter.
  • the opening / closing mechanism cylinder (609) When measuring the weight, that is, when grasping the reaction vessel (108), the opening / closing mechanism cylinder (609) is pushed out from the opening / closing mechanism main body (610), and the opening / closing mechanism claw (608) overcomes the force of the third spring (611). It is pushed out in the direction opposite to the pulling mechanism housing (600). At this time, the first spring (606) and the second spring (613) connected the first grip portion (605) and the second grip portion (607), and were stretched by the opening / closing mechanism claw (608). By contracting when the force is released, the reaction vessel (108) between the first grip portion (605) and the second grip portion (607) is sandwiched and gripped.
  • the first grip portion (605) is connected to the strain body (602) only via the connecting portion (604).
  • the connecting portion (604), the first grip portion (605), the second grip portion (607), the first spring (606), and the second spring (613) are formed in a reaction vessel ( It constitutes a support portion that supports the entire weight of 108).
  • the pull-up mechanism housing (600), the pull-up drive unit (612), the strain body (602), the strain body fixing portion (603), the connection portion (604), and the first The grip portion (605), the second grip portion (607), the first spring (606), and the second spring (613) form a reaction vessel pulling upper portion that pulls up the reaction vessel (108).
  • the pull-up drive unit (612) is fixed to, for example, the device housing (110).
  • the reaction vessel (108) is pulled up from the reaction vessel installation portion (118) by moving the pulling mechanism housing (600) in the vertical direction by the pulling drive unit (612). At this time, strain corresponding to the weight of the reaction vessel (108) is generated in the strain body (602).
  • the strain body (602) is connected only to the strain body fixing portion (603), and the strain sensor (601) provided on the strain body (602), that is, the weight measuring unit, adjusts the weight of the reaction vessel (108). A signal is output.
  • the weight of the sample or reagent dispensed into the reaction vessel (108) can be confirmed with high accuracy and at low cost as in Example 1.
  • reaction vessel pull-ups can be installed at multiple positions in the automatic analyzer.
  • the reaction vessel is placed at the sample dispensing position (120), the reagent dispensing position (122), the reaction vessel washing position (126), and the reaction vessel analysis suction position (123) at any time during the analysis operation cycle. It is possible to measure the weight of (108).
  • Example 1 when the sample dispensing step was repeated once every 60 seconds (processing capacity 60 test / h), the time that could be allocated to each of the 10 steps was 6 seconds on average.
  • processing capacity 60 test / h when trying to support an automatic analyzer with a processing capacity of 500 tests / h, it is necessary to carry out the sample dispensing step once every 7.2 seconds if the same method is used, and each of the 10 steps is required.
  • the time that can be allocated to is only 0.72 seconds on average. In such a case, it is difficult to secure time for moving the reaction vessel for weight measurement by the reaction vessel moving portion.
  • the weight measurement can be performed in a short time.
  • the only time effect of performing the weighing is the additional lifting time by the reaction vessel pull-up.
  • FIG. 7 shows an example of the configuration of the support unit and the weight measurement unit according to the fourth embodiment.
  • a support portion and a weight measuring portion are provided on the upper part of the reaction vessel.
  • the automatic analyzer includes a pair of pulling action units (707). Each pull-up action section (707) is connected to the strainer (702) by a corresponding pull-up arm (706), a corresponding pull-up arm column (705), and a common pull-up shoulder (704). are doing.
  • the pulling action section (707), the pulling arm (706), the pulling arm column (705), and the common pulling shoulder (704) make up the entire or total weight of the reaction vessel (108). It constitutes a support part to support.
  • the strain body (702) is fixed to the strain body fixing portion (701) connected to the apparatus housing (700) at the end portion, and the strain sensor (703), that is, the weight measuring portion is mounted on the strain body (702). Has been done.
  • the strain fixing portion (701), the strain body (702), the pulling shoulder portion (704), the pulling upper arm column (705), the pulling upper arm (706), and the pulling action portion (707) are ,
  • the reaction vessel pulling upper part for pulling up the reaction vessel (108) is formed.
  • the pulling action unit (707) is installed at a position above the reaction vessel installation unit (118). More specifically, it is installed at an empty position such as a sample dispensing position (120), a reagent dispensing position (122), a second reaction vessel erection position (121), and a reaction vessel analysis suction position (123).
  • FIG. 8 shows an operation example when the reagent probe (113) dispenses the first reagent. The same applies when the second reagent or sample is dispensed.
  • the reaction vessel (108) is provided with an overhang portion (800) on the side surface thereof, and the pulling action portion (707) supports the overhang portion (800) to support the reaction vessel (108). ) Can be supported.
  • reaction vessel (108) In the state of FIG. 8A, the reaction vessel (108) is not pulled up.
  • the reaction vessel setting section (118) rotates and the reaction vessel (108) is moved to the reagent dispensing position (122), the overhanging section (800) of the reaction vessel (108) becomes the reaction vessel setting section (118). As shown by the arrow, it rides on the pulling action unit (707) and is pulled up from the reaction vessel installation unit (118) to reach the state shown in FIG. 8 (b).
  • the distance at which the reaction vessel (108) is pulled up depends on the shape of the pulling action portion (707).
  • the shape of the pulling action portion (707) may be any shape as long as it can be pulled up to a height at which the reaction vessel (108) does not come into contact with the reaction vessel installation portion (118) at all.
  • the reaction vessel (108) is automatically pulled up in response to the rotation of the reaction vessel installation portion (118), so that the weight can be measured more efficiently.
  • the weight measuring unit measures the total weight of the reaction vessel (108) and the supporting portion with the pulling action portion (707) supporting the overhanging portion (800).
  • the curvature of the pulling action portion (707) may be designed according to the rotation speed of the reaction vessel installation portion (118). For example, the pulling speed is determined so that the reaction solution in the reaction vessel (108) does not pop out with the pulling.
  • the overhanging shape of the reaction vessel is described as being overhanging from the outer shape of the reaction vessel so as to be a shoulder like the overhanging portion (800), but the shape of the overhanging portion is the entire reaction vessel (108).
  • Any shape can be designed as long as it can be supported.
  • the shape can be adapted to the shape of the pulling action portion (707) so that a force for pulling up in the vertical direction can be generated when the reaction vessel (108) enters in the lateral direction.
  • a tapered surface (801) is formed on the outer periphery of the reaction vessel (108), and this tapered surface (801) functions as an overhanging portion and is supported by the pulling action portion (707). It may be configured as follows.
  • the surface of the pulling action portion (707) is polished so that the reaction vessel (108) can be pulled up smoothly when it is pulled up.
  • a bearing or the like may be provided at a portion of the pulling action portion (707) that comes into contact with the overhanging portion (800).
  • FIG. 9 shows an example of the configuration of the support portion according to the fifth embodiment.
  • the configurations of the pulling action portion (707) and the pulling upper arm (706) are changed in the fourth embodiment.
  • FIG. 9A is a cross-sectional view of a part of the support portion viewed from above
  • FIG. 9B is a cross-sectional view of a part of the support portion seen from the side direction.
  • the support portion includes an opening / closing portion that can be elastically opened and closed.
  • the opening / closing part is composed of two arms.
  • the first arm has a first spring portion (900) extending in the horizontal longitudinal direction, a first horizontal retract guide (902), a first fixing guide (904), a third fixing guide (906), and a first arm.
  • a horizontal retracting guide (908) is provided.
  • the first spring portion (900) can be bent in a direction perpendicular to the longitudinal direction in the horizontal plane.
  • the second arm has a second spring portion (901) extending in the horizontal longitudinal direction, a second horizontal retracting guide (903), a second fixing guide (905), and a fourth fixing guide (907). It is provided with a fourth horizontal retracting guide (909).
  • the second spring portion (901) can be bent in the direction perpendicular to the longitudinal direction in the horizontal plane.
  • the opening / closing portion shown in FIG. 9 opens / closes in the horizontal direction and in the direction perpendicular to the moving direction of the reaction vessel (108) due to the deflection of the first spring portion (900) and the second spring portion (901). It is configured to be possible.
  • the pulling action portion according to this embodiment is composed of a first fixing guide (904), a second fixing guide (905), a third fixing guide (906), and a fourth fixing guide (907).
  • reaction vessel installation unit (118) moves the reaction vessel (108) in the clockwise direction (CW direction) with the rotational movement.
  • the outer wall of the reaction vessel (108) eg, the overhang, but may be below the overhang
  • the reaction vessel (108) has a pulling action portion (that is, a first fixing guide (904), a second fixing guide (905), a third fixing guide (906), and a fourth fixing guide (907). )) Move to the support space formed by).
  • the reaction vessel (108) is pulled upward from the reaction vessel installation section (118) along the first pull-up guide (910) and switches to the pull-up action section.
  • the weight measuring unit measures the total weight of the reaction vessel (108) and the support unit.
  • the reaction vessel (108) is fixed in the support space surrounded by the four fixing guides, the weight measurement can be performed in a more stable state.
  • reaction vessel installation section (118) rotates clockwise after weighing, the reaction vessel (108) moves toward the first horizontal lead-in guide (902) and the second horizontal lead-in guide (903). , Along the second pulling guide (911), it is guided to fall from the pulling action part to the reaction vessel setting part (118) by its own weight.
  • the reaction vessel (108) has a third horizontal lead-in guide (908) and a fourth horizontal lead-in guide (908). It moves toward 909) and is guided to fall from the pulling action section to the reaction vessel installation section (118) by its own weight along the first pulling guide (910).
  • the reaction vessel installation unit (118) pulls the reaction vessel (108) toward the pulling action portion in the counterclockwise direction (CCW direction)
  • the reaction vessel (108) is referred to as the first horizontal retracting guide (902). And enter along the second horizontal pull-in guide (903).
  • the reaction vessel (108) has a pulling action portion (that is, a first fixing guide (904), a second fixing guide (905), a third fixing guide (906), and a fourth fixing guide (907). )) Move to the support space formed by).
  • the reaction vessel (108) is pulled upward from the reaction vessel installation section (118) along the second pull-up guide (911) and switches to the pull-up action section.
  • the weight measuring unit measures the total weight of the reaction vessel (108) and the support unit. Since the operation after the weight measurement is the same as the operation in the clockwise direction, the description thereof will be omitted.
  • the first spring portion (900) and the second spring portion (901) may be provided, for example, as a part of the pulling upper arm (706) in the fourth embodiment (FIG. 7). Further, a specific configuration can be arbitrarily designed as long as the pulling upper arm (706) is provided with a portion deformed by the stress generated by each horizontal pulling guide.
  • the deformable spring portion may be provided in the pull-up shoulder portion (704) and the pull-up arm column (705) shown in FIG. 7, and the pull-up shoulder portion (704) and the pull-up arm column (705) may be provided. It may be provided at the connecting portion, or may be provided at the connecting portion between the pulling upper arm column (705) and the pulling upper arm (706).
  • FIG. 10 shows an example of the operation of the support portion according to the sixth embodiment.
  • the configuration of the support portion can be, for example, the same as in Example 4 (FIGS. 7 and 8) or Example 5 (FIG. 9).
  • FIG. 10 shows the flow of the process from when the reaction vessel (108) is installed in the reaction vessel installation section (118) to when it is discarded.
  • the weight 1 obtained by measuring the weight of the reaction vessel (108) and the like at the timing when the first reagent is not yet dispensed into the reaction vessel (108), and the weight of the reaction vessel (108) and the like after the first reagent is dispensed. By calculating the difference from the measured weight 2, the net weight of the first reagent can be calculated.
  • the weight 3 obtained by measuring the weight of the reaction vessel (108) or the like after the second reagent is dispensed and the above weight 2 are added. By calculating the difference, the weight of the net second reagent can be calculated.
  • the weight calculation may be performed by the weight calculation unit. That is, when the sample or each reagent is dispensed into the reaction vessel (108), the automatic analyzer of the dispensed sample or each reagent is based on the weight before dispensing and the weight after dispensing.
  • a weight calculation unit may be provided for calculating the weight.
  • the weight calculation unit is composed of, for example, a weight measurement control unit (135).
  • the automatic analyzer may include a storage unit that stores the weight measured at each timing.
  • the storage unit is composed of, for example, a weight measurement control unit (135).
  • Example 7 The operation of the automatic analyzer according to the seventh embodiment will be described with reference to FIG.
  • Information representing the specific gravity of each component (for example, liquid) to be dispensed is registered in advance in the weight measurement control unit (135).
  • the automatic analyzer is equipped with a volume calculation unit.
  • This volume calculation unit calculates the volume of the sample or each reagent based on the weight of the sample or each reagent. For example, the volume of a sample can be calculated by dividing the weight calculated for the sample by the specific gravity of the sample.
  • the volume calculation unit is composed of, for example, a weight measurement control unit (135).
  • Example 7 not only the weight of the sample and each reagent but also the volume can be automatically measured.
  • the automatic analyzer includes a storage unit, which stores a specified amount range as shown in FIG. 12 for a sample or each reagent.
  • the storage unit is composed of, for example, a weight measurement control unit (135).
  • the specified amount range is the volume range, but the specified amount range may be the weight range.
  • This specified amount range represents the range of allowable error of each component.
  • two specified amount ranges of "range 1" and “range 2" are registered for each component, but the specified amount range may be one for each component.
  • the storage unit may store a standard amount (standard amount, for example, a standard volume amount) for the sample or each reagent.
  • the automatic analyzer is equipped with a judgment unit and an output unit.
  • the determination unit and the output unit are configured as, for example, a weight measurement control unit (135).
  • the determination unit determines whether or not the amount of the sample or each reagent is within the specified amount range based on the weight of the sample or each reagent and the specified amount range.
  • the output unit outputs the result of the determination by the determination unit.
  • FIG. 13 shows an example of determination processing and output processing using the specified amount range of FIG. In the example of FIG. 12, range 2 is wider than range 1.
  • the determination unit first determines whether or not the difference between the standard amount of the sample or each reagent and the measured amount of the sample or each reagent is included in the range 1. When the difference is included in the range 1, the output unit does not output the flag as the determination result.
  • the determination unit determines whether or not the difference is included in the range 2.
  • the output unit outputs a flag as a determination result. This flag indicates, for example, that the specified amount may not have been aspirated.
  • the output flag may be stored in the storage unit, or may be output to the user (using a display device or the like). Such a situation can be caused by a brief blockage of the flow path due to inhalation of fibrin.
  • the output unit When the difference exceeds the range 2, the output unit outputs a signal for canceling the subsequent processing as a judgment result. This corresponds to the case where a hardware abnormality such as a piping abnormality occurs in the device.
  • the standard volume of the first reagent is 60 ⁇ l and the volume calculated based on the weight of the first reagent is 20 ⁇ l. Since the error is -40 ⁇ l and exceeds the range 2, the subsequent processing is cancelled.
  • the standard volume of the sample is 30 ⁇ l and the volume calculated based on the weight is 28 ⁇ l.
  • the error is -2 ⁇ l, which exceeds the range 1 but is included in the range 2, so that the analysis result is flagged.
  • branching condition for the determination by the determination unit can be arbitrarily designed, and different branching conditions may be defined for each type in consideration of the influence on the performance for each reagent.
  • Example 8 when the amount of the sample or each reagent is not normal, appropriate treatment can be performed.
  • the number of reaction vessel moving portions for moving the reaction vessel (108) may be one or more.
  • one of the first reaction vessel transport main body (105) and the second reaction vessel transport main body (124) may be omitted, or three or more reaction vessel moving portions may be provided.
  • the number of weight measuring units for measuring the total weight of the reaction vessel (108) and the support unit may be one or more.
  • one of the first reaction vessel weight measuring mechanism (127) and the second reaction vessel weight measuring mechanism (131) may be omitted, or three or more weight measuring units may be provided.
  • Any strain sensor can be used as the weight measuring unit.
  • a method using the principle that physical properties change as the shape of a member changes can be used. More specifically, a method of measuring a change in the electrical resistance value caused by a change in the degree of expansion and contraction of the member may be used. Alternatively, a method of measuring the magnitude of strain (change in distance) using laser light, ultrasonic waves, or the like may be used.
  • a weight sensor other than the strain sensor may be used for the weight measuring unit.
  • a weight sensor of a method that acquires the weight of the measurement target by generating a force that is commensurate with the weight of the measurement target and measuring the magnitude of the force and the control amount for generating the force is used. Can be done.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided is an automated analyzer capable of highly accurately and inexpensively checking the weight of a sample or reagent dispensed into a reaction vessel. This automated analyzer comprises a reaction vessel (108) capable of accommodating a sample and reagent, a support part for supporting the entire weight of the reaction vessel, and a weight measurement unit for measuring the entire weight of the reaction vessel and support part. As shown in the examples, the support part and weight measurement unit can be designed in various ways.

Description

自動分析装置Automatic analyzer
 本発明は、自動分析装置に関する。 The present invention relates to an automatic analyzer.
 血液、尿等の生体由来試料に含まれる測定対象成分の定性・定量分析を行うため、試料(サンプル)に試薬を添加し、生化学的な反応をさせることによって濃度を測定する、自動分析装置が公知である。自動分析装置の例は、特許文献1~4に記載される。 An automatic analyzer that measures the concentration by adding a reagent to the sample and causing a biochemical reaction to perform qualitative and quantitative analysis of the components to be measured contained in the biological sample such as blood and urine. Is known. Examples of the automatic analyzer are described in Patent Documents 1 to 4.
 このような自動分析装置は、測定結果の再現性向上および測定の迅速化が図れるため、大病院、検査センタ等に普及している。その理由の一つとして、用手法と比較して、生化学的反応や抗原抗体反応に必要なサンプルと試薬とを高精度かつ迅速に自動分注可能であるという点が挙げられる。濃度測定は、規定液量のサンプルと試薬とを混合することによる反応により正確に行われるため、分注装置における分注量の正確性、再現性は分析性能の信頼性を確保するために重要である。特に、輸血を目的とした血液サンプルに対する血液検査においては、輸血による感染症のリスクを可能な限り低減することが好ましく、感染症項目の分析性能の信頼性が高度に求められる。 Such an automatic analyzer is widely used in large hospitals, inspection centers, etc. because it can improve the reproducibility of measurement results and speed up measurement. One of the reasons is that the samples and reagents required for biochemical reactions and antigen-antibody reactions can be automatically dispensed with high accuracy and speed, as compared with the conventional method. Since the concentration measurement is performed accurately by the reaction by mixing the sample and the reagent of the specified liquid volume, the accuracy and reproducibility of the dispensing amount in the dispensing device are important for ensuring the reliability of the analysis performance. Is. In particular, in a blood test for a blood sample for the purpose of blood transfusion, it is preferable to reduce the risk of infectious diseases due to blood transfusion as much as possible, and the reliability of analysis performance of infectious disease items is highly required.
 分析結果の信頼性が特に高度に求められる自動分析装置においては、装置内での分析工程について期待どおりの動作が実施されたかどうかを監視することにより、間接的に分析結果の正しさの確証を行うことが一般的である。特に、分析結果の正しさは、分析時の検体の液量および分析試薬の液量が期待どおりに混合されることが大前提になっており、分析結果の信頼性向上は、期待される分析工程が正しく実施されたかを確認することで実現できる。例えば検体分注時にフィブリンなどと検体を同時に分注すると、規定量の検体を分注することができない場合がある。 In an automatic analyzer that requires a high degree of reliability of analysis results, it is possible to indirectly confirm the correctness of the analysis results by monitoring whether or not the expected operation of the analysis process in the apparatus is performed. It is common to do. In particular, the correctness of the analysis results is based on the premise that the liquid volume of the sample and the liquid volume of the analytical reagent at the time of analysis are mixed as expected, and improvement in the reliability of the analysis results is expected. This can be achieved by confirming that the process was carried out correctly. For example, if fibrin and the like are dispensed at the same time as the sample is dispensed, it may not be possible to dispense the specified amount of the sample.
 分注装置においては、細いプローブ配管に接続する配管内の圧力を陰圧にすることで検体をブローブ配管に吸い込み、検体容器から検体をプローブ内に移すことで分注を実現する場合がある。このとき、プローブ配管内およびプローブ内の圧力を監視することで、フィブリンによる詰まりを監視する技術が知られている。このように、分析工程には、規定量の検体と試薬とをそれぞれ別容器から反応容器へ分注する分注工程が含まれる。 In the dispensing device, the sample may be sucked into the probe pipe by making the pressure in the pipe connected to the thin probe pipe negative, and the sample may be transferred from the sample container into the probe to realize dispensing. At this time, a technique for monitoring clogging due to fibrin by monitoring the pressure in the probe pipe and the probe is known. As described above, the analysis step includes a dispensing step of dispensing a predetermined amount of the sample and the reagent from separate containers to the reaction vessel.
 従来手法では、停止動作や流路状態監視など、分注機構の動作の正しさを確認することで、間接的に検体や試薬の量の確認を実現している。しかし、そのような分注機構の動作の結果として期待液量が正しく反応容器へ分注されたかを、直接的に、高精度にかつ安価に確認する手段がなかった。 In the conventional method, the amount of sample or reagent is indirectly confirmed by confirming the correctness of the operation of the dispensing mechanism such as stop operation and channel condition monitoring. However, there has been no means to directly, highly accurately and inexpensively confirm whether the expected amount of liquid has been correctly dispensed into the reaction vessel as a result of the operation of such a dispensing mechanism.
 近年、高齢化に伴う医療費の上昇により、分析に関わる検査コスト低減要求が高く、一回の分析に使用する検体および試薬の液量の低減を実現した自動分析装置が実現されている。混合される液量は、数マイクロリットルから数十マイクロリットルの範囲である。また、このような液量を収容し規定の反応を実現するために、容器が小型化している。また、容器にかかるコストを低減するため、容器自体の体積を低減するなど、反応容器自体の重量も反応液の重量と同じ程度に小さくなってきている。従って、特にこのような容器を含めた反応液の重量を正確に測定するためには、高精度な重量測定を実現する必要がある。 In recent years, due to the rise in medical costs due to the aging of the population, there is a high demand for reduction of test costs related to analysis, and an automatic analyzer that has realized a reduction in the amount of sample and reagent used for one analysis has been realized. The amount of liquid to be mixed ranges from a few microliters to a few tens of microliters. In addition, the container has been miniaturized in order to accommodate such a liquid amount and realize a specified reaction. Further, in order to reduce the cost of the container, the weight of the reaction vessel itself has become as small as the weight of the reaction solution, such as by reducing the volume of the vessel itself. Therefore, in order to accurately measure the weight of the reaction solution including such a container, it is necessary to realize highly accurate weight measurement.
 一方で、検査を行う施設には、クリニックや病院内の検査室、検査を専門とした大規模な検査センタなどがあり、必要とされる処理数は、1時間あたり50テスト~500テストと幅がある。自動分析装置においては、正確な分析のためにサンプルや試薬を規定の時間内に混合することが要求され、分析サイクルの一サイクル内で、検体分注および試薬分注が規定の決められた順番で実施されることが一般的である。たとえば2種類の試薬を用いる場合には、検体分注工程、第一試薬分注工程、および第二試薬分注工程の合計3工程を一サイクルとして実施する必要があり、各分注工程について重量測定工程を入れた場合には、単純計算で合計6工程を一サイクルとして実施する必要がある。この場合において、1時間あたり50テスト~500テストを実現するためには、単純計算で、1工程に充てられる時間は1.2秒~12秒程度となる。このように、処理能力に応じて重量測定に使用できる時間に幅がある。 On the other hand, the facilities that perform inspections include clinics, laboratories in hospitals, and large-scale inspection centers that specialize in inspections, and the number of processes required ranges from 50 to 500 tests per hour. There is. In an automatic analyzer, samples and reagents are required to be mixed within a specified time for accurate analysis, and sample dispensing and reagent dispensing are performed in a specified order within one cycle of the analysis cycle. It is generally carried out in. For example, when two types of reagents are used, it is necessary to carry out a total of three steps of the sample dispensing step, the first reagent dispensing step, and the second reagent dispensing step as one cycle, and the weight of each dispensing step is increased. When the measurement process is included, it is necessary to carry out a total of 6 processes as one cycle by simple calculation. In this case, in order to realize 50 tests to 500 tests per hour, the time allocated to one process is about 1.2 seconds to 12 seconds by simple calculation. In this way, there is a range of time that can be used for weight measurement depending on the processing capacity.
国際公開第2015/072358号International Publication No. 2015/072358 特開平11-094840JP-A-11-094840 特開2017-090242JP-A-2017-090242 特開2002-350450JP 2002-350450
 上述のように、従来の技術では、反応容器に分注された検体または試薬の重量を、高精度にかつ安価に確認する手段がないという問題があった。 As described above, the conventional technique has a problem that there is no means for confirming the weight of the sample or reagent dispensed into the reaction vessel with high accuracy and at low cost.
 そこで、本発明の目的は、反応容器に分注された検体または試薬の重量を、高精度にかつ安価に確認できる自動分析装置を提供することにある。 Therefore, an object of the present invention is to provide an automatic analyzer that can confirm the weight of a sample or a reagent dispensed into a reaction vessel with high accuracy and at low cost.
 本発明に係る自動分析装置は、
 検体および試薬を収容可能な反応容器と、
 前記反応容器の全重量を支持する支持部と、
 前記反応容器および前記支持部の全重量を測定する重量測定部と
を備える。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2019-051200号の開示内容を包含する。
The automatic analyzer according to the present invention is
A reaction vessel that can hold samples and reagents,
A support portion that supports the entire weight of the reaction vessel and
A weight measuring unit for measuring the total weight of the reaction vessel and the support unit is provided.
This specification includes the disclosure of Japanese Patent Application No. 2019-051200, which is the basis of the priority of the present application.
 本発明によれば、反応容器に分注された検体または試薬の重量を、高精度にかつ安価に確認できる。 According to the present invention, the weight of the sample or reagent dispensed into the reaction vessel can be confirmed with high accuracy and at low cost.
実施例1に係る自動分析装置の構成の例Example of configuration of automatic analyzer according to Example 1 複数の分析動作を並列的に実行する場合の処理の進行の例Example of processing progress when executing multiple analysis operations in parallel 実施例1に係る支持部および重量測定部の構成の例Example of configuration of support unit and weight measurement unit according to the first embodiment 複数の分析動作を並列的に実行する場合の、重量測定を含む処理の進行の例An example of the progress of a process including weight measurement when performing multiple analytical operations in parallel 実施例2に係る支持部および重量測定部の構成の例Example of configuration of support unit and weight measurement unit according to the second embodiment 実施例3に係る支持部および重量測定部の構成の例Example of configuration of support unit and weight measurement unit according to Example 3 実施例4に係る支持部および重量測定部の構成の例Example of configuration of support unit and weight measurement unit according to Example 4 試薬プローブが第一試薬を分注する場合の動作例Operation example when the reagent probe dispenses the first reagent 実施例5に係る支持部の構成の例Example of configuration of support portion according to Example 5 実施例6に係る支持部の動作の例Example of operation of the support portion according to the sixth embodiment 実施例7に係る自動分析装置の動作を説明する図The figure explaining the operation of the automatic analyzer which concerns on Example 7. 実施例8に係る自動分析装置の動作を説明する図The figure explaining the operation of the automatic analyzer which concerns on Example 8. 図12の規定量範囲を用いた判定処理および出力処理の例Example of judgment processing and output processing using the specified amount range in FIG.
 以下、本発明の実施例を添付図面に基づいて説明する。
[実施例1]
 まず、図1および図2を用いて本発明の実施例の前提となる自動分析に係る処理の具体例を説明し、次に、図3および図4を用いて実施例に係る重量測定部の構成について説明する。
Hereinafter, examples of the present invention will be described with reference to the accompanying drawings.
[Example 1]
First, a specific example of the process related to the automatic analysis, which is a premise of the embodiment of the present invention, will be described with reference to FIGS. 1 and 2, and then, with reference to FIGS. 3 and 4, the weight measuring unit according to the embodiment will be described. The configuration will be described.
 図1に、実施例1に係る自動分析装置の構成の例を示す。自動分析装置は、検体および試薬を収容可能な反応容器(108)を備える。また、自動分析装置は、反応容器(108)を移動させる反応容器移動部として、第一反応容器搬送本体部(105)および第二反応容器搬送本体部(124)を備える。反応容器(108)は、自動分析装置(より厳密には、たとえば装置筐体(110))に対して移動可能である。 FIG. 1 shows an example of the configuration of the automatic analyzer according to the first embodiment. The automated analyzer comprises a reaction vessel (108) capable of accommodating specimens and reagents. Further, the automatic analyzer includes a first reaction vessel transport main body (105) and a second reaction vessel transport main body (124) as reaction vessel moving portions for moving the reaction vessel (108). The reaction vessel (108) is movable with respect to an automated analyzer (more precisely, for example, the apparatus housing (110)).
 反応容器架設部(109)に置かれた反応容器(108)は、第一反応容器搬送本体部(105)によって、反応容器架設部(109)から、第一反応容器架設ポジション(119)へと移動され設置される。 The reaction vessel (108) placed in the reaction vessel erection portion (109) is moved from the reaction vessel erection portion (109) to the first reaction vessel erection position (119) by the first reaction vessel transport main body portion (105). Moved and installed.
 反応容器架設部(109)上に置かれた使い捨ての検体チップ(104)は、第一反応容器搬送本体部(105)の反応容器搬送部横移動機構(106)、および反応容器搬送部縦移動機構(107)によって移動し、検体チップ装着部(111)へと移動され設置される。 The disposable sample chip (104) placed on the reaction vessel erection unit (109) is moved vertically by the reaction vessel transport unit lateral movement mechanism (106) of the first reaction vessel transport main body (105) and the reaction vessel transport unit (106). It is moved by the mechanism (107), moved to the sample chip mounting portion (111), and installed.
 検体プローブ(103)は回転し、検体チップ装着部(111)にて検体チップ(104)をプローブ先端へ装着する。検体容器(102)は、搬送部(100)によって検体設置部(101)上へと搬送される。検体容器(102)に入った検体は、検体プローブ(103)で吸引される。 The sample probe (103) rotates, and the sample chip (104) is mounted on the probe tip at the sample chip mounting portion (111). The sample container (102) is transported onto the sample setting unit (101) by the transport unit (100). The sample contained in the sample container (102) is sucked by the sample probe (103).
 反応容器設置部(118)は回転し、第一反応容器架設ポジション(119)に設置された反応容器(108)を検体分注位置(120)まで移動させる。検体プローブ(103)は検体を吸引した後に回転し、検体分注位置(120)において規定液量の検体を反応容器(108)へ吐出する。検体を吐出した後、検体プローブ(103)はさらに回転し、検体チップ廃棄部(112)で使用済みの検体チップ(104)を廃棄する。 The reaction vessel installation unit (118) rotates to move the reaction vessel (108) installed in the first reaction vessel erection position (119) to the sample dispensing position (120). The sample probe (103) rotates after sucking the sample, and discharges a specified amount of the sample to the reaction vessel (108) at the sample dispensing position (120). After ejecting the sample, the sample probe (103) rotates further, and the used sample chip (104) is discarded by the sample chip discarding unit (112).
 試薬ディスク(114)上の試薬ボトル(115)は、試薬ディスク(114)の回転によって回転移動する。試薬ボトル(115)が試薬吸引位置(116)にある時に、試薬プローブ(113)によって試薬ボトル(115)から第一試薬が吸引される。次に、反応容器設置部(118)が回転し、反応容器(108)を試薬分注位置(122)まで移動させる。 The reagent bottle (115) on the reagent disc (114) rotates and moves by the rotation of the reagent disc (114). When the reagent bottle (115) is in the reagent suction position (116), the reagent probe (113) sucks the first reagent from the reagent bottle (115). Next, the reaction vessel installation unit (118) rotates to move the reaction vessel (108) to the reagent dispensing position (122).
 次に、試薬プローブ(113)は回転し、試薬分注位置(122)において規定液量の第一試薬を吐出する。反応容器設置部(118)は、37℃などの一定の温度となるよう温度制御されており、第一試薬は、検体内の特定抗原とのみ特異的に結合する抗体を含んでおり、反応容器設置部(118)に設置された反応容器(108)内において、検体と第一試薬とが抗原抗体反応を起こす。 Next, the reagent probe (113) rotates and discharges the specified amount of the first reagent at the reagent dispensing position (122). The temperature of the reaction vessel setting unit (118) is controlled so as to be a constant temperature such as 37 ° C., and the first reagent contains an antibody that specifically binds only to a specific antigen in the sample, and the reaction vessel. In the reaction vessel (108) installed in the installation unit (118), the sample and the first reagent cause an antigen-antibody reaction.
 第一試薬はあらかじめ抗体と蛍光物質が結合した成分となっている。一定時間が経過し、抗原抗体反応が十分進行した後、反応容器設置部(118)は、再度、試薬分注位置(122)へと反応容器(108)を移動させる。 The first reagent is a component in which an antibody and a fluorescent substance are bound in advance. After a certain period of time has elapsed and the antigen-antibody reaction has sufficiently progressed, the reaction vessel setting unit (118) moves the reaction vessel (108) to the reagent dispensing position (122) again.
 次に、試薬プローブ(113)は第二試薬を試薬ボトル(115)から吸引する。ここで、第一試薬の試薬ボトルと、第二試薬の試薬ボトルとは、個別に設けられていてもよい。試薬プローブ(113)は、試薬分注位置(122)において、反応容器(108)に第二試薬を分注する。 Next, the reagent probe (113) sucks the second reagent from the reagent bottle (115). Here, the reagent bottle of the first reagent and the reagent bottle of the second reagent may be provided separately. The reagent probe (113) dispenses the second reagent into the reaction vessel (108) at the reagent dispensing position (122).
 第二試薬は、前記抗原とのみ特異的に結合する抗体を含む試薬となっており、あらかじめ抗体と磁性粒子が結合した成分となっている。時間が経過し、抗原抗体反応が一定程度進行することで、検体中に存在する抗原には、磁性粒子と蛍光発光体に結合した最終反応物が十分量生成されている。 The second reagent is a reagent containing an antibody that specifically binds only to the antigen, and is a component in which the antibody and magnetic particles are bound in advance. As time passes and the antigen-antibody reaction proceeds to a certain extent, a sufficient amount of the final reaction product bound to the magnetic particles and the fluorescent illuminant is produced in the antigen present in the sample.
 次に、反応容器設置部(118)は、第二反応容器架設ポジション(121)まで回転移動する。第二反応容器搬送本体部(124)は、反応容器設置部(118)の反応容器(108)を反応容器洗浄位置(126)まで移動させる。 Next, the reaction vessel installation unit (118) rotates to the second reaction vessel erection position (121). The second reaction vessel transport main body (124) moves the reaction vessel (108) of the reaction vessel installation portion (118) to the reaction vessel cleaning position (126).
 反応容器洗浄位置(126)において、反応容器中の反応液内で抗体と結合した磁性粒子の磁性を利用し、反応容器の外側に設置した磁石で容器内に補足した状態で反応溶液を廃棄する。これによって、抗原以外の検体由来の物質を洗い流し除去し、最終反応物のみ反応溶液内に残存させるB/F分離を実施する。 At the reaction vessel washing position (126), the reaction solution is discarded while being supplemented in the vessel with a magnet installed outside the reaction vessel by utilizing the magnetism of the magnetic particles bound to the antibody in the reaction solution in the reaction vessel. .. As a result, substances derived from the sample other than the antigen are washed away and removed, and B / F separation is carried out so that only the final reaction product remains in the reaction solution.
 洗浄試薬プローブ(129)は、バッファ液を反応容器洗浄位置(126)にて吐出する。次に、第二反応容器搬送本体部(124)が、反応容器(108)を、反応容器設置部(118)の第二反応容器架設ポジション(121)まで移動させる。なお、第二反応容器搬送本体部(124)は、第二反応容器搬送部横移動機構(128)によって移動させることが可能である。 The cleaning reagent probe (129) discharges the buffer solution at the reaction vessel cleaning position (126). Next, the second reaction vessel transport main body (124) moves the reaction vessel (108) to the second reaction vessel erection position (121) of the reaction vessel installation portion (118). The second reaction vessel transport main body (124) can be moved by the second reaction vessel transport portion lateral movement mechanism (128).
 なお、自動分析装置は、反応容器洗浄槽(125)および洗浄プローブ洗浄槽(117)を備えてもよい。 The automatic analyzer may be provided with a reaction vessel cleaning tank (125) and a cleaning probe cleaning tank (117).
 次に、反応容器設置部(118)は回転し、反応容器(108)を反応容器分析吸引位置(123)まで移動させる。反応液吸引プローブ(132)は、反応容器分析吸引位置(123)にある反応容器(108)から反応液を吸引する。次に、反応液吸引プローブ(132)は、反応液を反応液分析部(130)へと送液し、蛍光体の発光量を測定する。 Next, the reaction vessel installation unit (118) rotates to move the reaction vessel (108) to the reaction vessel analysis suction position (123). The reaction solution suction probe (132) sucks the reaction solution from the reaction vessel (108) at the reaction vessel analysis suction position (123). Next, the reaction solution suction probe (132) sends the reaction solution to the reaction solution analysis unit (130) and measures the amount of light emitted from the phosphor.
 上述のような一連の動作は、機構動作制御部(133)によって制御される。分析動作制御部(134)は、蛍光体の発光量を取得し、発光量に基づいて分析を行い、分析結果を出力する。分析の際には、たとえば、検体の量を表す情報(規定液量情報)と、蛍光体の発光量および抗原の数が比例するという原理とが利用される。 The series of operations as described above is controlled by the mechanism operation control unit (133). The analysis operation control unit (134) acquires the amount of light emitted from the phosphor, performs analysis based on the amount of light emitted, and outputs the analysis result. In the analysis, for example, the principle that the information indicating the amount of the sample (specified liquid amount information) is proportional to the amount of light emitted from the phosphor and the number of antigens is used.
 ここまでが、検体について測定を行うための1回の分析動作の単位の例である。自動分析装置は、一度に複数回の分析動作を実施することができる。また、自動分析装置は、複数の分析動作を同時進行的に実施できるように、パイプライン的に機構動作制御部(133)が動作制御することができる。このような構成により、滞りなく複数検体の分析処理が可能となる。 The above is an example of a unit of one analysis operation for measuring a sample. The automatic analyzer can perform the analysis operation a plurality of times at a time. Further, in the automatic analyzer, the mechanism operation control unit (133) can control the operation in a pipeline so that a plurality of analysis operations can be performed simultaneously. With such a configuration, it is possible to analyze a plurality of samples without delay.
 ここで、分析動作にかかる時間について説明する。1回の分析動作は、検体分注工程、第一試薬分注工程、第二試薬分注工程、洗浄工程、分析工程という5つの工程を含み、相当程度の時間を要する。たとえば1回の分析動作に10分を要するとすると仮定すると、複数の分析動作を逐次的に実行する場合には、3回の分析動作を行うためには30分が必要となる。 Here, the time required for the analysis operation will be explained. One analysis operation includes five steps of sample dispensing step, first reagent dispensing step, second reagent dispensing step, washing step, and analysis step, and requires a considerable amount of time. For example, assuming that one analysis operation takes 10 minutes, when a plurality of analysis operations are sequentially executed, 30 minutes are required to perform three analysis operations.
 図2に、複数の分析動作を並列的に実行する場合の処理の進行の例を示す。各検体に対して5つの工程が必要である。まず、時刻1において検体1の処理1を実行する。次に、時刻2において、検体1の処理2と、検体2の処理1とを同時に実行する。次に、時刻3において、検体1の処理3と、検体2の処理2と、検体3の処理1とを同時に実行する。図2の太枠内に示すように、時刻5において、全ての処理1~5が、それぞれ異なる検体について同時に実行されることになる。このように検体1から検体5までを処理することにより、5個の検体に対して5個の処理を並行して実行することができ、複数の分析動作を30分よりも短い時間で実行することができる。 FIG. 2 shows an example of the progress of processing when a plurality of analysis operations are executed in parallel. Five steps are required for each sample. First, the process 1 of the sample 1 is executed at time 1. Next, at time 2, the process 2 of the sample 1 and the process 1 of the sample 2 are executed at the same time. Next, at time 3, the process 3 of the sample 1, the process 2 of the sample 2, and the process 1 of the sample 3 are executed at the same time. As shown in the thick frame of FIG. 2, at time 5, all the processes 1 to 5 are executed simultaneously for different samples. By processing Specimen 1 to Specimen 5 in this way, 5 processes can be executed in parallel for 5 Specimens, and a plurality of analytical operations can be executed in a time shorter than 30 minutes. be able to.
 説明のため、処理1を検体分注工程、処理2を第一試薬分注工程、処理3を第二試薬分注工程、処理4を洗浄工程、処理5を分析工程とすると、図1に示したとおり、全ての処理工程で反応容器設置部(118)が共有されている。これを実現するために、反応容器設置部(118)には複数の反応容器(108)が設置され、反応容器設置部(118)が回転することにより、各反応容器(108)が各時刻において適切な位置に移動される。これらの位置は、検体分注位置(120)と、試薬分注位置(122)と、第二反応容器架設ポジション(121)と、反応容器分析吸引位置(123)とを含む。 For the sake of explanation, FIG. 1 shows that processing 1 is a sample dispensing step, treatment 2 is a first reagent dispensing step, treatment 3 is a second reagent dispensing step, treatment 4 is a washing step, and treatment 5 is an analysis step. As you can see, the reaction vessel installation unit (118) is shared in all processing steps. In order to realize this, a plurality of reaction vessels (108) are installed in the reaction vessel installation unit (118), and each reaction vessel (108) is rotated at each time by rotating the reaction vessel installation unit (118). Moved to the proper position. These positions include a sample dispensing position (120), a reagent dispensing position (122), a second reaction vessel erection position (121), and a reaction vessel analysis suction position (123).
 1回の分析動作を60秒で完了させる場合、すなわち分析動作を60秒周期で実行する場合には、各工程に割り当てることができる時間は平均12秒となる。 When one analysis operation is completed in 60 seconds, that is, when the analysis operation is executed in a cycle of 60 seconds, the time that can be allocated to each process is 12 seconds on average.
 次に、実施例1に係る重量測定部の構成および動作について説明する。図1に示すように、実施例1に係る自動分析装置は、第一反応容器重量測定機構(127)および第二反応容器重量測定機構(131)を備える。これらの重量測定機構は、自動分析装置(より厳密には、たとえば装置筐体(110))に対して固定される。 Next, the configuration and operation of the weight measuring unit according to the first embodiment will be described. As shown in FIG. 1, the automatic analyzer according to the first embodiment includes a first reaction vessel weight measurement mechanism (127) and a second reaction vessel weight measurement mechanism (131). These weighing mechanisms are fixed to an automatic analyzer (more precisely, for example, the device housing (110)).
 図3に、実施例1に係る支持部および重量測定部の構成の例を示す。この例はたとえば第二反応容器重量測定機構(131)の構成を表す。図3では、反応容器(108)が第二反応容器重量測定機構(131)に設置された状態の断面を示している。反応容器(108)は、反応液(301)を含んでいるとする。 FIG. 3 shows an example of the configuration of the support unit and the weight measurement unit according to the first embodiment. This example represents, for example, the configuration of the second reaction vessel weight measuring mechanism (131). FIG. 3 shows a cross section of the reaction vessel (108) installed in the second reaction vessel weight measurement mechanism (131). It is assumed that the reaction vessel (108) contains the reaction solution (301).
 第二反応容器重量測定機構(131)は、装置筐体(110)と、反応容器収容部(300)と、接続部(302)と、歪体(303)と、歪センサ(304)と、歪体固定部(305)とを備える。歪センサ(304)は、本実施例における重量測定部である。 The second reaction vessel weight measurement mechanism (131) includes an apparatus housing (110), a reaction vessel accommodating portion (300), a connection portion (302), a strain body (303), a strain sensor (304), and the like. It is provided with a strain fixing portion (305). The strain sensor (304) is a weight measuring unit in this embodiment.
 反応容器収容部(300)および接続部(302)は一体として固定されており、反応容器(108)の全体すなわち全重量を支持する支持部として構成される。図3の例では、反応容器(108)を収容することによって支持している。 The reaction vessel accommodating portion (300) and the connecting portion (302) are fixed as a unit, and are configured as a support portion that supports the entire reaction vessel (108), that is, the entire weight. In the example of FIG. 3, it is supported by accommodating the reaction vessel (108).
 反応容器収容部(300)は、接続部(302)を介して歪体(303)に結合される。歪体(303)は、接続部(302)および歪体固定部(305)とのみ接続する。説明の簡単にするため、歪体(303)はここでは湾曲した直方体の梁形状としているが、歪体(303)形状および構成は、接続部からの重量によって歪むものであれば任意に設計可能である。たとえばダイヤフラムのような形状であってもよい。 The reaction vessel accommodating portion (300) is coupled to the strain body (303) via the connecting portion (302). The strain body (303) is connected only to the connecting portion (302) and the strain body fixing portion (305). For the sake of simplicity, the strained body (303) is a curved rectangular parallelepiped beam shape here, but the strained body (303) shape and configuration can be arbitrarily designed as long as it is distorted by the weight from the connection part. Is. For example, it may have a shape like a diaphragm.
 歪体(303)には歪センサ(304)が取り付けられている。歪センサ(304)は、歪体(303)の歪量を測定することができる。歪センサ(304)の出力についてはとくに図示しないが、たとえば図1の重量測定制御部(135)に対して歪量を表す信号が送信されるよう構成されている。 A strain sensor (304) is attached to the strain body (303). The strain sensor (304) can measure the amount of strain of the strain body (303). Although the output of the strain sensor (304) is not particularly shown, it is configured to transmit a signal representing the amount of strain to the weight measurement control unit (135) of FIG. 1, for example.
 反応容器収容部(300)は、底部および周壁部を備えており、反応容器(108)が他のいかなる支持構造等にも接触しない状態で、反応容器(108)を支持することが可能な構成である。このため、反応容器収容部(300)は、反応容器(108)と、存在する場合にはその内容物との、全重量を支持することができる。 The reaction vessel accommodating portion (300) is provided with a bottom portion and a peripheral wall portion, and can support the reaction vessel (108) in a state where the reaction vessel (108) does not come into contact with any other support structure or the like. Is. Therefore, the reaction vessel container (300) can support the total weight of the reaction vessel (108) and its contents, if any.
 なお、比較例として、反応容器収容部が反応容器の底部のみを支持し、他の独立した構造が反応容器の側面を支持する(たとえば壁にもたせかけるように支持する)ような構成では、側面において静止摩擦が発生するため、反応容器収容部は反応容器の全重量を支持することができない場合がある。 As a comparative example, in a configuration in which the reaction vessel housing portion supports only the bottom portion of the reaction vessel and another independent structure supports the side surface of the reaction vessel (for example, the side surface is supported so as to lean against the wall). Since static friction occurs in the reaction vessel, the reaction vessel housing may not be able to support the entire weight of the reaction vessel.
 次に、第二反応容器重量測定機構(131)を用いた重量測定動作の例について説明する。検体プローブ(103)が検体を検体分注位置(120)で分注した後、反応容器設置部(118)が回転し、反応容器(108)を第一反応容器架設ポジション(119)へと移動させる。次に、第一反応容器搬送本体部(105)が、反応容器(108)を、第一反応容器架設ポジション(119)から第二反応容器重量測定機構(131)へと移動させる。 Next, an example of a weight measurement operation using the second reaction vessel weight measurement mechanism (131) will be described. After the sample probe (103) dispenses the sample at the sample dispensing position (120), the reaction vessel setting unit (118) rotates and the reaction vessel (108) is moved to the first reaction vessel erection position (119). Let me. Next, the first reaction vessel transport main body (105) moves the reaction vessel (108) from the first reaction vessel erection position (119) to the second reaction vessel weight measurement mechanism (131).
 反応容器(108)は、反応容器収容部(300)によって、反応液(301)がこぼれないよう支持される。歪体(303)が、接続部(302)から伝わる重量を受けて歪み、その歪んだ量(または歪の変化量)が、歪センサ(304)によって計測される。 The reaction vessel (108) is supported by the reaction vessel housing (300) so that the reaction solution (301) does not spill. The strain body (303) is distorted by receiving the weight transmitted from the connection portion (302), and the amount of the distortion (or the amount of change in the strain) is measured by the strain sensor (304).
 より詳しくは、反応容器(108)が存在しない状態では、歪センサ(304)は、反応容器収容部(300)および接続部(302)のみの重量に応じて歪体(303)に発生する歪量を測定する。また、反応容器(108)が反応容器収容部(300)によって支持されている状態では、歪センサ(304)は、反応容器収容部(300)と、接続部(302)と、反応容器(108)と、存在する場合にはその内容物(たとえば反応液(301))との重量に応じて歪体(303)に発生する歪量を測定する。 More specifically, in the absence of the reaction vessel (108), the strain sensor (304) causes the strain (303) to generate strain according to the weight of only the reaction vessel accommodating portion (300) and the connecting portion (302). Measure the amount. Further, in a state where the reaction vessel (108) is supported by the reaction vessel accommodating portion (300), the strain sensor (304) has the reaction vessel accommodating portion (300), the connection portion (302), and the reaction vessel (108). ) And its contents (for example, reaction solution (301)), if present, the amount of strain generated in the strain body (303) is measured.
 図3の例では、歪体(303)において歪センサ(304)が取り付けられる位置は、歪体(303)が歪体固定部(305)と接続する部分(根本)付近である。このようにすると、もっとも歪が大きくなる位置で歪を測定することができる。しかしながら、歪センサ(304)の位置はこれに限定されず、重量に応じて歪む場所であれば、歪体(303)の表面、裏面、その他任意の位置に取り付けることができる。 In the example of FIG. 3, the position where the strain sensor (304) is attached to the strain body (303) is near the portion (root) where the strain body (303) is connected to the strain body fixing portion (305). In this way, the strain can be measured at the position where the strain is the largest. However, the position of the strain sensor (304) is not limited to this, and the strain sensor (304) can be attached to the front surface, the back surface, or any other position as long as it is distorted according to the weight.
 歪量について説明する。歪体(303)をステンレス製(ヤング率(E)193GPa)の板ばねの梁で構成した場合、梁の先端に印加される力F[N]と梁の反対側の先端の表面に発生する歪量εとの関係は、以下の式で表されることが知られている。
Figure JPOXMLDOC01-appb-M000001

ただし、bは歪体(303)の幅であり、たとえばb=6[mm]である。Lは歪体(303)の長さであり、たとえばL=40[mm]である。hは歪体(303)の厚みであり、たとえばh=0.5[mm]である。
The amount of strain will be described. When the strain body (303) is composed of a beam of a leaf spring made of stainless steel (Young's modulus (E) 193 GPa), the force F [N] applied to the tip of the beam is generated on the surface of the tip opposite to the beam. It is known that the relationship with the strain amount ε is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001

However, b is the width of the strained body (303), for example, b = 6 [mm]. L is the length of the strained body (303), for example, L = 40 [mm]. h is the thickness of the strained body (303), for example, h = 0.5 [mm].
 検体量に相当する反応溶液の液量が4μlの場合、一例として歪量は0.032μSTとなる。歪センサ(304)として120Ωの抵抗体(ゲージファクタ2)を用いた場合には、抵抗値の変化は約8μΩとなる。 When the amount of the reaction solution corresponding to the amount of the sample is 4 μl, the amount of strain is 0.032 μST as an example. When a 120Ω resistor (gauge factor 2) is used as the strain sensor (304), the change in resistance value is about 8 μΩ.
 歪センサ(304)は、この抵抗値の変化量を表す信号を重量測定制御部(135)に送信する。歪センサ(304)は、抵抗値の変化量を、電気信号に変換してから送信してもよい。抵抗値の変化は、たとえばブリッジ回路によってDC信号として電圧変換してもよいし、周波数回路を接続してそのインピーダンス変化に変換してもよい。 The strain sensor (304) transmits a signal indicating the amount of change in the resistance value to the weight measurement control unit (135). The strain sensor (304) may convert the amount of change in the resistance value into an electric signal and then transmit the signal. The change in resistance value may be converted into a voltage as a DC signal by a bridge circuit, for example, or may be converted into an impedance change by connecting a frequency circuit.
 このようにして、第一反応容器重量測定機構(127)および第二反応容器重量測定機構(131)は、反応容器(108)、反応容器収容部(300)および接続部(302)の全重量を測定する。この場合において、反応容器(108)に内容物が収容されている場合には、その内容物の重量も全重量に含まれる。 In this way, the first reaction vessel weight measuring mechanism (127) and the second reaction vessel weight measuring mechanism (131) are the total weights of the reaction vessel (108), the reaction vessel accommodating portion (300), and the connecting portion (302). To measure. In this case, when the contents are contained in the reaction vessel (108), the weight of the contents is also included in the total weight.
 自動分析装置は、歪量から重量への変換を行ってもよい。変換に係る具体的な処理は、歪センサに関する公知技術等に基づき、適宜設計することができる。また、各段階において測定された重量から特定成分の重量を算出するための方法も、公知技術に基づいて適宜設計することができる。 The automatic analyzer may convert the amount of strain into weight. The specific processing related to the conversion can be appropriately designed based on a known technique or the like related to the distortion sensor. Further, a method for calculating the weight of a specific component from the weight measured at each stage can also be appropriately designed based on a known technique.
 歪体(303)の形状や材料は、振動制定時間や検出回路系のノイズ状況を考慮し、任意に設計可能である。別の形状や材料でもよい。たとえば、同じ材料を使用して、同じ重量変化に対して歪量を変更したい場合は、板ばねの幅(b)を半分にすれば、歪が2倍になる。また、形状を同じとするのであれば、ヤング率が異なる金属材料や、樹脂材料を用いてもよい。 The shape and material of the strain body (303) can be arbitrarily designed in consideration of the vibration establishment time and the noise condition of the detection circuit system. It may have a different shape or material. For example, if the same material is used and the strain amount is to be changed for the same weight change, the strain can be doubled by halving the width (b) of the leaf spring. Further, as long as the shapes are the same, metal materials or resin materials having different Young's moduluss may be used.
 第二反応容器重量測定機構(131)の位置は図1に示すものに限定されない。反応容器(108)を反応容器設置部(118)から移動することができる範囲であれば、任意の位置に配置してもよい。なお、第一反応容器重量測定機構(127)は、第二反応容器搬送本体部(124)が移動可能な範囲内に配置されており、第二反応容器搬送本体部(124)は、反応容器(108)を、第一反応容器重量測定機構(127)へと移動させることができる。 The position of the second reaction vessel weight measuring mechanism (131) is not limited to that shown in FIG. The reaction vessel (108) may be arranged at any position as long as it can be moved from the reaction vessel installation portion (118). The first reaction vessel weight measuring mechanism (127) is arranged within a range in which the second reaction vessel transport main body (124) can be moved, and the second reaction vessel transport main body (124) is the reaction vessel. (108) can be moved to the first reaction vessel weight measuring mechanism (127).
 ここでは検体分注後の重量測定を例にして説明したが、分析動作の他の段階での重量測定も同様に可能である。たとえば第一試薬または第二試薬を分注した後に重量を測定してもよい。たとえば、試薬プローブ(113)が反応容器(108)に試薬分注位置(122)で第一試薬もしくは第二試薬を分注した後に、反応容器設置部(118)が回転して反応容器(108)を第一反応容器架設ポジション(119)もしくは第二反応容器架設ポジション(121)に移動させ、その後に反応容器(108)が第一反応容器重量測定機構(127)もしくは第二反応容器重量測定機構(131)へと移動されることにより、重量を測定することができる。また、洗浄試薬プローブ(129)によってバッファが分注された後の反応液の重量測定も、検体プローブおよび試薬プローブによる分注後の反応液を測定する場合と同様にして実行することができる。さらに、反応容器(108)に検体が分注される前の状態(たとえば空の状態)で、同様の重量測定を行ってもよい。 Although the weight measurement after dispensing the sample has been described here as an example, the weight measurement at other stages of the analysis operation is also possible. For example, the first reagent or the second reagent may be dispensed and then weighed. For example, after the reagent probe (113) dispenses the first reagent or the second reagent into the reaction vessel (108) at the reagent dispensing position (122), the reaction vessel installation unit (118) rotates and the reaction vessel (108) rotates. ) Is moved to the first reaction vessel erection position (119) or the second reaction vessel erection position (121), after which the reaction vessel (108) measures the first reaction vessel weight measurement mechanism (127) or the second reaction vessel weight measurement. The weight can be measured by being moved to the mechanism (131). Further, the weight measurement of the reaction solution after the buffer is dispensed by the washing reagent probe (129) can be performed in the same manner as in the case of measuring the reaction solution after dispensing by the sample probe and the reagent probe. Further, the same weight measurement may be performed in a state (for example, an empty state) before the sample is dispensed into the reaction vessel (108).
 このように、実施例1に係る自動分析装置によれば、反応容器(108)に分注された検体または試薬の重量を、高精度にかつ安価に確認できる。 As described above, according to the automatic analyzer according to Example 1, the weight of the sample or reagent dispensed into the reaction vessel (108) can be confirmed with high accuracy and at low cost.
 図4に、複数の分析動作を並列的に実行する場合の、重量測定を含む処理の進行の例を示す。図2と同様に、処理1を検体分注工程、処理2を第一試薬分注工程、処理3を第二試薬分注工程、処理4を洗浄工程、処理5を分析工程とする。さらに、図4では、処理Gを重量測定工程とする。10個の検体に対する分析動作が示されている。 FIG. 4 shows an example of the progress of processing including weight measurement when a plurality of analysis operations are executed in parallel. Similar to FIG. 2, treatment 1 is a sample dispensing step, treatment 2 is a first reagent dispensing step, treatment 3 is a second reagent dispensing step, treatment 4 is a washing step, and treatment 5 is an analysis step. Further, in FIG. 4, the process G is a weight measurement step. The analytical operation for 10 samples is shown.
 図4に示したとおり、処理1~処理5それぞれの工程の後で重量測定工程(処理G)が実施されるので、1つの検体について必要な処理は全部で10工程となる。処理1(検体分注工程)を、60秒に1回、繰り返し実施した場合(処理能力60テスト/h)には、10工程を60秒で完了させる必要があり、各工程に割り当てることができる時間は平均6秒となる。 As shown in FIG. 4, since the weight measurement step (treatment G) is carried out after each of the steps 1 to 5, the total number of treatments required for one sample is 10 steps. When process 1 (sample dispensing step) is repeated once every 60 seconds (processing capacity 60 test / h), 10 steps need to be completed in 60 seconds and can be assigned to each step. The average time is 6 seconds.
 図4の例では、説明のため全ての処理1~処理5それぞれの工程の後に重量測定を実施する例を示した。しかし、重量測定は1サイクル中に少なくとも1回実施されればよい。また、処理能力を優先したい場合等には、ある特定の分注工程後のみ重量測定を実施してもよい。 In the example of FIG. 4, for the sake of explanation, an example in which weight measurement is performed after each step of all processes 1 to 5 is shown. However, the weight measurement may be performed at least once in one cycle. Further, when it is desired to prioritize the processing capacity, the weight measurement may be performed only after a specific dispensing step.
 また、装置由来の機構振動が重量測定部に与える影響を小さくするため、装置の機構部が動作していない時間帯で重量測定を行ってもよい。また、歪体固定部(305)は図3では装置筐体(110)と直接的に接続しているけれども、装置からの振動により歪センサにノイズが乗る場合は、減衰のための振動減衰材料や弾性体を介して接続してもよい。 Further, in order to reduce the influence of the mechanical vibration derived from the device on the weight measuring unit, the weight may be measured during the time when the mechanical unit of the device is not operating. Further, although the strain body fixing portion (305) is directly connected to the device housing (110) in FIG. 3, when noise is added to the strain sensor due to vibration from the device, a vibration damping material for damping is used. Or may be connected via an elastic body.
 また、歪センサ(304)またはその周辺において、通電直後にセンサ検出系の自己発熱等により信号出力の再現性が悪くなる場合には、通電直後の時間帯を避け、重量計算のもとになる歪センサ(304)からの信号取得タイミングを任意に選択してもよい。 In addition, if the signal output reproducibility deteriorates due to self-heating of the sensor detection system immediately after energization in the strain sensor (304) or its surroundings, avoid the time zone immediately after energization and use it as a basis for weight calculation. The signal acquisition timing from the distortion sensor (304) may be arbitrarily selected.
[実施例2]
 図5に、実施例2に係る支持部および重量測定部の構成の例を示す。本実施例では、支持部および重量測定部は、反応容器移動部(たとえば第一反応容器搬送本体部(105)および第二反応容器搬送本体部(124))に設けられる。反応容器移動部に固定されていてもよい。
[Example 2]
FIG. 5 shows an example of the configuration of the support unit and the weight measurement unit according to the second embodiment. In this embodiment, the support portion and the weight measuring portion are provided in the reaction vessel moving portion (for example, the first reaction vessel transport main body portion (105) and the second reaction vessel transport main body portion (124)). It may be fixed to the reaction vessel moving part.
 この例はたとえば第一反応容器搬送本体部(105)に係る構成を示す。第一反応容器搬送本体部(105)は、重量測定部としての歪センサ(304)を備える。 This example shows, for example, the configuration related to the first reaction vessel transport main body (105). The first reaction vessel transport main body (105) includes a strain sensor (304) as a weight measuring unit.
 反応容器(108)に検体を分注した後、反応容器設置部(118)が、検体分注位置(120)から第一反応容器架設ポジション(119)へ反応容器(108)を移動する。第一反応容器搬送本体部(105)は、反応容器(108)を、反応容器設置部(118)の第一反応容器架設ポジション(119)へ移動する。 After the sample is dispensed into the reaction vessel (108), the reaction vessel installation unit (118) moves the reaction vessel (108) from the sample dispensing position (120) to the first reaction vessel erection position (119). The first reaction vessel transport main body (105) moves the reaction vessel (108) to the first reaction vessel erection position (119) of the reaction vessel installation portion (118).
 第一反応容器搬送本体部(105)は、把持部を備えており、反応容器(108)を移動させる際に、反応容器(108)を把持して引き上げることができる。把持部は、たとえば第一把持部(502)および第二把持部(504)によって構成され、これら2つの把持部が両側から反応容器(108)を挟み込むことで、反応容器(108)を引き上げる際に把持できるように構成されている。 The first reaction vessel transport main body (105) is provided with a grip portion, and when the reaction vessel (108) is moved, the reaction vessel (108) can be gripped and pulled up. The grip portion is composed of, for example, a first grip portion (502) and a second grip portion (504), and when these two grip portions sandwich the reaction vessel (108) from both sides, the reaction vessel (108) is pulled up. It is configured so that it can be gripped.
 図5(a)に示すように、解放時には第一把持部(502)および第二把持部(504)の間隔が比較的大きく、反応容器(108)は把持されない。一方、図5(b)に示すように、移動時には第一把持部(502)および第二把持部(504)の間隔が比較的小さく、反応容器(108)が把持される。把持力は、たとえば反応容器(108)およびその内容物の重量を、摩擦により十分保持できる程度に設計される。 As shown in FIG. 5A, the distance between the first grip portion (502) and the second grip portion (504) is relatively large at the time of release, and the reaction vessel (108) is not gripped. On the other hand, as shown in FIG. 5B, the distance between the first grip portion (502) and the second grip portion (504) is relatively small during movement, and the reaction vessel (108) is gripped. The gripping force is designed so that, for example, the weight of the reaction vessel (108) and its contents can be sufficiently held by friction.
 このような動作を可能とするために、たとえば第一ばね(503)が用いられる。第一ばね(503)の両端は、それぞれ第一把持部(502)および第二把持部(504)に固定されており、互いを近づける向きに付勢する。 For example, a first spring (503) is used to enable such an operation. Both ends of the first spring (503) are fixed to the first grip portion (502) and the second grip portion (504), respectively, and urge the first spring (503) to approach each other.
 一方、第一反応容器搬送本体部(105)は、筐体(500)と、開閉機構爪(505)と、開閉機構とを備える。開閉機構は、開閉機構本体(507)と、開閉機構シリンダ(506)とを備えており、開閉機構シリンダ(506)が移動することにより開閉機構が伸縮するよう構成される。開閉機構は筐体(500)に固定される。 On the other hand, the first reaction vessel transport main body (105) includes a housing (500), an opening / closing mechanism claw (505), and an opening / closing mechanism. The opening / closing mechanism includes an opening / closing mechanism main body (507) and an opening / closing mechanism cylinder (506), and the opening / closing mechanism is configured to expand and contract as the opening / closing mechanism cylinder (506) moves. The opening / closing mechanism is fixed to the housing (500).
 また、第二ばね(508)の両端が、それぞれ筐体(500)および開閉機構爪(505)に固定されており、互いを近づける向きに付勢する。図5(a)に示すように、解放時には開閉機構シリンダ(506)が開閉機構本体(507)内部へ収納されており、開閉機構シリンダ(506)は開閉機構爪(505)と接触していない。 Further, both ends of the second spring (508) are fixed to the housing (500) and the opening / closing mechanism claw (505), respectively, and urge the second spring (508) to approach each other. As shown in FIG. 5A, the opening / closing mechanism cylinder (506) is housed inside the opening / closing mechanism main body (507) at the time of release, and the opening / closing mechanism cylinder (506) is not in contact with the opening / closing mechanism claw (505). ..
 この状態では、開閉機構爪(505)は第二ばね(508)によって筐体(500)に向かって引き付けられる。このため、第二把持部(504)は第一把持部(502)と反対の方向へと押し出され、第一把持部(502)と第二把持部(504)との間に、反応容器(108)が挿入されるのに十分な空間を作り出している。 In this state, the opening / closing mechanism claw (505) is attracted toward the housing (500) by the second spring (508). Therefore, the second grip portion (504) is pushed out in the direction opposite to that of the first grip portion (502), and the reaction vessel (reaction vessel (504) is placed between the first grip portion (502) and the second grip portion (504). It creates enough space for 108) to be inserted.
 図5(b)に示すように、移動時、すなわち、第一反応容器搬送本体部(105)が反応容器(108)をつかむ場合には、開閉機構シリンダ(506)が開閉機構本体(507)より押し出され、これによって、開閉機構爪(505)が、第二ばね(508)の力に打ち勝って筐体(500)と反対の方向に押し出される。 As shown in FIG. 5 (b), when moving, that is, when the first reaction vessel transport main body (105) grips the reaction vessel (108), the opening / closing mechanism cylinder (506) is the opening / closing mechanism main body (507). It is pushed out more, whereby the opening / closing mechanism claw (505) overcomes the force of the second spring (508) and is pushed out in the direction opposite to the housing (500).
 この時、第一ばね(503)は、開閉機構爪(505)によって引き延ばされていた力が解放されることによって収縮する。これによって、第一把持部(502)と第二把持部(504)とが、その間にある反応容器(108)を挟みこみ把持する。 At this time, the first spring (503) contracts when the force stretched by the opening / closing mechanism claw (505) is released. As a result, the first grip portion (502) and the second grip portion (504) sandwich and grip the reaction vessel (108) between them.
 第一把持部(502)は、接続部(501)を介してのみ歪体(303)と接続している。接続部(501)は、把持部の一部を構成するものであってもよい。本実施例では、接続部(501)と、第一把持部(502)と、第二把持部(504)と、第一ばね(503)とが、反応容器(108)の全体すなわち全重量を支持する支持部を構成する。 The first grip portion (502) is connected to the strain body (303) only via the connecting portion (501). The connecting portion (501) may form a part of the grip portion. In this embodiment, the connecting portion (501), the first grip portion (502), the second grip portion (504), and the first spring (503) determine the total weight of the reaction vessel (108). It constitutes a support part to support.
 第一反応容器搬送本体部(105)が鉛直方向へ移動することによって、反応容器(108)は反応容器設置部(118)より引き上げられる。この時、反応容器(108)の重量に応じた歪が歪体(303)に発生する。歪体(303)は、歪体固定部(305)とのみ接続しており、歪体(303)に設けた歪センサ(304)によって反応容器(108)の重量に応じた信号が出力される。 The reaction vessel (108) is pulled up from the reaction vessel installation portion (118) by moving the first reaction vessel transport main body portion (105) in the vertical direction. At this time, strain corresponding to the weight of the reaction vessel (108) is generated in the strain body (303). The strain body (303) is connected only to the strain body fixing portion (305), and a signal corresponding to the weight of the reaction vessel (108) is output by the strain sensor (304) provided on the strain body (303). ..
 このように、実施例2に係る自動分析装置によれば、実施例1と同様に、反応容器(108)に分注された検体または試薬の重量を、高精度にかつ安価に確認できる。 As described above, according to the automatic analyzer according to Example 2, the weight of the sample or reagent dispensed into the reaction vessel (108) can be confirmed with high accuracy and at low cost as in Example 1.
[実施例3]
 図6に、実施例3に係る支持部および重量測定部の構成の例を示す。実施例3に係る自動分析装置は、反応容器移動部(すなわち第一反応容器搬送本体部(105)および第二反応容器搬送本体部(124))とは別体の反応容器引上部を備える点で、実施例2と相違する。
[Example 3]
FIG. 6 shows an example of the configuration of the support unit and the weight measurement unit according to the third embodiment. The automatic analyzer according to the third embodiment includes a reaction vessel pulling portion that is separate from the reaction vessel moving portion (that is, the first reaction vessel transport main body portion (105) and the second reaction vessel transport main body portion (124)). So, it is different from Example 2.
 反応容器引上部は、反応容器(108)を引き上げるために設けられる。引き上げられた反応容器(108)は、反応容器移動部によってさらに移動することができる。本実施例では、支持部および重量測定部は、反応容器引上部に設けられる。 The reaction vessel pull-up portion is provided to pull up the reaction vessel (108). The raised reaction vessel (108) can be further moved by the reaction vessel moving section. In this embodiment, the support part and the weight measuring part are provided on the upper part of the reaction vessel.
 支持部および重量測定部の構成は、実施例2と同様である。解放時には開閉機構本体(610)の開閉機構シリンダ(609)は開閉機構本体(610)内部へ収納されており、開閉機構シリンダ(609)は開閉機構爪(608)と接触していない。開閉機構爪(608)は第三ばね(611)によって引上機構筐体(600)へ引き付けられており、その力によって第二把持部(607)を第一把持部(605)と反対側へ押し出している。これによって、第一把持部(605)と第二把持部(607)との間に、反応容器(108)が入るだけの十分な空間を作り出している。 The configuration of the support unit and the weight measurement unit is the same as in the second embodiment. At the time of release, the opening / closing mechanism cylinder (609) of the opening / closing mechanism main body (610) is housed inside the opening / closing mechanism main body (610), and the opening / closing mechanism cylinder (609) is not in contact with the opening / closing mechanism claw (608). The opening / closing mechanism claw (608) is attracted to the pulling mechanism housing (600) by the third spring (611), and the force causes the second grip portion (607) to move to the opposite side of the first grip portion (605). Extruded. This creates a sufficient space between the first grip portion (605) and the second grip portion (607) for the reaction vessel (108) to enter.
 重量測定時、すなわち反応容器(108)をつかむ場合には、開閉機構シリンダ(609)が開閉機構本体(610)より押し出され、開閉機構爪(608)が第三ばね(611)の力に打ち勝って引上機構筐体(600)と反対の方向に押し出される。この時第一ばね(606)および第二ばね(613)は、第一把持部(605)と第二把持部(607)をつないでおり、開閉機構爪(608)によって引き延ばされていた力が解放されることによって収縮することで、第一把持部(605)と第二把持部(607)の間にある反応容器(108)を挟みこみ把持する。 When measuring the weight, that is, when grasping the reaction vessel (108), the opening / closing mechanism cylinder (609) is pushed out from the opening / closing mechanism main body (610), and the opening / closing mechanism claw (608) overcomes the force of the third spring (611). It is pushed out in the direction opposite to the pulling mechanism housing (600). At this time, the first spring (606) and the second spring (613) connected the first grip portion (605) and the second grip portion (607), and were stretched by the opening / closing mechanism claw (608). By contracting when the force is released, the reaction vessel (108) between the first grip portion (605) and the second grip portion (607) is sandwiched and gripped.
 第一把持部(605)は接続部(604)を介してのみ歪体(602)と接続している。本実施例では、接続部(604)と、第一把持部(605)と、第二把持部(607)と、第一ばね(606)と、第二ばね(613)とが、反応容器(108)の全体すなわち全重量を支持する支持部を構成する。 The first grip portion (605) is connected to the strain body (602) only via the connecting portion (604). In this embodiment, the connecting portion (604), the first grip portion (605), the second grip portion (607), the first spring (606), and the second spring (613) are formed in a reaction vessel ( It constitutes a support portion that supports the entire weight of 108).
 また、本実施例では、引上機構筐体(600)と、引き上げ駆動部(612)と、歪体(602)と、歪体固定部(603)と、接続部(604)と、第一把持部(605)と、第二把持部(607)と、第一ばね(606)と、第二ばね(613)とが、反応容器(108)を引き上げる反応容器引上部を構成する。なお引き上げ駆動部(612)はたとえば装置筐体(110)に固定されている。 Further, in the present embodiment, the pull-up mechanism housing (600), the pull-up drive unit (612), the strain body (602), the strain body fixing portion (603), the connection portion (604), and the first The grip portion (605), the second grip portion (607), the first spring (606), and the second spring (613) form a reaction vessel pulling upper portion that pulls up the reaction vessel (108). The pull-up drive unit (612) is fixed to, for example, the device housing (110).
 引上機構筐体(600)が引き上げ駆動部(612)によって鉛直方向へ移動することによって、反応容器(108)は反応容器設置部(118)より引き上げられる。この時、反応容器(108)の重量に応じた歪が歪体(602)に発生する。歪体(602)は、歪体固定部(603)とのみ接続しており、歪体(602)に設けた歪センサ(601)すなわち重量測定部によって、反応容器(108)の重量に応じた信号が出力される。 The reaction vessel (108) is pulled up from the reaction vessel installation portion (118) by moving the pulling mechanism housing (600) in the vertical direction by the pulling drive unit (612). At this time, strain corresponding to the weight of the reaction vessel (108) is generated in the strain body (602). The strain body (602) is connected only to the strain body fixing portion (603), and the strain sensor (601) provided on the strain body (602), that is, the weight measuring unit, adjusts the weight of the reaction vessel (108). A signal is output.
 このように、実施例3に係る自動分析装置によれば、実施例1と同様に、反応容器(108)に分注された検体または試薬の重量を、高精度にかつ安価に確認できる。 As described above, according to the automatic analyzer according to Example 3, the weight of the sample or reagent dispensed into the reaction vessel (108) can be confirmed with high accuracy and at low cost as in Example 1.
 このような反応容器引上部は、自動分析装置において複数の位置に設置することができる。たとえば、検体分注位置(120)、試薬分注位置(122)、反応容器洗浄位置(126)、および反応容器分析吸引位置(123)に設置し、分析動作サイクル中の任意の時点において反応容器(108)の重量を測定することが可能である。 Such reaction vessel pull-ups can be installed at multiple positions in the automatic analyzer. For example, the reaction vessel is placed at the sample dispensing position (120), the reagent dispensing position (122), the reaction vessel washing position (126), and the reaction vessel analysis suction position (123) at any time during the analysis operation cycle. It is possible to measure the weight of (108).
 実施例1では、検体分注工程を60秒に1回、繰り返し実施した場合(処理能力60テスト/h)、10個の工程それぞれに割り当てることができる時間は平均6秒であった。ここで、処理能力500テスト/hの自動分析装置に対応しようとした場合には、同方式であると検体分注工程を7.2秒に1回実施する必要があり、10個の工程それぞれに割り当てることができる時間はわずかに平均0.72秒となってしまう。このような場合には、反応容器移動部によって重量測定のために反応容器を移動させる時間を確保することが困難である。 In Example 1, when the sample dispensing step was repeated once every 60 seconds (processing capacity 60 test / h), the time that could be allocated to each of the 10 steps was 6 seconds on average. Here, when trying to support an automatic analyzer with a processing capacity of 500 tests / h, it is necessary to carry out the sample dispensing step once every 7.2 seconds if the same method is used, and each of the 10 steps is required. The time that can be allocated to is only 0.72 seconds on average. In such a case, it is difficult to secure time for moving the reaction vessel for weight measurement by the reaction vessel moving portion.
 これに対し、実施例3によれば、たとえば分注の動作中に反応容器(108)を引き上げておくことにより、重量測定を短時間で実施することが可能となる。重量測定を実施することによる時間的影響は、反応容器引上部による引き上げ時間が追加になるのみである。 On the other hand, according to the third embodiment, for example, by pulling up the reaction vessel (108) during the dispensing operation, the weight measurement can be performed in a short time. The only time effect of performing the weighing is the additional lifting time by the reaction vessel pull-up.
[実施例4]
 図7に、実施例4に係る支持部および重量測定部の構成の例を示す。実施例4に係る自動分析装置では、実施例3と同様に、支持部および重量測定部が反応容器引上部に設けられる。
[Example 4]
FIG. 7 shows an example of the configuration of the support unit and the weight measurement unit according to the fourth embodiment. In the automatic analyzer according to the fourth embodiment, as in the third embodiment, a support portion and a weight measuring portion are provided on the upper part of the reaction vessel.
 自動分析装置は、一対の引上作用部(707)を備える。各引上作用部(707)は、それぞれ対応する引上部腕(706)、それぞれ対応する引上部腕柱(705)、および、共通する引き上げ肩部(704)によって、歪体(702)と接続している。 The automatic analyzer includes a pair of pulling action units (707). Each pull-up action section (707) is connected to the strainer (702) by a corresponding pull-up arm (706), a corresponding pull-up arm column (705), and a common pull-up shoulder (704). are doing.
 本実施例では、引上作用部(707)、引上部腕(706)、引上部腕柱(705)、および共通する引き上げ肩部(704)が、反応容器(108)の全体すなわち全重量を支持する支持部を構成する。 In this embodiment, the pulling action section (707), the pulling arm (706), the pulling arm column (705), and the common pulling shoulder (704) make up the entire or total weight of the reaction vessel (108). It constitutes a support part to support.
 歪体(702)は、装置筐体(700)と接続した歪体固定部(701)と端部で固定されており、歪センサ(703)すなわち重量測定部が歪体(702)上に取り付けられている。 The strain body (702) is fixed to the strain body fixing portion (701) connected to the apparatus housing (700) at the end portion, and the strain sensor (703), that is, the weight measuring portion is mounted on the strain body (702). Has been done.
 本実施例では、歪体固定部(701)、歪体(702)、引き上げ肩部(704)、引上部腕柱(705)、引上部腕(706)、および引上作用部(707)が、反応容器(108)を引き上げる反応容器引上部を構成する。 In this embodiment, the strain fixing portion (701), the strain body (702), the pulling shoulder portion (704), the pulling upper arm column (705), the pulling upper arm (706), and the pulling action portion (707) are , The reaction vessel pulling upper part for pulling up the reaction vessel (108) is formed.
 引上作用部(707)は、反応容器設置部(118)上空の位置に設置される。より具体的には、検体分注位置(120)、試薬分注位置(122)、第二反応容器架設ポジション(121)、反応容器分析吸引位置(123)などの上空の位置に設置される。 The pulling action unit (707) is installed at a position above the reaction vessel installation unit (118). More specifically, it is installed at an empty position such as a sample dispensing position (120), a reagent dispensing position (122), a second reaction vessel erection position (121), and a reaction vessel analysis suction position (123).
 図8に、試薬プローブ(113)が第一試薬を分注する場合の動作例を示す。第二試薬または検体が分注される場合も同様である。本実施例では、反応容器(108)は、その側面に張り出し部(800)を備えており、引上作用部(707)は、この張り出し部(800)を支持することによって、反応容器(108)を支持することができる。 FIG. 8 shows an operation example when the reagent probe (113) dispenses the first reagent. The same applies when the second reagent or sample is dispensed. In this embodiment, the reaction vessel (108) is provided with an overhang portion (800) on the side surface thereof, and the pulling action portion (707) supports the overhang portion (800) to support the reaction vessel (108). ) Can be supported.
 図8(a)の状態では、反応容器(108)は引き上げられていない。反応容器設置部(118)が回転し、反応容器(108)を試薬分注位置(122)へと移動させると、反応容器(108)の張り出し部(800)が、反応容器設置部(118)の回転動作とともに、矢印に示すように引上作用部(707)の上へ乗り上げ、反応容器設置部(118)から引き上げられて、図8(b)に示す状態となる。 In the state of FIG. 8A, the reaction vessel (108) is not pulled up. When the reaction vessel setting section (118) rotates and the reaction vessel (108) is moved to the reagent dispensing position (122), the overhanging section (800) of the reaction vessel (108) becomes the reaction vessel setting section (118). As shown by the arrow, it rides on the pulling action unit (707) and is pulled up from the reaction vessel installation unit (118) to reach the state shown in FIG. 8 (b).
 反応容器(108)が引き上げられる距離は、引上作用部(707)の形状に依存して決まる。引上作用部(707)の形状は、反応容器(108)が反応容器設置部(118)とまったく接触しなくなる高さにまで引き上げることができる形状であれば何でもよい。 The distance at which the reaction vessel (108) is pulled up depends on the shape of the pulling action portion (707). The shape of the pulling action portion (707) may be any shape as long as it can be pulled up to a height at which the reaction vessel (108) does not come into contact with the reaction vessel installation portion (118) at all.
 このように、実施例4によれば、反応容器設置部(118)が回転することに応じ、自動的に反応容器(108)が引き上げられるので、より効率的に重量を測定することができる。 As described above, according to the fourth embodiment, the reaction vessel (108) is automatically pulled up in response to the rotation of the reaction vessel installation portion (118), so that the weight can be measured more efficiently.
 重量測定部は、図8(b)に示すように引上作用部(707)が張り出し部(800)を支持した状態で、反応容器(108)および支持部の全重量を測定する。 As shown in FIG. 8B, the weight measuring unit measures the total weight of the reaction vessel (108) and the supporting portion with the pulling action portion (707) supporting the overhanging portion (800).
 また、引上作用部(707)の曲率は、反応容器設置部(118)の回転速度に応じて設計されてもよい。たとえば、引き上げに伴い反応容器(108)内の反応液が飛び出さないような引き上げ速度となるように決定される。 Further, the curvature of the pulling action portion (707) may be designed according to the rotation speed of the reaction vessel installation portion (118). For example, the pulling speed is determined so that the reaction solution in the reaction vessel (108) does not pop out with the pulling.
 また、図8では反応容器の張り出し形状を張り出し部(800)のように反応容器外形から肩となるように張り出す形状で説明したが、張り出し部の形状は、反応容器(108)の全体を支持できるような形状であれば任意に設計可能である。たとえば、引上作用部(707)の形状に合わせ、反応容器(108)が横方向に進入する際に鉛直方向に引き上げる力が発生しうる形状とすることができる。具体例として、図8では反応容器(108)の外周にテーパー面(801)が形成されているが、このテーパー面(801)を張り出し部として機能し、引上作用部(707)によって支持されるように構成してもよい。 Further, in FIG. 8, the overhanging shape of the reaction vessel is described as being overhanging from the outer shape of the reaction vessel so as to be a shoulder like the overhanging portion (800), but the shape of the overhanging portion is the entire reaction vessel (108). Any shape can be designed as long as it can be supported. For example, the shape can be adapted to the shape of the pulling action portion (707) so that a force for pulling up in the vertical direction can be generated when the reaction vessel (108) enters in the lateral direction. As a specific example, in FIG. 8, a tapered surface (801) is formed on the outer periphery of the reaction vessel (108), and this tapered surface (801) functions as an overhanging portion and is supported by the pulling action portion (707). It may be configured as follows.
 また、引上作用部(707)は、反応容器(108)を引き上げる際に滑らかに引き上げることが可能となるように、表面を研磨した状態が好ましい。もしくは、引上作用部(707)において、張り出し部(800)と接触する部分に、ベアリングなどを備えてもよい。 Further, it is preferable that the surface of the pulling action portion (707) is polished so that the reaction vessel (108) can be pulled up smoothly when it is pulled up. Alternatively, a bearing or the like may be provided at a portion of the pulling action portion (707) that comes into contact with the overhanging portion (800).
[実施例5]
 図9に、実施例5に係る支持部の構成の例を示す。実施例5は、実施例4において、引上作用部(707)および引上部腕(706)の構成を変更したものである。図9(a)は上方向から見た支持部の一部の断面図であり、図9(b)は側方向から見た支持部の一部の断面図である。
[Example 5]
FIG. 9 shows an example of the configuration of the support portion according to the fifth embodiment. In the fifth embodiment, the configurations of the pulling action portion (707) and the pulling upper arm (706) are changed in the fourth embodiment. FIG. 9A is a cross-sectional view of a part of the support portion viewed from above, and FIG. 9B is a cross-sectional view of a part of the support portion seen from the side direction.
 実施例5において、支持部は、弾性的に開閉可能な開閉部を備える。図9の例では、開閉部は2本の腕によって構成される。第一の腕は、水平な長手方向に伸びる第一ばね部(900)と、第一水平引込ガイド(902)と、第一固定ガイド(904)と、第三固定ガイド(906)と、第三水平引込ガイド(908)とを備える。第一ばね部(900)は、水平面内において、長手方向と垂直な方向にたわむことができる。 In the fifth embodiment, the support portion includes an opening / closing portion that can be elastically opened and closed. In the example of FIG. 9, the opening / closing part is composed of two arms. The first arm has a first spring portion (900) extending in the horizontal longitudinal direction, a first horizontal retract guide (902), a first fixing guide (904), a third fixing guide (906), and a first arm. (3) A horizontal retracting guide (908) is provided. The first spring portion (900) can be bent in a direction perpendicular to the longitudinal direction in the horizontal plane.
 同様に、第二の腕は、水平な長手方向に伸びる第二ばね部(901)と、第二水平引込ガイド(903)と、第二固定ガイド(905)と、第四固定ガイド(907)と、第四水平引込ガイド(909)とを備える。第二ばね部(901)は、水平面内において、長手方向と垂直な方向にたわむことができる。 Similarly, the second arm has a second spring portion (901) extending in the horizontal longitudinal direction, a second horizontal retracting guide (903), a second fixing guide (905), and a fourth fixing guide (907). It is provided with a fourth horizontal retracting guide (909). The second spring portion (901) can be bent in the direction perpendicular to the longitudinal direction in the horizontal plane.
 図9に示す開閉部は、第一ばね部(900)および第二ばね部(901)がたわむことにより、水平方向に、かつ反応容器(108)の移動方向に対して垂直な方向に、開閉可能となるよう構成されている。 The opening / closing portion shown in FIG. 9 opens / closes in the horizontal direction and in the direction perpendicular to the moving direction of the reaction vessel (108) due to the deflection of the first spring portion (900) and the second spring portion (901). It is configured to be possible.
 本実施例に係る引上作用部は、第一固定ガイド(904)、第二固定ガイド(905)、第三固定ガイド(906)および第四固定ガイド(907)によって構成される。 The pulling action portion according to this embodiment is composed of a first fixing guide (904), a second fixing guide (905), a third fixing guide (906), and a fourth fixing guide (907).
 反応容器設置部(118)が反応容器(108)を回転移動に伴って時計回り方向(CW方向)に移動させたとする。反応容器(108)の外壁(たとえば張り出し部であるが、張り出し部より下の部分であってもよい)が、第三水平引込ガイド(908)および第四水平引込ガイド(909)に沿って進入する。 It is assumed that the reaction vessel installation unit (118) moves the reaction vessel (108) in the clockwise direction (CW direction) with the rotational movement. The outer wall of the reaction vessel (108) (eg, the overhang, but may be below the overhang) enters along the third horizontal lead (908) and fourth horizontal lead (909). To do.
 この時、第一ばね部(900)および第二ばね部(901)に、互いに反対方向へ変形する応力が発生し、反応容器(108)の外壁に沿って、第三水平引込ガイド(908)と第四水平引込ガイド(909)とが水平方向へと広がる。これに伴い、反応容器(108)は、引上作用部(すなわち、第一固定ガイド(904)、第二固定ガイド(905)、第三固定ガイド(906)、および、第四固定ガイド(907))によって形成される支持空間へと移動する。 At this time, stresses that deform in opposite directions are generated in the first spring portion (900) and the second spring portion (901), and the third horizontal lead-in guide (908) is formed along the outer wall of the reaction vessel (108). And the fourth horizontal pull-in guide (909) spread in the horizontal direction. Along with this, the reaction vessel (108) has a pulling action portion (that is, a first fixing guide (904), a second fixing guide (905), a third fixing guide (906), and a fourth fixing guide (907). )) Move to the support space formed by).
 それと同時に、反応容器(108)は、第一引上ガイド(910)に沿って反応容器設置部(118)から上方へ引き上げられ、引上作用部に乗り換える。この状態で、重量測定部により、反応容器(108)および支持部の全重量が測定される。 At the same time, the reaction vessel (108) is pulled upward from the reaction vessel installation section (118) along the first pull-up guide (910) and switches to the pull-up action section. In this state, the weight measuring unit measures the total weight of the reaction vessel (108) and the support unit.
 ここで、実施例5によれば、反応容器(108)が4つの固定ガイドによって囲まれた支持空間に固定されるので、より安定した状態で重量測定を行うことができる。 Here, according to the fifth embodiment, since the reaction vessel (108) is fixed in the support space surrounded by the four fixing guides, the weight measurement can be performed in a more stable state.
 重量測定後、反応容器設置部(118)が時計回り方向に回転する場合には、反応容器(108)は第一水平引込ガイド(902)および第二水平引込ガイド(903)に向かって移動し、第二引上ガイド(911)に沿って、引上作用部から反応容器設置部(118)へと自重で落下するようガイドされる。 If the reaction vessel installation section (118) rotates clockwise after weighing, the reaction vessel (108) moves toward the first horizontal lead-in guide (902) and the second horizontal lead-in guide (903). , Along the second pulling guide (911), it is guided to fall from the pulling action part to the reaction vessel setting part (118) by its own weight.
 一方、重量測定後、反応容器設置部(118)が反時計回り方向(CCW方向)に回転する場合には、反応容器(108)は第三水平引込ガイド(908)および第四水平引込ガイド(909)に向かって移動し、第一引上ガイド(910)に沿って、引上作用部から反応容器設置部(118)へと自重で落下するようガイドされる。 On the other hand, when the reaction vessel installation portion (118) rotates in the counterclockwise direction (CCW direction) after the weight measurement, the reaction vessel (108) has a third horizontal lead-in guide (908) and a fourth horizontal lead-in guide (908). It moves toward 909) and is guided to fall from the pulling action section to the reaction vessel installation section (118) by its own weight along the first pulling guide (910).
 反応容器設置部(118)が反応容器(108)を、引上作用部へと反時計回り方向(CCW方向)に引き上げる場合には、反応容器(108)は、第一水平引込ガイド(902)および第二水平引込ガイド(903)に沿って進入する。 When the reaction vessel installation unit (118) pulls the reaction vessel (108) toward the pulling action portion in the counterclockwise direction (CCW direction), the reaction vessel (108) is referred to as the first horizontal retracting guide (902). And enter along the second horizontal pull-in guide (903).
 この時、第一ばね部(900)および第二ばね部(901)に、互いに反対方向へ変形する応力が発生し、反応容器(108)の外壁に沿って、第一水平引込ガイド(902)と第二水平引込ガイド(903)とが水平方向へ広がる。これに伴い、反応容器(108)は、引上作用部(すなわち、第一固定ガイド(904)、第二固定ガイド(905)、第三固定ガイド(906)、および、第四固定ガイド(907))によって形成される支持空間へと移動する。 At this time, stresses that deform in opposite directions are generated in the first spring portion (900) and the second spring portion (901), and the first horizontal pull-in guide (902) is formed along the outer wall of the reaction vessel (108). And the second horizontal pull-in guide (903) spread in the horizontal direction. Along with this, the reaction vessel (108) has a pulling action portion (that is, a first fixing guide (904), a second fixing guide (905), a third fixing guide (906), and a fourth fixing guide (907). )) Move to the support space formed by).
 それと同時に、反応容器(108)は、第二引上ガイド(911)に沿って反応容器設置部(118)から上方へ引き上げられ、引上作用部に乗り換える。この状態で、重量測定部により、反応容器(108)および支持部の全重量が測定される。重量測定後の動作は、時計回り方向の動作と同様であるので、説明を省略する。 At the same time, the reaction vessel (108) is pulled upward from the reaction vessel installation section (118) along the second pull-up guide (911) and switches to the pull-up action section. In this state, the weight measuring unit measures the total weight of the reaction vessel (108) and the support unit. Since the operation after the weight measurement is the same as the operation in the clockwise direction, the description thereof will be omitted.
 なお、第一ばね部(900)および第二ばね部(901)は、たとえば実施例4(図7)における引上部腕(706)の一部として設けてもよい。また、引上部腕(706)に、各水平引込ガイドによって発生する応力によって変形する部位を設けた構成であれば、具体的構成は任意に設計可能である。たとえば、変形するばね部は、図7で示した引き上げ肩部(704)および引上部腕柱(705)内に設けてもよく、引き上げ肩部(704)と引上部腕柱(705)との接続部に設けてもよく、引上部腕柱(705)と引上部腕(706)との接続部に設けてもよい。 The first spring portion (900) and the second spring portion (901) may be provided, for example, as a part of the pulling upper arm (706) in the fourth embodiment (FIG. 7). Further, a specific configuration can be arbitrarily designed as long as the pulling upper arm (706) is provided with a portion deformed by the stress generated by each horizontal pulling guide. For example, the deformable spring portion may be provided in the pull-up shoulder portion (704) and the pull-up arm column (705) shown in FIG. 7, and the pull-up shoulder portion (704) and the pull-up arm column (705) may be provided. It may be provided at the connecting portion, or may be provided at the connecting portion between the pulling upper arm column (705) and the pulling upper arm (706).
[実施例6]
 図10に、実施例6に係る支持部の動作の例を示す。支持部の構成は、たとえば実施例4(図7および図8)または実施例5(図9)と同様にすることができる。
[Example 6]
FIG. 10 shows an example of the operation of the support portion according to the sixth embodiment. The configuration of the support portion can be, for example, the same as in Example 4 (FIGS. 7 and 8) or Example 5 (FIG. 9).
 図10は、反応容器(108)が反応容器設置部(118)に設置されてから廃棄されるまでの工程の流れを示す。反応容器(108)にまだ第一試薬が分注されていないタイミングにおいて反応容器(108)等の重量を測定した重量1と、第一試薬が分注された後に反応容器(108)等の重量を測定した重量2との差分を計算すれば、正味の第一試薬の重量を計算することができる。 FIG. 10 shows the flow of the process from when the reaction vessel (108) is installed in the reaction vessel installation section (118) to when it is discarded. The weight 1 obtained by measuring the weight of the reaction vessel (108) and the like at the timing when the first reagent is not yet dispensed into the reaction vessel (108), and the weight of the reaction vessel (108) and the like after the first reagent is dispensed. By calculating the difference from the measured weight 2, the net weight of the first reagent can be calculated.
 また、引き続き、追加で第二試薬の分注が実施される場合には、第二試薬が分注された後に反応容器(108)等の重量を測定した重量3と、上記の重量2との差分を計算することで、正味の第二試薬の重量を計算することができる。 When the second reagent is additionally dispensed, the weight 3 obtained by measuring the weight of the reaction vessel (108) or the like after the second reagent is dispensed and the above weight 2 are added. By calculating the difference, the weight of the net second reagent can be calculated.
 重量の計算は、重量計算部によって行われてもよい。すなわち、自動分析装置は、反応容器(108)に検体または各試薬が分注される際に、分注前の重量と、分注後の重量とに基づき、分注された検体または各試薬の重量を算出する、重量計算部を備えてもよい。重量計算部は、たとえば重量測定制御部(135)に構成される。 The weight calculation may be performed by the weight calculation unit. That is, when the sample or each reagent is dispensed into the reaction vessel (108), the automatic analyzer of the dispensed sample or each reagent is based on the weight before dispensing and the weight after dispensing. A weight calculation unit may be provided for calculating the weight. The weight calculation unit is composed of, for example, a weight measurement control unit (135).
 なお、本実施例において、自動分析装置は、各タイミングで測定された重量を記憶する記憶部を備えてもよい。記憶部は、たとえば重量測定制御部(135)に構成される。 Note that, in this embodiment, the automatic analyzer may include a storage unit that stores the weight measured at each timing. The storage unit is composed of, for example, a weight measurement control unit (135).
 このように、分注工程と並行して反応容器(108)等の重量を測定することが可能となるため、分析処理の速度にほとんど影響を与えることなく、反応液等の重量測定を実現することができる。 In this way, since the weight of the reaction vessel (108) or the like can be measured in parallel with the dispensing step, the weight of the reaction solution or the like can be measured with almost no effect on the speed of the analysis process. be able to.
[実施例7]
 図11を用いて、実施例7に係る自動分析装置の動作を説明する。重量測定制御部(135)に、分注される各成分(たとえば液体)の比重を表す情報が予め登録されている。
[Example 7]
The operation of the automatic analyzer according to the seventh embodiment will be described with reference to FIG. Information representing the specific gravity of each component (for example, liquid) to be dispensed is registered in advance in the weight measurement control unit (135).
 自動分析装置は、体積計算部を備える。この体積計算部は、検体または各試薬の重量に基づき、検体または各試薬の体積を算出する。たとえば、検体について計算された重量を、検体の比重で除算することにより、検体の体積を算出することができる。体積計算部は、たとえば重量測定制御部(135)に構成される。 The automatic analyzer is equipped with a volume calculation unit. This volume calculation unit calculates the volume of the sample or each reagent based on the weight of the sample or each reagent. For example, the volume of a sample can be calculated by dividing the weight calculated for the sample by the specific gravity of the sample. The volume calculation unit is composed of, for example, a weight measurement control unit (135).
 なお、図11では説明のために具体的な数値を記載したが、これらの数値はあらかじめ任意に設定することができる。 Although specific numerical values are shown in FIG. 11 for explanation, these numerical values can be arbitrarily set in advance.
 実施例7によれば、検体および各試薬の重量のみならず、体積も自動的に測定することができる。 According to Example 7, not only the weight of the sample and each reagent but also the volume can be automatically measured.
[実施例8]
 図12および図13を用いて、実施例8に係る自動分析装置の動作を説明する。自動分析装置は記憶部を備え、この記憶部は、検体または各試薬について、図12に示すような規定量範囲を記憶する。記憶部は、たとえば重量測定制御部(135)に構成される。なお、図12の例では規定量範囲は体積の範囲であるが、規定量範囲は重量の範囲であってもよい。
[Example 8]
The operation of the automatic analyzer according to the eighth embodiment will be described with reference to FIGS. 12 and 13. The automatic analyzer includes a storage unit, which stores a specified amount range as shown in FIG. 12 for a sample or each reagent. The storage unit is composed of, for example, a weight measurement control unit (135). In the example of FIG. 12, the specified amount range is the volume range, but the specified amount range may be the weight range.
 この規定量範囲は、各成分の許容可能な誤差の範囲を表すものである。規定量範囲は、図12の例では各成分について「範囲1」および「範囲2」の2通りの規定量範囲が登録されているが、規定量範囲は各成分について1通りであってもよく、3通り以上であってもよい。また、記憶部は、検体または各試薬について、標準とする量(標準量。たとえば標準体積量)を記憶してもよい。 This specified amount range represents the range of allowable error of each component. In the example of FIG. 12, two specified amount ranges of "range 1" and "range 2" are registered for each component, but the specified amount range may be one for each component. There may be three or more ways. Further, the storage unit may store a standard amount (standard amount, for example, a standard volume amount) for the sample or each reagent.
 自動分析装置は、判定部および出力部を備える。判定部および出力部は、たとえば重量測定制御部(135)に構成される。判定部は、検体または各試薬の重量と、規定量範囲とに基づき、検体または各試薬の量が規定量範囲内であるか否かを判定する。また、出力部は、判定部による判定の結果を出力する。 The automatic analyzer is equipped with a judgment unit and an output unit. The determination unit and the output unit are configured as, for example, a weight measurement control unit (135). The determination unit determines whether or not the amount of the sample or each reagent is within the specified amount range based on the weight of the sample or each reagent and the specified amount range. In addition, the output unit outputs the result of the determination by the determination unit.
 図13に、図12の規定量範囲を用いた判定処理および出力処理の例を示す。図12の例では、範囲2は範囲1よりも幅が大きい。判定部は、まず検体または各試薬の標準量と、測定された検体または各試薬の量との差分が、範囲1に含まれるか否かを判定する。差分が範囲1に含まれる場合には、出力部は判定結果としてフラグを出力しない。 FIG. 13 shows an example of determination processing and output processing using the specified amount range of FIG. In the example of FIG. 12, range 2 is wider than range 1. The determination unit first determines whether or not the difference between the standard amount of the sample or each reagent and the measured amount of the sample or each reagent is included in the range 1. When the difference is included in the range 1, the output unit does not output the flag as the determination result.
 差分が範囲1を超える場合には、判定部は、差分が範囲2に含まれるか否かを判定する。差分が範囲2に含まれる場合には、出力部は判定結果としてフラグを出力する。このフラグは、たとえば規定量が吸引できなかった可能性があることを表す。出力されたフラグは、記憶部に記憶されてもよいし、使用者に対して(表示装置等を用いて)出力されてもよい。このような状況は、フィブリンを吸引したことによる短時間的な流路閉塞によって発生する可能性がある。 When the difference exceeds the range 1, the determination unit determines whether or not the difference is included in the range 2. When the difference is included in the range 2, the output unit outputs a flag as a determination result. This flag indicates, for example, that the specified amount may not have been aspirated. The output flag may be stored in the storage unit, or may be output to the user (using a display device or the like). Such a situation can be caused by a brief blockage of the flow path due to inhalation of fibrin.
 差分が範囲2を超える場合には、出力部は判定結果として、後続の処理をキャンセルする信号を出力する。これは、装置において配管異常などのハード異常が発生した場合等に対応する。 When the difference exceeds the range 2, the output unit outputs a signal for canceling the subsequent processing as a judgment result. This corresponds to the case where a hardware abnormality such as a piping abnormality occurs in the device.
 例えばある分析において、第一試薬の標準体積量が60μlであり、第一試薬の重量に基づいて計算された体積量が20μlであるとする。誤差は-40μlとなり、範囲2を超えるので、以降の処理がキャンセルされる。 For example, in a certain analysis, it is assumed that the standard volume of the first reagent is 60 μl and the volume calculated based on the weight of the first reagent is 20 μl. Since the error is -40 μl and exceeds the range 2, the subsequent processing is cancelled.
 また、例えば検体の標準体積量が30μlであり、重量に基づいて計算された体積量が28μlであるとする。この場合には誤差は-2μlであり、範囲1を超えるが範囲2に含まれるので、分析結果にフラグが付与される。 Further, for example, it is assumed that the standard volume of the sample is 30 μl and the volume calculated based on the weight is 28 μl. In this case, the error is -2 μl, which exceeds the range 1 but is included in the range 2, so that the analysis result is flagged.
 なお、図12では説明のために具体的な数値を記載したが、これらの数値はあらかじめ任意に設定することができる。また、判定部による判定の分岐条件も任意に設計可能であり、試薬毎に性能に与える影響を考慮して種類毎に異なる分岐条件を定義してもよい。 Although specific numerical values are described in FIG. 12 for explanation, these numerical values can be arbitrarily set in advance. Further, the branching condition for the determination by the determination unit can be arbitrarily designed, and different branching conditions may be defined for each type in consideration of the influence on the performance for each reagent.
 このように、実施例8によれば、検体または各試薬の量が正常でなかった場合に、適切な処理を行うことができる。 As described above, according to Example 8, when the amount of the sample or each reagent is not normal, appropriate treatment can be performed.
[変形例]
 実施例1~7において、以下のような変形を加えることができる。
 反応容器(108)を移動させる反応容器移動部は、1つ以上であればよい。たとえば、第一反応容器搬送本体部(105)および第二反応容器搬送本体部(124)の一方を省略してもよいし、3つ以上の反応容器移動部を設けてもよい。
[Modification example]
In Examples 1 to 7, the following modifications can be added.
The number of reaction vessel moving portions for moving the reaction vessel (108) may be one or more. For example, one of the first reaction vessel transport main body (105) and the second reaction vessel transport main body (124) may be omitted, or three or more reaction vessel moving portions may be provided.
 また、反応容器(108)および支持部の全重量を測定する重量測定部は、1つ以上であればよい。たとえば、実施例1では第一反応容器重量測定機構(127)および第二反応容器重量測定機構(131)の一方を省略してもよいし、3つ以上の重量測定部を設けてもよい。 Further, the number of weight measuring units for measuring the total weight of the reaction vessel (108) and the support unit may be one or more. For example, in Example 1, one of the first reaction vessel weight measuring mechanism (127) and the second reaction vessel weight measuring mechanism (131) may be omitted, or three or more weight measuring units may be provided.
 重量測定部として用いられる歪センサは、任意の方式のものを用いることができる。たとえば、部材の形状が変化することで物性が変化するという原理を利用した方式のものを用いることができる。より具体的には、部材の伸縮度合いの変化によって起こる電気抵抗値の変化を測定する方式のものであってもよい。または、レーザー光や超音波等を用い、歪の大きさ(距離の変化)を測定する方式のものであってもよい。 Any strain sensor can be used as the weight measuring unit. For example, a method using the principle that physical properties change as the shape of a member changes can be used. More specifically, a method of measuring a change in the electrical resistance value caused by a change in the degree of expansion and contraction of the member may be used. Alternatively, a method of measuring the magnitude of strain (change in distance) using laser light, ultrasonic waves, or the like may be used.
 さらに、重量測定部には歪センサ以外の重量センサを用いてもよい。たとえば、測定対象の重量と釣り合う力を発生させ、その力の大きさや、その力を発生させるための制御量を測定することにより、測定対象の重量を取得するような方式の重量センサを用いることができる。 Further, a weight sensor other than the strain sensor may be used for the weight measuring unit. For example, a weight sensor of a method that acquires the weight of the measurement target by generating a force that is commensurate with the weight of the measurement target and measuring the magnitude of the force and the control amount for generating the force is used. Can be done.
 105 第一反応容器搬送本体部(反応容器移動部)
 108 反応容器
 124 第二反応容器搬送本体部(反応容器移動部)
 127 第一反応容器重量測定機構(重量測定機構)
 131 第二反応容器重量測定機構(重量測定機構)
 135 重量測定制御部(記憶部、重量計算部、体積計算部、判定部、出力部)
 300 反応容器収容部(支持部)
 302 接続部(支持部)
 304 歪センサ(重量測定部)
 501 接続部(支持部)
 502 第一把持部(支持部、把持部)
 504 第二把持部(支持部、把持部)
 600 引上機構筐体(反応容器引上部)
 601 歪センサ(重量測定部)
 602 歪体(反応容器引上部)
 603 歪体固定部(反応容器引上部)
 604 接続部(支持部、反応容器引上部)
 605 第一把持部(支持部、反応容器引上部)
 607 第二把持部(支持部、反応容器引上部)
 606 第一ばね(支持部、反応容器引上部)
 612 引き上げ駆動部(反応容器引上部)
 613 第二ばね(支持部、反応容器引上部)
 701 歪体固定部(反応容器引上部)
 702 歪体(反応容器引上部)
 703 歪センサ(重量測定部)
 704 引き上げ肩部(反応容器引上部)
 705 引上部腕柱(反応容器引上部)
 706 引上部腕(反応容器引上部)
 707 引上作用部(反応容器引上部)
 800 張り出し部
 801 テーパー面(張り出し部)
 900 第一ばね部(支持部、開閉部)
 901 第二ばね部(支持部、開閉部)
 902 第一水平引込ガイド(支持部、開閉部)
 903 第二水平引込ガイド(支持部、開閉部)
 904 第一固定ガイド(支持部、開閉部)
 905 第二固定ガイド(支持部、開閉部)
 906 第三固定ガイド(支持部、開閉部)
 907 第四固定ガイド(支持部、開閉部)
 908 第三水平引込ガイド(支持部、開閉部)
 909 第四水平引込ガイド(支持部、開閉部)
 910 第一引上ガイド(支持部、開閉部)
 911 第二引上ガイド(支持部、開閉部)
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
105 First reaction vessel transport main body (reaction vessel moving part)
108 Reaction vessel 124 Second reaction vessel transport main unit (reaction vessel moving unit)
127 First reaction vessel weight measurement mechanism (weight measurement mechanism)
131 Second reaction vessel weight measurement mechanism (weight measurement mechanism)
135 Weight measurement control unit (storage unit, weight calculation unit, volume calculation unit, judgment unit, output unit)
300 Reaction vessel housing (support)
302 Connection (support)
304 Strain sensor (weight measuring unit)
501 Connection (support)
502 First grip part (support part, grip part)
504 Second grip (support, grip)
600 Pulling mechanism housing (upper part of reaction vessel pulling)
601 Strain sensor (weight measuring unit)
602 Strained body (upper part of reaction vessel)
603 Strained body fixing part (upper part of reaction vessel pull)
604 Connection (support, upper part of reaction vessel)
605 First grip part (support part, upper part of reaction vessel pull)
607 Second grip (support, upper part of reaction vessel pull)
606 First spring (support part, upper part of reaction vessel pull)
612 Lifting drive unit (upper part of reaction vessel pulling)
613 Second spring (support part, upper part of reaction vessel pull)
701 Strained body fixing part (upper part of reaction vessel pull)
702 Strained body (upper part of reaction vessel)
703 Strain sensor (weight measuring unit)
704 Raised shoulder (upper part of reaction vessel)
705 Pulling arm column (Reacting vessel pulling upper part)
706 Pulling arm (reacting container pulling upper part)
707 Pulling action part (upper part of reaction vessel pulling)
800 Overhang 801 Tapered surface (overhang)
900 First spring part (support part, opening / closing part)
901 Second spring part (support part, opening / closing part)
902 First horizontal pull-in guide (support part, opening / closing part)
903 Second horizontal retractable guide (support part, opening / closing part)
904 First fixing guide (support part, opening / closing part)
905 Second fixed guide (support part, opening / closing part)
906 Third fixed guide (support part, opening / closing part)
907 Fourth fixed guide (support part, opening / closing part)
908 Third horizontal pull-in guide (support part, opening / closing part)
909 Fourth horizontal retractable guide (support part, opening / closing part)
910 First pull-up guide (support part, opening / closing part)
911 Second pulling guide (support part, opening and closing part)
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (9)

  1.  検体および試薬を収容可能な反応容器と、
     前記反応容器の全重量を支持する支持部と、
     前記反応容器および前記支持部の全重量を測定する重量測定部と
    を備える、自動分析装置。
    A reaction vessel that can hold samples and reagents,
    A support portion that supports the entire weight of the reaction vessel and
    An automatic analyzer comprising the reaction vessel and a weight measuring unit for measuring the total weight of the support unit.
  2.  前記重量測定部は、前記自動分析装置に対して固定される重量測定機構に含まれ、
     前記自動分析装置は、前記反応容器を、前記重量測定機構へと移動させる反応容器移動部を備え、
     前記支持部は、前記重量測定機構に設けられる、
    請求項1に記載の自動分析装置。
    The weight measuring unit is included in a weight measuring mechanism fixed to the automatic analyzer.
    The automatic analyzer includes a reaction vessel moving unit that moves the reaction vessel to the weight measuring mechanism.
    The support portion is provided in the weight measuring mechanism.
    The automatic analyzer according to claim 1.
  3.  前記自動分析装置は、前記反応容器を引き上げる反応容器移動部を備え、
     前記支持部および前記重量測定部は、前記反応容器移動部に設けられ、
     前記支持部は、前記反応容器を引き上げる際に前記反応容器を把持する把持部として構成される、
    請求項1に記載の自動分析装置。
    The automatic analyzer includes a reaction vessel moving unit that pulls up the reaction vessel.
    The support portion and the weight measuring portion are provided in the reaction vessel moving portion.
    The support portion is configured as a grip portion that grips the reaction vessel when the reaction vessel is pulled up.
    The automatic analyzer according to claim 1.
  4.  前記自動分析装置は、前記反応容器を移動させる反応容器移動部と、前記反応容器を引き上げる反応容器引上部とを備え、
     前記支持部および前記重量測定部は、前記反応容器引上部に設けられる、
    請求項1に記載の自動分析装置。
    The automatic analyzer includes a reaction vessel moving unit for moving the reaction vessel and a reaction vessel pulling portion for pulling up the reaction vessel.
    The support portion and the weight measuring portion are provided on the upper part of the reaction vessel.
    The automatic analyzer according to claim 1.
  5.  前記反応容器は、前記反応容器の側面に張り出し部を備え、
     前記支持部は、前記張り出し部を支持することによって前記反応容器を支持し、
     前記重量測定部は、前記支持部が前記張り出し部を支持した状態で、前記全重量を測定する、
    請求項4に記載の自動分析装置。
    The reaction vessel is provided with an overhang on the side surface of the reaction vessel.
    The support portion supports the reaction vessel by supporting the overhanging portion.
    The weight measuring unit measures the total weight in a state where the supporting portion supports the overhanging portion.
    The automatic analyzer according to claim 4.
  6.  前記支持部は、弾性的に開閉可能な開閉部を備え、
     前記開閉部は、水平方向に、かつ前記反応容器の移動方向に対して垂直な方向に、開閉可能である、
    請求項5に記載の自動分析装置。
    The support portion includes an opening / closing portion that can be elastically opened and closed.
    The opening / closing portion can be opened / closed in a horizontal direction and in a direction perpendicular to the moving direction of the reaction vessel.
    The automatic analyzer according to claim 5.
  7.  前記自動分析装置は、
     前記全重量を記憶する記憶部と、
     前記反応容器に前記検体または前記試薬が分注される際に、分注前の前記全重量と、分注後の前記全重量とに基づき、分注された前記検体または前記試薬の重量を算出する、重量計算部と
    を備える、請求項1に記載の自動分析装置。
    The automatic analyzer
    A storage unit that stores the total weight,
    When the sample or reagent is dispensed into the reaction vessel, the weight of the dispensed sample or reagent is calculated based on the total weight before dispensing and the total weight after dispensing. The automatic analyzer according to claim 1, further comprising a weight calculation unit.
  8.  前記自動分析装置は、前記検体または前記試薬の前記重量に基づき、前記検体または前記試薬の体積を算出する、体積計算部を備える、請求項7に記載の自動分析装置。 The automatic analyzer according to claim 7, wherein the automatic analyzer includes a volume calculation unit that calculates the volume of the sample or the reagent based on the weight of the sample or the reagent.
  9.  前記自動分析装置は、
     前記検体または前記試薬について、規定量範囲を記憶する記憶部と、
     前記検体または前記試薬の前記重量と、前記規定量範囲とに基づき、前記検体または前記試薬の量が前記規定量範囲内であるか否かを判定する判定部と、
     前記判定部による判定の結果を出力する出力部と
    を備える、請求項7又は8に記載の自動分析装置。
    The automatic analyzer
    A storage unit that stores a specified amount range for the sample or the reagent, and
    A determination unit for determining whether or not the amount of the sample or the reagent is within the specified amount range based on the weight of the sample or the reagent and the specified amount range.
    The automatic analyzer according to claim 7 or 8, further comprising an output unit that outputs a determination result by the determination unit.
PCT/JP2019/049513 2019-03-19 2019-12-18 Automated analyzer WO2020188925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019051200A JP2022100417A (en) 2019-03-19 2019-03-19 Automatic analyzer
JP2019-051200 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020188925A1 true WO2020188925A1 (en) 2020-09-24

Family

ID=72519775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049513 WO2020188925A1 (en) 2019-03-19 2019-12-18 Automated analyzer

Country Status (2)

Country Link
JP (1) JP2022100417A (en)
WO (1) WO2020188925A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024081237A (en) * 2022-12-06 2024-06-18 株式会社日立ハイテク Autoanalyzer, and mass sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147652A (en) * 1984-01-13 1985-08-03 Hitachi Ltd Liquid sampling device
JPH1194840A (en) * 1997-09-22 1999-04-09 Hitachi Ltd Transport apparatus
JP2003028884A (en) * 2001-07-11 2003-01-29 Shimadzu Corp Retention apparatus and suction/injection apparatus
JP2009192303A (en) * 2008-02-13 2009-08-27 Olympus Corp Automatic analyzer
JP2009294186A (en) * 2008-06-09 2009-12-17 Ohm Denki Kk Dispensing device and dispensation method
US20140308180A1 (en) * 2008-06-24 2014-10-16 IKA- Werke GmbH & Co., KG Laboratory reactor with a reaction vessel
JP2014534447A (en) * 2011-11-07 2014-12-18 ベックマン コールター, インコーポレイテッド System and method for processing samples
JP2016217921A (en) * 2015-05-22 2016-12-22 株式会社日立ハイテクノロジーズ Automatic analyzer
JP2017090242A (en) * 2015-11-10 2017-05-25 東芝メディカルシステムズ株式会社 Automatic analyzer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147652A (en) * 1984-01-13 1985-08-03 Hitachi Ltd Liquid sampling device
JPH1194840A (en) * 1997-09-22 1999-04-09 Hitachi Ltd Transport apparatus
JP2003028884A (en) * 2001-07-11 2003-01-29 Shimadzu Corp Retention apparatus and suction/injection apparatus
JP2009192303A (en) * 2008-02-13 2009-08-27 Olympus Corp Automatic analyzer
JP2009294186A (en) * 2008-06-09 2009-12-17 Ohm Denki Kk Dispensing device and dispensation method
US20140308180A1 (en) * 2008-06-24 2014-10-16 IKA- Werke GmbH & Co., KG Laboratory reactor with a reaction vessel
JP2014534447A (en) * 2011-11-07 2014-12-18 ベックマン コールター, インコーポレイテッド System and method for processing samples
JP2016217921A (en) * 2015-05-22 2016-12-22 株式会社日立ハイテクノロジーズ Automatic analyzer
JP2017090242A (en) * 2015-11-10 2017-05-25 東芝メディカルシステムズ株式会社 Automatic analyzer

Also Published As

Publication number Publication date
JP2022100417A (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP7403447B2 (en) Cartridges and systems for body fluid analysis
JP6742463B2 (en) How to recommend automatic analyzers and need for maintenance
WO2015111526A1 (en) Automatic analytical apparatus
EP2746736B1 (en) System for managing of bulk liquids and/or solids
US7389679B2 (en) Measurement cell and method for the analysis of liquids
JP6116701B2 (en) Method and apparatus for monitoring sedimentation parameters of a fluid medium sample
JP2002196011A (en) Analyzing device and method for measuring sample quality
WO2020188925A1 (en) Automated analyzer
US20240183871A1 (en) Automatic analysis device and analysis method
US20130122606A1 (en) Method and device for chemical and/or biological analysis
JP2013122402A (en) Analyzing device for specimen inspection
US9588038B2 (en) Analytical system with capillary transport
US20110003280A1 (en) Immunoassay apparatus and immunoassay method
JP5137274B2 (en) Pipette tip
JP2017173064A (en) Automatic analyzer
JP3810190B2 (en) Immunoassay device
WO2023233914A1 (en) Inspection device
JP2004004098A (en) Whole blood corpuscle immunity measuring apparatus
US20230152342A1 (en) Method for detection of a bottom of at least one well
US20230152343A1 (en) Laboratory instrument
JP2010169620A (en) Reaction card, method of manufacturing reaction card, and automatic analyzer using reaction card
JP2023550497A (en) Improved ELISA using hemoglobin correction device and its method
US10328574B2 (en) Adjustment system
JP3722600B2 (en) Immunoassay device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP